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Abstract

Over 100,000 refugees are permanently resettled from refugee camps to hosting
countries every year. Nevertheless, refugee resettlement processes in most countries
are ad hoc, accounting for neither the priorities of hosting communities nor the prefer-
ences of refugees themselves. Building on models from two-sided matching theory, we
introduce a new framework for matching with multidimensional constraints that mod-
els refugee families’ needs for multiple units of different services, as well as the service
capacities of local areas. We propose several refugee resettlement mechanisms that can
be used by hosting countries under various institutional and informational constraints.
Our mechanisms can improve match efficiency, incentivize refugees to report where
they would like to settle, and respect priorities of local areas thereby encouraging them
to accept more refugees overall. Beyond the refugee resettlement context, our model
has applications ranging from the allocation of daycare slots to the incorporation of
complex diversity constraints in public school assignment.
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1 Introduction

By the end of 2015, there were 65.3 million people displaced by conflict around the world—

the highest level ever recorded (UNHCR, 2016). Over 16 million of these forcibly displaced

people are deemed to be refugees under the mandate of the United Nations High Commis-

sion for Refugees (UNHCR). Half of these refugees come from just three countries: Syria,

Afghanistan, and Somalia.1

In recent years, following escalating conflict in the Middle East, the influx of refugees

into Europe has drastically increased. In 2015, a million people arrived by sea in Greece and

Italy, seeking asylum in Europe (International Organization for Migration, 2015). Germany

received almost 450,000 asylum applications in 2015 compared to 175,000 applications in 2014

(Eurostat, 2016). Given the unprecedented current scale of refugee arrival, existing policies

designed to manage refugee flows have effectively collapsed. The Dublin III regulation—

requiring that “irregular” refugees must be processed in the first European Union (EU)

country in which they arrive—has effectively been abandoned.2 Consequently, numerous

countries within the EU and elsewhere have begun to reconsider the systems they use to

register, process, and allocate refugees to local areas.3 Economists, refugee specialists, and

policymakers are developing a number of promising solutions for sharing the burden of refugee

resettlement across countries, including tradeable quota systems (Schuck, 1997; Moraga and

1In international law, the term refugee was defined by the 1951 UN Convention Relating to the Status of
Refugees to mean anyone who has left his or her home owing “to a well-founded fear of persecution because
of his/her race, religion, nationality, membership in a particular social group, or political opinion.” More
recently, the definition has been expanded to include those fleeing natural and man-made disasters. Refugee
status is envisioned to be temporary, but the majority of refugees spend years in camps and temporary
settlements in developing countries without residence rights or work permits. There are also 5.2 million
Palestinian refugees registered by the United Nations Relief and Works Agency for Palestine Refugees in the
Near East (UNRWA). An asylum seeker, on the other hand, is someone whose claim for refugee protection
has not been evaluated by any country or by the UNHCR. Those who arrive during a mass movement of
people due to conflict are referred to as prima facie refugees. In this paper, we will use the term “refugee” to
refer to any person who is explicitly or implicitly granted legal sanctuary in another country for any reason.

2Article 13(1) of the EU Parliament and Council Regulation 604/2013 of 26 June 2013 states that “Where
it is established, on the basis of proof or circumstantial evidence [. . . ], that an applicant has irregularly crossed
the border into a Member State by land, sea or air having come from a third country, the Member State thus
entered shall be responsible for examining the application for international protection. That responsibility
shall cease 12 months after the date on which the irregular border crossing took place.” But on 21 August
2015 it was reported that “Germany’s Federal Office for Migration and Refugees (BAMF) suspended the
otherwise obligatory examination which tests whether asylum seekers first entered the EU in another member
state and whether they should be returned to that country” (Dernbach, 2015).

3Most asylum seekers are held in detention centers until their refugee status applications have been
approved. If a refugee’s asylum claim is approved, that refugee is granted formal (i.e., legal) refugee status
and released. (If a refugee’s asylum claim is not approved, that refugee is usually deported.) Many countries
provide asylum seekers who have been granted refugee status with accommodation and welfare support, via
a process known as “dispersal”. The insights in this paper can also be applied directly to refugee dispersal
schemes.
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Rapoport, 2014).

The UNHCR estimates that around one million refugees will not be able return to their

country safely in the future.4 These are some of the most vulnerable refugees in the world:

a third of them are fleeing persecution, a quarter are survivors of torture, and a tenth are

women and girls at risk of violence (UNHCR, 2016). UNHCR deems these refugees eligible

for resettlement in states that agree to give them permanent residence.5 Most resettlement

places are provided by the United States, Canada, Australia, and the Nordic countries. But,

in 2015, only 107,000 refugees were resettled (UNHCR, 2016).6 In fact, in any given year

over the past decade only around ten percent of refugees who are in need of resettlement

were actually resettled.

There is, therefore, a huge shortage of resettlement places. Yet, despite this shortage, a

recent UNHCR report notes that since 2009:

“. . . the total annual number of resettlement country places. . . were not fully

utilized” (UNHCR, 2015, p. 23)

Not only are resettlement places being wasted but also little attention has been paid

to the process of determining which refugees ought be resettled to which local areas in

the hosting country. This is despite ample evidence that the local area (or locality, for

short) to which refugees are initially matched matters a great deal for the refugees’ lifetime

outcomes (Åslund and Rooth, 2007; Åslund and Fredriksson, 2009; Åslund et al., 2010, 2011;

Damm, 2014; Feywerda and Gest, 2016). Most countries have historically treated refugee

resettlement as a purely administrative issue, and as such have not developed systematic

resettlement policies—much less, transparent ones. But there is a growing consensus that

the role of resettlement in refugee protection needs to be drastically expanded. In September

2016, following the first ever heads-of-state UN summit on refugees, 50 countries pledged to

resettle at least 360,000 refugees in 2017 (BBC, 2016b). In this paper, we take the process

of allocating of refugees to localities seriously, introducing and analyzing several matching

market design approaches that balance competing welfare, incentive, and stability objectives,

while being mindful of computational constraints.

4This number is projected to rise to 1.19 million in 2017, a fifty percent increase since 2012 (UNHCR,
2016).

5In the past, the international community has often managed to react quickly to humanitarian crises
by instituting rapid and comprehensive resettlement programs. Examples of rapid resettlement include
2.5 million Indochinese refugees to a number of Western states between 1975-1977, and 60,000 Bhutanese
refugees who left Nepal for the US in 2006.

681,000 of these refugees were resettled with UNHCR’s assistance. In fact, a total of 134,000 files were
submitted by the UNHCR for resettlement in 2015 (UNHCR, 2016).
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Importance of matching market design in refugee resettlement

One simple policy goal is to try and maximize refugees’ welfare based on the observable

characteristics of refugees and local areas. This approach allows us, for example, to maximize

the total number of families resettled, but it does not account in any way for the refugees’

personal preferences over hosting communities. Refugees’ preferences matter for two rea-

sons. First, refugees have information about their own aspirations, which can affect the

match quality—and which cannot be directly observed by government authorities.7 Second,

government agencies spend significant upfront resources on integrating refugees into local

communities; those resources are effectively wasted if refugees leave their assigned localities

soon after arrival.8 Consequently, at least in the early stages of the resettlement process, pol-

icymakers want to minimize internal migration of refugees away from their initially assigned

localities. The priorities and hosting capacities of localities matter, too. This is particularly

salient when the participation of localities in resettlement is voluntary, in which case giving

localities a say might serve as an additional incentive to participate. Localities are more

likely to follow through on their promises to host refugees if they have some control over

which refugees they would be expected to host.

All three of the aforementioned policy concerns are playing out in the British program

to resettle Syrian refugees. The United Kingdom is similar to other popular resettlement

destinations such as Australia, Canada, and the United States, in that it is geographically

remote and thus largely able to control overall refugee entry. When the UK dramatically

increased its target for resettling Syrian refugees in 2015, the Home Office’s focus was on

developing and unifying technological solutions to organize and process assignment, without

any specific attention to refugees’ preferences and localities’ priorities.9 After early numerical

targets have been hit, the Home Office has begun to turn its attention to more systematic

matching, in order to both enhance welfare and reduce difficult-to-track internal migration

which could undermine the willingness of localities to participate. Initially, localities around

the UK showed a lot of willingness to host refugees and dozens volunteered to accept them.

However, anti-immigration tensions in the UK have since been increasing—especially after

the British referendum to leave the EU in June 2016—and the Home Office might have to

focus on locality priorities in order to entice more localities into participating. In our work,

we follow the evolution of the Syrian refugee resettlement policy in the UK, describing the

7For example, a refugee might be keen to retrain or start a business.
8One such investment is the provision of language classes for children and adults.
9The scheme was originally envisioned to have two stages: “Phase one has the task of immediately

scaling up the existing resettlement program and phase two will work towards transforming our resettlement
and protection offer, including developing ideas for community sponsorship as per the Home Secretary’s
commitment” (Home Office, 2015, p. 2).
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appropriate matching market design solution at each step. As we show, our insights are

valuable both for designing new resettlement programs and for improving existing ones.

Contribution of this paper

This paper proposes seven mechanisms that hosting countries can use for refugee reset-

tlement under different informational and institutional constraints. Our work draws upon

classical matching mechanisms from contexts such as public school choice and housing allo-

cation. In a standard school choice model, for example, there is a number of schools with

different numbers of seats and any one student takes up exactly one school seat.10 However,

refugee resettlement requires us to take into account a feature that has not been present in

previous matching market design applications: A refugee family not only takes up a house

in a particular locality, but also a certain number of units of different public services, such

as school seats, hospital beds, slots in language classes, and employment training programs.

Thus, there are explicit multidimensional constraints that limit the central authority’s abil-

ity to allocate refugees to localities simply on the basis of housing needs. These additional

constraints render most standard matching mechanisms for allocation of objects, houses, or

school seats insufficient for refugee resettlement.

In the case in which neither preferences nor priorities are taken into account, our set-

ting can be analyzed as an integer program called the “multiple multidimensional knapsack

problem”. We show how to apply the “branch-and-bound method”, familiar in operations re-

search and combinatorial optimization, to find an exact solution to this problem (Proposition

1).

In the case where the social planner fully respects the preferences of refugee families, we

show that the Multidimensional Top Trading Cycles (MTTC) algorithm—a slight modifi-

cation on the classical Top Trading Cycles (TTC) algorithm of Shapley and Scarf (1974)—

allows us to incorporate multidimensional capacities of localities and housing constraints

and obtain a Pareto-efficient mechanism in which refugee families do not have any incentive

to misreport their preferences (Proposition 2). However, the social planner may not want

to rely entirely on the preferences of refugee families to determine the allocation. Instead

the planner might start with an exogenous tentative allocation of families to localities: For

example, with the maximal outcome that has been obtained from the integer program. We

show that in this case the MTTC algorithm fails because some Pareto-improving trading

10Students have heterogeneous preferences over schools and schools have priorities over students (having
a sibling or living in the neighborhood typically gives students a higher priority). The social planner’s
objective is to elicit truthful preferences over schools from students (schools are assumed to be non-strategic
and school seats are treated as objects) and to deliver an efficient matching of students to schools in which
no student envies another student’s seat.
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cycles might be infeasible. Moreover, obtaining a Pareto-efficient outcome without matching

any refugee family to a locality it likes less than its match in the maximal outcome imposes a

huge computational burden. In this case, we propose a Serial Multidimensional Top Trading

Cycles (SMTTC) algorithm that reduces waste and finds simple Pareto-improving cycles in

a strategy-proof way (Proposition 3).

When priorities of localities also need to be taken into account as part of the design,

new trade-offs arise unless these priorities are identical (Proposition 4). In particular, stable

outcomes—i.e. outcomes that fully respect the priorities of localities and the preferences of

refugee families—may not exist.11 For this case, however, building on insights by Delacrétaz

(2014), we are able to develop an algorithm which finds a stable outcome—whenever such

an outcome exists—that is Pareto-undominated for the families by any other stable outcome

(Proposition 5).

In general, determining whether a stable outcome exists in our model is a computationally

intractable problem. For that reason, we introduce an alternative solution concept called

quasi-stability. Quasi-stable outcomes ensure that a family can only block an outcome if

the family is not the lowest priority among families matched to the desired locality. We

show that family-optimal quasi-stable outcomes can be found via a modification of the

classical Deferred Acceptance (DA) algorithm (Gale and Shapley, 1962), which we call the

Priority-Focused Deferred Acceptance (PFDA) algorithm (Proposition 6). However, unlike

in contexts such as school choice, this modification of the DA algorithm is manipulable,

except under low information conditions (Proposition 7). To address this, we also develop a

benchmark strategy-proof and quasi-stable mechanism, called the Maximum Rank Deferred

Acceptance (MRDA) algorithm (Proposition 8). When looking for quasi-stable outcomes,

we show that there is a clear trade-off between truth-telling incentives and efficiency.

Relationship to prior work

Matching markets for refugee resettlement were first proposed by Moraga and Rapoport

(2014) as a part of a system of international refugee quota trading (Schuck, 1997). In

the international context of matching refugees to countries, however, the refugee matching

market is “thick”—any country can be expected to host any family up to its capacity—

and can be reasonably modeled as a standard school choice problem (Abdulkadiroğlu and

Sönmez, 2003). Jones and Teytelboym (2016) introduced the idea of refugee resettlement

matching in the national context and pointed out the multidimensional constraints and the

thinness of matching markets that arise on the local level. The theory we develop in this

11In one-sided object allocation settings such as school choice, stability is often referred to as “elimination
of justified envy” (Abdulkadiroğlu and Sönmez, 2003), or simply as “fairness” (Balinski and Sönmez, 1999).
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paper will allow us to realize Jones and Teytelboym’s (2016) ideas for local refugee matching.

Our work draws upon and contributes to the applied literature on the design and imple-

mentation of matching mechanisms. The most closely related literature has focused on design

of many-to-one markets in which agents on one side take up individual slots made available

by the other side: doctors take up individual residencies at hospitals (Roth, 1984a); children

occupy individual seats at schools (Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez,

2003); families move between individual houses (Abdulkadiroğlu and Sönmez, 1999); and

cadets serve in individual slots in their branches of military service (Sönmez, 2013; Sönmez

and Switzer, 2013). Even when agents take up slots at multiple levels—as in the Japanese

residency match, in which doctors not only occupy slots at hospitals but also count against

regional quotas (Kamada and Kojima, 2015)—the slots are assumed to have a hierarchi-

cal structure.12 With appropriate conditions on the preferences of the two sides, such as

“responsiveness” (Gale and Shapley, 1962; Crawford and Knoer, 1981; Roth, 1985; Roth

and Sotomayor, 1989, 1990) or “substitutability” (Kelso and Crawford, 1982; Roth, 1984b;

Hatfield and Milgrom, 2005), these many-to-one matching markets always have a lattice of

stable outcomes. In our setting, because refugee families may take up several units of dif-

ferent services, we cannot ensure the existence of stable outcomes—and thus, we are unable

to directly apply classical matching technologies and mechanisms. In fact, even determining

whether stable outcomes exist in our model can be computationally intractable (McDermid

and Manlove, 2010).

Our work thus contributes to a growing literature that proposes matching mechanisms

for settings in which stable outcomes may not exist. The most famous example is matching

with couples in the National Resident Matching Program (NRMP), in which residents may

view jobs in nearby hospitals as complementary (Roth and Peranson, 1999; Klaus and Klijn,

2005; Klaus et al., 2007; Haake and Klaus, 2009). There are a number of algorithms that

can find stable matchings in the couples model whenever they exist (Echenique and Yenmez,

2007; Kojima, 2015). However, the structure of our problem is different to the matching

with couples problem since the barriers to stability in our context arise from the constraints

on the locality (hospital) side, rather than from the family (doctor) side (as in the couples

problem). Stable outcomes also do not exist in general in the market for trainee teachers

in Slovakia and Czechia, where teachers are expected to teach two out of three subjects

and schools have capacities for each subject (Cechlárová et al., 2015). Another difficult case

for market design has been matching with minimum quotas, in which stable outcomes also

typically do not exist (Goto et al., 2014; Fragiadakis et al., 2016). Milgrom and Segal (2014)

12So whenever a resident takes up a place in a hospital, she would also take up a place in the region in
which the hospital is located.
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study an auction setting in which mobile network operators have arbitrary preferences over

sets of TV stations that supply spectrum bandwidth, and the allocation must satisfy complex

interference constraints. The main difference between our setting and that of Milgrom and

Segal (2014) is that we limit localities (which correspond to mobile network operators in

their context) to have responsive preferences, while allowing refugees (TV stations in their

context) to have heterogeneous preferences over localities (rather than only caring about

compensation as in their context).

Even when stable matchings exist in our setting, respecting preferences and priorities

through stability may create significant welfare losses in strategy-proof mechanisms (Ab-

dulkadiroğlu et al., 2009; Erdil and Ergin, 2008; Kesten, 2010). We seek to strike a balance

between stability and efficiency goals: the Top Choice algorithm that we propose is ma-

nipulable, but it ensures that any stable outcome it finds (whenever one exists) is Pareto-

undominated for families by any other stable outcome. On the other hand, when we use

quasi-stability as our solution concept, insisting on strategy-proofness can come at a high

cost to efficiency.

In many matching market design settings, such as school choice in New Orleans or housing

allocation, in which efficiency is prioritized over stability by the social planner, the Top

Trading Cycles algorithm (Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003) or

its modifications (Pápai, 2000; Dur and Ünver, 2015) are used instead of stable mechanisms.

Pycia and Ünver (2016) show that in settings where agents have single-unit demands over

objects, all Pareto-efficient mechanisms that cannot be manipulated by a group of agents

can be represented in terms of a general class of Trading Cycles mechanisms. Interestingly,

in school choice settings, these variations on the Top Trading Cycles algorithms usually have

the same properties irrespective of the initial endowment. In our case, this is no longer true

because not all trading cycles are feasible. Hence, when we start from an exogenous allocation

of refugees to localities, achieving Pareto efficiency without violating individual rationality,

strategy-proofness or imposing a huge computational burden is not always possible.

Finally, our paper is related to market design applications in which the size or the aggre-

gate quality of the overall matching matters. One such example is kidney exchange, in which

maximizing the total number of kidneys exchanged for donation is of first-order importance

(Roth et al., 2004, 2005a,b, 2007). Maximizing the number of high-quality matches is also a

priority in adoption exchanges (Slaugh et al., 2016). More recently, and sharing some moti-

vation with our work, Andersson and Ehlers (2016) examine a market for allocating private

housing to refugees in which landlords have preferences over refugee family size and native

language. They show that as long as landlords prefer larger families compatible with their

home sizes, stable and maximal matchings can be found. Krysta and Zhang (2016) have

9



examined a similar housing market, but with knapsack constraints.13

The remainder of the paper is organized as follows. In Section 2, we describe the in-

stitutional context of the Syrian Vulnerable Persons Resettlement Programme in the UK.

We describe the formal model in Section 3 and introduce a running Example that we use

throughout the paper. In Section 4, we show how the case in which neither preferences

nor priorities are taken into account can be solved as a multiple multidimensional knapsack

problem. In Section 5, we explain how two variations on the Top Trading Cycles algorithm

can fully incorporate preferences of refugees. In Section 6, we present four solutions to the

case where priorities of the localities need to be respected as well. We point out the tradeoffs

between the mechanisms in Section 7. In Section 8, we describe how our model can be

applied to other large resettlement programs and in Section 9 we illustrate the applicability

of our model beyond the refugee resettlement context. We conclude and offer suggestions

for future work in Section 10. In the Appendix, we recap the entire running Example (A),

provide all proofs (B), give a technical description of the Top Choice algorithm (C), and

supply additional examples of our mechanisms at work (D).

2 Institutional context

In January 2014, the British government launched the Syrian Vulnerable Persons Resettle-

ment (VPR) Programme alongside the broader UNHCR resettlement program in order to

help refugees fleeing the civil war in Syria. On September 7, 2015, the former British Prime

Minister David Cameron announced that the United Kingdom would extend this program

and resettle 20,000 refugees in Britain by 2020. By June 2016, 2,800 Syrians had been

resettled in Britain (UNHCR, 2016).

In the UK, the powers of refugee resettlement (like many other powers, including health-

care and education) are devolved from Westminster (the central government) to Wales,

Scotland, and Northern Ireland. In England, where the bulk of the resettlement is expected

to happen, local administration takes place at the level of 353 Local Authorities (LAs).14

13In fact, a number of papers use optimization techniques, such as linear and integer programming, to
find welfare-maximizing outcomes in many-to-one matching markets (Roth et al., 1993; Bäıou and Balinski,
2000; Sethuraman et al., 2006; Featherstone, 2014; Ashlagi and Shi, 2015; Bodoh-Creed, 2016).

14These administrative local government units (that we refer to as localities following this section) go by
different names, such as “counties”, “districts” and “boroughs”, depending on their location and history.
For unitary authorities, all local governments duties are located under one roof whereas counties and dis-
tricts/boroughs usually split their duties: for example, counties are in charge of police, while housing would
be under the purview of districts/boroughs. For the purposes of this paper, these distinctions are irrelevant
as ultimately we are only concerned with the provision of a service in a particular area. From the perspective
of residents, all levels of government cooperate seamlessly to deliver a full range of services. Scotland, Wales,
and Northern Ireland have similar systems of local government.
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LAs are responsible for the disbursement of social benefits, the provision of social housing,

primary and secondary education, waste collection and local amenities such as parks and

libraries.

Throughout the UK, the participation of LAs in the Syrian VPR is voluntary. At the out-

set, dozens of LAs declared their intention to host Syrian refugees.15 Meeting the government

target, however, is likely to require participation of many more LAs.

Syrian refugees who come to Britain are granted a five-year leave to remain (after which

they would be eligible to apply for permanent residence) and are given full access to public

services. They are free to move to any part of the UK, but this is unlikely to happen until

they can fully support themselves. Most refugees are housed in private accommodation and

their rent is supported by the centrally administered housing benefit. State-run schools are

also free, and school places are allocated by sibling and catchment area priority via popular

school choice mechanisms (Pathak and Sönmez, 2013). Healthcare in Britain is publicly

funded and free at the point of use to any UK resident. Thus, most of the longer-run

costs of refugee resettlement—housing, unemployment and disability benefits, healthcare and

education—are borne by the state. However, short-run costs—including language support,

welfare, community support, and help with finding local employment—fall on LAs.16 It is

not surprising therefore that LAs prefer to accept only the refugees that they can support

well. Likewise, it is natural that each LA wants the refugees it supports to remain local,

instead of moving away—otherwise the LA cannot recoup its costs of resettlement.

As with other resettlement schemes, refugee families who have expressed a wish to be re-

settled are referred to the British authorities by the UNHCR.17 The British authorities then

15By April 2016, 71 LAs in England had accepted refugees, as have half of Scottish LAs. One third of all
refugees on the Syrian VPR scheme came to Scotland (House of Commons Library, 2016).

