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Abstract

Why is dynamic pricing more prevalent in ride-hailing apps than movies and restaurants?
Arnott (1996) observed that an over-burdened taxi dispatch system may be forced to send
cars on a wild goose chase to pick up distant customers when few taxis are free. These chases
occupy taxis and reduce earnings, effectively removing cars from the road and exacerbating
the problem. While Arnott dismissed this outcome as a Pareto-dominated equilibrium, we
show that when prices are too low relative to demand it is the unique equilibrium of a system
that uses a first-dispatch protocol (as many ride-hailing services have committed to). This
effect dominates more traditional price theoretic considerations and implies that welfare
and profits fall dramatically as price falls below a certain threshold and then decline only
gradually move in price above this point. A platform forced to charge uniform prices over
time will therefore have to set very high prices to avoid catastrophic chases. Dynamic “surge
pricing” can avoid these high prices while maintaining system functioning when demand is
high. We show that pooling can complicate and exacerbate these problems.
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1 Introduction

The prices of films and restaurants vary at most modestly and rigidly across time despite
dramatic fluctuations in the opportunity cost of capacity. Instead, queues and reservations
are used to ration these resources. This pattern puzzled many economists (Becker, 1991) and
generated broad enthusiasm for the recent rise of real-time dynamic consumer pricing in ride-
hailing applications, such as Lyft and Uber. Was this simply a social taboo that innovative
ride-hailing apps were willing to break? Or does “surge pricing” play a unique role in the
context of ride-hailing? We argue for the later conclusion. In particular, we highlight a crucial
technical feature of existing ride-hailing systems, that they are susceptible to a phenomenon
we refer to as the wild goose chase, which is analogous to “hypercongestion” in transportation
engineering, that would make them extremely technically inefficient in the absence of dynamic
pricing. This implies that surge pricing is critical to maintaining system capacity and not simply
an alternative means of allocating that capacity.

To understand the system failures that would occur in the absence of surge pricing it is
important to note that cars in the system may be in one of three states: idle, picking up a rider
they have been dispatched to or delivering a rider to her destination.1 In typical ride-haling
systems, 1) a car is immediately dispatched to any rider requesting a ride and 2) drivers are
only paid for the time they are actually servicing a customer. Given these features, when the
demand for rides is high relative to the number of idle cars, cars will often have to be dispatched
on a wild goose chase (WGC) to pick up a rider at a distant location. As a result, the cars will
spend a long time picking up their passengers and thus will become idle infrequently. This will
reinforce the scarcity of idle drivers, closing this negative feedback loop.

Thus, it may be that in times of high demand the total number of rides completed per
unit time may actually be lower than when demand is weaker. To make matters worse, the
fraction of time working during which drivers are not paid (what drives call “dead miles”) rises
when WGCs occur, thereby lowering their earnings relative to periods of lower demand. This
perversely discourages drivers from offering services during these times when their services are
most needed. When combined, these factors can lead a ride-hailing service with these rules and
without surge pricing to grind to a halt at precisely the times when it is most needed.

Surge pricing solves both of these problems. First, by reducing the flow of demand below
the volume that creates WGCs, surge pricing avoids the erosion of effective capacity for a fixed
number of drivers supplying services. Second, by restoring or boosting earnings during high
demand times, surge pricing makes earnings at least as high during peak loads as during normal
times. Absent surge pricing or a change to the system’s engineering, ride-hailing platforms
would have to charge very high uniform prices to ensure WGCs occurs only when demand is

1This differs from street taxis, which may only be either idle or delivering a rider. However it is similar to
dispatch taxis.
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exceptionally heavy, a practice that would harm the welfare of all participants relative to surge
pricing.

Note that this mechanism, while hardly unique to taxi dispatch systems does not arise in
many seemingly-related contexts. It is not true in fixed-capacity systems like public transit,
entertainment facilities or restaurants, as the number of customers who can be served by those
systems is independent of the way in which those systems are utilized. It does not apply to
street-hail taxis, which only have local pick-ups and thus cannot be sent on WGCs. While central
dispatch potentially offers large matching efficiencies over street hailing (Frechette, Lizzeri
and Salz, 2016) because they manage to keep drivers employed in some form constantly, these
potential efficiencies also make it potentially fragile to employing drivers in unproductive WGCs
rather than in the useful depositing of riders. This may be one reason why such systems were
largely unsuccessful until the advent of technologies that made dynamic pricing feasible.

Despite this novelty, a related phenomenon has been observed in the literature on transporta-
tion economics. In that context, it is called “hypercongestion” (Walters, 1961; Vickrey, 1987) and
refers to the fact that when enough cars enter a road to cause what non-specialists would refer
to as a “traffic jam”, speeds of all cars on the road fall sufficiently that the total throughput of
the road actually falls.2 A similar phenomenon occurs in purely physical systems: if you try to
pass a volume of a dry good (like rice) through a funnel, the fastest transmission is possible by a
steady pour that avoids clogging the funnel rather than by simply dumping the full volume in.
However, the effects of WGCs may be much more severe than those of clogging in these other
systems because the supply of drivers is endogenous, and may collapses in reaction to the fall in
earnings created by WGCs.

The possibility of WGCs in ride hailing was foreshadowed by Arnott (1996), who considered
the optimal design of a centralized and omniscient taxi dispatch system prior to the existence
of technology that would enable such a system to be constructed. In his analysis he noted that
a Pareto-suboptimal equilibrium could arise “analogous to that for a stable, hypercongested
equilibrium in traffic flow theory”. However, because he was concerned with an optimal system
he “assumed that when there are multiple equilibria, the market settles in the Pareto efficient
equilibrium.” As shown in Section 3, however, when prices are rigid and riders are free to call
and have immediately dispatched to them a ride, the equilibrium will involve WGCs at times of
high demand relative to capacity and price.3

While Arnott’s analysis was astonishingly far-sighted, his vision has largely been imple-
mented over the course of the last half decade. Founded in 2009 and 2012 respectively, ride-

2While this possibility was largely dismissed in the early years of the transportation economics literature (Arnott
and Inci, 2010), empirical evidence from the engineering literature has clearly shown that hypercongestion occurs
in practice (Muñoz and Daganzo, 2002). Hall (2016) highlights that the existence of hypercongestion dramatically
strengthens the case for the pricing of roads, just as we argue that hypercongestion may be the reason that dynamic
pricing is widely used in ride-hailing but not elsewhere.

3There might be multiple equilibria, but in that case all equilibria will involve WGC’s at times of high demand.
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hailing services Uber and Lyft have become a dominant mode of transportation in many urban
areas. Both operate on a first-come-first-serve dispatch basis and, since 2010, both have used
dynamic pricing (which Uber labels surge pricing) to manage demand. While surge pricing has
generated significant excitement among economists, it has been controversial among users of
the services and regulators. For example, the splash page on competitor Gett’s home page on
November 20, 2016 stated “The only time we surge is never o’clock” and many cities in the
developing world have banned or otherwise forced Uber to desist from surge pricing.

Our analysis suggests that, absent basic changes to the engineering of ride hailing systems,
self- or externally-imposed limitations on surge pricing are likely to have large allocative costs.
In an example in Section 4 calibrated to data from a large ride-hailing platform’s market in
Manhattan, we show that socially optimal prices if surging is prohibited are more than 97%
of their level with surge pricing at the highest demand hour of the day and are more than
47% higher than the level during the lowest demand hour when surging is allowed. This
quantitatively reinforces our qualitative conclusion that, absent surge pricing or engineering
changes, prices would be very close those that prevail with surge pricing at peak demand
periods.

