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@ Mechanism Design: auctions, regulation, taxation, political economy, etc...

@ Standard model: one-time information, one-time decisions

@ Many settings
- information arrives over time (serially correlated, possibly endogenous)

- sequence of decisions
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Long-Term Contracting

@ Value of relationship changes over time

@ “Shocks” to:

e valuations

@ costs

productivity

outside options

e etc.

@ Changes often anticipated albeit not necessarily commonly observed
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@ Structure of optimal LT contract in changing environments

@ Dynamics of distortions — convergence to FB?



Introduction

Dynamic Mechanism Design

@ Applications:
- revenue management (Courty and Li, 2000, Battaglini 2005, Boleslavsky and Said,
2013, Ely, Garrett and Hinnosaar, 2014, Board and Skrzypacz, 2015, Akan, Ata, and Dana,

2015,...)

- disclosure in auctions (Eso and Szentes, 2007, Bergemann and Wambach (2015), Li
and Shi (2015)...)

- experimentation (Bergemann and Vilimiki, 2010, Pavan, Segal, and Toikka, 2014,
Fershtman and Pavan, 2015...)

- taxation (Farhi and Werning, 2012, Kapicka, 2013, Stantcheva, 2014, Makris and
Pavan,2015,...)

- managerial compensation (Garrett and Pavan, 2012, 2014,...)

- insurance (Hendel and Lizzeri, 2003, Handel, Hendel, Whinston, 2015,...)
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Static example

@ Price discrimination (Mussa-Rosen, Maskin & Riley, Myerson)

Principal: seller

Agent: buyer

@ Quasilinear payoffs
UP=p—c(@ and UA=6g-p

with 6 drawn from F (density f), privately observed by Buyer

@ Incentive compatibility:
VA(8) = 0q(6) — p(6) = sup{6q(6) — p(6)}
0
@ Envelope Th.

0
VA(O):VA(Q)—i-/eq(S)dS with  g(-) nondecreasing
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Static example

@ Transfer (revenue equivalence)

6
p(6) = 0a(6) - {VA©)+ [ a(ss}
@ Optimal quantity schedule maximizes expected "virtual surplus"

E [(9 - %9()9)) q(e) 7c(q(e))} s.t. q(-) nondecreasing (M)

o Robust predictions (e.g., Hellwig, 2010):
1. participation constraint binds only for lowest type: VA(Q) =0
2. no distortion at the top: q(6) =qF8(6)

3. downward distortions elsewhere: q(0) < q7B() V6 <6

e Binding (M): “ironing” (just more pooling)



Environment
Dynamic Environment

ot=1,....T (possibly infinite)

@ Intertemporal payoffs

UP =Y 8 H(p—c@) and U=} 8 (6~ p)
T t

@ Oy privately observed by agent at beginning of period t



Environment
Type process

e type 6; drawn from (exogenous) Markov chain on ® =[9,68] C R,
@ transition probability kernels F = (R)

o R(-|0): cdf of 64, given 6;_1 =06

o Fy: cdf of initial distribution; density f1

@ stochastic monotonicity (FOSD): 8' >0 = R(-|0’) Zrosp R(- | )

ergodicity: 3! invariant distribution 7 s.t., for all 6 € ®

sup |[F'(A,0)—m(A)| —0ast— oo
AcA(0)

o stationarity: Fy =m and R =Fs all t,s > 1.



Environment
Principal’s problem

@ Principal designs x = (q,p) to maximize
B| L8 (6 —c(a (o)
subject to IR-1 and IC-t, allt > 1
@ Stronger (periodic) IR

o Complexity:
- different types have different beliefs about future

- multi-period deviations



Environment

State representation and impulse responses
Eso-Szentes (2007), Pavan, Segal, Toikka (2014)

o Auxiliary shocks, orthogonal to initial private information
@ Ot =Zt(01,€) where € = (&) are iid r.v.s
o Integral-transform-probability theorem (K~ inductively)

@ Impulse responses:

_ 9 p. _ 9Z(61.8)
II(G) — 00, et - 00, Z[(Gl,&‘):et
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o ARIMA:

6t = Zt(01,6)=a;101 a0+ - +agt_161+ &t
—  k(01,6) =a;

o Multiplicative shocks
0t = Zi(01,€) =01 XEr X - X €
—  1t(01,6) =€xx -+ X gt

@ More generally,

II*H()Q €s|95 1)

s<t



Environment
Examples

e AR(1):
0t = 7Y0i1té&
= Zt(917 &) =701 +7 2o+ e &
- l(01,8) =+"1
o ARIMA:
6t = Zt(01,6)=a;101 a0+ - +agt_161+ &t
—  k(01,6) =a;
o Multiplicative shocks

0t = Zi(01,€) =01 XEr X - X €
— |t(91,£)=82><~-~><8t

@ More generally,
k= Yes | 65-1)
155"
o Continuous-time (Bergemann and Strack, 2015)