16According to leaked government documents, the first-year costs of resettlement to LAs themselves are
estimated to be £8,520 per person. The central government also expects to cover £12,700 in social benefits
per adult, £5,500 for a child’s schooling and £2,200 in medical expenses (Dedman, 2015) per person. LAs
are compensated in full for their resettlement costs in the first year (House of Commons Library, 2016),
but are expected to shoulder costs in subsequent years. With sunk costs of resettlement behind them and
some refugees at work, costs after the first year may be significantly lower, but the evidence of what these
costs actually are is still lacking. The recent government initiative for community sponsorship suggests that
sponsors should plan to provide funding of £4,500 per adult per year which is supposed to cover “the initial
provision of cash on arrival and to fund English language tuition and interpretation costs” (Home Office,
2016b).

17“The UNHCR identifies people in need of resettlement based on the following criteria: women and girls at
risk; survivors of violence and/or torture; refugees with legal and/or physical protection needs; refugees with
medical needs or disabilities; children and adolescents at risk; persons at risk due to their sexual orientation
or gender identity; and refugees with family links in resettlement countries. Individuals are not specifically
identified for resettlement based on their membership of Yazidi, Druze, Christian or other communities but
members of those communities may well meet one of the other vulnerability criteria set out by UNHCR.
The UNHCR identifies and proposes Syrian refugees for the Vulnerable Persons Scheme scheme from among
the whole of the registered refugee population in the region, over 4 million people. This includes people in
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review the files, including medical records, and carry out their own security and background

checks as well as interviews. In the Syrian VPR Programme, the typical refugee family size

is six and the Home Office endeavours to keep all families together via linked independent

applications.18 Once the application is approved, the file is sent to a team that matches the

family to suitable accommodation supplied by LAs. What counts as “suitable” accommoda-

tion might vary from one LA to another.19 Refugees have no direct say as to where in Britain

they go (unless they have family in a particular LA), and LAs sometimes reject applicants.

Once accommodation has been found and the LA is ready to receive a given refugee family,

the family is informed about where it is going and the Home Office arranges transport. To

reduce costs, the Home Office usually charters flights that carry several dozen families. The

timeframe between application approval and arrival—during which the matching of a cohort

of refugees to LAs happens— is typically between six weeks and three months.20

The need for an efficient matching system comes at a time when the government is

facing increasing scrutiny over the use of its resources and public hostility towards immi-

gration.21 There are also some technical obstacles: Databases on refugees characteristics

and preferences, as well as local housing and services availability, need to be merged, while

some logistics of the resettlement process need to be reworked (e.g., when refugees are in-

terviewed, and how housing availability is projected). For example, in order to facilitate

information sharing on housing across LAs and ensure best possible matches, English LAs

already work alongside nine regional coordinators. However, given the recent evidence that

the initial placement of refugees in less desirable areas has negative lifetime impacts on their

labor (Åslund and Rooth, 2007; Damm, 2014), welfare dependence (Åslund and Fredriks-

son, 2009) and educational achievement (Åslund et al., 2011), it is becoming apparent that

improving the matching of refugees to LAs can deliver a lot of value.

formal refugee camps, informal settlements and host communities.” (House of Commons Library, 2016)
18Around half of the applicants are under 18; about half are women (Home Office, 2016a).
19For example, some LAs allow teenage siblings of different sexes to share a room, others do not.
20The Home Office tries to match refugees immediately as they come through the application pipeline.

Hence, refugees who have been waiting longest typically receive the highest priority. However, as the housing
market is fast-moving, matches to available houses often need to be made immediately.

21Surveys indicated that the proportion of British public that thought that Britain should take fewer
Syrian and Libyan refugees increased from 31 percent in September 2015 to 41 percent in January 2016
(BBC, 2016a). In July 2016, Theresa May, the incoming British Prime Minister, eliminated the Home Office
“Minister for Syrian Refugees” position.
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3 Model

3.1 Basic ingredients

There is a finite set of refugee families F . A family f ∈ F has size |f |. There is finite set of

localities L. We use ∅ for the null object to represent being unmatched.

A contract is a family-locality pair (f, `) ∈ X ≡ F × (L ∪ {∅}). We denote by f(x) and

`(x) as the family and locality associated with contract x ∈ X.

An outcome Y ⊆ X is a set of contracts and X is the set of all outcomes. For any Y ⊆ X,

F (Y ) and L(Y ) denote the families and the localities whose contracts appear in outcome

Y at least once. For any ` ∈ L and Y ⊆ X, F `(Y ) is the set of families associated with

locality ` under Y . Finally, Yf and Y` denote the contracts that family f and locality ` are

associated to in outcome Y .

On top of the matching set-up just described, the refugee matching problem has mul-

tidimensional constraints on the set of outcomes: Refugee families require multiple units

of different services (e.g., hospital beds, school seats, language support) from a set S. We

denote by ν the matrix of family service needs, with typical element νfs ∈ Z≥0 denoting the

total number of units of service s required by family f . A refugee family f can only live in

locality ` if ` can provide services to meet f ’s needs. We denote by κ the matrix of locality

service capacities, with typical element κ`s ∈ Z≥0 denoting the number of units of service s

locality ` can provide.22

We denote by τ `s (Y ) ≡
∑

f∈F `(Y ) ν
f
s the number of units of service s demanded at locality

` under outcome Y . Let τ(Y ) ≡ (τ `s (Y ))`∈L,s∈S be the matrix of service demands at outcome

Y . An outcome Y ⊆ X is feasible if (i) |Yf | = 1 for all f , i.e. each family is either matched to

one locality or is unmatched, and (ii) τ(Y ) ≤ κ i.e. the feasibility constraint is not violated.

A set of families F ′ ⊆ F can be accommodated under Y if Y ∪ {(f, `)}f∈F ′ is feasible. Let Y
denote the set of all feasible outcomes.

Multidimensional constraints introduce a particular complementarity into the choices of

localities, which is absent in many matching models. Suppose there is a locality ` with two

units for a single service s (κ`s = 2). Families f1 and f3 need one unit of s each (νf1
s = νf3

s = 1),

but family f2 needs two units of the service (νf2
s = 2). Suppose that in this locality f1 has

the highest priority, followed by f2, and then f3. Then, we would then match {f1, f3} when

all three families {f1, f2, f3} apply to the locality since f1 would be matched first but f2

could not be accommodated, leaving a unit of the service for f3. When {f2, f3} apply, only

22As is standard, the null object has infinite capacity for every service. All results in the paper go through
with minimal or no modification, if we assume that νfs , κ

`
s ∈ R≥0. As an example, we might wish to capture

the fact that a refugee may require 1
7 of a dialysis machine because she needs to use it once a week.
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f2 is matched to the locality as it takes up both units of the service.23 Hence, because of the

multidimensional constraint, ` views f1 and f3 as complementary since f3 is less likely to be

matched to ` if f1 does not apply. This kind of complementarity is precisely what prevents

us from using classic tools in matching theory and we return to the problems this creates in

Section 6.24

3.1.1 Relationship to prior models

Our model generalizes a number of existing matching models, including the following:

• School choice (Abdulkadiroğlu and Sönmez, 2003): Every student takes up a single

seat at any school. Let us relabel a student as a family and a school as a locality.

In our model, this corresponds to having only one service (|S| = 1) and any family

needing exactly one unit of the service (νfs = 1 for all f ∈ F ).

• Controlled school choice or college admissions with affirmative action and m type-

specific quotas (Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu, 2005; Westkamp,

2013): Each student is one of m types and each school has a quota for each of the m

types. Let us again relabel a student as a family, a school as a locality and a type as a

service. In our model, this corresponds to having m services in each locality (|S| = m).

Each family needs exactly one unit of one of the services (νfs are m-dimensional unit

vectors for every f ∈ F ).

• School choice with majority quotas (Kojima, 2012; Hafalir et al., 2013): Each student

is either a majority or a minority student. Each school has a overall cap on the

number of students, which includes a cap for majority students. Let us again relabel

a majority/minority student as a majority/minority family and a school as a locality.

Let us also relabel “any student seats” as service s1 and “majority student seats” as

service s2 (|S| = 2). In our model, then the capacity of any locality for s1 is greater

than the capacity for s2 (κ`s1 > κ`s2 for all ` ∈ L). A majority family f needs a unit

of both services (νf = (1, 1)) whereas a minority family f ′ only needs a unit of s1

(νf
′
= (1, 0)).

• Hungarian college admissions (Biró et al., 2010): Students take up a college seat as well

as a faculty seat. Both colleges and faculties have their own capacities. Let us relabel

23Note that the example would be analogous if there were two services s1 and s2, the locality had one
unit of each service available, families f1 and f3 required one unit of s1 and s2 respectively, while family f2
required one unit of each service.

24From the point of view of localities, refugee families are neither“weak substitutes” (Hatfield and Kojima,
2008), nor even “substitutes and symmetric complements” (Alva, 2015).
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a student as a family and a college as a locality. Let us also relabel “college capacity”

as the capacity of the locality for service s1 (κ`s1). Let us relabel the faculties as the re-

maining services S\{s1}. Therefore, each family has needs νf = (1, 0, 0, . . . , 1, . . . , 0, 0)

where the second “1” is the need for a unit of one service s ∈ S \ {s1}.

• Allocation of trainee teachers to schools in Slovakia and Czechia (Cechlárová et al.,

2015): Teachers are required to teach two out of three subjects and each school has

a capacity for all three subjects. Let us relabel a teacher as a family, a school as a

locality, and a subject as a service. In our model, this corresponds to having three

services (|S| = 3) and any family having needs νfs ∈ {0, 1} for any two different s.

• College admission with multidimensional privileges in Brazil (Aygün and Bó, 2016):

Students can claim any combination of three privileges. Colleges have quotas for

each privilege, but a single student can claim more than one privilege. Let us relabel

a student as a family, a college as a locality, and a privilege as a service. In our

model, this corresponds to having three services (|S| = 3) and any family having needs

νfs ∈ {0, 1}.

• Object allocation (Nguyen et al., 2016) or course assignment (Budish, 2011): Agents

(students) demand a certain number of different objects (courses) that are supplied by

a single seller (a business school). Let us relabel agents (students) as families, different

objects (courses) as services, and the single seller as a single locality. In our model,

this corresponds to having only one locality (|L| = 1).

• Resident-hospital matching with sizes (McDermid and Manlove, 2010): Doctors apply

to hospitals, but the doctors can take up more than one seat at a hospital, e.g. because

they arrive as couples. Let us relabel doctors as families and hospitals as localities. In

our model, this corresponds to having one service (|S| = 1) and families having a need

of arbitrary size for this service.25

Most of the models described above use further assumptions and develop solution ap-

proaches that suit their particular contexts but differ substantially from ours. Nevertheless,

as we note throughout the paper, several impossibility and complexity results established in

these papers will apply immediately to our framework.

25This model in turn generalizes the resident-hospital matching with inseparable couples (i.e. when couples
have the same preference list and prefer to be unmatched to being in different hospitals) as well as resident-
hospital matching with couples which have “consistent” preferences (McDermid and Manlove, 2010, Lemma
2.1). In both cases, we set |S| = 1 and νfs ∈ {1, 2} in our model.
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3.2 Housing

One of the most important concerns in refugee resettlement is finding appropriate housing

for refugee families. Refugee families do not get a choice over specific housing units. Housing

is extremely heterogeneous and different localities can impose different constraints on which

family can be housed where. That is, some housing units may be impermissible for some

families. In general, we say that there is set of houses H. Each house belongs to a locality

` ∈ L. The set of houses in locality ` is denoted H`.

3.2.1 Housing as service constraints

In some cases, we can express housing as a subset of services and capture heterogenous

housing with the multidimensional service constraints. In Appendix A, we show how to

incorporate different housing features and sizes directly into service constraints.

Definition 1. Housing is reducible if housing can be incorporated into the multidimensional

service constraints given a fixed number of housing features and sizes.

For one simple case of reducible housing, suppose that houses differ only by size and a

family needs a house of a certain size but can be accommodated in any house that is larger.

Denote shi ∈ Sh the service representing housing size i ∈ {1, . . . ,M}. Let
(
κ`
shi

)
i∈{1,...,M}

and
(
νf
shi

)
i∈{1,...,M}

denote the subvectors of
(
κ`s
)
s∈S and

(
νfs
)
s∈S respectively representing

housing constraints. We then denote κ`
shi

as the number of houses of size at least i in locality

`. On the side of refugee needs, if a family requires a house of size i, then denote νf
shj

= 1

for all j ≤ i.

3.2.2 General permissible housing constraints

Some housing requirements cannot be captured by multidimensional service constraints with

a fixed number of housing features and sizes. For example, in addition to minimum house

size regulation there are often also maximum size regulations: In the UK, for example,

refugee families may be denied housing benefit if their house has too many unused bedrooms.

Consider all possible family-house pairs F × (H ∪ {∅}) and

D := {D ∈ 2F×(H∪∅) | |D ∩ {(f, h)}| = 1 ∀f ∈ F and |D ∩ {(f, h)}| ≤ 1, h ∈ H ∪ ∅}

which is the set of all housing assignments D i.e., sets of pairs such that there is exactly one

pair per family and at most one pair per house. Denote the housing assignment function

A : X 7→ D such that A((f, `)) 7→ (f, h) where h ∈ H` for all f ∈ F and ` ∈ L and
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A((f, ∅)) = (f, ∅) for all f ∈ F . That is the housing assignment function maps each family

to a house in the locality of its contract (unmatched families are not housed anywhere).

We say that a family-house pair is permissible if house meets the legal requirements to

accommodate the associated family. We denote the set of housing assignments that only

contain permissible pairs as D∗ ⊆ D. Hence, in the case when housing is not reducible, an

outcome Y is feasible if Y ⊆ X, |Yf | = 1 for all f ∈ F , τ(Y ) ≤ κ, and there is A ∈ A such

that A(Y ) ∈ D∗.
Most of our results do not rely on reducible housing and we explicitly point out when

they do.

Example

To be able to compare different mechanisms in this paper, we now introduce a single running

Example which we will return to throughout paper. The Example has five families, seven

houses, four localities (three of which have two houses and one of which has one house), and

two services.

• Families: F = {f1, f2, f3, f4, f5}

• Localities: L = {`1, `2, `3, `4}

• Houses: H`1 = {h11, h12}, H`2 = {h21}, H`3 = {h31, h32}, H`4 = {h41, h42}

• Service capacities: Service needs:

κ =



s1 s2

`1 4 2

`2 3 2

`3 2 2

`4 2 2

 ν =



s1 s2

f1 1 0

f2 2 1

f3 0 2

f4 1 1

f5 3 0


In the Example, `4 cannot accommodate f5 in any outcome since νf5

s1
= 3 > 2 = κ`4s1 . On the

other hand, consider an outcome Y , in which f1 and f2 are matched to `1 and f3 and f4 are

matched to `2 and `4 respectively. The corresponding matrix of service demands for services

at localities would be as follows:
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τ(Y ) =



s1 s2

`1 3 1

`2 0 2

`3 0 0

`4 1 1


Since τ(Y ) ≤ κ, the outcome Y is feasible.

Let us introduce some housing constraints in the Example. We will assume that (f1, h12),

(f1, h21), (f1, h41), (f2, h12), (f3, h11), (f4, h11), (f4, h41) and (f5, h11) are the only impermis-

sible family-house pairs. In Appendix A, we show that housing is reducible if there are three

housing features and two sizes. However, this housing constraint cannot be represented as a

multidimensional service constraint with a single house size and a single feature.

We illustrate the Example in Figure 1 below. For each family service needs are represented

the number of solid blocks (first for s1 and then for s2). Service provision for each locality is

represented with empty blocks. We color code houses according to which family-house pairs

are permissible.

4 Welfare maximization without preferences or prior-

ities

In this section, we consider the case in which the preferences of refugees and the priorities of

localities are not elicited explicitly, as is often the case in rapid responses to unfolding hu-

manitarian catastrophes or indeed in many refugee resettlement schemes around the world.26

Eliciting preferences requires a sophisticated IT infrastructure for sharing data across locali-

ties as well as time and resources in order to conduct interviews with the refugees.27 Instead,

the social planner could estimate the quality of matches based on observable data and on

past experience.

We summarize the estimated quality of each refugee-locality match as a single number

called the quality score, q : X → R≥0 (normalizing q((f, ∅)) = 0 for all f ∈ F ). In order to

maximize the overall observed efficiency of the match within the feasibility constraints, the

social planner solves the following outcome-quality maximization problem (OQMP):

26For example, during the Kosovo airlift in 1999 many Kosovar-Albanian refugees boarded rescue planes
without knowing where they were going (Wells, 1999).

27Even in developed countries that are accustomed to refugee resettlement, this infrastructure is often
lacking.
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f1 f2 f3 f4 f5

l1 l2 l3 l4

h11 h12 h21 h31 h32 h41 h42

Figure 1: Set-up for the running Example

19



max
Y⊆X

∑
y∈Y

q(y) subject to: Y ∈ Y (1)

Two special cases of q are worth emphasizing: Setting q = 1 (or any other constant)

would maximize the total number of families that are resettled, while setting q((f, `)) = |f |,
i.e. the total number of refugees in each family, would maximize the total number of refugees

that are resettled. However, the quality score can be more general. For example, the social

planner could use survey data on satisfaction with localities as well as on lifetime outcomes

(such as the probability of employment within a given timeframe) in order to determine

which families tend to fare best in which locality.

Let us now state the problem of maximizing the overall observed efficiency of the match

as an integer program. We introduce a binary variable ι(f, `) which is equal to 1 if a contract

(f, `) has been selected (family f has been matched to locality `) and 0 otherwise.

max
∑
f∈F

∑
`∈L

q((f, `))ι(f, `) subject to: (2)∑
f∈F

∑
`∈L

νfs ι(f, `) ≤ κ`s ∀`, s∑
`∈L

ι(f, `) ≤ 1 ∀f

ι(f, `) ∈ {0, 1} ∀f, `

Problem (2) is an example of a 0-1 multiple multidimensional knapsack problem (Song

et al., 2008).

Proposition 1. Suppose that housing is reducible. Then the outcome-quality maximization

problem (1) is equivalent to the 0-1 multiple multidimensional knapsack problem (2) and can

be solved exactly using the “branch-and-bound” method.

In the 0-1 multiple multidimensional knapsack problem, there are a number of multi-

dimensional objects that we want to pack into one of many knapsacks which have multi-

dimensional capacities.28 Different objects yield different profits in each knapsack and the

objective is to maximize the total profit, subject to not exceeding the capacity constraints

28This is different from a multidimensional knapsack problem in which there is only one knapsack (Fréville,
2004); from the multiple knapsack problem in which objects vary in size along only one dimension (Martello
and Toth, 1980); and even from the multiple-choice knapsack problems in which exactly one object from
each of the many mutually exclusive classes must be used (Sbihi, 2007).
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and placing any one object in at most one knapsack (hence, “0-1”). Song et al. (2008)

analyzed this problem (also with two-dimensional objects as in our Example) in the case

of spectrum allocation in radio networks. In our proof of Proposition 1, we extend their

approach by establishing upper bound and lower bounds of the maximand, which are the

key inputs in the “branch-and-bound” method.

Example for Section 4

In addition to the set up of the Example, let us introduce the following quality score q over

the set of feasible contracts X:

q((f, `))

`1 `2 `3 `4

f1 71 ∅ 23 38

f2 46 49 30 91

f3 52 68 43 20

f4 4 75 96 36

f5 92 41 ∅ ∅

Then, the solution to the outcome-quality maximization problem is:

Y OQMP = {(f1, `1), (f2, `4), (f3, `2), (f4, `3), (f5, `1)}

since this outcome gives each family the locality with the highest quality score and is fea-

sible. Note that since f1 and f5 are both allocated to `1 but family-house pair (f1, h12) is

impermissible, it must be case that f1 is assigned to h11 and f5 is assigned to h12.

5 Accounting for preferences of refugee families

Once a refugee crisis has been brought to the world’s attention by the media, there is generally

an outpouring of goodwill from many countries that decide to take on refugees.29 While initial

refugee resettlement responses are organized in a rush and on a shoestring, as countries

allocate more resources to refugee resettlement, authorities gain the bandwidth necessary to

elicit refugees’ preferences, typically through an interview process. Incorporating refugees’

preferences into the matching process is valuable because only refugees themselves know in

what kinds of areas they are most likely to thrive. But knowing preferences can also help

29In Britain, some newspapers celebrated the arrival of fifteen Syrian refugee families to the remote Scottish
Isle of Bute (McKenna, 2015).
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prevent internal migration—the movement of refugees away from their assigned localities

soon after arrival—which localities want to avoid because they make substantial upfront

investments in hosting refugees.

Eliciting preferences of refugees over localities is difficult task. In school choice, for

example, parents can be reasonably expected to rank their top twelve schools. In the case

of refugee matching, not only are there many localities in most countries, but refugees often

lack the necessary information to make decisions in their own interest. In this case, it is

reasonable to ask refugees to rank the properties of areas that are important to them (e.g.

proximity to a city, low crime, presence of a co-ethnic or a co-religious community etc.). The

resettlement authority can then use locality-level data and refugees’ rankings to infer a likely

preference profile over the localities. In order to ensure that this inference is as accurate as

possible, the authority will need to give refugee families clear incentives to submit truthful

reports over area properties.

When locality participation is (relatively) secured, the priorities of localities are not very

important; in such a setting, we can maximally account for refugees’ preferences by seeking a

Pareto-efficient outcome. Pareto efficiency also limits internal migration across participating

localities by ensuring that families will not want to swap localities.

To achieve Pareto efficiency, we build upon the classical Top Trading Cycles mechanism,

which is Pareto-efficient and non-manipulable. Because both refugee preferences and feasibil-

ity constraints act at the locality level, our mechanism must identify and eliminate potential

Pareto-improving locality trades while paying attention to feasibility constraints.

We retain the quality score defined in the previous section, and moreover assume that no

two contracts have the exact same quality score (for any x, x′ ∈ X, q(x) = q(x′) if and only

if x = x′). Additionally, we introduce notation for families’ preferences over localities. We

denote by �f the strict ordinal preference list of family f over L∪{∅}, and let � ≡ (�f )f∈F
be the preference profile of families and � the set of all preference profiles.30 Given any

outcome Y ⊆ X, we will say that ` ∈ L∪ {∅} is family f ’s top-choice locality (or simply f ’s

top choice) if (f, `) ∈ Y and for all `′ 6= ` such that `′ ∈ L(Y ) we have that ` �f `′. We will

denote f ’s top choice in Y as ¯̀
f (Y ). We say that f ’s top choice is feasible under Y if f can

be accommodated in its top choice under Y and that f is permanently matched under Y if

|Yf |= 1.