None of this is to argue, however, that surge pricing is the only reasonable solution to WGCs.
We are currently exploring and in a future draft will include an analysis of how holding a queue
of riders, rather than immediately dispatching the next available car, could also help resolve
WGCs. Thus surge pricing should not be viewed as the exclusive or necessary response to
the possibility of WGCs, but only as the most natural solution that requires the least dramatic
reorganization of the engineering and consumer commitments the platforms make.

Our analysis begins in the next section with a model that builds closely on Arnott’s model
but extends it to endogenize ride requests, driver labor supply and pricing and to allow more
realistic matching between drivers and passengers. In Section 3 we describe how WGCs arises
in this model and why the unique equilibrium involves WGCs when pricing is too low; we also
show the extreme effects WGCs have on all welfare variables and how it causes profits and social
welfare to closely align in many cases. Then in Section 4 we calibrate our model to moments
supplied by a large ride-hailing platform and quantitatively analyze the effects of a ban on surge
pricing. We find that without surge pricing platforms should set prices corresponding to times
of highest demand so that WGC never happen. This means that if ride hailing apps like Uber or
Lyft did not use dynamic pricing, the alternative would not be to set prices at their base fare at
all times, and not even to set prices at their average fares. Instead, prices would be closer to the
highest fares that are currently observed.

In recent years, ride-sharing or “pooling” has gained an increasing share of the ride-hailing
market. We therefore, in Section 5, discuss a model allowing pooling. This model is much richer
and thus we treat it quite superficially at present. More broadly, this paper is a preliminary and
primarily theoretical analysis. We have obtained access to detailed microlevel data from a large
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ride-hailing platform that we plan to use to estimate parameters of an test our model. We thus
conclude by discussing the empirical analysis as well as additional theoretical results we plan to
add to the paper in a later, more complete draft than the present one.

2 Model

We consider a static, steady-state model of a ride-hailing service. Dynamics are critical to a
variety of aspects of the model and to the concept of surge pricing, but we reduce short-term
dynamics to a static steady-state analysis and model dynamics over longer periods of time as
allowing or prohibiting differential pricing based on market conditions.

2.1 Demand

Let λ be the density of arrival of users (measured, for instance, in users per minute per square
kilometer). These are the users that might potentially request a ride if the price and the waiting
time are good enough for them. We assume that users will request a ride exactly when they are
willing to pay the associated price and are able to wait the associated wait time. We assume
these two motives are independent and that there is no lost utility of waiting other than the
inability to accept the ride. These assumptions simplify our model, but all of our central results
can be derived in a setting that relaxes them. Let r(p) be the fraction of users that are willing to
pay for a ride at price p, and let g(w) be the fraction of users that are willing to wait if the time
before pickup is w. The number of ride requests is then R = λg(w)r(p).

2.2 Supply

Let D be the number of working drivers per unit area. This causes a total cost C(D) (per unit
area per unit of time). Drivers decide whether to work or not by comparing their per-unit
time earnings e with their marginal cost, so C ′(D) = e. To find an expression for e, let τ be
the fraction of the price charged to passengers that the platform takes as revenue. Given the
total density of rides per unit of time R and the price p, total earnings per unit of time per unit
area are (1 − τ)pR. The average earnings per unit of time of individual drivers are (1 − τ)p RD .
Assuming symmetry among drivers in their expectations and rationality on average, drivers’
optimal decision is then given by C ′(D) = (1 − τ)p RD .

2.3 Matching

At any given moment drivers are in one of three states. Some of them are idle (waiting to be
matched to a rider), which we denote by I. In equilibrium, lvR drivers are driving a rider, where
l is the average trip length and v is the average speed when driving passengers. Finally, wR
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drivers are on their way to pick up a rider. Thus, the following identity accounts for the total
density of drivers: D = l

vR+ l+wR.
The average waiting time w(I) is inversely related to the density of idle drivers: if there are a

lot of idle drivers, a new arriving rider will on average be matched to a driver that is closer to
him, so he will have to wait less time before being picked up. We will assume a simple geometry
with no inefficiencies beyond waiting time and a uniform distribution of drivers, thus abstracting
from the important systematic differences in supply compared to demand at different points in
space studied by Buchholz (2016) and treating these differences only through our analysis of
separate markets that are treated as entirely segmented. Given this segmentation assumption
it may be easier to interpret our markets as representing different times, as in the analysis of
Frechette, Lizzeri and Salz (2016), rather than different places within a city; in either case our
static model that leaves out substitution and complementarity across markets is an important
modeling simplification.

However, it allows an analytic expression for w(I) as follows. In two dimensional space, the
density of drivers at a distance x from an arbitrary point is 2πIx, (a measure to be integrated
with respect to x) which is the hazard function of the nearest driver. The CDF of the distance
to the nearest driver G(x; I) is then given by the differential equation dG

dx = 2πIx(1 −G), whose
solution, which corresponds to a Weibull distribution, is G(x; I) = 1 − e−πIx

2
. If the average

waiting time as a function of distance is t(x), then w(I) =
´∞

0 t(x)dG(x; I).
In a simple, homogeneous space, t(x) is simply a linear function, xv , where v is the speed.

However, matters are considerably more subtle in practice. The pattern of roads in some cities
has one-way streets every other block, and in others follows radial rather than axis-aligned
coordinates. Furthermore, speeds are greater when traveling longer distances since drivers are
able to take larger streets or highways. This implies that the appropriate formula for t(x) in
practice will vary from city to city. We will take a function of the form t(x) = a(1 − e−bx) + cx.
The first term captures the fact that cities’ street patterns cause inefficiencies when traveling
short distances. The second term means that speed eventually reaches some terminal value c,
which is the speed once drivers take a main street. This functional form fits very well the data
for trips in Manhattan obtained from a large ride-hailing platform, as shown in Figure 1. The
resulting expression for expected waiting time is w(I) = 1√

4I

(
c+ 2ab exp

(
b2

4πI

)
Φ
(

b√
2πI

))
.

3 Wild Good Chases

We now use the model of the previous section to highlight the key forces driving our analysis.
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Figure 1: Average waiting time as a function of distance from matched driver, as well as a fit
of the form t(x) = a(1 − e−bx) + cx. There are very few trips with distance greater than 2.5 km,
which explains the high variability in the data.

3.1 Normal and wild goose chase matching equilibria

The identity for the density of drivers is, as derived by Arnott,

D =
l

v
R︸︷︷︸

Driving

+ I︸︷︷︸
Idle

+ w(I)R︸ ︷︷ ︸
Picking up

. (1)

We now use this equation to find a solution for R = Q(D, I) = D−I
l
v+w(I)

. Here Q(D, I) can be
interpreted as the capacity of the market: the total number of rides the market is able to serve
when there are D drivers and I of them are idle.

�
�

�

�(���)

��

��

Figure 2: Solutions for number of idle drivers as a function of drivers and ride requests.

The solution to this equation is shown in Figure 2. Note that w(I) is decreasing, convex,
limρ→∞w(ρ) = 0, and limρ→0w(ρ) = ∞. This causes the inverted-U shape of Q(D, I). The
intuition behind it is as follows. When the number of idle drivers I is high, i.e., close to D, very
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few drivers are available to drive passengers to their destination, and the capacity of the system
is low. This explains the behavior of Q(D, I) in the blue region, to the right of its maximum.
The reason behind its behavior in the yellow region is more subtle. When there are very few
idle drivers, waiting times become very high, since limρ→0w(ρ) = ∞. Thus, by remembering
identity (1), drivers spend most of their time on their way to pick up passengers, and very little
time remains for them to drive passengers to their destination. This results in the market having
a low capacity.

