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Abstract

In many growth models, economic growth arises from people creating ideas,

and the long-run growth rate is the product of two terms: the effective number of

researchers and the research productivity of these people. We present a wide range

of evidence from various industries, products, and firms showing that research

effort is rising substantially while research productivity is declining sharply. A good

example is Moore’s Law. The number of researchers required today to achieve the

famous doubling every two years of the density of computer chips is more than

75 times larger than the number required in the early 1970s. Across a broad range

of case studies at various levels of (dis)aggregation, we find that ideas — and in

particular the exponential growth they imply — are getting harder and harder to

find. Exponential growth results from the large increases in research effort that

offset its declining productivity.
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1. Introduction

The basic insight of this paper can be explained with a simple equation, highlighting a

stylized view of economic growth that emerges from idea-based growth models:

Economic
growth

= Idea TFP × Number of
researchers

e.g. 2% or 5% ↓(falling) ↑(rising)

Economic growth arises from people creating ideas, and the long-run growth rate is the

product of two terms: the effective number of researchers and the research productivity

of these people (“idea TFP”). We present a wide range of empirical evidence showing

that in many different contexts and at various levels of disaggregation, research effort

is rising substantially, while research productivity is declining sharply. Steady growth,

when it occurs, results from the offsetting of these two trends.

Perhaps the best example of this finding comes from studying Moore’s Law, one of

the key drivers of economic growth in recent decades. This “law” refers to the empirical

regularity that the number of transistors packed onto a computer chip doubles approx-

imately every two years. Such doubling corresponds to a constant exponential growth

rate of around 35% per year, a rate that has been remarkably steady for nearly half a

century. As we show in detail below, this growth has been achieved by putting an ever-

growing number of researchers to work on pushing Moore’s Law forward. In particular,

the number of researchers required to achieve the doubling of chip density today is

more than 75 times larger than the number required in the early 1970s. At least as far as

semiconductors are concerned, ideas are getting harder and harder to find. Idea TFP in

this case is declining sharply, at a rate that averages about 10% per year.

We document qualitatively similar results essentially no matter where we look in

the U.S. economy. We consider detailed microeconomic evidence on idea production

functions, focusing on places where we can get the best measures of both the output of

ideas and the inputs used to produce them. In addition to Moore’s Law, our case stud-

ies include agricultural productivity (corn, soybeans, cotton, and wheat) and medical

innovations. Idea TFP for seed yields declines at about 5% per year. We find a similar

rate of decline when studying the mortality improvements associated with all cancers

and with breast cancer. Finally, we examine firm-level data from Compustat to provide
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another perspective on idea TFP. While the data quality from this sample is not as good

as for our industry case studies, the latter suffer from possibly not being representative.

We find substantial heterogeneity across firms, but idea TFP is declining in more than

85% of the firms in our sample. Averaging across firms, idea TFP declines at a rate of

12% per year.

Perhaps idea TFP is declining sharply within every particular case that we look at

and yet not declining for the economy as a whole. While existing varieties run into

diminishing returns, perhaps new varieties are always being invented to stave this off.

We consider this possibility by taking it to the extreme. Suppose each variety has a

productivity that cannot be improved at all, and instead aggregate growth proceeds

entirely by inventing new varieties. To examine this case, we consider idea TFP for

the economy as a whole. We once again find that it is declining sharply: aggregate

growth rates are relatively stable over time,1 while the number of researchers has risen

enormously. In fact, this is simply another way of looking at the original point of Jones

(1995), and for this reason, we present this application first to illustrate our methodol-

ogy. We find that idea TFP for the aggregate U.S. economy has declined by a factor of

48 since the 1930s, an average decrease of more than 5% per year.

Despite these large declines in idea TFP, relatively stable exponential growth is com-

mon in the cases we study (and in the aggregate U.S. economy). How is this possible?

Looking back at the equation that began the introduction, declines in idea TFP must

be offset by increased research effort, and this is indeed what we find. Moreover, we

suggest at the end of the paper that the rapid declines in idea TFP that we see in semi-

conductors, for example, might be precisely due to the fact that research effort is rising

so sharply. Because it gets harder to find new ideas as research progresses, a sustained

and massive expansion of research like we see in semiconductors (for example, because

of the “general purpose technology” nature of information technology), may lead to a

substantial downward trend in idea TFP.

Others have also provided evidence suggesting that ideas may be getting harder to

1There is a debate over whether the slower rates of growth over the last decade are a temporary
phenomenon due to the global financial crisis, or a sign of slowing technological progress. Gordon (2016)
argues that the strong US productivity growth between 1996 and 2004 was a temporary blip and that
productivity growth will, at best, return to the lower growth rates of 1973–1996. Although we do not need
to take a stance on this, note that if frontier TFP growth really has slowed down, this only strengthens our
argument.
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find over time. Griliches (1994) provides a summary of the earlier literature exploring

the decline in patents per dollar of research spending. Gordon (2016) reports extensive

new historical evidence from throughout the 19th and 20th centuries. Cowen (2011)

synthesizes earlier work to explicitly make the case. (Ben) Jones (2009) documents

a rise in the age at which inventors first patent and a general increase in the size of

research teams, arguing that over time more and more learning is required just to get

to the point where researchers are capable of pushing the frontier forward. We see our

evidence as complementary to these earlier studies.

The remainder of the paper is organized as follows. Section 2 lays out our con-

ceptual framework and presents the aggregate evidence on idea TFP to illustrate our

methodology. Section 3 places this framework in the context of growth theory and

suggests that applying the framework to micro data is crucial for understanding the

nature of economic growth. Sections 4 through 7 consider our applications to Moore’s

Law, agricultural yields, medical technologies, and Compustat firms. Section 8 then

revisits the implications of our findings for growth theory, and Section 9 concludes.

2. Idea TFP and Aggregate Evidence

2.1. The Conceptual Framework

An equation at the heart of many growth models is an idea production function taking

a particular form:
Ȧt
At

= αSt. (1)

Classic examples include Romer (1990) and Aghion and Howitt (1992), but many recent

papers follow this approach, including Aghion, Akcigit and Howitt (2014), Acemoglu

and Restrepo (2016), Akcigit, Celik and Greenwood (2016), and Jones and Kim (2014).

In the equation above, Ȧt/At is total factor productivity growth in the economy. The

variable St (think “scientists”) is some measure of research input, such as the number

of researchers. This equation then says that the growth rate of the economy — through

the production of new ideas — is proportional to the number of researchers.

Relating Ȧt/At to ideas runs into the familiar problem that ideas are hard to mea-

sure. Even as simple a question as “What are the units of ideas?” is troublesome. We
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follow much of the literature — including Aghion and Howitt (1992), Grossman and

Helpman (1991), and Kortum (1997) — and define ideas to be in units so that a constant

flow of new ideas leads to constant exponential growth in A. For example, each new

idea raises incomes by a constant percentage (on average), rather than by a certain

number of dollars. This is the standard approach in the quality ladder literature on

growth: ideas are proportional improvements in productivity. The patent statistics for

most of the 20th century are consistent with this view; indeed, this was a key piece of

evidence motivating Kortum (1997). This definition means that the left hand side of

equation (1) corresponds to the flow of new ideas.

We can now define the productivity of the idea production function, which we call

“idea TFP,” as the ratio of the output of ideas to the inputs used to make them:

Idea TFP :=
Ȧt/At
St

=
# of new ideas

# of researchers
. (2)

The null hypothesis tested in this paper comes from the relationship assumed in (1).

Substituting this equation into the definition of idea TFP, we see that (1) implies that

idea TFP equalsα— that is, idea TFP is constant over time. This is the standard hypoth-

esis in much of the growth literature. Under this null, a constant number of researchers

can generate constant exponential growth.

The reason this is such a common assumption is also easy to see in equation (1).

With constant idea TFP, a research subsidy that increases the number of researchers

permanently will permanently raise the growth rate of the economy. In other words

“constant idea TFP” and the fact that sustained research subsidies produce “perma-

nent growth effects” are equivalent statements.2 This clarifies a claim in the introduc-

tion: testing the null hypothesis of constant idea TFP is interesting in its own right

but also because it is informative about the kind of models that we use to study eco-

nomic growth. The finding that idea TFP is declining virtually everywhere we look

poses problems for a large class of endogenous growth models. Moreover, the way we

have defined ideas gives this concept economic relevance: exponential growth (e.g. in

2The careful reader may wonder about this statement in richer models — for example, lab equipment
models where research is measured in goods rather than in bodies or models with both horizontal and
vertical dimensions to growth. These extensions will be incorporated below in such a way as to maintain
the equivalence between “constant idea TFP” and “permanent growth effects.”
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semiconductor density or seed yields or living standards) is getting harder to find.