An outcome Y is Pareto-efficient if it is feasible and there is no feasible outcome Y ′

such that for any f ∈ F , either `(Y ′f ) = `(Yf ) or `(Y ′f ) �f `(Yf ). In other words, if one

refugee family is matched to a more preferred locality than in a Pareto-efficient outcome,

then another family must be worse off. A (direct) mechanism is a function ϕ :�→ X .

30We assume without loss of generality that every family’s least preferred option is being unmatched.
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A mechanism ϕ is strategy-proof if for any f ∈ F there does not exist a report of a

preference list �′f such that

`(ϕ((�′f ,�−f ))f ) �f `(ϕ(�)f ).

Strategy-proofness requires that refugee families cannot make themselves better off by mis-

reporting their preferences over localities.

5.1 Using only preferences of refugee families

Our first mechanism, described in Algorithm 1, is an extension of the Top Trading Cycles

mechanism to matching with multidimensional constraints.

The Multidimensional Top Trading Cycles (MTTC) algorithm works in much the same

way as the classical Top Trading Cycles (TTC) algorithm: in each round, each family points

at its most preferred locality that can accommodate it and each locality points at the highest-

quality family that it can accommodate. There must be at least one cycle which is eliminated

by matching families to the localities they pointed at and adjusting the service capacities

of each localities by the service needs of the family that has just been matched to it. The

main difference between the MTTC algorithm and the TTC algorithm is that even though

the family is pointing at a locality it needs to be assigned to a house when it is part of

the cycle. This is not trivial when housing is not reducible. Therefore, the pointing family

and the pointing locality are solving independent housing assignment problems. Hence, even

though families are permanently matched to localities in each round, they are only tentatively

assigned to housing until the last period. Indeed, in contrast to the TTC algorithm, in the

MTTC algorithm, the locality might stop pointing at a family even if it still has capacity

and the family is still unmatched because the housing constraints mean that it is no longer

possible to accommodate the family in the locality.

Proposition 2. The MTTC algorithm is strategy-proof and yields a Pareto-efficient out-

come.

Example for Section 5.1

In order to illustrate the MTTC algorithm, in addition to the set-up of the Example and the

quality score in the Example for Section 4, we will need to know the preferences of refugee

families:

f1 : `3 � `4 � `1 � `2.
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Algorithm 1: Multidimensional Top Trading Cycles (MTTC) algorithm

Start with the set of all contracts X. For each locality, rank the families
some order of priority (e.g. using the quality score). Remove all infeasible
contracts under the empty outcome to obtain outcome Y 1.

Round i ≥ 1:

Under outcome Y i, every family f that is not permanently matched points
at its top choice (see Proof of Proposition 2 for the procedure).

For each locality `, consider all families that have a contract with ` at Y but
are not permanently matched. If that set is nonempty, ` points at the family
in that set that has the highest quality score for ` (see Proof of Proposition
2 for the procedure). Otherwise ` does not point.

At least one cycle appears. Any family and any locality is in at most one
cycle. For every family involved in a cycle, remove all its contracts that do
not involve its top choice. These families are now permanently matched.

Given the outcome obtained, remove all contracts (f, `) such that ` cannot
accommodate f alongside all other families that are permanently matched
to it. If at least one family becomes permanently matched as a result of
this step, repeat this step.

Let Y i+1 be the outcome obtained after the previous step was repeated
for the last time. If all families are permanently matched under Y i+1, the
algorithm ends and generates Y i+1. Otherwise proceed to Round i+ 1.
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f2 : `3 � `1 � `2 � `4.

f3 : `4 � `3 � `1 � `2.

f4 : `4 � `1 � `2 � `3.

f5 : `1 � `2 � `4 � `3.

In the Example, the MTTC algorithm lasts two rounds.

Round 1 : In the first round, all families point at their top choice. Families f1 and f2 point

at `3, f3 and f4 at `4, and f5 at `1. Locality `1 in turns points at f5, `2 and `3 point at f4,

and `4 points at f2. A cycle appears between f5 and `1 (resulting in f5 being assigned to h12

since h11 is not permissible for f5). Another cycle appears between f2, `3, f4 and `4.

Round 2 : Only two families are not permanently matched in the second round. The relevant

quality scores are:

q((f, `))

`1 `2 `3 `4

f1 71 ∅ 8 ∅
f3 ∅ 68 31 7

Family f1 cannot point at `3 because it cannot be accommodated alongside f2. It cannot

point at `4 either since (f1, h41) is an impermissible family-house pair. Family f1 then points

at its third choice, `1, this is possible since family-house pair (f1, h11) is feasible and f1 and

f5 can be accommodated together at `1. Family f3 can point at neither `4, `3 nor `1 because

it cannot be accommodated alongside f4, f2 or f5, respectively. Consequently, f3 points at

`2. Locality `1 already accommodates f5 in house h12 and only h11 remains available. Note

that `1’s current highest-quality family f3 is not available because family-house (f3, h11) is

impermissible. At this point `1 needs to work through its preference list and check the

highest-quality family that would solve the (admittedly trivial) housing assignment problem

in the locality. Family f1 solves the problem, so `1 points at f1. Family-house pair (f3, h21)

is impermissible but (f1, h21) is permissible (note the role of the housing assignment problem

again), consequently `2 points at f3. Localities `3 and `4 do not point at any family since

they can no longer accommodate either f1 or f3 alongside, respectively, f2 and f4. Two cycles

appear since f1 and `1 as well as f3 and `2 point at each other. Family f1 is matched to `1

(and assigned house h11), f3 is matched to `2 (and assigned house h21), and the algorithm

terminates.

The resulting outcome is

Y MTTC = {(f1, `1), (f2, `3), (f3, `2), (f4, `4), (f5, `1)}.
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In the Example, taking preferences of refugee families into account and running the

MTTC algorithm makes families f2 and f4 better off than in the solution to outcome-quality

maximization problem by allowing them to swap their localities.

5.2 Improving outcomes of refugee families from an initial alloca-

tion

A resettlement agency might be reasonably apprehensive about relying solely on refugees’

preferences in the allocation process. Resettlement agencies often have specific goals in

mind, such as the likelihood of early employment or avoidance of segregation, which might

conflict with the refugees’ preferences over localities. Therefore, it can be important to take

into account the goals of the resettlement agency alongside the preferences of refugees. We

propose to find preference-based improvements from an exogenous tentative initial allocation

favored by the social planner. The natural initial allocation would be the one produced by

the outcome-quality maximization problem.

Consider a feasible outcome Y E, which we will refer to as the endowment. We say that

outcome Y is individually rational if for all f ∈ F either `(Yf ) = `(Y E
f ) or `(Yf ) �f `(Y E

f ). In

the case of school choice, starting from any endowment and running the TTC algorithms (in

which any non-empty school points at its most preferred student), produces an individually

rational and Pareto-efficient outcome in a strategy-proof way. The reason is that any that

Pareto improvement from the endowment can be broken down into simple cycles: If two

students from one school want to swap with two students from another school, we can first

swap one pair of students and then the other. Hence, a student only needs to point at its

most preferred school, which gives an opportunity for the school’s most preferred student to

make a choice.

In our context, simple Pareto-improving cycles will not achieve Pareto efficiency because

families, which have needs for multiple units of different services, may have to swap in groups

in order to find Pareto improvements. To illustrate this with our running Example, let us

start with an endowment

Y E = {(f1, `1), (f2, `4), (f3, `1), (f4, `4), (f5, `2)}

and assume moreover that f4 can no longer be moved. In that case, there is a Pareto im-

provement if f1 and f3 swap with f2. But this Pareto improvement cannot be achieved by a

pairwise swap or a cycle.

Finding all Pareto-improving exchanges among sets of families in general—even between
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two localities—would mean potentially looking at all subsets of the families in these localities

and is therefore computationally intractable. On the other hand, because of feasibility

constraints, if all families simultaneously point at their top-choice locality as in the MTTC

algorithm, a feasible cycle is not guaranteed to exist.

We now introduce the Serial Multidimensional Top Trading Cycles (SMTTC) algorithm

that finds some of the possible Pareto improvements in a way that preserves individual

rationality and strategy-proofness. Unlike the TTC algorithm, Hierarchical Exchange rules

(Pápai, 2000), or more general Trading Cycle rules (Pycia and Ünver, 2016), the SMTTC

algorithm is run sequentially—one cycle at time. We do this in order to ensure that whenever

a cycle appears (at the end of every round of the algorithm), it is feasible and any family and

locality will be part of at most one cycle. First, we determine active and available localities.

Any active locality participating in a possible Pareto-improving cycle has one family that

can feasibly swap places with other families from all other active localities. Any available

locality has enough capacity to accommodate any family from all active localities.31 All

other localities are inactive. Every active locality points at its highest-quality family—an

active family—participating in the possible swap. Then all active families point at their most

preferred locality. Whenever cycles appear, we match families to localities they pointed at. If

there is no cycle, this is because some family has pointed at an inactive locality. In that case,

families are picked one at a time and their contracts involving inactive localities are removed

until a cycle appears. The reason why a cycle eventually appears is that all families that

have been picked point at an active locality. Once a cycle is found, families are matched to

the localities they pointed at. Crucially, the remaining families and localities continue being

active and pointing in the next round. Our family and locality selection rule is precisely

what ensures that any cycle that appears is feasible and non-manipulable, but this rule is

also restrictive and might not find all Pareto-improving swaps of sets of families. When the

endowment is empty, the SMTTC algorithm reduces to the MTTC algorithm. The SMTTC

algorithm is described in Algorithm 2.

Proposition 3. The Serial MTTC algorithm is strategy-proof and yields an individually

rational outcome from any endowment.

If the Serial MTTC algorithm finds any cycles between families and localities that these

families are not endowed with, its outcome Pareto-dominates the endowment.

31If a locality is both active and available, we label it active. Labelling it available would have no bearing
on the properties of the mechanism.
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Algorithm 2: Serial Multidimensional Top Trading Cycles algorithm

Arbitrarily index localities such that L ≡ {`1, . . . , `|L|}. For each locality, rank
the families some order of priority (e.g. using the quality score). Start with
the set of all contracts X. Remove all contracts which are infeasible under the
empty outcome. Consider the current outcome Y i.

Round i ≥ 1:

If all families endowed with a locality are permanently matched, label
all families that are not yet permanently matched and all localities that
can accommodate at least one of these families alongside the families that
are permanently matched to it as active. Every active family points at
its top choice and every active locality points at the active family with
the highest priority among those it can accommodate. Proceed to Step
|L|+ 2.
Else label all families that were active in the previous round as active
and proceed to Step 1.

Steps 1 ≤ j ≤ |L|
For locality `j:

If there exists an active family endowed with `j, then let f ∗`j be that
family. Label `j as active.
Else if `j can accommodate any active family alongside those with
which it is permanently matched or for which it is the endowment,
then label `j available.
Else if there exists a family whose endowment is `j, is not perma-
nently matched and can swap with all active families, let f ∗`j be the
one with the highest priority for `j. Label `j and f ∗`j as active.
Else label `j as inactive.

Step |L|+1: Every active family f ∗`j points at its top choice. Every active
locality `j points at f ∗`j . Every available locality points at the active
family with the highest priority for it. Inactive families and localities do
not point.

If a cycle exists, proceed to Step |L|+ 2.
Else arbitrarily pick one family and remove its contracts involving
inactive localities. Return to the start of Step |L|+ 1.

Step |L| + 2: For each family involved in a cycle, remove all contracts
involving that family and a locality that is not its top choice.
Step |L|+ 3: Remove all contracts (f, `) such that f cannot be accommo-
dated at ` alongside all families permanently matched to `. If any family
has become permanently matched as a result of this step, repeat this step.
Otherwise continue to Step |L|+ 4.
Step |L| + 4: Let Y i+1 be the updated outcome. If all families are per-
manently matched, the algorithm ends and generates Y i+1. Otherwise
proceed to Round i+ 1.
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Example for Section 5.2

We will use family preferences from Example for Section 5.1. Let us start with an endowment

Y E = {(f1, `1), (f2, `4), (f3, `2), (f4, `3), (f5, `1)}

which is outcome the of outcome-quality maximization problem.

We keep the same index of families as in the Example so that `1 is considered first, `2

second, `3 third, and `4 last.

Round 1 : We consider `1 and make f5 active since it has a higher quality score than f1. At

`2, f3 is made active since f5 and f3 can feasibly exchange their localities. As f5 can neither

be accommodated at `3 nor `4, these two localities are inactive in that round. Localities `1

and `2 point at f5 and f3 respectively while `3 and `4 do not point. Families f5 and f3 point

at their respective top choices: `1 and `4. A cycle occurs between f5 and `1. Family f5 is

permanently matched to `1.

Round 2 : Family f3 is immediately made active since it was active in Round 1 but did not

get permanently matched. At `1, f1 is the only candidate left since f5 has been permanently

matched, however f1 cannot be accommodated at `2 as (f1, h21) is not a permissible family-

house pair, and as a result `1 remains inactive in this round. In contrast, f4 and f2 are made

active since they can both be accommodated at `2 and f3 can be accommodated at both `3

and `4. Locality `1 does not point, `2 points at f3, `3 points at f4 and `4 points at f2. All

three families can be accommodated at their respective first preferences, therefore f3 and f4

point at `4 and f2 points at `3. A cycle occurs between f2, `3, f4 and `4. Families f2 and f4

are permanently matched to `3 and `4 respectively.

Round 3 : Family f3 is again made active immediately so that `1 remains inactive. As f4

and f2 have been permanently matched, `3 and `4 are also inactive. A simple cycle occurs

between f3 and `4 so f3 is permanently matched to `4.

Round 4 : All families except f1 have been permanently matched, as a result the latter is

the only one to be active. Family f1 and locality `1 point at one another and the algorithm

ends.

The outcome of the Serial MTTC algorithm with endowment from the OQMP is the same

as the outcome of the MTTC algorithm as it allows f2 and f4 to exchange their localities:

Y SMTTC = {(f1, `1), (f2, `3), (f3, `2), (f4, `4), (f5, `1)}.
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6 Accounting for the preferences of refugee families

and the priorities of localities

As a refugee crisis goes on, it typically becomes more difficult to obtain goodwill from

localities.32 Beyond direct cash transfers and coercion, the social planner has a market

design tool that can increase localities’ willingness to participate: explicitly incorporating

localities’ priorities over refugees. Eliciting priorities over refugee families not only gives

an important sense of control to local communities, but also helps ensure that refugees are

located in places where they are most welcome and where their needs can be best addressed.

Moreover, satisfying priorities serves as an important fairness criterion in the resettlement

process.

In this section, we offer mechanisms that respect priorities of localities in addition to the

preferences of refugee families.33

6.1 Stable outcomes

We let π` be the strict ordinal priority list of locality ` over families F and let π be the

ordinal priority profile of the localities.34 Denote by F̂(f,`) the set of families with a priority

for ` higher than f .

We say that for an outcome Y ⊆ X, f and ` form a blocking pair if ` �f `(Yf ) and there

exists a feasible outcome Y ′ such that `(Y ′f ) = ` and if `(Yf ′) = ` then `(Y ′f ′) = ` for all

f ′ ∈ F̂(f,`). Y is stable if it is feasible and does not allow any blocking pairs.

In words, family f and locality ` form a blocking pair if f prefers ` to its current match

and it is possible to accommodate f in ` while ensuring that families that have a higher

priority in ` than f can remain in the same locality. Therefore, in a stable outcome there is

no family f that prefers another locality ` in which it can be accommodated alongside other

families in ` that have a higher priority that f in `. This stability concept is an extension of

“elimination of justified envy” used in the school choice to our case with multidimensional

constraints (Abdulkadiroğlu and Sönmez, 2003).

While in school choice models stable outcomes always exist, in a model with multidimen-

sional constraints they do not. The reason is that the complementarity over families from

the point of view of localities. Let us return briefly to the example of complementarity that

32Some of the British media, for example, soon reacted against the Isle of Bute refugees (Reid, 2015).
33It is straightforward to incorporate locality priorities while ignoring the preferences of the refugees

by reversing the direction of matching (locality is matched with its highest-quality family) in the MTTC
algorithm.

34These priorities could, of course, come directly from the quality score.
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we described immediately after our model in Section 3.1 and add another locality `′ with a

single unit of the service. Assume moreover that f3 has higher priority that f1 in `′ and the

following preferences

f1 : `′ � ` � ∅
f2 : ` � ∅
f3 : ` � `′ � ∅.
In this example, there is no stable outcome precisely because of the complementarity between

f1 and f3.35

In fact, determining whether a stable outcome exists is a computationally intractable

problem (McDermid and Manlove, 2010).36 This means that the running time of an algorithm

that guarantees to find a stable outcome or proves that none exists will increase exponentially

with the problem size. This can be an impediment to practical applications in large matching

markets.

A stable outcome Y ⊆ X is (Pareto-)undominated if there does not exist any stable

outcome Y ′ ⊆ X such that either `(Y ′f ) = `(Yf ) or `(Y ′f ) �f `(Yf ) for all f ∈ F . That is,

a stable outcome is undominated if there is no other stable outcome in which some families

stay in their existing localities but others are matched to localities they prefer. A stable

outcome Y ⊆ X is family-optimal if there does not exist another stable outcome Y ′ ⊆ X

such that `(Y ′f ) �f `(Yf ) for any f ∈ F . A family-optimal stable outcome is unanimously

preferred to any other stable outcome by all families. Note that, similarly to school choice,

we only consider welfare from the point of view of refugee families and treat slots in localities

as objects and locality priorities as non-strategic decisions.

6.1.1 Identical priorities

There is one case in which stable outcomes can be found straightforwardly: When the

priorities of all localities are identical. This is common: For example, localities could agree

that refugees families who have spent longer in the the refugee camps or those who are

in urgent medical need should have a higher priority. In this case, every stable outcome

coincides with an outcome from a simple mechanism—the serial dictatorship: first, the top-

ranked family is permanently matched to its top-choice locality that can accommodate it,

35This instability is a consequence of our focus on local refugee matching markets which are thin and
heterogeneous. If we assumed a continuum of families and localities, our set-up would admit a stable
outcome (Azevedo and Hatfield, 2015, Theorem 1).

36The decision problem of the existence of stable outcomes in our setting is NP-complete, meaning there
is no known efficient (e.g. with polynomial running time in the number of families or localities) method
of solving it. Finding a stable outcome, like solving the multiple multidimensional knapsack problem, is
therefore NP-hard i.e. as hard as the hardest computational problems. Verifying whether a particular
outcome is stable only involves checking all possible blocking pairs which is a simple computational problem.
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then the second-ranked family is matched to its top-choice locality given that the top-ranked

family has already been permanently matched, and so on.

Proposition 4. If priorities of localities are identical, then the outcome of the serial dicta-

torship is the unique stable outcome.

Since the MTTC algorithm collapses to the serial dictatorship when priorities are iden-

tical, the serial dictatorship is also strategy-proof and the outcome it produces is Pareto-

efficient.

6.1.2 Finding stable outcomes in general

We now informally describe the Top Choice algorithm, which finds a stable outcome, if

one exists, that is undominated from the refugees families’ perspective, and reports that

the set of stable outcomes is empty otherwise. This algorithm does not run in polynomial

time in general, however, many instances of the refugee resettlement problem, especially in

small resettlement schemes like the UK’s, comprise a few dozen families and a couple of

dozen localities for one cohort, so even computationally slow algorithms can perform well

in practice. After we discuss the mechanism, we comment on its strategic properties. The

Top Choice algorithm runs in three phases. The technical descriptions of each phase of the

algorithm and an application of this algorithm to our running Example can be found in

Appendix C.

Phase 1: Top-Down Bottom-Up (TDBU) algorithm

The Top-Down Bottom-Up (TDBU) algorithm is run exactly once at the beginning of

the Top Choice algorithm. TDBU algorithm dramatically reduces the search space for a

solution used in the subsequent phase. The TDBU algorithm cycles through localities and

identifies contracts that cannot be part of any stable outcome. It does so from the top-down

by identifying guarantees i.e. families whose priority at a given locality is high enough to

ensure the two will form a blocking pair if the family were not matched in that locality. This

allows us to eliminate all contracts between that family and any localities it prefers less. The

TDBU algorithm also eliminates contracts from the bottom-up by identifying rejections i.e.

families whose priority at a given locality is too low for any contract between this family and

this locality to be part of a stable outcome. These contracts can also be eliminated. Once

the TDBU algorithm stops, we end up with a set of contracts φ(X) ⊆ X which could form

all stable outcomes (although they may not exist). That is, if a stable outcome exists then

any contract in that outcome is in φ(X).
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Let us attempt to construct an outcome by matching each family to their top-choice

locality from the remaining contracts φ(X). If this outcome φ∗(X) is feasible, then we have

found the unique family-optimal stable outcome, and the Top Choice algorithm stops.

Phase 2: Depth-First Search for a stable undominated outcome

If φ∗(X) is not feasible, we continue to this phase.

We begin with a description of the first steps of the Depth-First Search (DFS) for a

stable undominated outcome and then explain how its intermediate steps—the Augmented

TDBU (ATDBU) algorithm—work. We order the families, labelling them f1, f2, ..., f|F |.

This can be done arbitrarily or reflecting a general priority order, for example due to their

level of vulnerability or the waiting time in the resettlement pipeline. The general priority

order does not affect whether the stable undominated outcome is found. However, in the

case of multiple undominated stable outcomes, the general priority order impacts which one

undominated stable outcome is found. As we shall see, it is advantageous for families to be

as high on general priority order as possible because it allows them to secure an undominated

stable outcome they prefer. In Appendix C, we illustrate how different general priority orders

might result in different outcomes and different running times for the algorithm.

An illustration of the DFS is in Figure 2. This illustration is not related to our running

Example and is only there to convey the mechanics of the algorithm. The steps correspond

to number labels on the nodes in this Figure. The general version of the DFS is in Appendix

C.3.

Description of the DFS as illustrated in Figure 2

Step 1: We start the DFS with φ(X) and in the first round give f1 an artificial guarantee

for its top choice ¯̀
f1 meaning that we tentatively eliminate all contracts involving f1 and

localities which f1 ranks below `f1 . This hypothetical elimination allows us to begin our

search along the lattice of possibly stable outcomes (a solution tree), looking for a feasible

one. Once f is artificially guaranteed locality ¯̀
f1 , we reduce the set of contracts and check

for a feasible outcome by running a version of the TDBU algorithm, which we call the

Augmented TDBU (ATDBU) algorithm (see Appendix C.2). The ATDBU algorithm works

in the same way as the TDBU algorithm described above except that it also keeps track of

artificial guarantees and artificial rejections (defined below). Let us suppose that f1 can be

feasibly matched to ¯̀
f1 given the artificial guarantee.