When finding a solution for R = Q(D, I), two different situations can take place. Let R̄(D)

be the maximum of Q(D, I). For R > R̄(D), the number of riders is beyond the maximum
capacity given the number of drivers (as with R1 in 2). The two solutions with R < R̄(D) (R2 in
2) correspond to two possible levels of idle drivers.4 In one case there is a high density of idle
drivers, which then leads to short pick-up times. The other solution is a perverse equilibrium in
which there is a low density of idle drivers, but pick-up times are high and therefore a large
number of drivers spend time picking up passengers that are far away. Arnott (1996) pointed out
the existence of these two solutions, and noted that the bad solution is clearly Pareto inefficient:
the first solution leads to lower waiting times and more passengers getting a ride. He was
looking for the social optimum and therefore simply discarded the inefficient solution. But
we will show that analyzing this bad solution is essential to understanding how to set prices
dynamically.

We call the situation in the bad equilibrium wild goose chases (WGCs). In colloquial English,
wild goose chases refer to extended, wasteful and ultimately vain pursuits of an unattainable
objective. By analogy, in this bad situation, the ride-hailing system, by trying to serve beyond its
capacity, must send drivers to distant locations that ultimately reduce the number of rides it can
effectively provide. An easy way to diagnose WGCs comes from noting that the derivative of
the left hand side of Q(D, I) with respect to I is positive. One way to write this is that WGCs
happens when I < −εwI w(I)R, where εwI is the elasticity of waiting time with respect to the
density of idle drivers. This inequality is easy to interpret: the number of idle drivers being less
than −εwI times the number of drivers picking up passengers is a red flag for WGCs.

Note that under the functional form we use for t(x) (which, as highlighted above, appears
to be a close fit to the data), limI→0 −ε

w
I = 1

2 , but for larger values of I (about as large as could
reasonably be expected in practice), −εwI reaches an interior minimum at a value of about
.26.5 That is, in cities with a very dense coverage of drivers, fewer idle drivers relative to those
picking up riders are needed to avoid WGCs. This is intuitive because when drivers are very
dense, increased numbers of idle drivers do not rapidly reduce waiting times. It is therefore not
problematic for drivers to spend a greater fraction of their time on “dead miles”. Taken to an

4In the knife edge case R = R̄(D) there is a unique solution.
5Eventually, however, as I→∞, it again becomes 1

2 . This makes sense because the inefficiencies of going around
the block eventually level off once there are so many cars that waiting time is determined by driving straight down
the block.
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extreme, as I grows large it is natural that more time is spent picking up passengers relative to
being idle, as most drivers must drive around the block to get a nearby rider; only if so many
drivers can be made available so that one is directly in front of every potential rider’s house
can this small friction be eliminated. When there are fewer available drivers, on the other hand,
increasing driver density is more beneficial and thus more idle drivers relative to those picking
up riders are needed to avoid WGCs as each additional driver “fills in” an important part of the
city grid.

Let Ig(R,D) denote the good equilibrium, and Ih(R,D) denote the WGC solution. These two
solutions also lead to good and WGC solutions for waiting time and fraction of passengers
able to wait, which we denote by wg(R,D) = w(Ig(R,D)), wh(R,D) = w(Ih(R,D)), gg(R,D) =

g(w(Ig(R,D))), and gh(R,D) = g(w(Ih(R,D))), with a slight abuse of notation. The functions
for the fraction of passengers able to wait has the following characteristics:

Lemma 1. Assuming continuity of w(I) and g(w), functions gg(R,D) and gh(R,D) are continuous
and satisfy the following:

• ∂gg

∂D > 0 and ∂gg

∂R < 0

• ∂gh

∂D < 0 and ∂gh

∂R > 0

• gh(0,D) = 0 and gg(R̄(D),D) = gh(R̄(D),D)

• limR→R̄(D)
∂gg(R)
∂R = −∞ and limR→R̄(D)

∂gh(R)
∂R = ∞

Proof. By the implicit function theorem, ∂I
∂D = 1

1+w ′R and ∂I
∂R = 1+w

1+w ′R . In the stable solution
1 +w ′R > 0, whereas in the WGC solution 1 +w ′R < 0. Also gw < 0 and wI < 0, which proves
the first two points. The WGC solution with R = 0 simply has I = 0 and w(I)→∞, which leads
to g = 0. R̄(D) is defined by the level such that D− l

vR− I and w(I)R are tangent to each other so
there is one unique solution, which means that g(R̄(D),D) = gh(R̄(D),D). Finally, 1 −w ′R→ 0
as R → R̄(D), which means that ∂I

∂D = 1+w
1+w ′R goes either to +∞ or −∞ since the numerator is

always positive.

3.2 Equilibrium given prices

So far we have talked about matching equilibria, given a number of ride requests and drivers.
But both of these quantities are endogenous once we take into account agents decisions. Our
next task is to find the equilibrium given agents decisions.

In order to see this, start with passengers’ decisions. Substituting w(I) into the number of
ride requests yields R(p, I) = λg(w(I))r(p). This is a demand equation which also depends on
the number of idle drivers, since more idle drivers lower waiting times and increase the number
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of ride requests. In equilibrium the demand of rides must equal the number of rides provided
Q(D, I):

R(p, I) = Q(D, I) (2)

In order to find a solution, start with Figure 2 and add R(p, I), as in Figure 3. Note that
two very different behaviors are possible. Let R̄(D) be the maximum value of Q(D, I) and Ī the
value that maximizes it. Also let p̄ be the price such that R(p̄, Ī) = R̄(D), which we call the WGC
threshold. If p > p̄, there is a unique solution to equation (2) with a good equilibrium (Figure 3a).
There could also be solutions with WGCs, but in this case we will restrict our analysis to the
good equilibrium.6 On the other hand, if p < p̄, the lower price shifts the whole curve to the
right and there is no good solution, but there is at least one solution with WGCs (Figure 3b). It
is thus clear that one way to avoid WGCs is by always setting the price high enough.

�
�

�

�(���)

�(���)

(a) Good solution

�
�

�

�(���)

�(���)

(b) Solution with WGC

Figure 3: Solutions to the demand equation

In case of multiple equilibria, we will restrict our analysis to the solution with the greatest
R. With these restrictions, (2) implicitly defines a demand function R̂(D,p).7 This function is

6Intuitively these may occur especially when driver supply is very elastic. In that case, even if the market might
potentially be healthy, there are also self-reinforcing equilibria where the lack of other drivers creates WGCs, lower
earnings and further reduce the number of drivers.

7The highest solution is stable. In order to see this, note that in equilibrium the number of people requesting a
ride per unit time times the average time a ride takes must be equal to the number of busy drivers. The equilibrium
equation is thus D− I = (1 +w(I))λg(w(I))r(p). The equilibrium is stable if the left hand side crosses the right
hand side from below. In order to see that suppose that the right hand side is too large. Then the number of ride
requests is higher than in equilibrium, whereas the number of busy people and thus the number of new idle drivers
is lower than in equilibrium. These are both balancing forces.

There is at least one stable solution as long as limw→∞wg(w) = 0, since this ensures at least one crossing
from below. This is the case if the distribution of willingness to wait has a right tail that is thinner than a Pareto
distribution with α = 1, which in turn is the same as saying that the mean willingness to wait is finite.