2.2. Aggregate Evidence

The bulk of the evidence presented in this paper concerns the extent to which a con-

stant level of research effort can generate constant exponential growth within a rela-

tively narrow category, such as a firm or a seed type or Moore’s Law or a health condi-

tion. We provide consistent evidence that the historical answer to this question is no:

idea TFP is declining at a substantial rate in virtually every place we look.

This finding raises a natural question, however. What if there is sharply declin-

ing idea TFP within each product line, but the main way that growth proceeds is by

developing ever-better new product lines? First there was steam power, then electric

power, then the internal combustion engine, then the semiconductor, then gene edit-

ing, and so on. Maybe there is limited opportunity within each area for productivity

improvement and long-run growth occurs through the invention of entirely new areas.

Maybe idea TFP is declining within every product line, but still not declining for the

economy as a whole because we keep inventing new products. An analysis focused on

microeconomic case studies would never reveal this to be the case.

The answer to this concern turns out to be straightforward and is an excellent place

to begin. First, consider the extreme case where there is no possibility at all for produc-

tivity improvement in a product line and all productivity growth comes from adding

new product lines. Of course, this is just the original Romer (1990) model itself, and

to generate constant idea TFP in that case requires the equation we started the paper

with:
Ȧt
At

= αSt. (3)

In this interpretation,At represents the number of product varieties and St is the aggre-

gate number of researchers. Even with no ability to improve productivity within each

variety, a constant number of researchers can sustain exponential growth if the variety-

discovery function exhibits constant idea TFP.

This hypothesis, however, runs into an important well-known problem.3 For the

U.S. economy as a whole, exponential growth rates in GDP per person since 1870 or in

total factor productivity since the 1930s — which are related to the left side of equa-

3For example, see Jones (1995).
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Figure 1: Aggregate Data on Growth and Research Effort
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Note: The idea output measure is TFP growth, by decade (and for 2000-2015
for the latest observation). For the years since 1950, this measure is the BLS
Private Business Sector multifactor productivity growth series. For the 1930s and
1940s, we use the measure from Robert Gordon (2016). The idea input measure
is gross domestic investment in intellectual property products from the National
Income and Product Accounts, deflated by a measure of the nominal wage for
high-skilled workers.

tion (3) — are relatively stable or even declining. But measures of research effort — the

right side of the equation — have grown tremendously. When applied to the aggregate

data, our approach of looking at “idea TFP” is just another way of making this same

point.

To illustrate the approach, we use the decadal averages of TFP growth to measure

the “output” of the idea production function. For the input, we use the NIPA measure of

investment in “intellectual property products,” a number that is primarily made up of

research and development spending but also includes expenditures on creating other

nonrival goods like computer software, music, books, and movies. As explained further

below, we deflate this input by a measure of the average annual earnings for people with

4 or more years of college so that it measures the “effective” number of researchers that

the economy’s R&D spending could purchase. These basic data are shown in Figure 1.

Figure 2 shows idea TFP and this measure of research effort by decade. Since the
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Figure 2: Aggregate Evidence on Idea TFP
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Note: Idea TFP is the ratio of Idea Output, measured as TFP growth, to research
effort. See notes to Figure 1. Both idea TFP and research effort are normalized to
the value of 1 in the 1930s.

1930s, research effort has risen by a factor of 23 — an average growth rate of 4.3 percent

per year. Idea TFP has fallen by an even larger amount — by a factor of 48 (or at an

average growth rate of -5.3 percent per year). By construction, a factor of 23 of this

decline is due to the rise in research effort and so only about a factor of 2 is due to the

well-known decline in TFP growth.

The “new economy” of the 1990s exhibited a bounceback of TFP growth that was

roughly of the same factor as the increase in research in that decade, resulting in flat

idea TFP between the 1980s and 1990s. But the overall trend is clear. For example,

between the 1960s and the 2000s, idea TFP fell by a factor of 9.2. And between the 1980s

and the 2000s, it fell by a factor of 1.7, with the entire amount due to rising research

effort.

This aggregate evidence could be improved on in many ways. One might question

the TFP growth numbers — how much of TFP growth is due to innovation versus real-

location or declines in misallocation? One might seek to include international research

in the input measure. But reasonable variations along these lines would not change the

basic point of Figure 2: a model in which economic growth arises from the discovery of
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newer and better varieties with limited possibilities for productivity growth within each

variety exhibits sharply-declining idea TFP. If one wishes to maintain the hypothesis of

constant idea TFP, one must look elsewhere. It is for this reason that the literature —

and this paper — turns to the micro side of economic growth.

3. Refining the Conceptual Framework

In this section, we further develop the conceptual framework introduced in the previ-

ous section. First, we explain why the aggregate evidence just presented can be mis-

leading, motivating our focus on micro data. Second, we consider the measurement

of idea TFP when the input to research is R&D expenditures (i.e. “goods”) rather than

just bodies or researchers (i.e. “time”). Finally, we discuss various extensions to our

calculation of idea TFP.

3.1. The Importance of Micro Data

The null hypothesis that idea TFP is constant over time is attractive conceptually in

that it leads to models in which changes in policies related to research can permanently

affect the growth rate of the economy. Several papers, then, have proposed alternative

models in which the calculations using aggregate data can be misleading about idea

TFP. The insight of Dinopoulos and Thompson (1998), Peretto (1998), Young (1998), and

Howitt (1999) is that the aggregate evidence may be masking important heterogeneity,

and that idea TFP may nevertheless be constant for a significant portion of the econ-

omy. Perhaps the idea production function for individual products shows constant idea

TFP. The aggregate numbers may simply capture the fact that every time the economy

gets larger we add more products, so the aggregate calculation mismeasures idea TFP.4

To see the essence of the argument, suppose that the economy produces Nt dif-

ferent products, and each of these products is associated with some quality level Ait.

Innovation can lead the quality of each product to rise over time according to an idea

production function,
Ȧit
Ait

= αSit. (4)

4This line of research has been further explored by Aghion and Howitt (1998), Li (2000), Laincz and
Peretto (2006), Dinopoulos and Syropoulos (2007), Ha and Howitt (2007), Kruse-Andersen (2016), and
Peretto (2016a; 2016b).
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Here, Sit is the number of scientists devoted to improving the quality of good i, and in

a symmetric case, we might have Sit = St
Nt

. The key is that the aggregate number of

scientists St can be growing, but perhaps the number per product St/Nt is not growing.

This can occur in equilibrium if the number of products itself grows endogenously

at the right rate. In this case, the aggregate evidence discussed earlier would not tell

us anything about the idea production functions associated with the quality improve-

ments of each variety. Instead, aggregation masks the true constancy of idea TFP at the

micro level.

This insight provides one of the key motivations for the present paper: to study the

idea production function at the micro level. That is, we study equation (4) directly and

consider idea TFP for individual products:

Idea TFP: iTFPit :=
Ȧit/Ait
Sit

. (5)

By considering micro evidence, we can directly test the key hypothesis underlying a

large portion of endogenous growth theory.

3.2. “Lab Equipment” Specifications

In many applications, the input that we measure is R&D expenditures rather than the

number of researchers. In fact, one could make the case that this is a more desirable

measure, in that it weights the various research inputs according to their relative prices:

if expanding research involves employing people of lower talent, this will be properly

measured by R&D spending. When the only input into ideas is researchers, then de-

flating R&D expenditures by an average wage will appropriately recover the effective

quantity of researchers. In practice, R&D expenditures also typically involve spending

on capital goods and materials. As explained next, deflating by the nominal wage to

get an “effective number of researchers” that this research spending could purchase

remains a good way to proceed.

In the growth literature, these specifications are called “lab equipment” models,

because implicitly both capital and labor are used as inputs to produce ideas. In lab

equipment models, the endogenous growth case occurs when the idea production func-
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tion takes the form

Ȧt = αRt, (6)

where Rt is measured in units of a final output good. For the moment, we discuss this

issue in the context of a single-good economy; in the next section, we explain how the

analysis extends to the case of multiple products.