Step 2: Let us now give f2 its top choice ¯̀
f2 as an artificial guarantee and remove all its

contracts involving localities that f2 ranks below ¯̀
f2 .

Step 3: Let us now give f3 its top choice ¯̀
f3 as an artificial guarantee and remove all its
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contracts involving localities that f3 ranks below ¯̀
f3 .

Step 4: Suppose that after running the ATDBU algorithm, one of the artificial guarantees is

rejected. Hence, we find that it is infeasible to match both f1, f2, and f3 to their top-choice

localities in any stable outcome. In that case, we go back to the situation obtained at the

end of Step 2 (before f3 get an artificial guarantee) and instead tentatively remove contract

(f3, ¯̀
f3). We call this hypothetical rejection an artificial rejection as it is only dictated by

the current set of artificial guarantees.37

Step 5: Let us re-run the ATDBU algorithm with (f1, ¯̀
f2) and (f2, ¯̀

f2) as artificial guarantees

and (f3, ¯̀
f3) as an artificial rejection.

Step 6: If the ATDBU algorithm returns an empty outcome (because the artificial rejection

(f3, ¯̀
f3) has been guaranteed), this means that there is no stable outcome in which f1 and

f2 get their top-choice localities.

Step 7: Let us return back to the case where f1 had an artificial guarantee for its top choice

locality and let us artificially reject f2’s top-choice locality by removing (f2, ¯̀
f2).

Step 8: This time the ATDBU algorithm might not give us an empty outcome. This means

that there is a possible stable outcome where f1 has its top choice and f2 has something

other than its top choice (which we have artificially rejected). Now, let us give f2 an artificial

guarantee for its next top-choice locality. Continue trying along f2’s preference list until the

ATDBU algorithm gives a non-empty outcome for some artificially guaranteed locality for

f2. We can then proceed searching for a stable outcome. Let us try giving f3 an artificial

guarantee for its top choice again (as we did in Step 3).

Steps 9-12: These follow analogously to Steps 2-5.

Step 13: The ATDBU algorithm returns a feasible outcome, which is a stable undominated

outcome.

More generally, the ATDBU algorithm run at each step of the DFS can end in three

different ways:

1. Outcome of the ATDBU algorithm is feasible: This means that the DFS has

found enough new rejections to identify a stable undominated outcome (Step 13).

2. Outcome of the ATDBU algorithm is non-empty: The ATDBU algorithm

shows that a stable outcome given the current set of artificial guarantees and artificial

rejections may exist but more rejections are needed to find it. We continue by giving

an artificial guarantee of the next top choice to the next family in the general priority

and running the ATDBU algorithm again (Step 1-3 and 8-10). We give top choices to

37The ATDBU algrotihm is equivalent to the TDBU algorithm whenever the sets of artificial guarantees
and rejections are empty.
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families according to the general priority order until either a stable outcome is found

or we find that such an outcome is infeasible.

3. Outcome of the ATDBU algorithm is empty: The ATDBU algorithm shows

that no stable outcome exists given the current set of artificial guarantees and artificial

rejections. This can only happen if either an artificial guarantee has been rejected or

an artificial rejection has been guaranteed, or both. The DFS retraces its steps by

removing the top choice of the latest family with an artificial guarantee and re-running

the ATDBU algorithm (Steps 4-5 and 11-12). If the outcome of the ATDBU algorithm

is empty again, then the DFS retraces its steps to the latest step at which the set of

artificial guarantees and rejections was the same and removes the top choice of the

family in that step (Step 6-7). If the outcome of the ATDBU algorithm is not empty,

the DFS goes back to giving top choices to families according to the general priority

(Step 8).

The DFS continues until either it finds a stable undominated outcome, which always

happens if one exists, or by identifying that the set of stable outcomes is empty. The latter

happens if an impossibility is found after all of f1’s choices (including being unmatched)

are first artificially guaranteed but then eventually rejected (or alternatively f1’s top choice

is artificially guaranteed and rejected and then an artificial rejection of f1’s top choice is

immediately guaranteed).

Phase 3: Assigning housing

If a stable undominated outcome Y between families and localities has been found in

Phase 2, we run the final phase, which assigns houses to families. We simply apply any

permissible housing assignment function to Y .

Proposition 5. The Top Choice algorithm finds a stable undominated outcome if and only

if the set of stable outcomes is nonempty.

The Top Choice algorithm is not a strategy-proof mechanism. But this does not mean

it is easy to manipulate. The general priority does not need to be revealed to the families

and creates randomness that can punish potential manipulation. Refugee families submit

preferences in an environment of uncertainty since the priorities of localities can shift un-

predictably over time. Hence, it is also hard to learn from past matches how to manipulate

the system (as parents have done over time when the highly manipulable Boston mechanism

was used for school choice). Intuitively, manipulability increases as the DFS searches deeper

(i.e. further to the right of the solution tree in Figure 2). The longer the DFS runs, the
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Figure 2: Depth-first search of the Top Choice algorithm
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Algorithm 3: Top Choice algorithm

Phase 1: Run the TDBU algorithm to obtain φ(X). If φ∗(X) is feasible,
stop and report the family-optimal stable outcome. If φ∗(X) is not feasible,
let the current outcome be Y = φ(X). Create an arbitrary general priority
order. Let the sets of artificial guarantees and artificial rejections be empty.

Phase 2: Run the DFS with the ATDBU algorithm as intermediate steps,
keeping track of not only guarantees and rejections, but also of artificial
guarantees and artificial rejections.

Phase 3: If an undominated stable outcome is reported at the end of Phase
2, assign housing using a permissible housing assignment function.

worse is the potential stable outcome for the refugee families and hence the stronger is their

incentive to manipulate (Erdil and Ergin, 2008; Kesten, 2010).

6.2 Quasi-stable outcomes

The possible non-existence of stable outcomes and the computational challenges involved in

finding them motivates us to seek an alternative stability concept. We now introduce quasi-

stability, which respects priorities of localities, but introduces possible underuse in service

capacities. In the context of refugee resettlement, this may well be tolerable. Refugees arrive

to many localities regularly and many services, such as hospital beds and school places, are

durable and unlikely to disappear if they are not immediately used. Any unused service

capacities can simply be used for the next cohort of resetted refugee families.

Definition 2 (Quasi-Stability). A feasible outcome Y is quasi-stable if, for any locality `

and family f ′ ∈ F `′(Y ) with `′ 6= `, either `′ �f ′ ` or f π` f
′ for all f ∈ F `(Y ).

Quasi-stability does not allow families to block an outcome if the family has the lowest

priority in the new locality. This immediately shows that quasi-stability itself is a permis-

sive stability concept—an empty outcome is a quasi-stable outcome therefore quasi-stable

outcomes always exist. Nevertheless, any quasi-stable outcome maintains complete respect

for the priorities of the localities, and in the context of school choice any stable outcome is

quasi-stable.38

38Even in the context of school choice, our definition of quasi-stability is stronger than envy-freeness (Wu
and Roth, 2016), simplicity (Sotomayor, 1996), and firm-quasi-stability (Blum et al., 1997).
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6.2.1 Mechanism for a family-optimal quasi-stable outcome

In Algorithm 4, we present the Priority-Focused Deferred Acceptance (PFDA) algorithm—

a modified version of the classic deferred-acceptance (DA) algorithm (Gale and Shapley,

1962)—which finds the family-optimal quasi-stable outcome. In each round families apply

to localities that have not rejected them yet. In order not to be rejected from a locality, the

locality must be able to accommodate the family alongside families with a higher priority at

that locality and must not have already rejected a family with a higher priority for that local-

ity in this or an earlier round. The key difference between the DA and the PFDA algorithms

is the condition that requires any family with a lower priority than one already rejected

from a locality to be rejected from that locality immediately. This happens automatically

in the DA algorithm in models without multidimensional constraints, such as school choice.

In these contexts, the PFDA and the DA algorithms coincide. However, naively running the

DA algorithm in our model means that a “smaller” family with a lower priority could be

accepted after a “larger” family with a higher priority is rejected (because it could not be

accommodated), resulting in an outcome which is neither stable not quasi-stable.

Proposition 6. The PFDA algorithm yields a family-optimal quasi-stable outcome.

The PFDA algorithm also makes it very clear how much “wasted capacity” the family-

optimal, quasi-stable outcome can leave: when |S| = 1 in any locality, the maximum possible

amount of capacity of any service that could be used by a low-priority family is the highest

demand for this service minus 1. When there is more than one service, “large” families with

high priorities for localities with small capacities could create greater waste.

Example for Section 6.2.1

In addition to the set-up of the Example and family preferences in the Example for Section

5.1, we now introduce priorities for the localities39 into our Example.

`1 : f2, f1, f4, f5, f3

`2 : f5, f1, f3, f4, f2

`3 : f5, f3, f2, f1, f4

`4 : f1, f5, f2, f4, f3

The PFDA algorithm calculates that outcome in four rounds, which are displayed below:

39With these priorities, the outcome of the MTTC algorithm would be
{(f1, `4), (f2, `3), (f3, `4), (f4, `2), (f5, `1)}
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Algorithm 4: Priority-Focussed Deferred Acceptance algorithm

Start with the set of all contracts X. Remove all contracts which are
infeasible under the empty outcome. Consider the current outcome Y 1.

Round 1:
Each family proposes to its top-choice locality under Y 1. Each locality `
does not reject family f if f can be accommodated in ` alongside all families
from set F̂(f,`) that are proposing to `. Remove all contracts involving the
rejected families and the localities they proposed to from Y 1. If at least one
family is rejected, update current outcome to Y 2 and proceed to Round 2.
Otherwise each family is permanently matched to the locality to which it
last proposed and the algorithm ends.

Round i > 1:
Each family proposes to its top-choice locality under Y i. Each locality `
does not reject f if:

Family f can be accommodated in ` alongside all families from set
F̂(f,`) that are proposing to `, and

Family f does not have a lower priority than a family which was re-
jected from ` in this or an earlier round.

Any family that cannot be accommodated alongside proposing families or
has a lower priority than a family which was rejected from this locality
in this or an earlier round is rejected. Remove all contracts involving the
rejected families and the localities they proposed to from Y .

If at least one family is rejected update current outcome to Y i+1 and proceed
to Round i+1. Otherwise each family is permanently matched to the locality
to which it last proposed and the algorithm ends.
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Round 1 Round 2 Round 3 Round 4

f1 → `3 7 f1 → `4 3 f1 → `4 3 f1 → `4 3

f2 → `3 3 f2 → `3 7 f2 → `1 3 f2 → `1 3

f3 → `4 7 f3 → `3 3 f3 → `3 3 f3 → `3 3

f4 → `4 3 f4 → `4 7 f4 → `1 3 f4 → `1 3

f5 → `1 3 f5 → `1 3 f5 → `1 7 f5 → `2 3

If a family is proposing to a locality and has not been rejected by the locality, we say it has

been tentatively accepted.

Round 1 : Families f1 and f2 are in competition for `3. Family f2 is tentatively accepted as

it has a higher priority than f1 and can be accommodated by itself. Family f1 on the other

hand cannot be accommodated alongside f2 at `3. Therefore it is rejected. Similarly, f4 is

tentatively accepted by `4, but f3 is rejected since it cannot be accommodated. Family f5 is

tentatively accepted by `1 as it is the only family proposing and can be accommodated by

itself.

Round 2 : Family f1 proposes to its second choice and competes with f4 for `4. Family f1 is

tentatively accepted as it has a higher priority and can be accommodated by itself, however

f1 and f4 cannot be accommodated alongside one another as h41 is not permissible for either

of them. Family f4 is rejected. Locality `3 can only accommodate one of f2 and f3, so f2 is

rejected since it has a lower priority. As in Round 1, `1 tentatively accepts f5.

Round 3 : Families f1 and f3 are again tentatively accepted by `4 and respectively `3 since

they are the only proposers. Families f2, f4, and f5 all propose to `1. Families f2 and f4 are

tentatively accepted as they both have a higher priority than f5 and `1 can accommodate

both of them. f5 is rejected since `1 only has two houses.

Round 4 : Family f5 proposes to `2 and is tentatively accepted since it can be accommodated

there. The other families propose to the same localities as in the previous round and are

tentatively accepted as well. All families are now permanently matched and the algorithm

ends.

The family-optimal quasi-stable outcome is:

Y PFDA = {(f1, `4), (f2, `1), (f3, `3), (f4, `1), (f5, `2)}.

6.2.2 Strategic properties of the PFDA algorithm

The PFDA algorithm is appealing because it finds family-optimal quasi-stable outcomes

quickly while respecting priorities of localities, but it is not strategy-proof. The reasoning is

straightforward: When a family f applies to a locality and is rejected, it may also trigger an-

other rejection (first example in Appendix D.2). Moreover, even when a family has proposed
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and has not been rejected (but is rejected subsequently), its proposal may trigger multiple

rejections (second example in Appendix D.2). In either case, the other rejected families end

up competing with f for other localities. Therefore, if f does not get its top-choice local-

ity, its chances of getting its second- or third-choice locality can also be reduced. Hence,

manipulability of the PFDA algorithm is reminiscent of the manipulability of the Boston

mechanism as families have an incentive to carefully consider what they report as their first

preference since an early rejection may affect their eventual outcome.

Although the PFDA algorithm is not strategy-proof, it shares enough structure with the

DA algorithm so that in a low-information environment truth-telling is preferred to other

strategies. Following Roth and Rothblum (1999), we consider two informational environ-

ments: (i) {`, `′}-symmetric information in which families assign the same probability to

any submitted preference profile and its symmetric profile in which the ranking of ` and `′ is

interchanged (ii) completely symmetric information in which families have {`, `′}-symmetric

information about any pair {`, `′}. Although under these low information conditions, fami-

lies’ beliefs are required to treat localities equally, it does not require families’ beliefs to be

independent. In fact, families’ preferences can be highly correlated. We informally state the

proposition and leave the technical details of the statement and the proof for the Appendix.

Proposition 7. The PFDA algorithm is not strategy-proof, but

• for any family with {`, `′}-symmetric information, truth-telling stochastically domi-

nates reports that swap the order of ` and `′ under the PFDA algorithm.

• for any family with completely symmetric information, truth-telling stochastically dom-

inates any other report under PFDA algorithm. Hence, if all families have completely

symmetric information, truth-telling is an ordinal Bayesian Nash equilibrium of pref-

erence revelation game under the PFDA algorithm.

This strategy-proofness result for the PFDA algorithm is rather weak. Indeed, even the

highly-manipulable Boston mechanism (Abdulkadiroğlu and Sönmez, 2003) and the Stable

Improvement Cycles (Erdil and Ergin, 2008) mechanism are strategy-proof in low information

settings. In the school choice context, Kesten (2010) shows that for his “efficiency-adjusted

deferred acceptance mechanism”, under a certain commonality of preferences, even partially

symmetric information is sufficient for truth-telling to be an ordinal Bayesian Nash equilib-

rium. However, in our case, even when preferences of families are identical, manipulation of

the PFDA algorithm is possible.40

40Specifically, our first counterexample to the strategy-proofness of the PFDA algorithm in Appendix D.2
shows that Case 2 of the proof of Proposition A.2. in Kesten (2010, p. 1343) fails when the quality classes
are {`1, `2} and {`3} and relabelling s as `1, s′ as `2, and x as `3.

41



6.2.3 A strategy-proof mechanism that finds quasi-stable outcomes

Our discussion of the manipulability of the PFDA algorithm reveals two important properties

that a strategy-proof mechanism ought to have. First, if a family proposes to a locality and

is rejected straight away, it does not start a rejection chain. Second, if a family proposes

to a locality and is not rejected, the rejection chain of other families either comes back and

triggers the family’s subsequent rejection or makes it more difficult to obtain its next choice,

but both should not happen at the same time. If these properties are satisfied, then whenever

the family is rejected by the locality to which it last proposed, it has the same competition

for its next choice as it would have had without the proposal.

We now introduce the Maximum Rank Deferred Acceptance (MRDA) algorithm in which

we first assign each family-locality pair a Maximum Rank and then use it to define a rejection

rule in the strategy-proof mechanism that finds a quasi-stable outcome.

Consider a family f and a family f ′ which is just above f on the priority list of `. The

Maximum Rank for a family f in locality ` is either the minimum number of families that

have a higher priority than f in ` alongside which f cannot be accommodated in `, or

the minimum number of families that have a higher priority than f ′ in ` alongside which f ′

cannot be accommodated in `—whichever is smaller. Family f ’s Maximum Rank for locality

` is 0 if f cannot be accommodated at ` even on its own, i.e. it is “too big to fit”. Family

f ’s Maximum Rank for locality ` is ∞ if f can be accommodated at ` alongside any set of

families that have a higher priority at ` than f .

For example, if f ′ is 5th on `’s priority list and has a Maximum Rank of 3 while f is 6th on

that list, f ’s Maximum Rank can be at most 3, even if it can be accommodated alongside all

subsets of size greater than 3. Maximum Ranks must then be assigned recursively for each

locality, starting from the family at the top of the locality’s priority list and going through

that list one family at a time. This can be computed quickly if housing is reducible: Families

can be sorted by sizes for each service and being able to fit with any subset of size n requires

to be able to fit with the largest subset of size n for all services.

Once Maximum Ranks have been assigned to every family in every locality, we can use a

variation on the DA algorithm where the rejection rule is tied to Maximum Ranks (Algorithm

5): A family is rejected if the number of families with a higher priority proposing to the same

locality in a particular round is no less than the family’s Maximum Rank for that locality.

The MRDA algorithm shares other important similarities with the DA algorithm that ensure

its strategy-proofness: The Maximum Rank of family f for locality `, which depends on

priorities and constraints but not on preferences, determines the number of families with a

higher priority for ` than f that can be matched to ` before f is rejected. The algorithm

then aims to satisfy the preferences families as much as possible given that constraint. In the

42



school choice model, the MRDA algorithm collapses to the DA algorithm since the Maximum

Rank of any student at any school is the school’s capacity minus one.

Proposition 8. The MRDA algorithm is strategy-proof and yields a quasi-stable outcome.

If housing is reducible, then the MRDA algorithm runs in polynomial time.

Running the MRDA algorithm for our Example is straightforward and we show a richer

example in Appendix D.1. The Example vividly highlights that the efficiency cost of strategy-

proofness in the MRDA algorithm can be high compared to the outcomes of the PFDA

algorithm. Unsurprisingly, for our Example, the outcome obtained by the PFDA algorithm

dominates the one obtained by the MRDA algorithm: Families f1, f2 and f5 are matched

to the same localities but f3 and f4 are unmatched under the MRDA algorithm. But this is

not always the case. In Appendix D.3, we show a manipulable example of PFDA algorithm

for which the MRDA algorithm still produces a family-optimal quasi-stable outcome but

removes the temptation of agents to manipulate the mechanism.

Example for Section 6.2.3

In addition to the set-up of the Example and family preferences in the Example for Section

5.1, we use the priorities of localities introduced in the Example for Section 6.2.1.

Phase 1

The Maximum Ranks of all families for all localities are summarized below:

`1 `2 `3 `4

f2 ∞ f5 ∞ f5 0 f1 ∞
f1 1 f1 0 f3 0 f5 0

f4 1 f3 0 f2 0 f2 0

f5 1 f4 0 f1 0 f4 0

f3 1 f2 0 f4 0 f3 0

Family f2 has the highest priority for `1 and can be accommodated there, hence its

Maximum Rank is ∞. Family f1’s Maximum Rank for `1 is 1 as it can be accommodated

by itself but not alongside f2. As a result, the Maximum Rank of all other families with

a lower priority is at most 1. Since they can all be individually accommodated at `1 they

all get a Maximum Rank of 1. Family f5 can be accommodated at `2 and has the highest

priority, hence its Maximum Rank is ∞. Family f1, however, cannot be accommodated at

`2 since (f1, h21) is impermissible. Its Maximum Rank for `2 is 0, which implies that the
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Algorithm 5: Maximum Rank Deferred Acceptance algorithm

Phase 1:
Arbitrarily index localities L = {`1, `2, ..., `|L|}. Label families so that fi,j
refers to the family with the j-th highest priority for locality `i. Proceed to
Round 1.
Round i ≥ 1
Step 1 : Set family fi,1’s Maximum Rank for locality `i to ∞ if fi,1 can be
accommodated at `i and to 0 otherwise. Proceed to Step 2.
Step j > 1:

If fi,j cannot be accommodated at `i, set its Maximum Rank for `i to
0.
Else if fi,j can be accommodated at `i alongside all other families with
a higher priority, set its Maximum Rank for `i to ∞.
Else consider the Maximum Rank of fi,j−1 for `i:

If the Maximum Rank of fi,j−1 for `i is 0, set fi,j’s Maximum Rank
for `i to 0.
Else if the Maximum Rank of fi,j−1 for `i is n ∈ N and fi,j can
be accommodated at `i alongside all subsets of n− 1 families with
a higher priority, set fi,j’s Maximum Rank for `i to n.
Else the Maximum Rank of fi,j−1 for `i is ∞ or it is n ∈ N and
there is a subset of n− 1 families with a higher priority alongside
which fi,j cannot be accommodated. In that case set fi,j’s Maxi-
mum Rank for `i to be m ≤ n such that fi,j can be accommodated
at `i alongside all subsets of m − 1 families with a higher prior-
ity but there exists a subset of m families with a higher priority
alongside which fi,j cannot be accommodated at `i.

If j < |F |, proceed to step j + 1.
Else if j = |F | and i < |L|, proceed to Round i+ 1.
Else j = |F | and i = |L|, proceed to Phase 2.

Phase 2:
Start with the set of all contracts X. Remove all contracts which are infea-
sible under the empty outcome. Consider the current outcome Y 1.
Round i′ ≥ 1
Every family proposes to its top-choice locality under Y i′ . A family is re-
jected if the number of families with a higher priority proposing to the same
locality is no less than the family’s Maximum Rank for that locality. Con-
struct Y i′+1 by removing all contracts between the rejected families and the
localities they proposed to from Y i′ . If at least one rejection occurs pro-
ceed to Round i′ + 1, otherwise each family is permanently matched to the
locality to which it last proposed and the algorithm ends.
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Maximum Rank of f3, f4 and f2 is also 0. Family f5 needs three units of service s1 and

cannot be accommodated at `3 or `4 since they can only provide two units of service s1.

Since f5 has the highest priority for `3 and the second highest priority for `4, all Maximum

Ranks involving `3 or `4 are 0 with the exception of the Maximum Rank of f1 for `4. The

latter is ∞ since `4 can accommodate f1.

