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I. Introduction

An extensive literature has documented systematic intraday variation in market ac-
tivity variables such as trading volume, number of transactions, and return volatil-
ity. This variation is highly interdependent, e.g., an unusually large trading volume
is typically associated with high return volatility. At least qualitatively, such rela-
tionships are common across time, asset classes, and market structures. Thus, it is
natural to view this type of covariation as a universal property that arises endoge-
nously from the interaction of trading strategies, the daily rhythm of news releases,
and business activity. Nonetheless, little is known about any specific quantitative
association between this set of activity variables at the intraday level. In this pa-
per, we examine whether the number of trades, the size of individual trades, and
return volatility have a precise quantitative relationship which remains invariant
both within and across trading days. In particular, we explore whether these in-
traday interactions are consistent with predictions that arise from the invariance
principle developed in Kyle and Obizhaeva (2016c).

Unfortunately, accurate identification of the number and size of trades by active
investors is difficult to infer from transaction data published by most exchanges.
First, in electronic order book markets, it is typical to record large trades, which
cross several standing limit orders, as separate trades. Thus, a marketable order
for, say, 12 units may be executed against four different limit orders with sizes of
2, 1, 5, and 4 units, respectively. This will appear as four separate trades at the
identical price, reflecting the execution of four (passive) limit orders, rather than
as a single (active) order. In our motivating framework, however, the endogenous
choice of transaction intensity and size by active investors is critical, rendering this
way of recording trades incompatible with the underlying theory. Second, many
markets are fragmented, with trading taking place simultaneously at several dis-
tinct venues. This raises further questions about proper sequencing and integration
of the trading activities across market segments.

To avoid these complications, we focus our empirical study on a single market,
the S&P 500 E-mini futures contract traded on the Globex electronic platform of
the CME Group. This market has a number of advantages for our purposes. First,
it is an important and extremely liquid market; it is regarded as the prime venue for
price discovery in the U.S. equity markets, and the daily turnover is among the top
two globally for exchange-traded assets. Second, it is a fully integrated market, as
the E-mini contract trades only through the Globex system; this greatly simplifies
identifying the active trades and sequencing them in correct order. Third, the

consultant for various U.S. government agencies, including the SEC and CFTC. We appreciate
comments from participants at the Workshop on Recent Advances in High-Frequency Statistics,
Humboldt University, Berlin; the conference Market Microstructure—Confronting Many View-
points, Paris; the High-Frequency Financial Data Conference, Montréal; the 7th R/Finance Con-
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market operates almost continuously during weekdays, producing a huge degree of
variation in the activity patterns across the Asian, European and American trading
regions; this provides us with excellent statistical power to identify the intraday
interdependencies among the market activity variables. Fourth, the data from the
CME Group directly identifies the transaction size from the perspective of the
active participant; consequently, for the example contemplated above, we observe
a single trade of 12 contracts. Fifth, the large tick size increases the number of
contracts available at the best bid and offer; hence, the market depth is usually
sufficiently large that almost all orders, including entire meta-orders for hundreds
of contracts or more, may be consummated at once, rather than being broken into
smaller pieces and executed over time.

Figure 1 depicts the average trading volume V , return volatility σ, number of
transactions N , and trade size Q across the 24-hour cycle of trading in the E-
mini futures market. The series are generated from tick data and show the average
values within consecutive one-minute intervals for January 2008 to November 2011.
The exact construction of the series is detailed in Section III. The figure displays
calendar time on the horizontal axis with the three trading regimes separated by
dashed vertical lines. The first regime spans -7:00 (17:00 of the prior day) to
2:00 CT (Chicago Time), covering the period before and during regular trading in
Asia; the second regime encompasses 2:00 to 8:30 CT, roughly corresponding to
standard European trading hours; and the third regime covers 8:30 to 15:15 CT,
matching active American trading hours. The combined 22 hour and 15 minute
segment represents continuous trading in the Globex market.

The extreme variation in the intraday, or diurnal, pattern across the regions is
evident from the figure. Moreover, the pattern is clearly distinct for the separate
activity variables. The trading volume increases more than fifty-fold and the trans-
action count grows twenty five-fold when trading moves from Asian to American
hours; in contrast, volatility and trade size only roughly double.

Our primary empirical specification is motivated by the market microstructure
invariance hypothesis of Kyle and Obizhaeva (2016c), stipulating a particular in-
terdependence between the variation in average trade size, transaction frequency,
and return volatility. Invariance is based on the intuition that markets for different
financial assets operate similarly when viewed from the perspective of an appro-
priate security-specific “business-time” clock, which ticks at a rate proportional to
the expected arrival of “bets” or meta-orders. Bets represent the sum of unidirec-
tional trades spread across periods which might be minutes, hours, days, or even
weeks. The theory implies that the arrival rate of bets is proportional to the 2/3
power of the product of expected dollar volume and return volatility. Equivalently,
the return variance per unit of business time is proportional to the inverse of the
squared bet size. Using portfolio transition orders as proxies for bets, Kyle and
Obizhaeva (2016c) show that variation in the average bet size across stocks with
different levels of trading activity conforms to the predictions of invariance.

This paper examines empirically whether the invariance principle can be ex-
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Figure 1. The figure shows averages across all days for contract volume Vt (per minute), annual-

ized realized volatility σt, trade size Qt, and number of trades Nt. The averages are computed at

a granularity of one minute. The dashed vertical lines separate the three trading regimes corre-

sponding to trading hours in Asia, Europe, and America.

tended to rationalize the variation in the number and average size of transactions
within the trading day.1 Specifically, we develop alternative log-linear invariance
representations and test whether they hold up over short intraday intervals like
one minute. Since we measure variables at very high frequencies, we refer to our
hypothesis as the “intraday trading invariance hypothesis” or, more simply, as
“intraday invariance.” We confirm that the return variance per transaction is
approximately inversely proportional to the power of average trade size through
estimates of an exponent close to the theoretical value of −2. We also confirm that
the number of transactions is proportional to the power of the product of expected
dollar volume and return volatility with an exponent close to 2/3.

Intraday invariance differs significantly from earlier theories describing how vol-
ume and volatility vary over time. We demonstrate that invariance provides a
substantially better characterization of the interactions among key market activity
variables than alternative theories motivated by the earlier work of Mandelbrot

1Work considering variation in trade size include Brennan and Subrahmanyam (1998) for the
cross-section as well as Alexander and Peterson (2007) and Moulton (2005) for the time series.
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and Taylor (1967) or Clark (1973), using, respectively, the number of transactions
or volume as the directing process for volatility.

We also examine separately how intraday invariance performs during times of
extreme market activity. We find that it holds up well following the release of
scheduled macroeconomic announcements. During the flash crash of May 6, 2010,
intraday invariance was operative while prices dived, but it broke down at the
very end of the crash and was inoperative during the initial phase of the recovery.
Intraday invariance also breaks down for a short period around the times when
regional market centers open and close.

These deviations during market transitions suggest that intraday invariance may
be tied to inherent features of properly functioning markets within a stable en-
vironment. The instability may be induced by changes in the order-shredding
algorithms, intermediation strategies, and order-matching mechanisms as activity
shifts from one global trading region to another. As such, these regular departures
from intraday invariance do not speak to the validity of the motivating theory
based on the market microstructure invariance hypothesis of Kyle and Obizhaeva
(2016c), which concerns the arrival rate of bets. Instead, we conjecture that viola-
tions of intraday trading invariance occurring inside a well-defined regional trading
segment signify a breakdown in the normal state of the market.

II. Invariance Hypotheses

Kyle and Obizhaeva (2016c) develop market microstructure invariance by apply-
ing an invariance principle to bets. Intraday invariance is based on applying an
analogous principle to the intraday trading process.

Below, we review the market microstructure invariance hypothesis in Section II.A;
provide an extension of the theory to an intraday setting in Section II.B; detail
our methodology for generating empirical proxies for the unobserved market ac-
tivity variables in Section II.C; explain how we alleviate the measurement errors
in Section II.D; clarify how intraday trading invariance differs from alternative
hypotheses relating volume, volatility, and trading activity in Section II.E; and de-
velop a nested regression-based test of the alternative theories for the interaction
among the market activity variables in Section II.F.

A. Review of Market Microstructure Invariance

The market microstructure invariance hypothesis of Kyle and Obizhaeva (2016c)
is based on the intuition that markets for different financial assets operate at
different business-time scales. Business time passes at a rate proportional to the
frequency with which bets arrive into the market. A bet represents a decision
by an investor to change his risk exposure to the asset. In modern electronic
markets, large bets are typically shredded into numerous smaller orders which are
executed strategically over time to minimize price impact costs. For example, if a
trader decides to purchase 1,000 futures contracts and implements this decision by
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making 100 unidirectional purchases during one hour, the first purchase represents
the arrival of the bet while the subsequent 99 do not represent new bets.

Kyle and Obizhaeva (2016b) describe a theoretical model in which return volatil-
ity results from the linear price impact of bets, noise traders bet on uninformative
signals, and market makers take the other side of trades with informed and noise
traders. When noise traders place more bets, profit opportunities increase and
informed traders place more bets. The rate at which informed traders place bets
reflects a trade-off between the cost of acquiring private information (an exogenous
constant) and the expected trading profits net of market impact costs (decreasing
in the number of informed traders). In equilibrium, they are equated due to a
free-entry condition. This further leads to the market microstructure invariance
hypothesis, which states that the dollar risk transferred by a bet is invariant when
measured in units of business time, directed by the rate of bet arrival.2

To express this invariance relationship formally, we need some notation. We use
a tilde to signify random variables, while we refer to the corresponding expected
values by omitting the tilde. We let P denote the asset price (dollars per contract),

Q̃B denote the random unsigned bet size (number of contracts), σ2 denote the
percentage return variation (per unit time), and NB denote the arrival rate of bets
(number per unit of time). The bet arrival rate NB measures the speed with which
business time passes. Formally, define the invariant Ĩ by,

(1) Ĩ := P · Q̃B ·
σ

N
1/2
B

.

The invariance hypothesis predicts that active traders scale their (random) bet

size Q̃B in response to market conditions (P · σ ·N−1/2B ) so that Ĩ is independently
and identically distributed across assets and time. Bets arrive at the expected rate
NB, and the size of each bet Q̃B is then drawn randomly but consistent with the
invariance of the Ĩ distribution.

Empirical analysis of invariance is complicated by the fact that business time—
the bet arrival rate NB—is not easily observable at any point in time. Identifying
bets requires assigning individual transactions to specific traders and aggregat-
ing them into bets. Thus, inherently, one ends up relying on time-aggregation
to estimate the intensity of bet arrivals. Likewise, while one may readily devise
estimators for realized return volatility over intervals of non-trivial length, it is
difficult to estimate expected volatility at any point in time—the so-called spot
volatility. As for trading intensity, volatility estimation involves aggregation and
averaging. An additional complication is that both trading intensity and return
volatility are highly variable across the trading day.

