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Abstract

The dominant paradigm of the estimation of causal partial effects of
preferential economic integration agreements (PEIAs; e.g., customs unions
or free-trade areas) on trade costs and trade flows is to rely on selection
on observables, with propensity-score matching being the leading example.
Conditional on some metric (score) of observable joint determinants PEIAs
and trade flows, the causal partial effect of PEIAs on trade is obtained from a
simple mean comparison of trade flows between members and non-members.
A key prerequisite for this approach to obtain consistent estimates is that the
score is balanced: similarity of country pairs in the score (the propensity of
PEIA membership) means similarity in each and everyone of the observables.
A violation of this assumption may lead to biased estimates of the effects.
We employ a remedy of this bias through entropy balancing, demonstrate
that there is an upward bias of PEIA effects on trade flows from lack of
balancing, and quantify the bias for partial as well as general equilibrium
effects.
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1 Introduction

Obtaining valid estimates of the partial (or direct) effects of the membership
in preferential economic integration agreements (PEIAs) on bilateral trade
flows is the primary object of interest of a cottage literature in international
economics (see, e.g., Ghosh and Yamarik, 2004; Carrére, 2006; Baier and
Bergstrand, 2007, 2009; Egger, Egger, and Greenaway, 2008; Chang and
Lee, 2011), and using consistent estimates in quantitative models is vital to
obtain reasonable estimates of general equilibrium (or total) economic re-
sponses (see Egger and Larch, 201X; Egger, Larch, Staun, and Winkelmann,
201X; Caliendo and Parro, 2015). The econometric problem with this task
is that PEIAs are meant to stimulate tradel] and, according to economic
theory, concluding PEIAs has greater benefits for natural trading partners
than otherwise (see Frankel, Stein, and Wei, 1996; Baier and Bergstrand,
2004; Egger and Larch, 2008). Hence, PEIA membership is not randomly
assigned to country pairs, which is confirmed by a glance on the frequency
of such agreements across types of countries and country-pairs in terms of
observable characteristics capturing country size, per-capita income, geogra-
phy, and remoteness. An influential paper by Baier and Bergstrand (2004)
illustrated that the fundamental drivers of trade flows alone explain a lion’s
share in the variation of binary preferential trade-agreement (PTA) indica-
tors as one form of PEIAs. Egger and Wamser (2013) demonstrate that this
is the case also for other forms of PEIAs such as bilateral investment treaties
(BITs) or double-tax treaties (DTTs).

The theoretical arguments put forward in earlier work suggest that it

will be hard if not impossible to find fundamentals which directly determine

1On a broader scheme, PEIAs do not only include preferential trade agreements, but
even preferential investment agreements and double-taxation treaties explicitly aim at
stimulating trade beyond investment.



PEIAs while influencing trade flows exclusively through PEIA membership.
Econometrically speaking, this means that it will be virtually impossible
to find identifying instruments for PEIAs for which exclusion restrictions
are met in trade-flow regressions, as would be required for instrumental-
variables regression. Consequently, the leading assumption in empirical work
geared towards estimating PEIA effects is one of the so-called selection on
observables. According to this framework, it should be possible — guided by
economic theory as in Baier and Bergstrand (2004) — to (i) identify all joint
determinants of PEIA membership and trade flows, and (ii) to condition in
some way on them so that the remainder (conditional) variation in PEIA
membership and trade flows reveals the causal effect of the former on the
latter.

While earlier work used a log-linear regression approach for identification
conditional on observables (see Aitken, 1973; Soloaga and Winters, 2001),
more recent work resorted to nonparametric estimation techniques (see, e.g.,
Egger, Egger, and Greenaway, 2008; Baier and Bergstrand, 2009). The latter
— with the most prominent example in related applied work being propensity-
core matching (see Rosenbaum and Rubin, 1983) — relies on the idea of
obtaining a compact metric which captures the joint fundamentals behind
PEIA membership and trade flows, and which permits determining similar
country pairs which more or less solely differ in terms of PEIA membership
for identification of the treatment effect. A prerequisite for this approach
is that similarity in terms of the compact, scalar-valued score metric (the
propensity of PEIA membership) is not an artifact which could flow from
largely different individual observable fundamentals whose differences be-
tween PEIA members and non-members are eliminated through aggregation

into the score. If that were the case, one would compare PEIA-member ap-



ples to -non-member oranges. Econometrically, this problem is referred to as
a lack of balancing of the observables, whereby members and non-members of
PEIAs with similar-valued propensity scores of being a PEIA member would
have very different moments in the distribution of at least some of the ob-
servables the score is based on. Lack of balancing may lead to a bias in the
estimates of partial PEIA effects on outcomes such as bilateral trade flows.
The goal of this paper is enforce the balancing of observables by a rel-
atively modern method, entropy balancing (see XXX), illustrate that the
usually-employed observables lack balancing, and compare causal PEIA-
effect estimates on trade flows (partial effects) and welfare (general-equilibrium
effects) among leading methods with the proposed estimates. In a large panel
of 1,801,930 observations for all years 1961-2008 and (at least) three types
of PEIAs (PTA-, BIT-, DTT-membership, and all combinations thereof —
distinguishing between PTAs of different depth in some of the analysis) the
paper demonstrates that the lack of balancing of the covariates in a custom-
ary nonparametric selection-on-observables approach leads to upward-biased
PEIA effects. For instance, the partial impact of a membership in an average
PTA alone is estimated to be almost 7 percentage points lower with enforced
covariate balancing than without it. The partial effect of a membership in an
average BIT alone is estimated to be almost 15 percentage points lower with
enforced covariate balancing than without it, and the bias in the estimated
partial impact of a membership in an average DTT alone is estimated at a
similar magnitude. We illustrate that the quantitative importance of proper
conditioning on the covariates in nonparametric selection-on-observables ap-
proaches relative to not doing so is of a similar magnitude as the difference
between simple (biased) ordinary-least-squares estimates and simple (and

also biased) selection-on-observables estimates of partial PEIA treatment ef-



fects as relied upon in earlier work. Hence, conventional approaches towards
estimating causal PEIA effects tend to overestimate the effects of PEIAs to
a nontrivial extent.