Phase 2

The second phase of the MRDA algorithm lasts five rounds, which are summarized below:

Round 1 Round 2 Round 3 Round 4 Round 5

f1 → `3 7 f1 → `4 3 f1 → `4 3 f1 → `4 3 f1 → `4 3

f2 → `3 7 f2 → `1 3 f2 → `1 3 f2 → `1 3 f2 → `1 3

f3 → `4 7 f3 → `3 7 f3 → `1 7 f3 → `2 7 f3 → ∅ 3

f4 → `4 7 f4 → `1 7 f4 → `2 7 f4 → `3 7 f4 → ∅ 3

f5 → `1 3 f5 → `1 7 f5 → `2 3 f5 → `2 3 f5 → `2 3

If a family is proposing to a locality and has not been rejected by that locality, we say it has

been tentatively accepted.

Round 1 : Locality `3 rejects f1 and f2 and `4 rejects f3 and f4 because the Maximum Rank

of these families is 0. Locality `1 tentatively accepts f5 since it is the only family to propose

and its Maximum Rank is 1.

Round 2 : Family f1 is tentatively accepted by `4 since its Maximum Rank is∞. Families f2,

f4 and f5 propose to `1. Locality `1 tentatively accepts the family with the highest priority,

f2, and rejects the other two since their Maximum Ranks are 1. Family f3 is rejected by `3 as

its Maximum Rank is 0. Because f1 and f2’s Maximum Ranks for `4 and `1 respectively are

∞, both families continue to propose to these localities for the remainder of the algorithm

and are permanently matched to them in the end.

Round 3 : Locality `1 rejects f3 since it has a lower priority than f2 and a Maximum Rank

of 1. Locality `2 tentatively accepts f5, which has a Maximum Rank of ∞ but rejects f2 as

its Maximum Rank is 0. Family f5 will continue to propose to `2 for the remainder of the

algorithm and will be permanently matched to it in the end.

Round 4 : Families f3 and f4 are rejected by `2 and `3 respectively since their Maximum

Rank is 0.

Round 5 : Families f3 and f4 propose to the null object in Round 5 and all families are

permanently matched. The algorithm ends and yields the following outcome:

Y MRDA = {(f1, `4), (f2, `1), (f3, ∅), (f4, ∅), (f5, `2)}.
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Preferences Priorities Manipulability Computation

OQMP – – – NP-hard

MTTC Pareto-efficient – Strategy-proof Polynomial

Serial
MTTC

Individually
rational

– Strategy-proof Polynomial

Serial dic-
tatorship

Pareto-efficient Stable (identical
priorities)

Strategy-proof Polynomial

Top
Choice

Family-
undominated

Stable Difficult NP-complete

PFDA Family-optimal Quasi-stable Only strategy-
proof under low
information

Polynomial

MRDA – Quasi-stable Strategy-proof Polynomial
if housing is
reducible

Table 1: Properties of different mechanisms for matching with multidimensional constraints

7 Tradeoffs between different mechanisms

This paper developed seven different mechanisms for matching with multidimensional con-

straints (Table 1). Some of these, such as the serial dictatorship and the Multidimensional

Top Trading Cycles algorithm, are based on familiar matching market design tools. Others

are completely tailored to our context. We showed how information about the preferences

of refugees and the priorities of localities can be incorporated into the refugee matching

system. However, the eventual choice of the refugee matching algorithm not only depends

on the information available to the social planner, but also on the structure of the problem:

(i) its size (the number of refugees, localities, and services), and (ii) the importance and

heterogeneity of locality priorities (Table 2).

For smaller problems (e.g., 50 refugees families arriving on one plane being matched to a

dozen localities), and without any information about preferences or priorities, the only option

is to solve the outcome-quality maximization problem. If preference information is available,

then it is possible to quickly find Pareto improvements upon a solution to the outcome-quality

maximization problem using the SMTTC algorithm. If priorities also matter, then stable
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Market size

Small Large

Priorities are
not important

MTTC,
Serial MTTC
(from OQMP)

MTTC,
Serial MTTC

(from any
endowment)

Priorities are
important

Top Choice
PFDA,
MRDA

Table 2: Comparing mechanisms for matching with multidimensional constraints

undominated outcomes can be found (whenever they exist) in a reasonable time using the

Top Choice algorithm. In small-size problems with little capacity for some services that are in

high demand (especially when a single family’s demand exceeds capacities in certain localities

where they have high priority), the PFDA and MRDA algorithms may perform poorly. This

points to a need for sensible priority design: localities that have certain services in very

limited supply should avoid prioritizing families that have a great need for those services.

When priorities are sufficiently homogeneous, the Top Choice and MTTC algorithms

would produce similar outcomes, and the MTTC algorithm is likely to be preferred for

computational reasons. However, when priorities are heterogenous and matter a great deal,

the social planner faces a stark choice. While the Top Choice algorithm can deal with small

instances, for large problems there is no way of knowing whether stable outcomes exist.

In larger matching markets, including those outside the refugee resettlement context (see

Section 9), the outcome-quality maximization problem and the Top Choice algorithm might

be too computationally demanding. If priorities are identical, there is no computational con-

cern as the serial dictatorship delivers a stable, Pareto-efficient outcome in a strategy-proof

way. If priorities are not identical but can be ignored, the sensible mechanism to use is the

MTTC algorithm. In fact, a hybrid mechanism that first quickly approximates a reasonable

solution to the outcome-quality maximization problem followed by the SMTTC algorithm

is might also be appealing in this case. Finally, in large problems in which priorities must

be fully respected, both PFDA and MRDA algorithms are good options: their outcomes are

close to stable ones, they have little waste, and they can be implemented quickly. Selecting

between two quasi-stable mechanisms—the PFDA and MRDA algorithms—creates similar

trade-offs to school choice settings: efficiency comes at a cost to strategy-proofness (Erdil

and Ergin, 2008; Kesten, 2010).
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8 Applications to other resettlement contexts

The context of the British resettlement program for Syrian refugees is particularly interesting

because it is a comparatively new large-scale program—which will still evolve. However, as

we discuss below, our market design insights also apply in contexts where the resettlement

programs are more mature.

8.1 United States

The United States has resettled over 70,000 refugees annually between 2013 and 2015, 85,000

in 2016, and is committed to resettling at least 110,000 in the 2017 (White, 2016). The

resettlement process is similar to the UK. The US State Department conducts the security

and background checks in conjunction with UNHCR. Refugees are allowed to list family

members (around a half do so) who live in the United States and are almost certain to be

reunited with them. Refugees can also list friends around the US. Given that it is easy to

report and conceal a friend, these indicators could be treated as weak preferences. The job of

matching refugees to local areas, however, is delegated to nine Voluntary Agencies (VolAgs).

VolAgs establish their own links to local communities that are willing to host refugees.

Often, this is done through religious institutions, such as churches and synagogues. VolAgs

consult the communities about which categories of refugees they are interested in hosting

and attempt to incorporate these priorities. Every week, the agencies first distribute the

arriving casework among themselves (using a priority mechanism since agency preferences

for the kinds of refugees they want to resettle are highly correlated). The agency is then

responsible for placing refugee families in communities. The government provides support

for refugees only for the first 90 days and the resettlement agencies are evaluated on their

success of getting refugees employed within that period.

In recent work, Feywerda and Gest (2016) find that the matching of refugees to local areas

by one large American voluntary agency is almost random, despite an explicit incentive

to maximize the expected number of refugees in employment. This work suggests that

systematic matching could add a lot of value in the American resettlement process.

8.2 Canada

Canada operates three resettlement schemes: private sponsorship, government sponsorship,

and mixed private-government sponsorship.41 Our results could apply directly to the gov-

41Québec runs a separate and independent resettlement scheme.
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ernment and mixed schemes.42 The institutional context of Canadian resettlement is very

similar to the UK: the process is centralized, but operates in close cooperation to the fed-

eral provinces and territories. Moreover, Canada and the UK share similar welfare systems.

Most importantly, unlike its American counterparts, the Canadian resettlement authority

does not focus on a single metric for refugee success. Since the fall of 2015, Canada has

substantially stepped up its resettlement efforts for Syrian refugees. It keeps a live web-

site recording all the Syrian arrivals: Between November 2015 and October 2016, Canada

resettled 31,919 Syrian refugees into 316 communities.43 From a modeling perspective, the

Canadian resettlement system is a larger-scale version of the British one.

9 Further applications of matching with multidimen-

sional constraints

9.1 Multidimensional diversity constraints

Many public institutions prefer a diverse membership and implement diversity targets or

affirmative action policies. Recently, a number of papers in matching theory has sought to

integrate diversity concerns analyzing a variety of reserve, quota, and balancing schemes

(Abdulkadiroğlu and Sönmez, 2003; Westkamp, 2013; Echenique and Yenmez, 2015; Komin-

ers and Sönmez, 2016). Most of the prior work has implicitly assumed that any agent fills

a quota for their specific unidimensional type. This ignores the fact thats some agents can

affect several quota dimensions. Our model allows public institutions to implement diversity

targets directly by allowing for multidimensional type constraints. For example, a student

could be represented by a vector of characteristics denoting their gender, socioeconomic sta-

tus, race, and ethnicity (in the same way as a refugee family has needs for multiple services).

A school could in turn implement multidimensional diversity quotas for these characteristics

(same as locality capacities). This could allow the same student to fill a college quota for

race and gender simultaneously.44

42There are interesting design issues to address in the private sponsorship scheme, such as the optimal
length of waiting time before matching.

43See http://www.cic.gc.ca/english/refugees/welcome/milestones.asp
44We do not require that the student necessarily take up a full race-slot and a full gender-slot. Aygün and

Bó (2016) consider a case of multidimensional privileges in Brazilian college admissions. In their case, the
preferences of colleges are constrained and reporting privileges is a strategic decision.

49

http://www.cic.gc.ca/english/refugees/welcome/milestones.asp


9.2 Daycare matching

Parents of children in daycare are often in part-time work. Hence, they only require daycare

on particular days of the week or, indeed, for certain parts of the day. Daycare centers have

capacity constraints on staff that might also vary day-by-day. Our model allows parents

to express their preferences over particular days and times without modifying the priorities

of the daycare center (e.g. using neighborhood or sibling priority) or violating the center’s

capacity constraints over the course of the week. For example, a parent might wish to only

send one of their children to daycare for the morning of Monday and both children for the

afternoon of Thursday and Friday, while the daycare center may be able to accommodate

twelve children on Thursday morning and only eight children on Wednesday morning. Each

“service” is then a day and a time slot and the needs of families for each “service” are the

numbers of children they wish to send to daycare during that time slot.

10 Conclusion

This paper described matching problems that arise at different stages of refugee resettlement

and showed three ways in which systems for refugee resettlement can be enhanced using in-

sights from market design: by maximizing welfare based on observables, by using refugee

family preferences, or by using both preferences and locality priorities. First, we showed

how to maximize the overall efficiency of the match based entirely on a quality score esti-

mated without eliciting the preferences of refugees or the priorities of the localities. Then,

we adapted the classical Top Trading Cycles algorithm (i) to achieve a Pareto-efficient out-

come from an empty endowment and (ii) to find Pareto improvements from any endowment

in a strategy-proof way. We showed that, unless priorities are identical, stable outcomes

may not exist and can be computationally hard to find. We then introduced another sta-

bility concept—quasi-stability—that fully respects the priorities of localities. We showed

that there was a tradeoff between reaching family-optimal and strategy-proof quasi-stable

outcomes. In general, different mechanisms we proposed would work well depending on the

size of the matching market and the importance of satisfying heterogeneous priorities. Policy

work to implement our matching tools is already beginning in several countries.45 Our frame-

work for matching with multidimensional constraints has a number of possible applications

from incorporating complex diversity constraints in school choice or college admissions to

designing new systems that would match children to daycare centers. Thus matching with

multidimensional constraints offers an exciting area of theoretical and applied research.

45See www.refugees-say.com.
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Appendix

A The running Example

• Families: F = {f1, f2, f3, f4, f5} Localities: L = {`1, `2, `3, `4}
• Houses: H`1 = {h11, h12}, H`2 = {h21}, H`3 = {h31, h32}, H`4 = {h41, h42}
• Service capacities: Service needs:

κ =


s1 s2

`1 4 2
`2 3 2
`3 2 2
`4 2 2

 ν =



s1 s2

f1 1 0
f2 2 1
f3 0 2
f4 1 1
f5 3 0


We assume that (f1, h12), (f1, h21), (f1, h41), (f2, h12), (f3, h11), (f4, h11), (f4, h41) and

(f5, h11) are the only impermissible family-house pairs.

Priorities of localities:
`1 : f2, f1, f4, f5, f3

`2 : f5, f1, f3, f4, f2

`3 : f5, f3, f2, f1, f4

`4 : f1, f5, f2, f4, f3

Preferences of families:
f1 : `3 � `4 � `1 � `2

f2 : `3 � `1 � `2 � `4

f3 : `4 � `3 � `1 � `2

f4 : `4 � `1 � `2 � `3

f5 : `1 � `2 � `4 � `3

Quality score: q((f, `))
`1 `2 `3 `4

f1 71 ∅ 23 38
f2 46 49 30 91
f3 52 68 43 20
f4 4 75 96 36
f5 92 41 ∅ ∅

Outcomes of mechanisms proposed in this paper for the running Example:

• Outcome-quality maximization problem (OQMP): Example for Section 4.

• Multidimensional Top Trading Cycles (MTTC): Example for Section 5.1.

• Serial Multidimensional Top Trading Cycles: Example for Section 5.2.

• Top Choice: Example in Appendix C.

• Priority-Focused Deferred Acceptance (PFDA): Example for Section 6.2.1.

• Maximum Rank Deferred Acceptance (MRDA): Example for Section 6.2.3.
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Reducible housing and housing in the Example
In general, suppose that houses differ by size {1, . . . ,M} and provide a subset of features
from a set Θ. The type of house h is then Θh ⊆ Θ. Each family requires a subset of the
features in their house Θf ⊆ Θ. Family f can be accommodated in house h as long as
the house size is greater than |f | and Θf ⊆ Θh. Consider a subset of service constraints
that represents housing Sh ⊆ S. Let shi,Θ be the service representing a house of size i ∈
{1, . . . ,M} and type Θ ⊆ Θ. Then

(
κ`
s
hi,Θ

)
i∈{1,...,M},Θ⊆Θ

and
(
νf
s
hi,Θ

)
i∈{1,...,M},Θ⊆Θ

denote

the subvectors of
(
κ`s
)
s∈S and

(
νfs
)
s∈S respectively representing housing constraints both of

dimension |M × 2Θ|. For a family of size i that requires a set of features Θf , the demand
for housing services is νf

s
hj,Θ

= 1 if j ≤ i and Θ ⊆ Θf and zero otherwise. κ`
s
hj,Θ

is then the

number of houses of size at least j that contain features Θ ⊇ Θh in locality `.
In the running Example, housing is reducible with three housing features and two sizes.

Let us suppose that there are two house and family sizes: {small, large} and three house
features: Θ = {θ1, θ2, θ3}. A small family can fit into a large house, but not vice versa.

Family needs

Family size type
f1 small θ1, θ2, θ3

f2 large θ2

f3 large ∅
f4 large θ1

f5 large ∅

Housing

House size type
h11 small θ1, θ2, θ3

h12 large θ1

h21 large θ1, θ2

h31 large θ1, θ2, θ3

h32 large θ1, θ2, θ3

h41 large θ2

h42 large θ1, θ2, θ3
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B Proofs

Proof of Proposition 1. First note that:

max
Y⊆X

∑
y∈Y

q(y) corresponds to: max
∑
`∈L

∑
f∈F

q(f, `)ι(f, `) ι(f, `) ∈ {0, 1}.

While for the two feasibility constraints on Y , we have

|Y ∩Xf | = 1 for all f corresponds to:
∑
`∈L

ι(f, `) ≤ 1 ∀f ι(f, `) ∈ {0, 1},

τ(Y ) ≤ κ corresponds to:
∑
f∈F

∑
`∈L

νfs ι(f, `) ≤ κ`s ∀`, s ι(f, `) ∈ {0, 1}.

Since the any subset of families can be feasibly accommodated in the null locality, it does
not impose a constraint on the problem hence the outcome-quality maximization problem is
precisely the multiple multidimensional knapsack problem.

In order to apply the branch-and-bound algorithm, we first need to a determine an upper
bound on the value of the maximand. Here we cannot use standard greedy solutions to a
linear relaxation of the knapsack problem. We extend the approach of Song et al. (2008)
to our multidimensional case and decompose our problem into several standard knapsack
problems, which can all be independently linearly relaxed to obtain a tight upper bound for
the whole problem. The lower bound is, of course, zero, since all families can be unmatched.

First, let us identify each service constraint:

max
∑
`∈L

∑
f∈F

q(f, `)ι(f, `) (3)∑
f∈F

νfs1ι(f, `) ≤ κ`s1 ∀`

...∑
f∈F

νf|S|ι(f, `) ≤ κ`|S| ∀`∑
`∈L

ι(f, `) ≤ 1 ∀f

ι(f, `) ∈ {0, 1}.

Let us introduce dual variables λf for all f ∈ F and γ` for all ` ∈ L. Convert Problem
(3) into a problem with a one-dimensional constraint:
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max
ι
L(ι,λ,γ) (4)∑

f∈F

νfs1ι(f, `) ≤ κ`s1 ∀`

ι(f, `) ∈ {0, 1}

where: L(ι,λ,γ) =
∑
`∈L

∑
f∈F

q(f, `)ι(f, `)

−
∑
f∈F

λf (
∑
`∈L

ι(f, `)− 1)

−
∑

s∈S\{s1}

∑
`∈L

γ`s(
∑
f∈F

νfs ι(f, `)− κ`s).

Denote Õ as the optimum value of Problem (4), which is also an upper bound for the
outcome-quality maximization problem for any λf , γ` ≥ 0. For a tight upper bound, let us
minimize

min
λ,γ

L(ι,λ,γ)

and rewrite Problem (4) as:

L(ι,λ,γ) =
∑
`∈L

∑
f∈F

q(f, `)ι(f, `)−
∑
`∈L

∑
f∈F

λf ι(f, `)−
∑

s∈S\{s1}

∑
`∈L

∑
f∈F

γ`sν
f
s ι(f, `) (5)

+
∑
f∈F

λf +
∑

s∈S\{s1}

m∑
j=1

γ`sκ
`
s

=
∑
`∈L


∑
f∈F

q(f, `)− λf −
∑

s∈S\{s1}

γ`sν
f
s︸ ︷︷ ︸

q̃`

 ι(f, `)


+
∑
f∈F

λf +
∑

s∈S\{s1}

∑
`∈L

γ`sκ
`
s.

Let us define q̃` = q(f, `) − λf −
∑

s∈S\{s1} γ
`
sν

f
s as `th decomposed knapsack problems,
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namely

max
∑
f∈F

q̃`ι(f, `) (6)∑
f∈F

νfs1ι(f, `) ≤ κ`s1

ι(f, `) ∈ {0, 1}.

Now, let us find an upper bound for all |L| problems q̃` by the following linear relaxation
and a greedy algorithm for the upper bound (see Kellerer et al. (2004)):

max
∑
f∈F

q̃`ι(f, `) (7)∑
f∈F

νfs1ι(f, `) ≤ κ`s1

ι(f, `) ∈ [0, 1].

We denote the upper bound of the `th subproblem (6) as o`. The upper bound of the
outcome quality maximization problem is then:

∑
`∈L

o` +
n∑

f∈F

λi +
∑

s∈S\{s1}

∑
`∈L

γ`sκ
`
s

Once the upper bound has been determined, a standard branch-and-bound method can be
applied. Finding a heuristic that gives an approximation to this problem that is independent
of the number of services is an open problem and beyond the scope of this paper.

Proof of Proposition 2. First, we show how to determine the top-choice locality and the
highest-quality family that can be accommodated at each round. Given a current outcome
Y , consider a family f and a locality `. Consider the set of families that are permanently
matched to `, F `(Y ). We are interested in whether f /∈ F can be accommodated in `
alongside F `(Y ). If housing is reducible, this is trivial: we simply check whether feasibility
constraints at ` are violated when Y ∪ {(f, `)} is an outcome.

Without reducible housing, consider H`, the set of houses in locality `. The problem is
non-trivial if |H`| ≥ |F `(Y ) ∪ {f}|. We have an instance of a maximum bipartite matching
problem. Construct a graph as follows: The nodes are partitioned into two subsets H`

and F `(Y ) ∪ {f} and any edge represents a permissible family-house pair (f, h) such that
f ∈ F `(Y ) and h ∈ H`. All edges are given a weight of one except edges adjacent to f ,
which have weight 1 + ε (s.t. ε < 1

|H`|
) in order to break ties. We solve this instance of

the maximum bipartite matching problem (e.g. using the Ford-Fulkerson algorithm) and see
whether f is included in the solution. If every family, including f , has an adjacent edge in
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the optimal solution, then f can point at ` (or ` can point at f).
Once any locality and any family is able to determine the next family it wants to point

at, it is straightforward to see that the proofs of efficiency and strategy-proofness in our
case follow proofs Proposition 3 and 4 in Abdulkadiroğlu and Sönmez (2003) with trivial
modifications (e.g. adjusting capacity of every service rather than adjusting the capacity of
the total school quota).

Proof of Proposition 3. We prove each property in turn.

Individual Rationality
At any stage in the algorithm when f has been made active but not yet permanently

matched, f points at top-choice locality while the locality it is endowed with, say `, points
at f . As f can always be accommodated in `, f first points either at ` or a locality it prefers
to `. Therefore either f is permanently matched to a locality it prefers to ` or it ends up
pointing at `. In that case f is always matched to `. Consequently, f is always permanently
matched to ` or a locality it prefers to `.

Strategy-proofness
A family cannot impact its outcome before it is made active or after it is permanently

matched. Therefore an incentive to manipulate preferences exists if and only if at some point
between the round in which a family is made active and the round in which it is permanently
matched, the family can improve its outcome by pointing at a locality other than the one
it prefers among those where it can be accommodated. We complete the proof by showing
that no such deviation exists.

Consider any round of the algorithm where f has already been made active but not
yet permanently matched. Let (`1, . . . , `n) be the localities where f can be accommodated,
ordered by f ’s preference. By construction, f can only point at one of these localities.
It remains to show that pointing at `1 is a (weakly) dominant strategy. Let `j (for some
j = 1, . . . , n) be f ’s endowment. (By definition, `j is always accessible.) Locality `j points
at f so, f is permanently matched to `j if it points back at it. A chain may exist such that
a locality points at a family, which points at another locality, that locality points at a family
and so on until a family points at `j. In that case, a cycle forms if f points at the first locality
in that chain. Denote by Z the the set of localities in this chain. Let `k (k = 1, . . . , j) be the
locality f prefers among localities in Z. Then f is permanently matched to `k if it points at
`k. If k = 1, pointing at `k is clearly a dominant strategy since it ensures f is matched to
the best locality it can still possibly obtain. We consider below the case where k > 1.