To see why equation (6) delivers endogenous growth, it is necessary to specify the

economic environment more fully. First, suppose there is a final output good that is

produced with a standard Cobb-Douglas production function:

Yt = Kθ
t (AtL)1−θ. (7)

Next, the resource constraint for this economy is

Yt = Ct + It +Rt (8)

That is, final output is used for consumption, investment in physical capital, or re-

search.

We can now combine these three equations to get the endogenous growth result.

First, notice that dividing both sides of the production function for final output by Y θ

and rearranging yields

Yt =

(
Kt

Yt

) θ
1−θ

AtL. (9)

Then, letting st := Rt/Yt denote the share of the final good spent on research, the idea

production function in (6) can be expressed as

Ȧt = αRt = αstYt = αst

(
Kt

Yt

) θ
1−θ

AtL. (10)

And rearranging gives

Ȧt
At

= α
(
Kt
Yt

) θ
1−θ × stL

idea TFP “scientists”

(11)

It is now easy to see how this setup generates endogenous growth. Along a bal-

anced growth path, the capital-output ratio K/Y will be constant, as will the research
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investment share st. If we assume there is no population growth, then equation (11)

delivers a constant growth rate of total factor productivity in the long-run. Moreover,

a permanent increase in the R&D share s will permanently raise the growth rate of the

economy.

Looking back at the idea production function in (6), the question is then how to

define idea TFP there. The answer is both intuitive and simple: we deflate the R&D

expenditures Rt by the wage to get a measure of “effective scientists.” Letting wt =

θ̄Yt/Lt be the wage for labor in this economy, (6) can be written as

Ȧt
At

=
αwt
At
× Rt
wt
. (12)

Importantly, the two terms on the right-hand side of this equation will be constant

along a balanced growth path in a standard endogenous growth model. It is easy to

see that S̃t := Rt
wt

= Rt
Yt
· Ytwt = stL/θ̄. And of course wt/At is also constant along a BGP.

In other words, if we deflate R&D spending by the economy’s wage rate, we get S̃t,

a measure of the number of researchers the R&D spending could purchase. Of course,

research labs spend on other things as well, like lab equipment and materials, but the

theory makes clear how S̃t is a useful measure for constructing idea TFP. Hence we will

refer to S̃t as “effective scientists” or “research effort.”

The idea production function in (12) can then be written as

Ȧt
At

= α̃tS̃t (13)

where both α̃t and S̃t will be constant in the long run under the null hypothesis of

endogenous growth. We can therefore define idea TFP in the lab equipment setup in a

way that parallels our earlier treatment:

Idea TFP: iTFPt :=
Ȧt/At

S̃t
. (14)

The only difference is that we deflate R&D expenditures by a measure of the nominal

wage to get S̃. Under the null hypothesis of endogenous growth, this measure of idea

TFP should be constant in the long run (and would only vary outside the long-run

because of changes in the capital-output ratio).
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An easy intuition for (14) is this: endogenous growth requires that a constant pop-

ulation — or a constant number of researchers — be able to generate constant expo-

nential growth. Deflating R&D spending by the wage puts the R&D input in units of

“people” so that constant idea TFP is equivalent to the null hypothesis of endogenous

growth.

Equation (12) above also makes clear why deflating R&D spending by the wage is

important. If we did not and instead naively computed idea TFP by dividing Ȧt/At by

Rt, we would find that idea TFP would be falling because of the rise in At, even in the

endogenous growth case. In other words, this naive approach to idea TFP would not

really correspond to anything economically useful. Economic theory suggests deflating

by the research wage in order to get a meaningful concept of idea TFP, in this case, one

that corresponds to an important hypothesis in the growth literature.

As a measure of the nominal wage in our empirical applications, we use mean per-

sonal income from the Current Population Survey for males with a Bachelor’s degree or

more of education.5 This approach means that researchers of heterogeneous quality

are combined according to their relative wages. For example, if the best researchers are

hired first and subsequent researchers are less talented, the additional researchers will

be given a lower weight in our research measure. The potential depletion of research

talent is then appropriately incorporated in our empirical approach.

3.3. Heterogeneous Goods and the Lab Equipment Specification

In the previous two subsections, we discussed (i) what happens if idea TFP is only con-

stant within each product while the number of products grows and (ii) how to define

idea TFP when the input to research is measured in goods rather than bodies. Here, we

explain how to put these two together.

Among the very first models that used both horizontal and vertical research to neu-

tralize scale effects, only Howitt (1999) used the lab-equipment approach. In that pa-

per, it turns out that the method we have just discussed — deflating R&D expenditures

5These data are from Census Tables P18 and P19, available at http://www.census.gov/topics/
income-poverty/income/data/tables.html. Prior to 1991, we use the series for “4 or more years of college.”
For years between 1939 and 1967, we use the series Bc845 from the Historical Statistics for the U.S.
Economy, Millennial Edition. Finally, for the aggregate idea TFP calculation in Figure 1, we require a
deflator from the 1930s. We extrapolate the college earnings series backward into the 1930s using nominal
GDP per person for this purpose.

http://www.census.gov/topics/income-poverty/income/data/tables.html
http://www.census.gov/topics/income-poverty/income/data/tables.html
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by the economy’s average wage — works precisely as explained above. That is, idea

TFP for each product should be constant if one divides the growth rate by the effective

number of researchers working to improve that product.6 This is true more generally in

these horizontal/vertical models of growth whenever product variety grows at the same

rate as the economy’s population. Peretto (2016a) cites a large literature suggesting that

this is the case: product variety and population scale together over time and across

countries.7 The two previous subsections then merge together very naturally.

3.4. Stepping on Toes

One other potential modification to the idea production function that has been con-

sidered in the literature is a duplication externality. For example, perhaps the idea

production function depends on Sλt , where λ is less than one. Doubling the number of

researchers may less than double the production of new ideas because of duplication

or because of some other source of diminishing returns.

We could incorporate this effect into our analysis explicitly but choose instead to

focus on the benchmark case of λ = 1 for three reasons. First and foremost, our

measurement of research effort already incorporates a market-based adjustment for

the depletion of talent: R&D spending weights workers according to their wage, and

less talented researchers will naturally earn a lower salary. If more of these workers

are hired over time, R&D spending will not rise by as much. Second, adjusting for λ

only affects the magnitude of the trend in idea TFP, but not the overall qualitative fact

of whether or not there is a downward trend. It is easy to deflate the growth rate of

research effort by whatever value of λ you’d like to get a sense for how this matters;

cutting our growth rates in half — an extreme adjustment — would still leave the nature

6The main surprise in confirming this observation is that wt/Ait is constant. In particular, wt is
proportional to output per worker, and one might have expected that output per worker would grow with
At (an average across varieties) but also with Nt, the number of varieties. However, this turns out not to
be the case: Howitt includes a fixed factor of production (like land), and this fixed factor effectively eats
up the gains from expanding variety. More precisely, the number of varieties grows with population while
the amount of land per person declines with population, and these two effects exactly offset.

7Building on the preceding footnote, it is worth also considering Peretto (2016b) in this context. Like
Howitt, that paper has a fixed factor and for some parameter values, his setup also leads to constant idea
TFP. For other parameter values (e.g. if the fixed factor is turned off), the wage wt grows both because
of quality improvements and because of increases in variety. Nevertheless, deflating by the wage is
still a good way to test the null hypothesis of endogenous growth: in that case, idea TFP rises along an
endogenous growth path. So the finding below that idea TFP is declining is also relevant in this broader
framework.
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of our results unchanged. Third, one might expect a “short-run” value of λ to differ from

its “long-run” value. For example, the duplication and talent depletion effects could

certainly apply if we tried to double the amount of research in a given year. However, to

the extent that the increase occurs gradually over time, one might expect these effects

to be mitigated. Finally, there is no consensus on what value of λ one should use —

Kremer (1993) even considers the possibility that it might be larger than one because

of network effects.8

The remainder of the paper applies this framework in a wide range of different

contexts: Moore’s Law for semiconductors, agricultural crop yields, pharmaceutical

innovation and mortality, and then finally at the firm level using Compustat data. Our

consistent finding everywhere we’ve looked is that idea TFP is declining at a substantial

rate over long periods of time.

