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Abstract 
 

Using historical data on the randomness of solar and wind generation, I estimate how much carbon is 

abated when adding variable renewable energy (VRE) to the electric grid in California, a worldwide leader 

in its adoption. This requires identifying the marginal emissions offsets related to the instantaneous 

displacement of the highest marginal cost generator (merit order effect) but also the indirect hydropower 

reallocation that occurs due to VRE effects on locational marginal prices. Controlling for this indirect effect 

via a dynamic model renders sensible estimates of wind and solar marginal emissions offsets in electric 

grids powered by a significant share of hydropower. The proposed dynamic approach could also be 

applied to grids with increasing adoption of storage technologies.   
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1. Introduction 

 

 In the US, the recent Clean Power Plan has a 30% reduction in carbon dioxide emissions by 2030, 

from the 2005 level, as one of its key goals (EPA, 2015). In order to achieve this, an electric grid powered 

by a significant share of renewable energy is a proposed alternative. However, the intermittent nature of 

variable renewable energy (VRE), particularly solar and wind, the lack of utility scale electricity storage 

and the complex congestion configurations in power transmission make it challenging to assess VRE 

carbon emissions offsets. Overcoming these methodological difficulties is necessary to estimate the 

economic value of renewable energy and to evaluate its policies.  

 

 In this paper, using historical data on the randomness of solar and wind generation, I estimate 

how much carbon is abated when adding VRE to the electric grid in California, a worldwide leader in its 

adoption. The novel challenge lies in identifying the marginal generation and emissions offsets caused by 

adding two intermittent sources to an electric system that has a significant share of hydropower. Previous 

literature, centered on grids with small fractions of hydro generation, has identified marginal emissions 

offsets related to the instantaneous displacement of the highest marginal cost thermal generators, 

through the merit order effect (Kaffine et al., 2012, Cullen, 2013, Novan, 2015). 

 

Nevertheless, adding significant amounts of VRE at low or zero value bids causes a reduction in 

the wholesale locational marginal price (LMP), which changes hydropower generators’ price expectations 

and optimal allocation leading to another contemporaneous but indirect displacement of hydro 

generation away from periods with the largest price reductions. The above effect can be conceptualized 

through a dynamic electricity market model: hydropower producers allocate their generation arbitraging 

between the realized price and the expected future price.  If the current realization of VRE reduces current 



prices relative to future ones, then storing hydropower is optimal. Nevertheless, this stored energy will 

be added to the grid at a later time, replacing future fossil fuel generation and offsetting emissions.  

Hence, in grids with a significant share of hydropower production, estimating marginal emissions offsets 

requires modelling not only on the contemporaneous renewable energy generation but its history through 

a dynamic estimator. 

 

Using a time series system of estimating equations, I model the usual merit order effect and the 

existence of the indirect price effect with a static framework that identifies the contemporaneous 

marginal generation offsets that solar and wind induce on thermal, hydro generation and imports. The 

results show that each additional MWh of solar generation instantaneously displaces 0.147 MWh of 

hydropower and each additional MWh of wind relocates 0.087 MWh of water generation, on average. 

 

However, the displaced hydro generation is switched to a higher LMP hour where it should 

displace a marginal natural gas plant. Hence, using a dynamic model, I estimate the appropriate average 

marginal carbon dioxide emissions offsets of solar (0.231 ± 0.03 tCO2/MWh) to be less than those of wind 

(0.417 ± 0.08 tCO2/MWh). Also, the dynamic model calculates larger marginal natural gas generation 

offsets and smaller marginal hydropower offsets than its static counterpart. Using the US social cost of 

carbon of USD 56 / tCO2, wind power carbon abatement benefits range between 22.5 to 24.3 USD/MWh 

and solar benefits among 9.4 to 16.1USD/MWh (IAWG, 2015).  Ideally, we can use these values of external 

environmental benefits along the grid cost reductions via LMP reductions to compute the short run 

marginal value of VRE generation and compare them against the different incentives perceived by wind 

and solar generators (Baker et al., 2013).  

 

 



Even with the dynamic correction for the indirect effect, I cannot reject the null hypothesis of 

having no net hydropower generation displacement caused by VRE. This could be the result of noise in 

the estimate, due to the nature of the data generating process, since it uses averages across all time hours. 

Or it could be showing that the change in hydropower producers’ expectations, due to VRE changes on 

the LMP, has modified the optimal allocation and bidding in such a way that storing water for its future 

value is the expected profit maximizing decision. However, further inquiry and modelling are necessary to 

contrast this finding. The current research leaves an open question based on this counterintuitive result.  

 

From a broader perspective, the proposed dynamic modelling is key for understanding electricity 

generation and grid level emissions in systems with increasing adoption of storage technologies since the 

same insights about the hydropower arbitrage condition and generation reallocation would also apply to 

profit maximizing storers. Furthermore, several emerging economies with electric grids powered by a 

significant share of hydropower are increasingly adopting wind and solar plants. To the extent that these 

countries operate a wholesale electricity market with bidding hydropower producers, this research’s 

methodology could be a good approach for estimating abatement benefits based on historical data.  

  

2. Estimating variable renewable energy carbon offsets  

  

Using historical data and projections of fossil fuel generation, load and variable renewable energy, 

several studies have quantified the pollution and GHG offsets that occur when electricity coming from 

solar or wind power plants substitutes any fossil based electricity on the grid. Callaway et al. (2015) 

focused on how additional VRE generation and energy efficiency measures displace carbon emissions in 

6 power system regions of the US (CAISO, ERCOT, ISONE, MISO, NYISO, PJM). 

 



 They estimated the marginal emissions for each hour by regressing emissions on dispatchable 

fossil generation, and then computed the “average emissions displacement rates” using the previous 

estimate and projections of renewable energy production. In summary, the authors estimated 

econometrically the marginal emissions of six US regional power grids and used projected profiles of VRE 

generation to identify shifts in the supply of fossil generation which lead to carbon emissions 

displacement.   

 

Cullen (2013) recognizes that adding VRE (intermittent supply) has a different effect on the 

electric grid and dispatch schedule than reducing load (demand) or  fossil generation (dispatchable 

supply). Using historical data for Texas (ERCOT), the author regresses conventional generation types on 

the exogenous wind electricity production and other controls to infer what changes occurred to the power 

mix when an intermittent supply of renewable energy was added. This estimate along with EPA’s average 

annual emission rates for fossil fuel plants is used to compute offset emissions.  

 

The study highlights that in order to capture the dynamic factors that play into the generators’ 

decision making, we need to incorporate lags of wind generation and controls in the econometric model. 

The static and dynamic model yield different results; basically, the latter finds less emissions offsets 

coming from coal and more coming from the expensive and inefficient steam and gas turbine generators. 

Neither model finds significant hydropower offsets, but also these generators have a share of less than 

1% in total capacity and generation (Cullen, 2013). 

 

Kaffine et al. (2013 and 2012) also used historical patterns of VRE generation in ERCOT to directly 

estimate emissions offsets by regressing the amount of pollutants on renewable energy production, 

demand, temperature and other controls. Since fossil fuel power plants do not have a constant emissions 



rate, but rather it varies according to the level of operation, the study’s approach captures more 

accurately the average emissions savings of the displaced marginal generators.  

 

The hourly variation in electricity demand and VRE generation imply that there are different 

marginal generators throughout the day, each with diverse emissions rates. Novan (2015) captures this 

key feature of the power grid by modelling generation and emissions as a function of the interactions 

between renewable energy generation and load, while controlling for certain fixed effects. Hence, this 

research finds that wind power causes larger emissions offsets than solar in Texas, given that the former 

displaces coal base power during low demand night hours. Furthermore, new capacity increases in wind 

power would bring larger emissions offsets while solar capacity increases would not.  

 

In Novan (2015), the dynamic model renders similar results than its static counterpart, meaning 

that wind power brings mainly contemporaneous emissions offsets. It is worth noting that wind causes 

practically zero hydropower offsets in a grid where water has a share of less than 1%.  

