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Abstract

The equity premium, namely the expected return on the aggregate stock

market less the government bill rate, is of central importance to the

portfolio allocation of individuals, to the investment decisions of firms,

and to model calibration and testing. This quantity is usually estimated

from the sample average excess return. We propose an alternative esti-

mator, based on maximum likelihood, that takes into account informa-

tion contained in dividends and prices. Applied to the postwar sample,

our method leads to an economically significant reduction from 6.4% to

5.1%. Simulation results show that our method produces more reliable

estimates under a wide range of specifications.
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1. Introduction

The equity premium, namely the expected return on equities less the risk-

free rate, is an important economic quantity for many reasons. It is an input

into the decision process of individual investors as they determine their asset

allocation between stocks and bonds. It is also a part of cost-of-capital calcu-

lations and thus investment decisions by firms. Finally, financial economists

use it to calibrate and to test, both formally and informally, models of asset

pricing and of the macroeconomy.1

The equity premium is almost always estimated by taking the sample mean

of stock returns and subtracting a measure of the riskfree rate such as the av-

erage Treasury Bill return. As is well known (Merton, 1980), it is difficult to

estimate the mean of a stochastic process. A tighter estimate of the sample

average cannot be obtained by sampling more finely, but rather only by ex-

tending the data series backward in time, with the disadvantage that the data

are potentially less relevant to the present day.

Given the importance of the equity premium, and the noise in the sample

average of stock returns, it is not surprising that a substantial literature has

grown up around estimating this quantity using other methods. One idea is

to use the information in dividends, given that, in the long run, prices are

determined by the present value of future dividends. Studies that implement

this idea in various ways include Blanchard (1993), Constantinides (2002),

Donaldson et al. (2010), Fama and French (2002), and Ibbotson and Chen

(2003). However, in each case it is not clear why the method in question

would deliver an estimate that is superior to the sample mean.

In this paper, we propose a method of estimating the equity premium that

incorporates additional information contained in the time series of prices and

1See, for example, the classic paper of Mehra and Prescott (1985), and surveys such as

Kocherlakota (1996), Campbell (2003), DeLong and Magin (2009), and Siegel (2005).
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dividends in a simple and econometrically-motivated way. As in the previous

literature, our work is based on the long-run relation between prices, returns

and dividends. However, our implementation is quite different, and grows di-

rectly out of maximum likelihood estimation of autoregressive processes. First,

we show that our method yields an economically significant difference in the

estimation of the equity premium. Taking the sample average of monthly log

returns and subtracting the monthly log return on the Treasury bill over the

postwar period implies a monthly equity premium of 0.43%. Our maximum

likelihood approach implies an equity premium of 0.32%. Translated to level

returns per annum, our method implies an equity premium of 5.06%, as com-

pared with the sample average of 6.37%.

Second, we show that our method is a more reliable way to estimate risk

premia. Because it is based on maximum likelihood, our method will be effi-

cient in large samples. We demonstrate efficiency in small samples by running

Monte Carlo experiments under a wide variety of assumptions on the data

generating process, allowing for significant mis-specification. We find that the

standard errors are about half as large using our method as using the sample

average. We also compute the root-mean-squared error and find that it is

smaller for our estimate as compared with the sample mean. These results

strongly suggest that the answer given by our method is closer to the true

equity premium as compared with the average return.

Finally, we are able to derive analytical expressions for our estimator that

give intuition for our results. Maximum likelihood allows additional informa-

tion to be extracted from the time series of the dividend-price ratio. This

additional information implies that shocks to the dividend-price ratio have on

average been negative. In contrast, ordinary least squares (OLS) implies that

the shocks are zero on average by definition. Because shocks to the dividend-

price ratio are negatively correlated with shocks to returns, our results imply

that shocks to returns must have been positive over the time period. That
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is, the historical time series of returns is unusually high; a lower value of the

equity premium is closer to the truth.

The remainder of our paper proceeds as follows. Section 2 describes our

statistical model and estimation procedure. Section 3 describes our results for

the equity premium, and extends these results to international data and to

characteristic-sorted portfolios. Because we find a larger reduction for small

stocks as compared to large stocks, our results suggest that the size premium,

as well as the equity premium, may have been a result of an unusual series of

shocks. Section 4 describes the intuition for our efficiency results and how these

results depend on the parameters of the data generating process and the length

of the time series. Section 5 shows the applicability of our procedure under

alternative data generating processes, including conditional heteroskedasticity

and structural breaks. Section 6 concludes.