Throughout the remainder of this section, we assume, for expositional simplicity,
that bet volume equals total volume, e.g., one side of every trade is a bet and the

2There are additional theoretical invariance relations linking, e.g., trading activity to bid-ask
spreads, price impact, and price efficiency, but we do not examine any of these in this paper.
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other side is an intermediation or market-maker trade.3 Thus, letting QB = E[Q̃B]
denote the expected bet size and V the expected volume (contracts per unit of
time), we have V = NB ·QB.

Now, defining expected “trading activity” W as the standard deviation of the
dollar mark-to-market gains or losses on the expected volume per unit of calendar
time, we obtain W = P ·V ·σ. Intuitively, the quantity W measures the “expected
total risk transfer” per unit of calendar time.

Invariance implies that the rate at which business time passes is proportional to
the 2/3 power of trading activity W . To see this, exploit the definitions of W and
V to write,

(2) Ĩ =
P · Q̃B · σ
N

1/2
B

=
Q̃B

QB

· P · V · σ
N

3/2
B

=
Q̃B

QB

· W

N
3/2
B

.

Let I = E[Ĩ] denote the mean of the invariant distribution. We obtain,

(3) I =
P ·QB · σ
N

1/2
B

=
W

N
3/2
B

.

Since Ĩ has an invariant distribution, its mean I is constant and independent of
W or NB. It follows that NB is proportional to W 2/3.

Our empirical work focuses on alternative versions of the linear representation
that arises from taking the logarithm on both sides in equation (1). Define p :=

logP , q̃B := log Q̃B, s := log σ2, nB := logNB, and qB := E [q̃B]. Then,

(4) E
[
log Ĩ

]
= p + qB + 1

2
s − 1

2
nB .

Note that the empirical content of equation (4) differs slightly from equation (3)
because, due to Jensen’s inequality, the means of the logs of Q̃B and Ĩ are smaller
than the logs of the means. Nonetheless, equations (3) and (4) are both valid
representations, since invariance implies the distribution of Ĩ is invariant.

The hypothesis that the right-hand-side of equation (4) is constant may be ex-
pressed in various ways. Here, we provide a specific representation that has served
as the basis for prior empirical work, but we later develop other regression specifi-
cations for testing invariance across the intraday trading patterns.

Defining the log of trading activity as

(5) w = logW = p + v + 1
2
s ,

we readily obtain the proportionality relation,

(6) nB = c + 2
3
· w ,

3Similar predictions apply in general if total volume is proportional to bet volume.
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where we let c represent a generic constant whose value typically differs across
equations. Since v = nB + qB, the same relationship may equivalently be written
with the log bet-size qB on the left-hand-side,

(7) qB = c + 1
3
· w − [ p + 1

2
· s ] .

Equations (6) and (7) formalize the intuition that, for fixed s and p, as the trading
activity w grows, 2/3 of the increase stems from the arrival rate of bets (speed of
business time) and 1/3 from the magnitude of bets. This relationship between the
size and number of bets lies at the heart of market microstructure invariance.

Several empirical hypotheses inspired by invariance find support in the data.
Kyle and Obizhaeva (2016c) document invariance relationships for the size distri-
butions of portfolio transition orders. Kyle, Obizhaeva and Tuzun (2016) document
an invariance relationship for the size distribution of transactions in the Trade and
Quote data set (TAQ). Kyle et al. (2014) study invariance relations for the number
of monthly news articles. Bae et al. (2014) discuss an invariance relationship for
the number of buy-sell switching points in the South Korean equity market.

We now turn to an exploration of intraday trading invariance for the high-
frequency patterns in the E-mini S&P 500 futures market. Our tests are not
a direct implication of an underlying invariance hypothesis. Instead, like Kyle,
Obizhaeva and Tuzun (2016), they are based on extrapolating the invariance hy-
pothesis from bets to intraday transactions.

B. The Intraday Trading Invariance Hypothesis

“Intraday trading invariance” is the hypothesis that the invariance relationships
apply not only to bets but also to trading variables observed at intraday intervals.
One way to ensure that invariance relations for bets may be extrapolated to in-
traday data is to assume that the average number of transactions per bet is also
invariant across assets and time. This is merely a sufficient condition, however,
and we hypothesize that intraday invariance applies much more generally.

To define the intraday-invariance hypothesis formally, we introduce notation
referring to specific intraday calendar intervals. The sample begins at time 0
and contains D trading days, each comprised of T intraday intervals of length
∆t = 1/T . Thus, the full sample covers [0, D] and contains the non-overlapping
intervals τ = 1, . . . , D · T .

For any interval τ , the average transaction price is denoted Pτ , the average
number of units traded per transaction is Qτ , the conditionally expected return
volatility given information prior to time τ is στ , and the conditionally expected
transaction rate (number of trades per unit time) is Nτ .
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Intraday Trading Invariance: Intraday trading invariance, or simply intra-
day invariance, implies that Ĩτ , defined as,

(8) Ĩτ :=
Pτ · Q̃τ · στ

N
1/2
τ

.

has an invariant distribution for all intervals τ .

The notation reflects the fact that Pτ is observed, while both στ and Nτ represent
(unobserved) conditional expectations at time τ , characterizing the current trading
environment. These variables are viewed as known to the agents implementing the
transactions stemming from bet arrivals. The hypothesis then implies that traders
endogenously modify their transaction size based on perceived market conditions,
so that the distribution for Q̃τ satisfies the invariance principle (8).

It follows from equation (8) that ĩτ = log Ĩτ also constitutes an i.i.d. sequence.
Taking expectations conditional on the information available prior to interval τ
implies that a specific linear combination of the expected logarithmic trading vari-
ables equals an invariant constant. In the notation established for equation (4),
we have, for all τ with strictly positive trading volume,

(9) E
[
ĩτ
]

= pτ + qτ + 1
2
sτ − 1

2
nτ .

By analogy with equation (6), we obtain,

(10) nτ = c + 2
3
· wτ .

Intraday invariance is much easier to test empirically than the corresponding
invariance hypothesis for bets. First, while bets are difficult to observe, the size and
number of trades are public information which can be observed in time-stamped
tick data. Second, in today’s twenty-four-hour global markets, huge fluctuations
in trading volume and volatility are observed across the Asian, European, and
American trading regimes. These features provide us with good statistical power
to detect whether the intraday fluctuations for trade size Qτ and expected number
of trades Nτ are related to the intraday return volatility στ in a manner consistent
with the proportions implied by the invariance relation.

Nevertheless, since the conditionally expected trade size, transaction rate and
volatility are not directly observed and vary substantially, both over time and
across the diurnal cycle, it is not possible to exploit equation (9) directly in a
statistical test. First, we must design suitable estimators for the latent variables.
For that purpose, we assume that the variation in the conditional expectation is
negligible over each short intraday interval τ and then apply standard techniques
to obtain unbiased estimators for the level of each trading variable, interval by
interval. Such estimators are inevitably quite noisy and the further transformation
into quantities suitable for inclusion in tests of our basic linear representation
involves a few subtleties, which we discuss below.
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C. Methodology for High-Frequency Measurement

The intraday-invariance relation involves a set of non-negative random variables
that are persistent, yet also contain large idiosyncratic innovations. Such variables
are not compatible with standard time-series models featuring Gaussian errors.

Instead, we turn to the so-called multiplicative error model (MEM) approach.
This refers to a broad family of models, including all standard GARCH and stochas-
tic volatility specifications. The framework has a long history within the modeling
of intraday market data. Originally, it was used to capture high-frequency re-
turn dynamics through the interaction of persistent daily volatility factors and
pronounced intraday diurnal features, see Andersen and Bollerslev (1997, 1998).
It was cast as a more general modeling framework and labeled MEM by Engle
(2002), with applications to both volatility and trade durations. Finally, it has
been used successfully in modeling the dynamics of high-frequency trading volume
in Brownlees, Cipollini and Gallo (2011, 2012).

We let Ỹτ denote the value of a strictly positive random variable (representing
V , N , or σ2), and then stipulate that the dynamics of Ỹτ is given by,

(11) Ỹτ = Yτ · Ũτ ,

where Ũτ is strictly positive, i.i.d., with the mean of one and variance of σ2
U . Equa-

tion (11) is a MEM model with time τ − 1 conditional expectation Eτ−1[Ỹτ ] = Yτ
and V arτ−1[Ỹτ ] = Y 2

τ ·σ2
U . The conditional dependence structure is captured by the

positive mean, Yτ , which remains unspecified and can be highly complex, incorpo-
rating interdaily dependencies, diurnal patterns, and short-run serial correlation.

The critical MEM feature is the identically distributed multiplicative error struc-
ture. Even if we impose no direct distributional assumptions on these errors, the
representation imposes a strong restriction on the system, as is evident from the
specific form of the conditional variance. However, in the case of a continuous
return volatility process, the spot variance of σ2 takes this exact form.4 Likewise,
for trading activity variables like N and V , it has been confirmed that the scale
of the innovations are approximately proportional to the (conditional) mean, see,
e.g., Andersen (1996) and Brownlees, Cipollini and Gallo (2011).

In this setting, we may construct simple unbiased estimators for σ 2
τ , Vτ and

Nτ , subject to standard regularity conditions, as long as the interval [τ − ∆t, τ ]
is sufficiently short so that the intra-interval variation in the expected value is
negligible. For volatility, we cumulate very high-frequency squared returns from
within the interval τ while, for the transaction variables, we may rely on the actual
observed volume and transaction counts over the interval. Of course, sensible
measures require a minimum of market activity, so we discard the interval if any
of these three estimators is zero. Hence, our subsequent tests for intraday trading
invariance only involve periods with a non-trivial degree of market activity.

4This fact underlies the well-known result that the asymptotic variance of the realized volatil-
ity estimator is proportional to the integrated quarticity.
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Taking the logarithm of equation (11) and letting lower case letters denote the
corresponding logarithmic values, so, e.g., Eτ−1[ỹτ ] = yτ , we have,

(12) ỹτ = yτ + ũτ ,

where ũτ are i.i.d. random variables with mean E[log Ũτ ] and finite variance. The
“innovation” term ũτ is not centered, but has a negative mean, due to Jensen’s

inequality, E[ũτ ] < log
(
E[Ũτ ]

)
= 0. Importantly, however, the mean of ũτ is

constant across τ , E[ũτ ] = c < 0. Hence, equation (12) implies,

(13) ỹτ = yτ + c + ε̃τ ,

where ε̃τ are i.i.d. random variables with zero mean and finite variance, while c
denotes a generic constant which will differ across the activity variables.

Equation (13) provides guidance for the construction of estimators amenable for
inclusion in log-linear regression-based tests. We construct unbiased estimators for
the variables themselves, which typically may be obtained through suitable sample
averages over a short interval. The logarithm of this sample average yields an
estimator with an invariant bias which may be absorbed into the constant term
in regression tests. Such estimators are, however, very noisy due to the presence
of the sizable error term, ε̃τ , in equation (13). Below, we pursue the strategy of
mitigating the impact of measurement errors by averaging the estimator across a
large number of separate intervals, thus diversifying these errors.