The remainder of the paper is organized as follows. The subsequent
section briefly portrays nonparametric selection-on-observables estimates of
PEIA treatment effects as weighting estimators and distinguishes between
covariate-balancing-enforcing and -not-enforcing approaches. Section 3 in-
troduces the specification of the vector of observables and the underlying
data considered. Section 4 summarizes estimates of the comparison (propen-
sity) score and illustrates the degree of lack of balancing of the covariates.
Moreover, this section demonstrates the difference between the scores of a
covariate-balancing-enforcing approach and an -not-enforcing one. This sec-
tion also provides a comparison of the estimates of partial effects of PEIA
treatment effects on bilateral exports. The last section concludes with a brief

summary.

2 Causal partial PEIA-effects estimation as
weighting regression

The customary conditioning-on-observables approaches towards estimating
causal partial PEIA effects can all be portrayed as variants of weighting re-
gressions (see Wooldridge, 2007; Huber, 2014). With this in mind, the simple
linear conditioning approach in the form of ordinary least squares of log bilat-
eral exports on one or more PEIA indicator variables and a linear function of
observable control variables conforms to an approach with identical weights
for each observation. Also matching on the propensity score (of PEIA mem-

bership) can be represented as a weighting regression. However, neither linear



regression nor matching on the propensity score ensure that the distributions
of all the joint determinants (the observables) are the same between PEIA
members and nonmembers. But only then the two groups would be fully
comparable, and we could speak of a quasi-randomization of PEIA member-
ship. The reason is that the linear index with OLS or the propensity score
with matching may take on similar values when the individual covariates are
quite different in a few or many dimensions of the observablesﬂ However,
there are weighting approaches which are capable of ensuring comparability
in a defined set of moments of the distributions of the observables. One such
weighting approach is entropy balancing, which is based on optimally-chosen
weights as a function of the distributions of observables for the treated and
the untreated (see Hainmiiller, 2012; Imai and Ratkovic, 2014; Zubizarreta,
2015). In what follows, we will briefly describe this approach in comparison

to inverse-probability-weighting regression.

2.1 Notation

Let us use P%

;s to denote the propensity score of exporter ¢ and importer

j to be members of a PEIA of type 6 rather than being a member in no
PEIA whatsoever at time s. Denoting the binary indicator for specific PEIA

and the specific realization of 6 for ijs by ©;j,. T{ is

memberships by 7%

IYE]
unity in case that ¢ and 7 have a PEIA of type 6 at time s and zero else, and

denoting the vector of observables determining membership for observations

in state 6 or 0 by H%

ijs» the propensity score is defined as the conditional

probability of having treatment 6 relative to 0 on the joint determinants of

2In empirical work, it is sometimes tested whether the individual averages (means, first
moments of the distribution) of the observables are the same between the treated or not.
However, even that is not sufficient, as also higher moments of the covariate distributions
ought to be the same between the treated and the control observations (see Huber, 2011).
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Pijos = P(T" = 1|Hijg)' (1)
In this paper we consider at least three types of binary PEIA indicators,
so that there there are 22 = 8 possible combinations of agreement types,
one being no PEIA agreement of any kind in place which will serve as the
general control or comparison state in this paper.ﬁ The remaining seven

combinations are

(

PTA if PTAyjs =1, BIT;;s = 0,DTT;j, =0
BIT if PTA;js =0,BITys =1,DTT;j =0
DTT if PTA;;s =0, BITi;s =0, DT T, = 1

©yjs =0 € { PTA&BIT if PTAyjs =1, BITy; = 1,DT T, = 0 (2)
PTA&DTT if PTAyjs =1, BITy;s = 0,DT Ty = 1
BIT&DTT if PTA;js =0,BITys =1,DTT;j, =1
| PTA&BIT&DTT  if PT Ay, = 1, BIT; =1, DT Ty, = 1

each of which we will refer to as one form (or status) of treatmentﬁ
We use NY and N for the number of treatment-6 and control observations

and N% = N9 + NO and we refer to the sets of observations corresponding

3In theory, any other state than complete PEIA nonmembership could serve as a com-
parison. However, for the sake of simplicity, and given the extent amount of control units
in that state, we choose it as a natural reference point in this paper. It should be borne
in mind that what we do in the comparison state is to switch off all PEIAs at the same
time.

4In general, with M treatment types there are 2™ possible combinations. In any case,
we always compare 2 — 1 states to the all-zero state for the sake of brevity. Clearly,
it would be possible to compute — depending on treatment-group size — up to 22M — 2M
average treatment effects of the treated and up to (22M - 2M*1) average treatment
effects.



to these numbers by A%, 40 and 4% = 4 A, respectively.

2.2 Assumptions behind consistent estimates of partial

treatment effects of the treated

The goal of selection-on-observables approaches — upon choice of untreated
units (here, indicated by super-script 0) being the single reference group
— is to estimate the average treatment effect of PEIA membership from a
comparison of outcome Y? of the units {ijs} € 4% with observable char-
acteristics HZ% to outcome YO of the units {ijs} € A#°. In order to not
misattribute the average difference in Y and Y to differences in H%, the
vector of propensity-scores P — which is a compact vector representation
of the matrix H? — is used for weighting in some way, depending on the re-
quired similarity between treated and control units in terms of P% specified
by the researcher. With matching, the similarity of treated and control units
in terms of P is specified by way of k-nearest neighbor matching, radius
matching, or kernel matching. The matching-function type determines the
nature of the weights based on the propensity scores. However, this approach
only leads to consistent estimates of the average treatment effect under the
following assumptions.

Balancing of the observables H;, with regard to ]332:
The first key condition is the aforementioned balancing of the covariates.
Informally, balancing makes sure that the propensity score is a meaningful
metric of comparison. Notice that this is the case only if, for units {ijs}

and {7'j's'}, P2 and PJ°

Vs 77 means pairwise similarity for all columns in A o9

L]
and HY,,, respectively. Otherwise, similarity of P and P, would be an

artifact, and estimating the average treatment effect from comparison groups

of treated and untreated units with similar propensity score will eventually



not be consistent.

However, the assumption about balancing of the covariates is testable re-
garding the first as well as higher moments (see Huber, 2011), and remedies
against a lack of balancing are available. One such remedy entropy-balancing
weighting regression (see Hainmiiller, 2012; Imai and Ratkovic, 2014; Zu-
bizarreta, 2015) covariate balancing can be enforced for several moments.
Unconfoundedness or conditional mean independence of treatment:
The second key condition is (weak) unconfoundedness. It means that, for

the same unit {ijs} and conditional on the observable determinants of its

treatment status, H7), the hypothetical outcomes Y5, and Y;J, for that unit

are independent of the treatment . Formally, using Y% for all units with

either treatment 6 or control units (i.e., an element of the vector Y% =

(Yw, YOI)'):

Yo | njs|Hgg. (3)

ijs

The latter means that Hg% needs to include all joint determinants of outcome

(and, hence, P%?).