4. Moore’s Law

One of the key drivers of economic growth during the last half century is Moore’s Law:

the empirical regularity that the number of transistors packed onto an integrated cir-

cuit serving as the central processing unit for a computer doubles approximately every

two years. Figure 3 shows this regularity back to 1971. The log scale of this figure

indicates the overall stability of the relationship, dating back nearly fifty years, as well

as the tremendous rate of growth that is implied. Related formulations of Moore’s Law

involving computing performance per watt of electricity or the cost of information

technology could also be considered, but the transistor count on an integrated circuit

is the original and most famous version of the law, so we use that one here.9

A doubling time of two years is equivalent to a constant exponential growth rate

of 35 percent per year. While there is some discussion of Moore’s Law slowing down

in recent years (there always seems to be such discussion!), we will take the constant

exponential growth rate as corresponding to a constant flow of new ideas back to 1971.

That is, we assume the output of the idea production for Moore’s Law is a stable 35

percent per year. Other alternatives are possible. For example, we could use decadal

8In a future draft, we will report a robustness table showing how all results in the paper change when
λ = 3/4, for example.

9See the Wikipedia entry at https://en.wikipedia.org/wiki/Moores law.

https://en.wikipedia.org/wiki/Moores_law
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Figure 3: The Steady Exponential Growth of Moore’s Law

Source: Wikipedia, https://en.wikipedia.org/wiki/Moores law.

https://en.wikipedia.org/wiki/Moores_law
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growth rates or other averages, and some of these approaches will be employed later

in the paper. However, from the standpoint of understanding steady, rapid exponential

growth for nearly half a century, the stability implied by the straight line in Figure 3 is

a good place to start. And any slowing of Moore’s Law would only reinforce the finding

we are about to document.10

If the output side of Moore’s Law is constant exponential growth, what is happening

on the input side? Many commentators note that Moore’s Law is not a law of na-

ture but is instead a result of intense research effort: doubling the transistor density

is often viewed as a goal or target for research programs. We measure research effort

by deflating nominal R&D expenditures of key semiconductor firms by the nominal

wage of high-skilled workers, as discussed above. Our semiconductor R&D series, from

Compustat data, sums research spending by Intel, Fairchild, National Semiconductor,

Motorola, Texas Instruments, and a number of other semiconductor firms and equip-

ment manufacturers.11

The striking fact, shown in Figure 4, is that research effort has risen by a factor of

78 since 1971. This massive increase occurs while the growth rate of chip density is

more or less stable: the constant exponential growth implied by Moore’s Law has been

achieved only by a staggering increase in the amount of resources devoted to pushing

the frontier forward.

Assuming a constant growth rate for Moore’s Law, the implication is that idea TFP

has fallen by this same factor of 78, an average rate of 10.1 percent per year. If the null

hypothesis of constant idea TFP were correct, the growth rate underlying Moore’s Law

should have increased by a factor of 78 as well. Instead, it was remarkably stable. Put

differently, because of declining idea TFP, it is around 78 times harder today to generate

the exponential growth behind Moore’s Law than it was in 1971.

Table 1 reports the robustness of this result to various assumptions about which

R&D expenditures should be counted. No matter how we measure R&D spending, we

see a large increase in effective research and a corresponding large decline in idea TFP.

Even by the most conservative measure in the table, idea TFP falls by a factor of 25

between 1971 and 2014.

10For example, there is a recent shift away from speed and toward energy-saving features; see Flamm
(forthcoming). However, our analysis still applies historically.

11 We are grateful to Unni Pillai for his collaboration in constructing the semiconductor research series;
see Pillai (2016). More details are provided in Table 1 below.
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Table 1: Idea TFP Results for Moore’s Law, 1971–2014

Factor Average Implied half-life
R&D measure increase growth of idea TFP

Baseline 78 10.1% 6.8

(a) Narrow (no equipment) 25 7.5% 9.2

(b) Broad (no equipment) 44 8.8% 7.9

(c) Broad + equipment 89 10.4% 6.6

(d) Intel only 1265 16.6% 4.2

(e) Intel+AMD 1382 16.8% 4.1

Note: The R&D measures are based on Compustat data assembled in collaboration with Unni Pillai;
see https://sunypoly.edu/research/econ-technology/data/. The baseline measure, called “Moore-
Narrow” by Pillai, sums research spending by Intel, Fairchild, National Semiconductor, Qualcomm,
and a number of other semiconductor firms and equipment manufacturers (both in the U.S. and
abroad); it also includes 21% of Motorola’s research spending and 50% of Texas Instruments’
spending, reflecting the fact that these firms were heavily involved in other products (TVs and
calculators, for example). Other measures are (a) which excludes research by semiconductor
equipment manufacturers; (b) which includes more firms such as Broadcom, Applied Materials,
and Nvidia; (c) the broader set of firms plus research by semiconductor equipment manufacturers,
called “Moore-Broad” by Pillai; (d) Intel only; (e) Intel plus AMD, the two companies that appear
most often in the basic Moore’s Law graph shown in Figure 3. In private communication to us, Pillai
recommended measure (c) to us, while noting that it might overstate research growth slightly (for
example because it omits research by large firms like AT&T and IBM). To be conservative, we report
the slightly narrower measure as our baseline. We are currently working on using patent data to
decompose the R&D spending of many large firms to recover their semiconductor-related efforts.
These firms include AT&T, IBM, Toshiba, NEC, Fuji, Hitachi, Sanyo, General Electric, Raytheon,
RCA, Philips, Siemens, Mitsubishi, Matsushita, and Samsung.

https://sunypoly.edu/research/econ-technology/data/


ARE IDEAS GETTING HARDER TO FIND? 19

Figure 4: Data on Moore’s Law
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Note: The effective number of researchers is measured by deflating nominal R&D
expenditures by key semiconductor firms by the average wage of high-skilled workers.
The R&D spending used is the sum of research by Intel, Fairchild, National Semicon-
ductor, Texas Instruments, Motorola, and a number of other semiconductor firms and
equipment manufacturers; see Table 1 for more details.

The null hypothesis at the heart of many endogenous growth models — the con-

stancy of idea TFP — is resoundingly rejected in the case of Moore’s Law. The rise of

information technology is an integral part of economic growth in recent decades. One

might have expected this rapidly-growing sector to be one of the more natural places

to find support for this aspect of endogenous growth theory. Instead, it provides one of

the sharpest critiques.

4.1. Caveats

Now is a good time to consider what could go wrong in our idea TFP calculation at

the micro level. Mismeasurement on both the output and input sides are clearly a

cause for concern in general. However, there are two specific measurement problems

that are worth considering in more detail. First, suppose there are “spillovers” from

other sectors into the production of new ideas related to semiconductors. For example,

progress in a completely different branch of materials science may lead to a new idea
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that improves computer chips. Such positive spillovers are not a problem for our analy-

sis since they would show up as an increase in idea TFP rather than as the declines that

we document in this paper.12

A type of measurement error that could cause our findings to be misleading is if

we systematically understate R&D in early years and this bias gets corrected over time.

In the case of Moore’s Law, we are careful to include research spending by firms that

are no longer household names, like Fairchild Camera and Instrument (later Fairchild

Semiconductor) and National Semiconductor so as to minimize this bias: for example,

in 1971, Intel’s R&D was just 2.7 percent of our estimate for semiconductor R&D in that

year. Throughout the paper, we try to be as careful as we can with measurement issues,

but this type of problem must be acknowledged.

5. Agricultural Crop Yields

Our next application for measuring idea TFP examines the evolution of crop yields

for various crops over time. Due partly to the historical importance of agriculture in

the economy, crop yields and agricultural R&D spending are relatively well-measured

for various crops. For each of corn, soybeans, cotton, and wheat, we measure ideas

as crop yields, and research inputs as R&D expenditure directed at improving those

yields. Crop R&D is generally broken down into research on biological efficiency (cross-

breeding and bioengineering), mechanization, management, protection and mainte-

nance, and post-harvest (see, for example, Huffman and Evenson (2006)). We count

research on biological efficiency and protection and maintenance as the portion de-

voted to improving crop yields. Figure 5 shows these measures for our four crops back

to the 1960s.13

12If such spillovers were larger at the start of our time period than at the end, we could be underestimat-
ing the impact of semi-conductor R&D on productivity growth. We do not know of evidence suggesting
this.