D. Alternative Aggregation Schemes

Our high-frequency measures of the expected activity variables, στ , Nτ , and Vτ are
invariably noisy, so testing for intraday trading invariance requires effective error
mitigation. This section develops alternative schemes to mitigate the impact of
measurement errors and allow for natural interpretation of the test results.

To facilitate the exposition, it is useful with notation that directly identifies the
trading day and intraday time period associated with a given interval, τ . Specifi-
cally, we denote the set of all trading days D = {1, ... , D} and the set of intraday
intervals T = {1, ... , T}. Our full sample, covering [0, D], is thus comprised of the
set of non-overlapping intervals D× T . We now conveniently refer to any interval
via the double-index (d, t), referring to interval t on day d, which corresponds to
interval τ = (d− 1) · T + t in our single-index notation.

Our strategy is to aggregate the high-frequency observations across distinct sub-
sets of intervals to mitigate the measurement errors, while retaining a wide disper-
sion in the (average) value of the activity variables across these categories. The
latter feature ensures that we have good test power when confronting the intraday
invariance predictions with the observed variation across subsets.

We denote a generic subset of trading days and intraday intervals by Dk ⊆ D
and Tj ⊆ T , respectively. We average the random variable ỹdt across all intervals
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in Dk×Tj . Letting |A| denote the number of elements in the set A, we construct,

(14) ỹk,j =
1

|Dk|
1

|Tj|
·

∑
d∈Dk, t∈Tj

ỹdt ,

where index k corresponds to aggregation in the time-series dimension and index
j to aggregation across the intraday pattern. Equations (13) and (14) imply,

(15) ỹk,j ≈ yk,j + c ,

with

(16) yk,j =
1

|Dk|
1

|Tj|
·
∑

d∈Dk, t∈Tj

ydt and
1

|Dk|
1

|Tj|
·
∑

d∈Dk, t∈Tj

ε̃dt ≈ 0

following from the law of large numbers, provided |Dk| · |Tj| is large.
We simplify the notation associated with our most common schemes. One ap-

proach fixes a given time of day and averages the observations for this interval
across all days, i.e., we construct the subsets D × {t}, and define,

(17) ỹt =
1

|D|
·
∑
d∈D

ỹdt =
1

D
·

D∑
d=1

ỹdt , for t = 1, . . . , T,

which produces T separate observations across the intraday pattern.5

Analogously, we also pool observations across the Asian, European and American
trading regimes within each trading day. In that case, the individual subset of
intervals take the form {d}×Tr, with r = 1, 2, 3 representing the intraday intervals
within each regime. The aggregate observations are then obtained as,

(18) ỹd,r =
1

|Tr|
·
∑
t∈Tr

ỹdt , for d = 1, . . . , D, r = 1, 2, 3,

generating three distinct day-regime series, for a total of D · 3 data points.
A similar example arises when we partition the regimes into smaller intervals,

labelled bins, so the trading day comprises B distinct non-overlapping bins, Tb.
We denote a generic activity variable, averaged across the bins, ỹd,b. Formally,

(19) ỹd,b =
1

|Tb|
·
∑
t∈Tb

ỹdt , for d = 1, . . . , D, b = 1, . . . , B,

leading to a total of D ·B data points.

5This involves some abuse of notation. Formally, we may refer to ỹt as ỹ.,t, indicating aver-
aging over the first index (and ỹd,. for averaging over the second index). Also, our prior variable
ỹτ is distinct from ỹt. The meaning should always be evident from the context.
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E. Alternative Theoretical Hypotheses

There is a long history of theories describing and testing the relationship between
trading activity and return volatility, dating back at least to Clark (1973). His
work builds on the notion of subordination, or a stochastic business-time clock
linked to trading activity, introduced into the modeling of financial returns by
Mandelbrot and Taylor (1967).

Clark (1973) argues that increments to trading volume represent increments in
business time, thus generating a close link between the expected daily volume and
asset volatility. Subsequently, the “Mixture-of-Distributions Hypothesis” (MDH),
developed in Tauchen and Pitts (1983) and Harris (1987), stipulates a linear re-
lation, i.e., σ2

dt ∼ Vdt, or equivalently in logs, sdt = c + vdt = c + ndt + qdt .
Tauchen and Pitts (1983) note that the activity variable equally well may be the
number of transactions as, in their model, the transaction size is assumed constant,
rendering the two versions equivalent.

Subsequently, Jones, Kaul and Lipson (1994) find the number of trades to be
better aligned with daily volatility, while Ané and Geman (2000) assert that in-
traday returns are i.i.d. Gaussian when normalized by the (stochastic) transaction
count.6 The latter hypotheses suggest proportionality between the expected return
variation and number of trades, i.e., σ 2

dt ∼ Ndt, or equivalently, sdt = c + ndt .
Both of these specifications, asserting a log-linear relation between volatility and

trading activity, are derived via specializations of the basic MDH theory. We label
them MDH-V and MDH-N, respectively.

We further note that, if the expected trade size is invariant over time, then
the invariance relation (4) implies that the expected return variation is propor-
tional to trading activity, σ2

dt ∼ Ndt and σ2
dt ∼ Vdt. Thus, in the setting with

constant trade size, intraday trading invariance is equivalent to both the MDH-V
and MDH-N specifications. In contrast, if trade size varies with return volatility
and trading activity, as suggested by Figure 1, equation (4) implies that the pro-
portional relationship is systematically violated, and intraday trading invariance
is incompatible with either of the two MDH specifications. We now turn toward
empirical specifications that allow us to test the alternative hypotheses.

Using different aggregation schemes, we construct pooled series for the activity
variables, which then serve as input to regression tests based on alternative log-
linear representations. For example, following equation (17), we compute averages
across all days, for given time-of-day t, to generate the series ṽt, ñt, s̃t, q̃t = ṽt− ñt,
p̃t and w̃t.

7

From the perspective of practical regression analysis, however, we encounter a
problem. In sharp contrast to the other quantities, the asset price has no systematic

6Andersen (1996), Bollerslev and Jubinski (1999), and Liesenfeld (2001) refine the relationship
between trading variables and return volatility in specifications that extend the MDH model.

7The tilde above the variables indicates that our regression framework involves empirical prox-
ies for the underlying conditional expectations. Hence, we explicitly acknowledge the presence of
measurement or estimation error in these quantities.
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intraday variation. For any intraday interval, the value of pt , obtained as an
average across all trading days, is effectively identical to the corresponding averaged
price over any other interval.8 As a consequence, the expected variation in the price
level is negligible, and the observed price variation largely reflects measurement
error. This implies that inference regarding the association of the price level with
the remaining variables will be extremely imprecise. Thus, for our regression tests,
we ignore the price variable, folding p into the constant term c. This also results
in specifications that nest intraday invariance and the two MDH alternatives.

Specifically, we alter the definition of wτ in equation (5) to exclude pτ ,

(20) wτ = nτ + qτ + sτ/2 + c.

This modified measure captures the aggregate risk transferred in contracts, not
in dollars. It enables us to express the MDH hypotheses through a 2/3-power
representation comparable to the one developed for intraday invariance.

Given the sample averages of the activity variables, for given t, we readily obtain
a regression representation of the intraday trading invariance relation (10),

(21) ñt = c +
2

3
· w̃t + ũt .

Using the redefined wt (with pt treated as a constant), the MDH-V takes the form,

(22) ñt = c +
2

3

[
w̃t −

3

2
q̃t

]
+ unt .

Likewise, the MDH-N formulation may be restated as follows,

(23) ñt = c +
2

3
[ w̃t − q̃t ] + unt .

Obviously, the three parallel regression representations (21), (22), and (23) lend
themselves to direct empirical comparison.

The regressions possess a rather unconventional feature. The composite regressor
w̃t, tautologically, covaries with the independent variable, as ñt is a component
of w̃t . This implies that the regressor is (positively) correlated with the error
term, inducing an upward bias in the regression coefficient. It also follows that
the R2 of the regression is inflated, since a part of the idiosyncratic variation in
the independent variable is captured, mechanically, through its presence in the
regressor. Importantly, however, our error diversification, obtained by averaging
across all days in the sample, should reduce the relative size of the error term
drastically, thus greatly alleviating this endogeneity bias. Hence, it remains of
interest to check, informally, whether the slope of the regression is roughly of the
size predicted by the theories. In the following sections, we develop an alternative
valid regression-based test for intraday trading invariance.

8In essence, this is a manifestation of the no-arbitrage principle, as significant and predictable
intraday price level variation would generate simple profitable trading opportunities.
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F. An Encompassing Regression Test

The three alternative hypotheses explored above each stipulate a specific relation
between the market activity variables, s̃t , ñt , and q̃t . These variables are, em-
pirically, observed with error, potentially creating problems for inference through
the classical errors-in-variables effect. Our schemes designed to control and diver-
sify the measurement errors mitigate these issues. We now seek an encompassing
regression representation to allow for a direct comparison of the alternative hy-
pothesis.

A natural approach is to include all variables in a multivariate regression spec-
ification. Unfortunately, this is problematic due to severe multicollinearity in the
(relative) intraday variation of the series, as is also evident from Figure 1. The
pairwise correlations of the activity variables are exceedingly high at 0.985 for n
and s, 0.975 for n and q, and 0.936 for s and q. No matter what quantity is
chosen as regressand, the extreme correlation among the two regressors will ren-
ders reliable estimation of the regression coefficients infeasible. Thus, to obtain a
specification with power to discriminate among the hypotheses, we impose an a
priori theoretical restriction which – importantly – is consistent with each of the
three individual hypothesis. All theories imply that, in the multivariate log-linear
regression involving all three variables, the log variance, s, and the log transaction
count, n, enter with the identical coefficient.

Since the MDH-V and MDH-N hypotheses view volatility as evolving uniformly
in business time, governed by their respective notion of trading activity, they natu-
rally regard the variation in volatility as the quantity to be rationalized. Therefore,
we focus on nested specifications for the alternative theories that place the return
variance per transaction (s − n) on the left-side of the regression. It is readily
verified that all three hypotheses may be expressed as follows,

(24) s̃t − ñt = c + β · q̃t + ust .

MDH-V implies β = 1, MDH-N stipulates β = 0, and our intraday trading in-
variance hypothesis asserts β = −2.9 In other words, the theories offer starkly
divergent predictions regarding the association between fluctuations in average
trade size and return variation per transaction.

It is straightforward to conduct inference on the validity of different hypotheses
within this regression setting, and we do so in Section IV.

III. The E-mini S&P 500 Futures Data

We exploit the best bid and offer (BBO) files for the E-mini S&P 500 futures
contract from CME DataMine. These “top-of-the-book” files provide tick-by-tick
information regarding the best quotes, order book depth, trade prices, and trade

9For intraday trading invariance, note that equation (21) implies ñt = c+ 2
3

(
ñt + q̃t + 1

2 s̃t
)
,

and equation (24) with the value of β = −2 follows immediately.
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sizes, time-stamped to the second. Since the contract is traded exclusively on the
CME Globex electronic platform, the data contain all transactions executed during
our sample, covering nearly four years from January 4, 2008, to November 4, 2011.
The E-mini contract trades almost twenty-four hours a day, five days a week. The
exchange trading hours are governed by Chicago Time (CT), so, henceforth, all
references to time will be expressed in CT.