 

In this paper, using historical data on the randomness of solar and wind generation, I estimate 

how much carbon is abated when adding two intermittent renewable energy sources to an electric grid 

that has a significant share of hydropower. There are two novel challenges in this work. First, following 

Novan (2015), I model dispatchable generation and emissions as a function of both VRE generation 

interacted with load. Furthermore, given the increase in solar generation in the last 5 years, both VRE 

sources are jointly modelled in the estimating equation in order to capture the interactions between wind, 

solar power and load.  

 



Second, as recognized by Cullen (2013), dynamics play an important role in generators’ decision 

making. Hence, I model the estimating equations using lags of the controls and interactions in order to 

capture the reallocation of hydropower generation throughout the day.  The changes in the scheduling of 

peak hydro units accommodate the inelastic and intermittent supply of VRE since water generation reacts 

to changes brought by VRE to its opportunity cost: the locational marginal price (LMP). This idea is 

developed and supported with further details in the following section.  

 

3. A dynamic model of electricity generation and emissions with hydropower and VRE. 

 

 In the following paragraphs I develop a short run partial equilibrium dynamic stochastic model of 

the electricity market whose main goal is to understand hydropower reallocation caused by renewable 

energy penetration and its effects on fossil generation and emissions. For simplicity, the model assumes 

perfect competition, no startup costs or dynamic frictions, no transmission externalities, no intermittency 

costs and fixed capacities for all generation types.  

 

 The objective function of the planner is to maximize Social Welfare at the initial time by choosing 

the amount of fossil fuel 𝑛𝑖𝑡
𝐹𝐹 and hydropower generation ℎ𝑖𝑡. Variable renewable energy (VRE) is 

produced at different rates during both periods (offpeak being night, and peak the day) following the 

stochastic bounded process {𝑛𝑡
𝑅𝐸}𝑡=0

∞  2. Assuming no losses, total load is given by 𝑄𝑖𝑡 = 𝑛𝑖𝑡
𝐹𝐹 + 𝑛𝑖𝑡

𝑅𝐸 + ℎ𝑖𝑡 

, where peak load is larger than offpeak. There is an inverse demand function 𝑃𝑖(𝑄𝑖𝑡) for each period of 

the day with all the conventional properties. Fossil fuel production has the usual convex costs of 

                                                           
2 We allow for different distributions for the night and the day 𝑛𝑛𝑡

𝑅𝐸  and 𝑛𝑑𝑡
𝑅𝐸 . In this sense, renewable energy is 

modelled as a cyclic stochastic process, which is a natural approach to wind and solar generation patterns. There are 
recurring distributions, and means, of VRE for each day and night.  



production 𝐶(𝑛𝑖𝑡
𝐹𝐹) and hydropower has no marginal cost. For simplicity, assume hydropower reservoir 

levels depend on the endogenous extraction (ℎ𝑖𝑡) and on the exogenous fixed recharge rate 𝑟𝑡.  

 

 

 

 Hence, the problem becomes3: 

(1)  𝑀𝑎𝑥𝑛𝑡
𝐹𝐹,ℎ𝑡

= 𝐸𝑜 ∑ 𝛽𝑡 [∫ 𝑃𝑡(𝑛𝑡
𝐹𝐹 + 𝑛𝑡

𝑅𝐸 + ℎ𝑡)𝑑𝑎
𝑄𝑝

0

− 𝐶(𝑛𝑡
𝐹𝐹)] 

∞

𝑡=0

  

s.t: 𝑠𝑡+1 = 𝑠𝑡 + 𝑟𝑡 − ℎ𝑡 

 ℎ𝑡 ≥ 0 , ℎ𝑡 ≤ ℎ𝑚𝑎𝑥, 𝑠𝑡 ≥ 0     

stochastic processes 𝑛𝑝𝑡
𝑅𝐸  𝑎𝑛𝑑  𝑛𝑜𝑡

𝑅𝐸 and the exogenous flow rate 𝑟𝑡 

 

We can approach this problem through Bellman’s equation: 

(2) 𝑣(𝑠𝑡, 𝑛𝑡
𝑅𝐸) = 𝑚𝑎𝑥𝑛𝑡

𝐹𝐹,ℎ𝑡
{∫ 𝑃𝑡(𝑛𝑡

𝐹𝐹 + 𝑛𝑡
𝑅𝐸 + ℎ𝑡)𝑑𝑎

𝑄𝑝

0
− 𝐶(𝑛𝑡

𝐹𝐹) +

𝛽𝐸𝑡(𝑣(𝑠𝑡+1, 𝑛𝑡+1
𝑅𝐸 )|𝑡 𝜖 {𝑝𝑒𝑎𝑘, 𝑜𝑓𝑓𝑝𝑒𝑎𝑘} )} 

→ ℒ = ∫ 𝑃𝑡(𝑛𝑡
𝐹𝐹 + 𝑛𝑡

𝑅𝐸 + ℎ𝑡)𝑑𝑎
𝑄𝑝

0

− 𝐶(𝑛𝑡
𝐹𝐹) + 𝛽𝐸𝑡(𝑣(𝑠𝑡+1, 𝑛𝑡+1

𝑅𝐸 )|𝑡 𝜖 {𝑝𝑒𝑎𝑘, 𝑜𝑓𝑓𝑝𝑒𝑎𝑘})

+ 𝜆(ℎ𝑚𝑎𝑥 − ℎ𝑡) + 𝜇𝑠𝑡 

FOC [𝑛𝑡
𝐹𝐹]: (3)  𝑃𝑡(𝑛𝑡

𝐹𝐹 + 𝑛𝑡
𝑅𝐸 + ℎ𝑡) ≤ 𝐶′(𝑛𝑡

𝐹𝐹) 

FOC [ℎ𝑡]: (4)  𝑃𝑡(𝑛𝑡
𝐹𝐹 + 𝑛𝑡

𝑅𝐸 + ℎ𝑡) ≤ 𝛽𝐸𝑡(𝑣′(𝑠𝑡+1, 𝑛𝑡+1
𝑅𝐸 )|𝑡 𝜖 {𝑝𝑒𝑎𝑘, 𝑜𝑓𝑓𝑝𝑒𝑎𝑘}) + 𝜆   

 

Using the envelope theorem 

(5) 𝑣′(𝑠𝑡, 𝑛𝑡
𝑅𝐸) = 𝛽𝐸𝑡(𝑣′(𝑠𝑡+1, 𝑛𝑡+1

𝑅𝐸 )|𝑡 𝜖 {𝑝𝑒𝑎𝑘, 𝑜𝑓𝑓𝑝𝑒𝑎𝑘} )   

                                                           
3 Bold characters denote vectors 



Assuming an interior solution, substitute back into FOC and lead forward.  

→ (6)  𝑃𝑡+1(𝑛𝑡+1
𝐹𝐹 + 𝑛𝑡+1

𝑅𝐸 + ℎ𝑡+1) = 𝑣′(𝑠𝑡+1, 𝑛𝑡+1
𝑅𝐸 ) + 𝜆 

Hence, the arbitrage condition for hydropower allocation becomes: 

(7)  𝑃𝑡(𝑛𝑡
𝐹𝐹 + 𝑛𝑡

𝑅𝐸 + ℎ𝑡) ≤ 𝛽𝐸𝑡(𝑃𝑡+1(𝑛𝑡+1
𝐹𝐹 + 𝑛𝑡+1

𝑅𝐸 + ℎ𝑡+1)|𝑡 𝜖 {𝑝𝑒𝑎𝑘, 𝑜𝑓𝑓𝑝𝑒𝑎𝑘}) + 𝜆(1 − 𝛽)    

And the optimal fossil fuel use condition is defined by (3) 

 

Notice that without hydropower, the dynamic problem above becomes a degenerate one where 

the optimal fossil fuel use is determined just by the static rule equating marginal willingness to pay to 

marginal cost in each time period, and no arbitrage condition. Thus, the conventional static model 

estimates the optimal peak and off-peak fossil fuel use 𝒏𝒕
𝑭𝑭(𝒏𝒕

𝑹𝑬) as a function of only contemporaneous 

renewable energy. In the dynamic model, the fossil fuel function is simultaneously solved with the 

hydropower function using the arbitrage condition (7) and the fossil fuel FOC (3) for peak and off-peak 

respectively.  