2. Statistical model and estimation

This section gives the specifics of our benchmark statistical model (Section 2.1),

describes our estimation method (Section 2.2), and our data (Section 2.3).

2.1. Statistical model

Let Rt+1 denote net returns on an equity index between t and t+1, and Rf,t+1

denote net riskfree returns between t and t+1. We let rt+1 = log(1+Rt+1)−
log(1 +Rf,t+1). Let xt denote the log of the dividend-price ratio. We assume

rt+1 − µr = β(xt − µx) + ut+1 (1a)

xt+1 − µx = θ(xt − µx) + vt+1, (1b)
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where, conditional on (r1, . . . , rt, x0, . . . , xt), the vector of shocks [ut+1, vt+1]
>

is normally distributed with zero mean and covariance matrix

Σ =




σ2
u σuv

σuv σ2
v



 .

We assume that the dividend-price ratio follows a stationary process, namely,

that −1 < θ < 1; later we discuss the implications of relaxing this assump-

tion. Taking expectations on both sides of (1a) and (1b) implies that µr is

the unconditional mean of rt (namely, the equity premium), and µx as the

unconditional mean of xt.

The system of equations in (1) is standard in the literature. Indeed, (1a)

is equivalent to the ordinary least squares regression that has been a focus

of measuring predictability in stock returns for almost 30 years (Keim and

Stambaugh, 1986; Fama and French, 1989). We have simply rearranged the

parameters so that the mean excess return µr appears explicitly. The station-

ary first-order autoregression for xt is standard in settings where modeling xt

is necessary, e.g. understanding long-horizon returns or the statistical proper-

ties of estimators for β.2 Indeed, most leading economic models imply that

xt is stationary (e.g. Bansal and Yaron, 2004; Campbell and Cochrane, 1999).

A large and sophisticated literature uses this setting to explore the bias and

size distortions in estimation of β, treating other parameters, including µr, as

“nuisance” parameters.3 Our work differs from this literature in that µr is not

2See for example Campbell and Viceira (1999), Barberis (2000), Fama and French (2002),

Lewellen (2004), Cochrane (2008), van Binsbergen and Koijen (2010).
3See for example Bekaert et al. (1997), Campbell and Yogo (2006), Nelson and Kim

(1993), and Stambaugh (1999) for discussions on the bias in estimation of β and Cavanagh

et al. (1995), Elliott and Stock (1994), Jansson and Moreira (2006), Torous et al. (2004) and

Ferson et al. (2003) for discussion of size. Campbell (2006) surveys this literature. There is

a connection between estimation of the mean and of the predictive coefficient, in that the

bias in β arises from the bias in θ (Stambaugh, 1999), which ultimately arises from the need

to estimate µx (Andrews, 1993).
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a nuisance parameter but rather the focus of our study.

A classic motivation for (1) is the tight theoretical connection between real-

ized returns, expected future returns, and the dividend-price ratio (Campbell

and Shiller, 1988). For the purpose of this discussion, let rt denote the log of

the return on the stock market index (rather than the excess return), let pt

denote the log price, and dt the log dividend. It follows from the definition of

a return that

rt+1 = log(ept+1−dt+1 + 1)− (pt − dt) + dt+1 − dt.

Applying a Taylor expansion, as in Campbell (2003), implies

rt+1 ≈ constant + k(pt+1 − dt+1) + dt+1 − pt

where k ∈ (0, 1). Thus, with xt = dt − pt, it follows that

rt+1 −Et[rt+1] = −k (xt+1 −Et[xt]) + dt+1 − Et[dt+1]. (2)

Equation 2 establishes that, as a matter of accounting, we would expect that

shocks to returns and shocks to the dividend-price ratio to be negatively cor-

related. That is, ρuv < 0 in the equations above.

By solving these equations forward, Campbell (2003) further derives the

present-value identity

xt = constant + Et

∞∑

j=0

kj (rt+1+j −∆dt+1+j) . (3)

Equation 3 provides a second link between the dividend-price ratio and returns,

namely, that the dividend-price ratio xt should pick up variation in future

discount rates (β > 0 in (1a)). Given (3), it follows from (2) that shocks to

returns can be expressed as

rt+1 −Etrt+1 = (Et+1 − Et)

∞∑

j=0

kj∆dt+1+j − (Et+1 − Et)