The procedure behind the recording of trades and trade sizes is critical for our
empirical tests. When an executable order arrives, it is often matched with more
than one limit order resting at the top of the book at the time of execution. During
our sample period, the exchange reported all contracts traded at an identical price
against an incoming order as a single combined transaction quantity. Thus, the
trade size is reported from the perspective of the active party placing the executable
order. This convention is consistent with the notion of trade size associated with
the intraday invariance principle. Since most markets do not record transactions
in this manner, it will typically be impossible to test for invariance relationships
at the high-frequency level, as we do here, unless one is able to identify the active
orders initiating the recorded trades.10

The notional value of the E-mini S&P 500 futures contract is $50 times the value
of the S&P 500 stock index, denominated in index points. The contract has a
tick size of 0.25 index points ($12.50), equivalent to approximately 2 basis points
of notional value during our sample. It has four expiration months per year. We
use data for the front month contract until it reaches eight days to expiration, at
which point we switch into the next contract. This ensures that we use the most
actively traded contract throughout our analysis.

Our analysis focuses on the uninterrupted trading session from 17:00 to 15:15
the following day. Thus, our trading week opens on Sunday at 17:00 and ends on
Friday at 15:15. Daily trading in the Globex market is initiated by a batch auction
at 17:00. The contracts traded during the opening auction are recorded during
the first second of trading after 17:00. To generate a sample with a homogeneous
trading protocol, we remove all transactions within the first second after 17:00 from
our analysis. There is also trading on Monday through Thursday between 15:30
and 16:30; this hour, which involves another batch auction, is not open on the first
trading day of the week (Sunday afternoon) and post-holidays. In order to avoid
issues of non-homogeneity, we also exclude this fairly inactive trading hour from
our analysis.

Since intraday trading invariance should hold for any exogenously selected subset
of intervals, the exclusion of irregular trading segments does not affect the validity
of our testing procedures. Finally, because of unusually low activity, we discard

10For example, if the exchange counts each limit order involved in trading as a distinct trade,
the transaction count will reflect the limit order flow from the supply side that is intermediating
trades. This will inflate the number of (active) transactions and shrink the trade size relative to
the procedure used by the CME Group for the E-mini contract over our sample period.
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one day from the sample, resulting in a total of D = 969 trading days.11

As described in Section I, there are three trading regimes approximately corre-
sponding to the trading hours in Asia, Europe, and America, namely 17:00–2:00,
2:00–8:30, and 8:30–15:15. In line with the notation established in Section II.D, we
represent these regimes as non-overlapping sets Tr, r = 1, 2, 3. They consist of 540,
390, and 405 one-minute intervals, respectively. Similarly, our sample covers 250,
252, 252, and 215 trading days for each of the four years 2008–2011, respectively.
We let Dy represent the trading days in year y = 1, 2, 3, 4, so the observations for
regime r in year y are contained in the set Dy × Tr.

Figure 1 in Section I depicts the average volume Vt, realized volatility σt, number
of trades Nt, and average trade size Qt for each minute of the trading day, with
observations averaged across days in the sample in accordance with equation (17).
The characterization of interdependencies among the pronounced intraday fluctu-
ations in these trading activity variables is, of course, a central issue in this paper.
We provide further details regarding the computation of each variable below.

Figure 2 plots the time-series variation in the activity variables, averaged across
one-minute observations within each regime each day in accordance with equation
(18). Consistent with the evidence from the extant literature, the series display a
large degree of commonality. Trading volume, volatility, and the number of trades
rise during the Société Générale scandal in January 2008 and the collapse of Bear
Stearns in March 2008, soar during the financial crisis from September 2008 to
February 2009, and spike during the flash crash in May 2010 as well as the second
half of 2011. In contrast, the average trade size drops during the same periods.
Finally, all variables appear slightly subdued toward the end of the calendar year.

There are also systematic differences across these time series. The relative scale of
the variables differ sharply across regimes. The volume and number of transactions
for American trading hours dwarf those observed during Asian trading hours, while
volatility and trade size are more comparable across regimes. This is in line with
Figure 1, where we observe similar stark divergences in the degree of variation
across regions. Table 1 provides detailed summary statistics.

As an empirical matter, it is problematic to explore predictions of intraday trad-
ing invariance when trading costs and transaction sizes are distorted by market
frictions. One striking feature of Table 1 is the fact that the average bid-ask spread
for all three regimes barely exceeds the minimum value of 0.25 index points. The
spread is binding and equals a single tick almost always, implying the tick size is
“large.” Similarly, Figure 3 documents that a disproportionate number of trades
across all three regimes in the the E-mini futures market involve a single contract,
implying that the contract-size constraint also is binding.12

11There are also four days (two in each of 2008 and 2009) where the entire Asian segment is
missing due to a belated start to trading, and there are instances of abbreviated trading sessions
for the European and American segments. A full discussion of the data used in our analysis is
provided in Appendix VI.A.

12For early work on the impact of market frictions on the trading process, see, e.g., Harris
(1994), Angel (1997), Goldstein and Kavajecz (2000), and Schultz (2000).
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Figure 2. This figure plots the time series of the average of the following one-minute statistics for

each regime on each trading day: volume Vd,r (per minute), volatility σd,r (per minute, annualized),

number of transactions Nd,r (per minute), and average trade size Qd,r (over one minute), r = 1, 2, 3.

The Asian regime is plotted in blue, the European regime is in green, and the American regime is in

red. The sample period is January 4, 2008, to November 4, 2011.

In contrast, the market is less restricted in terms of consummating large trans-
actions. This is evident from the extreme size variation across trades depicted in
Figure 4. While over half of the trades involve one or two contracts, there are,
on average, a couple of transactions per minute during American trading hours
exceeding 500 contracts. Table 1 shows that there is usually enough depth avail-
able at the best bid and ask to absorb trade sizes of hundreds of contracts. Large
trades are the primary determinants of the average trade size, suggesting that this
statistic is robust to distortions stemming from the minimum contract size. In
this respect, the market provides a near ideal setting for exploring the interaction
between trading intensity and volatility: it has an integrated electronic trading
platform, a uniformly high degree of transaction activity, and a deep order book.
The latter features are critical in enabling us to observe pronounced variation in
the average trade size over time.13

We reiterate that the summary statistics in this section involve the observed

13Investigating the relationship between tick size and average trade size is an interesting issue
which takes us beyond the scope of this paper.
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Table 1—Descriptive Statistics for the E-mini S&P 500 Futures

Asia Europe America Combined

Mean Min Max Ratio

Volatility 0.16 0.25 0.40 0.26 0.12 0.81 6.5
Volume 95 601 4726 1647 51 32398 638

# Trades 14 67 360 134 9 1256 142

Notional Value, $Mln 5 34 266 93 3 1814 626
Trade Size 5.9 8.4 13.3 8.9 4.6 28.5 6.2

Market Depth 54 265 984 398 35 3519 101

Bid-Ask Spread 26.5 25.7 25.1 25.9 25.1 28.0 1.1
Business Time 15.7 5.2 1.0 8.2 0.2 24.3 101

The statistics are reported separately for the three regimes. The last four columns show the
mean, minimum, maximum, and maximum-to-minimum ratio for the entire day. Volatility is
annualized. The volume, notional value, and number of trades are one-minute averages. Market
depth is the average sum of the number of contracts at the best bid and ask. The bid-ask spread
is measured in index points times 100. Business time is proportional to W−2/3 and, for ease of
comparison, it is normalized to be unity for America.
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Figure 3. The figure plots the proportion of trades with sizes Q = 1, Q ≤ 2, and Q ≤ 5 contracts

(left panel) and Q ≥ 200, Q ≥ 100, and Q ≥ 50 contracts (right panel) in blue, green, and red,

respectively. The proportions are computed at the granularity of one-minute. The dashed vertical

lines indicate the three trading regimes.

one-minute trade and volatility data, while the theoretical relations underlying
equations (21) and (22)-(24) concern the market’s expected values for the loga-
rithm of those variables. The one-minute sampling frequency represents a specific
trade-off between bias and variance. On the one hand, if we sample at a lower
frequency, we exploit more data in the computation of any given expectation and
obtain a less noisy measure, reducing the variance of the estimator. On the other
hand, as the interval grows, the underlying expectations will vary more substan-
tially within the interval, inducing an increasing bias in the estimator due to the
nonlinear relations we explore. By choosing a short one-minute interval, we delib-
erately seek to control this bias, while accepting noisy estimators. As discussed in
Section II.D, it is therefore critical to mitigate the lack of precision by averaging
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Figure 4. The figure plots percentiles of the trade size Q. The statistics are computed at the

granularity of one-minute. The dashed vertical lines separate the three trading regimes.

the noisy log-transformed variables over a large set of intervals. For the trade
size and number of transactions, this is straightforward, as the realized values are
directly observed from the tick data. For the latent volatility, due to the liquid-
ity of the E-mini contract, we use six consecutive squared ten-second returns to
compute a realized volatility measure without any major detrimental effects from
microstructure noise. Thus, we obtain a noisy, yet effectively unbiased, proxy for
the true spot variance, and we then proceed as for the trade variables, i.e., we
subsequently average the estimates across numerous one-minute intervals. This
exploits the same error diversification principle that accounts for the accuracy of
standard high-frequency realized-volatility estimators.14

Finally, we note that some observations are lost as we only test for invariance
when the market displays meaningful activity. As mentioned previously, we exclude
all intervals that feature zero volume or realized volatility. The fraction of omitted
observations in the three regimes are 29.48%, 8.65% and 1.42%. One may worry
that the elimination of data conditional on zero intra-interval price changes may
induce a bias to the estimated volatilities used in the analysis. As a robustness
check, we also conduct our tests at the substantially lower five-minute sampling
frequency, which enables us to retain almost all observations. We now filter only
1.63%, 0.32% and 0.29 % of the minutes in the three regimes. Our results are
qualitatively identical and quantitatively very similar, so we only present results
for the one-minute sampling. The latter provides a more challenging setup and
allows us to enhance the granularity of the tests around key transition points,
when the characteristics of the trading process shift abruptly.

14See, e.g., Andersen, Bollerslev and Diebold (2010) or Ait-Sahalia and Jacod (2014) for a
review of realized volatility estimation from high-frequency data. The daily realized volatility
for equities is typically obtained from 78 five-minute or 390 one-minute squared returns over the
trading day. In comparison, we obtain a substantial improvement in precision by averaging across
nearly 1000 trading days.
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IV. Testing for Intraday Trading Invariance

This section presents tests for the invariance relationships and alternative speci-
fications of the interdependencies of the market activity variables exploiting the
high-frequency, data-based regression approach developed in Section II.

A. Invariance in Transaction Count by Minute-of-Day

We initially explore the suggestive relation developed in Sections II.C and II.E for
alternative theories, linking the transaction count to the composite trading activity
variable W . We focus on the regressions for the transaction count in equations (21),
(22), and (23), which capture the interdependencies across the intraday pattern
predicted by the invariance, MDH-V, and MDH-N specifications, respectively.