 

From (3) we can find 𝒉𝒕(𝒏𝒕
𝑭𝑭, 𝒏𝒕

𝑹𝑬) which can be replaced in (7) leading to a expectational 

difference equation whose solution will give us the optimal fossil fuel use as a function of the stochastic 

bounded processes {𝑛𝑖𝑡
𝑅𝐸}

𝑡=0

∞
. Hence, in grids with a significant share of hydropower production, the 

optimal fossil fuel use at time t depends not only on the contemporaneous renewable energy generation 

but its history influences the current optimal allocation 𝒏𝒕
𝑭𝑭(𝒏𝒕−𝒌

𝑹𝑬 ). 

 

If we assume linear functional forms for the inverse demand and marginal cost functions: 

𝑃𝑡(𝑛𝑡
𝐹𝐹 + 𝑛𝑡

𝑅𝐸 + ℎ𝑡) = 𝑎𝑖 − 𝑏(𝑛𝑡
𝐹𝐹 + 𝑛𝑡

𝑅𝐸 + ℎ𝑡) and  𝐶′(𝑛𝑡
𝐹𝐹) = 𝑐𝑛𝑡

𝐹𝐹, using the arbitrage and optimal 

production conditions at an interior solution we can state:  

(8) 𝑐𝑛𝑡
𝐹𝐹 = 𝛽𝐸𝑡(𝑐𝑛𝑡+1

𝐹𝐹 |𝑡 𝜖 {𝑝𝑒𝑎𝑘, 𝑜𝑓𝑓𝑝𝑒𝑎𝑘}) + 𝜆(1 − 𝛽) 



From (3) we can find 

𝑛𝑡
𝐹𝐹 =

(𝑎𝑖 − 𝑏𝑛𝑡
𝑅𝐸 − 𝑏ℎ𝑡)

𝑏 + 𝑐
 

Which implies in (8) 

(𝑎𝑖 − 𝑏𝑛𝑡
𝑅𝐸 − 𝑏ℎ𝑡)𝑐

𝑏 + 𝑐
= 𝛽𝐸𝑡 (

(𝑎−𝑖 − 𝑏𝑛𝑡+1
𝑅𝐸 − 𝑏ℎ𝑡+1)𝑐

𝑏 + 𝑐
|𝑡 𝜖 {𝑝𝑒𝑎𝑘, 𝑜𝑓𝑓𝑝𝑒𝑎𝑘}) + 𝜆(1 − 𝛽) 

(𝑎𝑖 − 𝑏𝑛𝑡
𝑅𝐸 − 𝑏ℎ𝑡) = 𝛽𝐸𝑡 ((𝑎−𝑖 − 𝑏𝑛𝑡+1

𝑅𝐸 − 𝑏ℎ𝑡+1)|𝑡 𝜖 {𝑝, 𝑜𝑝}) +
𝜆(1 − 𝛽)(𝑏 + 𝑐)

𝑐
 

𝛽𝐸𝑡((𝑏ℎ𝑡+1)|𝑡 𝜖 {𝑝, 𝑜𝑝}) − 𝑏ℎ𝑡 = 𝑎−𝑖 − 𝑎𝑖 +
𝜆(1 − 𝛽)(𝑏 + 𝑐)

𝑐
− 𝛽𝐸𝑡 ((𝑏𝑛𝑡+1

𝑅𝐸 )|𝑡 𝜖 {𝑝, 𝑜𝑝}) + 𝑏𝑛𝑡
𝑅𝐸 

And we get the expectational difference equation: 

(8a) 𝐸𝑡((ℎ𝑡+1)|𝑡 𝜖 {𝑝, 𝑜𝑝}) −
1

𝛽
ℎ𝑡 =

1

𝛽
(

𝑎−𝑖−𝑎𝑖

𝑏
) +

𝜆(1−𝛽)(𝑏+𝑐)

𝛽𝑐
− 𝐸𝑡 ((𝑛𝑡+1

𝑅𝐸 )|𝑡 𝜖 {𝑝, 𝑜𝑝}) +
1

𝛽
𝑛𝑡

𝑅𝐸 

 

Solving the above equation yields: 

(9) ℎ𝑡 = −
(𝑎−𝑖−𝑎𝑖)

(1−𝛽)𝑏
+

𝜆(𝑏+𝑐)

𝑐
+ ∑ 𝛽𝑖∞

𝑖=1 𝐸𝑡 ((𝑛𝑡+𝑖
𝑅𝐸 −

1

𝛽
𝑛𝑡−1+𝑖

𝑅𝐸 ) |𝑡 𝜖 {𝑝, 𝑜𝑝}) 

(10) 𝑛𝑡
𝐹𝐹 =

(𝑎𝑖−𝑏𝑛𝑡
𝑅𝐸+

(𝑎−𝑖−𝑎𝑖)

1−𝛽
−

𝜆(𝑏+𝑐)

𝑐
−∑ 𝛽𝑖∞

𝑖=1 𝐸𝑡((𝑛𝑡+𝑖
𝑅𝐸 −

1

𝛽
𝑛𝑡−1+𝑖

𝑅𝐸 )|𝑡 𝜖 {𝑝, 𝑜𝑝}))

𝑏+𝑐
 

 

where,  
𝜕ℎ𝑡

𝜕𝐸𝑡(𝛽𝑛𝑡+1
𝑅𝐸 −𝑛𝑡

𝑅𝐸)
> 0 , 

𝜕𝑛𝑡
𝐹𝐹

𝜕𝐸𝑡(𝛽𝑛𝑡+1
𝑅𝐸 −𝑛𝑡

𝑅𝐸)
< 0 and 

𝜕𝑛𝑡
𝐹𝐹

𝜕𝑛𝑡
𝑅𝐸 < 0 

 

 Hydropower and fossil fuel generation are functions not only of the contemporaneous renewable 

energy generation but of the difference between future expected peak and offpeak realizations. Basically, 

hydropower allocation is an increasing function of the expected difference in renewable energy 

generation between the peak and offpeak periods. Due to the cyclic nature of the renewable energy 

generation, the steady state will have one stable allocation for each period. Hence, if t is the peak demand 

period (day) and the only source of renewable energy is wind power, knowing that on average wind power 



production is larger at night (the offpeak period t+1) the expected difference of the discounted future VRE 

generation and the current one will be positive.   

 

Now, given that hydropower producers expect to have a larger zero marginal cost VRE generation 

in the following period, they will expect lower prices at t+1, choosing to allocate more hydro generation 

in the current period in order to get a higher expected price and increase profits. Thus, hydro allocation 

is an increasing function of the expected differences in VRE generation. 

 

If additional wind power capacity is added to the grid, say 1 MW, it is usually the case that this 

additional MW will not contribute evenly throughout the day. On average, it will generate more during 

the night. Given this, adding additional wind power capacity would increase hydropower reallocation.  

 

The derivatives for fossil fuel generation show:  
𝜕𝑛𝑡

𝐹𝐹

𝜕𝐸𝑡(𝛽𝑛𝑡+1
𝑅𝐸 −𝑛𝑡

𝑅𝐸)
< 0 and 

𝜕𝑛𝑡
𝐹𝐹

𝜕𝑛𝑡
𝑅𝐸 < 0 

 The first term states that if future expected renewable generation increases, then prices will likely 

drop and hydro generation will switch to the present, requiring less current fossil generation. On the other 

hand, increasing the current VRE generation, independent of any expected realization, decreases 

contemporaneous fossil generation due to the merit order effect.  For the case of no interior solution for 

hydro, fossil generation is perfectly described only by equating price and marginal cost (3) and clearly 

increasing renewable generation would displace fossil generation. 