With a distribution of waiting times, the equivalent condition is that the expected value of w(I)g(w(I)) converge
to zero as I → 0, which can be written as

´
wg(w)h(w|I)dw. Here h(w|I) is the pdf of waiting time given some

density of idle drivers. A sufficient condition for convergence (assuming limw→∞wg(w) = 0) is that for all δ and
for all W there exists I such that

´W
0 h(w|I)dw < δ. In that case, for any δ > 0, choose W such that wg(w) < δ

2 for
all w >W, and choose I such that maxwg(w)

´M
0 h(w|I) < δ

2 . Then the integral is the sum of two terms that are
less than δ

2 , so it is less than δ.
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continuous, increasing in D, and decreasing in p. An equivalent form to define R̂(D,p), which
is useful to show the next results, is as the highest solution to

R = λge(R,D)r(p), (3)

where e ∈ {g,h}.
The number of working drivers depends on the number of ride requests as well as on prices,

as can be seen from the following equation that equates marginal cost to hourly earnings:

DC ′(D) = (1 − τ)pR (4)

The implicit solution to this equation defines a supply function D̂(R,p), which is concave if we
assume an increasing elasticity of supply.8

Given p, τ, and λ, an equilibrium is a joint solution to (2) and (4). It can be seen graphically
as the intersection in the (R,D) plane between the two loci R̂(D,p) and D̂(R) (see Figure 4).9

� �� �� �� �� ���
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Figure 4: Equilibrium. The green dashed line represents WGC equilibria on the passengers’ side.

8Since ∂D̂∂R =
(1−τ)p
C ′(D)

1
1+ 1

εD

. C ′(D) is increasing in D, and εD is decreasing as long as the elasticity of supply is

increasing, so ∂D̂
∂R is decreasing.

9There is at least one stable solution if the distribution of willingness to pay has a thinner tail than a Pareto
distribution with α

α−1 = 1 + 1
εD(0) (i.e., α = εD(0) + 1). In order to see that, note that the supply equation implies

that ∂ log D̂
∂ logR = 1

1+ 1
εD

, which means that the inverse supply curve has ∂ logR
∂ log D̂

= 1 + 1
εD

. On the other hand, as

D → 0 I → 0 since I < D, so w(I) → ∞ and w = D
R . Thus, the demand equation in this limit can be written as

R = λg(D/R)r(p), which implies that ∂ log R̂
∂ logD = ε

g
w

ε
g
w−1 . Under the previous condition on the tail of the willingness to

wait, ε
g
w

ε
g
w−1 converges to a value less than 1 + 1

εD
, so the demand equation is above the inverse supply equation for

D <<. Also the inverse supply equation increases without bound, whereas the demand equation is bounded above
at λr(p), which means that they must cross at least once in the right direction.

10



3.3 Pricing

Suppose first that prices are set to maximize welfare, given by

W = λg(R,D)r(p)ū(p) −C(D) (5)

where ū(p) = 1
r(p)

´∞
p r(p ′)dp ′ + p is the average gross utility of those passengers that get a ride.

This choice variables are p and τ, but this can be reparameterized as a choice of r and D, as in
Weyl (2010): W = λg̃(r,D)rū(p(r)) −C(D).10 The first order conditions for this problem can be
written as:

p?? = −εg̃r ū(r) p?? (1 − τ??) = εg̃Dū(r) (6)

Here and in the rest of the paper, we denote the elasticity of X with respect to Y by εXY .
These first order conditions have an intuitive explanation: the price charged to passengers

should be −εg̃r ū(r), the externality they cause on other riders by increasing their waiting time
and reducing the likelihood that they will get a ride. This clearly represents the intuition behind
the optimal pricing of capacity for a facility like a movie theatre or a restaurant: the cost users
should be charged is the opportunity cost of capacity diverted from other potential users. While
driver costs do not explicitly appear in the rider price, they are there implicitly in the same way
they would appear in the theatre setting: the decision to build capacity (here raise driver wages)
is driven by the expected value this yields. In particular, the price paid to drivers is the positive
externality they cause on passengers by increasing the density of drivers and decreasing waiting
times. The price to riders thus is based on capacity pricing, while optimal choice of capacity
determines the price to drivers. Note too that the optimal price to riders is based on the average
gross utility rather than on the gross utility of the marginal rider (the price itself).

The elasticities can be rewritten as εg̃D =
ε
g
D

1−εgR
and ε

g̃
r =

ε
g
R

1−εgR
, which means that τ?? =

ε
g
R+ε

g
D

ε
g
R

. Let η be the elasticity of scale of waiting times ∂ logw(aR,aD)
∂ loga = εwR + εwD. A matching

technology has increasing returns to scale if η < 0 so that waiting times fall when both sides are
proportionally increased. This in turn implies that εgR+ ε

g
D = εgw(ε

w
R + εwD) > 0, in which case the

optimal value of τ is negative as εgR < 0. This implies that in the social optimum there should be
a subsidy because of the increasing returns to scale, a fact derived by Arnott (1996) and in a less
micro-founded model before him by Douglas (1972) who in turn built on the related model of
bus transport by Mohring (1972). These increasing returns in the matching function arise from
the economies of density inherent to spatial transportation: a space covered more densely by
riders and drivers will result in shorter pick up times and thus more efficient transit.

By using the same reparameterization as above, the profit maximization problem can be
written as

Π = λg̃(r,D)r [pR(r,D) − pD(r,D)] (7)

10g̃(r,D) is the implicit solution in R of R = λg(R,D)r divided by λr.
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The FOCs for this problem can be written as

−
ε
g̃
r

1 − 1
εr

= 1 pD =
ε
g̃
D

1 + 1
εD

pR (8)

where pR and pD denote the price for passengers and drivers, respectively. Since pR = ũ, where
ũ is the utility of marginal drivers, the previous two equations can be rewritten as

pR = −
ε
g̃
r

1 − 1
εr

ũ pD =
ε
g̃
D

1 + 1
εD

ũ, (9)

which we can directly compare with the FOC for welfare maximization. As usual in multi-sided
markets, profit maximizing prices have two distortions compared with welfare maximizing
prices (Weyl, 2010). First, there is a Spence (1975)-Sheshinski (1976) distortion: first order
conditions only take into account the utility of price-marginal riders and not the surplus of
the price-average riders.11 This distortion biases both prices downwards. Second, there is a
markup term that biases passengers’ price upwards and drivers’ price downwards, since a
profit maximizer wants to widen the gap between both prices. The net effect is that drivers’
price unambiguously decreases, whereas there is an ambiguous effect on passengers’ price (the
mark-up raises the price, but the Spence distortion lowers it). We return to the implications of
these results in Subsection ?? below.

We now fix τ, which more closely resembles the day to day problem of surge pricing given
that most ride hailing apps do not dynamically adjust their proportional extraction dynamically.
We will consider three problems: welfare maximization, profit maximization, and ride number
maximization. We did not analyze the unconstrained ride number maximization problem
because in that case the optimal number of drivers is unbounded.

Starting with the equilibrium conditions (3) and (4), the comparative statics give the following
equation: (

1 − εgR −εgD
−1 1 + 1

εD

)(
d logR
d logD

)
=

(
−εr

1

)
d logp, (10)

after which the result is:

d logR
d logp

=
−εr(1 + 1

εD
) + εgD

∆

d logD
d logp

=
1 − εr − ε

g
R

∆
, (11)

where ∆ = (1 − εgR)(1 + 1
εD

) − εgD is the determinant of the matrix. This result leads to the
following lemma:

Lemma 2. The optima for constrained welfare, profit, and ride number maximization are not in the WGC

11See Bulow and Klemperer (2012) for a general analysis of the harms created by the tendency of random
rationing systems to neglect this surplus.