Figure 5 provides the intraday scatter plot of nt versus wt and the estimated re-
gression line for the intraday invariance hypothesis. The one-minute observations
are averaged across all days in the sample. The model (21) predicts a slope of
2/3, represented by the dashed line. Indeed, the dashed line is visually indistin-
guishable from the fitted regression line in Figure 5, indicating an excellent fit.
The observations corresponding to the Asian, European, and American segments
in Figure 5 are depicted in blue, green and red, respectively. It is evident that the
pattern for each regime is overall consistent with the invariance predictions.

The quality of the fit in Figure 5 is so good that it invites scrutiny of the few
observations that seem to deviate, however slightly, from the theoretical prediction.
In particular, a cluster of 16 points, marked by red crosses, falls below the regression
line. These observations stem from the period 15:00–15:15, when the cash market
has just closed, but the futures market remains open. Similarly, the blue crosses
signifying observations from the start of daily trading, 17:01-17:06, also fall below
the line. Remarkably, the slope generated by these red and blue crosses is also
nearly identical to 2/3. This parallel shift suggests that the invariance principle
continues to apply, but there may be a change in the composition of active traders
which alters the frequency of small versus large transactions, and thus the intercept.

For the alternative models (22) and (23), we also expect a regression slope of
2/3. The points in Figure 6, representing the regression relation for the MDH
theories, align themselves nicely along straight lines with an associated R2 � 0.99.
The fitted slopes, however, differ substantially from 2/3. Hence, the closeness of
the actual slope to the predicted one provides qualitative support to the intraday
invariance principle relative to the other hypotheses.

Although the two MDH regressions generate slopes that are inconsistent with the
underlying MDH theory, the strong linear relationships in Figure 6 are striking. It
turns out that this feature is a direct consequence of the intraday trading invari-
ance relation and the extreme multicollinearity among the individual (logarithmic)
activity variables. Specifically, separately regressing nt on qt and st yields slope
coefficients of 2.74 and 3.06, respectively, with corresponding R2 values of 0.95 and
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Figure 5. This figure plots nt versus wt (invariance). The blue crosses indicate the first 6 minutes

of trading; the red crosses indicate the last 16 minutes of trading. The solid line represents the

OLS Regression; the dashed line has the identical slope but is fitted to the red crosses only.
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Figure 6. Plots of nt versus wt − 3/2qt (MDH-V) and wt − qt (MDH-N). The OLS Regression lines

are solid, the model predicted lines with slope 2/3 are dashed. The blue crosses indicate the first 6

minutes of trading; the red crosses indicate the last 16 minutes of trading.

0.97. Thus, to a good empirical approximation, we have

(25) nt ≈ c+ 3qt and st ≈ c+ qt .

Heuristically, we can now demonstrate why the MDH regressions reveal an almost
perfect linear dependence among the variables, yet produce slope coefficients that
differ from the values implied by the underlying MDH theory. First, note that the
relationships above imply that we can express wt (approximately) in terms of qt,

(26) wt = c + nt + qt + 1
2
st ≈ c + 3qt + qt + 1

2
qt = c + 9

2
qt .



22

Not surprisingly, given our prior findings, captured in Figure 5, these empirically
observed linear dependency structures are consistent with intraday invariance. To
see this, it is convenient to introduce some generic notation for the log-linear in-
traday invariance regression, labeling the slope coefficient βI ,

nt = c + βI · wt .

Next, observe that we may approximate the left hand side via equation (25) and
the right-hand side via equation (26), obtaining

c + 3qt ≈ c + βI
[

9
2
qt
]
.

It follows that 3 ≈ βI · 92 , implying βI ≈ 2
3

, which is the exact value of the slope
coefficient implied by the invariance principle.

For the MDH-V hypothesis, letting βV denote the associated regression slope
coefficient, we find that equation (22) and the log-linear empirical approximations
imply

c + 3qt ≈ c + βV
[
wt − 3

2
qt
]
≈ c + βV

[
9
2
qt − 3

2
qt
]

= c + βV · 3qt .

Hence, βV ≈ 1 follows from the log-linear approximations and the invariance rela-
tion.

Similarly, for the MDH-N hypothesis, letting βN denote the associated regression
coefficient in the specification (23), we obtain

c + 3qt ≈ c + βN [wt − qt ] ≈ c + βN
[

9
2
qt − qt

]
= c + βN · 72qt ,

implying 3 ≈ βN · 72 , which is equivalent to βN ≈ 6
7

.
Table 2 reports the point estimates βV = 0.98, βN = 0.85, and βI = 0.67,

consistent with the implications of intraday trading invariance βV ≈ 1, βN ≈ 6
7
≈

0.86, and βI ≈ 2
3
.

Table 2—Intraday Regression of logN on (adjusted) logW for alternative Models

Nobs c β R̄2 βmodel βinv

MDH-V 1335 2.41 0.98 0.997 2/3 1
MDH-N 1335 1.75 0.85 0.999 2/3 6/7

Invariance 1335 0.85 0.67 0.998 2/3 2/3

This table concerns intraday OLS regressions of nt onto wt− 3/2qt (MDH-V), wt− qt (MDH-N),
and wt (Invariance). Nobs is the number of intraday observations. In the last two columns,
βmodel is the slope coefficient predicted by each model, while βinv is the coefficient predicted by
invariance and empirical appoximation in (25).

In spite of our inability to conduct formal inference on the regressions considered
in this subsection, the evidence strongly favors the intraday invariance hypothesis.
The strong correspondence between theory and empirical results suggests that the
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slope coefficients are subject only to minor biases, reflecting the substantial error
reduction achieved through our averaging procedures. This is corroborated by the
extreme R2 values attained by each individual regression. Even if the degree of
explained variation is artificially boosted by this regression set-up, large idiosyn-
cratic errors in qt and st would lower the R2. Furthermore, the strong rejections
of the MDH specifications demonstrate that the framework readily discriminates
between the alternative hypothesis.

B. Invariance in Transaction Volatility by Minute-of-Day

The encompassing regression (24) offers a more traditional setting for hypothesis
testing in which standard inference techniques are applicable. The specification
also highlights the dramatically different predictions regarding the relation be-
tween volatility per transaction and trade size, ranging from a positive association
(MDH-V, β = 1), no relation (MDH-N, β = 0), to a strongly negative association
(invariance, β = −2). This renders regression (24) a particularly clean test of the
relative explanatory power of the different hypotheses.

We estimate the regression lines across the intraday pattern, with the log values
of the relevant variables for each one-minute observation averaged across all days
in the sample. The results are presented in Figure 7 and Table 3.
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Figure 7. Left panel: Intraday Scatter Plot of st −nt versus qt. The OLS regression line is solid

and the predicted invariance line is dashed. The blue crosses indicate the first 6 minutes of trading

and the Red Crosses the last 16 minutes of trading. Right Panel: The same scatter plot as in the

Left Panel, except the minutes around the regional market openings and closures are removed.

The left panel of Figure 7 reveals that the 1,335 separate one-minute observations
are less tightly centered on the regression line than in Figure 6. This is expected,
as we no longer absorb part of the variation of the regressand in the right-hand-
side variable. Nonetheless, the relation remains strikingly close to log-linear, with
an adjusted R2 of 0.966. Moreover, the estimated regression line associated with
the intraday invariance hypothesis (solid, slope −2.0045) is almost identical to the
theoretical line (dashed, slope −2). Meanwhile, the MDH-V and MDH-N models
are overwhelmingly rejected: the regression line is neither flat nor upward sloping.
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Table 3—Indraday Regression of log σ2

N onto logQ

Nobs c β se(c) se(β) R̄2

Unfiltered 1335 -2.61 -2.00 0.021 0.010 0.966
Filtered 1273 -2.59 -2.01 0.016 0.008 0.980

This table reports on the Intraday OLS regression, st − nt = c + β · qt + ut. MDH-V, MDH-N
and invariance predict β = 1, β = 0, and β = −2, respectively.

We further note that most of the outliers in the left panel stem from periods
during which active trading is transitioning from one trading regime to another.
If we eliminate observations corresponding to 3 minutes around 1:00 and 2:00 (the
beginning of European hours), the 3 + 30 minutes around 8:30 (the beginning of
American hours and the 9:00 news announcements) as well as the period 15:00-
15:15 (the end of American hours, following the closure of the cash market), then we
obtain the results depicted in the right panel of Figure 7. The intraday invariance
predictions are again validated in the sense that the regression slope equals the
predicted −2. At the same time, the vast majority of the outliers are eliminated
by this filtering procedure, suggesting that intraday trading invariance offers a
particularly compelling account of the interaction among the activity variables in
a stable market setting.

There are a variety of ways to assess the robustness of the findings by focusing
on specific subsamples. The main complication is the presence of non-trivial mea-
surement errors in our high-frequency observations. In particular, if the regression
design reduces the genuine variation of the regressor relative to the size of the
measurement errors, then we will mechanically find the regressions to have less
explanatory power. Moreover, we may start observing a distinct downward bias in
the (absolute) size of the estimated regression slope due to the errors-in-variables
effect. With these caveats in mind, we first investigate the performance of the
invariance hypothesis over annual subsamples. Due to the stability of the diurnal
pattern for the activity variables, this approach retains the pronounced variation
in the regressor, so the primary effect is simply a loss of observations.

Panel A of Table 4 reports the results for the year-by-year log-linear regressions.
The individual regression slopes are now scattered more widely, but there is no
evidence of any systematic deviation from the theoretical value of −2 implied by
the intraday invariance hypothesis.

An alternative robustness check involves regime-by-regime regressions. This ap-
proach does reduce the sample variation of the regressor quite substantially, raising
concerns about the impact of measurement error. Panel B of Table 4 reports the
regression results for all observations within the individual regimes, while Panel C
reports the results when some observations associated with the transition periods
between regimes are excluded, as in Table 3.

In Panel B, we now observe a clear drop in the (negative) slope coefficients. Panel
C shows that filtering improves matters considerably, but still leaves a non-trivial
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Table 4—Time-series Regression of log σ2

N onto logQ

Panel A: 4 Years

Nobs c β se(c) se(β) R̄2

2008 1335 -2.89 -1.88 0.021 0.011 0.958
2009 1335 -2.23 -2.13 0.023 0.012 0.961
2010 1335 -2.27 -2.17 0.032 0.016 0.936
2011 1335 -3.28 -1.74 0.026 0.012 0.939

All 1335 -2.61 -2.00 0.021 0.010 0.966

Panel B: 3 Regimes, Unfiltered

Nobs c β se(c) se(β) R̄2

Asia 540 -3.90 -1.14 0.053 0.034 0.672
Europe 390 -3.16 -1.73 0.092 0.046 0.784

America 405 -5.03 -1.06 0.176 0.070 0.361
Pooled 1335 -2.61 -2.00 0.021 0.010 0.966

Panel C: 3 Regimes, Filtered

Nobs c β se(c) se(β) R̄2

Asia 526 -3.84 -1.18 0.051 0.034 0.704
Europe 388 -3.10 -1.76 0.086 0.043 0.810

America 359 -3.21 -1.78 0.182 0.073 0.623
Pooled 1273 -2.59 -2.01 0.016 0.008 0.980

This table reports on OLS regressions of the form st − nt = c + β · qt + ut. In Panel A, the
coefficients, standard errors, and R̄2 statistics are estimated separately for each calendar year
and then for the whole sample. The last year ends November 4, 2011. In Panels B and C, the
regressions are estimated separately for each regime, except that in Panel C the minutes around
the regional market openings and closures are removed. MDH-V, MDH-N and invariance predict
β = 1, β = 0, and β = −2, respectively.

gap between the estimated slopes and −2. The discrepancy is especially striking
for the Asian regime, where the diurnal pattern, and thus the systematic intraday
variation of the regressor, is less pronounced compared to the other regions, and
market activity is generally somewhat subdued.