 



In summary, since in competitive wholesale electricity markets hydropower producers bid based 

on the opportunity cost of generating at a different time, which is determined by the expected price 

(Borenstein et al., 2002), a reduction in the relative price between offpeak and peak hours can shift hydro 

generation. In both cases, reservoir storage plays the role of facilitating, the intertemporal allocation. 

Therefore, if a exogenous shock in VRE generation at time t reduces prices, then the stored hydropower 

will be generated at a later time, replacing future fossil fuel generation and offsetting emissions.  

Capturing this dynamic effect requires modelling emissions with lagged variable renewable energy values.  

 

Since emissions are an increasing function of fossil fuel use 𝑒( 𝑛𝑖𝑡
𝐹𝐹) with 𝑒′(. ) > 0, they will be a 

decreasing function of VRE, since 
𝜕𝑛𝑡

𝐹𝐹

𝜕𝑛𝑡
𝑅𝐸 < 0 as was shown in eq (10).  In the dynamic/hydropower case we 

get 𝑒𝑡 = 𝑒(𝒏𝒕
𝑹𝑬, 𝒏𝒕−𝒌

𝑹𝑬 ) while in the static model we have 𝑒𝑡 = 𝑒(𝒏𝒕
𝑹𝑬). If we assume an additively 

separable emissions function notice that 𝑒𝑡 = 𝑒(𝒏𝒕
𝑹𝑬) + ∑ 𝑒(𝒏𝒕−𝒌

𝑹𝑬
𝒌 ) and that marginal emissions offsets 

caused by VRE are given by  ∑
𝜕𝑒(.)

𝜕𝒏𝒕−𝒌
𝑹𝑬𝑘  .  

 

If the grid has a significant share of hydropower, the true underlying process determining the 

fossil fuel use and emissions is dynamic. However, if in this case we use a static estimator for emissions 

𝑒𝑡̃ = 𝑒̃(𝒏𝒕
𝑹𝑬) and marginal emissions offsets   𝑒𝑡 ′̃ =

𝜕𝑒̃(𝒏𝒕
𝑭𝑭,𝒏𝒕

𝑹𝑬)

𝜕𝒏𝒕
𝑹𝑬  we will get a biased result. This bias is given 

by: 

 

𝐸(𝑒𝑡 ′̃ − 𝑒𝑡′) = 𝐸(𝑒′(𝒏𝒕
𝑹𝑬)) −  𝑒′(𝒏𝒕

𝑹𝑬) − 𝑒′(𝒏𝒕−𝒌
𝑹𝑬 ) 

𝐸(𝑒𝑡 ′̃ − 𝑒𝑡′) =  −𝑒′(𝒏𝒕−𝒌
𝑹𝑬 ) > 0 since 𝑒𝑅𝐸(∗) < 0 

 



Even if the static estimator is unbiased for the contemporaneous component, it will 

underestimate the marginal external benefits of renewable energy by missing the lagged component. 

Therefore, in order to estimate the emissions function we need to account for the dynamics. The above 

social planner problem and optimality conditions can also be applied to the general case of a power 

system with storage that allows for recharging (ℎ𝑝𝑡 < 0). If there is no hydropower or storage, the 

dynamic problem becomes static and the usual static estimator of marginal emissions is unbiased.    

 

 

Graph 1. Static and dynamic allocation with linear demand and marginal cost functions  
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Graph 1 illustrates that by not taking into account the dynamics and the MUC of 

hydropower/stored energy, we would be overestimating fossil fuel use and total emissions in each period. 

Assuming a concave emissions function inversely related to the amount of renewable energy (increasing 

VRE penetration would be displacing more inefficient and dirtier generators at the margin) we can depict 

the bias of the static total and marginal emissions estimators in comparison with the dynamic parameter 

(Graph 2).  

 

 

 

Graph 2. Total and marginal emissions estimators 
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 Notice that the contemporaneous component of fossil fuel use, and its associated emissions, 

comes from the optimality condition (3), which is just stating a mathematical formulation of the merit 

order effect: adding significant amounts of VRE cause a net load or demand reduction determining a lower 

cost marginal generator and price (Hirth, 2013). This is the main underlying mechanisms in the literature 

reviewed, in the previous section, on estimating variable renewable energy carbon offsets.  

 

 Nevertheless, the lagged component appears due to the price arbitrage condition dealing with 

hydropower reallocation. The extended arbitrage equation (8) states that if the current realization of VRE 

reduces prices relative to the expected future price, then storing hydropower is optimal. Both equations, 

merit order (3) and arbitrage (8), determine how peak and offpeak generation should be allocated. Thus, 

if VRE production is higher during any stage of the day (say at night in grids with wind power), the price 

profile will reflect larger price reductions during this time.  

 

4. Variable renewable energy effect on price and hydropower allocation in CAISO 

 

In the previous section we assumed that hydropower generation has a virtually zero marginal cost 

of production. This is in line with previous work which recognizes that hydro’s storage capability and 

ramping flexibility allow an almost frictionless generation reallocation to those time periods that pay the 

largest locational marginal prices (LMP) (Thompson et al., 2004).  Due to these reallocation characteristics, 

VRE can shift hydropower generation not directly through the merit order effect but via a LMP change. 

 



From an individual profit maximizing hydropower producer perspective, the dynamical optimal 

allocation releases more water during periods of expected high prices, and stores, or even pumps, water 

during periods of expected low prices (Thompson et al., 2004).  Kanamura and Ōhashi (2007) extended 

the previously cited work by simulating prices with a structural demand and supply model, which allowed 

them to formulate a similar operation policy in terms of demand: “the optimal strategy is to pump when 

both the water level and the demand for electricity are low”, and releasing water during most high 

demand periods.  

 

Therefore, demand patterns and uncertainties shape price expectations which in turn determine 

the optimal hydropower allocation. It is reasonable to assume that as VRE generation plays an increasing 

role in the grid, its intermittent patterns and uncertainties will also affect hydropower producers’ price 

expectations and production decisions. The large scale addition of VRE decreases the wholesale electricity 

price through the merit order effect.  

 

This price reduction caused by VRE has been documented in several empirical estimations for 

countries with different shares of renewable generation in the power mix. In Europe, the largest wholesale 

price reductions have been found on small markets, and the smallest on large markets4. Nevertheless, 

when the comparison is made accounting for differences in market size, the merit order effect on price is 

similar between both markets (Würzburg et al., 2013).  

 

In the last 5 years in the California Independent System Operator (CAISO), a significant share of 

VRE capacity and generation has been added to the grid (Figure 1). In fact, between 2011 and 2015, the 

                                                           
4  The effect was measured in €/MWh per each additional GWh of VRE and it was in large markets;  Nordpool −1.7; Germany 

−0.24 to −2.83; Spain −1.1 to −3.99, and in small markets; Netherlands −6.17; Denmark −1.33 to −9.87; Ireland −9.9 as 
documented by Würzburg et al. (2013) based on standardization of previous studies.  



average share of solar generation in the power mix grew from less than 1% to 7%, while for wind it grew 

from 3% in 2011 to 6% in 2014 and then it decreased to 5% in 2015. California has a goal of reaching a 

33% share of VRE in the grid by 2020 (CAISO, 2013). The increasing VRE generation has already modified 

the net load profile. From 2011 to 2015, net load has been reduced throughout the day, but especially 

during sunlight hours due to the combine production of solar and wind. Its profile has change to reflect 

the “duck curve” (Figure 2): a concave shape (belly) in the midafternoon and a quick ramp up (arched 

neck) during evening hours (CAISO, 2013). 

