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ABSTRACT

Here’s why. (1) The HP filter produces series with spurious dynamic relations that have

no basis in the underlying data-generating process. (2) A one-sided version of the filter

reduces but does not eliminate spurious predictability and moreover produces series that do

not have the properties sought by most potential users of the HP filter. (3) A statistical

formalization of the problem typically produces values for the smoothing parameter vastly

at odds with common practice, e.g., a value for λ far below 1600 for quarterly data. (4)

There’s a better alternative. A regression of the variable at date t+h on the four most recent

values as of date t offers a robust approach to detrending that achieves all the objectives

sought by users of the HP filter with none of its drawbacks.

–––––––––––––––––––––––––––––––––-

∗I thank Daniel Leff for outstanding research assistance on this project.



1 Introduction.

Hodrick and Prescott (1981, 1997) proposed a method for separating an observed series yt

into components typically labeled trend and cycle. The drawbacks to the approach have

been known for some time. Nevertheless, the method continues today to be very widely

adopted in academic research, policy studies, and analysis by private-sector economists. For

this reason it seems useful to collect these results in this paper and remind potential users

of the HP filter of both the pitfalls and the existence of superior alternatives.

2 Characterizations of the Hodrick-Prescott filter.

Given T observations on a variable yt, Hodrick and Prescott (1981, 1997) proposed inter-

preting a trend component gt as a very smooth series that does not differ too much from the

observed values.1 It is calculated as2

min
{gt}Tt=−1

��T
t=1(yt − gt)

2 + λ
�T

t=1[(gt − gt−1)− (gt−1 − gt−2)]
2
�
. (1)

When the smoothness penalty λ → 0, gt would just be the series yt itself, whereas when

λ → ∞ the procedure amounts to a regression on a linear time trend (that is, produces

a series whose second difference is exactly 0). The common practice is to use a value of

λ = 1600 for quarterly time series.

1 Phillips and Jin (2015) reviewed the rich prior history of generalizations of this approach.

2 There are some slight differences across different authors in treatment of the endpoints. For example,
de Jong and Sakarya (2016) and Cornea-Madeira (forthcoming) take the second summation in (1) to be
over t = 3 to T and characterize the exact inference for that case, while King and Rebelo (1993) take the
summation over t = 2 to T + 1. Our expression follows Hodrick and Prescott (1997) and the algorithms
coded in Stata and RATS.
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A closed-form expression for the resulting series for trend and cycle can be written in

vector notation by defining T̃ = T + 2 and

y
(T×1)

= (yT , yT−1, ..., y1)
′

g
(T̃×1)

= (gT , gT−1, ..., g−1)
′

H
(T×T̃ )

=

�

IT
(T×T )

0
(T×2)

�

Q
(T×T̃ )

=






1 −2 1 0 · · · 0 0 0

0 1 −2 1 · · · 0 0 0

...
...

...
... · · ·

...
...

...

0 0 0 0 · · · −2 1 0

0 0 0 0 · · · 1 −2 1






.

The problem (1) can then equivalently be written

min
g
{(y −Hg)′(y −Hg) + λ(Qg)′(Qg)}

whose solution3 is

g∗ = (H ′H + λQ′Q)−1H ′y = A∗y. (2)

The inferred trend g∗t for any date t is thus a linear function of the full set of observations

on y for all dates.

As noted by Hodrick and Prescott (1981) and King and Rebelo (1993), the identical

inference can alternatively be motivated from particular assumptions about the time-series

3 The derivative with respect to g is −2H ′(y−Hg) + 2λQ′Qg. Cornea-Madeira (forthcoming) provided
further details on A∗ and a convenient algorithm for calculating it.
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behavior of the growth and cyclical components. Suppose our goal was to choose a value of

a (T ×1) vector at such that the estimate ĝt = a′ty has minimum expected squared difference

from the true trend:

min
at

E(gt − a′ty)
2. (3)

The solution depends on what we assume about the variance of y and its covariance with

the trend, and is given in the general case by ãt = [E(yy
′)]−1E(ygt), the population analog

to a sample regression coefficient.4 Stacking the estimates g̃t into a (T̃ ×1) vector produces

g̃ = E(gy′) [E(yy′)]
−1

y = Ãy. (4)

Let ct denote the cyclical component and vt the second difference of the trend component:

yt = gt + ct (5)

gt = 2gt−1 − gt−2 + vt (6)

Suppose that we assume that vt and ct are uncorrelated white noise processes that are also

uncorrelated with (g0, g−1), and let C0 denote the (2 × 2) variance of those first two pre-

sample values. For concreteness we write these assumptions formally as equations (25)-(29)

4 For any at we have

E(gt − a
′

ty)
2 = E(gt − ã

′

ty + a
′

ty − a
′

ty)
2

= E(gt − ã
′

ty)
2 + 2E[(gt − ã

′

ty)y
′](ãt − at) + (ãt − at)

′E(yy′)(ãt − at).

The middle term equals 0 by the definition of ãt:

E[(gt − ã
′

ty)y
′](ãt − at) = {E(gty

′)−E(gty
′)[E(yy′)]−1E(yy′)}(ãt − at).

Hence the expression is minimized by setting at = ãt. Note that this result does not assume stationarity, in
that each element of the (T × T ) matrix E(yy′) could be distinct.
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in the appendix. These assumptions imply a certain structure to the covariance matrices

in (4). If we adopted these assumptions but had no information about the initial states

(represented as C−1
0 → 0),then the following proposition establishes that in any sample of

any size T, the inference (4) would be numerically identical to expression (2).

Proposition 1. For λ = σ2c/σ
2
v and any fixed T, under conditions (5)-(6) and (25)-(29),

the matrix Ã in (4) converges to the matrix A∗ in (2) as C−1
0 → 0.

Proposition 1 establishes that if researcher 1 sought to identify a trend by solving the

minimization problem (1) while researcher 2 found the optimal linear estimate of a trend

process that was assumed to be characterized by the particular assumption that vt and ct

were both white noise, the two researchers would arrive at the numerically identical series

for trend and cycle provided the ratio of σ2c to σ2v assumed by researcher 2 was identical to

the value of λ used by researcher 1.

The Kalman smoother is an iterative algorithm for calculating the population linear

projection (4) for models where the variance and covariance can be characterized by some

recursive structure.5 In this case, (5) is the observation equation and (6) is the state

equation. Thus as noted by Hodrick and Prescott, applying the Kalman smoother to the

above state-space model starting from a very large initial variance for (g0, g−1)
′ offers a

convenient algorithm for calculating the HP filter, and is in fact a way that the HP filter is

often calculated in practice. Nevertheless, this observation should also be a bit troubling

for users of the HP filter, in that they never defend the claim that the particular structure

5 See for example Hamilton, 1994, equation [13.6.3].
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assumed in Proposition 1 is an accurate representation of the true data-generating process.

Indeed, if a researcher did know for certain that these equations were the true data-generating

process, and further knew for certain the value of the population parameter λ = σ2c/σ
2
v, he

would probably be unhappy with using (2) to separate cycle from trend! The reason is

that if this state-space structure was the true DGP, the resulting estimate of the cyclical

component ct = yt− g̃t would be white noise— it would be random and exhibit no discernible

patterns. By contrast, users of the HP filter hope to see suggestive patterns in plots of the

series that is to be labeled as the cyclical component of yt.