Family f has three possible strategies. First, it can point at `k and be permanently
matched to `k. Second, there may exist one or more locality in Z to which f would be
matched if it pointed at any of them. As f prefers `k to all these localities in Z, the first
strategy dominates the second. Third, f can point at any other locality. No matter which
of these localities f points at, the same cycles appear and f is not part of any of them.
Additionally, `k as well as the families and localities involved in the chain from `k to f do
not appear in a cycle either since f does not point at `k. After the cycles are carried out, f
faces a new (smaller) set of localities where it can be feasibly matched and is still matched to
`k if it points at it. The third strategy dominates the first since it ensures f can be matched
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to `k or a locality it prefers to `k in later rounds of the algorithm. It follows that pointing
at any locality such that no cycle is formed is a (weakly) dominant strategy for f . Since `1

is among these localities, pointing at `1 is a (weakly) dominant strategy.

Proof of Proposition 4. (⇒) Suppose, towards a contradiction, that for some outcome of the
serial dictatorship there is blocking pair (f, `). This means that (i) ` can accommodate
f (perhaps after removing another lower priority family or families from that locality) (ii)
f could have be permanently matched to that locality when its priority order was called.
Hence, family f must have preferred not to be at `. Hence, there is no blocking pair. A
contradiction.
(⇐) Suppose, towards a contradiction, that there is a stable mechanism that produces an
outcome that is different from an outcome of a serial dictatorship. Consider a family f that
is highest in the priority order whose locality is different from the locality that it is matched
to by the serial dictatorship. But the serial dictatorship gives f its most preferred locality
given that all the families with a higher priority than it have the same allocation under
both mechanisms. Hence, the family prefers the serial dictatorship outcome to its current
outcome. Moreover, it has the highest priority in its top-choice locality, following families
before it whose outcome was identical. Hence, there is a blocking pair and the other outcome
is not stable. A contradiction.

Proof of Proposition 5. First, let us define the terms we use.

Definition 3. For any X, π, and �, we say that f receives a guarantee for ` if in every
stable outcome Y , we have (f, `′) ∈ Y for some `′ �f ` or `′ = `.

We now describe how to find guarantees algorithmically. Let F `(Y ) ≡ {f ∈ F | ` =
`f (Y )} be the set of families that have ` as their top choice.46 For any f ∈ F , let F̂(f,`) be

the set of families that have a higher priority for ` than f . We also define Ĝ(f,`) ⊆ F̂(f,`) as
the set of families with a higher priority at ` than f who have received a guarantee at `.
According to Definition 3, families in F ` ∩ Ĝ(f,`) will be matched to ` in any stable outcome

(for any f). Families in F̂(f,`) \ (F ` ∩ Ĝ(f,`)) may or may not be matched to ` in some stable
outcome. Family f therefore receives a guarantee if it can be accommodated alongside every
feasible subset of F̂(f,`) that contains F ` ∩ Ĝ(f,`). Formally, f receives a guarantee if for all

feasible F ′ such that F ` ∩ Ĝ(f,`) ⊆ F ′ ⊆ F̂(f,`), F
′ ∪ {f} is feasible. Intuitively, a family f

receives a guarantee from its top-choice locality ` if ` has enough capacity to accommodate it
with any subset of the set of families for which ` is top choice and which have higher priority
in ` (taking into account that some of these families also have guarantees).

Definition 4. For any X, π, and �, we say that f receives a rejection for ` if in every stable
outcome Y , we have (f, `) /∈ Y .

We now describe how to find rejections algorithmically. Family f is then rejected if there
is no subset F ′ such that F ` ∩ Ĝ(f,`) ⊆ F ′ ⊆ F̂(f,`) and

• F ′ ∪ {f} is feasible, and

• For every f ′ ∈ (F ` ∩ F̂(f,`)) \ F ′ we have that (F(f,`) ∩ F ′) ∪ {f ′} is infeasible.

46We drop argument Y when it is clear what the relevant outcome is.
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The intuition behind this rejection rule is the following: f is rejected from ` if there is no
subset of families with a higher priority than f that includes all families with ` is their top
choice and with a guarantee for ` which (i) can accommodate f and (ii) is not blocked by
any family with a higher priority than f which has ` as its top choice (but no guarantee for
`).

Artificial guarantees and rejections
Let us define GA ⊆ F × L and RA ⊆ F × L as the sets of artificial guarantees and

rejections. Artificial guarantees and artificial rejections induce the same actions within the
algorithm as guarantees and rejections. Given an artificial guarantee of family f for locality
`, we remove all the contracts for the localities that f ranks below `. Given an artificial
rejection of family f for locality `, we remove all contracts between f and `. Because
artificial guarantees and rejections are tentative i.e. not final, a family can have: an artificial
guarantee and a rejection for a given locality, or an guarantee and an artificial rejection, or
an artificial guarantee and an artificial rejection.

Lemma 1. The TDBU and the ATDBU algorithms do not remove any contracts that could
be part of a stable outcome.

Proof. See technical descriptions of the algorithms in Section C.1. First, if a family f can
be accommodated in a locality ` alongside any subset of families that have a higher priority
in that locality, then if it is matched to a locality `′ that is prefers less, then in any stable
outcome, it would be able to block with ` since (i) it prefers ` (ii) it will not affect the match
of any family with a higher priority in `. Therefore, any contract (f, `′) for any ` �f `′
can be removed without affecting the stable outcome. Second, any set of families that has
a guarantee for ` (G(f,`)) and which has ` as its top-choice locality (F `) must be matched
to ` in any stable outcome. Third, if a family f cannot be accommodated in ` alongside
F ` ∩ Ĝ(f,`) and any subset of families without a guarantee that has a higher priority that
f in `, then f cannot be part of a stable outcome because (f, `) can never be a blocking
pair. Hence, (f, `) can be removed without affecting any stable outcome. Since none of
the possible stable outcomes have been affected by the TDBU algorithm, if all the families
receive their top-choice locality among the remaining contracts and this outcome is feasible,
then the TDBU algorithm produces a unique (because each family’s top choice locality is
unique given any remaining set of contracts), stable (because every family get its top choice
and does not wish to block), and family-optimal (because among the remaining contracts
that can be part of a stable outcome, this one gives each family its top choice).47 Finally,
note that the ATDBU algorithm runs in exactly the same way as the TDBU algorithm
except that it checks for consistency between guarantees and rejections as well as artificial
guarantees and artificial rejections.

Define a solution tree as a directed graph (see example of a solution tree in Figure 2).
Each node represents a set of artificial guarantees. The root of the tree has no artificial
guarantees. Nodes in the first level contain artificial guarantees for all localities for f1,

47Note that it may not be Pareto-efficient because contracts were removed according to the stability
criterion and some of these could have led to a Pareto improvement.
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nodes in the second level contain artificial guarantees for all localities for f2 given artificial
guarantee for f1, and so on. The bottom of the solution tree has artificial guarantees for
all localities for family f|F | given the artificial guarantees of all the other families. The DFS
therefore searches through this solution tree.

Lemma 2. The DFS reaches the bottom of the solution tree with the ATDBU algorithm at
the final step reporting a non-empty outcome if and only if there is stable outcome.

Proof. (⇒): If the DFS reaches the bottom of the solution tree, then every family has
an artificial guarantee. Moreover, the ATDBU algorithm has not rejected any artificial
guarantees. The outcome must be feasible otherwise infeasible contracts would necessarily
be rejected. The outcome is stable because at each step of the algorithm every family’s
artificial guarantee was its top choice conditional on the remaining contracts. Since contracts
are only removed as the DFS moves towards the bottom of the solution tree, no new blocking
opportunities can arise.
(⇐): Suppose there is a stable outcome. Let us make a trivial observation. Any stable
outcome can be constructed in the following way: For every family f matched to locality `,
remove all contracts that include localities that f prefers to ` and give each family its top-
choice locality (e.g. as artificial guarantee). Therefore, if an attempt to give every family its
top choice at any step of the DFS results in a feasible outcome, it must be stable because
the ATDBU algorithm never removes contracts that could be part of a stable outcome.
Therefore, any stable outcome is a sequence of artificial guarantees for every family that are
not rejected. This sequence only occurs at the bottom of the solution tree.

Lemma 3. There is no stable outcome if and only if for any family an artificial guarantee
for every L ∪ {∅} is rejected.

Proof. (⇐): If family f ’s artificial guarantee for locality ` has been rejected, then, by defi-
nition, f cannot be placed in ` in any stable outcome. Let us artificially reject f from ` i.e.
remove (f, `). If the ATDBU algorithm returns an empty outcome, that means in any stable
outcome f cannot be placed in any outcome other than ` (including being unmatched). This
means that f cannot placed in any locality or be unmatched in any stable outcome.
(⇒): Suppose, towards a contradiction, there is no stable outcome, but there is a family f1

for which an artificial guarantee has not been rejected for some ` ∈ L ∪ {∅} in the DFS.
Start the DFS by giving f1 an artificial guarantee of ` and making it the first family in the
general priority order. But note that the DFS either stops at the bottom of the solution tree
or returns to f1. We have assumed that this artificial guarantee cannot be rejected therefore
the DFS can only stop at the bottom of the solution tree. Hence, since the DFS only stops
at the bottom of the solution tree if it finds a stable outcome, we have a contradiction.

Lemma 4. The DFS finds a stable undominated outcome if a stable outcome exists.

Proof. Since a stable outcome exists, the DFS must stop at the bottom of the solution tree.
Since the DFS can access any outcome in the solution tree, the general priority order is
not relevant for whether a stable outcome is found. Index families in general priority with:
f1, f2, . . .. Note that the DFS artificially guarantees f1’s top choice locality for a long as
possible and only rejects it when it shows that f2 cannot be matched to any locality given
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f1’s top choice. Then the DFS gives every fi its best possible choice as artificial guarantee
conditional on all subsequent fj (j > i) not having their best possible artificial guarantee
rejected. Hence, for any family any stable outcome found by the DFS must be at least as
another outcome found when this family is lower in the general priority order. Therefore, any
outcome found by the DFS cannot be Pareto-dominated by another stable outcome found
by the DFS.

Housing assignment does not affect the stability or undominatedness of the outcome.
The (⇒) part of the Proposition follows from Lemma 4. The (⇐) part of the Proposition
follows from Lemma 3 and Lemma 2 and the fact that DFS either stops at the bottom of
the solution tree or rejects the artificial guarantee of the least preferred locality of f1, the
first family in the general priority order.

Proof of Proposition 6. By construction, in each round of the PFDA algorithm, a family is
rejected if another family with a higher priority is rejected or has been rejected before. It
follows that by the time the algorithm ends, any family permanently matched to a given
locality has a higher priority for that locality than any family that was previously rejected.
The outcome Y ∗ reached by the time the algorithm ends is consequently quasi-stable. It
remains to show that Y ∗ dominates all other quasi-stable outcomes.

Suppose that there exists a quasi-stable outcome Y ′ such that, for some f , we have
f ∈ F `′(Y

′) and f ∈ F `(Y
∗) with `′ �f `. By construction, f was rejected by `′ in some

Round r of the PFDA algorithm.
Suppose now the existence of a family fi and a locality `i such that fi ∈ F `i(Y

∗) and `i
rejected fi in Round 1 ≤ ri ≤ r of the PFDA algorithm. Consider all families that proposed
to `i in at least one round between 1 and ri and have a higher priority for `i than fi. The fact
that fi was rejected in Round ri implies that it cannot be accommodated at `i alongside all
these families. Feasibility then dictates that at least one of them, say fi+1, must be matched
to another (possibly null) locality: fi+1 ∈ F `i+1

(Y ′) with `i+1 6= `i. Because fi+1 π`i fi,
quasi-stability in turn dictates that `i+1 �fi+1

`i, which implies that fi+1 proposed to `i+1

in the PFDA algorithm before he proposed to `i. It follows that `i+1 rejected fi+1 in Round
ri+1 < ri.

By induction, there exists a family fj and a locality `j such that fj ∈ F `j(Y
′) and `j

rejected fj in Round 1. Family fj cannot be accommodated at `j alongside all families
proposing to `j in Round 1 who have a higher priority. Quasi-stability then dictates that at
least one of these families be matched to a locality they prefer to `j, a contradiction since
families propose to their top choice in Round 1.

Proof of Proposition 7. Let us set up the technical machinery following Roth and Rothblum
(1999) and (Ehlers, 2008). Recall that �f is the set of all preference profiles of family
f and �≡ ×f∈F �f is the preference domain. For a f ∈ F , denote �−f≡ × �f

f∈F\{f}
. A

random preference profile is a probability distribution �̃−f over �−f . A random outcome
Ỹ is a probability distribution over the set of all feasible outcomes Y . Let Ỹ (f) denote the
distribution which Ỹ induces over the set of all f ’s feasible contracts {Yf |Y ∈ Y}. Given a
mechanism φ and �f∈�f , each randomized preference profile �̃f induces a random outcome
φ(�f , �̃−f ) in the following way: for all Y ∈ Y
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Pr{φ(�f , �̃−f ) = Y } =
∑

�−f∈�−f :φ(�f ,�−f )=Y

Pr{�̃−f =�−f}

Given f ∈ F , �f ,�′f ,�′′f∈�f , and a random preference profile �̃−f , we say that a
strategy �′f stochastically �f -dominates the strategy �′′f if for all ` ∈ L ∪ {∅}, denoted

`(φ(�′f , �̃−f )f ) >�f
`(φ(�′′f , �̃−f )f )

we have

Pr{`(φ(�′f , �̃−f )f ) ≥�f
`} ≥ Pr{`(φ(�′′f , �̃−f )f ) ≥�f

`}.

Given f ∈ F , �f∈�f and `, `′ ∈ L, let �`↔`′f denote f ’s preference list that changes the
positions of ` and `′ and leaves the other positions of other localities in �f unchanged. Also,
for any �∈�, let �`↔`′= (�`↔`′f ,�`↔`′−f ). Given an outcome Y ∈ Y , let Y `↔`′ be the outcome
in which ` and `′ exchange the families matched to it under Y .

Definition 5 (Anonymity). For all �∈�, all Y ∈ Y , and all `, `′ ∈ L, if φ(�) = Y , then
φ(�`↔`′) = Y `↔`′ .

Definition 6 (Positive association). For all �∈�, f ∈ F , and all `, `′ ∈ L, if `(φ(�)f ) = `,
and `′ >�f

`, then `(φ(�`↔`′f ,�−f )f ) = `.

We then say that family f ’s information �̃−f is {`, `′}-symmetric if for every profile �−f ,
both �−f and �`↔`′−f are equally probable. Family f ’s information is completely symmetric
if �̃−f is symmetric for any two localities.

Lemma 5. The PFDA algorithm satisfies positive association.

Proof of Lemma 5. Consider a family f that is permanently matched to locality ` (not its
top choice, otherwise the result is trivial) under a report of �f in the PFDA algorithm. This
means that it can be accommodated alongside other families that proposed to ` before it and
it had a high enough priority to ensure it was not rejected because a higher priority family
than f was rejected. Now for some `′ such that `′ �f `, consider submitting list �`↔`′f . All
proposals before f applies to ` are the same. Consider what happens when f proposes to `.
Clearly, it can be accommodated in ` since in this round fewer families had proposed to `.
Moreover, since fewer families had proposed, no family with a higher priority who has been
rejected from ` could have proposed. Therefore, f will not be rejected. But in later rounds,
there will be weakly fewer higher priority families that apply to `. Therefore, f cannot be
rejected from ` before the end of the algorithm.

Since in addition to positive association PFDA algorithm also satisfies anonymity, the
Proposition 7 holds as a corollary of Theorem 3.1 in Ehlers (2008).

Proof of Proposition 8. First, we prove a lemma that establishes important properties of the
algorithm.
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Lemma 6. Consider a locality ` and a subset of families F̃ that are tentatively accepted by
` after some round of the MRDA algorithm and a family f that is the only family other than
those in F̃ to propose to ` in the same round.

(i) If f is rejected, then it has a lower priority than all families in F̃ and all families in
F̃ continue proposing.

(ii) If f is not rejected, at most one family in F̃ is rejected. That family has a lower
priority than f and than any other family in F̃ .

(iii) If f is not rejected without triggering a rejection, then all families in F̃ would continue
proposing if any other family were to propose to ` instead of f .

Let us define the Current Rank of family f for locality ` in Round k, denoted CRk
f,`, to

be the number of families with a higher priority than f proposing to ` in Round k plus 1.
The Current Rank then corresponds to the family’s relative priority among those proposing
to ` in Round k. Let us abbreviate Maximum Rank to MR.

Proof of Lemma 6. (i) If f is rejected in some Round k, then CRk
f,` > MRf,`. Any other

proposing family f ′ with a lower priority such that CRk
f ′,` > CRk

f,` and MRf ′,` < MRf,` and
is also rejected.

(ii) The result is trivial if |F̃ | ≤ 1. Otherwise, again let f ′ and f ′′ be the families with
respectively the lowest and nth (2 ≤ n ≤ |F̃ |) lowest priority among all families in F̃ . Before
f proposes, CRf ′,` ≤ MRf ′,` since f ′ is not rejected. As f ′′ has n − 1 fewer proposing
families with a higher priority than f ′ does, CRf ′′,` = CRf ′,`− (n− 1) ≤MRf ′,`− (n− 1) ≤
MRf ′′,`−(n−1). When f proposes, f ′′’s Current Rank goes up by one if f π` f

′′ and remains
the same otherwise, therefore it does not exceed MRf ′′,` − (n − 2) ≤ MRf ′′,` and f ′′ is
tentatively accepted. It follows that no family other than f ′ is rejected. As CRf ′,` ≤MRf ′,`,
f ′ may only be rejected if f π` f

′.
(iii) The result is trivial if |F̃ | = 0. Otherwise again let f ′ be the family with the lowest

priority among all families in F̃ . Before f proposes, CRf ′,` ≤ MRf ′,` since f ′ is accepted.
If CRf ′,` = MRf ′,`, f is rejected unless f π` f

′ but in that case f ′’s current rank goes up by
one so f ′ is rejected. Therefore if f is tentatively accepted without triggering a rejection,
CRf ′,` ≤ MRf ′,` − 1. Then if any family proposes to `, f ′’s current rank reaches at most
MRf ′,`. Family f ′ is not rejected and, by Part (ii), neither is any other family in F̃ .

We now prove each property in turn.

Quasi-stability
Suppose, towards a contradiction, that the outcome is infeasible. Then, in the last round,

there is a locality that tentatively accepts a subset of n families that it cannot accommodate.
Consider the family with the last priority among that subset. That family’s Current Rank
is n but its Maximum Rank is at most n−1 since there exists a subset of n−1 families with
which it cannot be accommodated. That family could not have been tentatively accepted in
the last round of the algorithm, a contradiction.

Suppose now that the outcome Y allows a (quasi-)blocking pair, that is there exists
f ∈ F `′(Y ) and f ′ ∈ F `(Y ) such that ` �f `′ and f π` f

′. By construction, MRf,` ≥MRf ′,`.
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Since f prefers ` to `′ and is matched to `′, it proposes to and is rejected by ` in some round
k. In that round at least MRf,` families with a priority higher than f (and hence f ′) propose
to `. If f ′ is already proposing to `, it is rejected. The fact that f ′ ∈ F `(Y ) implies that f ′

proposes to ` for the first time in some round t > k and that, in this round, strictly fewer
than MRf ′,` families propose to `. This requires that strictly fewer than MRf ′,` families
with a priority higher than f ′ are tentatively accepted by ` in Round t − 1. It follows that
for some k ≤ k′ < t, ` tentatively accepts strictly fewer families with a higher priority than
f ′ in Round k′ + 1 than in Round k. We next show that this is impossible.

Suppose, towards a contradiction, that n ≥MRf ′,` families with a higher priority than f ′

are tentatively accepted by ` in Round k′. In Round k′+ 1, m ≥ 0 new families propose to `
so that in total m+n families with a higher priority than f ′ propose to ` but only p < n are
accepted. Let f̃ be the family with the p+1st priority among these m+n proposing families.
Then CRk′+1

f̃ ,`
= p + 1 > MRf̃ ,` since f̃ is rejected. Let f̂ be the family with the p + 1st

priority among the n families proposing to ` in Round k′. Then CRk′+1

f̂ ,`
= p + 1 ≤ MRf̂ ,`

since f̂ is tentatively accepted. It follows that MRf̂ ,` > MRf̃ ,`, however since the n families

tentatively accepted in Round k all propose again in Round k′, either f̃ = f̂ or f̃ π` f̂
hence MRf̂ ,` ≤ MRf̃ ,`, a contradiction. As the outcome is feasible and does not allow any
(quasi-)blocking pairs, it is quasi-stable.

Strategy-proofness
We begin by proving two lemmas that, combined, yield the desired result.

Lemma 7. Fix the capacity constraints, priorities, and reports by other families, and let
` ∈ L∪ {∅} be the locality to which family f is matched if it reports �f . If instead f reports
�′f where ` is listed as its first preference, then f is still matched to ` and all other families
are weakly better off.

Proof of Lemma 7. Let Y and Y ′ be the outcomes generated by the MRDA algorithm when
f reports �f , respectively �′f . Y respects Maximum Ranks when f reports �′f since the
only difference is that f no longer reports preferring any locality to `. By Lemma 6, Y ′

dominates Y given f ’s new report. Since f listed ` first it remains matched to ` and since
all other families kept the same report, they are all matched to either the same locality or
to one they prefer more.

Let ` ∈ L∪{∅} be the locality to which f is matched if it reports its true preferences. An
important consequence of Lemma 7 is that f can successfully misrepresent its preferences
if and only if there exists `′ �f ` such that f is matched to `′ if it reports preference list
(`′ � ∅).

For ease of exposition of the second lemma, we consider a slightly altered but equivalent
algorithm to the MRDA algorithm. First, we run the MRDA algorithm pretending that f
reported all localities to be unacceptable. Once an outcome is reached, f proposes to the
locality listed first on its actual report. If the proposal is rejected, f proposes to its second
choice. If it is tentatively accepted and no family is rejected as a result, the algorithm ends
and the tentative outcome becomes final. If it is tentatively accepted and another family is
rejected, a rejection chain starts. The rejected family proposes to other localities until one
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accepts it. Another family may be rejected as a result and so on until either a family is
accepted by a locality without triggering a rejection or a family is accepted by the locality to
which f proposed and f is rejected as a result. In the former case, the algorithm ends and
the tentative acceptances becomes permanent matches. In the latter case, f proposes to its
second choice. The same process is followed for each of f ’s choices, the algorithm always ends
eventually as f proposes to the null object if it has been rejected by all acceptable localities.
Any locality that rejects f in the MRDA algorithm rejects f in this alternative MRDA
algorithm and vice versa so that same outcome is reached. Letting f propose after everyone
else allows us to isolate the impact that f has on the outcome of the MRDA algorithm. We
are now in a position to present the result.