∞∑

j=1

kjrt+1+j . (4)
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There is a longstanding debate about which term in (4), expected future cash

flows or discount rates, is responsible for the volatility of the dividend-price

ratio. As we will show, our method is agnostic when it comes to this ques-

tion. What we will require is the first link described in the paragraph above:

persistent variation in the dividend-price ratio (which could be driven either

by discount rates or cash flows) that is negatively correlated with realized

returns.4

2.2. Estimation procedure

We estimate the parameters µr, µx, β, θ, σ
2
u, σ

2
v and σuv by maximum like-

lihood. The assumption on the shocks implies that, conditional on the first

observation x0, the likelihood function is given by

p (r1, . . . , rT ; x1, . . . , xT |µr, µx, β, θ,Σ, x0) =

|2πΣ|−T
2 exp

{

−1

2

(

σ2
v

|Σ|
T∑

t=1

u2
t − 2

σuv

|Σ|
T∑

t=1

utvt +
σ2
u

|Σ|
T∑

t=1

v2t

)}

. (5)

Maximizing this likelihood function is equivalent to running ordinary least

squares regression (Davidson and MacKinnon, 1993, Chapter 8). Not surpris-

ingly, maximizing the above requires choosing means and predictive coefficients

to minimize the sum of squares of ut and vt.

This likelihood function, however, ignores the information contained in the

initial draw x0. For this reason, studies have proposed a likelihood function

that incorporates the first observation (Box and Tiao, 1973; Poirier, 1978),

assuming that it is a draw from the stationary distribution. In our case, the

4These considerations motivate our focus on the dividend-price ratio throughout this

manuscript. Moreover, the economic reasons for our effect are easiest seen in a univariate

setting. As an empirical matter, adding variables such as the default spread and term spread

to (1) has little effect beyond what we find with the dividend-price ratio. See Table D.5 in

the Online Appendix.
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stationary distribution of x0 is normal with mean µx and variance

σ2
x =

σ2
v

1− θ2
,

(Hamilton, 1994). The resulting likelihood function is

p (r1, . . . , rT ; x0, . . . , xT |µr, µx, β, θ,Σ) =

(
2πσ2

x

)− 1

2 exp

{

−1

2

(
x0 − µx

σx

)2
}

×

|2πΣ|−T
2 exp

{

−1

2

(

σ2
v

|Σ|
T∑

t=1

u2
t − 2

σuv

|Σ|
T∑

t=1

utvt +
σ2
u

|Σ|
T∑

t=1

v2t

)}

. (6)

Likelihood function (5) is often referred to as the conditional likelihood and

(6) as the exact likelihood. Papers that makes use of the exact likelihood

in the context of return estimation include Stambaugh (1999) and Wachter

and Warusawitharana (2009, 2012), who focus on estimation of the predictive

coefficient β.5 In contrast, van Binsbergen and Koijen (2010), who focus on

return predictability in a latent-variable context, use the conditional likelihood

function (with the assumption of stationarity). Other previous studies have

focused on the effect of the exact likelihood on unit root tests (Elliott, 1999;

Müller and Elliott, 2003).

We derive the values of µr, µx, β, θ, σ
2
u, σ

2
v and σuv that maximize the

likelihood (6) by solving a set of first-order conditions. We give closed-form

expressions for each maximum likelihood estimate in Appendix A. Our so-

lution amounts to solving a polynomial for the autoregressive coefficient θ,

after which the solution of every other parameter unravels easily. Because

our method does not require numerical optimization, it is computationally ex-

pedient. We will refer to this procedure as maximum likelihood estimation

(MLE) even when we examine cases in which it is mis-specified. We focus

5Wachter and Warusawitharana (2009, 2012) use Bayesian methods rather than maxi-

mum likelihood.
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on a comparison with the most common alternative way of calculating the

equity premium, namely the sample average. Note that this sample average

would appear as the constant term an OLS regression of returns on a predictor

variable that is demeaned using the first T − 1 observations.

Given that our goal is to estimate µr, which is a parameter determining

the marginal distribution of returns, why might it be beneficial to jointly es-

timate a process for returns and for the dividend-price ratio? Here, we give

a general answer to this question, and go further into specifics in Section 4.