IC and payoff equivalence
Local IC = heuristics

@ Assume T =2
o Fix period-1 report, él, and priod-2 reporting strategy, o(¢)

o Agent’s payoff
UA(61,01;0) = 6101(81) — p1(81) +OE [Z2(01,€)02(81,6(€)) — p2(H1,6(€))]

e If x ={(q,p) is IC, then
V{(61) = supUA(61,61;0)
01,0
@ Envelope theorem
ale d A . <truth 9Z3(01,¢)
20, Telu (01,01;077") =01(01) + OE {8791(12(91,5))
=E|Y 8 "o | 91}

s>1



IC and payoff equivalence
Local IC — general case

@ More generally,

Theorem (Pavan, Segal, Toikka, 2014)

If x =(q,p) is IC, then, for every truthful history o1 t>0, VtA is
equi-Lipschitz-continuous in 6t and
AV
t = E
d6¢

Zss_lltﬁsqs | Gt:| a.e., (ICFOC)

s>t

where l_s = g-0s (with k =11
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IC and payoff equivalence

Sufficiency and Integral Monotonicity

@ Envelope conditions necessary but not sufficient
@ Appropriate monotonicity conditions

Theorem (PST, 2014)

Mechanism y = (q,p) is IC iff, for allt >0,

ME
26,

E Z(SSilltﬁqu | 9t:| GRER

s>t

and, for all 6% and ét,

/;‘ [Dt((6%,);%) — D((6'%,x); 61)]dx > 0

where

D99t

B | Y 65k 0s(6%, ) | et]

s>t

(ICFOC)

(INT-M)

@ Int-M — one-stage deviations suboptimal
@ Int-M + Markov + continuity at e — all deviations suboptimal



IC and payoff equivalence

Stronger sufficient conditions

@ Int-M holds if expected future output, discounted by impulse responses

(et 91 28 |Hst 6 t79t) ‘ 6
s>t

is nondecreasing in current report 6.

@ Output need not be monotone history by history, enough to have
monotonicity on average over time and states.

o Literature typically checks “strong monotonicity” (i.e., qt(6")
nondecreasing in 6'), but that's stronger than necessary.



Full and Relaxed Programs

Full program

@ Principal’s full program

max B[Y, &' (p—c(at))]

2=(a,p)
subject to
IR: VA(61) >0 all 6,
VA t
ICFOC-(t): ALACE) =Dy(6"; 6y)
d06¢

Int-M: /;t [De((8'2,%);x) — De((6'1,%); 8)]dx > 0.



Full and Relaxed Programs

Relax program — Myersonian/First-Order Approach

@ Principal’s relaxed program

max B[Y, &' (p—c(at))]

2=(d,p)
subject to
IR: VA1) >0alle; —  VAB)>0
A/t avA 0
ICFOC-(t): M(6) =Di(6%6;)  — NG(61) D1(61;61)
d6¢ 201
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Relax program — Myersonian/First-Order Approach

@ Principal’s objective as "Dynamic Virtual Surplus"

maxB [Zt st <9t - 1;51;3” |t) Gt — C(Qt))]

@ Pointwise maximization:

period-t virtual value = 6; — l;l':(léff) Iy =c’(qt) = marginal cost

= distortions driven by impulse responses I
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Full and Relaxed Programs

Validity of First-Order-Approach

@ Remaining IR constraints slack under FOSD and g >0

0
VAO) =VR©) + [ B Lot (o) | x| x>0
-4 t

e Remaining IC constraints (equivalently, Int-M) slack if

s>t

E|Y 8'%s0s(6" s, ) | 9‘} nondecreasing in 6y all t

@ Suppose ¢c(q) = %qz. Solution to relaxed program

Gt = max{@t - 1;1':(19(31) |1—’t;0}

Monotone enough?

Example (AR-1)

Gt = 6t — lflﬁefl ¢! = suffices that Fy log-concave
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Robust predictions in Dynamic Screening
Garrett-Pavan-Toikka

o Predictions that do not hinge on FOA

@ Full program: hard to solve

@ Idea: Let g be optimal allocation process. Any perturbation preserving
(Int-M) and IR constraints must be suboptimal

o Variational approach — robust predictions for average distortions
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Robust Predictions
Robust predictions

@ Assume IR binds only at 87 = 0 (always under FOSD and g > 0) and
interior solutions.

o Simple perturbation: add constant a € R to period-t allocation
(equivalently, Gateux derivative in direction (0,...,0,1,0,...))

o FOC for optimum at a=0:

B 6 - 50 k] =B [¢/(a)]

= average virtual value equals average marginal cost

@ Same prediction as under FOA, but only in expectation!