As a final robustness check, we test the invariance relation within each quarter
in our sample. Figure 8 displays the slope coefficient for the qt variable across
the quarters. It is evident that the slope coefficient is economically close to the
theoretical value of −2 in all instances.15

In summary, our findings are broadly consistent with the intraday invariance
principle, while the MDH specifications are decidedly rejected. In particular, there
is strong support for the hypothesis that market participants actively adjust their

15The confidence bands are obtained assuming we only face sampling error, but our con-
struction of expectation proxies through the MEM approach inevitably introduces non-trivial
measurement errors into the specification. While it is difficult to quantify this effect, it is clear
that the confidence bands are too narrow and should be viewed with skepticism.
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Figure 8. The figure plots the slope coefficient β for OLS regressions st−nt = c+β ·qt+ut estimated

separately for each quarter. Also shown are confidence intervals computed as ± 2 standard errors.

The red dashed line indicates the theoretical value predicted by invariance.

trade size in response to varying market conditions in a manner consistent with the
intraday invariance specification. Nonetheless, it is also evident that temporary
deviations from the predicted relationships occur when the trading environment
is changing rapidly. A detailed exploration of the breakdown in invariance during
such market transitions falls outside the scope of the current paper, but we do
present some additional evidence on this issue in Section V.C.

C. Invariance in Daily Time-Series Observations

The log-linear regressions in Section IV.B exploit the systematic minute-by-minute
variation in the activity variables across the diurnal pattern to generate a powerful
test of the intraday-invariance hypothesis. As an empirical matter, we also observe
large and persistent fluctuations across days, as illustrated in Figure 2, albeit the
variation is substantially smaller than observed intraday. In fact, most existing
studies of the interaction between transaction activity and return volatility rely on
daily data, rendering tests based on the intraday pattern infeasible.

In this section, we contrast the performance of the intraday-invariance hypothesis
to the MDH specifications in the time-series dimension. We achieve this by aggre-
gating the one-minute estimates for the activity variables for each day and each
trading regimes to obtain day-regime values, following the scheme in equation (18).

In the preceding section, our specification of intraday invariance left out the
price variation. When averaging across days to examine minute-by-minute varia-
tion within days, this makes no difference. When averaging across minutes within
days to examine the time-series variation across days, the effect may be significant,
however, because the level of the S&P 500 index varies greatly over the sample pe-
riod. Given the low level of inflation, nominal fluctuations in the S&P 500 index
represent fluctuations in the real value of assets in the economy and may also
represent fluctuations in the real income and productivity of finance professionals.
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These effects may partially offset each other if the value of the futures contract
covaries with the real wealth of market participants. We retain our prior specifi-
cation of the intraday invariance hypothesis below. In Appendix VI.B, we present
results for alternative representations that include the asset price in the regression.
We find such formulations to under-perform the specifications analyzed below uni-
formly. A more detailed study of these effects is an interesting issue for future
research.

The daily time series for each of the three trading regimes are distinct, with
each clearly being affected by its specific regional patterns of trading activity and
economic news releases. In other words, we effectively have three alternative daily
series available for our tests. Thus, for each of the intraday activity variables, we
generate three (day-regime) data points per trading day by averaging separately
each day across all intraday observations within the sets, D×T1, D×T2, and D×T3,
respectively. The day-regime series (averaged across a singular regime) are likely
to be noisier than the corresponding intraday series (averaged across all trading
days) explored in Section IV.A because each regime contains fewer observations
than there are trading days in our sample. Furthermore, the time-series variation
is less pronounced than the intraday variation. Hence, compared to the intraday
tests, the genuine variation in the regressor—the signal strength—is smaller relative
to the measurement errors in the time-series setting. As a consequence, we expect a
larger degree of dispersion around the regression line and we may note a downward
bias in the regression slope due to the classical errors-in-variable effect. To gauge
the severity of these distortionary features, we also perform a joint test, where we
enhance the variation of the regressor by including all three day-regime time series
in one pooled regression.

Figure 9 presents the results for a regression of log variance per transaction on
log trade size, constructed along the lines of equation (24). It may be compared
to the evidence in Figure 7. Figure 9 shows that the points cluster along a fitted
line with slope −1.99, close to the predicted slope of −2, for the regression pooling
all the day-regime observations. It is also evident that the dispersion around the
regression line increases relative to the intraday regression displayed in Figure 7.

As we move to the regime-specific regressions, the noise-to-signal ratio rises, and
Panel A of Table 5 documents that the regression slopes decline in absolute size,
consistent with an error-in-variables bias and relatively large heterogeneity across
the observations within regimes. Nonetheless, the evidence remains strongly in
favor of the intraday invariance principle relative the MDH hypotheses which imply
either a flat or positively-sloped regression line. This conclusion is corroborated
by Panel B of Table 5 for annual regressions based on the pooled day-regime
observations. The slope coefficients for the individual years are all close to −2,
except for the slightly lower (absolute) value obtained over the abbreviated final
year of the sample, 2011. This is consistent with an enhanced signal-to-noise ratio,
obtained by incorporating the variation in the activity variables across regimes,
enabling a more precise inference, even for moderately sized samples.
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Figure 9. Scatter plot of sd,r − nd,r versus qd,r. For each day d, there are three observations

corresponding to the three regimes r = 1, 2, 3. For each variable, we first compute the logarithmic

value and then average it across each regime for a given day.

Table 5—Time-series Regression of log σ2

N onto logQ

Panel A: 3 Regimes

Nobs c β se(c) se(β) R̄2

Asia 965 -3.54 -1.38 0.076 0.050 0.445
Europe 969 -3.22 -1.70 0.070 0.035 0.708

America 969 -3.32 -1.74 0.101 0.040 0.661
Pooled 2903 -2.65 -1.99 0.023 0.011 0.918

Panel B: 4 Years

Nobs c β se(c) se(β) R̄2

2008 748 -2.86 -1.90 0.035 0.018 0.938
2009 754 -2.28 -2.11 0.039 0.020 0.938
2010 756 -2.38 -2.12 0.047 0.022 0.923
2011 645 -3.29 -1.73 0.049 0.022 0.902

All 2903 -2.65 -1.99 0.023 0.011 0.918

This table reports on the OLS regressions sd,r −nd,r = c+ β · qd,r + ud,r. For each day, there are
three observations corresponding to the regimes r = 1, 2, 3. In Panel A, the coefficients, standard
errors, and R̄2 statistics are estimated separately for each regime. In Panel B, the regressions
are estimated separately for each calendar year. The last year ends November 4, 2011. MDH-V,
MDH-N and invariance predict β = 1, β = 0, and β = −2, respectively.

D. Invariance for Multi-Minute Bin Aggregation

Our empirical tests for intraday trading invariance depend critically on high-
frequency measurement of trading intensity and return volatility. The minute-
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by-minute measures are invariably noisy. So far, we have performed aggregation
across trading days to generate fairly accurate observations of the systematic in-
traday pattern, and we have aggregated across the intraday observations to obtain
time series comprised of reasonably precise daily measures. Either approach in-
volves a compromise where we sacrifice some systematic variation in the data along
specific dimensions in order to improve the precision.

In this section, we seek to retain more of the high-frequency variation in the
activity variables, while accepting that the individual measures become noisier.
Specifically, we aggregate the one-minute observations into 31 separate bins. Each
bin contains 90 consecutive minutes during the Asian regime, 39 minutes in the
European regime, and 27 minutes in the American regime. This binning approach
allows the measures to reflect both the intraday variation in trading activity across
time bins and the time-series variation across days. The procedure generates 6,
10 and 15 day-bin observations for each day across the three regimes, respectively.
Furthermore, it ensures that the regimes are relatively homogeneous in terms of
the magnitude of the sampling and measurement errors. Following the scheme in
equation (19), the subscript b refer to a bin within the trading day so, for example,
nd,b denotes the log number of trades per minute within the bins. In total, we have
nearly 30,000 day-bin (D×31) observations for the relevant activity variables, i.e.,
31 observations for each of the variables over D = 969 days.16

Figure 10 depicts the scatter plot of sd,b − nd,b versus qd,b for all day-bin obser-
vations along with the regression line obtained from the joint fit to all the data
points. Consistent with the presence of non-trivial measurement errors, the points
are now much more widely scattered around the regression line compared with
Figure 9. Nonetheless, as reported in Table 6, the slope estimate equals -1.84,
which is close to the theoretical value of −2 implied by invariance. Likewise, for
the individual years, the corresponding regression slopes attain a similar magni-
tude. In other words, the large degree of variation in the regressor across the bins
may be sufficient to alleviate the severity of the errors-in-variable bias, both for
the joint and the year-by-year regressions.

V. Invariance during Market Transitions

Certain events corresponding to particularly turbulent market conditions generate
large outliers. In this section, we explore whether the intraday invariance principle
can accommodate these dramatic episodes of elevated market activity.

A. Macroeconomic Announcements

We now examine whether intraday invariance provides a good characterization of
the market dynamics surrounding releases of macroeconomic announcements.

16A few observations are lost due to market closures or failures in the dissemination of data.
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Figure 10. Scatter plot of sd,b − nd,b versus qd,b with data aggregated across the one-minute

observations within bin b for each trading day d. As before, the three regimes are represented by

distinct colors.

Table 6—Time-series Regression of log σ2

N onto logQ using binned Data

Panel A: 3 Regimes

Nobs c β se(c) se(β) R̄2

Asia 5790 -4.05 -1.03 0.027 0.017 0.377
Europe 9666 -3.78 -1.42 0.026 0.013 0.559

America 14499 -4.29 -1.36 0.032 0.013 0.439

Panel B: 4 Years

Nobs c β se(c) se(β) R̄2

2008 7705 -3.16 -1.76 0.017 0.008 0.859
2009 7779 -2.60 -1.96 0.020 0.009 0.846
2010 7806 -2.93 -1.88 0.025 0.011 0.788
2011 6665 -3.51 -1.64 0.025 0.011 0.783

All 29955 -2.98 -1.84 0.011 0.005 0.822

The table reports on OLS regressions sd,b − nd,b = c + β · qd,b + ud,b across days d and bins b.
In Panel A, the coefficients, standard errors, and R̄2 statistics are estimated separately for each
regime. In Panel B, the regressions are estimated separately for each calendar year. The last
year ends on November 4, 2011. MDH-V, MDH-N and invariance predict β = 1, β = 0, and
β = −2, respectively.