12



region. The optima for unconstrained profit and welfare maximization are not in the WGC region.

Proof. Note that in the WGC region εgR > 1, εgD < 0, and εgR + ε
g
D < 0. So the determinant is

negative, and the number passengers increases as long as the elasticities of g are large enough.
Thus, a price increase always increases both profits and the number of rides.

For welfare, there is a tradeoff: average utility and rides increase, which means that gross
utility increases, but cost also increases since the number of drivers increases. In order to
look at which effect dominates, note that the change in welfare can be written as dW

dp =

Rdūdp + ū
dR
dp −C

′(D)dDdp . Note first that dūdp = εr

(
ū
p − 1

)
. Plugging in the previous results from the

comparative statics yields an expression whose numerator is ū
p (εr((1− ε

g
R)(1+

1
εD

) − εgD) + ε
g
D−

εr(1+ 1
εD

))−εr((1−ε
g
R)(1+

1
εD

)−εgD)− (1−τ)(1−εr−ε
g
R).

ū
p > 1 and −εr(1+ 1

εD
)) > εgR yields

the desired result: ( ūp − 1)∆ < 0, ūpε
g
D − (1 − τ)εgR < 0 and −εr(1 + 1

εD
) − (1 − τ)(1 − εr) < 0.

Since no constrained optimum is in the WGC region, the unconstrained problem is never
in the WGC region. The only remaining case is unconstrained welfare maximization, in which
case τ might be negative, so the previous proof does not work. But in this case there is a Pareto
improvement by giving away free rides to get to the good equilibrium with higher number of
rides, which means that the optimum cannot be in the WGC region.

Lemma 3. The optimal price for constrained profit maximization is above the optimal price for constrained
welfare and ride number maximization.

Proof. Profit maximization is equivalent to maximizing R(p)p, which is the number of rides
times an increasing function of prices. Thus, its maximum is above the maximum for ride
number maximization.

Welfare maximization can be written as maxR(p)p ū(p)p − f(pR(p)), where f is an increasing
function, since the number of riders is an increasing function of the total hourly earnings, which
is 1−τ

τ times the profits. ū(p)p is a decreasing function,12 so without the final term this function
would be maximized at a lower price than profits. And for prices below the optimal price for
profits the final term is decreasing, which implies that the optimal price is even lower.

The last two lemmas mean that the optimal prices for constrained maximization of welfare,
profits, and ride numbers are bounded by the lowest price that leads to WGCs and the optimal
price of profits. We will now look at how far these two bounds are from each other.

The profit maximization problem is maxΠ(p) = τR(p)p, with first order condition τR(p) +
τpR ′(p) = 0. After substituting the expression for the elasticity of R with respect to prices, we
obtain an expression with numerator 1 − εr − ε

g
R, where εr =

∂ log r
∂ logp . This is the same numerator

as in the elasticity of drivers, which is no coincidence: the number of riders is an increasing
function of the total hourly earnings, which is 1−τ

τ times the profits.

12It is easy to check that it is constant for a constant elasticity of demand, and for any given price a function with
increasing elasticity has a lower value of ū(p) than the constant elasticity supply curve with the same elasticity at p.
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Analyzing the expression 1− εr − ε
g
R leads to some insights. First of all, as prices converge to

the WGC threshold from the right, εgR converges to negative infinity, which means that increasing
price increases profits. Further price increases lead to a quick decrease in −εgR = −εgwε

w
I ε

I
R:

εwI = 1
2 , εwI decreases with price assuming Myerson (1981) regularity of willingness to wait, and

the marginal effect of additional drivers on the density of idle drivers very quickly reaches a
small value. This means that, as long as 1 − εr < 0, the FOC 1 − εr − ε

g
R = 0 is satisfied very

close to the WGC threshold. On the other hand, with 1 − εr > 0 the price has to go up until
some point in which demand is elastic, which might be far from the WGC threshold.

3.4 Discussion

The possibility of WGCs aligns social and private incentives in the sense that both the planner
and a monopolist wish to keep prices (constrained or unconstrained) above the level leading
to WGCs. However, it does not perfectly align them: a monopolist will still set (constrained or
unconstrained) higher prices than will a planner, which would (unconstrained) want to subsidize
travel. In what follows we will quantitatively explore the relative size of these effects. Before
turning to this, it is worth briefly considering, however, the mechanism that drive WGC and
the harms it creates, because these make WGCs potentially more harmful in our setting than
hypercongestion in the traffic flow literature.

In the traffic context, hypercongestion reduces the capacity of a fixed roadway to serve cars,
lengthening travel times. While this is not fully self-correcting, travel times cannot increase
too dramatically as travelers will either choose not to travel or find a different route. A more
severe failure is possible in the context of ride hailing. As WGCs lengthens wait times, it may
discourage drivers more rapidly than it drives off passengers. If so, the system may enter a
downward spiral: as wait times lengthen, more cars exit the road because of reduced earnings
than passengers are discouraged from requesting rides. This worsens WGCs and perpetuates
the vicious cycle. Even if this cycle does not cause complete market collapse, it can create a
feedback loop that makes ride hailing systems highly sensitive to WGCS, well beyond what
occurs in traffic flow with hypercongestion. We will explore this dynamic quantitatively in the
next section.

4 Surge Pricing

In this section we calibrate our model and apply it to quantitatively analyze optimal pricing and
in particular the effects of allowing versus prohibiting surge pricing. We begin by discussing
our calibration.
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4.1 Calibration

We calibrate the parameters of our model by using aggregate data from a large ride-hailing
platform in Manhattan for the week between October 3 and 7, 2016. We focus on weekdays
between 8 am and midnight. For each one hour period we observe the number of trips, the
average trip distance, the average trip time, the number of sessions (i.e., the number of users
who opened the app and saw the screen to request a ride), the total number of hours that drivers
spent working, and the average surge multiplier. We calibrate the primitives of the model based
on this data.

We assume that the willingness to pay has a double Pareto lognormal (Reed, 2003; Reed
and Jorgensen, 2004) distribution with parameters α = 3, β = 1.43, µ = 1.1, and σ = 0.45. The
parameters α, β, and σ are chosen so that the distribution has the same shape as the US income
distribution, as in Fabinger and Weyl (2016). The parameter µ, which is simply a horizontal
rescaling of the distribution, is chosen to fit the elasticities in Cohen et al. (2016), who estimate
willingness to pay of riders on the platform Uber. The function r(p) arises from this distribution,
where p is the surge multiplier. We also assume that the ability to wait has a lognormal
distribution with mode 5 minutes and variance such that the elasticity of the corresponding
function g(w) agrees with the value from Cohen et al. (2016). These two functions result in the
number of ride requests being λg(w)r(p).

For drivers’ cost function we assume a constant elasticity supply: C(D) = A
(
D
A

)1+ 1
εD . We

assume an elasticity of 1.5 based on research that is presently not publicly available but will soon
be released using data from the ride-hailing platform to which we calibrate. This represents a
medium-term elasticity of driver supply across different hours of the day that are anticipated to
have different demand levels, as this corresponds to the counter-factual we focus on below. Very
short-term elasticities, for unexpected demand shocks, are likely to be lower and very long-term
elasticities, for secular changes in earnings on the platform, are likely to be higher. Since we
observe the number of drivers and trips, as well as the average surge multiplier, we can compute
the expected hourly earnings and back out the value of A. Finally, we also observe a database
with the average waiting time as a function of the distance to the matched driver for batches of
100 m. We fit the waiting time to this data as shown in Figure 1.