First, a standard result in econometrics says that maximum likelihood, assum-

ing that the specification is correct, provides the most efficient estimates of

the parameters, that is, the estimates with the (weakly) smallest asymptotic

standard errors (Amemiya, 1985). Furthermore, in large samples, and assum-

ing no mis-specification, introducing more data makes inference more reliable

rather than less. Thus the value of µr that maximizes the likelihood function

(6) should be (asymptotically) more efficient than the sample mean because it

is a maximum likelihood estimator and because it incorporates more data than

a simpler likelihood function based only on the unconditional distribution of

the return rt.
6

This reasoning holds asymptotically. Several considerations may work

against this reasoning in small samples. First, asymptotic theory says only that

maximum likelihood is better (or, technically, at least as good), but the differ-

ence may be negligible. Second, even if there is an improvement in asymptotic

efficiency for maximum likelihood, it could easily be outweighed in practice by

the need to estimate a more complicated system. Finally, estimation of the

6The distinction between a multivariate and univariate system calls to mind the dis-

tinction between Seemingly Unrelated Regression (SUR) and OLS (Zellner, 1962). As will

become clear in what follows, our results do not arise from the use of the multivariate sys-

tem per se (as Zellner shows, there is no efficiency gain to multivariate estimation when

the right-hand-side variables are the same). Rather, the gains arise from the multivariate

system in combination with the initial term in the exact likelihood function.
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equity premium by the sample mean does not require specification of the pre-

dictor process. Mis-specification in the process for dividend-price ratio could

outweigh the benefits from maximum likelihood. These questions motivate the

analysis that follows.

2.3. Data

In what follows, our market return is defined as the monthly value-weighted

return on the NYSE/AMEX/NASDAQ available from CRSP. Using returns

with and without dividends, we construct a monthly dividend series. We

then follow the standard construction for the dividend-price ratio that elimi-

nates seasonality, namely, we divide a monthly dividend series (constructed by

summing over dividend payouts over the current month and previous eleven

months) by the price.

We also consider returns on portfolios formed on the basis of size and book-

to-market. Again we use value-weighted returns with and without dividends to

construct a dividend series for each portfolio. We then construct a dividend-

price ratio series for each portfolio in the same manner as for the market

portfolio. We also consider dollar returns on international and country-level

indices. For each of these, we construct a dividend-price ratio series in the

same manner described above. International return data are available from

Kenneth French’s website. Fama and French (1989) discuss details of the

construction of these data.

To form an excess return, we subtract the monthly return on the 30-day

Treasury Bill. Given the net return Rt on the equity series and the net Treasury

return Rf
t , we take rt = log(1 +Rt)− log(1 +Rf

t ).
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3. Results

This section describes our main results. Section 3.1 describes the results of

maximum likelihood estimation for the aggregate market and compares it with

ordinary least squares and sample means. Section 3.2 describes out-of-sample

tests of our method. Section 3.3 describes an application to the cross-section

of returns and Section 3.4 to international data. Section 3.5 describes results

for valuation measures other than the dividend-price ratio.

3.1. Point estimates for the U.S. equity premium

Table 1 reports maximum likelihood estimates of the parameters of our statis-

tical model given in (1) under the heading MLE. We report estimates for the

1927-2011 sample and for the 1953-2011 postwar subsample. In this section we

discuss point estimates, and postpone the discussion of standard errors, and

the statistical efficiency of the estimates, to Section 3.6. For comparison, we

also report the sample average of excess returns and the sample mean of the

dividend-price ratio under the heading Sample. For the postwar sample, this

sample average is 0.433% in monthly terms, or 5.20% per annum. In contrast,

the maximum likelihood estimate of the equity premium is 0.322% monthly,

or 3.86% per annum. The annualized difference is 133 basis points. Applying

MLE to the 1927–2011 sample yields an estimated mean of 4.69% per annum,

88 basis points lower than the sample average.7

Maximum likelihood also implies a different estimate for the mean of the

dividend-price ratio than the sample average. The difference is relatively small,

however; only 4 basis point in the postwar data, an order of magnitude smaller

than the difference in the estimate of the equity premium. Nonetheless, the

two results are closely related, as we will discuss in what follows.

7When translated to annualized level returns, the per annum estimate falls from 6.37%

to 5.06%. See Appendix B.1.
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Maximum likelihood gives values for the predictive coefficient β, the au-

tocorrelation θ, and the variance-covariance matrix Σ. We compare these to

values of β and θ from traditional OLS forecasting regressions on a constant

and on the lagged dividend-price ratio. We report the results for β and θ, as

well as the variance-covariance matrix, in Table 1 under the heading OLS. The

estimate of the variance-covariance matrix are nearly identical (by definition,

the estimates of σu and σv will be higher under MLE than under OLS; we find

no noticeable difference for σv and a negligible difference for σu). This is not

surprising, as volatility is known to be estimated precisely in monthly data.