For the U.S. market, the most important announcements occur at 7:30. The
Employment Report is usually released at 7:30 on the first Friday of the month
and the Consumer Price Index at 7:30 on the second Friday of the month. Other
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Figure 11. The figure depicts averages across trading days for which an assumed 7:30 CT announce-

ment induced the largest subsequent increase in trading activity. The statistics include contract

volume Vt (per minute), volatility σt, average trade size Qt, and the number of trades. The averages

are computed at the granularity of one minute. The dashed vertical lines separate the trading

regimes. The solid vertical line indicates the timing of the announcement.

releases at this time of day include the Producer Price Index, the Employment Cost
Index, the U.S. Import/Export Price Indices, and Real Earnings. Market activity
variables often exhibit distinct spikes immediately after such releases. Rationaliz-
ing the interaction among the trading variables and return volatility in the periods
surrounding these events constitutes a challenging test for intraday invariance.

To identify the relevant announcements, we focus on the days with the largest
increase in trading activity immediately after 7:30. Specifically, we compute the
ratio of the number of trades for the 10 minutes after 7:30 to the number of trades
for the 60 minutes before 7:30. We then select the ten percent of days (97 out
of 969) with the highest ratio. On average, this procedure identifies about two
days each month with significant spikes in trading activity, likely associated with
7:30 announcements. In line with the terminology of Section II.D, we denote this
subset of days by DA. We also zoom in further on the announcements and study
the three minutes before and after 7:30; we denote this subset of minutes by TA.

Figure 11 depicts the intraday statistics averaged across the announcement days,
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DA. Compared to the full sample statistics in Figure 1, the 7:30 spike is much
more pronounced for volume, number of trades, and volatility. Close inspection
also reveals a small, yet distinctive, downward shift in the average trade size.
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Figure 12. The figure provides scatter plots for (st − nt) versus qt. The left and right panels

plot averages across all days and 7:30 announcement days, respectively. The 3 minutes before 7:30

are indicated by red dots, the 3 minutes thereafter by a blue asterisk and two blue crosses, and all

other minutes by light gray dots. The regression line from Figure 7 is also shown.

Figure 12 displays the regression fit for the intraday invariance relation, as cap-
tured by the plot of the averaged one-minute observations for volatility per trans-
action versus trade size. The left panel includes all trading days, while the right
panel contains only the 7:30 announcement days. In both panels, the three minutes
preceding 7:30 are represented by red dots, the 7:30-7:31 announcement observa-
tion by the blue asterisk, and the following two one-minute intervals by the blue
crosses. The left panel reveals that none of the points surrounding the announce-
ment generally represent outliers. On announcement days, the observations around
the release time remain in line with theoretical predictions, except for the exact
interval covering the news release (blue asterisk). The latter observation lies above
the regression line, indicating excess volatility relative to trading volume. This may
happen if the price jumps at the release without any trading, consistent with the
observed market dynamics around scheduled releases. The bid-ask spreads widen
and trading stalls in the moments before the release. After the number is reported,
the quotes jump discretely in response to the news content, and only thereafter
does an avalanche of trading hit the market. In short, the public release of news
at predetermined times allows the headline number to be incorporated into quotes
prior to any significant trading. Only subsequently is the price effectively driven
by the order flow. Modeling trading during announcements may require a careful
adjustment for the fraction of return volatility unrelated to order flow.

Figure 13 present the corresponding plots for the 9:00 announcement days. The
releases at 9:00 include New and Existing Home Sales, the Housing Market Index,
Consumer Sentiment, and Business Inventories, among others. On average, these
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Figure 13. The figure provides scatter plots for (st − nt) versus qt. The left and right panels

plot averages across all days and 9:00 announcement days, respectively. The 3 minutes before 9:00

are indicated by red dots, the 3 minutes thereafter by a blue asterisk and two blue crosses, and all

other minutes by light gray dots. The regression line from Figure 7 is also shown.

announcements have a less pronounced effect on average trade size.17 Neverthe-
less, the spikes in the average for volume, number of trades, and volatility at the
announcement time remain dramatic. As before, the figure confirms that intra-
day invariance holds up well, even during such unusual market conditions. Since
the number of announcement days is limited and the measurement errors are likely
larger around the release time, the small downside deviation for the two blue crosses
is immaterial. As before, the observation at the exact release interval (blue aster-
isk) lies above the subsequent blue crosses. This may again reflect the tendency
for prices to jump in the absence of trading at the moment the announcement hits
the news wires.

We conclude that, broadly speaking, the intraday invariance principle provides an
accurate description of the interdependencies among the market activity variables,
even around news releases, when the fluctuations are magnified greatly.

B. The Flash Crash

We next demonstrate that intraday invariance provides a framework that may be
helpful in interpreting the chaotic market conditions during the flash crash of May
6, 2010. The study of this market crash may help to understand the underlying
dynamics behind other episodes of extreme market behavior. Kyle and Obizhaeva
(2016a) describe the flash crash as well as other stock market crashes associated
with execution of large bets. Andersen and Bondarenko (2014, 2015) discuss other
early warning signals for market turbulence.

The top left panel of Figure 15 depicts the price dynamics of the E-mini S&P 500
futures on May 6, 2010. The vertical lines indicate the timing of the crash from

17The intraday variation of the activity variables around the 9:00 news releases are qualitatively
similar to those observed for the 7:30 releases in Figure 11, so we omit this figure.
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13:32 to 13:45 CT, as identified in the joint report by Staffs of the CFTC and SEC
(2010a,b). In the morning, the market declined by about 3 percent. There were
rumors about a debt default by Greece, elections in the U.K., and an upcoming jobs
report in the U.S. From 13:40 to 13:45, prices first plummeted by 5.12% and then
recovered by 5% over the next ten minutes, after a pre-programmed circuit breaker
within the CME Globex electronic trading platform halted trading for five seconds.
Prices entered a free fall only during the last minute of the event window. The
crash was accompanied by record trading volume and extreme realized volatility, as
seen in the top right and bottom left panels of Figure 15. The apparent breakdown
in the provision of market liquidity is obviously of great interest.

We next examine whether intraday invariance relationships held during the mar-
ket crash or the data displayed some unusual patterns. Since the crash event lasted
for less than an hour, we focus on the prediction that the invariant log Idt is an
identically and independently distributed random variable over this period, as sug-
gested by equation (8). We test this proposition informally by calculating the time
series of average log Idt computed at a four-minute frequency. We further normal-
ized those variables to have a zero mean and a unit variance, using observations of
the trading invariant across all days at the same point in time.18 We then simply
look for outliers in the intraday sequence on May 6, 2010.

The dynamics of the standardized unsigned trading invariant log Idt is shown
in the lower right panel of Figure 15. There are three consecutive large outliers—
exceeding 3 standard deviations each—during the minute before and the first eleven
minutes immediately following the five-second trading halt at the bottom of the
flash crash. When compared with realizations of log Idt during the same time in-
terval for other days in the sample, these three outliers represent 100th, 99.9th,
and 99.4th percentile events. Moreover, for the four-minute interval ranging from
five to one minutes before prices bottomed out, the value of the invariant log Idt
corresponds to a 78th percentile event. Prior to these outliers, there were no obser-
vations of log Idt exceeding ±2 standard deviations. In summary, the fluctuations
in log Idt were contained within the typical range both prior to the crash and during
the time when prices dived, but the invariant attained extreme positive values at
the exact time when the market collapsed and then, after the five-second market
break, as prices started to recover.

How can we relate the apparent breakdown in intraday invariance, suggested by
these consecutive outliers, to any hypothesis regarding the causes for the collapse
in liquidity provision during the flash crash?

Menkveld and Yueshen (2015) document that the co-integrating relation between
the E-mini contract and the SPDR S&P 500 exchange traded fund (the “spider” or
SPY) broke down about one minute prior to the trading halt and resumed approxi-
mately eight minutes afterwards. The three outliers in log Idt coincide exactly with

18The four-minute blocks represent a compromise between the desire for short blocks to capture
the rapidly changing market dynamics and long blocks to facilitate averaging out measurement
errors.
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Figure 14. The figure shows price P , volume V , volatility σ, and trade size Q on May 6, 2010. The
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this drop in liquidity provision. Several factors hampered the implementation of
cross-market arbitrage. Margin requirements rose rapidly in response to the spike
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in volatility, there were problems with connectivity across trading platforms, and
there was a general sense of confusion among market participants.

Kirilenko et al. (2014) report (see their Table II) that the average trade size
of groups of traders which represent institutional investors (Fundamental Buyers
and Fundamental Sellers) is larger than the average trade size of the groups that
intermediate the trading process (High-Frequency Traders, Market Makers, and
Opportunistic Traders). In the last few minutes prior to the nadir of the flash
crash, the participation rate of high-frequency traders increased, but then dropped
immediately as prices bottomed out (see their Figure 6).

Taken together, these results suggest that the breakdown in arbitrage relation-
ships, which occurred right around the time prices hit the bottom during the flash
crash, is associated with a low participation rate by market makers and arbi-
trageurs. Since these intermediaries tend to execute orders of small size, we expect
the average trade size to rise when their participation rate falls, leading to larger
values for the trading invariant log Idt. We therefore conjecture that the appar-
ent breakdown in intraday trading invariance relationships, captured through the
three large outliers in log Idt, may indicate a lower participation rate of market
makers and arbitrageurs than during normal market conditions. It does not imply
a breakdown in the invariance of bets, as discussed by Kyle and Obizhaeva (2016c)
and Kyle and Obizhaeva (2016a).

C. The Cash Market Open and Close

Under the null hypothesis of intraday trading invariance, we can infer the implied
average trade size as a function of the expected volume and return volatility, both of
which may be estimated by the techniques developed in Section II.C. Comparing
the predicted trade sizes with actual minute-by-minute observations of average
trade size, which may exhibit highly idiosyncratic features at specific times during
the daily cycle, represents another challenging test for intraday invariance.

From the basic intraday invariance relation (24) with β = −2 and v = n+ q, we
obtain the theory-implied trade size q∗t given by,

(27) q∗t = c +
1

3
[ vt − st ] .

We identify the constant c via the (moment) condition that the average implied
log trade size q∗t matches the sample average of the realized log trade size qt.

Figure 16 compares the actual average log trade size qt and the corresponding
implied log trade size q∗t . The left panel shows that implied trade size generally
tracks the actual trade size closely, confirming that intraday trading invariance
provides a very accurate account of how the average trade size responds to shifts
in volume and return volatility on a minute-by-minute level.