We use average values over the whole period we observe to calibrate the primitives of the
model. Thus, this can be thought of as the “average" behavior of the Manhattan market. This is
the main specification we use. In a separate specification, we model two different markets, the
one between 11 am and noon, which we call the weak market, and the one 6 and 7 pm, which
we call the strong market. We assume that for these two markets all the model primitives stay
the same as for the average market, except for λ and A. Table 1 compares the average number
of drivers, sessions, and trips, as well as the calibrated parameter A, for the weak, strong, and
average market. The number of sessions, trips, and drivers are greatest for the strong market
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Market λ (sessions/h · km2) R (trips/h · km2) D (drivers/km2) A (drivers/h · km2)
Mean 191.9 86.1 55.9 326.7
Strong 265.8 130.8 73.6 314.8
Weak 136.9 61.6 46.7 393.9

Table 1: Observables and parameters for the mean, weak, and strong market.

and the least for the weak market. The supply shifter A goes in the opposite direction, although
the differences are not very large.13 This makes sense since more people would like to work at
normal working hours like 11 am instead of during hours when most drivers would prefer to be
on the way home or with their families.

4.2 Quantitative analysis of pricing
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Figure 5: Profits and welfare for the Manhattan market as a function of price for passengers.
Dashed lines represent points to the left of the WGC threshold. The vertical lines represent the
optimal prices for the function with the corresponding color.

Figure 5 shows how profits, welfare, and rides behave as a function of passengers’ price for
fixed τ = 0.238, which corresponds to the average value used by our ride-hailing platform in
Manhattan.14 The left region with dashed lines represents prices at which WGC occur. The main
thing to note is the asymmetry of the welfare function around its maximum. There is a drastic
drop in welfare to the left of the WGC threshold. This is evidence that WCG equilibria can lead
to dramatic welfare losses and are “Pareto dominated” in the sense that WGCs in aggregate hurt

13A has the same units of D. Its interpretation is that it is the number of drivers who would be willing to work if
their hourly earnings were equivalent to working with no time spent being idle or picking up passengers, with
surge multiplier 1 + 1

εD
.

14The exact value varies from driver to driver, depending on the time at which they entered the platform.
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all of drivers, riders and the platform (though they may slightly benefit some price marginal
riders who are willing to wait a long time). To the right of the threshold, any price increase
benefits some group (typically drivers and the platform) and hurts others (typically passengers),
and since there is a tradeoff changes in welfare are not too large: a 20% increase in prices from
the optimum only decreases welfare by less than 5%. On the other hand, price decreases in the
WGC region hurt everyone, which explains why a 20% decrease in prices from the optimum
leads to a 50% decrease in welfare. Finally, note that optimal prices are just a bit above the
hypercongestion threshold. Any further increase in prices results in social welfare losses due to
too many drivers working and a waste of time.

The main implication is that in order to maximize welfare it is much worse to err by setting
prices too low than by setting them too high. Thus, in the face of uncertainty, platforms would
like to set prices with some margin above the threshold in order to avoid WGC from ever
happening.
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Figure 6: Profits and welfare for the Manhattan market assuming elasticity twice the one in
Cohen et al. (2016). Dashed lines represent points to the left of the WGC threshold. The vertical
lines represent the optimal prices for the function with the corresponding color.

For this calibration the threshold is in the inelastic part of r(p). By the reasoning in section
3.3, the profit maximizing price is in the elastic region, which starts at around price 2.4. Even in
this case, the profit function has a kink at the threshold, which means that there is a dramatic
deterioration of profits once WGC start to take place. Furthermore, the effect on welfare of
setting the very high profit maximizing price is mild compared with the potential effect of
a WGC. This corresponds to a 190% price increase from the welfare optimum that decreases
welfare by 18%, which is the same decrease that would be caused by a 17% price decrease from
the optimum.

The elasticity estimates from Cohen et al. (2016) are based on studying the effects of price
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increases that last only a few minutes typically on ride requests. They are thus unlikely to reflect
what would happen if the platform consistently set prices as high as 2.4. Figure 6 shows the
same calibration, assuming that elasticities are twice those in Cohen et al., i.e., around 0.8-1.2
for prices between 1 and 2. We believe this to be a much better illustration of the way the
actual market behaves when prices are predictable and medium-to-long-term adjustments (e.g.
switching to another ride-hailing platform or driving to work) are made to these prices by riders.
Note first that the general form of the welfare function does not change much. The elastic region
starts at 1.2, which is the profit maximizing price. Profit and welfare maximizing prices are now
close to each other, and more importantly, changes in welfare and profits are not substantial
for prices between them. On the other hand, both profits and welfare drop dramatically after
entering the WGC threshold. Thus, welfare and profit changes between both optima are second
order when compared to the changes below the threshold.

This implies that profits and welfare are relatively well-aligned. Unless elasticities are as low
as in Cohen et al. (2016), the main concern both of a profit and a welfare maximizer is to avoid
WGC. Whereas a welfare maximizer might be tempted to set prices close to the threshold, this
would mean risking huge welfare losses given the uncertainty of the market, and maximizing
expected welfare would imply setting a higher price very close to the profit maximizing one.

Given this, from now on we will now analyze the social benefits of surge pricing assuming
that the platform maximizes welfare but using the elasticities measured by Cohen et al.. We use
this as our central specification because these elasticities are likely to be more correct in terms of
the response of riders to relatively short-term price fluctuations in terms of the effects they have
on system engineering, but do a poor job capturing platform incentives. By adjusting incentives
directly (by assuming welfare maximization) we correct for the tendency of the platform to
lower prices to account for longer-term platform growth while maintaining realistic degrees of
responsiveness to price changes to determine the effects of pricing on system engineering.

By surge pricing we mean the ability of the platform to change prices at different times. We
still assume that τ is fixed. In order to do this analysis, we focus on a setup similar to the one in
Aguirre, Cowan and Vickers (2010) to analyze the welfare effects of price discrimination. We
analyze the market between 11 am and noon, which we call the weak market, and the market
between 6 and 7 pm, which we call the strong market. These are, on average, the one hour
intervals in our database with the highest and lowest demand. We assume all of the market
parameters remain the same, except for λ and A. We first require the platform to have the same
price for both markets, which is similar to what happens, for instance, with Gett, which does
not have surge pricing. In the second setup we do allow the platform to set different prices for
each market.

Figure 7 shows the results of this analysis. The constrained price is extremely close to the
unconstrained price for the strong market. The reason for this is that profits drop much more
sharply to the left of the optimum than to the right. Another way to put this is that if the
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Figure 7: Price discrimination with fixed τ. The gray vertical line represents the optimal price
without surge pricing. The blue and yellow vertical lines represent the optimal prices with
discrimination for the weak and strong market, respectively.

platform is constrained, it has little freedom to set prices below the strong market unconstrained
optimum because it gets close to the WGC threshold, under which welfare in the strong market
declines very abruptly. This means that allowing price discrimination leads to a significant
reduction of prices in weak markets, whereas it only leads to modest increases in prices for
strong markets, as we highlighted in the introduction.