 

Figure 1.  Share of wind and solar generation in CAISO power mix  

 

 

Source: CAISO, 2016a 

  

As predicted by the merit order effect, this change in net load has caused a similar alteration in 

the LMP profile, both in the day ahead market (DA, price expectations) and the real time figure (RTM) 



(Figure 2). The same “duck curve” shape appeared in the last two years for hourly average prices in the 

CAISO wholesale electricity market5. To formally test whether and the extent to which adding VRE has 

changed the LMP in CAISO, I take advantage of wind and solar exogenous variation in generation to run a 

regression that controls for fuel costs, load, nuclear generation, temperature and other fixed effects, using 

hourly data for the period 2011-2015: 

 

(10) 𝐿𝑀𝑃𝑡 = 𝛽𝑠 𝑆𝑡 + 𝛽𝑤 𝑊𝑡 + 𝛽𝑑 𝐷𝑡 + 𝛽ℎ 𝐺𝑡 + 𝛽𝑛 𝑁𝑡 + 𝛽𝑓 𝐹𝑑 + 𝛽𝑚 𝑇𝑒𝑚𝑝𝑑

+ 𝛼𝑑 + 𝜀𝑡 
 

where 

𝐿𝑀𝑃𝑡  is the average of the three CAISO hub trading real time interval locational marginal prices 

measured in USD/MWh at hour t 

𝑆𝑡, 𝑊𝑡, 𝐺𝑡 , 𝑁𝑡 are CAISO aggregate solar, wind, geothermal and nuclear generation in MWh at hour 

t 

𝐷𝑡  is CAISO aggregate demand (load) in MWh at hour t 

𝐹𝑑 is CAISO average fuel cost (natural gas) for day d6 

 𝑇𝑒𝑚𝑝𝑑  stands for daily temperature and 𝛼𝑤 stands for daily fixed effects. 

 

The parameters on equation 10 are estimated using OLS with Newey-West standard errors with 

a 24 hour-lag. 

 

 

 

                                                           
5 Hourly average prices are calculated as the average of the three trading hub prices or zones (NP15, SP15, ZP26).  
6 Average of the fuel costs in the subregions CISO, PGE2, SCE1, SCE2, SDG1, SDG2 



Figure 2.  CAISO hourly average net load and wholesale electricity market LMP 

(a) Hourly average wind and solar generagtion    (b)  Net load 

 

 

 

 

 

 

 

 

                                   (c)     DA LMP in USD/MWh    (d)  RTM LMP in USD/MWh  

 

 

 

 

 

 

 

 

Source: CAISO, 2016a; CAISO, 2016b; CAISO, 2016c  

 

 The above specification follows a similar identification approach than Woo et al. (2011) and CAISO 

(2013) since it controls for the exogenous generation types and fuel costs to capture the effect of the 

endogenous thermal generation. Notice that this specification controls for demand, since most end 



consumers do not face real time prices, and their load profile is highly inelastic. But the equation does not 

control directly for the likely endogenous imports. Nevertheless, this omission does not alter the 

consistency of the VRE estimators, given the short term exogeneity of their generation profile. 

Furthermore, the previous estimating equation can be modified to obtain specific hourly effects of VRE 

on the real time LMP:  

 

(11)    𝐿𝑀𝑃𝑡 = ∑ 𝛽ℎ𝑠 𝐻𝑂𝑈𝑅ℎ𝑆𝑡

23

ℎ=0

+ ∑ 𝛽ℎ𝑤 𝐻𝑂𝑈𝑅ℎ𝑊𝑡

23

ℎ=0

+ ∑ 𝛽ℎ𝑑 𝐻𝑂𝑈𝑅ℎ𝐷𝑡

23

ℎ=0

+ 𝛽𝑚 𝑇𝑒𝑚𝑝𝑡

+ 𝛽ℎ 𝐺𝑡 + 𝛽𝑛 𝑁𝑡 + 𝛽𝑓 𝐹𝑑 + 𝛼𝑑 + 𝜀𝑡 

 

 The results from equation (10) basically state that at all conventional significance levels, on 

average and controlling for the described factors, adding 1 GWh of wind power reduces in 4.58 ± 0.21 

USD/MWh the real time LMP, while one MWh of solar generation reduces the LMP in 2.27 ± 0.09 

USD/MWh. The larger average price reduction delivered by wind can be attributed to its 24 hour 

aggregate power contribution in CAISO.  

 

Furthermore, the model for hourly price reductions shows that VRE has a larger detrimental effect 

on the LMP during daylight hours (6-17H) since the joint production of solar and wind drives the price 

even lower than at evening hours (18-20H), where wind is the only source. On average, 1 GWh of wind 

and solar power combined at midday reduces the LMP in 3.26 USD/MWh more than mostly wind energy 

at 7 pm7.  Given the above described changes to the LMP, it is reasonable to expect changes to 

hydropower producers’ price expectations and to the optimal allocation. These changes can be observed 

                                                           
7 For regression details please see Appendix 



on the aggregate hydropower generation curve, whose transition is similar to that of the net load and 

LMP profiles in the last five years (Figure 3).   

 

Figure 3.  CAISO hourly average aggregate hydropower generation 

 

Source: CAISO, 2016d  

 

To sum up, adding significant amounts of VRE to a power grid causes an instantaneous 

displacement of the highest marginal cost generators, usually fossil fuel powered units, but it also causes 

a change in the wholesale LMP profile. Hence, in grids with significant shares of hydropower generation, 

this change to the LMP causes another instantaneous and indirect effect which consists in switching hydro 

allocation away from periods with the largest price reductions. Appropriately addressing the second effect 

in the estimation of VRE offset thermal generation and its related offset carbon emissions is the main 

objective of the following sections. 

 



5. Data and identification  

 

This research uses hourly data on load, generation and trading hub (LMP) for the period 2011-

2015, which come from publicly available sources: the California Independent System Operator (CAISO) 

web database OASIS and its renewables watch portal (CAISO, 2016a; 2016b; 2016c and 2016d). More than 

a 150 GB of data which boils down to 43,000 observations for each variable were automatically extracted 

from the OASIS server8. I also use hourly average temperature and carbon dioxide emissions data. The 

former was obtained from U.C. Davis Integrated Pest Management publicly available information on 

several California weather stations (IPM, 2016), and the latter from EPAs Continuous Emission Monitoring 

system (CEMS) (EPA, 2016). 

 

One limitation with the emissions data is that CEMS only compiles information for fossil fuel 

powered units whose capacity is greater than 25 MW. Nevertheless, most power plants in CAISO report 

their emissions to CEMS. Missing variables represent less than 0.3% of the total number of hours in the 

five year span9.  

 

To identify the thermal generation offsets, and their related offset carbon emissions, caused by 

wind and solar power, I take advantage of the short term exogeneity and randomness of variable 

renewable energy generation. Since wind and solar output are determined by nature’s cycles, which are 

exogenous to the economic decision making process that settles electricity generation in the wholesale 

                                                           
8 Using web mining codes programmed in the R statistical software. 
9 This minimum fraction of missing variables is due to either missing information on the OASIS web server or a failure 
in the web mining code. Therefore, they can be assumed to be missing completely at random, without any systematic 
trend in their unavailability.  



market, their hourly variation can identify changes in the electricity dispatch and the subsequent 

emissions.  

 

Given the exogeneity in the variables of interest, I use the OLS estimator with Newey West 

standard errors to perform inference robust to heteroscedasticity and serial correlation in the generation, 

emissions and price time series (Newey and West, 1987). Based on the augmented Dickey-Fuller test, 

neither of these series show the presence of unit roots. This allows to identify causal effects without using 

any cointegration procedures.   

 

In the proposed identification strategy I argue that controlling for daily temperature and daily or 

weekly fixed effects can address the drought and snow pack loss detrimental effects on hydropower 

generation. Furthermore, the one time closure of the San Onofre Nuclear Generation Station in February 

2012 (Davis and Hausman, 2014) should not cause any major issues with the identification strategy since 

it relies on very granular hourly variation.  Finally, I might be underestimating emissions and thermal 

generation offsets since the generation data is based on grid level information, which reflects net 

generation rather than gross generation10, and it does not include details about the thermal generation 

displaced at foreign grids when CAISO’s solar and wind power are exported. However, since a small 

percentage of total generation is exported, this error should not amount to a significant share.  