13 For our measure of ideas, we use the national realized yields series for each crop available from the
U.S. Department of Agriculture National Agricultural Statistics Service (2016). Our measure of R&D inputs
consists of the sum of R&D spending by the public and private sectors in the U.S. Data on private sector
biological efficiency and crop protection R&D expenditures are from an updated USDA series based on
Fuglie et al. (2011), with the distribution of expenditure by crop taken from Perrin et al. (1983), Fernandez-
Cornejo et al. (2004), Traxler et al. (2005), Huffman and Evenson (2006), and University of York (2016).
Data on U.S. public sector R&D expenditure by crop are from the U.S. Department of Agriculture National
Institute of Food and Agriculture Current Research Information System (2016) and Huffman and Evenson
(2006), with the distribution of expenditure by research focus taken from Huffman and Evenson (2006).
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Figure 5: U.S. Crop Yields
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Note: Smoothed yields are computed using an HP filter with a smoothing parameter of 400.
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The figure show yields for each crop, measured in bushels or pounds harvested per

acre planted. These correspond to average yields realized on U.S. farms. They are there-

fore subject to many influences, including choice of inputs and random shocks. These

shocks, especially adverse weather and pest events, tend to have asymmetric effects:

adverse events cause much larger reductions in yields than favorable events increase

them, as indicated by the many large one-year reductions followed by recoveries in the

figure (see Huffman, Jin and Xu (2016)). Nevertheless, yields across these four crops

roughly doubled between 1960 and 2015.

Figure 6 shows the annualized average 5-year growth rate of yields (after smooth-

ing to remove shocks mostly due to weather). Yield growth has averaged around 1.5

percent per year since 1960 for these four crops, but with ample heterogeneity. These

5-year growth rates serve as our measure of idea output in studying the idea production

function for seed yields.

The green lines in Figure 6 show measures of the “effective” number of researchers

working on each crop, measured as the sum of public and private R&D spending de-

flated by the wage of high-skilled workers. Two measures are presented. The faster-

rising number corresponds to research targeted only at so-called biological efficiency.

This includes cross-breeding (hybridization) and genetic modification directed at in-

creasing yields, both directly and indirectly via improving insect resistance, herbicide

tolerance, and efficency of nutrient uptake, for example. The slower-growing number

additionally includes research on crop protection and maintenance, which includes

the development of herbicides and pesticides. The effective number of researchers

has grown sharply since 1969, rising by a factor that ranges from 3 to more than 25,

depending on the crop and the research measure.

It is immediately evident from comparing Figures 6 that idea TFP has fallen sharply

for agricultural yields: yield growth is relatively stable or even declining, while the

effective research that has driven this yield growth has risen tremendously. Idea TFP

is simply the ratio of average yield growth divided by the number of researchers.

Table 2 summarizes the idea TFP calculation for seed yields. As already noted,

the effective number of researchers working to improve seed yields rose enormously

between 1969 and 2009. For example, the increase was more than a factor of 23 for

both corn and soybeans if we restrict attention to seed-yield research narrowly-defined.
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Figure 6: Yield Growth and Research Effort by Crop
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(b) Soybeans
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(c) Cotton
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Note: The blue line is the annual growth rate of the smoothed yields over the following 5
years, from Figure 5. The two green lines report “Effective Research”: the solid line is based
on R&D targeting seed efficiency only; the dashed line additionally includes research on crop
protection. Both are normalized to one in 1969. See footnote 13 for data sources.
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Table 2: Idea TFP Results by Crop, 1969–2009

— Effective research — — Idea TFP —
Factor Average Factor Average

Crop increase growth decrease growth

Research on seed efficiency only

Corn 23.0 7.8% 52.2 -9.9%

Soybeans 23.4 7.9% 18.7 -7.3%

Cotton 10.6 5.9% 3.8 -3.4%

Wheat 6.1 4.5% 11.7 -6.1%

Research includes crop protection

Corn 5.3 4.2% 12.0 -6.2%

Soybeans 7.3 5.0% 5.8 -4.4%

Cotton 1.7 1.3% 0.6 +1.3%

Wheat 2.0 1.7% 3.8 -3.3%

Note: In the first panel of results, the research input is based on R&D expenditures for seed
efficiency only. The second panel additionally includes research on crop protection. R&D
expenditures are deflated by a measure of the nominal wage for high-skilled workers.
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If yield growth were constant (which is not a bad approximation across the four crops

as shown in Figure 6), then idea TFP would on average decline by this same factor. The

last 2 columns of Table 2 show this to be the case. On average, idea TFP declines for

crop yields by about 6 percent per year using the narrow definition of research and by

about 4 percent per year using the broader definition.

6. Mortality and Life Expectancy

Health expenditures account for around 18 percent of U.S. GDP, and a healthy life is

one of the most important goods we purchase. Our third collection of industry case

studies examines the productivity of medical research.

Figure 7 shows U.S. life expectancy at birth and at age 65. This graph makes the

important point that life expectancy is one of the few economic goods that does not

exhibit exponential growth. Instead, arithmetic growth provides a better description of

the time path of life expectancy. Since 1950, U.S. life expectancy at birth has increased

at a relatively stable rate of 1.8 years each decade, and life expectancy at age 65 has risen

at 0.9 years per decade (see Deaton, 2013).

Also shown in the graph is the well-known fact that overall life expectancy grew

even more rapidly during the first half of the 20th century, at around 3.8 years per

decade. This raises the question of whether even arithmetic growth is an appropri-

ate characterization. We believe that it is for two reasons. First, there is no sign of a

slowdown in the years gained per decade since 1950, either in life expectancy at birth

or in life expectancy at age 65. The second reason is a fascinating empirical regularity

documented by Oeppen and Vaupel (2002). That paper shows that “record female life

expectancy” — the life expectancy of women in the country for which they live the

longest — has risen at a remarkably steady rate of 2.4 years per decade ever since 1840.

Steady linear increases in life expectancy, not exponential ones, seem to be the norm.

6.1. New Molecular Entities

Our first example from the medical sector is a fact that is well-known in the litera-

ture, recast in terms of idea TFP. Figure 8 shows the number of new molecular entities

(“NMEs”) approved by the Food and Drug Administration. NMEs are new drugs, in-
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Figure 7: U.S. Life Expectancy
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cluding both chemical and biological products, that have been approved by the FDA.

Virtually all pharmaceutical advances in the last 50 years show up in these counts (Zam-

browicz and Sands, 2003). Famous examples that became commercial blockbuster

drugs are Zocor (for cholesterol), Prilosec (for gastroesophagal reflux), Claritin (for al-

lergies), Celebrex (for arthritis), and Taxol (for treating various types of cancer). Only

two or three of the NMEs in any given year become commercial successes. Among

famous drugs, only morphine and aspirin do not show up in these counts, because

their discovery pre-dates the FDA. The flow of NMEs is well-known to show very little

trend, although 2014 and 2015 are two of the years with the most approvals.

We obtain data on pharmaceutical R&D spending from the Pharmaceutical Research

and Manufacturers of America (Phrma), which has conducted an annual survey of its

members back to 1970 and includes R&D performed both domestically and abroad by

these companies.14 Using the procedures described earlier, we get the idea TFP and

effective research numbers shown in Figure 9. Research effort rises by a factor of 9,

while idea TFP falls by a factor of 11 by 2007 before rising in recent years so that the

14A limitation is that it does not include R&D done by foreign companies that is performed abroad.
However, Figure 1 of Congressional Budget Office (2006) suggests that this is still a very useful measure.

https://www.clio-infra.eu
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Figure 8: New Molecular Entities Approved by the FDA
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(2013). Data for recent years are taken from Pharmaceutical Research and
Manufacturers of America (2016).

overall decline by 2014 is a factor of 5. Over the entire period, research effort rises at an

annual rate of 6.0 percent, while idea TFP falls at an annual rate of 3.5 percent.