Y% and treatment T? s

ijs ijs
Consistency of the functional form of ]352:

An inconsistency of the propensity-score estimates could flow from an er-
roneous assumption about the functional form of the distribution for the

mapping of H?? into P°. Then, maximum-likelihood estimates of the scores

YL IYEN
po

;s would be biased and inconsistent. However, this would not necessarily

be a problem for comparison estimators as long as the ranking of units {ijs}

Leading estimators and functional forms in applied work are probit (normality) and
logit. In estimating the propensity of PEIA membership, probit is used in most appli-
cations (e.g., see Baier and Bergstrand, 2004, 2009; Egger, Egger, and Greenaway, 2008;
Egger and Wamser, 2013). In principal, Pfjos could be estimated by any parametric or
nonparametric consistent estimator.



would be consistent, and the degree of similarity if two comparison units
would be only marginally affected (i.e., similarity in 165.2 would still mean
similarity of all columns in Hg%).

2.3 Treatment-effect estimation through weighting re-

gression

In this subsection, we present two alternative types of weighting regression
for a framework of selection on observables, each of which involves a specific
first stage to determine the weights and an outcome which corresponds to
weighted least squares. In each case, the second stage is run on a subset of the
data where either ©;;, = 6 or ©;;; = 0, namely .4 % For convenience, let us
also introduce a subvector of the joint determinants of PEIA membership and
bilateral trade, H;js, which we refer to as Z;;;. We introduce this subvector
in order to be able to indicate that one may (and we do) condition on some
(or even all) of the covariates in H;;s after conditioning on the propensity
score. For instance, such a procedure is suggested by Blundell and Costa

Dias (2009) to reduce the bias from a lack of covariate balancing.

2.3.1 Inverse-probability weighting (IPW) regression

With inverse probability weighting, the first stage of the approach is con-

cerned with estimating the response (or PEIA-membership) probabilities,

P

s+ Since response probabilities are typically estimated parametrically by a
maximum-likelihood estimator for nonlinear probability models, one concern
may arise with respect to the repeated occurrence of the index tuple 75 over

s and an associated cluster structure of the variance-covariance matrix of the

10



disturbances.ﬁ We address this problem by generally estimating P’

ijs year by
year (see also Wooldridge, 1995, for a recommendation along those lines) and
for each treatment @ separately (ensuring that all propensities including the
one for zero treatment add up properly to unity). One prominent example
of a first-stage model along those lines is the probit model, which we employ
here. The (inverse) propensities obtained in this first stage are the weights
used in the second stage of the IPW regression framework. Formally, the
(conditional) propensity score is obtained by conditioning on H?

E
(?7).

In the second stage, we may condition on the covariates, Z,js, exerting

from eq.

an impact on bilateral exports, Yj;s, or not. If we do, we obtain parameters

from two weighting expressions, namely for the treated as

(Xijs —af — Zij859)2

b, B A,e.o
A ijseN? Pms

and for the controls as

Xi's_ O_Zi‘s 02
min ( J a ]B).

0,30 _ poo
A ijs€N 0 1 szs

(5)

Using the notation 7" and 7' to denote row vectors containing the aver-
age values of Z;;, in the subsets of the observations in A% and A, respec-
tively, the average treatment effect (ATE) and the average treatment effect
of the actually treated (ATT) of a type-§ PEIA membership in comparison

to no treatment at all with inverse probability weighting are then defined as

60

ATEipwra = (ag - aU) +Z (/BG - BO> (6)

6Note that the country-pair dimension indexed by ij accounts for the lion’s share of
the variance in bilateral exports, even in a long panel of data as the one used here.
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and

MTTe = @ -3+ 73 - ) 7)
respectively.

One major advantage of this framework is its simplicity. However, a
fundamental drawback is that it assumes covariate balancing in the columns
of H;js, at least in higher moments than the first one, which in reality is often
rejected by the data. As argued before, a lack of covariate balancing may
lead to a bias of the second-stage weighting-regression estimates and, hence

— 00 ——00
of ATFE. and ATT.

pwra pwra*

2.3.2 Covariate-balance-enforcing (CBE) weighting regression

The second approach to PEIA-treatment-effect estimation by weighting re-
gression differs from the one in the previous subsection only with respect to
the first stage. In contrast to a propensity-score model, the weights here are
obtained as follows (see Hainmiiller, 2012; Hainmiiller and Xu, 2013).
Define an ex-ante unknown weight for unit {ijs} € A0, e, a base

weight, ¢;;s, and a distance metric between the two as

feijs) = eijslog(eijs/qijs)- (8)

Then, the weights e;;5 are chosen so as to minimize the loss function

min F'(e) = Z f(eijs) 9)

o
b {ijse. 0}

12



subject to the set of balance constraints

Z eijscr,ijs(Hijs> = mﬁ (10)

{ijse0}
where ¢, ;;5(H;;s) is the moment function for the covariates H,;, among the
control observations {ijs} € 4% up to moment r and the r-th moment of
the (base-unweighted) treated observations {ijs} € 4% mf and subject to

the normalization constraints

€js >0, and > ey, =1. (11)
{ijse 0}

Let us denote the solution for e;;s by this procedure by 5%05. Using this
estimate, we may formulate the entropy-balancing counterparts to equations

(??) and (?7) for the treated and control observations as

(Xijs —aof — Zij556)2

g&lir}) =0 (12)
ijsen? vys
and
X... —a® — Z... 892
min ( ijs — z]sﬁ ) (13)
aozﬁo €,
ijse N0 vs
respectively, and the corresponding treatment effects are defined as
00 00 ~0 0
ATEbalance = ATTbalance = - (14)

There are two notable and desirable differences between eq. (?7?) and
eqs. (?7?) and (?7), apart from their being based on different parameter

estimates. First, any difference in the targeted moments of H,js (and Z;;s)

13



is eliminated by the minimization in eq. (?7) subject to the aforementioned
constraints. Hence, differences in the these moments of H;;; between the
treated and control units do not influence average treatment effects. Second,
for the same reason, the average treatment effect (ATE) is identical to the
average treatment effect of the treated (ATT) which is not automatically the

case with inverse probability weighting.