 

 

 

 

 

                                                           
10 Gross generation being larger since it includes thermal plants’ own consumption. 



6. Static average generation and emissions offsets 

 

A. Econometric specification  

 The estimating equation that identifies the impact of VRE on generation and emissions is: 

 

(12)       𝐺𝑡
𝑚 = ∑ ∑ ∑ 𝛽𝑚𝑖,𝑗,𝑘 𝑆𝑡

𝑖 ∗ 𝑊𝑡
𝑗

∗ 𝐷𝑡
𝑘

1

𝑖=0

1

𝑗=0

1

𝑘=0

+ ∑ 𝜆𝑑−𝑙𝑇𝑑−𝑙

𝐿

𝑙=0

+ ∑ 𝜂𝑑−𝑙𝑃𝑃𝑇𝑑−𝑙

𝐿

𝑙=0

+ 𝛼𝑤

+ 𝑘𝑑 + 𝛾𝑠 + 𝛿𝑑 + 𝜀𝑡 

 where: 

𝐺𝑡
𝑚 represents the m different groups of conventional generation in CAISO: thermal, hydro, 

nuclear, other renewables and imports measured in MWh at hour t.  

𝑆𝑡, 𝑊𝑡, 𝐷𝑡 are CAISO aggregate solar, wind generation and demand (load) in MWh at hour t 

𝑇𝑑 is daily average temperature and 𝑃𝑃𝑇𝑑 is daily total precipitation. 

𝛼𝑤 represents weekly fixed effects (FE), 𝑘𝑑 stands for weekend FE,  𝛾𝑦 represents  fixed effects 

for each season and 𝛿𝑑 stands for daily fixed effects. Notice that if the latter is selected, all the 

previous ones cannot be. 

 

This identification approach requires the joint modelling of wind and solar generation effects. 

Furthermore, following Novan (2015), it allows for interactions among both sources and load, up to a first 

degree, in order to control for possible complementarities that unfold in the electricity dispatch process 

each hour. The simpler approach of modelling the effect of each source separately fails to identify offsets 

properly due to the negative correlation between wind and solar generation.  

 



This paper estimates offsets of five groups of conventional generation: thermal generation, which 

in California only includes combined cycle units, combustion turbines and boilers; hydropower generation 

which includes large and small scale plants; other renewables which comprises geothermal, biomass and 

biogas; nuclear and finally imports from other system operators. Standard errors for hypothesis testing 

are computed using the Newey-West estimator using the conventional 24-hour lag (Novan, 2015; Kaffine 

et al., 2013). For identifying the marginal emissions offsets, I use the same models but the dependent 

variable is hourly carbon dioxide emissions measured in tCO2.  

  

The specific instantaneous marginal generation offsets caused by adding VRE are identified via 

the average partial effect (APE) of equation (3): 

 APE for solar generation: 

 (13)       𝐸̂  (
𝜕𝐺𝑡

𝑚

𝛿𝑆𝑡
) =

1

𝑇
∑ ∑ ∑ ∑ 𝑖 ∗ 𝛽̂𝑖,𝑗,𝑘 𝑆𝑡

𝑖−1 ∗ 𝑊𝑡
𝑗

∗ 𝐷𝑡
𝑘1

𝑖=0
1
𝑗=0

1
𝑘=0

𝑇
𝑡=1   

 APE for wind generation: 

 (14)   𝐸̂  (
𝜕𝐺𝑡

𝑚

𝛿𝑊𝑡
) =

1

𝑇
∑ ∑ ∑ ∑ 𝑖 ∗ 𝛽̂𝑖,𝑗,𝑘 𝑆𝑡

𝑖 ∗ 𝑊𝑡
𝑗−1

∗ 𝐷𝑡
𝑘1

𝑖=0
1
𝑗=0

1
𝑘=0

𝑇
𝑡=1  

The marginal emissions offsets 𝐸̂  (
𝜕𝐸𝑡

𝛿𝑊𝑡
).  are also identified by the APE estimator but with the 

results from regressing emissions on the specified controls. 

 

Notice that the APEs estimate the instantaneous displacement of the highest marginal cost 

generators, through the merit order effect, and the switching of hydropower allocation due to the indirect 

price effect. A key condition for testing the appropriateness of the model is whether the energy identity 

holds. This requirement implies that adding 1 MWh of VRE displaces 1 MWh of all other conventional 

generation types combined. The preferred specification described in (3) is the model which yields a closest 

match to the one for one displacement without imposing any restrictions on the summation of the APEs.  



 

Nevertheless, three models were estimated as robustness checks: the same first order polynomial 

interactions model but with daily FE11; and two simple linear models, without any interactions but both 

VRE sources in the same equation and with daily and weekly FE respectively.  

 

B. Generation offsets 

 

Table 1. Static average generation offsets (APE) by type and model 

 

 

All static econometric models show that, on average and controlling for load, temperature, 

weekend, season and weekly fixed effects, solar and wind generation displace mostly natural gas 

                                                           
11 In the daily FE model, season fixed effects are no longer required, otherwise they would drop out of the 
estimation due to collinearity.  

Linear Quadratic

Solar Wind Solar Wind Solar Wind Solar Wind Solar Wind

Thermal -0.61 -0.65 -0.53 -0.64 -0.52 -0.66 -0.58 -0.70 -0.52 -0.64

0.01 0.01 0.00 0.01 0.00 0.01 0.02 0.01 0.01 0.01

Hydro -0.11 -0.06 -0.15 -0.09 -0.15 -0.07 -0.11 -0.05 -0.13 -0.08

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Nuclear 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Imports -0.25 -0.33 -0.29 -0.31 -0.31 -0.31 -0.25 -0.29 -0.29 -0.33

0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01

Total market 

(grid)
-0.97 -1.02 -0.97 -1.04 -0.98 -1.04 -0.94 -1.02 -0.94 -1.05

0.02 0.01 0.00 0.01 0.00 0.01 0.02 0.01 0.02 0.01

Daily FE No No Yes Yes Yes Yes No No Yes Yes

Weekend FE Yes Yes - - - - Yes Yes - -

Weekly FE Yes Yes - - - - Yes Yes - -

Season FE Yes Yes - - - - Yes Yes - -

Quadratic

Other 

renewables 

Standard errors  are displayed

Al l  estimates  are s igni ficant at less  than 1% level , except for those at 5% (*), 10% (°) and those not s igni ficant at any conventional  level  (~)

Generation 

type

Offsets (MWh/MWh VRE)

Linear polynomial Linear polynomial 



generation and imports. This first instantaneous displacement occurs due to the merit order effect. The 

preferred specification, a polynomial model with daily FE, estimates that one MWh of solar power 

displaces 0.534 MWh of natural gas, while one MWh of wind replaces 0.642 MWh, on average. 

 

Furthermore, I reject the null hypothesis, at all conventional significance levels, of having no 

hydropower reallocation caused by adding VRE [𝐻𝑜: 𝐸 (
𝜕𝐻𝑦𝑑𝑟𝑜𝑡

𝛿𝑉𝑅𝐸𝑡
) = 0]. The previous test leads me to 

conclude that there is a second instantaneous and indirect displacement which reschedules hydropower 

generation due to variable renewable energy effects on the wholesale electricity price.  This finding is 

confirmed by all the alternative specifications in contrast to the results of the Texan wholesale electricity 

market ERCOT, where adding wind did not displace any substantial amount of hydropower during 2005-

2011 (Cullen, 2013; Novan, 2015). One possible explanation for this divergence is the low hydropower 

share, less than 1%, in total capacity and generation in ERCOT. 

 

On average, the preferred model gives an estimate of 0.147 MWh of displaced hydropower for 

each additional MWh of solar generation and 0.087 MWh for each additional MWh of wind. This outcome 

points out that a considerable share of hydropower producers are reacting to the change in the LMP 

profile by changing their price expectations and generation decisions.  