Of course, it is far from obvious that simple counts of NMEs appropriately measure

the output of ideas; we’d really like to know how important each innovation is. In

addition, the NMEs still suffer from an important aggregation issue, adding up across

a wide range of health conditions. These limitations motivate the approach described

next.15

6.2. Mortality

Consider a person who faces an two age-invariant Poisson processes for dying, with

arrival rates δ1 and δ2. We think of δ1 as reflecting a particular disease we are studying,

such as cancer or heart disease, and δ2 as capturing all other sources of mortality. The

probability a person lives for at least x years before succumbing to type i mortality is

15Lichtenberg (2016) provides a complementary approach in using NMEs to measure the output of ideas
and their value. He studies NME approvals by cancer site and shows that each new approval is associated
with a reduction in years of life lost before age 75 of 2.3%.
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Figure 9: Idea TFP for New Molecular Entities
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the survival rate Si(x) = e−δix, and the probability the person lives for at least x years

before dying from any cause is S(x) = S1(x)S2(x) = e−(δ1+δ2)x. Life expectancy at age

a, LE(a) is then well known to equal

LE(a) =

∫ ∞
0

S(x)dx =

∫ ∞
0

e−(δ1+δ2)xdx =
1

δ1 + δ2
. (15)

Now consider how life expectancy changes if the type imortality rate changes slightly.

It is easy to show that the expected years of life saved by the mortality change is

dLE(a) =
δi

δ1 + δ2
· LE(a) ·

(
−dδi
δi

)
. (16)

That is, the expected years of life saved from a decline in, say, cancer mortality is the

product of three terms. First is the share of cancer mortality in overall mortality. Second

is the overall level of life expectancy at age a itself, and finally is the percentage decline

in cancer mortality.16

16The assumption of constant mortality by age is a simplification. A better approximation is Gompertz



ARE IDEAS GETTING HARDER TO FIND? 29

As discussed at the start of this section, life expectancy tends to rise linearly. There-

fore, constant exponential growth in income per person is associated with constant

arithmetic increases in life expectancy, which in the aggregate average 1.8 years per

decade in the U.S. We therefore take the quantity described in equation (16) as our

measure of the output of ideas associated with declines in mortality for a given dis-

ease.17

The research input aimed at reducing mortality from a given disease is at first blush

harder to measure. For example, it is difficult to get research spending broken down

into spending on various diseases. Nevertheless, we think we have a useful solution

to this problem: we measure the number of scientific publications in PUBMED that

have “cancer,” for example, as a MESH (Medical Subject Heading) term. MESH is the

National Library of Medicine’s controlled vocabulary thesaurus.18 We do this in two

ways. Our broader approach (“publications”) uses all publications with the appropriate

MESH keyword as our input measure. Our narrower approach (“trials”) further restricts

our measure to those publications that according to MESH correspond to a clinical

trial. Rather than using scientific publications as an output measure, as other studies

have done, we use publications and clinical trials as input measures to capture research

effort aimed at reducing mortality for a particular disease.

Figure 10 shows our basic “idea output” measures for mortality from all cancers and

from breast cancer. The 5-year mortality rate conditional on being diagnosed with ei-

ther type of cancer shows an S-shaped decline since 1975. This translates into a hump-

shaped “Years of life saved per 1000 people” — the empirical analog of equation (16) —

as the mortality rate first rises and then slows. For example, for all cancers, the years of

life saved series peaks around 1990 at more than 100 years of life saved per 1000 people

before declining to around 60 years in the 2000s.

Figure 11 shows our research input measure based on PUBMED publication statis-

Law, which says that mortality rises exponentially with age. The formulas with this approximation do not
work out well, however, so we have not yet pursued this approach.

17Our measures of life expectancy and mortality from all sources by age come from the Human Mortality
Database at http://mortality.org. To measure the percentage declines in mortality rates from cancer, we
use the age-adjusted mortality rates for U.S. women ages 50 and over computed from 5-year survival rates,
taken from the National Cancer Institute’s Surveillance, Epidemiology, and End Results program at http:
//seer.cancer.gov/.

18For more information on MESH, see https://www.nlm.nih.gov/mesh/. Our queries of the PUBMED
data use the webtool created by the Institute for Biostatistics and Medical Informatics (IBMI) Medical
Faculty, University of Ljubljana, Slovenia available at http://webtools.mf.uni-lj.si/.

http://mortality.org
http://seer.cancer.gov/
http://seer.cancer.gov/
https://www.nlm.nih.gov/mesh/
http://webtools.mf.uni-lj.si/
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Figure 10: Mortality and Years of Life Saved
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Note: The “5-year mortality rate” is computed as negative the log of the
(smoothed) five-year survival rate for cancer for people ages 50 and higher,
from the National Cancer Institute’s Surveillance, Epidemiology, and End Results
program at http://seer.cancer.gov/. The “Years of life saved per 1000 people” is
computed using equation (16), as described in the text.

http://seer.cancer.gov/
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Table 3: Idea TFP Results for Medical Research, 1975–2006

— Effective research — — Idea TFP —
Factor Average Factor Average

Disease increase growth decrease growth

All publications

Cancer, all types 3.5 4.0% 1.2 -0.6%

Breast cancer 5.4 5.4% 6.6 -6.1%

Clinical trials only

Cancer, all types 17.1 9.2% 5.9 -5.7%

Breast cancer 18.8 9.5% 22.8 -10.1%

Note: In the first panel of results, the research input is based on all publications in
PUBMED with “cancer” or “breast cancer” as a MESH keyword. The second panel
additionally restricts the sample to only publications involving clinical trials.

tics. Total publications for all cancers increased by a factor of 3.5 between 1975 and

2006 (the years for which we’ll be able to compute idea TFP), while publications re-

stricted to clinical trials increased by a factor of 17.1 during this same period. A similar

pattern is seen for breast cancer research.

Idea TFP for our medical research applications is computed as the ratio of years

of life saved to the number of publications. Figure 12 shows our idea TFP measures.

The hump-shape present in the years-of-life-saved measure carries over here. Idea TFP

rises until the mid 1980s and then falls. Overall, between 1975 and 2006, idea TFP for all

cancers declines by a factor of 1.2 using all publications and a factor of 5.9 using clinical

trials. The declines for breast cancer are even larger, as shown in Table 3.

Several general comments about idea TFP for medical research deserve mention.

First, for this application, the units of idea TFP are different than what we’ve seen so

far. For example, between 1985 and 2006, declining idea TFP means that the number

of years of life saved per 100,000 people in the population by each publication of a

clinical trial declined from more than 8 years to just over one year. For breast cancer,

the changes are even starker: from around 16 years per clinical trial in the mid 1980s to

less than one year by 2006.
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Figure 11: Medical Research Effort
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Note: The number of publications and clinical trials related to cancer are taken
from the PUBMED publications database, as described in the text.
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Figure 12: Idea TFP for Medical Research
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publications.
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Next, however, notice that the changes were not monotonic if we go back to 1975.

Between 1975 and the mid-1980s, idea TFP for these two medical research categories

increased quite substantially. The production function for new ideas is obviously com-

plicated and heterogeneous. These cases suggest that it may get easier to find new ideas

at first before getting harder, at least in some areas.

7. Idea TFP in Firm-Level Data

The case studies considered so far are useful for many reasons already explained. How-

ever, at the end of the day, they are just case studies, and one naturally wonders how

representative they are of the broader economy. In addition, some growth models

associate each firm with a different variety: perhaps the number of firms making corn

or semiconductor chips is rising sharply, so that research effort per firm is actually

constant, as is idea TFP at the firm level. Declining idea TFP for corn or semiconductors

could in this view simply reflect a further composition bias.19

To help address these concerns, we turn to Compustat data on US publicly-traded

firms. The strength of these data is that they are more representative than the case

studies, but of course they too have limitations. Publicly-traded firms are still a select

sample, and our measures of “ideas” and research inputs are likely less precise. How-

ever, as a complement to the case studies, we find this evidence helpful.

As a measure of the output of the idea production function, we use decadal averages

of annual growth in sales revenue, market capitalization, and employment within each

firm. We take the decade as our period of observation to smooth out fluctuations.

Why would growth in sales revenue, market cap, or employment be informative

about a firm’s production of ideas? This approach follows a recent literature empha-

sizing precisely these links. Many papers have shown that news of patent grants for a

firm has a large immediate effect on the firm’s stock market capitalization (e.g. Blun-

dell, Griffith and Van Reenen, 1999; Kogan, Papanikolaou, Seru and Stoffman (2015)).

Patents are also positively correlated with the firm’s subsequent growth in employment

and sales.