3 Estimating partial PEIA effects with covariate-
balancing-enforcing versus non-enforcing meth-
ods

This section is organized in two subsections. The first subsection provides an
overview of the panel data we use in the empirical analysis of PEIA effects
on trade flows in this paper. In the second subsection we summarize the em-
pirical findings based on covariate-balancing-enforcing versus non-enforcing
methods. The latter will present estimates of both partial (or direct) effects
on trade flows which do not account for adjustments of prices in general
equilibrium and total (or general-equilibrium) effects on welfare which do

account of such adjustments.

3.1 Data

We cover annual data of bilateral trade flows and their determinants over
the time interval of 1961-2008. The trade data are collected from the United

Nations’ (UN) Comtrade Database, and we restrict our interest to positive
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trade ﬂows[] The main regressor of interest to this paper is a country pair’s
membership status in one of the preferential economic integration agreements
— PTA, BIT, DTT, or combinations thereof — which we may refer to as the
treatment indicator, referred to as T;o above. Information on PTA mem-
bership is collected from World Trade Organization’s (WTO) websitef] The
variable PT A;js is unity, if trade between countries ¢ and j is covered by a
PTA in year s. Information on DTT and BIT membership is collected from
the website of the United Nations Conference on Trade and Development
(UNCTAD).H BIT;;s and DT'T;;, are unity if investment between countries 4
and 7 is covered by a BIT or a DTT, respectively, in year s.

We use other covariates based on variables contained in the World Bank’s
World Development Indicators (WDI) and the Centre d’Etudes Prospectives
et d'Informations Internationales’ (CEPII) gravity data-set. We summarize
the acronyms, provide a brief description, and report the source of all vari-
ables except the fixed country-time effects in Table . We suppress subscripts
in the table but would like to not that the outcome, the treatment indicators,
and the 1st-stage-only covariates all vary in the three dimensions ¢, j, and s,
whereas the geographical, cultural, and historical variables included in both
stages vary only in dimensions ¢ and 7 but not s.

Among the 1st-stage only covariates, we have four regressors in the spirit
of Baier and Bergstrand (2004) and Egger and Larch (2008). These measure
total economic size between countries ¢ and j in year s in terms of their

log total real GDP (RGDP;j,), the dissimilarity in economic size between

"Notice that the vector of observables, H;j;, includes exporter-time and importer-time
fixed effects, and so does the vector Z;;,. Conditional on these fixed effects, it turns out
that there is no significant bias associated with sample selection (see Wooldridge, 1995, for
the consistency of fixed-effects estimates in the case of specific forms of sample selection.)

8see XXX

Isee XXX
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countries ¢ and 7 in year s in terms of the absolute difference of their real
GDP (DRGDP;j;), the difference in capital-labor ratios of countries 7 and
J in year s approximated by the absolute difference in log real per-capita
income (DK L;js), and the difference in capital-labor ratios of countries i
and j together in year s and the rest of the world (in our case, 165 coun-
tries) approximated by the absolute difference in log real per-capita income
(DROW K L;;5). The results in Baier and Bergstrand (2004) suggest that
such measures successfully co-determine the propensity of signing at least a
PTA, and the findings in Egger and Wamser (2013) suggest that similar con-
clusions apply for BITs and DTTs. Such regressors are historically known
to determine the volume of trade and, in particular, of intra-industry trade
(see Helpman, 1987). Hence, the result in Baier and Bergstrand (2004) and
others suggest that PEIAs are concluded primarily among natural trading
partners, i.e., countries which would trade and direct invest a lot with each
other in the absence of political barriers.

The other covariates, which are included in the first- as well as the second-
stage models are also standard in empirical research, and they capture ge-
ographical, cultural, historical, and political factors determining bilateral
trade as well as PEIA membership. All of those covariates are time-invariant.
The geographical factors include log bilateral distance (D1ST;;) and common
land border (BORDER;;). The cultural variables include common official
language (LANG1,;;) and common ethnological language when spoken by
a sufficiently large base (LANG1;;). The historical variables are four in-
dicators which capture colonial relationships of some form (COLONY1;;,

COLONY2;;, COLONY3,;, COLONY4;;). Finally, we measure some spe-

15> 175

cial political relationship between entities ¢ and j, if they did or currently do

belong to the same country (M CTRY;;). Again, for of these sets of variables
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it is documented that they successfully co-explain bilateral trade flows as
well as PEIA membership[T|

Table 77 provides desctriptive statistics for all variables involved, includ-
ing the dependent variable, log bilateral exports (Y;;5). We suppress a de-
tailed discussion of those statistics but would like to single out the following
observations. First, the overall data-set which is used for estimation con-
tains 434,895 observations (made up of 158 exporters, 160 importers, and
50 years). Second, in the data the most frequent PEIAs are having a PTA
or a DTT alone (PT A, DTT). This state prevails for 10% of the observa-
tions each. The least frequent states are having a PTA combined with a
BIT or a DTT (PTA&BIT, PTA&DTT) which prevails for about 2% of
the observations each. In any case, Table 7?7 reports on the absolute num-
ber of the treatment states behind the percentages in Table 7?7 and suggests
that all states occur frequently enough so that we should be able to estimate
treatment effects — if there are any — with sufficient precision given the large

number of observations.
—— Table 7?7 about here ——
—— Table ?? about here ——
—— Table 7?7 about here ——

While Tables 7?7 and 7?7 reflect the base case of treatment configurations
which we consider in this paper. However, recent research by Diir and Elsnig
(2014) and XXXX suggests that it could be useful to distinguish among
PTAs, as these PTAs contain a host of different provisions. The customary

approach to approach this issue in empirical and quantitative work appears

OEXPLAIN WHY NO 3RD COUNTRY EFFECTS INCLUDED.
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to be to distinguish among important types of PTAs. In this paper, we
distinguish between four of them along the following lines: (PT A1); (PT A2);
(PTA3); and (PTA4). Of course, doing so leads to 19 treatment states
(except for the null state without any PEIA) relative to the 7 states (except
for the null state without any PEIA) in Tables ?? and ??. For this more fine-
grained definition of PEIAs we generate Tables 7?7 and ?7 as counterparts
to Tables 7?7 and ?7?7. These tables suggest that PTA-state PT'AX is most
frequent (when computing the sum of all states involving PT'AX ) and PTA-
state PT'AX is least frequent (when computing the sum of all states involving
PTAX). We will use both the coarse and the fine-grained set of treatment

definitions in the subsequent analysis.
—— Table ?? about here ——
—— Table ?? about here ——