 

There is  barely any base power displacement coming from the nuclear, geothermal, biomass, or 

biogas generation. This reassures that the identification approach is not affected by the closure of the 

nuclear power plant SONGs, since it relies on short term hourly variations. The preferred specification 

yields the closest compliance with the one for one displacement energy identity requirement. In the case 

of solar the market estimate is below the ideal benchmark (0.97) while in the case of wind it is above 

(1.04).  



As argued previously, a downward bias might be due to exports outside CAISO, while an upward 

bias can be caused by using net generation and not accounting for a thermal plant own consumption. In 

either case, the omissions do not represent a large share of total generation and the grid estimates are 

very close to one.    

 

C. Emissions offsets 

 

Table 2. Static average carbon emissions offsets (APE) by model 

 

 

Table 2 displays the average marginal emissions offsets estimates of equations 13 and 14. The 

model states that the static or instantaneous effect is low abatement potential for solar and a larger 

potential for wind. This difference can be explained by the 24 hour continuous aggregate wind 

generation in CAISO, while solar generation is present mostly for ten to twelve hours.  Another key 

reason for this difference is the indirect hydropower reallocation that occurs during midday, making 

solar power displace some non-fossil generation.  Nevertheless, this displaced hydro is relocated at a 

different time and it will substitute natural gas generation and reduce even more carbon emissions 

than what is captured in the static APE. Thus, we need to model the dynamic process to estimate 

emissions offsets accurately.  

 

 

Solar Wind

CO2 -0.075 -0.499

0.003 0.006

All observations are significant at less than 1% level

Offset tCO2/MWh VRE

Linear polynomial 

Standard errors are displayed



7. Dynamic average generation and emissions offsets 

 

A. Econometric specification 

The estimating equation that identifies the dynamic impact of VRE on generation and emissions is: 

(15)     𝑌𝑡
𝑚 = ∑ ∑ ∑ ∑ 𝛽𝑚𝑖,𝑗,𝑘,𝑙 𝑆𝑡−𝑙

𝑖 ∗ 𝑊𝑡−𝑙
𝑗

∗ 𝐷𝑡−𝑙
𝑘

1

𝑖=0

1

𝑗=0

1

𝑘=0

72

𝑙=0

+ ∑ 𝜆𝑑−𝑙𝑇𝑑−𝑙

𝐿

𝑙=0

+ ∑ 𝜂𝑑−𝑙𝑃𝑃𝑇𝑑−𝑙

𝐿

𝑙=0

+ 𝛼𝑤

+ 𝑘𝑑 + 𝛾𝑠 + 𝜀𝑡 

The above model identifies how contemporaneous and past wind and solar generation affected 

the conventional generation types and their emissions. By modelling the effect throughout 3 days, using 

72 lags, I can estimate how hydropower generation is reallocated due to changes in the LMP and its 

additional displacement of thermal generation. This allows an appropriate inference of marginal 

generation and emissions offsets via computing the APEs:   

 

APE for solar: 

  (16)    𝐸̂ (∑
𝜕𝐺𝑡

𝑚

𝛿𝑆𝑡−𝑙

72
𝑙=0 ) = 1

𝑇
∑ ∑ ∑ ∑ ∑ 𝑖 ∗ 𝛽̂𝑚𝑖,𝑗,𝑘,𝑙 𝑆𝑡−𝑙

𝑖−1 ∗ 𝑊𝑡−𝑙
𝑗

∗ 𝐷𝑡−𝑙
𝑘1

𝑖=0
1
𝑗=0

1
𝑘=0

72
𝑙=0

𝑇
𝑡=1   

 

A similar expression but with the derivative with respect to wind estimates its marginal effect. 

Both APEs capture not only the static marginal effect but also the dynamic effect, which includes changes 

in the scheduling of peak hydro units that accommodate the inelastic and intermittent supply of VRE.  I 

compute the same three robustness check models than in the static case: full interactions with daily FE, 

and two simple linear models with daily and weekly FE respectively12.  

 

                                                           
12 In the case of the two simple linear models, the dynamic marginal offsets are identified by the summation of the 

estimators ∑ 𝛽𝑉𝑅𝐸𝑡−𝑙
̂23

𝑙=0 .  



B. Generation offsets 

 

Table 3. Dynamic average generation offsets (APE)  

 

 

Once we control for the indirect effect of hydropower reallocation by modelling the lags that 

capture the recovery of the displaced generation at a later time we can infer the correct average marginal 

generation offsets. Therefore, the dynamic estimates show that thermal offsets increase while the hydro 

offsets decrease compared to their static counterparts.  The chosen model delivers the best energy 

identity calibration, which signals that its detailed level of controlling for weekly fixed effects is not 

appropriate when hourly lags are modelled.  

 

Nevertheless, I reject the null hypothesis of having no hydropower generation displacement 

caused by VRE 𝐻𝑜: 𝐸 (∑
𝜕𝐺𝑡

𝑚

𝛿𝑆𝑡−𝑙

72
𝑙=0 ) = 0 at all conventional significance level. One plausible explanation for 

overestimating the hydropower reallocation has to do with modelling and computing average partial 

effects for all 72 hours. Since the APE computed with equation 16 uses point estimates of all hours during 

Offsets (MWh/MWh VRE)

Solar Wind

Thermal -0.689 -0.834

0.049 0.013

Hydro -0.099 -0.029

0.015 0.005

-0.002 0.001

0.002 0.001

Nuclear 0.048 0.038

0.010 0.004

Imports -0.248 -0.228

0.042 0.012

Total grid -0.99 -1.05

0.07 0.02

Other 

renewables 

Al l  observations  are s igni ficant at less  1% 

except for other renewables  displaced by 

solar power.



the day, the night hours that have no solar generation will still show a hydro displacement by picking the 

effect of any of the morning hours included in the lags.  

 

This overestimation also occurs when I model either less lags (12,24) or more (96) or even when 

only using sunlight hours (6-19H00)13. This overestimation can be the result of this noise in the dynamics, 

due to the nature of the data generating process, or it could be indicative of a more complex pattern and 

behavior of hydropower generation rescheduling decisions, which will be briefly stated in the discussion 

section.  

  

Emissions offsets 

 

Table 4. Dynamic average carbon emissions offsets (APE) by model 

 

 For solar power, the dynamic APE corrects the low abatement estimate from the static model and 

it reduces the wind abatement estimate in all models. In the first case, since solar displaces considerable 

hydropower generation due to early morning to midday price reductions, when the model is calibrated 

with lags, it recovers some of that water generation that is switched to a higher LMP hour. Hence, the 

abatement estimate will go up since it considers the full effect: the direct displacement of the high 

                                                           
13 See appendix. 

Solar Wind

CO2 -0.231 -0.417

0.030 0.008

All observations are significant at less than 1% level

Offset tCO2/MWh VRE

Linear polynomial 

Standard errors are displayed

72 lags all hours



marginal cost thermal units and the indirect effect of relocating hydropower which will displace even more 

thermal output but at a later time. The summation of both effects, or the total marginal emissions offsets 

are larger in this dynamic case than in the static case as sketched in the theoretical model. 

 

 The estimated average wind marginal emissions offsets (0.417 ± 0.08 tCO2/MWh) are larger than 

those reported by Kaffine et al. (2012) for CAISO (between 0.202 and 0.299 tCO2/MWh) based on 2009 

data. This is plausible since wind generation has been increasing, in absolute and relative values, since 

that year. A more recent estimate based on 2010-2012 data from Callaway et al. (2015) finds that the 

average marginal emissions offsets for solar is higher than for wind, and both oscillate around 0.4 

tCO2/MWh. I find a different relation between both effects and a similar magnitude for the wind estimate, 

even though, I use more recent data which should reflect an increasing share of VRE in the grid. The lower 

abatement coefficient for solar power could be caused by the shortcomings of my dynamic model (using 

72 lags) in capturing a full relocation of the displaced hydropower.  