19For example, Peretto (1998) and Peretto (2016b) emphasize this perspective on varieties, while Aghion
and Howitt (1992) take the alternative view that different firms may be involved in producing the same
variety. Klette and Kortum (2004) allow the number of varieties produced by each firm to be heterogeneous
and to evolve over time.
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More generally, in models in the tradition of Lucas (1978), Hopenhayn (1992), and

Melitz (2003), increases in the fundamental productivity of a firm show up in the long

run as increases in sales and firm size, but not as increases in sales revenue per worker.
20 This motivates our use of sales revenue or employment to measure fundamental

productivity. Hsieh and Klenow (2009) and Garcia-Macia, Hsieh and Klenow (2016) are

recent examples of papers that follow a related approach. Of course, in more general

models with fixed overhead labor costs, sales revenue per worker and TFPR can be re-

lated to fundamental productivity (e.g. Bartelsman, Haltiwanger and Scarpetta, 2013).

And sales revenue and employment can change for reasons other than the discovery of

new ideas. We try to address these issues by also looking at revenue productivity and

various sample selection procedure, discussed below. These problems also motivate

the earlier approach of looking at case studies.

To measure the research input, we use a firm’s spending on research and devel-

opment from Compustat. This means we are restricted to firms that report formal

R&D, and such firms are well-known to be a select sample (e.g. disproportionately in

manufacturing and large). We look at firms since 1980 that report non-zero R&D, and

this restricts us to an initial sample of 15,128 firms. Our additional requirements for

sample selection in our baseline sample are

1. We observe at least 3 annual growth observations for the firm in a given decade.

These growth rates are averaged to form the idea output growth measure for that

firm in that decade.

2. We only consider decades in which our idea output growth measure for the firm

is positive (negative growth is clearly not the result of the firm innovating, and our

framework cannot make sense of negative idea TFP).

3. We require the firm to be observed (for both the output growth measure and the

research input measure) for two consecutive decades. Our decades are the 1980s,

20This is obvious when one thinks about the equilibrium condition for the allocation of labor across
firms in simple settings: in equilibrium, a worker must be indifferent between working in two different
firms, which equalizes wages. But wages are typically proportional to output per worker. Moreover, with
Cobb-Douglas production and a common exponent on labor, sales revenue per worker would be precisely
equated across firms even if they had different underlying productivities. In a Lucas (1978) span of control
setting, more productive firms just hire more workers, which drives down the marginal product until it is
equated across firms. In alternative settings with monopolistic competition, it is the price of a particular
variety that declines as the firm expands. Regardless, higher fundamental productivity shows up as higher
employment or sales revenue, but not in higher sales per employee.
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the 1990s, the 2000s (which refers to the 2000-2007 period), and the 2010s (which

refers to the 2010-2015 period); we drop the years 2008 and 2009 because of the

financial crisis.

We relax many of these conditions in our robustness checks.

Table 4 shows our idea TFP calculation for various cuts of the Compustat data:

using sales revenue, market cap, and employment as our idea output measure and

following firms that we observe for two, three, and four decades. In all samples, there

is substantial growth in the average number of effective number of researchers within

each firm, with growth rates averaging between 5.6% and 8.8% per year. Under our null

hypothesis, this rapid growth in research should translate into higher growth rates of

firm-level sales and employment with a constant level of idea TFP. Instead, what we see

in Table 4 are steady, rapid declines in firm-level idea TFP across all samples, at growth

rates that range from -8.8% to -14.5% per year for multiple decades.

Put differently, and reporting the results using sales revenue as a baseline, idea TFP

declines by an average factor of 3.9 for firms that we can compare across only two

decades, by a factor of 9.2 across firms we can compare across three decades, and by

a factor of 40.3 across firms that we can compare across our entire 4 decade sample,

between 1980 and 2015.21

Averaging across all our samples, idea TFP falls at a rate of about 11% per year,

cumulating to a 3-fold decline every decade. At this rate, idea TFP declines by a factor

of more than 25 over three decades of changes; put differently, it requires 25 times more

researchers today than it did 30 years ago to produce the same rate of economic growth.

The next three figures characterize the heterogeneity across firms in our Compustat

sample by showing the distribution of the factor changes in effective research and idea

TFP across all the firms; to keep things manageable, we focus on the results for sales

revenue, but the results with other output measures are similar. Figure 13 shows this

distribution for the firms we observe for only two decades, while Figures 14 and 15

shows the distributions for the firms observed for three and four decades.

The heterogeneity across firms is impressive and somewhat reminiscent of the het-

erogeneity we see in our case studies. Nevertheless, it is clear from these histograms

that there is essentially no evidence that constant idea TFP is a good characterization

21The averages we report throughout are weighted averages, using the effective number of researchers
in each firm as weights.
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Table 4: Idea TFP Results using Compustat Firm-Level Data

— Effective research — — Idea TFP —
Factor Average Factor Average

Sample increase growth decrease growth

Sales Revenue

2 decades (1712 firms) 2.0 6.8% 3.9 -13.6%

3 decades (469 firms) 3.8 6.7% 9.2 -11.1%

4 decades (149 firms) 13.7 8.7% 40.3 -12.3%

Market Cap

2 decades (1124 firms) 2.2 8.0% 3.4 -12.2%

3 decades (335 firms) 3.1 5.6% 6.3 - 9.2%

4 decades (125 firms) 7.9 6.9% 14.0 -8.8%

Employment

2 decades (1395 firms) 2.2 8.0% 2.8 -10.3%

3 decades (319 firms) 4.0 6.9% 18.2 -14.5%

4 decades (101 firms) 13.9 8.8% 31.5 -11.5%

Note: The table shows averages of firm-level outcomes for effective research and idea
TFP. Sales Revenue and Market Cap are deflated by the GDP implicit price deflator. R&D
expenditures are deflated by a measure of the nominal wage. The average growth rate
across 2 decades is computed by dividing by 10 years (e.g. between 1985 and 1995); others
follow this same approach. Averages are computed by weighting firms by the median
number of effective researchers in each firm across the decades.
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Figure 13: Compustat Distributions, Sales Revenue (2 Decades)

Note: Based on 1712 firms. 22.1% of firms have increasing idea TFP. Only 3.0%
have idea TFP that is roughly constant, defined as a growth rate whose absolute
value is less than 1% per year.

Figure 14: Compustat Distributions, Sales Revenue (3 Decades)

Note: Based on 469 firms. 11.9% of firms have increasing idea TFP. Only 4.3%
have idea TFP that is roughly constant, defined as a growth rate whose absolute
value is less than 1% per year.
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Figure 15: Compustat Distributions, Sales Revenue (4 Decades)

Note: Based on 149 firms. 14.8% of firms have increasing idea TFP. 4.7% firms
in this sample have idea TFP that is roughly constant, defined as a growth rate
whose absolute value is less than 1% per year.

of the firm-level data. The average, median, and modal firms experience large declines

in idea TFP. There is a long tail of firms experiencing even larger declines but also a

small minority of firms that see increases in idea TFP. The fraction of firms that exhibit

something like constant idea TFP is tiny. For example, less than 5% of firms in any of

the histograms have idea TFP changing (either rising or falling) by less than 1% per year

on average.

Table 5 provides additional evidence of the robustness of these results. In the inter-

ests of brevity, we report these results for the sales revenue output measure for firms

that we observe across three decades, but the results for our other output measures

and time frames are similar. The first row of the table repeats the benchmark results

described earlier. The second row imposes the restriction that research is increasing

across the observed decades. The third row tightens our restrictions and drops firm

in which sales revenue declines on average in any decade.The fourth row uses median

sales growth in each decade rather than mean sales growth as our output measure.

And the fifth row reports unweighted averages rather than weighting the firms by the

effective number of researchers. The general finding of substantial declines in idea TFP

is robust.
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Table 5: Compustat Sales Data across 3 Decades: Robustness

— Effective research — — Idea TFP —
Factor Average Factor Average

Case increase growth decrease growth

Benchmark (469 firms) 3.8 6.7% 9.2 -11.1%

Research must increase (356 firms) 5.1 8.1% 11.6 -12.3%

Drop if any negative growth (367 firms) 5.6 8.6% 17.9 -14.4%

Median sales growth (586 firms) 3.8 6.6% 6.3 -9.2%

Unweighted averages (469 firms) 3.8 6.7% 9.2 -11.1%

Note: Robustness results reported for the sample of changes across 3 decades. “Research must increase”
means we require that the research measure be rising across the decades. “Drop if any negative growth”
means we drop firms that have any decade (across our 1980–2015 period) in which average market cap
growth is negative. “Median sales growth” uses the median of sales revenue growth in each decade rather
than the mean. “Unweighted averages” gives each firm equal weight in computing summary statistics,
rather than weighting each firm by its effective number of researchers.