We can characterize some further aspects of the HP filter by rewriting (2) as

(H ′H + λQ′Q)g∗ = H ′y. (7)

The tth element of this system can be written6

[1 + λ(1− L−1)2(1− L)2]g∗t = yt for t = 1, 2, ..., T − 2 (8)

for L the lag operator (Lkxt = xt−k, L
−kxt = xt+k). Expression (8) states that F (L)g∗t = yt

for

F (L) = 1 + λ(1− L−1)2(1− L)2. (9)

The following proposition establishes some properties of this filter.7

6 Note that for any (T̃ ×1) vector x, the tth element of Qx corresponds to xt−2xt−1+xt−2 = (1−L)2xt.
Likewise for w a (T ×1) vector the tth element of Q′w corresponds to (1−L−1)2wt. Thus the multiplication
Q′Qx applies the compound operator (1− L−1)2(1− L)2xt.

7 Related results have been developed by King and Rebelo (1989, 1993), Cogley and Nason (1995), and
McElroy (2008). Unlike these papers, here I provide simple direct expressions for the values of φ1 and φ2,
and my expressions of the HP filter entirely in terms of real parameters in (10) and (11) appear to be new.
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Proposition 2. For any λ : 0 < λ <∞, the inverse of the operator (9) can be written

[F (L)]−1 = C

�
1− (φ21/4)L

1− φ1L− φ2L
2
+

1− (φ21/4)L
−1

1− φ1L
−1 − φ2L

−2
− 1



(10)

where

1

1− φ1z − φ2z
2
=
�∞

j=0R
j [cos(mj) + cot(m) sin(mj)]zj (11)

1

1− φ1z
−1 − φ2z

−2
=
�∞

j=0R
j [cos(mj) + cot(m) sin(mj)]z−j

φ1(1− φ2) = −4φ2 (12)

(1− φ1 − φ2)
2 = −φ2/λ (13)

C =
−φ2

λ(1− φ21 − φ22 + φ31/2)
(14)

R =
�
−φ2

cos(m) = φ1/(2R). (15)

Roots of (1−φ1z−φ2z
2) = 0 are complex and outside the unit circle, with φ1 a real number

between 0 and 2, φ2 a real number between −1 and 0, and R a real number between 0 and

1.

Proposition 2 establishes that for observations in the middle of a large sample, the HP

trend could be calculated by first constructing a linear function of the current and past

values by iterating on ξ1t = w1t+φ1ξ1,t−1+φ2ξ1,t−2 for t = 3, 4, ... and w1t = yt− (φ
2
1/4)yt−1,

and next constructing a linear function of the current and future values by iterating on

ξ2t = w2t + φ1ξ2,t+1 + φ2ξ2,t+2 for t = T − 2, T − 3, ... and w2t = yt − (φ
2
1/4)yt+1.

8 We then

8 For large T, these iterations will converge to the HP trend for observations around t = T/2 from
any starting values for ξ11 and ξ2T . It will be a better approximation near the endpoints if started from
ξ
1t = [(1− φ

2

1
/4)/(1− φ

1
− φ

2
)]yt for t = 1, 2 and ξ2t = [(1− φ

2

1
/4)/(1− φ

1
− φ

2
)]yt for t = T, T − 1.
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add these together, subtract the current value yt to avoid double counting, and multiply by

a constant C so that the coefficients sum to unity. The resulting value gt = C(ξ1t+ ξ2t−yt)

will equal the HP trend g∗t for t near the middle of a large sample. The proposition also

gives us a closed-form expression for the results of the iterations:

ξ1t =
�∞

j=0R
j[cos(mj) + cot(m) sin(mj)]w1,t−j

ξ2t =
�∞

j=0R
j [cos(mj) + cot(m) sin(mj)]w2,t+j.

Figure 1 plots the values of φ1 and φ2 generated by different values of λ. For λ = 1600,

φ1 = 1.777 and φ2 = −0.7994. These imply R = 0.8941, so that the absolute value of the

weights decay with a half-life of about 6 quarters.9

From (8), the cyclical component ct = yt − g∗t is then characterized by

ct = λ(1− L−1)2(1− L)2g∗t =
λ(1− L−1)2(1− L)2

F (L)
yt =

λ(1− L)4

F (L)
yt+2. (16)

As noted by King and Rebelo, obtaining the cyclical component thus amounts to taking

fourth differences of the original yt+2 and applying the operator [F (L)]−1 to the result, so

that the HP cycle should produce a stationary series as long as fourth-differences of the

original series are stationary.10

9 The other parameters for this case are C = 0.056075, m = 0.111687 and cot(m) = 8.9164.

10 De Jong and Sakarya (2016) and Phillips and Jin (2015) provided more details on the relation between
the large T expression (16) and the exact finite T formula (2) and the conditions under which the HP cyclical
component is a weakly dependent series. Phillips and Jin concluded that for λ = 1600 and typical sample
sizes, the HP filter may not successfully remove the trend even if the true series is only I(1).
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3 Consequences of using the HP filter.

The presumption by users of the HP filter is that it offers a reasonable approach to detrending

for a range of commonly encountered economic time series. The leading example of a time-

series process for which we would want to be particularly convinced of the procedure’s

appropriateness would be a random walk. Simple economic theory suggests that variables

such as stock prices (Fama, 1965), futures prices (Samuelson, 1965), long-term interest rates

(Sargent, 1976; Pesando, 1979), oil prices (Hamilton, 2009), consumption spending (Hall,

1978), inflation, tax rates, and money supply growth rates (Mankiw, 1987) should all follow

martingales or near martingales. To be sure, hundreds of studies have claimed to find

evidence of statistically detectable departures from pure martingale behavior.11 Even so,

there is indisputable evidence that a random walk is often extremely hard to beat in out-of-

sample forecasting comparisons, as has been found for example by Meese and Rogoff (1983)

and Cheung, Chinn, and Pascual (2005) for exchange rates, Flood and Rose (2010) for stock

prices, Atkeson and Ohanian (2001) for inflation, or Balcilar, et al. (2015) for GDP, among

many others. Certainly if we are not comfortable with the consequences of applying the

HP filter to a random walk, then we should not be using it as an all-purpose approach to

economic time series.

For yt = yt−1+ εt, where εt is white noise and (1−L)yt = εt, Cogley and Nason (1995)12

noted that expression (16) means that when the HP filter is applied to a random walk, the

11 See for example Flavin (1981) on consumption, Baumeister and Kilian (2015) on oil prices, and Bauer
and Hamilton (2016) on long-term interest rates, among many, many others.

12 Harvey and Jaeger (1993) also have a related discussion.
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cyclical component will be characterized by

ct =
λ(1− L)3

F (L)
εt+2.

For λ = 1600 this is

ct = 89.72
�
−q0,t+2 +

�∞
j=0(0.8941)

j[cos(0.1117j) + 8.916 sin(0.1117j)](q1,t+2−j + q2,t+2+j)
�

with q0t = εt − 3εt−1 + 3εt−2 − εt−3, q1t = εt − 3.79εt−1 + 5.37εt−2 − 3.37εt−3 + 0.79εt−4),
13

and q2t = −0.79εt+1+3.37εt− 5.37εt−1+3.79εt−2− εt−3. The underlying innovations εt are

completely random and exhibit no patterns, whereas the series ct is both highly predictable

(as a result of the dependence on lags of εt−j) and will in turn predict the future (as a result

of dependence on future values of εt+j). Since the coefficients that make up [F (L)]−1 are

determined solely by the value of λ, these patterns in the cyclical component are entirely a

feature of having applied the HP filter to the data rather than reflecting any true dynamics

of the data-generating process itself.