XXX PUT TABLES XXX

3.2 Results and discussion

Notice that with 50 years of data and annual probit estimates, we would
have to report an enormous number of parameter estimates for the first-
stage models. We suppress those in the main text but relegate the respective
presentation to the accompanying online appendix. In any case, those param-
eter estimates are of limited interest for two reasons: first, the probit models
— as first-stage models in general — do not have a structural interpretation
and, second, only the signs of the parameter estimates are interpretable due
to the nonlinear model structure. In what follows, we will focus on par-
tial and general-equilibrium PEIA-effect estimates and, as a prerequisite, on

balancing tests.
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3.2.1 Covariate balancing tests

Before turning to effect estimates, let us focus on covariate balancing. Notice
that with 13 main covariates, 50 years of data and 7 or 19 treatment states
there are 13-50-7 = 4,550 and 13-50-19 = 12, 350 tests for, say, the first and
the second moment. It would not be convenient to present the associated
results by way of tables, but we present figures of kernel density plots of
p-values of mean and variance comparison tests to assess the differences of
the first and second moments of the covariates between the treated and the
controls. We generally report three kernel density plots on p-values for all
covariates together per moment: one for the simple OLS model, one for the
customary IPW model, and one for the EB model each.

The density plots suggest that the mode of the distributions for both the
first and the second moment is obviously highest for the OLS model, and
it is also obviously much higher for the IPW model than for the EB model.
In fact, the mode of the p-value for the equality-of-means tests between the
treated and the control units amounts to 0.XXX for the EB model, while it
is 0.XXX for the IPW model and 0.XXX for OLS. The mode of the p-value
for the equality-of-variances tests between the treated and the control units
amounts to 0.XXX for the EB model, and it is 0.XXX for the IPW model
and 0.XXX for OLS. Hence, the first two moments differ starkly between
the treated and the controls before any weighting and even when weighting
by the propensity score. Hence, we have a situation where one fundamental
assumption for not only IPW regression but also propensity-score matching
to obtain consistent partial effects is starkly violated.

XXX CONTINUE AFTER HAVING RESUITS. EV. ALSO INCLZUDE
PLOT FOR 3RD MOMENT XXX
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3.2.2 Partial effects of PEIAs on bilateral exports

The tables and text in this sub-sub-section summarize partial effects of PEIA
treatments on bilateral exports estimated with the coarse-grained (7 treat-
ment states; Table ??7) and the fine-grained (19 treatment states; Table ?7?)
differentiation of PEIAs.

Tables 7?7 and 7?7 follow the same principal organization. Apart from
the column referring to the treatment at stake, the columns labelled OLS,
IPW, and CBE pertain to average treatment effects associated with the re-
spective estimators. The numbers in italics reported below the ATE param-
eters are country-pair-block-bootstrapped standard errors (see Fitzenberger,
199X). The columns Obs. and Treated refer to numbers of all and respective
treated observations which estimates are based on, and Treated % expresses
the Treated in percent of Obs. Clearly, the number of control observations
with zero PEIA treatment is always Obs. -Treated=311,974. Since the only
difference between Tables 7?7 and 77?7 is that PTA treatment in Table 77
is split up in four categories in Table 77, only those ATE estimates differ
between the tables, where any PTA treatment is involved.

It is apparent from the comparison of columns OLS and CBE on the one
hand and of columns IPW and CBE on the other hand — especially, when
recalling the substantial lack of covariate balancedness behind propensity
scores — that inverse probability weighting is quite problematic in the data.
The ranking of the magnitude of the partial effects is quite similar between
CBE and OLS on average in both tables across the ATEs estimated, while
it is quite different with IPW. The CBE estimates tend to be non-trivially
smaller than the OLS estimates in absolute value, while no clear-cut pattern
emerges for IPW relative to OLS. Of all the ATEs four of the signs in Tables
7?7 and 77 differ between IPW and OLS, only one of the signs differs between
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CBE and OLS, and five of the signs differ between IPW and CBE.

Let us consider the magnitude of the differences between the partial ATE
estimates across all lines in Tables 7?7 and 7?7 together. Let us compute the
simple (unweighted) average of the absolute differences between the ATEs
under OLS versus IPW (which is 1.5249 for the two tables and all ATEs
together), OLS versus CBE (which is 0.3504 for the two tables and all ATEs
together), and IPW versus CBE (which is 1.5542 for the two tables and all
ATEs together). These numbers clearly indicate that the bias induced by
lack of balancing under IPW is actually larger than the one of OLS, and the
applied economist would have done better to ignore any self-selection into
PEIAs rather than doing IPW or matching.

The biggest biases of OLS relative to CBE in absolute terms emerge for
the combination of PTA with BIT and DTT (PTA&BIT&DTT), amount-
ing to 0.6953 in Table ?? and the deepest PTA form with BIT and DTT
(PTA4&BIT&DTT), amounting to 0.9197 in Table ??. The biases of IPW
versus CBE for these treatments in the two tables amount to 1.3354 and
8.0764, respectively, and they are not even the biggest ones of the IPW es-
timator across different treatments. Most of the biases of OLS relative to

CBE amount to substantially less than 0.5.

—— Table 7?7 about here ——

—— Table 7?7 about here ——

3.2.3 Welfare effects of PEIAs

While empirical economists tended to stop at reporting partial effects of
PEIAs less than a decade ago, it is now customary to quantify such effects

when taking into account general-equilibrium repercussions (see, e.g., Egger
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and Larch, 20117; Egger, Larch, Staub, and Winkelmann, 2013; Caliendo
and Parro, 2015).