A set of features of the figure are noteworthy. First, we detect a distinct U-
shaped pattern for average log trade size within each trading regime. The most
striking deviation from the U-shaped pattern occurs from 1:00 to 2:00. This period
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Figure 16. The left panel plots the empirical trade size qt and the implied trade size q∗t for each

minute t, averaged across all trading days in the sample. The right panel depicts the prediction

error qt − q∗t . The dashed vertical lines separate the three trading regimes.

seems to blur the boundary between the trading hours for the Asian and European
cash markets. This reflects a couple of institutional features. There is no dis-
tinct opening time for European trading hours, as some exchanges in continental
Europe open at 1:00, while the trading venues in London open one hour later at
2:00. Furthermore, the trading venues in Europe and America adhere to a summer
time convention, whereas the major trading venues in Asia do not. This makes
the boundary between Asian and European trading hours shift back and forth
depending on the time of the year.

Second, in spite of the dramatic spikes in the trading volume and return volatil-
ity around the release of macroeconomic announcements, there are no apparent
outliers at the typical times for those releases, such as at 7:30 and 9:00. This
is consistent with the evidence in Section V.A that intraday trading invariance
provides an excellent approximation to the interaction among the market activity
variables during announcement periods.

Third, we observe strikingly large discontinuities in trade size when the mar-
ket activity shifts from one region to another, due to the opening and closing of
exchange trading in the regional cash markets. Trade size increases significantly
when the European cash markets open, and it increases even more as trading shifts
from Europe to America as the cash markets in that region open up.

A more detailed analysis of the deviation between the model-implied and actual
trade size is difficult on the basis of the figure, since the two curves largely overlap,
obscuring the gap. Hence, for visual purposes, the right panel of Figure 16 depicts
the log prediction error qt− q∗t . Most of the errors fall in the range ±0.1, or ±10%.
Since the average trade size is less than 10 contracts, as documented in Table 1,
the average prediction errors typically correspond to less than a single contract.

The right panel provides a more transparent picture of the striking discontinuities
in trade size when market activity shifts from one region to another. The downward
spikes in the right panel of Figure 16 at exactly 1:00, 2:00 and 8:30 represent clear
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Figure 17. The left panels plots the empirical trade size qd,r and the implied trade size q∗d,r,

averaged across the one-minute observations in each regime r = 1, 2, 3 and for each day d. The right

panels depict the corresponding prediction errors, qd,r − q∗d,r.

outliers, revealing that the actual trade sizes are somewhat lower than the implied
trade size at exactly the time when a more active cash market opens. Notice
that intraday invariance, correctly, predicts a sharp increase in the trade size at
these points but, systematically, the actual trade size jumps somewhat less than
predicted. Likewise, intraday invariance predicts a sharp increase in trade size
when trading transitions to a regime where the futures market is operating but the
underlying cash market is closed. As before, the directional prediction of intraday
invariance is correct but, in contrast to the case when the cash market is coming



39

on line, the actual trade size now jumps more than predicted. These effects are
visible at 15:00, as the U.S. cash market closes, and for the market opening at -7:00,
i.e., 17:00 the preceding day. These abrupt shifts in trade size pose an interesting
challenge for all theories of trade size.

Nonetheless, it is apparent that the intraday-invariance principle provides a much
better approximation to the dynamics of trade size than the MDH hypotheses. For
example, the extreme jump in the number of transactions and volume in the min-
utes prior to the close of the cash market at 15:00, of the order of 300% and 200%,
respectively, is accompanied only by a modest increase in return volatility; this is
starkly at odds with either of the MDH specifications. In contrast, intraday in-
variance accommodates the majority of this effect through the simultaneous sharp
increase in the expected trade size.

Overall, at a qualitative level, the intraday-invariance principle provides a sat-
isfactory account of the intraday dynamics of trade size across the trading day.
At specific times, however, a substantial gap emerges between the predicted and
actual trade sizes. The common trait, characterizing negative versus positive out-
liers, is that the cash markets are just opening for the former while they are closed
or closing for the latter. It suggests that part of the explanation stems from the
different population of active traders in the market during times when the cash
and futures market can be arbitraged versus when the futures market is operating
on its own. This reasoning is also consistent with the conjecture in Section V.B
that the market malfunctions around the flash crash were accompanied by a shift
in the proportion of intermediaries and arbitrageurs in the market. In other words,
the actual trade size may exceed the predicted one following the U.S. close and the
market opening at 17:00 because a relatively larger fraction of trades represent in-
stitutional investors. The latter execute larger trades compared to market makers
and arbitrageurs, who trade more frequently but at a smaller average size.

Finally, we explore the corresponding relation between the actual and predicted
log trade sizes, given in equation (27), across time for each of the three regime. The
panels in the left column of Figure 17 provide time-series plots for each regime. It is
evident that the lower level of aggregation is associated with more noisy measures.
Nonetheless, we still clearly capture the vast majority of the temporal variation in
the trade size series over the sample. The panels in the right column verify that the
errors are only weakly correlated and generally quite small. The only noteworthy
systematic deviation within the liquid American market segment is in the midst
of 2010 and possibly at the very end of the sample. These two episodes coincide
with European sovereign debt crises. Although the evidence of systematic errors
is much weaker than for the intraday pattern, the finding does suggest that active
investors were more cautious in terms of the exposures they took on during these
turbulent periods than predicted by the intraday invariance principle.

We leave further investigation of why systematic deviations from the implied
trade size occur at the open and close of active cash markets as well as, possibly,
during certain longer stressful market episodes for future research.
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VI. Conclusion

The invariance properties of trading patterns in the E-mini S&P 500 are unexpected
and powerful results, which raise interesting challenges for both empirical and
theoretical research into market microstructure.

From an empirical viewpoint, it is interesting to ask how universal our current
findings are. On the one hand, even if the results apply to this important and
highly liquid futures market—often characterized as the primary location for price
discovery in U.S. equities—they may still be an artifact of institutional arrange-
ments or other unique features of this specific marketplace. Possibilities include
the large tick size, large contract size, tight integration with liquid cash markets,
important role of high-frequency traders, presence of specialized automated trading
algorithms, or specific features of the CME Globex matching engine. On the other
hand, if intraday trading invariance is a more universal phenomenon for financial
markets, then it speaks to deep structural issues related to how trading in financial
markets operates. For example, intraday trading invariance may be a characteris-
tic of electronic platforms on which traders shred big bets into many small orders,
and it may also apply to non-electronic dealer markets in which bets are often
executed as single trades. As such, intraday trading invariance may provide a
fruitful framework for analyzing a host of issues surrounding market organization,
liquidity, functional operation, general trading motives, and strategies.

From a theoretical viewpoint, our findings pose a difficult conceptual question.
Intraday trading invariance clearly reflects the spirit of the market microstruc-
ture invariance hypothesis, formulated for bet arrival rates and bet sizes. There
are theoretical models such as Kyle and Obizhaeva (2016b) consistent with that
hypothesis. Yet, trades are different from bets, traders usually shred bets into
multiple small trades, optimizing their strategies to control transactions costs, as
modeled in Kyle, Obizhaeva and Wang (2014, 2015).19 We are aware of no the-
oretical research which can explain how order shredding with restrictions on tick
size and lot size might lead to intraday trading invariance.

Finally, our findings pose a challenge to the literature that views return volatility
as governed by a single market activity measure such as either the number of trans-
actions or the trading volume. In contrast, we find strong support for the intraday
invariance relation which involves a simultaneous adjustment in a set of activity
variables as market conditions evolve. In particular, trade size is endogenous and
reacts immediately to variation in volatility and trading intensity. The pronounced
variation in transaction size implies that the relation between trading intensity and
volume fluctuates systematically with the market environment. Consequently, the
standard MDH specifications fail spectacularly in accommodating the interaction
among the full set of activity variables.

It is of interest to explore whether our findings favoring the intraday-invariance

19For earlier contributions to the literature on optimal order shredding, see, e.g., Bertsimas
and Lo (1998), Almgren and Chriss (2000), and Obizhaeva and Wang (2013).
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hypothesis are common across assets and time or whether they stem from the
particular institutional features in this market or, alternatively, they are induced
by the emergence of high-frequency and algorithmic trading in electronic markets.
An empirical difficulty is the lack of a consistent recording of the transaction size for
the active market participant in most trading venues due to recording conventions
and the increasing fragmentation of trading across competing venues.20

In summary, the success of the invariance principle at the high-frequency level
for the E-mini S&P 500 futures, if confirmed more generally, raises intriguing
possibilities to shed new light on the intrinsic workings of modern financial markets.
At a minimum, given the central position of the E-mini futures trading for the
functioning of global financial markets, the issues raised pose a host of questions
for future empirical and theoretical research in market microstructure and market
activity dynamics.
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Appendix

A. High-Frequency Data Included in the Analysis

The set of high-frequency data used in our study consists of all one-minute observations available
for the trading of the E-mini S&P 500 futures contract on the CME Group electronic Globex
platform. As described in Section III, our sample covers January 4, 2008, to November 4, 2011.
We use all observations within the continuous trading session, initiated each Sunday through
Thursday, and ranging from 17:00 to 15:15 CT of the following day. Due to a few abbreviated
trading sessions and loss of data dissemination, there are a few gaps in our series.

We drop the observations for the set of intervals listed below for which we have missing or
incomplete records. First, we drop from the sample the entire trading day 03/12/2008 due to
extremely low trading activity. Second, for the Asian regime, there is no trading on 01/02/2008,
12/26/2008, 01/02/2009, and 09/09/2009. These four gaps stretch into the European trading
segments as well since observations are only available from 5:00 or 5:30 on these days. Third,
we also have incomplete records for 01/22/2008 and 10/24/2008 during the European regime.
Fourth, in the American regime, there are six days with reduced trading hours due to impending
holidays: 07/03/2008, 11/28/2008, 12/24/2008, 11/27/2009, 12/24/2009, and 11/26/2010.

B. Inclusion of Price P

This section presents the findings from a set of representative regressions for time-series tests
of intraday trading invariance when the price variation is included in the specification of the
invariance hypothesis. It parallels the results reported in Table 5 of Section IV.C.
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Table 7—Time-series Regression of log σ2P 2

N onto logQ

Panel A: 3 Regimes

Nobs c β se(c) se(β) R̄2

Asia 965 9.71 -0.85 0.062 0.041 0.310
Europe 969 9.21 -0.89 0.070 0.035 0.403

America 969 7.88 -0.61 0.115 0.045 0.157
Pooled 2903 11.09 -1.83 0.028 0.014 0.859

Panel B: 4 Years

Nobs c β se(c) se(β) R̄2

2008 748 10.85 -1.66 0.054 0.027 0.833
2009 754 11.24 -2.02 0.044 0.022 0.917
2010 756 11.66 -2.11 0.051 0.024 0.909
2011 645 10.94 -1.71 0.053 0.024 0.884

All 2903 11.09 -1.83 0.028 0.014 0.859

This table reports on OLS regressions of the form, sd,r − nd,r + 2pd,r = c + β · qd,r + ud,r. For
each day, there are three observations corresponding to the three regimes r = 1, 2, 3. In Panel A,
the coefficients, standard errors, and R̄2 statistics are estimated separately for each regime. In
Panel B, the regressions are estimated separately for each calendar year and then for the whole
sample. The last year ends on November 4, 2011.