The welfare maximizing price is never above 1, even in the strong market. This is consistent
with the data, since this platform only surges 28% of the time between 6 and 7 pm. One might
then think that the platform should never surge. The reason there should be surge pricing is
because there is substantial spatial variation, as well as between days of the week, and there
is a high degree of unpredictability which often leads to high demand and scarcity of drivers.
Without surge pricing the platform would have to set prices above 1 in order to avoid the
catastrophic consequences of the market being in a WGC at these times of high demand.

Our results also explain the fact that ride hailing platforms typically change prices upwards
but not downwards. The consequences are not too bad if the ideal price was 0.7 but the actual
price is constrained to be 1, whereas welfare decreases by a lot if the ideal price is 1.3 and the
platform is constrained to 1. Even despite this fact, one might wonder why platforms have
not decided to set prices below 1. The main reason is because of reputational pressures: they
constantly face criticism for drivers not being paid well, and for predatory pricing trying to
avoid new entrants.

19



Cohen et al. (2016) elasticities
W ($k/h) Π ($k/h) RS ($k/h) DS ($k/h) ∆U ∆MLD

Dynamic 398.08 25.32 340.27 32.49 0.005391 0.001076
Static 393.49 27.45 330.84 35.21 0.005158 0.001132

2× Cohen et al. (2016) elasticities
W ($k/h) Π ($k/h) RS ($k/h) DS ($k/h) ∆U ∆MLD

Dynamic 264.23 28.57 198.99 36.67 0.003285 0.001752
Static 256.10 30.43 186.62 39.05 0.003029 0.001788

Table 2: Redistribution of welfare with static and dynamic pricing.

4.3 Redistribution of welfare

Surge pricing obviously leads to an increase in welfare relative to static pricing since it is an
unconstrained problem. The main question now becomes how it transfers welfare among riders,
drivers and the short-run profits of the platform. Table 2 summarizes these results. The first
thing to note is that static pricing increases short run profits. This is not surprising given
previous results: short-run profit maximization requires bringing prices all the way up to the
elastic region of demand, and switching from dynamic to static pricing has almost no effect on
price in the strong market whereas it leads to a substantial price increase in the weak market.
Static pricing also benefits drivers, which is also due to the fact that prices mostly increase.
Passengers’ surplus, on the other hand, is higher with dynamic pricing, also due to the fact that
static prices are on average higher, which hurts passengers. Thus, dynamic pricing leads to an
increase in welfare since it causes a substantial increase in passengers’ surplus, but at the cost of
decreasing drivers’ surplus and profits.

Is the redistribution from dynamic pricing egalitarian? First of all, it decreases the utility
of the platform’s shareholders, who are most likely concentrated at the upper extreme of the
income distribution. It also decreases the utility of drivers, who tend to be towards the lower
part of the income distribution. And it increases the utility of passengers, who are relatively
wealthy. However, a more detailed analysis shows that the passengers who benefit the most
from surge pricing are those who are willing to pay the least, that is, quantities between the
weak market prices with dynamic and static pricing.

To see this, Figure 8a shows the distribution of willingness to pay, as well as the distribution
of passengers’ surplus, assuming the elasticities in Cohen et al. (2016). Clearly the passengers
that benefit the most from dynamic pricing are those with willingness to pay between the
weak market price of 0.62 and around 4 since the price decrease in the weak market causes an
important increase in their surplus, whereas passengers willing to pay a lot only see a small
percentage increase in their surplus and therefore surplus almost does not change in the upper
tail. The majority of the benefit is below the mean of willingness to pay, and it thus means
lower inequality. This, however, is less clear if we assume higher elasticities as in Figure 8b: an
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important part of the change in consumer surplus takes place above the mean.
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(a) Cohen et al. (2016) elasticities.
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(b) Twice the Cohen et al. (2016) elasticities.

Figure 8: Distribution of income and riders’ surplus both for static and dynamic pricing. The
black vertical line is the mean of the income distribution.

In order to quantify this, we make the assumption that passengers’ willingness to pay is
proportional to their income (more precisely, to fix magnitudes, we assume it is 1%).15. We then
compute the mean log deviation (Theil index) of the original income distribution, as well as
the mean log deviation of a new income distribution assuming that each passenger’s income
increases by their surplus. The changes in mean log deviation are shown in the last column
of table 2. The first thing to note is that both dynamic and static pricing increase inequality:
they mostly benefit rich people. With the Cohen et al. (2016) elasticities dynamic pricing is less
inegalitarian, for reasons we highlighted above. The same happens if we double elasticities, but
the effect is less clear, which reflects the intuition from Figure 8.16

As a final measure of welfare, we compute the average utility gain of passengers under the

15This number only changes the magnitude of our measurements, but not their relative sizes.
16As a further note on the dependence on elasticity, if we double once more elasticities, we get to a point in which

the change in log deviation with dynamic pricing is 0.001752, whereas the one with static pricing is 0.001788. Thus,
in this case static pricing is more egalitarian because in that case most people willing to pay the actual prices are
above the mean and improving their welfare increases inequality.
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assumption that their utility is the logarithm of their consumption. We also assume that their
willingness to pay is 1% of their income. For the Cohen et al. (2016) elasticities, the mean utility
without the ride-hailing market is 0.8548, and as shown in table 2 the gain in utility is about
5% larger with dynamic pricing. Using twice these elasticities the initial mean utility is 0.4151,
and again the gain in utility is about 5% greater with dynamic pricing. The gain from dynamic
pricing is greater with higher elasticities as the high prices necessitated by static pricing limit
demand more when demand is highly elastic.

5 Ride-Sharing

In this section we extend our analysis to allow trips to be shared by multiple riders as in the
UberPool and Lyft Lines services.

5.1 Model

The main difference between ride sharing and ride hailing is the matching technology. Drivers
can now be in one of five states. They can be idle, I, with one rider, B1, with two passengers, B2,
picking up a rider while empty, K1, and picking up a rider while driving one rider, K2. Thus, at
any given time the total number of drivers gives the following equation:

D = I+B1 +B2 +K1 +K2 (12)

If a new rider requests a ride, he is matched to the nearest driver among those that are idle
and those with one rider that go in a similar direction. Let q be the probability that some driver
is taking a rider in a similar direction. We assume that this is independent of the state of the
system. It is a quantity that depends crucially on how willing is the platform is to deviate
a driver that is taking a rider to his destination. The rider that requests a ride thus sees an
effective density of drivers I+ qB1, which is the density of drivers that could pick him up if he
requested a ride. The pick-up time is therefore w(I+ qB1), where the function w satisfies the
same properties as in the original model. With this in mind, in equilibrium the total number of
passengers picking up passengers K1 +K2 is equal to the rate of ride requests times the waiting
time wR, which means that D = I+B1 +B2 +w(I+ qB1)R.

We also assume that if a driver with a rider is deviated to pick up another rider, the trip
time of the rider in the car increases by the time it takes to pick up the new rider. This amounts
to assuming that on average the pick up location of the new rider is neither closer nor farther
away from the final destination of the first rider. With this in mind, the total time of trips
(without counting the pick up time) is equal to l

vR, which must be equal to the time spent by
drivers with passengers. The time spent driving two passengers counts twice, so this means that
l
vR = B1 + 2B2.
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The number of drivers driving two passengers and one rider are related by the rate at which
those with one rider are dispatched to pick up a second rider and the rate at which those with
two passengers finish their trip. The rate at which they finish trips is twice the inverse average
length of a trip, 2v

l . The rate at which drivers get a second ride can be written as qR
I+qB1

: since
the effective density of available drivers is I+ qB1, the region for which the closest driver is any
given driver is the inverse of this density, 1

I+qB1
. Since the density of arrival rate is R, the arrival

rate to this area is R
I+qB1

, and the probability that the arriving rider goes in the same direction as
the old rider is q, which multiplies this rate. Therefore, B2 = qR

I+qB1
B1.