—— Table 7?7 about here ——

—— Table 7?7 about here ——
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4 Conclusions

e New covariate balance enforcing technique for non-parametric estima-

tion of trade determinants.

e The new technique generates identical to the first moment and very
similar to the second and third moment output variables conditional

on covariates.

e Failure to reach covariate balance generates on average an upward bias

in estimated coefficients of PEIAs.

e Despite a significant difference in magnitude of the second-stage coef-

ficients, probit estimation is far from satisfying CIA.

e Any combination of two or three PEIAs has a stronger effect on exports

than any individual PEIA has.

e Our results are robust to accounting for different levels of depth that
a PTA between two countries has. In general, one PTA with at least
one provision generates more trade than a relatively shallow PTA, but
also than a PTA foreseeing that all tariffs should be reduced to zero,

even when that includes provisions.

e In the general equilibrium (GE) context, we find that PEIA-related
trade costs as estimated using the newly-introduced covariate-balance
enforcing estimator lead to smaller welfare gains than those estimated

with the least-squares method.
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5 Table Appendix
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Table 1: Determinants of PEIAs and trade (description and source)

Variables Description Source
Outcome variable
Y Log bilateral exports UN
Binary treatment variables
PTA Preferential trade agreement only WTO
BIT Bilateral investment treaty only UNCTAD
DTT Double-taxation treaty only UNCTAD
PTA&BIT Combination of the above
PTA&DTT Combination of the above
BIT&DTT Combination of the above
PTA&BIT&DTT  Combination of the above
1st-stage-only covariates

RGDP The sum of two countries’ log real GDPs WDI
DRGDP The absolute difference of two countries’ log real GDPs WDI
DKL The absolute difference in the two countries’ WDI

log real per-capita incomes
DROWKL The average absolute difference in log per-capita WDI

incomes of two countries with the rest of the world

1st- and 2nd-stage covariates

DIST The log distance between two countries’ economic centers CEPII
BORDER Binary common country border CEPII
LANG1 Binary for common official primary language CEPII
LANG2 Binary for common language if spoken by at least 9% CEPII

of the population
COLONY1 Binary for colonial relationship (ever) CEPII
COLONY2 Binary common colonizer post 1945 CEPIIL
COLONY3 Binary for pair currently in colonial relationship CEPIIL
COLONY4 Binary for pair in colonial relationship post 1945 CEPII
SMCTRY Binary for entities that were or are part of the same country CEPIIL
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Table 2: Descriptive Statistics

Variable Obs. Mean Std. Dev. Min Max
Outcome variable
Y (log exports) 434,895 1.35 3.36 -6.91 12.78
1st-stage covariates only
RGDP 434,895  48.96 2.80 37.36 59.45
DRGDP 434,895  2.83 2.02 0 10.97
DKL 434,895  0.03 0.07 0 0.64
DROWKL 434,895  1.42 0.62 0 3.85
1st- and 2nd-stage covariates
DIST 434,895  8.57 0.87 4.09  9.89
BORDER 434,895  0.03 0.17 0 1
LANG1 434,895  0.18 0.39 0 1
LANG2 434,895  0.19 0.39 0 1
COLONY1 434,895  0.03 0.16 0 1
COLONY2 434,895  0.09 0.29 0 1
COLONY3 434,895  0.00 0.02 0 1
COLONY4 434,895  0.02 0.13 0 1
SMCTRY 434,895  0.02 0.13 0 1

One-year-lagged complemetary treatments are included as regressors in the
first stage, weighted by distance in the following categories: [Okm, 500km)],
(500km, 1000km)], (1000km, 2000km], (2000km, 5000km], (5000km, co km].

Table 3: Presence of PEIAs: Coarse-grained PEIA Definition

PEIA Types Observations Percentage

Null-state 311,974 71.74
PTA 34,870 8.02
BIT 17,734 4.08
DTT 32,756 7.53
PTA&BIT 6,225 1.4
PTA&DTT 5,480 1.26
BIT&DTT 16,822 3.87
PTA&BIT&DTT 9,034 2.08
Total 434,895 100.00
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Table 4: PTA Depth

Depth Total %
1. Shallow (PTAL) 20,707 60.75
2. At least one provision (PTA2) 5283  15.50
3. Full FTA (PTA3) 4444 13.04
4. Full FTA + at least one provision (PTA4) 3649  10.71
34,083

2This should add up to 34,870 as per the number of observations with a PTA in Table
7?7, however, the DESTA database covers slightly less PTAs then those recorded by WTO

Table 5: Presence of PEIAs: Fine-grained PEIA Def-
inition

PEIA Types Observations Percentage

Null-state 311974 71.88
PTA1 20707 4.77
PTA2 5283 1.22
PTA3 4444 1.02
PTA4 3649 0.84
BIT 17734 4.09
DTT 32756 7.55
PTA1&BIT 1932 0.45
PTA2&BIT 603 0.14
PTA3&BIT 1213 0.28
PTA4&BIT 2456 0.57
PTA1&DTT 1954 0.45
PTA2&DTT 1248 0.29
PTA3&DTT 770 0.18
PTA4&DTT 1464 0.34
BIT&DTT 16822 3.88
PTA1&BIT&DTT 2291 0.53
PTA2&BIT&DTT 982 0.23
PTA3&BIT&DTT 894 0.21
PTA4&BIT&DTT 4842 1.12
Total 434018 100

%This should add up to 434,895 as per the number of observations in Table 7?7, however,
the DESTA database covers slightly less PTAs then those recorded by WTO

27



Table 6: ATE of PEIAs on Log Exports: Coarse-grained PEIA Definition

OLS IPW CBE Obs. Treated Treated %

PTA 0.8046 1.2617 0.5256 346,844 34,870 5.21
SE 0.0008 0.0576 0.0009

BIT 0.6776 1.0251 0.4720 329,708 17,734 2.65
SE 0.0007 0.1918 0.0008

DTT 0.7758 0.1878 0.6374 344,730 32,756 4.89
SE 0.0006 0.0963 0.0006

PTA&BIT 1.5943 -0.8580 1.1565 318,199 6,225 0.92
SE 0.0012 0.0826 0.0017

PTA &DTT 1.6625 2.9734 1.3157 317,454 5,480 0.82
SE 0.0011 0.1159 0.0012

BIT&DTT 1.2782  -1.9000 0.9659 328,796 16,822 2.51
SE 0.0008 0.3452 0.0009

PTA&BIT&DTT  1.9674 -0.0633 1.2721 321,008 9,034 1.35
SE 0.0009 0.1587 0.0017

OLS: coefficient estimates of one stage least-squares regression of dependent variable
log(EXPORTS) on covariates shown in Table ??. IPW: second-stage coefficient estimates of inverse
probit-based weights-weighted regression. CBE: second-stage coefficient estimates of covariate-
balance-enforcing weights-weighted regression. Exporter*year fixed effects and importer*year fixed
effects included in both stages. Standard errors are obtained through bootstrapping, by drawing
100 times with replacement.
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Table 7: ATE of PEIAs on Log Exports: Fine-grained PEIA Definition