8. Discussion

The evidence presented in this paper concerns the extent to which a constant level

of research effort can generate constant exponential growth, either in the economy

as a whole or within relatively narrow categories, such as a firm or a seed type or a

health condition. We provide consistent evidence that the historical answer to this

question is no: as summarized in Table 6, idea TFP is declining at a substantial rate in

virtually every place we look. The table also provides a way to quantify the magnitude

of the declines in idea TFP by reporting the half-life in each case. Taking the aggregate

economy number as a representative example, idea TFP declines at an average rate of

5.3 percent per year, meaning that it takes around 13 years for idea TFP to fall by half.

Or put another way, the economy has to double its research efforts every 13 years just

to maintain the same overall rate of economic growth.

A natural question is whether or not these empirical patterns can be reproduced in

a general equilibrium model of growth. One class of models that is broadly consistent

with this evidence is the semi-endogenous growth approach of Jones (1995), Kortum



ARE IDEAS GETTING HARDER TO FIND? 41

Table 6: Summary of the Evidence on Idea TFP

Average annual Half-life Extent of
Time growth rate of idea TFP Diminishing

Scope Period of idea TFP (years) Returns, β

Aggregate economy 1930–2015 -5.3% 13 3.4

Moore’s law (narrow) 1971–2014 -7.5% 9 0.22

Moore’s law (baseline) 1971–2014 -10.1% 7 0.29

Corn, version 1 1969–2009 -9.9% 7 7.2

Corn, version 2 1969–2009 -6.2% 11 4.5

Soybeans, version 1 1969–2009 -7.3% 9 6.3

Soybeans, version 2 1969–2009 -4.4% 16 3.8

Cotton, version 1 1969–2009 -3.4% 21 2.5

Cotton, version 2 1969–2009 +1.3% -55 -0.9

Wheat, version 1 1969–2009 -6.1% 11 6.8

Wheat, version 2 1969–2009 -3.3% 21 3.7

New molecular entities 1970–2015 -3.5% 20 ...

Cancer (all), publications 1975–2006 -0.6% 116 ...

Cancer (all), trials 1975–2006 -5.7% 12 ...

Breast cancer, publications 1975–2006 -6.1% 11 ...

Breast cancer, trials 1975–2006 -10.1% 7 ...

Heart disease, publications ...

Heart disease, trials ...

Compustat, sales 3 decades -11.1% 6 1.1

Compustat, market cap 3 decades -9.2% 8 0.9

Compustat, employment 3 decades -14.5% 5 1.8

Note: The growth rates of idea TFP are taken from other tables in this paper. The half life is the number
of years it takes for idea TFP to fall in half at this growth rate. The last column reports the extent of
diminishing returns in producing exponential growth, according to equation (17). This measure is only
reported for cases in which the idea output measure is anexponential growth rate (i.e. not for the health
technologies).
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(1997), and Segerstrom (1998).22 These models propose that the idea production func-

tion takes the form
Ȧt
At

= α
St

Aβt
=⇒ iTFPt =

α

Aβt
. (17)

Idea TFP declines as At rises, so that it gets harder and harder to generate constant

exponential growth. The elasticity β governs this process. That is, it measures the extent

of dynamic diminishing returns in idea production, with a higher β meaning that idea

TFP declines more rapidly as At increases.

Comparing both sides of the first equation in (17), one can see that constant expo-

nential growth requires a growing number of researchers St. In fact, if Ȧt/At is constant

over time, it must be that the numerator and denominator of the right-hand side of that

equation grow at the same rate. This means that constant exponential growth requires

gA =
gS
β

(18)

where gx denotes the constant growth rate of any variable x. The growth rate of the

economy equals the growth rate of research effort deflated by the extent of diminishing

returns in idea production. Rising research effort and declining idea TFP offset —

endogenously in this framework — to deliver constant exponential growth.

Finally, this analysis can be applied across different firms, goods, or industries, fol-

lowing the insights of Ngai and Samaniego (2011), who develop a semi-endogenous

growth model with heterogeneity in the dynamic spillover parameters of the idea pro-

duction functions. Some goods, like semiconductors, can have rapid productivity growth

because their β is small, while other goods like the speed of airplanes or perhaps the

education industry itself could have slow rates of innovation because their β is large.

Nevertheless, all of these products could exhibit constant exponential growth if the

amount of research effort put toward innovation is itself growing exponentially.

This framework helps us to address a phenomenon that might at first have appeared

puzzling: idea TFP is declining most rapidly in the fastest growing sector in the econ-

omy, semiconductors. Why? In particular, why are we throwing so many resources at a

sector that has the sharpest declines in idea TFP?

The last column of Table 6 reports estimates of β for each of our case studies, ac-

22Jones (2005) provides a broad overview of this class of models.
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cording to equation (17), and the results speak to the semiconductor puzzle we just

highlighted. In particular, semiconductors is the application with the smallest value of

β, coming in at 0.29, suggesting that it is the sector with the least degree of diminishing

returns in idea production: A is growing at 35% per year, while idea TFP is falling at 10%

per year. From (17), this implies a value of β of 10/35 ≈ 0.3 In contrast, economy-wide

TFP growth averages about 1.5% per year, while idea TFP is declining at a rate of about

5% per year, yielding a β of more than 3! So in fact, semiconductors shows much less

diminishing returns than the economy as a whole.

Idea TFP for semiconductors falls so rapidly, not because that sector has the sharpest

diminishing returns — the opposite is true. It is instead because research in that sector

is growing more rapidly than in any other part of the economy, pushing idea TFP down.

A plausible explanation for the rapid research growth in this sector is the “general pur-

pose” nature of information technology. Demand for better computer chips is growing

so fast that it is worth suffering the declines in idea TFP there in order to achieve the

gains associated with Moore’s Law.

One way in which the overall interpretation of the evidence in this paper could be

wrong is if there is indeed declining idea TFP in every sector, but the entire increase

in aggregate R&D occurs in making quality/productivity improvements for individual

varieties. The separate idea production function for producing new varieties could then

exhibit constant idea TFP if in fact the research going to create new varieties is not

increasing over time. While this is conceptually possible, it seems unlikely. We do not

have any growth models in the literature that suggest this could occur in an equilibrium

in which there is population growth. Why, despite a growing population and constant

idea TFP, would the equilibrium allocation feature a constant number of researchers

creating new varieties? Nevertheless, this loophole is one that future research may wish

to consider.

9. Conclusion

A key assumption of many endogenous growth models is that a constant number of

researchers can generate constant exponential growth. We show that this assumption

corresponds to the hypothesis that the total factor productivity of the idea production
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function is constant, and we proceed to measure idea TFP in many different contexts.

Our robust finding is that idea TFP is falling sharply everywhere we look. Taking the

U.S. aggregate number as representative, idea TFP falls in half every 13 years — ideas

are getting harder and harder to find. Put differently, just to sustain constant growth in

GDP per person, the U.S. must double the amount of research effort searching for new

ideas every 13 years to offset the increased difficulty of finding new ideas.

This analysis also has implications for the growth models that economists use in

our own research, like those cited in the introduction. The standard approach in recent

years is to use models that assume constant idea TFP, in part because it is convenient

and in part because the earlier literature has been interpreted as being inconclusive on

the extent to which this is problematic. We believe the empirical work we’ve presented

speaks clearly against this assumption. A first order fact of growth empirics is that idea

TFP is falling sharply.

That this particular aspect of endogenous growth theory should be reconsidered

does not diminish the contribution of that literature. Quite the contrary. The only

reason models with declining idea TFP can sustain exponential growth in living stan-

dards is because of the key insight from that literature: ideas are nonrival. And if idea

TFP were constant, sustained growth would actually not require that ideas be nonrival;

Akcigit, Celik and Greenwood (2016) show that fully rivalrous ideas in a model with

perfect competition can generate sustained exponential growth in this case. Our pa-

per therefore clarifies that the fundamental contribution of endogenous growth theory

is not that idea TFP is constant or that subsidies to research can permanently raise

growth. Rather it is that ideas are different from all other goods in that they do not get

depleted when used by more and more people. Exponential growth in research leads to

exponential growth in At. And because of nonrivalry, this leads to exponential growth

in per capita income.
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