For example, consider the behavior of stock prices and real consumption spending.14

The top panels of Figure 2 show the autocorrelation functions for first-differences of these

series, confirming that there is little ability to predict either from its own past values, as

we might have expected from the literature cited at the start of this section. The lower

panels show cross correlations. Consumption has no predictive power for stocks, though

stock prices may have a modest ability to anticipate changes in aggregate consumption.

13 The term q1t is the expansion of (1− L)3[1− (φ21/4)L]εt.

14 Stock prices were measured as 100 times the natural log of the end-of-quarter value for the S&P 500
and consumption from 100 times the natural log of real personal consumption expenditures from the U.S.
NIPA accounts. All data for this figure are quarterly for the period 1950:1 to 2016:1.
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Figure 3 shows the analogous results if we tried to remove the trend by HP filtering

rather than first-differencing. The HP cyclical components of stock prices and consumption

are both extremely predictable from their own lagged values as well as each other. The rich

dynamics in these series are purely an artifact of the filter itself and tell us nothing about the

underlying data-generating process. Filtering takes us from the very clean understanding

of the true properties of these series that we can easily see in Figure 2 to the artificial set of

relations that appear in Figure 3. The values plotted in Figure 3 summarize the filter, not

the data.

4 A one-sided HP filter.

The HP trend and cycle have an artificial ability to “predict” the future because they are

by construction a function of future realizations. One way we might try to get around

this would be to restrict the minimization problem in (3), forcing at to load only on values

(yt, yt−1, ..., y1)
′ that have been observed as of date t, rather than also using future values

as was done in the HP filter (4). This restricted solution is in fact easy to calculate

using popular software packages. We again could use the state-space model assumed in

Proposition 1 with C0 large and σ2c/σ
2
v = 1600. Whereas the Kalman smoother would yield

the two-sided linear projection, which is numerically identical to the usual HP filter, the

Kalman filter gives the one-sided linear projection.

The top panel of Figure 4 shows the result of applying the usual two-sided HP filter to

stock prices. The trend is identified to have been essentially flat throughout the 2000s,
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with the pre-recession booms and post-recession busts in stock prices viewed entirely as

cyclical phenomena. The bottom panel shows the results of applying a one-sided HP filter

to the same data. This would instead label the trend component as rising during economic

expansions and falling during recessions. The reason is that a real-time observer would not

know in early 2009, for example, that stock prices were about to appreciate remarkably, and

accordingly would have judged much of the drop observed up to that date as permanent. It is

only with hindsight that we are tempted to label the 2008 stock-market crash as a temporary

phenomenon. Making use of unknowable future values in this way is in fact a fundamental

reason that HP-filtered series exhibit the visual properties that they do, precisely because

they impose patterns that are not a feature of the data-generating process and could not be

recognized in real time.

Moreover, although a one-sided filter would eliminate the problem of generating a series

that is artificially able to predict the future, changes in both the one-sided trend and its

implied cycle are readily forecastable from their own lagged values, and likewise by values of

any other variables. Again this is not a feature of the stock prices themselves, but instead

is an artifact of choosing to characterize the cycle and trend in this particular way.

5 Estimating λ by quasi-maximum likelihood.

A separate question is what value we should use for the smoothing parameter λ. Hodrick and

Prescott motivated their choice of λ = 1600 based on the prior belief that a large change in

the cyclical component within a quarter would be around 5%, whereas a large change in the
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trend component would be around (1/8)%, suggesting a choice of λ = σ2c/σ
2
v = (5/(1/8))

2 =

1600. Ravn and Uhlig (2002) showed how to choose the smoothing parameter for data at

other frequencies if indeed it would be correct to use 1600 on quarterly data. These rules

of thumb are almost universally followed.

It’s worth noting that if the state-space model in Proposition 1 were indeed an accurate

characterization of the trend that we were trying to infer, we would not need to make up

a value for λ but could in fact estimate it from the data. If for example we assumed a

Normal distribution for the innovations (vt, ct)
′ we could use the Kalman filter to evaluate

the likelihood function for the observed sample (y1, ...., yT )
′ and find the values for σ2v and

σ2c that maximize the likelihood function.15 This could alternatively be given a quasi-

maximum likelihood interpretation as a GLS minimization of the squared forecast errors

weighted by their model-implied variance.

Table 1 reports MLEs of σ2v, σ
2
c , and λ for a number of commonly studied macroeconomic

series. For every one of these we would estimate a value for σ2c whose magnitude is similar

to, and in fact often smaller than, σ2v, and certainly not 1600 times as large. If we used a

value of λ = 1 instead of λ = 1600, the resulting series for gt would differ little from the

original data yt itself; λ = 1 implies a value for R in expression (11) of 0.48, which decays

with a half-life of less than one quarter.

Thus not only is the HP filter very inappropriate if the true process is a random walk. As

15 See for example Hamilton (1994, equations [13.4.1]-[13.4.2]). Note that although the inferred value for
the trend gt depends only on the ratio σ2c/σ

2
v, the parameters σ

2
c and σ

2
v are separately identifiable because

σ2c can be inferred from the average observed size of (yt − gt)
2.
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commonly applied, the HP filter is not even optimal for the only example for which anyone

has claimed that it might provide the ideal inference!

6 A better alternative.

Here I suggest an alternative concept of what we might mean by the cyclical component

of a trending series: how different is the value at date t + h from the value that we would

have expected to see based on its behavior through date t?16 This concept of the cyclical

component has several attractive features. First, as noted by den Haan (2000), the forecast

error is stationary for a wide class of nonstationary processes. Second, the primary reason

that we would be wrong in predicting the value of most macro and financial variables at a

horizon of h = 8 quarters ahead is cyclical factors such as whether a recession occurs over

the next two years and the timing of recovery from any downturn.17

While it might seem that calculating this concept of the cyclical component requires us

already to know the nature of the trend and to have the correct model for forecasting the

series, neither of these is the case. We can instead always rely on very simple forecasts within

a restricted class, namely, the population linear projection of yt+h on a constant and the 4

most recent values of y as of date t. This object exists and can be consistently estimated

for a wide range of nonstationary processes, as I now show.

Note first that as long as the dth difference of yt is stationary, we can write the value

16 This definition corresponds to the Beveridge-Nelson (1981) characterization of the cyclical component
of a time series for the special case when yt is assumed to be an I(1) process and the forecast horizon h and
number of conditioning observations as of date t (denoted p below) both go to infinity.

17 This same consideration suggests using h = 24 for monthly data and h = 2 for annual data.
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of yt+h as a linear function of initial conditions at time t plus a stationary process. For

example, when d = 1, letting ut = ∆yt we can write

yt+h = yt + w
(h)
t (17)

where the stationary component is given by w
(h)
t = ut+1+· · ·+ut+h. For d = 2 and∆

2yt = ut,

we have

yt+h = yt + h∆yt + w
(h)
t (18)

where noww
(h)
t = ut+h+2ut+h−1+· · ·+hut+1. This result holds for general d, as demonstrated

in the following proposition.

Proposition 3. If (1− L)dyt is stationary for some d ≥ 1, then for all finite h ≥ 1,

yt+h = κ
(1)
h yt + κ

(2)
h ∆yt + · · ·+ κ

(d)
h ∆

d−1yt + w
(h)
t

with ∆s = (1 − L)s, κ
(1)
ℓ = 1 for ℓ = 1, 2, .. and κ

(s)
j =

�j
ℓ=1 κ

(s−1)
ℓ for s = 2, 3, ..., d and

w
(h)
t is a stationary process.