OLS IPW CBE N Treated Treated %

PTA1 0.5279 0.1882 0.3295 318,729 6757 2.12
SE 0.0313 0.1295 0.0124

PTA2 1.0713 0.7526 0.7643 312,533 563 0.18
SE 0.0116 0.4322 0.0224

PTA3 0.7318 1.8870 0.0156 313,744 1757 0.56
SE 0.0570 0.3458 0.0197

PTA4 0.9346 2.3113 0.2794 337,760 25771 7.63
SE 0.0190 0.2377 0.0126

BIT 0.6776  1.0251 0.4720 329,708 17738 5.38
SE 0.0025 0.4004 0.0026

DTT 0.7758 0.1878 0.6374 344,730 32749 9.50
SE 0.0018 0.4169 0.0018

PTA1&BIT 1.4508 2.1255 1.3789 312,434 469 0.15
SE 0.0685 0.53224 0.0281

PTA2&BIT 1.8255  1.2578  1.5240 312,174 187 0.06
SE 0.0746 0.5943 0.0420

PTA3&BIT 1.2698 4.2840 0.6233 312,140 156 0.05
SE 0.0413 0.6026 0.0297

PTA4&BIT 1.3934 1.0592 0.7687 317,373 5395 1.70
SE 0.0060 0.4932 0.0073

PTA1&DTT 1.6660 1.5496 1.3065 312,514 531 0.17
SE 0.0506  0.3095 0.0444

PTA2&DTT 1.8550 6.0443 1.6676 312,134 156 0.05
SE 0.0116 0.3650 0.0200

PTA3&DTT 1.0806 0.1346 0.9561 312,254 281 0.09
SE 0.0090 0.3535 0.0084

PTA4&DTT 1.2118 3.1360 -5.1567 316,474 4494 1.42
SE 0.0250 0.3855 0.6884

BIT&DTT 1.2782 -1.9000 0.9659 328,796 16834 5.12
SE 0.0025 0.9989 0.0030

PTA1&BIT&DTT  1.9219 0.8238 1.5053 312,358 375 0.12
SE 0.1121 0.7419 0.0979

PTA2&BIT&DTT 21628  0.1289  1.6443 312,157 187 0.06
SE 0.0179 0.3473 0.0303

PTA3&BIT&DTT 1.9800 1.9170 1.4761 312,397 437 0.14
SE 0.0486 0.4338 0.0407

PTA4&BIT&DTT  1.8342  1.4772  1.0828 320,018 8032 2.51
SE 0.0072 2.3977 0.0121

OLS: coefficient estimates of one stage least-squares regression of dependent variable log(EXPORTS)

on covariates shown in Table ??. IPW: second-stage coeflicient estimates of inverse probit-based
weights-weighted regression. CBE: second-stage coefficient estimates of covariate-balance-enforcing
weights-weighted regression. Exporter*year fixed effects and importer*year fixed effects included in
both first and second stage. Standard errors are obtained through bootstrapping, by drawing 10
times with replacement. PTA1 is a dummy indicating a country pair with PTA depth level of 1,
PTA2 - two, PTA3 - three, and PTA4 - foté



Table 8: Welfare Effects From All Country
Pairs Having a PEIA Relative to Status Quo
(Coarse PEIA Definition)

% Welfare Change

OLS IPW CBE

PTA 5.45 21.51 218
BIT 2.09 6.89 1.13
DTT 7.60 0.98 4.88
PTA&BIT 44.20 0.10 17.38
PTA&DTT 44.02 386.62 20.75
BIT&DTT 25.87 0.19 11.34

PTA&BIT&DTT  142.69 0.26 44.26
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Table 9: Welfare Effects From All Country Pairs Hav-
ing a PEIA Relative to Status Quo (Fine-grained PETA

Definition)
% Welfare Change
PEIAs OLS IPW CBE
PTA1 1.0141 0.6495 0.7520
PTA2 2.4036 1.3477 0.8156
PTA3 1.3477 16.4702 0.5770
PTA4 3.8031 75.0455 0.8156
BIT 2.1048 6.8221 1.1605
DTT 7.0127 0.9861 4.5293
PTA1&BIT 4.0050 18.7968 3.3563
PTA2&BIT 4.4642 1.4470 2.4046
PTA3&BIT 5.5533 649.5653 1.2667
PTA4&BIT 17.1303 8.7078 4.3552
PTA1&DTT 14.8228 11.4417 6.4192
PTA2&DTT 11.3812 1439.7520  8.2098
PTA3&DTT 1.8160 0.5937 1.4115
PTA4&DTT 5.7759 133.2927 0.4273
BIT&DTT 24.6472 0.2712 10.7307
PTA1&BIT&DTT  26.3835 2.6418 11.8842
PTA2&BIT&DTT  33.7238 0.6542 13.7982
PTA3&BIT&DTT  22.7528 20.4637 9.1668
PTA4&BIT&DTT  62.2179 34.6331 16.2719

Table 10: P-Values of Balancing Tests

7 Treatments

19 Treatments

Median Mean Median  Mean
Means’ UNW  0.0000 0.0186 0.0000 0.0875
test IPW 0.0000 0.0456 0.0002  0.1297
comparison | CBE 0.9968 0.9870 0.9977 0.9844
Variance UNW  0.0000 0.0907 0.0000 0.0819
test IPW 0.0013 0.1405 0.0021 0.1458
comparison | CBE 0.2664 0.2664 0.0923 0.2529
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Table 11: Propensity of Coarse-definition PEIAs

1961 1970 1980 1990 2000 2010

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

BIT Control 0.0036  0.0114 0.0076 0.0206 0.0151 0.0366 0.0377 0.0709 0.0465 0.0803
Treated 0.0226  0.0163 0.0506 0.0380 0.1029 0.0674 0.2076 0.1583 0.2385 0.1643

DTT Control  0.0087 0.0314 0.0196 0.0528 0.0294 0.0653 0.0359 0.0744 0.0454 0.0839 0.0515 0.0873
Treated 0.0697 0.0980 0.1556 0.1610 0.1915 0.1667 0.2197 0.1749 0.2515 0.1912 0.2456 0.1934

PTA Control  0.0031 0.0162 0.0139 0.0398 0.0237 0.0530 0.0392 0.0659 0.0815 0.0930 0.0860 0.0938
Treated 0.0655 0.1027 0.1589 0.1945 0.1449 0.1576 0.1637 0.1826 0.2566 0.2075 0.2677 0.2174

BIT&DTT  Control 0.0013 0.0093 0.0043 0.0225 0.0106 0.0432 0.0294 0.0804 0.0442 0.1006
Treated 0.0123 0.0129 0.0618 0.0926 0.1803 0.1854 0.3647 0.2472 0.4095 0.2500