The supply side is almost the same as with ride hailing, with the only difference that earnings
per hour are greater by a factor of γ = B1+2B2

B1+B2
, since drivers are paid twice when carrying two

passengers. The equilibrium condition is then

DC ′(D) = (1 − τ)pRγ(R,D) (13)

where γ(R,D) arises from the engineering equilibrium, to which we now turn.

5.2 Wild goose chases

From the previous analysis, the equilibrium is given by the solution in (I,B1,B2) to the following
system of equations:

D = I+B1 +B2 +w(I+ qB1)R (14)
l

v
R = B1 + 2B2 (15)

B2 =
l

2v
R
qB1

I+ qB1
(16)

In order to make sense of these equations, fix the number of idle numbers. Solving equations
(15) and (16) for B1 and B2 tells the proportion of busy time that drivers spend with one or two
passengers. Equation (15) simply states that the total time spent with passengers by drivers has
to be such that all the requested rides are completed. Equation (16) says that if the number of
available drivers with one rider qB1 is large compared with the total number of available drivers
I+ qB1, then the balance tilts towards more rides being served by ride shares. Call the solution
to these two equations B1(I,R)17. This function is continuous, increasing, concave, B1(0,R) = 0,
limI→∞ B1(I,R) = l

vR, and limI→0
∂B1(I,R)
∂I = ∞. Note that we have not made any assumptions

about functional forms so far. If we plug this in equation (14) and substitute B2 = 1
2

(
l
vR−B1

)
17The closed form solution is B1(I,R) = I

√
1+ 4lqR

vI −1
2q . It is easier to understand its properties from the inverse

function I(B1,R) = B2
1q

l
vR−B1
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we obtain
D = I+

1
2

(
l

v
R+B1(I,R)

)
+w(I+ qB1(I,R))R (17)

In order to find a solution, we would have liked to do an analogue of Figure 2, but that
would require isolating R from equation (17), which is not easy to solve. Instead, we show a
straightforward counterpart of what we did before. In Figure 2 we plotted Q(D, I), the number
of rides that could be served with D drivers, I of which are idle. Now, in Figure 9, we show
M(R, I), the number of drivers needed to serve R riders when there are I idle drivers, which can
be thought of as the dual problem to Q(D, I). We assume that this function is quasiconcave,18 as
in Figure 9. This has the same intuition as before: With a very high number of idle drivers, an
even greater number of them is required to serve any fixed amount of rides, which explains the
behavior in the good region drawn in blue. With a low number of idle drivers, drivers will have
to spend most of their time picking up passengers, and therefore a high number of drivers is
needed to serve R rides.

�

�

� (���)

��

��

Figure 9: Solutions for the number of idle drivers as a function of the number of drivers and
ride requests.

From this equation we can see that a condition for WGCs is:

I+ qB1 <
1 + qB ′1
1 + 1

2B
′
1
εwρwR (18)

18This is the case, for instance, if waiting time has constant elasticity |εwρ | >
1

20 (εwρ is negative) and q > 1
50 . If we

want to drop the assumption of constant elasticity, this is the case if |εwρ | >
1
5 for all values and q > 0.11. To see this,

note that one sufficient condition for there to be at most two solutions is that equating the derivatives of both sides

−w ′(I(B1,R) + qB1) =
1
R

I ′(B1,R)+ 1
2

I ′(B1,R)+q must have a unique solution: both B1 and w are continuously differentiable,
so the derivatives of both sides have to be equal at three or more points for there to be four or more solutions.
Equating both derivatives gives the previous expression after some straightforward algebra. With constant elasticity,
this equation can be written as aεwρ (

x
1−x )

−1−εwρ = 1
2q − 1−2q

q x+ 1−2q
2q x2 where x = v

l
B1
R , and it is not hard to check

that for this range or parameters there is a unique solution in the relevant range, x ∈ [0, 1].
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The outcome from this matching technology is, given the number of ride requests R and
the number of drivers D, what is the equilibrium waiting time w(R,D). It can be computed by
finding the value of I that solves 17, and then substituting the value in w(I+ qB1(I,R)). There is
no closed form solution, but it can be computed numerically. Note that this function depends
on q, despite the fact that we do not denote this dependence explicitly.

One key performance measure to compute is the average trip time. For ride hailing this
quantity is simply l

v , but for ride sharing deviating to pick up or drop off another rider might

lengthen the trip. An expression for the average trip time is T = l
v
B1+2B2+K2
B1+2B2

= l
v

B1+2B2+
qB1
I+qB1

wR

B1+2B2
.

The fraction in the first expression is the total time passengers spend in a car divided by the
total time they spend while going in the right direction. We assume that passengers request
a ride if the sum of the waiting time plus the additional time they spend in a car picking up
someone is less or equal to their willingness to wait. Therefore, the fraction of ride requests is
g(w+ T − l

v). From this, we can see that demand is given by

R = λgP(R,D)r(p) (19)

where gP(R,D) = g(w(R,D) + T(R,D) − l
v).

6 Conclusion

In this paper we analyze the motivations behind surge pricing in ride-hailing apps. We find that
in this context surge pricing is much more important than in apparently similar markets, such
as restaurants or films. The main reason is that when prices are too low a perverse equilibrium
which we call a wild goose chase arises. In this kind of equilibrium a low number of idle drivers
leads to deficient matching and long pickup times. Drivers spend too much time picking up
passengers instead of driving them or waiting to be matched, resulting in a low number of
idle drivers and thus completing a vicious circle. Surge pricing is then a natural tool to avoid
WGCs, which are catastrophic for welfare, since they vastly decrease the capacity of the market,
thus reducing drivers’ and passengers’ surplus as well as profits. Absent surge pricing or an
engineering solution, uniformly high prices would have to be used which would reduce demand
and especially harm riders.

There are many things we plan to add to this paper, both in terms of analysis and mea-
surement in future drafts. On the analytic side, our two primary goals are to calibrate our
ride-sharing model to the Manhattan market, so that we can make quantitative analyses like
the ones in section 4, and to analyze the alternative mechanisms platforms may use to avoid
WGC, such as setting a maximum matching distance or holding a priority queue on the riders’
side of the market to maintain a sufficient density of idle drivers to avoid WGCs or periodically
rematching passengers and drivers. There are also many results that we derived in the project but
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have not yet had time to exposit about whether competition (implying lower revenue extraction
but lower economies of density) is desirable, optimal regulation and the nature and extent of
distortions to pricing on the two sides of the market that we hope to include in the next draft.

However, more importantly, we hope to make more detailed use of micro data from our
ride-hailing partner to measure the key predictions of our model. We will first analyze the data
in detail to find situations in which we believe WGC might be occurring. We expect performance
measures of the market, such as waiting time and the fraction of requested trips served, to drop
down significantly in these situations and for this effect to occur steeply over a small range
of prices, as in our results from Subsection 4.2. This would be compelling evidence that the
phenomenon we are describing is a real issue with important welfare consequences. We will
also quantify the importance of surge pricing by computing the welfare decrease if dynamic
pricing is not allowed. We would like to make two separate computations. First, how valuable is
surge pricing when responding to predictable market characteristics, such as rush hour or the
day of the week. Second, how valuable it is to respond to unpredictable changes, such as rain,
concerts, or random fluctuations from the steady state.
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