It further turns out that if ∆dyt ∼ I(0) and we regress yt+h on a constant and the d

most recent values of y as of date t, the coefficients will be forced to be close to the values

implied by the coefficients κ(j)h in Proposition 3. For example, if ∆2yt is I(0) then in a

regression of yt+h on (yt, yt−1, 1)
′, the fitted values will tend to yt + h(yt − yt−1) + µh for

µh = E(w
(h)
t ) as the sample size gets large; that is, the coefficient on yt will go to 1 + h and

the coefficient on yt−1 will go to −h. The implication is that the residuals from a regression

of yt+h on (yt, yt−1, 1)
′ will be stationary whenever y itself is I(2). The reason is that any

other values for these coefficients would imply a nonstationary series for the residuals, whose
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sum of squares become arbitrarily large relative to those implied by the coefficients 1 + h

and −h as the sample size grows large.

If ∆dyt is stationary and we regress yt+h on a constant and the p most recent values

of y as of date t for any p > d, the regression will use d of the coefficients to make sure

the residuals are stationary and the remaining p + 1 − d coefficients will be determined by

the parameters that characterize the population linear projection of the stationary variable

w
(h)
t on the stationary regressors (∆dyt,∆

dyt−1, ...,∆
dyt−p+d+1, 1)

′. The following proposition

provides a formal statement of these claims. In the proof of this proposition I have followed

Stock (1994, p. 2756) in defining a series ut to be I(0) if it has fixed mean µ and satisfies

a Functional Central Limit Theorem.18 This requires that the sample mean of ut has a

Normal distribution as the sample size T gets large, as does a sample mean that used only

Tr observations for 0 < r ≤ 1. Formally,

T−1/2
�[Tr]

s=1(ut − µ)⇒ ωW (r), (19)

where [Tr] denotes the largest integer less than or equal to Tr, W (r) denotes Standard

Brownian Motion, and “⇒” denotes weak convergence in probability measure. I will show

that if either the dth difference (ut = ∆
dyt) satisfies (19) or if the deviation from a dth-order

deterministic polynomial in time (ut = yt − δ0 − δ1t − δ2t
2 − · · · − δdt

d) satisfies (19), then

we can remove the nonstationary component with the same simple regression.19

18 Stock (1994, p. 2749) demonstrated that an example of sufficient conditions that imply (19) is that
ut = µ+

�
∞

j=0 ψjηt where ηt is a martingale difference sequence with variance σ2 and finite fourth moment,

ψ(1) �= 0, and
�
∞

j=0 j|ψj | <∞, in which case ω2 in (19) is given by σ2[ψ(1)]2. Alternatively, Phillips (1987,
Lemma 2.2) derived (19) from primitive moment and mixing conditions on ut.

19 The reason to state these as two separate possibilities is that if the nonstationarity is purely deter-
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Proposition 4. Suppose that either ut = ∆
dyt satisfies (19) or that ut = yt−

�d
j=0 δjt

j

with δd �= 0 satisfies (19) for some unknown d. Let xt = (yt, yt−1, ..., yt−p+1, 1)
′ for some

p ≥ d and consider OLS estimation of yt+h = x′tβ + vt+h for t = 1, ..., T with estimated

coefficient

β̂ =
��T

j=1 xtx
′
t

�−1 ��T
j=1 xtyt+h

�
. (20)

If p = d, the OLS residuals yt+h−x′tβ̂ converge to the variable w
(h)
t −E(w

(h)
t ) in Proposition

3. If p > d, the OLS residuals converge to the residuals from a population linear projection

of w
(h)
t on (∆dyt,∆

dyt−1, ...,∆
dyt−p+d+1, 1)

′.

Proposition 4 establishes that if we estimate an OLS regression of yt+h on a constant and

the p = 4 most recent values of y as of date t,

yt+h = β0 + β1yt + β2yt−1 + β3yt−2 + β4yt−3 + vt+h, (21)

the residuals

v̂t+h = yt+h − β̂0 − β̂1yt − β̂2yt−1 − β̂3yt−2 − β̂4yt−3 (22)

offer a reasonable way to remove an unknown trend for a broad class of underlying processes.

Like the HP filter, this will take out the trend provided that fourth differences of yt are

stationary. But whereas the HP filter imposes all 4 unit roots in equation (16), the sample

regression would only use 4 differences if it is warranted by observed features of the data.

The proposed procedure has a number of other advantages over HP. First, any finding that

ministic, then the dth differences will not satisfy the Functional Central Limit Theorem. For example, if
yt = γ

0
+ γ

1
t + εt with εt white noise, then ∆yt = γ

1
+ ψ(L)εt for ψ(L) = 1 − L and ψ(1) = 0. Of

course when ut = ∆dyt satisfies (19) with µ �= 0, the series yt has both dth-order stochastic as well as
dth-order deterministic polynomial trends, so that case, along with pure stochastic trends (µ = 0) and pure
deterministic trends are all allowed by Proposition 4.
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v̂t+h predicts some other variable xt+h+j represents a true ability of y to predict x rather than

an artifact of the way we chose to detrend y, by virtue of the fact that v̂t+h is a one-sided

filter. Second unlike the HP cyclical series ct+h, the value of v̂t+h will by construction be

difficult to predict at time t. If we find such predictability, it tells us something about the

true data-generating process, for example, that x Granger-causes y. Third, the value of v̂t+h

is a model-free and essentially assumption-free summary of the data. Regardless of how the

data may have been generated, as long as (1−L)dyt is covariance stationary for some d ≤ 4,

there exists a population linear projection of yt+h on (yt, yt−1, yt−2, yt−3, 1)
′. That projection

is a characteristic of the data-generating process that can be used to define what we mean

by the cyclical component of the process and can be consistently estimated from the data.

Given a dynamic stochastic general equilibrium or any other theoretical model that would

imply an I(d) process, we could calculate this population characteristic of the model and

estimate it consistently from the data.

Given the literature cited at the beginning of Section 3 it is instructive to examine the

consequences if this procedure were applied to a random walk: yt = yt−1 + εt. In this case,

d = 1 and w
(1)
t+h = εt+h + εt+h−1 + · · · + εt+1. For large samples, the OLS estimates of (21)

converge to β1 = 1 and all other βj = 0, and the resulting filtered series would simply be

the difference

ṽt+h = yt+h − yt, (23)

that is, how much the series changes over an h = 8-quarter horizon, or equivalently the sum

of the observed changes over h periods. Note that for h = 8 the filter 1− Lh wipes out any
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cycles with frequency of exactly one year, and thus is taking out both the long-run trend as

well as any strictly seasonal components.20 This also fits with the common understanding

of what we would mean by the cyclical component. Because the simple filter (23) does not

require estimation of any parameters, it can also be used as a quick robustness check for

concerns about the small-sample applicability of the asymptotic claims in Proposition 4, as

will be illustrated in the applications below.

Another instructive example is a pure deterministic time trend of order d = 1: yt =

δ0 + δ1t + εt for εt white noise. In this case ∆yt = δ1 + εt − εt−1 is stationary and

w
(h)
t = ∆yt+1 + · · · + ∆yt+h = δ1h + εt+h − εt is also stationary for any h. I show in the

appendix that for this case the limiting coefficients on yt, .., yt−p+1 described by Proposition

4 are each given by 1/p and the implied trend for yt+h is

δ0 + δ1(t+ h) + p−1(εt + εt−1 + · · ·+ εt−p+1). (24)

Even for p = 1 this is not a bad estimate and for p = 4 should not differ much from the true

trend δ0 + δ1(t + h). Again regardless of the choice of p, the difference between yt+h and

(24) will be stationary.