E[period-t distortion] = E[6; —c'(qt)]

= B [1;1'?9(30 It]



Robust Predictions
Handicap Dynamics

Theorem (Garrett, Pavan, Toikka)

Assume F is ergodic. Then

1-F(61)
E[ f1(61)

Moreover, if F satisfies FOSD, then convergence is from above.

It} — 0.

If, in addition, F is stationary, then convergence is monotone in t.
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Robust Predictions

More general bounds

@ When IR binds only at bottom and q interior

E[distortion] = E[handicap] = E [1;1?9(19)” |t]

@ More generally,

Theorem (Garrett-Pavan-Toikka)

If F is ergodic, then

limsupE[6; —c'(qt)] <0 (limit upward distortions)

t—o0

If, in addition, q eventually strictly interior, then
lim B[ — c(q)] =0
Finally, if distortions are eventually downward, then

P FB
Ot — Ot

V.

Corollary

Failure to converge — over-consumption and exclusion eventually infinitely
often.

T
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Conclusions

Summary

@ Optimal dynamic screening contracts:
output maximizes expected dynamic virtual surplus s.t. integral
monotonicity, ICFOC-(t) and period-0 IR.

@ FOA — path-wise predictions

o Variational approach: robust predictions for average dynamics

e ergodicity — average distortions eventually upwards (weakly)
e ergodicity + interiority — vanishing distortions (in expectations)

e ergodicity + interiority + FOSD — expected distortions are downward in all
periods

e ergodicity + interiority + FOSD + stationarity — convergence to FB
monotone in t

e ergodicity + downward distortions — convergence in probability

@ ...more remains to be done



Conclusions

Thank You!



Extra
Mechanisms and Principal's problem

o direct mechanism x = (q,p), with g : ®' — 2 and p;: ©' = R

@ principal designs x to maximize

E {25“1(& - C(Qt)):|
T
subject to

E {Zstfl(etqt—pt) \ 91} >0 forall 6;c® (IR-1)
t

E

\Y

E

Z 5571(95% —ps) | et]

s>t

Y 85710507 —p9) | Gt} (IC-1)

s>t

for all o, all 6! (04,...,6t) € B



ICFOC: Proof Sketch

@ Agent’s payoff in terms of state representation:

E {25“1(9&&— pt) | 91} =B {Zy*l(qt(ebEt)zt(917€t)—I5t(917€t)) | 91}
t t

@ Thus, R
V1(6) =maxU(6;0)
6
where
{Z(St ' (6:(6.€")24(01,€") — fr(6,¢")) \9}
o For fixed 6,

d Z t-1g 5 ot
@ Envelope theorem then gives result

@ Corollary: q pins down V; up to constant even if € publicly observable =
Eso-Szentes' irrelevance result



Integral

Monotonicity: Proof sketch

Fix t and 61,

Let U(é;e) = continuation utility of period-t type 6 from one-stage
deviation to 6.

Markov and full support — IC equivalent to

V(6)=U(6;0) =maxU(6;0) all 6 c®O.
°]

Equivalently,

6 e argmsax{U(é;B)—V(e)} for all 6 € ©.

ICFOC implies that, for 6 fixed, g(0) = u(6 9) V( ) is Lipschitz with
9'(8) =Uz(6,6) —V'(6) =U(6,6) —Uz(6,6) ae.,

R ]
9(6) ~9(6) = [ 1U2(8,%) ~ Uz (x0)dx,

m)

Because Uy(8,x) = Dy((6'1,x);8), 6 maximizes g(8) iff (Int-M).



Extra
Existence

o Letg(q)=E [Zt st <Qt : <9t - li’?éf)l) h) —C(qt))] and consider

supg(q) s.t. (Int-M)
(s[5

where Ly = LZ(RT) is space of square integrable processes with discounted
measure, g € Ly iff |q|| = E [Zt 6t71qt2} < oo,

e Assume c(q) > g2 for |q| > q, for some q
@ Then g(q) — —eo as |[q]| — .

@ Moreover, g is concave and Gateux differentiable, and feasible set is
closed, convex, and nonempty since defined by bounded linear operators.

@ So supremum is achieved, because in a Hilbert space, every concave
Gateux-differentiable functional that is “minus infinite at infinity” achieves
its maximum on a closed convex set.



Extra
Handicap Dynamics — Proof sketch

o Recall that B[k | 01] = g3-E[6r | 01].
@ Thus,

6
B [‘1?1?9(?)1)"} :E[l?lile)(f>l)E['t | 91]} :/6 (1—F1(61))E[l | 61]d64

= (L-R(eL)Bl6 | 61155+ | " (01)E[0c | 01]d0;
=E[6:] -E[6: | 8] —» 0

by ergodicity.
e If F monotone (FOSD),

E[6,] —E[6; | 8] >0

o If, in addition, F; = &, then

1-F (6 1-F (6
B[ L] B [508] — Bles | 6] -6 | 6] <0

fort >s.
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