Lemma 8. Suppose f proposes to some family ` in the second part of the alternative MRDA
algorithm and is matched to it. Then if f proposes to `′ instead, but it is rejected from `′

and subsequently proposes to `, then it is matched to `.

Proof of Lemma 8. Consider first the case where f proposes to `. By assumption, f is
tentatively accepted and the rejection chain that follows ends when a family is tentatively
accepted by a locality without triggering an additional rejection. The rejection chain is

f0, `0, f1, `1, f2, `2, f3, `3, ..., fn, `n, where f0 ≡ f and `0 ≡ ` and n = 0, 1, 2, ....

If no rejection is triggered the rejection chain ends here (in that case n = 0). If a rejection is
triggered, Lemma 6 implies that only one family, say f1, is rejected. Family f1 proposes to
its next best choices in order of preference until a locality, say `1, accepts it. Again another
family, f2 may be rejected and so on until a family fn proposes to `n and is tentatively
accepted without triggering a rejection. The algorithm ends and the tentative acceptances
becomes permanent matches. This is the outcome that would have been found if we had run
the MRDA algorithm with f reporting ` as its first preference. Observe that some families
and localities may appear more than once in the rejection chain, however f does not appear
again since by assumption ` does not reject it.

Consider now the case where f proposes to `′. By assumption, f is rejected, which can
happen in one of two ways. First, f may be immediately rejected by `′ when it proposes to
it. In that case f ’s proposal has not modified the outcome: If f then proposes to ` the same
rejection chain occurs and f is permanently matched to `. Second, f is tentatively accepted
by `′ but the rejection chain that follows ends with `′ rejecting f . By Lemma 6, `n cannot
appear in that rejection chain because if any family proposes to `n it is accepted without
triggering a rejection. In that case the rejection chain ends without `′ rejecting f .

After f is rejected by `′, it proposes to `. Suppose it is tentatively accepted at first but
triggers a rejection chain that ends with ` rejecting f . Then `n is not part of that rejection
chain otherwise the chain ends without ` rejecting f . Therefore, irrespective of whether f is
rejected immediately or after a rejection chain, `n has not received any proposal following f ’s
proposals to ` and `′. It follows that fn has not proposed to fn and is tentatively matched
to a locality it prefers to `n. Therefore if f reports ` �f ∅, fn is permanently matched to
`n but if f reports `′ �f ` �f ∅, fn is matched to a locality it prefers, contradicting Lemma
7.
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We finally combine Lemmas 7 and 8 in order to obtain the desired result. Let f ’s true
preferences be `1 �f `2 �f . . . �f `n with `n ≡ ∅ and let `i (i = 1, ..., n) be the locality
to which f is matched if it reports truthfully. Suppose f can successfully misrepresent its
preferences. Then, by Lemma 7, there exists ` �f `i such that f is matched to ` if it reports
` �f ∅. (This implies that i ≥ 2 and ` 6= ∅.) Let j be the index of the locality f prefers
among those it can obtain by successfully misrepresenting its preferences. That is, the best
f can do by misrepresenting its preferences is obtain `j and this can be achieved by reporting
`j �f ∅.

If instead f reports `j−1 �f `j �f ∅, Lemma 8 implies that f is matched to `j if it
is rejected by `j−1. Lemma 7 implies that f is rejected by `j−1 since by assumption it
cannot be obtained by any successful misrepresentation. Consequently, f is matched to `j

if it reports `j−1 �f `j �f ∅. Suppose that, for some k < j, f is matched to `j when it
reports `k �f . . . �f `j �f ∅. If f instead reports `k−1 �f `k �f . . . �f `j �f ∅, Lemma
7 implies that `k−1 rejects f since, by assumption, it cannot be obtained by any successful
misrepresentation. Lemma 7 also implies that `k, ..., `j−1 all reject f since they reject f when
f reports `k �f . . . �f `j �f ∅. Lemma 8 implies that `j accepts any proposal of f since it
does when f reports `k �f . . . �f `j �f ∅. It follows that f is permanently matched to `j if
it reports `k−1 �f `k �f . . . �f `j �f ∅. By induction, f is permanently matched to `j when
it reports `1 �f `2 �f . . . �f `j �f ∅. As every family only proposes to the locality to which
it is eventually permanently matched and the ones listed higher on its report, the localities
f lists below `j do not have any impact on the outcome. Then f is matched to `j when it
reports its true preferences `1 �f `2 �f . . . �f `j �f . . . �f ∅, a contradiction.

C The Top Choice algorithm

C.1 The Top-Down Bottom-Up (TDBU) algorithm

Example

In addition to the set-up of the Example and family preferences in the Example for Section
5.1, we use the priorities of localities introduced in the Example for Section 6.2.1

The Top-Down Bottom-Up algorithm reduces the size of the problem by eliminating
contracts that are cannot be part of any stable outcome. This process is summarized in
Table 3. Families are initially listed in order of priority for each locality, as can be seen in
the top panel of Table 3. The second column indicates how each family ranks the locality
in its preference list. We denote by “T” whether the family considers this locality to be its
top choice.
Round 1 : The TDBU algorithm starts in locality `1. (This is arbitrary, the order in which
localities are considered does not have any impact.) Family f2 gets a guarantee because it
is first in the priority list and the fact that it can be accommodated, which is denoted by
a “G” in the third column. This allows eliminating all contracts involving f2’s third and
fourth preferences: (f2, `2) and (f2, `4) are eliminated and f2 stops contesting `2 and `4. This
is denoted by a “7” in the fourth columns of the rows devoted to f2 and `2, respectively
`4. Capacities for both services in locality `1 are sufficient to accommodate both f1 and f2,
however both families can only be assigned to h11. As a result, it is impossible to match
both f1 and f2 to locality `1 and f1 does not get a guarantee. Family f1 does not get rejected
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Algorithm 6: Top-Down Bottom-Up algorithm

Remove unacceptable contracts: Y(1,1) := {(f, `) ∈ F × (L∪{∅}) | ` �f ∅}. Arbitrarily
label the localities such that L ≡ {`1, `2, ..., `|L|}.

Round i ≥ 1 (Locality round): We use subscripts modulo |L|.

Step 0:

If i > |L| and Y(i,j) = Y(i−|L|,j), the algorithm terminates and yields φ(Y ) := Yi.

Else consider locality `i.

Step j ≥ 1 (Family round):
Given Y(i,j), let F`i be the set of families which can be accommodated in `i.

If F`i \
⋃
k∈{1,...,j−1}{f(i,k)} 6= ∅, let f(i,j) be the family with the highest priority

for `i within that set.

If f(i,j) receives a guarantee for `i, then update

Y(i,j+1) := Y(i,j) \ {(f(i,j), `) ∈ Y(i,j) | ` ∈ L ∪ {∅} s.t. ` ≺f(i,j)
`i}

Else if f(i,j) receives a rejection for `i, then update

Y(i,j+1) := Y(i,j) \ {(f(i,j), `i)}

Else maintain Y(i,j+1) := Y(i,j).

The algorithm continues to Step j + 1.

Else update Y(i,j+1) := Y(i+1,1) and go to Round i+ 1.
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either since `1 is not f2’s top choice. In contrast, f4 does get a guarantee since it is possible to
assign h11 to either f2 or f1 and h12 to f4 without violating `1’s capacity constraint. Family
f4 stops contesting `2 and `3, its third and fourth choices, as a result. Family f5 does not
get a guarantee since both houses will be used in the case both f2 and f4 are matched to `1.
It does not get a rejection either as it is possible that none of f2, f1, and f4 end up matched
to `1, in which case f5 could get matched to `1. Family f3 does not get a guarantee since it
cannot be matched to `1 alongside f5. In fact, f3 gets rejected from `1 due to f5 having `1 as
its top choice. To see this, observe that f5 will be matched to `1 unless at least one of f2 or
f4 is matched to `1. As f3 cannot be matched to `1 alongside either of these families, there
is no situation where f3 ends up in `1 without violating stability. Family f3 stops contesting
`1 and `2 becomes its third choice. The algorithm continues in Round 2, which focuses on
`2.
Round 2 : We now look at `2. Family f5 gets a guarantee since it can be accommodated,
consequently it will no longer contest `3 and `4. Family f1 is rejected because it cannot be
assigned the only house in `2. Family f3 receives neither a guarantee nor a rejection since
h21 may or may not be assigned to f5. Family f5 is removed from `3 and `4’s list and f1 is
removed from `2’s list, the algorithm continues in Round 3, which focuses on `3.
Round 3 : Family f3 gets a guarantee at `3 but f2 does not get a guarantee there since ac-
commodating both families need three units of service s2 and `3 only has two units available.
Family f2 is however not rejected since f3 may give up its priority for `3 if it is matched to
`4. Family f1 can be accommodated alongside f3 but not alongside f2, as a result f1 will
be matched to `3 if and only if f3 is. Family f3 is removed from `2’s list and the algorithm
continues in Round 4, which focuses on `4.
Round 4 : This is similar to the previous round, f1 gets a guarantee while f4 and f3 neither get
a guarantee nor a rejection because f1 can be accommodated alongside f3 but not alongside
f4. This leads to f1 being removed from `1’s list. Going through all localities again in Rounds
5-8, no additional contract can be eliminated. The TDBU algorithm ends with the following
set of contracts:

Y TDBU = {(f1, `3), (f1, `4), (f2, `1), (f2, `3), (f3, `3),

(f3, `4), (f4, `1), (f4, `4), (f5, `1), (f5, `2)}

Since f1 and f2 cannot be accommodated together at `3 and f3 and f4 cannot be accom-
modated together at `4, permanently matching all families to their top-choice localities is
infeasible. The search for a stable outcome requires eliminating additional contracts. We do
so by using a pre-determined general priority over families in Phase 2.
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Round 1
`1 `2 `3 `4

f2 2nd G f5 2nd f5 4th f1 2nd

f1 3rd f1 4th f3 2nd f5 3rd

f4 2nd G f3 4th f2 T f2 4th 7

f5 T f4 3rd 7 f1 T f4 T
f3 3rd R 7 f2 3rd 7 f4 4th 7 f3 T

Round 2
`1 `2 `3 `4

f2 2nd f5 2nd G f5 4th 7 f1 2nd

f1 3rd f1 4th R 7 f3 2nd f5 3rd 7

f4 2nd f3 3rd f2 T f4 T
f5 T f1 T f3 T

Round 3
`1 `2 `3 `4

f2 2nd f5 2nd f3 2nd G f1 2nd

f1 3rd f3 3rd 7 f2 T f4 T
f4 2nd f1 T f3 T
f5 T

Round 4
`1 `2 `3 `4

f2 2nd f5 2nd f3 2nd f1 2nd G
f1 3rd 7 f2 T f4 T
f4 2nd f1 T f3 T
f5 T

Rounds 5-8
`1 `2 `3 `4

f2 2nd G f5 2nd G f3 2nd G f1 2nd G
f4 2nd f2 T f4 T
f5 T f1 T f3 T

Table 3: The TDBU algorithm: Example.
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C.2 The Augmented Top-Down Bottom-Up (ATDBU) algorithm

Algorithm 7: The Augmented Top-Down Bottom-Up (ATDBU) algorithm

Let Y(1,1) := Ỹ . Define the sets of artificial guarantees GA and artificial rejections RA. Let

RA(1,1) := RA.

Round i ≥ 1 (Locality Round): We use subscript modulo |L|.
Step 0:

If i > |L|, RA(i,1) = RA(i−|L|,1) and Y(i,j) = Y(i−|L|,j), the algorithm terminates and yields

φ̃(GA, RA, Ỹ ) := (GA, RA(i,1), Y(i,1))
Else if consider locality `i and continue to Step 1.

Step j ≥ 1 (Family Round)
Given X(i,j), let F`i be the set of families which can be accommodated in `i.

If F`i \
⋃
k∈{1,...,j−1}{f(i,k)} 6= ∅, let f(i,j) be the family with the highest priority for `i within

that set.

If f(i,j) receives a guarantee for `i, then

If f(i,j) also receives an artificial rejection for `i, then update

Y(i,j+1) := Y(i,j) \ {(f(i,j), `) ∈ Y(i,j) | ` ∈ L ∪ {∅} s.t. ` ≺f(i,j)
`i or ` = `i}

RA(i,j+1) := RA(i,j) ∪ {(f(i,j), `i)}

Else update

Y(i,j+1) := Y(i,j) \ {(f(i,j), `) ∈ Y(i,j) | ` ∈ L ∪ {∅} s.t. ` ≺f(i,j)
`i}

RA(i,j+1) := RA(i,j)

Else if f(i,j) receives a rejection for `i, then update

Y(i,j+1) := Y(i,j) \ {(f(i,j), `i)}

RA(i,j+1) := RA(i,j)

Else if f(i,j) receives an artificial rejection for `i, then update

Y(i,j+1) := Y(i,j) \ {(f(i,j), `i)}

RA(i,j+1) := RA(i,j) ∪ {(f(i,j), `i)}

Else maintain Y(i,j+1) := Y(i,j) and RA(i,j+1) := RA(i,j)

Else if Y(i,j+1) ∩ ({f(i,j)} × (L ∪ {∅})) = ∅, the algorithm terminates and yields

φ̃(GA, RA, Ỹ ) := (GA, RA(i,j+1),∅).
Else continue to Step j + 1.
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Augmented Top-Down Bottom-Up (ATDBU) algorithm
(cont.)

Else if (RA(i,j)∩ (F ×{`i})) \
⋃
k∈{1,...,j−1}{f(i,k)} 6= ∅, let f(i,j) be the family with the highest

priority for `i within this set.

If f(i,j) receives a guarantee for `i, then update

Y(i,j+1) := Y(i,j) \ {(f(i,j), `) ∈ Y(i,j) | ` ∈ L ∪ {∅} s.t. ` ≺f(i,j)
`i}

RA(i,j+1) := RA(i,j) \ {(f(i,j), `i)}

Else if f(i,j) receives a rejection for `i, then maintain Y(i,j+1) := Y(i,j) and update

RA(i,j+1) := RA(i,j) \ {(f(i,j), `i)}.
Else maintain Y(i,j+1) := Y(i,j) and RA(i,j+1) := RA(i,j)
If Y(i,j+1)∩({f(i,j)}×(L∪{∅})) = ∅, the algorithm terminates and yields φ̃(GA, RA, Ỹ ) :=

(GA, RA(i,j+1),∅).
Else continue to Step j + 1.

Else let Y(i+1,1) := Y(i,j) and RA(i+1,1) := RA(i,j). The algorithm continues in Round i+ 1.

C.3 Depth-First Search (DFS)

The DFS is described in the main text and below we show how it applies to our Example
and state it formally.

Example

In addition to the set-up of the Example and family preferences in the Example for Section
5.1, we use the priorities of localities introduced in the Example for Section 6.2.1

We now illustrate how the DFS finds a stable undominated outcome in our Example
using the ATDBU algorithm at each step. We only use contracts remaining from running
TDBU in order to initialize the process. We will show that the outcome depends on the
general priority order of families.

First Stable Undominated Outcome
Suppose that f1 is at the top of the general priority (for example, the general priority

could be f1, f2, f3, f4, f5). We give f1 an artificial guarantee for its top choice that is we
look for a stable outcome where f1 is matched to `3. We run the Augmented Top-Down
Bottom-Up algorithm to identify additional contracts that can be eliminated as a result.
The algorithm is summarized in Table 4. The artificial guarantee is denoted by “AG” in the
fourth column of the relevant row. Nothing of interest occurs in Rounds 1 and 2, f2 and f5

receive a guarantee for `1 and `2, respectively, but this does not allow us to eliminate any
contracts. The action begins in Round 3, which focuses in `3.
Round 3 : As a consequence of f2’s artificial guarantee at its top choice `3, f2 receives an
artificial rejection.
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Algorithm 8: Depth-First Search

Round 0:

Run the TDBU algorithm to obtain Y1 = φ(F × (L∪{∅})). Let the families be ordered
from 1 to |F | so that F ≡ {f1, f2, ..., f|F |}. Let GA

1 := ∅ and RA
1 := ∅. Additionally,

initialize the family index k = 1 and the state c1 := artificial guarantee.

Round i ≥ 1:

If ci = artificial guarantee

Run the ATDBU algorithm to obtain φ̃(GA
i ∪ {(fk, `fk)}, RA

i , Yi).

If φ̃(GA
i ∪{(fk, `fk)}, RA

i , Yi) = (·, ·,∅), then let GA
i+1 := GA

i , RA
i+1 := RA

i , Yi+1 :=
Yi and ci+1 := artificial rejection. Proceed to Round i+ 1.

Else let (GA
i+1, R

A
i+1, Yi+1) := φ̃(GA

i ∪ {(fk, `fk)}, RA
i , G

A
i ).

If k = |F |, the algorithm terminates and yields ψ(Y ) := Y ∗i .

Else increase k by 1 and set ci := artificial guarantee. Proceed to Round
i+ 1.

Else ci = artificial rejection

Run the ATDBU algorithm to obtain φ̃(GA
i , R

A
i ∪ {(fk, `fk)}, Yi \ {(fk, `fk)}).

If φ̃(GA
i , R

A
i ∪ {(fk, `fk)}, Yi \ {(fk, `fk)}) = (·, ·,∅), then

If k > 1, let (GA
i+1, R

A
i+1, Yi+1) := (GA

j , R
A
j , Yj), where j is the last round

dealing with family fk−1. Set ci+1 = artificial rejection. Proceed to Round
i+ 1.

Else k = 1, the set of stable outcomes is empty. The algorithm terminates
and yields ψ(Y ) := ∅.

Else let (Gi+1
A , Ri+1

A , X i+1) := φ̃(GA
i , R

A
i ∪ {(fk−1, `fk−1

)}, Yi \ {(fk−1, `fk−1
)}). Set

ci+1 := artificial guarantee. Proceed to Round i+ 1.
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The difference between a rejection and an artificial rejection is a subtle yet important
one. A family f receives a rejection if the families with a higher priority will necessarily take
enough capacity from the locality to prevent f from being matched there. A family that
receives a rejection could never receive a guarantee later on and stops contesting the locality
that rejected it. Observe that the rejection decision only depends on families with a higher
priority. An artificial rejection occurs when a family is does not receive a normal rejection
but cannot be matched to a locality because families with a lower priority have received an
artificial guarantee. In the second panel of Table 4, f2 is not rejected since it is possible that
f3 will be matched to `4, however f2 can only be matched to `3 if f1 is not. Matching f2 to `3

contradicts the artificial guarantee given to f1. Everything works as if f2 had been rejected,
its top choice will move to `1 in the next round, and it will no longer be taken into account
when assessing f1 for a guarantee or a rejection, however f2 remains on `3’s list. The reason
for this is that f2 could still get a guarantee if f3 were to be matched to `4. It is important
to keep track of this to identify cases where a stable matching may not exist.

Because f2 receives an artificial rejection, only f3 is relevant to determine whether f1

receives a guarantee. Since f1 and f3 can be accommodated together, f1 receives an artificial
guarantee, which means it will no longer require the artificial guarantee in the following
rounds. Family f1 is removed from `4 priority list due to its artificial guarantee at `3 and `1

is not f2’s top choice after the latter was artificially rejected from `3.
Round 4 : Family f4 receives an artificial guarantee for `4 and is removed from `1’s list.
Family f3 receives an artificial rejection since it cannot be accommodated at `4 alongside f4

and the latter will now be matched to `4 in any stable matching. Family f3 is removed from
`4’s list and `3 becomes its top choice.
Round 5 : The algorithm continues in Round 5, which focuses on `1. Family f2 receives
a guarantee and, because `1 cannot accommodate both families, f5 receives a rejection.
Locality `2 becomes f5’s top choice as a result.
Round 6 :The algorithm continues in Round 6, which does not yield any additional elimina-
tion: f5 receives a guarantee for `2 but does not contest any other locality.
Round 7 : Family f3 receives an artificial guarantee for `3, which is its top choice. As a result,
it will be matched with `3 in any stable matching. Since f3 and f2 cannot be both matched
to `3, f2 receives an artificial rejection. We can now be certain that the artificial rejection is
received earlier does not lead to any contradiction. In contrast, f1 receives a guarantee since
it can be accommodated in `3 alongside f3.
Rounds 8-11 : Only top choices remain and now additional rejections can be found, the
algorithm ends. Since these top choices can all be accommodated, a stable undominated
outcome has been found: f1 and f3 are permanently matched to `3, f2 in `1, f4 in `4 and f5

in `2. Hence:

Y TCA = {(f2, `1), (f5, `2), (f1, `3), (f3, `3), (f4, `4)}

Second Stable Undominated Outcome If f4 is at the top of the general priority,
the ATDBU algorithm operates in an almost analogous way. Family f4’s artificial guarantee
for `4 means that f3 is rejected and `3 becomes its new top choice. Family f2 is rejected
from `3 as a result and its top choice moves to `1, leading to the rejection of f5. As before,
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Rounds 1-2
`1 `2 `3 `4

f2 2nd G f5 2nd G f3 2nd f1 2nd

f4 2nd f2 T f4 T
f5 T f1 T AG f3 T

Round 3
`1 `2 `3 `4

f2 2nd f5 2nd f3 2nd f1 2nd 7

f4 2nd f2 T AR f4 T
f5 T f1 T G AG f3 T

Round 4
`1 `2 `3 `4

f2 T f5 2nd f3 2nd f4 T G
f4 2nd 7 f2 AR f3 T R 7

f5 T f1 T

Round 5
`1 `2 `3 `4

f2 T G f5 2nd f3 T f4 T
f5 T R 7 f2 AR

f1 T

Rounds 6-7
`1 `2 `3 `4

f2 T f5 T G f3 T G f4 T
f2 R 7

f1 T G

Rounds 8-11
`1 `2 `3 `4

f2 T G f5 T G f3 T G f4 T G
f1 T G

Table 4: DFS with f1 on Top of the General Priority.

f1 and f3 are matched to `3, f2 to `1, f4 to `4 and f5 to `2.
If f2 is at the top of the general priority, its artificial guarantee implies the rejection of f1

from `3. In turn, f4 is rejected from `4 and f5 is rejected from `1, yielding an outcome where
f1 and f3 are matched to `4, f2 in `3, f4 in `1 and f5 in `2. Compared to the first stable
undominated outcome, f2 and f3 are better off while f1 and f4 are worse-off. Unsurprisingly,
the same outcome is found if f3 is at the top of the general priority.
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Y †TCA = {(f4, `1), (f5, `2), (f2, `3), (f1, `4), (f3, `4)}

Non-existence of other stable outcomes and irrelevance of general priority
The two outcomes found above are in fact the only two stable ones in this matching

problem. This can be shown in two steps. First, observe that when one of f1, f2, f3 or
f4 is at the top of the priority list, only top choices remain when the TDBU algorithm
terminates, hence only one stable matching exists with one of these families receives its top
choice. Second, if none of them obtains its top choice, f1 forms a blocking pair with `3 and
f3 forms a blocking pair with `4. Finally, we need to show what happens when f5 is at the
top of the list, as we do now. The algorithm is summarized in Table 5.