A third instructive example is when yt is an element of a theoretical dynamic stochastic

general equilibrium model that is stationary around some steady-state value µ. If the effects

of shocks in the theoretical model die out after h periods, then the linear projection (21)

in the theoretical model is characterized by β0 = µ and β1 = β2 = β3 = β4 = 0. In other

20 As in Hamilton (1994, pp. 171-172), the filter 1−L8 has power transfer function (1−e−8iω)(1−e8iω) =
2−2 cos(8ω) which is zero at ω = 0, π/4, π/2, 3π/4, π and thus eliminates not only cycles at the zero frequency
but also cycles that repeat themselves every 8,4,8/3, or 2 quarters. See also Hamilton (1994, Figures 6.5
and 6.6).
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words, the component vt+h is exactly the deviation from the steady state. If shocks have not

completely died out after h periods, then part of what is being labeled trend by this method

would include the components of shocks that persist longer than h periods. But for any

value of h, the linear projection is a well-defined population characteristic of the theoretical

stationary model, and there is an exactly analogous object one can calculate in the possibly

nonstationary observed data. The method thus offers a way to make an apples-to-apples

comparison of theory with data of the sort that users of the HP filter often desire, but which

the HP filter itself will always fail to deliver.

Figure 5 shows the results when this approach is applied to data on U.S. total employ-

ment. The raw seasonally adjusted data (yt) are plotted in the upper left panel. The

residuals from regression (21) estimated for these data are plotted in black in the lower-left

panel, while the 8-lag difference (23) is in red. The latter two series behave very similarly

in this case, as indeed I have found for most other applications. The primary difference is

that the regression residual has sample mean zero by construction (by virtue of the inclusion

of a constant term in the regression) whereas the average value of (23) will be the average

growth rate over a two-year period.

One interesting observation is that the cyclical component of employment starts to decline

significantly before the NBER business cycle peak for essentially every recession. Note that

this inference from Figure 5 is summarizing a true feature of the data and is not an artifact

of any forward-looking aspect of the filter.

The right panels of Figure 5 show what happens when the same procedure is applied
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to seasonally unadjusted data. The raw data themselves exhibit a very striking seasonal

pattern, as seen in the top right panel. Notwithstanding, the cyclical factor inferred from

seasonally unadjusted data (bottom right panel) is almost indistinguishable from that derived

from seasonally adjusted data, confirming that this approach is robust to methods of seasonal

adjustment.

Figure 6 applies the method to the major components of the U.S. national income and

product accounts. Investment spending is more cyclically volatile than GDP, while con-

sumption spending is less so. Imports fall significantly during recessions, reflecting lower

spending by U.S. residents on imported goods, and exports substantially less so, reflecting

the fact that international downturns are often decoupled from those in the U.S. Detrended

government spending is dominated by war-related expenditures— the Korean War in the

early 1950s, the Vietnam War in the 1970s, and the Reagan military build-up in the 1980s.

Table 2 reports the standard deviation of the cyclical component of each of these and

a number of other series, along with their correlation with the cyclical component of GDP.

We find very little cyclical correlation between output and prices.21 Both the nominal fed

funds rate and the ex ante real fed funds rate (the latter based on the measure in Hamilton,

et al., 2015) are modestly procyclical, whereas the 10-year nominal interest rate is not.

21 Identifying the sign of this correlation was one of the primary interests of den Haan’s (2000) application
of a related methodology. In contrast to the results in Table 2, he found a positive correlation between the
cyclical components of these series. I attribute the difference to differences in sample period.
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7 Conclusion.

The HP filter will construct a stationary component from any I(4) series, but at a great

cost. It introduces spurious dynamic relations that are purely an artifact of the filter

and have no basis in the true data-generating process, and there exists no plausible data-

generating process for which common popular practice would provide an optimal decom-

position into trend and cycle. There is an alternative approach that can also isolate a

stationary component from any I(4) series but that preserves the underlying dynamic rela-

tions and consistently estimates well defined population characteristics for a broad class of

possible data-generating processes.
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Appendix.

Proof of Proposition 1.

The assumptions about ct, vt, and the initial states can be written formally as

E(vt) = E(ct) = 0 (25)

E






vt

ct






�

vt−j ct−j



=











σ2v 0

0 σ2c




 if j = 0

0 otherwise

(26)

and for the initial conditions we assume

E(g0) = E(g−1) = 0 (27)

E






g0

g−1






�

g0 g−1



= C0 (28)

E






vt

ct






�

g0 g−1



= 0 for t = 1, ...T. (29)

I first establish that under (5)-(6) and (25)-(29),

(Q′Q)E(gg′)H ′ → σ2vH
′ (30)

as C−1
0 → 0. To do so write (6) as Qg = v for v = (vT , vT−1, ..., v1) and Q0g = v0 for v0 a

(2× 1) vector with mean 0 and variance σ2vI2. Also from (29), v0 is uncorrelated with v and

Q0
(2×T̃ )

=

�

0
(2×T )

P−1
0

(2×2)

�
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where P0 is the Cholesky factor of C0 (P0P
′
0 = C0). Stacking these,






Q

Q0




 g =






v

v0






so

E(gg′) = σ2v






Q

Q0






−1

�

Q′ Q′
0


−1

�

Q′ Q′
0








Q

Q0




E(gg′) = (Q′Q+Q′

0Q0)E(gg
′) = σ2vIT̃

(Q′Q)E(gg′)H ′ = σ2vH
′ − (Q′

0Q0)E(gg
′)H ′

which goes to σ2vH
′ as P−1

0 → 0, as claimed in (30).

Notice next from

y
(T×1)

= H
(T×T̃ )

g
(T̃×1)

+ c
(T×1)

that E(yy′) = HE(gg′)H ′ + σ2cIT and E(gy′) = E(gg′)H ′ + E(gc′) = E(gg′)H ′. Hence

Ã = E(gy′)[E(yy′)]−1 (31)

= E(gg′)H ′[HE(gg′)H ′ + σ2cIT ]
−1.

Combining (2) and (31),

(H ′H + λQ′Q)(A∗ − Ã)[HE(gg′)H ′ + σ2cIT ]

= H ′[HE(gg′)H ′ + σ2cIT ]− (H
′H + λQ′Q)E(gg′)H ′ (32)

= H ′σ2c − (σ
2
c/σ

2
v)(Q

′Q)E(gg′)H ′
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which from (30) goes to 0 asC−1
0 → 0. Since the matrices premultiplying and postmultiplying

the left side of (32) are of full rank, this establishes that A∗ = Ã as claimed.

Proof of Proposition 2. Let θ1, θ2, θ3, θ4 be the roots satisfying F (θi) = 0. As noted

by King and Rebelo (1989), since λ > 0, F (z) in (9) is positive for all real z meaning that

θi comprise two pairs of complex conjugates. Since F (z) = F (z−1), if θi is a root, then

so is θ−1i . Thus the values of θi are given by Reim, Re−im, R−1eim, and R−1e−im for some

fixed R and m; one pair is inside the unit circle and the other is outside. Noting that the

coefficients on z2 and z−2 in F (z) are both λ, it follows that F (z) can be written

F (z) = λ(1− θ1z)(1− θ2z)(θ
−1
1 − z−1)(θ−12 − z−1).

From the symmetry of F (z) in z and z−1 we can without loss of generality normalize θ1 and

θ2 to be inside the unit circle and write

F (z) =
λ

θ1θ2
(1− θ1z)(1− θ2z)(1− θ1z

−1)(1− θ2z
−1).