PTA&BIT  Control 0.0011 0.0082 0.0040 0.0213 0.0218 0.0535 0.0269 0.0593
Treated 0.0003 0.0004 0.2345 0.2527 0.2430 0.2289 0.2301 0.2279
PTA&DTT Control 0.0003 0.0060 0.0016 0.0166 0.0037 0.0214 0.0054 0.0279 0.0079 0.0365 0.0179 0.0568
Treated 0.0704 0.0986 0.2332 0.2469 0.3002 0.2786 0.1279 0.1390 0.1686 0.1710 0.2344 0.2061

BIT&DTT  Control 0.0104 0.0433 0.0094 0.0398 0.0064 0.0309 0.0073 0.0331
Treated 0.0018 0.0000 0.4987 0.2850 0.3226 0.2865 0.2302 0.2347
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Table 12: Propensity of Fine-grained-definition PEIAs

1961 1970 1980 1990 2000 2010

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

PTA1 Control 0.0121 0.0159 0.0155 0.0185 0.0173 0.0198 0.0175 0.0175 0.0176 0.0190 0.0202 0.0214
Treated 0.0622 0.0364 0.0697 0.0417 0.0543 0.0404 0.0362 0.0362 0.0314 0.0291 0.0358 0.0325

PTA2 Control  0.0037 0.0162 0.0039 0.0167 0.0037 0.0167 0.0036 0.0036 0.0029 0.0154 0.0028 0.0158
Treated 0.0869 0.0767 0.0738 0.0684 0.0617 0.0729 0.0731 0.0731 0.0457 0.0535 0.0477 0.0488

PTA3 Control  0.0110 0.0222 0.0139 0.0262 0.0160 0.0290 0.0176 0.0176 0.0207 0.0373 0.0221 0.0394
Treated . . 0.0498 0.0306 0.0732 0.0618 0.0672 0.0672 0.0862 0.0733 0.0925 0.0788

PTA4 Control 0.0124 0.0238 0.0143 0.0263 0.0145 0.0261 0.0150 0.0150 0.0150 0.0250 0.0143 0.0259
Treated 0.0926 0.0755 0.0428 0.0562 0.0694 0.0780 0.0595 0.0595 0.0690 0.0667 0.0525 0.0659

BIT Control 0.0144 0.0330 0.0186 0.0384 0.0198 0.0198 0.0199 0.0403 0.0238 0.0451
Treated . . 0.0668 0.0396 0.0867 0.0481 0.1031 0.1031 0.0981 0.0876 0.1136 0.0935

DTT Control  0.0174 0.0444 0.0278 0.0592 0.0346 0.0660 0.0361 0.0361 0.0358 0.0648 0.0423 0.0712
Treated 0.0999 0.1326 0.1703 0.1703 0.1938 0.1658 0.2019 0.2019 0.1949 0.1554 0.2037 0.1657

BIT&DTT Control 0.0142 0.0463 0.0180 0.0525 0.0181 0.0181 0.0150 0.0445 0.0179 0.0490
Treated 0.2032 0.1563 0.1414 0.1368 0.1767 0.1767 0.1636 0.1391 0.1656 0.1404

PTA1&BIT Control 0.0009 0.0027 0.0009 0.0009 0.0007 0.0022 0.0010 0.0026
Treated 0.0029 0.0027 0.0049 0.0049 0.0068 0.0112 0.0090 0.0128

PTA2&BIT Control 0.0003 0.0016 0.0003 0.0003 0.0002 0.0011 0.0002 0.0012
Treated 0.0002 . 0.0028 0.0028 0.0045 0.0054 0.0075 0.0065

PTA3&BIT Control 0.0015 0.0049 0.0019 0.0019 0.0023 0.0083 0.0029 0.0096
Treated 0.0214 0.0161 0.0385 0.0385 0.0351 0.0362 0.0364 0.0384

PTA4&BIT Control 0.0039 0.0132 0.0038 0.0038 0.0033 0.0098 0.0034 0.0106
Treated . . . . 0.0169 0.0158 0.1733 0.1733 0.0715 0.1037 0.0628 0.0936

PTA1&DTT Control  0.0007 0.0060 0.0011 0.0080 0.0014 0.0068 0.0014 0.0014 0.0011 0.0057 0.0015 0.0073
Treated 0.0213 . 0.0738 0.0927 0.0639 0.0954 0.0200 0.0200 0.0201 0.0245 0.0192 0.0266

PTA2&DTT Control  0.0005 0.0055 0.0008 0.0070 0.0008 0.0046 0.0008 0.0008 0.0005 0.0048 0.0006 0.0043
Treated . . 0.0172 . 0.0181 0.0193 0.0295 0.0295 0.0229 0.0309 0.0132 0.0177

PTA3&DTT Control 0.0010 0.0083 0.0015 0.0109 0.0016 0.0105 0.0018 0.0018 0.0020 0.0108 0.0024 0.0108
Treated . . . . 0.1051 0.1122 0.1186 0.1186 0.1132 0.1539 0.0977 0.1565

PTA4&DTT Control  0.0014 0.0142 0.0024 0.0181 0.0028 0.0146 0.0026 0.0026 0.0019 0.0128 0.0022 0.0124
Treated 0.1932 0.1458 0.1943 0.2040 0.2558 0.2127 0.1728 0.1728 0.0718 0.0898 0.0632 0.1016

PTA1&BIT&DTT  Control 0.0008 0.0035 0.0008 0.0008 0.0007 0.0040 0.0008 0.0039
Treated 0.0183 0.0208 0.0333 0.0333 0.0208 0.0384 0.0228 0.0392

PTA2&BIT&DTT  Control 0.0008 0.0044 0.0007 0.0007 0.0004 0.0036 0.0004 0.0026
Treated 0.0594 0.0815 0.0285 0.0285 0.0188 0.0330 0.0202 0.0355

PTA3&BIT&DTT  Control 0.0008 0.0052 0.0009 0.0009 0.0009 0.0066 0.0013 0.0063
Treated 0.0026 0.0012 0.0599 0.0599 0.0514 0.0667 0.0493 0.0772

PTA4&BIT&DTT  Control 0.0052 0.0291 0.0045 0.0045 0.0027 0.0194 0.0029 0.0192
Treated 0.2570 0.4764 0.4764 0.3229 0.2511 0.2159 0.2363
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