Round 1
`1 `2 `3 `4

f2 2nd G AR f5 2nd 7 f3 2nd f1 2nd

f4 2nd AR f2 T AG f4 T
f5 T AG f1 T f3 T

Rounds 2-3
`1 `2 `3 `4

f2 7 f3 2nd G AR f1 2nd

f4 AR f2 T AG f4 T
f5 T AG f1 T R 7 f3 T AG

Round 4
`1 `2 `3 `4

f4 AR f3 AR f1 T G
f5 T AG f2 T AG f4 T R 7

f3 T G AG

Round 5
`1 `2 `3 `4

f4 G AR f3 AR f1 T
f5 T G AG f2 T AG f3 T

Table 5: DFS with f5 on Top of the General Priority.

Round 1 : Family f5’s artificial guarantee yields an artificial rejection for f2 and f4 since
neither of them can be matched to `1 alongside f5. Recall that f2 and f4 receive an artificial
rejection rather than a rejection because they are rejected due to being a family with a lower
priority. They could still receive a guarantee, in fact this happens to f2 since it is at the
top `1’s priority list. The fact that f2 receives both a guarantee and an artificial rejection
means that f5’s artificial guarantee violates f2’s priority for `1. Family f2 and locality `1 will
form a blocking pair unless f2 is matched to a locality it prefers to `1. In the Example, `3 is
the only option. This means that f2 must be matched with `3 in any stable matching that
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respects f5’s artificial guarantee. The ATDBU algorithm accounts for this by giving f2 an
artificial guarantee for `3. This guarantee is artificial because f2 could still be rejected by `3

later on. Notice finally that f5’s artificial guarantee allows removing f5 from `2’s list.
Round 2 : Nothing occurs in Round 2 since `2 does not have any contract associated with it
left.
Round 3 : Family f2’s artificial guarantee yields an artificial rejection for f3 since the pair
cannot be accommodated together in `3 and f3 has a higher priority than f2. Since f3 also
gets a guarantee, it receives an artificial guarantee for `4. Family f1 receives a rejection
from `3 since it has a lower priority than f2 and the two families cannot both be matched to
`3. Locality `4 consequently becomes f1’s top choice. Finally, f2’s artificial guarantee for `3

allows removing f2 from `1’s list.
Round 4 : Family f1 receives a guarantee and, since `4 is its top choice, the fact that f1 and
f4 cannot both be matched to `4 means that f4 is rejected. Family f3 then gets a guarantee
since it can be accommodated alongside f1.
Round 5 : Family f4 gets a guarantee for `1 while it already has an artificial rejection. This
means that f5’s artificial guarantee for `1 violates f4’s priority for `1 unless it can be matched
to a location it prefers. Since f4 is no longer contesting any other locality, this is impossible.
We can then conclude that f5’s artificial guarantee contradicts stability, in other words there
does not exist any stable matching where f5 is matched to `1.

The DFS continues by going back to the outcome of the TDBU algorithm and removing
f5 from `1’s list. Family f5 is then guaranteed its second choice, `2. As this fails to remove
any of f1, f2, f3 or f4 from their top choice, the second family of the general priority must
be given an artificial guarantee. By an argument analogous to the one developed above, the
first stable undominated outcome is found if either f1 or f4 is second on the general priority
order and the second stable outcome is found if it is either f2 or f3.

D Additional examples of PFDA and MRDA algorithms

D.1 Another example to compare PFDA and MRDA algorithms

There are eight families, three localities and two services. The preferences, priorities and
service needs and capacities are displayed below.

Families Localities
Preferences s1 s2 Preferences s1 s2 Priorities s1 s2

f1 `2, `1, ∅ 2 1 f5 `1, `3, `2, ∅ 3 1 `1 f1, f2, f3, f4, f5, f6, f7, f8 4 5
f2 `3, `1, `2, ∅ 2 0 f6 `1, `2, ∅ 1 1 `2 f5, f2, f6, f8, f3, f4, f1, f7 6 5
f3 `2, `3, ∅ 0 2 f7 `1, `2, ∅ 3 3 `3 f2, f3, f6, f1, f7, f8, f5, f4 8 7
f4 `3, `2, `1, ∅ 2 3 f8 `1, `3, `2, ∅ 1 0

FPDA algorithm
The FPDA algorithm lasts three rounds, which are displayed below:
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Round 1 Round 2 Round 3
f1 → `2 3 f1 → `2 3 f1 → `2 3

f2 → `3 3 f2 → `3 3 f2 → `3 3

f3 → `2 3 f3 → `2 3 f3 → `2 3

f4 → `3 3 f4 → `3 3 f4 → `3 3

f5 → `1 3 f5 → `1 3 f5 → `1 3

f6 → `1 3 f6 → `1 3 f6 → `1 3

f7 → `1 7 f7 → `2 7 f7 → ∅ 3

f8 → `1 7 f8 → `3 3 f8 → `3 3

In Round 1, `1 tentatively accepts f5 and f6 since they have joint service needs (4, 2).
Adding f7 increases the total service needs to (7, 4), which `1 cannot provide. Families f7

and f8 are consequently rejected. Localities `2 and `3 do not reject any family since f3 and
f1 joint service needs (2, 3) while f2 and f4 have joint service needs (4, 3). In Round 2, `1

does not receive any new proposals and tentatively accepts f5 and f6. Locality `2 receives
a proposal from f7 as well as f3 and f1. In total, these families have service needs (5, 6),
which exceeds the locality’s provision of service s2. Family f7 is rejected. `3 receives a
new proposal from f8 so that the total service needs of families proposing to it is (5, 3).
All families are tentatively accepted. In Round 3, all families propose to the same locality
except for f7, which has been rejected from all localities and does not make any proposal.
As a consequence, all localities receive the same proposals as in Round 2 and no family
is rejected. The algorithm terminates and yields the following outcome: {(f1, `2), (f2, `3),
(f3, `2), (f4, `3), (f5, `1), (f6, `1), (f7, ∅), (f8, `3)}.

MRDA algorithm

Phase 1
The Maximum Ranks are displayed below:

`1 `2 `3

f1 ∞ f5 1 f5 ∞ f3 3 f2 ∞ f7 ∞
f2 ∞ f6 1 f2 ∞ f4 2 f3 ∞ f8 4
f3 ∞ f7 1 f6 ∞ f1 2 f6 ∞ f5 3
f4 2 f8 1 f8 3 f7 1 f1 ∞ f4 2

At `1, f1, f2 and f3 have joint service needs (4, 3). As `1 can provide (4, 4), all three
families get a Maximum Rank of ∞. Family f4 cannot be accommodated along these three
families as their needs together would be (6, 6). A subset of {f1, f2, f3} containing two
families may need up to (4, 3). (This is calculated as follows. f1 and f2 are the two families
needing the most units of s1. They need 2 units each, hence a total of 4. Families f1 and
f3 are the two families needing the most units of s2. They need respectively 2 and 1 units,
hence a total of 3 units. Therefore f4 could have to be accommodated alongside a subset of
size 2 that needs up to 4 units of s1 or to one that needs up to 3 units of s2.) Adding the
needs of f4 yields (6, 6), which exceeds the provision of `1. We conclude that there exists
a subset of size 2 alongside which f4 cannot be accommodated, hence its Maximum Rank
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is at most 2. A subset of size 1 may need up to (2, 2). (Family f1 has the highest need
for s1 with 2 units and f3 the highest need of s2 with 2 units.) Adding f4’s needs yields
(4, 5), which lies within `1’s provision. It follows that f4’s Maximum Rank is 2. Family f5’s
Maximum Rank can be at most 2 since it cannot be larger than the one of a family that has
a higher priority. As f4 and f5 cannot be accommodated together (they would need (5, 4),
which exceeds `1’s provision of s1), f5’s Maximum Rank is 1. The Maximum Rank of f6, f7

and f8 can be at most 1. Since all these families can be individually accommodated at `1,
they all get a Maximum Rank of 1.

At `2, f5, f2 and f6 all get a Maximum Rank of∞ as they can be accommodated together.
Family f8 cannot be accommodated alongside them as this would need 7 units of s1. A subset
of {f5, f2, f6} containing two families would need at most (5, 2). Adding f8’s needs yields
(6, 2), which lies within `2’s provision. Family f8 can therefore be accommodated alongside
any subset of size 2 and its Maximum Rank is 3. Any subset of {f5, f2, f6, f8} containing
two families again needs at most (5, 2). Adding f3’s needs gives (5, 4), hence f3’s Maximum
Rank is also 3. Any subset of {f5, f2, f6, f8, f3} containing two families requires (5, 3). As
f4 needs (2, 3) its Maximum Rank is at most 2. It is in fact exactly 2 since any individual
family in {f5, f2, f6, f8, f3} needs at most 3 units of s1 and 2 units of s2. Adding f4’s needs
yields (5, 5), which does not exceed `2’s provision. The same can be said of f1, however the
fact that f7 needs 3 units of s2 means it cannot be accommodated alongside f4, consequently
its Maximum Rank is 1.

At `3, all families in {f2, f3, f6, f1, f7} together need (8, 7), which is exactly the locality’s
provision. All five families get a Maximum Rank of ∞. Clearly, no other family can be
accommodated alongside them so f8’s Maximum Rank will be finite. A subset of size 4 may
need up to (8, 7) as well, consequently f8’s Maximum Rank is at most 4. A subset of size 3
may on the other hand only need up to to (7, 6), as a result f8 can be accommodated alongside
all of them and its Maximum Rank is 4. Subsets of {f2, f3, f6, f1, f7, f8} containing three
families also need at most (7, 6), however f5’s needs are (3, 1), which means `3 cannot provide
enough units of s1 to guarantee that f5 can be accommodated alongside any such subset.
Subsets containing two families may however only need up to (5, 5), which means that f5 can
be accommodated alongside all of them. Family f5’s Maximum Rank is 3. Finally, any subset
of {f2, f3, f6, f1, f7, f8, f5} containing three families may need up to (6, 5). Adding f4’s needs
yields (8, 8), which exceeds `3’s provision of s2. Family f4 can, however, be accommodated
alongside any other individual family, hence its Maximum Rank is 2.

Phase 2
The second phase of the MRDA algorithm lasts two rounds, which are summarized below:
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Round 1 Round 2 Round 3 Round 4
f1 → `2 3 f1 → `2 7 f1 → `1 3 f1 → `1 3

f2 → `3 3 f2 → `3 3 f2 → `3 3 f2 → `3 3

f3 → `2 3 f3 → `2 3 f3 → `2 3 f3 → `2 3

f4 → `3 3 f4 → `3 7 f4 → `2 7 f4 → `1 3

f5 → `1 3 f5 → `1 3 f5 → `1 7 f5 → `3 3

f6 → `1 7 f6 → `2 3 f6 → `2 3 f6 → `2 3

f7 → `1 7 f7 → `2 7 f7 → ∅ 3 f7 → ∅ 3

f8 → `1 7 f8 → `3 3 f8 → `3 3 f8 → `3 3

The outcome generated by the MRDA algorithm is {(f1, `1), (f2, `3), (f3, `2), (f4, `1),
(f5, `3), (f6, `2), (f7, ∅), (f8, `3)}.

Five families, f1, f4, f5, f6, and f7 are better off under the PFDA algorithm compared
to their outcomes under the MRDA algorithm.

D.2 Two examples of manipulability of the PFDA algorithm

We now present two examples of manipulation of the PFDA algorithm, which illustrate
sufficient conditions for the construction of a quasi-stable, strategy-proof mechanism.

First example of manipulability of the PFDA algorithm
Consider a matching problem with three families (f1, f2, and f3) and three localities (`1,

`2, and `3). Preferences and priorities are as follows:

f1 : `1 � `2 � `3 � ∅ `1 : f1, f2, f3

f2 : `1 � `2 � `3 � ∅ `2 : f1, f3, f2

f3 : `1 � `2 � `3 � ∅ `3 : f1, f3, f2

There is only one service, of which families f1 and f2 need two units and f3 one unit. `1

provides three units and each of `2 and `3 provides two. The matrices of service needs and
capacities are displayed below:

ν =

2
2
1

 κ =

3
2
2


The PFDA algorithm lasts three rounds, which are summarized below:

Round 1 Round 2 Round 3
f1 → `1 3 f1 → `1 3 f1 → `1 3

f2 → `1 7 f2 → `2 7 f2 → `3 3

f3 → `1 7 f3 → `2 3 f3 → `2 3

In Round 1, all families propose to `1 as it is their first preference. Family f1 is at the top
of `1’s priority list and is tentatively accepted as it needs two units and three are available.
Family f2 needs two units, which brings the total demand to four, as only three units are
available, f2 is rejected. Family f3 is also rejected since its priority is lower than f2’s.
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In Round 2, f1 continues to propose to `2 and is tentatively accepted. Families f2 and
f3 both propose to `2 and since two units are available, only the family with the higher
priority, f3, is tentatively accepted. Family f2 is rejected and proposes to `3 in Round 3. All
families propose to a different locality and are accepted, the algorithm ends. The outcome
is Y PFDA ≡ {(f1, `1), (f2, `3), (f3, `2)}.

Suppose now that f2 changes its report to `2 �f2 `1 �f2 `3 �f2 ∅ (or equivalently to
`2 �f2 ∅). In the first Round, f2 is the only family to propose to `2 and is tentatively
accepted. Families f1 and f3 propose to `1 and are both tentatively accepted since `1 can
provide three units of the service. As no family is rejected, the algorithm ends and yields
Y †PFDA ≡ {(f1, `1), (f2, `2), (f3, `1)}. By misrepresenting its preferences, f2 clinches `2, which
it prefers to `3. The problem that occurs in the counterexample presented is that a family
can trigger the rejection of another family while being itself rejected. In Round 1, f2 is
rejected by `1 but as a consequence of its proposal f3 is also rejected. In Round 2, `2 rejects
f2 because f3 is also proposing. Family f2 could have avoided this situation by proposing to
`2 first.

Second example of manipulability of the PFDA algorithm
We conclude this section by presenting another counterexample to illustrate another

instance where a a missrepresentation may also be beneficial. Consider a matching problem
with five families and four localities. The preferences and priorities are as follows:

f1 : `1 � `4 � ∅ `1 : f4, f1, f2, f3, f5

f2 : `1 � `3 � ∅ `2 : f3, f4, f1, f2, f5

f3 : `1 � `2 � ∅ `3 : f2, f5, f1, f3, f4

f4 : `2 � `1 � ∅ `4 : f5, f1, f2, f3, f4

f5 : `3 � `4 � ∅

There is only one service. The needs of each family and capacities of each locality are as
follows:

ν =


2
1
1
1
1

 κ =


2
1
1
2


That is, family f1 needs two units and all other families need one unit each. Localities `1

and `4 can provide up to two units each while `2 and `3 can provide at most one unit each.
The PFDA algorithm last five rounds, which are displayed below.

Round 1 Round 2 Round 3 Round 4 Round 5
f1 → `1 3 f1 → `1 3 f1 → `1 7 f1 → `4 7 f1 → ∅ 3

f2 → `1 7 f2 → `3 3 f2 → `3 3 f2 → `3 3 f2 → `3 3

f3 → `1 7 f3 → `2 3 f3 → `2 3 f3 → `2 3 f3 → `2 3

f4 → `2 3 f4 → `2 7 f4 → `1 3 f4 → `1 3 f4 → `1 3

f5 → `3 3 f5 → `3 7 f5 → `4 3 f5 → `4 3 f5 → `4 3

In Round 1, f1 takes up two units of capacity at `1, which means that any family with a
lower priority is rejected. This affects f2 and f3. In Round 2, f2 takes up one unit of capacity
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at `3, which means that f5 is rejected. Similarly, f3 takes up one unit of capacity at `2 and
f4 is rejected. In Round 3, f5 proposes to `4 where it does not have any competition. Family
f4 proposes to `1, resulting in f1 being rejected. Family f1 proposes to `4 in Round 4 and is
again rejected, this time because of f5. Family f1 finally proposes to the null object in Round
5, resulting in everyone else being permanently matched. The algorithm ends and yields
Y PFDA ≡ {(f1, ∅), (f2, `3), (f3, `2), (f4, `1), (f5, `4)}. Suppose now that f1 misrepresents its
preferences and reports `4 �f1 ∅. Every family is accepted in Round 1 and thus matched to
its first (reported) preference: Y †PFDA ≡ {(f1, `4), (f2, `1), (f3, `21, (f4, `2), (f5, `3)}. Family
f1 is now matched to `4. In this example, no family triggers a rejection without being
tentatively accepted, however f1 triggers two rejections by proposing to `1. The rejection
chain that follows has two branches. The first one, initiated by f3, leads to f1 being rejected
by `1. The second one, initiated by f2, leads to f5 proposing to `4. This prevents f1 from
getting its second choice after being rejected by `1.

D.3 Example of MRDA algorithm producing a family-optimal outcome

Let us return to the first example of manipulability of the PFDA algorithm in Appendix
D.2. As a reminder, the preferences and priorities are

f1 : `1 � `2 � `3 � ∅ `1 : f1, f2, f3

f2 : `1 � `2 � `3 � ∅ `2 : f1, f3, f2

f3 : `1 � `2 � `3 � ∅ `3 : f1, f3, f2

The matrices of service needs and capacities are

ν =

2
2
1

 κ =

3
2
2


We now run the MRDA algorithm.

Phase 1
As every family can be accommodated at every locality all Maximum Ranks will be at

least 1. Family f1 has the highest priority for all localities and therefore gets a Maximum
Rank of ∞ for all of them. At `1, f2 cannot be accommodated alongside f1 since both
families need two units and `1 can only provide 3. Family f2’s Maximum Rank for `1 is 1
and, consquently, so is f3’s. At `2 and `3, f1 and f3 cannot be accommodated together so
the Maximum Rank of both f2 and f3 is 1.

The Maximum Ranks are displayed below:

`1 `2 `3

f1 ∞ f1 ∞ f1 ∞
f2 1 f3 1 f3 1
f3 1 f2 1 f2 1
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Phase 2
All families propose to `1 in Round 1. Family f1 is tentatively accepted but f2 and f3 are

rejected since both of their Maximum Ranks are 1. Families f2 and f3 propose to `2 in Round
2. Again their Maximum Ranks are 1 so f3, which has a higher priority at `2, is tentatively
accepted and f2 is rejected. Family f2 proposes to `3 in Round 3 and is tentatively accepted.
The algorithm ends and yields Y MRDA ≡ {(f1, `1), (f2, `3), (f3, `2)}.

Round 1 Round 2 Round 3
f1 → `1 3 f1 → `1 3 f1 → `1 3

f2 → `1 7 f2 → `2 7 f2 → `3 3

f3 → `1 7 f3 → `2 3 f3 → `2 3

Removing the incentive to manipulate in Phase 2
Phase 2 of the MRDA algorithm identical to the first example of manipulability of the

PFDA algorithm in Appendix D.2 and consequently both algorithms generate the same
outcome. Recall, however, that the PFDA algorithm allowed f2 to obtain `2 by reporting
`2 �f2 `1 �f2 `3 �f2 ∅. This is no longer possible in the MRDA algorithm. Given f2’s new
report, the three rounds of Phase 2 are displayed below:

Round 1 Round 2 Round 3
f1 → `1 3 f1 → `1 3 f1 → `1 3

f2 → `2 3 f2 → `2 7 f2 → `3 3

f3 → `1 7 f3 → `2 3 f3 → `2 3

In Round 1, f2 is tentatively accepted by `2 since it is the only family to propose. Family f1

is tentatively accepted by `1 as its Maximum Rank is ∞, however `3 is rejected since it has
a lower priority than f1 and a Maximum Rank of 1. This is the key difference between the
two algorithms in this example. The PFDA algorithm allows f3 to be tentatively accepted
since it can be accommodated alongside f1, this means that f3 is rejected if f2 also proposes
but not otherwise. Family f2 thus has an incentive not to propose to `1 so that `3 does not
compete for `2. This incentive no longer exists in the MRDA algorithm as f3 is rejected
irrespective of whether `2 proposes to `1. In Round 2, as before, f2 and f3 propose to `2

and f2 is rejected. Family f2 proposes to `3 in Round 3 and the algorithm ends. The
outcome produced is the same as before: Y ‡MRDA ≡ {(f1, `1), (f2, `3), (f3, `2)}. The outcome
generated by the PFDA algorithm in this problem is Y ‡PFDA ≡ {(f1, `1), (f2, `2), (f3, `1)}.
This example illustrates the trade-off between efficiency from the perspective of refugee
families and strategy-proofness: Family f2’s incentive to misreport its preferences is removed
by ensuring that the outcome obtained under this misrepresentation is less attractive than
it could be.
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Åslund, O. and D.-O. Rooth (2007). Do when and where matter? Initial labour market
conditions and immigrant earnings. The Economic Journal 117 (518), 422–448.
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Bäıou, M. and M. Balinski (2000). The stable admissions polytope. Mathematical program-
ming 87 (3), 427–439.

Balinski, M. and T. Sönmez (1999). A tale of two mechanisms: Student placement. Journal
of Economic Theory 84 (1), 73–94.

BBC (2016a). Attitudes harden towards refugees from Syria and Libya, BBC poll suggests.
BBC 4 February.

82



BBC (2016b, 20 September). Obama: 50 countries to take in 360,000 refugees this year.
BBC .
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Pycia, M. and M. U. Ünver (2016). Incentive compatible allocation and exchange of discrete
resource. Theoretical Economics . Forthcoming.

Reid, S. (2015, December). Senseless! Why are Syrian refugees being foisted on a remote
Scottish island with high unemployment and poverty - then given perks some locals don’t
enjoy? Daily Mail .

Roth, A. E. (1984a). The evolution of the labor market for medical interns and residents: A
case study in game theory. Journal of Political Economy 92 (6), 991–1016.

Roth, A. E. (1984b). Stability and polarization of interests in job matching. Economet-
rica 52 (1), 47–57.

Roth, A. E. (1985). The college admissions problem is not equivalent to the marriage
problem. Journal of Economic Theory 36 (2), 277–288.

Roth, A. E. and E. Peranson (1999). The redesign of the matching market for Ameri-
can physicians: Some engineering aspects of economic design. American Economic Re-
view 89 (4), 748–780.

Roth, A. E. and U. G. Rothblum (1999). Truncation strategies in matching markets—in
search of advice for participants. Econometrica 67 (1), 21–43.

Roth, A. E., U. G. Rothblum, and J. H. Vande Vate (1993). Stable matchings, optimal
assignments, and linear programming. Mathematics of Operations Research 18 (4), 803–
828.
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