Define (1− φ1z − φ2z
2) = (1− θ1z)(1− θ2z), namely φ1 is the real number θ1 + θ2 and φ2

is the negative real number −θ1θ2. Note also that the roots of (1 − φ1z − φ2z
2) = 0 are

the complex conjugates θ−11 and θ−12 , which are both outside the unit circle. This gives the

bounds on φ1 and φ2 stated in Proposition 2 as in Hamilton (1994, Figure 1.5), and allows

us to write

F (z) =
λ

−φ2
(1− φ1z − φ2z

2)(1− φ1z
−1 − φ2z

−2). (33)

Evaluating (9) and (33) at z = 1 gives

F (1) = 1 = (1− φ1 − φ2)
2λ/(−φ2) (34)
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as claimed in (13), Likewise evaluating (9) and (33) at z = −1 gives

F (−1) = 1 + 16λ = (1 + φ1 − φ2)
2λ/(−φ2). (35)

Taking the difference between these last two equations establishes (4φ1 − 4φ1φ2)λ/(−φ2) =

16λ or φ1(1− φ2) = −4φ2 as claimed in (12). Note that since φ2 < 0 (required by complex

roots), from (12) φ1 > 0.

I next establish that

1

(1− φ1z − φ2z
2)(1− φ1z

−1 − φ2z
−2)

=
C0 + C1z

1− φ1z − φ2z
2
+

C0 + C1z
−1

1− φ1z
−1 − φ2z

−2
+B0. (36)

Combining terms on the right-hand side over a common denominator shows that (36) will

hold provided

1 = (C0 + C1z)(1− φ1z
−1 − φ2z

−2) + (C0 + C1z
−1)(1− φ1z

1 − φ2z
2)

+B0(1− φ1z − φ2z
2)(1− φ1z

−1 − φ2z
−2)

= [2C0 − 2C1φ1 +B0(1 + φ21 + φ22)]

+[C1 − C0φ1 − C1φ2 −B0φ1 +B0φ1φ2](z + z−1)

−[C0φ2 +B0φ2](z
2 + z−2).

The coefficient on (z2+ z−2) will be zero provided B0 = −C0. Substituting this back in, we

then require

1 = [C0 − 2C1φ1 − C0φ
2
1 − C0φ

2
2] + [C1 − C1φ2 − C0φ1φ2](z + z−1). (37)

The coefficient on (z + z−1) will be zero provided

C1 =
C0φ1φ2
1− φ2

= −C0φ
2
1/4 (38)
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where the last equation made use of (12). Substituting (38) into (37), we see that (36) will

be true provided we set

1 = C0(1− φ21 − φ22 + φ31/2).

Combining these results we conclude that

1

(1− φ1z − φ2z
2)(1− φ1z

−1 − φ2z
−2)

= C0

�
1− (φ21/4)z

1− φ1z − φ2z
2
+

1− (φ21/4)z
−1

1− φ1z
−1 − φ2z

−2
− 1



.

From (33) we then obtain (10) with C = −C0φ2/λ as claimed in (14).

To derive (11), recall from Hamilton (1994, pp. 16 and 33) that

1

1− φ1z − φ2z
2
=
�∞

j=0R
j[2α cos(mj) + 2β sin(mj)]zj. (39)

We know that the coefficient on zj for j = 0 must be 1, requiring [2α cos(0) + 2β sin(0)] = 1

or α = 1/2. We likewise know that the coefficient on zj for j = 1 is given by φ1, so

R[cos(m)+2β sin(m)] = φ1, which from (15) gives R2β sin(m) = φ1/2 or 2β sin(m) = cos(m)

so 2β = cot(m). Substituting these values for α and β into (39) gives (11).

Proof of Proposition 3. Recall the identity

yt+h = yt +
�h

j=1∆yt+j (40)

which immediately gives the result of Proposition 3 for the case d = 1 as stated in (17). We

likewise have the identity

∆yt+j = ∆yt +
�j

s=1∆
2yt+s. (41)

Substituting (41) into (40) gives

yt+h = yt +∆yt
�h

j=1 1 + w
(h)
t
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for w
(h)
t =

�h
j=1

�j
s=1∆

2yt+s as claimed in (18) for the case d = 2. We can proceed

recursively using the identity ∆kyt+s = ∆kyt +
�s

r=1∆
k+1yt+r and substituting into the

preceding expression. For any d the resulting w(h)t is a finite sum of stationary variables

and therefore is itself stationary.

Proof of Proposition 4. Note that the fitted values and residuals implied by the coef-

ficients in (20) are numerically identical to those if we were to do the (infeasible) regression

yt+h = x̃′tα+ vt+h for

x̃t = (ũt, ũt−1, ..., ũt−p+d+1, 1,∆
d−1yt,∆

d−2yt, ...,∆yt, yt)
′

with ũt = ∆dyt − µ. The latter regression is infeasible because we do not know the true

values of µ and d. But because the fitted values are the same, once we find the properties of

the second regression, we will also know the properties of the first. For example, for d = 2

and p = 4,

x̃t =






1 −2 1 0 −µ

0 1 −2 1 µ

0 0 0 0 1

1 −1 0 0 0

1 0 0 0 0











yt

yt−1

yt−2

yt−3

1






≡ Hxt (42)

and α̂ = (
�

Hxtx
′
tH

′)−1 (
�

Hxtyt+h) so β̂ = H ′α̂ for every sample. When p = d we define

the (p+1)×1 vector as x̃t = (1,∆
d−1yt,∆

d−2yt, ...,∆yt, yt)
′, that is, none of the ũt−j variables

appear in x̃t when p = d.

Define q to be the (p + 1) × 1 vector q = (0, ..., 0, E(w
(h)
t ), κ

(d)
h , κ

(d−1)
h , ..., κ

(1)
h )

′, so that
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w̃
(h)
t = w

(h)
t −E(w

(h)
t ) = yt+h − x̃′tq and

α̂ = (
�

x̃tx̃
′
t)
−1�

x̃t(x̃
′
tq + w̃

(h)
t )

= q + (
�

x̃tx̃
′
t)
−1�

x̃tw̃
(h)
t . (43)

We first consider the case when (19) holds for ∆dyt when there is further no drift and

the initial value for all of the difference processes is zero, namely, the case when µ = 0 and

∆d−jyt = ξ
(j)
t where ξ

(1)
t =

�t
j=1 ũj and ξ

(s)
t =

�t
j=1 ξ

(s−1)
j for s = 2, 3, ..., d. For this case

define

ΥT =






T 1/2Ip−d+1 0 0 · · · 0

0 T 0 · · · 0

0 0 T 2 · · · 0

...
...

... · · ·
...

0 0 0 0 T d






. (44)

Adapting the approach in Sims, Stock and Watson (1990), we have from (43) that

T−1/2ΥT (α̂− q) = T−1/2ΥT (
�

x̃tx̃
′
t)
−1�

x̃tw̃
(h)
t

= T−1/2
�
Υ−1T

�
x̃tx̃

′
tΥ

−1
T

�−1
Υ−1T

�
x̃tw̃

(h)
t

=
�
Υ−1T

�
x̃tx̃

′
tΥ

−1
T

�−1 �
T−1/2Υ−1T

�
x̃tw̃

(h)
t

�
. (45)
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Consider first the last term in (45):

T−1/2Υ−1T
�

x̃tw̃
(h)
t =






T−1
�

ũtw̃
(h)
t

...