 

 While the Callaway et al. (2015) estimates are not directly comparable since they are based on 

identifying grid level marginal emissions using shifts in the supply of fossil generation and projecting how 

potential VRE would directly substitute the marginal thermal generator, analyzing why larger additions of 

VRE to the grid have not increased the marginal emissions offsets is a salient point.  

 

8. Valuing carbon abatement benefits, policy implications and discussion 

 

In the US, the recent Clean Power Plan (CPP) has a 30% reduction in carbon dioxide emissions by 

2030, from the 2005 level, as one of its key goals (EPA, 2015). In order to achieve this, an electric grid 



powered by a significant share of renewable energy is one of the “Best System of Emission Reduction 

BSER” guidelines (Caldwell and Anderson, 2015). Nevertheless, the intermittent nature of variable 

renewable energy (VRE), the lack of utility scale electricity storage and the complex congestion 

configurations in power transmission make it challenging to assess VRE carbon emissions, which is 

essential for measuring progress and compliance with the CPP.  

 

This research has argued that VRE has an effect on hydropower reallocation due to the changes 

it causes on the LMP.   Hence, wind and solar have direct and indirect carbon emissions, the latter include 

the recovery of the displaced hydro generation at a future time and its related thermal generation and 

CO2 offsets. Understanding these dynamics is important for measuring VRE carbon abatement potential, 

but also for addressing current shortcomings and challenges with the large scale adoption of wind and 

solar technologies at the wholesale market level. A similar pattern was found by Green and Vasilakos 

(2012) but between Denmark and the Scandinavian countries, where the former exports wind generation 

on breezy days and imports electricity on calm days. The authors argue that Scandinavian hydropower 

basically acts as a storage for Denmark, smoothing the intermittency of its wind power.  

 

Estimating the carbon abatement potential of VRE is necessary to assess the economic value of 

renewable energy and evaluate current policies. Using the latest US EPA social cost of carbon (USD 56/ 

tCO2
14 from IAWG, 2015) renders solar power marginal carbon abatement benefits between USD 9.6 and 

USD 16.3 per MWh, while for wind power it is from USD 22.5 to USD 24.3 per MWh.  Ideally, we can use 

these values of external environmental benefits along the grid cost reductions via LMP reductions to 

                                                           
14 Average value for a discount rate of 2.5% 



compute the short run marginal value of VRE generation, which would be the desired metric to compare 

against the different incentives perceived by wind and solar generators (Baker et al., 2013).  

 

From a broader perspective, the proposed dynamic modelling is key for understanding electricity 

generation and grid level emissions in systems with increasing adoption of storage technologies. Such 

devices can help managing the short term (day vs night) intermittency and the seasonality (summer vs 

winter) of VRE. To the extent that the main cost of operating storage comes from the capital investment, 

the insights about the hydropower arbitrage condition and generation reallocation would also apply to 

profit maximizing storers.  Thus, dynamics would play a key role in identifying renewable energy emissions 

offsets even in grids that have historically shown negligible levels of hydropower production (ERCOT). 

 

Furthermore, several emerging economies with electric grids powered by a significant (or even 

mostly) share of hydropower are increasingly installing wind and solar plants (some examples include 

China, Brazil and India). To the extent that these countries operate a wholesale electricity market with 

bidding hydropower producers, this research’s proposal for estimating marginal emissions offsets can be 

a feasible replication methodology for evaluating VRE abatement outcomes.  

 

Finally, my findings state that I cannot reject the null hypothesis of having no hydropower 

generation displacement caused by VRE. As discussed previously, this conclusion can be the result of noise 

in the dynamics, due to the nature of the data generating process, and picked up by the APE formula when 

averaging across all time hours.  Further work is required to model these dynamics appropriately. 

 



From an aggregate wholesale market perspective, if individual hydropower producers’ 

expectations cannot adjust quickly and continuously to the price consequences of adding variable 

renewable energy, some bids might end up being too high and probably rejected. In either case, further 

research and modelling are required to contrast with the hydro displacement finding. In this regard, the 

current research leaves an open question based on a counterintuitive result.  

  

9. Conclusions 

 

This research tackled the novel challenge of identifying the marginal generation and emissions 

offsets caused by adding two intermittent renewable energy sources to an electric grid that has a 

significant share of hydropower. Using a static model based on recent (2011-2015) historical data of 

random solar and wind generation, I estimated the instantaneous displacement of the highest marginal 

cost generator, through the merit order effect, but also the indirect hydropower reallocation that occurs 

due to VRE effects on locational marginal prices. 

 

On the other hand, using a dynamic model, I identified how hydropower generation is reallocated 

due to changes in the LMP and the associated additional displacement of thermal generation and 

emissions. Hence, the dynamic model estimates larger marginal natural gas generation offsets and 

emissions offsets than its static counterpart.  Even with the dynamic estimate I find no evidence of a full 

hydropower reallocation that would lead to zero displacement. While this finding could be caused by an 

overestimation related to accumulated noise in modelling the lags, further research is required to 

understand this effect and whether hydropower producers’ expectations play any role in having an 

imperfect rescheduling of their electricity output.  
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11. Appendix 

10.1 RTM LMP regressions on VRE and controls 

 

 

 

 

 

 

 

 

 

wind (in MWh) -0.00458

0.00021

solar  (in MWh) -0.00228

0.00010

load 0.00137

0.00004

Fuel cost 7.87108

2.36629

Weekly FE Yes

Weekend FE Yes

Al l  observations  are s igni ficant at less  than 1% level

Dependent: RTM LMP 

(USD/MWh)

Standard errors  are displayed



 

 

10.2 RTM LMP regressions on hourly VRE and controls 

 

| Robust

RTM_LMP | Coef. Std. Err.

-------------+----------------------------------------------------------------

hour#c.wind |

1 | -0.0045294 0.0002554 -17.74

2 | -0.0045334 0.0002533 -17.89

3 | -0.0050029 0.0003066 -16.32

4 | -0.0053229 0.0002926 -18.19

5 | -0.0049069 0.0002834 -17.31

6 | -0.004726 0.0002904 -16.28

7 | -0.00617 0.0005391 -11.45

8 | -0.0055742 0.0004774 -11.68

9 | -0.0059611 0.0003979 -14.98

10 | -0.0057921 0.0004337 -13.36

11 | -0.0052275 0.000511 -10.23

12 | -0.005428 0.0004222 -12.86

13 | -0.0057899 0.000413 -14.02

14 | -0.0056241 0.0003917 -14.36

15 | -0.0055606 0.0004487 -12.39

16 | -0.0065173 0.0006112 -10.66

17 | -0.0063052 0.0006598 -9.56

18 | -0.0074921 0.0008467 -8.85

19 | -0.005818 0.0005717 -10.18

20 | -0.0037482 0.0004322 -8.67

21 | -0.0038706 0.0004232 -9.15

22 | -0.0043075 0.0004265 -10.1

23 | -0.0045379 0.0002774 -16.36

24 | -0.0043467 0.0002393 -18.16



 

 

 

hour  | Coef. Std. Error

|

1 | -0.0814458 0.0913229

2 | -0.1330256 0.1406528

3 | -0.1936466 0.2193553

4 | -0.5384707 0.4129938

5 | 0.0304829 0.0134514

6 | 0.0162607 0.0089232

7 | -0.0014057 0.0031807

8 | -0.0037736 0.0006084

9 | -0.0023285 0.0002579

10 | -0.0020364 0.000175

11 | -0.0017957 0.0001517

12 | -0.0016636 0.0001504

13 | -0.0016058 0.0001858

14 | -0.0014226 0.000183

15 | -0.0015609 0.0001854

16 | -0.0017754 0.0004016

17 | -0.0013695 0.0004411

18 | 0.0003469 0.000773

19 | 0.0019864 0.0011574

20 | 0.0000199 0.003733

21 | -0.0062838 0.0045281

22 | -0.0030701 0.0048011

23 | 0.0021054 0.00462

24 | -0.0306278 0.0382496