T−1
�

ũt−p+d+1w̃
(h)
t

T−1
�

w̃
(h)
t

T−3/2
�

ξ
(1)
t w̃

(h)
t

T−5/2
�

ξ(2)t w̃(h)t

...

T−d−1/2
�

ξ
(d)
t w̃

(h)
t






. (46)

The first p − d terms are just the sample means of stationary variables, which by the Law

of Large Numbers converge in probability to their expectation E(ũt−jw̃
(h)
t ). Term p− d+ 1

likewise converges to E(w̃
(h)
t ) = 0. Calculations analogous to those behind Lemma 1(e)

in Sims, Stock and Watson (1990) show that the last d terms in (46) also all converge in

probability to zero.22

Turning next to the first term in (45), the upper-left (p−d)×(p−d) block ofΥ−1T
�

x̃tx̃
′
tΥ

−1
T

is characterized by





T−1
�

ũ2t · · · T−1
�

ũtũt−p+d+1

... · · ·
...

T−1
�

ũt−p+d+1ũt · · · T−1
�

ũ2t−p+d+1






p
→






γ0 · · · γp−d−1

... · · ·
...

γp−d−1 · · · γ0






for γj = E(ũtũt−j). From Sims, Stock and Watson Lemma 1(a) and 1(b), the lower-right

22 That is, before multiplying by T−1/2 the terms are all Op(1); for similar calculations see Lemma 1(b)
in Choi (1993) and Proposition 17.3(e) in Hamilton (1994).
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(d+ 1)× (d+ 1) block satisfies






1 T−3/2
�

ξ
(1)
t T−5/2

�
ξ
(2)
t · · · T−d−1/2

�
ξ
(d)
t

T−3/2
�

ξ
(1)
t T−2

�
[ξ
(1)
t ]

2 T−3
�

ξ
(1)
t ξ

(2)
t · · · T−d−1

�
ξ
(1)
t ξ

(d)
t

T−5/2
�

ξ
(2)
t T−3

�
ξ
(2)
t ξ

(1)
t T−4

�
[ξ
(2)
t ]

2 · · · T−d−2
�

ξ
(2)
t ξ

(d)
t

...
...

... · · ·
...

T−d−1/2
�

ξ
(d)
t T−d−1

�
ξ
(d)
t ξ

(1)
t T−d−2

�
ξ
(d)
t ξ

(2)
t · · · T−2d

�
[ξ
(d)
t ]

2






⇒






1 ω
� 1
0
W (1)(r)dr ω

� 1
0
W (2)(r)dr · · · ω

� 1
0
W (d)(r)dr

ω
� 1
0
W (1)(r)dr ω2

� 1
0
[W (1)(r)]2dr ω2

� 1
0
W (1)(r)W (2)(r)dr · · · ω2

� 1
0
W (1)(r)W (d)(r)dr

ω
� 1
0
W (2)(r)dr ω2

� 1
0
W (2)(r)W (1)(r)dr ω2

� 1
0
[W (2)(r)]2dr · · · ω2

� 1
0
W (2)(r)W (d)(r)dr

...
...

... · · ·
...

ω
� 1
0
W (d)(r)dr ω2

� 1
0
W (d)(r)W (1)(r)dr ω2

� 1
0
W (d)(r)W (2)(r)dr · · · ω2

� 1
0
[W (d)(r)]2dr






where W (1)(r) denotes Standard Brownian Motion and W (j)(r) =
� r
0
W (j−1)(s)ds. For the

off-diagonal block of Υ−1T
�

x̃tx̃
′
tΥ

−1
T we see using calculations analogous to Sims, Stock and

Watson’s Lemma 1(e) that






T−1
�

ũt · · · T−1
�

ũt−p+d+1

T−3/2
�

ξ
(1)
t ũt · · · T−3/2

�
ξ
(1)
t ũt−p+d+1

T−5/2
�

ξ
(2)
t ũt · · · T−5/2

�
ξ
(2)
t ũt−p+d+1

... · · ·
...

T−d−1/2
�

ξ
(d)
t ũt · · · T−d−1/2

�
ξ
(d)
t ũt−p+d+1






p
→ 0.
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Bringing all these results together, it follows that

T−1/2ΥT (α̂− q)
p
→






g

0




 (47)

g =






γ0 · · · γp−d−1

... · · ·
...

γp−d−1 · · · γ0






−1 




E(ũtw̃
(h)
t )

...

E(ũt−p+d+1w̃
(h)
t )






.

Note that g corresponds to the coefficients from a population linear projection of w̃
(h)
t on

(ũt, ũt−1, ..., ũt−p+d+1)
′.

Writing out (47) explicitly using (44) gives






Ip−d+1 0 0 · · · 0

0 T 1/2 0 · · · 0

0 0 T 3/2 · · · 0

...
...

... · · ·
...

0 0 0 0 T d−1/2






(α̂− q)
p
→






g

0




 .

This equation shows that the first p−d elements of α̂ converge to the stationary population

projection coefficients g, the p−d+1 term to E(w
(h)
t ), and the last d elements of α̂ converge

to the κ
(j)
h terms in q. Indeed, the latter estimates are superconsistent— they still converge

to the terms in q even when multiplied by some positive power of T.

Taking again the p = 4 and d = 2 example (42), the coefficients β̂ from the actual
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regression of yt+h on (yt, yt−1, yt−2, yt−3, 1)
′ have plim

β̂
p
→






1 0 0 1 1

−2 1 0 −1 0

1 −2 0 0 0

0 1 0 0 0

−µ −µ 1 0 0











g1

g2

µh(h+ 1)/2

h

1






=






g1 + h+ 1

g2 − 2g1 − h

g1 − 2g2

g2

µ{[h(h+ 1)/2]− g1 − g2}






.

The above derivation assumed µ = 0 so that there was no drift in ∆dyt. If instead we had

µ �= 0, then ∆d−1yt =
�t

s=1 us =
�t

s=1 ũs+ tµ = ξ(1)t + tµ, which is dominated for large t by

the drift term tµ rather than the random walk term ξ
(1)
t , and∆d−jyt = ξ

(j)
t +(1/j)t

jµ+op(t
j).

In this case we would simply replace ΥT in the above derivations with

Υ̃T =






T 1/2Ip−d+1 0 0 · · · 0

0 T 3/2 0 · · · 0

0 0 T 5/2 · · · 0

...
...

... · · ·
...

0 0 0 0 T d+1/2






. (48)

We would then arrive at the identical conclusion (47) this time using results (a), (c), and

(g) from Sims, Stock and Watson Lemma 1.

Alternatively, adding a nonzero initial condition, e.g. replacing ξ
(1)
t with ξ

(1)
t + ξ

(1)
0 for

ξ
(1)
0 any fixed constant produces a term that is still dominated asymptotically by ξ

(1)
t , and

as in Park and Phillips (1989), the original convergence claims again all go through.

Finally, the derivations are very similar for the case of purely deterministic time trends,
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yt =
�d

j=0 δjt
j + ut. For this case we have µ = E(∆dyt) = δd and

x̃t =






∆dut − δd

...

∆dut−p+d+1 − δd

1

�1
j=0 δ

(d−1)
j tj +∆d−1ut

...

�d−1
j=0 δ

(1)
j tj +∆ut

�d
j=0 δjt

j + ut






where
�d−s

j=0 δ
(s)
j tj =

�d−s+1
j=0 δ(s−1)j tj −

�d−s+1
j=0 δ(s−1)j (t − 1)j and δ(0)j = δj . Then for Υ̃T as

in (48), we again have

T−1/2Υ̃−1T
�

x̃tw̃
(h)
t

p
→






E(∆dut − δd)w̃t+h

...

E(∆dut−p+d+1 − δd)w̃t+h

0

...

0






.
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The matrix Υ̃−1T
�

x̃tx̃
′
tΥ̃

−1
T likewise has a block-diagonal plim, giving us again

α̂
p
→






g

E(w
(h)
t )

κ
(d)
h

...

κ
(1)
h






(49)

for g the coefficients of the population linear projection of w̃t+h on (∆
dyt−δd, ...,∆

dyt−p+d+1−

δd)
′.
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Derivation of equation (24).

For σ2 the variance of εt, w̃
(h)
t = εt+h − εt, and vt = εt − εt−1 we have

g =






E(v2t ) E(vtvt−1) E(vtvt−2) · · · E(vtvt−p+2)

E(vt−1vt) E(v2t−1) E(vt−1vt−2) · · · E(vt−1vt−p+2)

E(vt−2vt) E(vt−2vt−1) E(v2t−2) · · · E(vt−2vt−p+2)

...
...

... · · ·
...

E(vt−p+2vt) E(vt−p+2vt−1) E(vt−p+2vt−2) · · · E(v2t−p+2)






−1 




E[vt(εt+h − εt)]

E[vt−1(εt+h − εt)]

E[vt−2(εt+h − εt)]

...

E[vt−p+2(εt+h − εt)






=






σ2






2 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1 2 · · · 0

...
...

... · · ·
...

0 0 0 · · · 2











−1 




−σ2

0

0

...

0






=






−(p− 1)/p

−(p− 2)/p

−(p− 3)/p

...

−1/p






where the last equation can be verified by premultiplying by






2 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1 2 · · · 0

...
...

... · · ·
...

0 0 0 · · · 2






and confirming that the resulting vector is indeed (−1, 0, ..., 0)′. Hence the plim in (49) for
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this example is

α̂
p
→






−(p− 1)/p

−(p− 2)/p

...

−1/p

hδ1

1






.

Also for this case we have

H =






1 −1 0 · · · 0 0 −δ1

0 1 −1 · · · 0 0 −δ1

0 0 1 · · · 0 0 −δ1

...
...

... · · ·
...

...
...

0 0 0 · · · 1 −1 −δ1

0 0 0 · · · 0 0 1

1 0 0 · · · 0 0 0






so β̂ = H ′α̂ has plim






1/p

1/p

...

1/p

δ1[h+ (p− 1)/p+ (p− 2)/p+ · · ·+ 1/p]





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implying a fitted value

β′xt = (1/p)(yt + yt−1 + · · ·+ yt−p+1) + δ1[h+ 1/p+ 2/p+ · · ·+ (p− 1)/p]

= δ1h+ (1/p){yt + [yt−1 + δ1] + [yt−2 + 2δ1] + · · ·+ [yt−p+1 + (p− 1)δ1]}

= δ1h+ (1/p){[δ0 + δ1t+ εt] + [δ0 + δ1t+ εt−1] + · · ·+ [δ0 + δ1t+ εt−p+1]}

= δ0 + δ1(t+ h) + (1/p)(εt + εt−1 + · · ·+ εt−p+1).
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Table 1. Maximum likelihood estimates of parameters of state-space formalization of the HP filter for 

assorted quarterly macroeconomic series. 

  σ2
c σ2

v λ 

GDP 0.115 0.468 0.245 

Consumption 0.163 0.174 0.940 

Investment 4.187 12.196 0.343 

Exports 5.818 3.341 1.741 

Imports 4.423 4.769 0.927 

Government spending 0.221 1.160 0.191 

Employment 0.006 0.250 0.023 

Unemployment rate 0.014 0.092 0.152 

GDP Deflator 0.018 0.081 0.216 

S&P 500 21.284 15.186 1.402 

10-year Treasury yield 0.135 0.054 2.486 

Fed Funds Rate 0.633 0.116 5.458 

Real Rate 0.875 0.091 9.596 
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Table 2. Standard deviation of cyclical component and correlation with cyclical component of GDP for 

assorted macroeconomic series. 

  Regression Residuals Random walk Sample 

  St. Dev. GDP Corr. St. Dev. GDP Corr.  

GDP 3.38 1.00 3.69 1.00 1947:1-2016:1 

Consumption 2.85 0.79 3.04 0.82 1947:1-2016:1 

Investment 13.19 0.84 13.74 0.80 1947:1-2016:1 

Exports 10.77 0.33 11.33 0.30 1947:1-2016:1 

Imports 9.79 0.77 9.98 0.75 1947:1-2016:1 

Government spending 7.13 0.31 8.60 0.38 1947:1-2016:1 

Employment 3.09 0.85 3.32 0.85 1947:1-2016:2 

Unemployment rate 1.44 -0.81 1.72 -0.79 1948:1-2016:2 

GDP Deflator 2.99 0.04 4.11 -0.13 1947:1-2016:1 

S&P 500 21.80 0.41 22.08 0.38 1950:1-2016:2 

10-year Treasury yield 1.46 -0.05 1.51 0.08 1953:2-2016:2 

Fed funds rate 2.78 0.33 3.03 0.40 1954:3-2016:2 

Real rate 2.25 0.39 2.60 0.42 1958:1-2014:3 

 

Notes to Table 2. Filtered series were based on the full sample available for that variable, while 

correlations were calculated using the subsample of overlapping values for the two indicators.  Note 

that the regression residuals lose the first 11 observations and the baseline calculations lose the first 8 

observations.  
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Figure 1. Values for φ1 and φ2 implied by different values of λ. 
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Figure 2. Autocorrelations and cross-correlations for first-difference of stock prices and real 

consumption spending.  

 

Notes to Figure 2. Upper left: autocorrelations of log growth rate of end-of-quarter value for S&P 500.  

Upper right: autocorrelations of log growth rate of real consumption spending.  Lower panels: cross 

correlations. 

 

 

Figure 3. Autocorrelations and cross-correlations for HP cyclical component of stock prices and real 

consumption spending.

 

Notes to Figure 3. Upper left: autocorrelations of HP cycle for log of end-of-quarter value for S&P 500.  

Upper right: autocorrelations of HP cycle for log of real consumption spending.  Lower panels: cross 

correlations. 
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Figure 4. Comparison of one-sided and two-sided HP filters.  

 

Notes to Figure 4. Red line in both panels plots 100 times natural log of S&P 500 stock price index.  The 

black curve in the top panel plots the HP estimate of trend as inferred using the usual two-sided filter 

(calculated using the Kalman smoother for the state-space model in Proposition 1), whereas the black 

curve in the bottom panel plots trend from a one-sided HP filter (calculated using the Kalman filter for 

the same model).  Shaded regions denote NBER recession dates. 
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Figure 5. Regression and 8-quarter-change filters applied to seasonally adjusted and seasonally 

unadjusted employment data. 

 

Notes to Figure 5. Upper left: 100 times the log of end-of-quarter values for seasonally adjusted 

nonfarm payrolls.  Lower left: black plots 0 1 8 2 9 3 10 4 11
ˆ ˆ ˆ ˆ ˆ

t t t t ty y y y yβ β β β β− − − −− − − − −  as a function of t    

while red plots 8.t ty y −−   Right panels show results when the identical procedure is applied instead to 

seasonally unadjusted data. 
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Figure 6. Results of applying regression (black) and 8-quarter-change (red) filters to 100 times the log of 

components of U.S. national income and product accounts.
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