Estimates for the regression coefficient β are noticeably different. In postwar

data, maximum likelihood estimates a lower value of β (0.69 vs. 0.83). This

lower estimate for β is driven by the (slightly) higher estimate for the auto-

correlation coefficient θ (deviations of β and θ from their OLS values go in

opposite directions, see Stambaugh (1999)). The result, however, is sample-

dependent. In the longer sample, the maximum likelihood estimate for β is

higher than the OLS value, and naturally the estimate for θ is lower.

Given the controversy surrounding the parameter β, we next ask how the

estimation of predictability affects our results. We repeat maximum likelihood

estimation, but restrict β to be zero. That is, we consider

rt+1 − µr = ut+1 (7a)

xt+1 − µx = θ(xt − µx) + vt+1, (7b)

In what follows, we refer to this as restricted maximum likelihood, and use the

terminology MLE0.
8 Table 1 shows, perhaps surprisingly, that the maximum

likelihood estimate for the mean return hardly changes. It is in fact slightly

lower (0.31% vs. 0.32%) in postwar data, and thus further away from the

sample mean. The most notable difference between the two types of estimation

is the value for the autocorrelation θ, which is closer to unity under MLE0.

8See Appendix A.2 for more details on our methodology.
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Given that the right-hand-side variables of the two equations are no longer the

same, it is possible for estimation of the system to yield different results than

estimation of each equation separately (Zellner, 1986).9 Moreover, if the true

value of β is equal to zero but the OLS value is positive, realized shocks must

be such that the true autocorrelation of xt is higher than the measured one

(Wachter and Warusawitharana, 2015).

The restricted maximum likelihood estimation indicates that return pre-

dictability is not driving our results. In fact, it arises because MLE allows

us to incorporate information about the stationary distribution of xt. This

information leads us to conclude that shocks to the dividend-price ratio have

been negative on average. The negative contemporaneous correlation between

shocks to the dividend-price ratio and to returns allows allows this information

to be incorporated into the estimation of the return process: shocks to returns

have been positive on average and thus some of the measured equity premium

is due to good luck. We discuss this intuition in more detail in Section 4.

3.2. Out-of-sample results

While we are using the system (1) to estimate the unconditional mean µr, much

of the prior literature focuses on estimating the conditional equity premium,

namely the forecast for excess stock returns conditional on xt. Such forecasts

have been found to have inferior out-of-sample performance as compared to

the sample average (Bossaerts and Hillion, 1999; Welch and Goyal, 2008).10

This raises the question of whether our unconditional estimates, coming from

a conditional model, can outperform the sample average.

9The presence of the initial condition in the likelihood function implies that our estimates

will not be identical to OLS regardless. However, the effect of the initial condition on

estimation of θ is small compared to the effect of restricting β to be zero.
10Alternative means of incorporating information can lead some conditional models to

outperform, e.g. Campbell and Thompson (2008) and Kelly and Pruitt (2013).

12



To answer this question, we compute the root-mean-squared-error (RMSE)

based on our estimate versus the sample mean. Specifically, for each observa-

tion (starting ten years after the start of our sample), we compute both the

maximum likelihood estimate and the sample mean using the previous data.

We then take the difference between the stock return and this estimate over

the following month and square it. Summing these up, dividing by the number

of observations, and taking the square root yields the RMSE.

A caveat to this analysis is in order. Given that we are only attempting

an unconditional estimate of the mean, the best we could possibly do in terms

of RMSE would be the realized unconditional standard deviation of stock

returns over the sample. This is what we would find if we could estimate the

mean perfectly. That is, the “error” used to compute the RMSE is in fact

the variation in stock returns. This variation is quite high, and is likely to be

high compared to possible improvements in the unconditional estimate of the

mean.

In fact, we find that unlike conditional mean forecasts that incorporate the

dividend-price ratio, our unconditional forecasts yield better out-of-sample

performance.11 The difference in the RMSEs between the sample mean and

the MLE is 0.011% per month in the postwar period, or 0.132% per annum.

We find very similar results for restricted maximum likelihood. Maximum

likelihood also outperforms the sample mean over the period beginning in

1927. The difference between the mean-squared errors are significant using the

Diebold and Mariano (2002) test.12 These results suggest that our estimates

11The maximum likelihood estimates are also smoother over time. This result is shown

in Figure 5 and discussed in Section 4.2.3.
12The autocorrelation of the difference in mean-squared errors is very low. Nonetheless,

one concern with this test is that our mean estimators use data from the entire previous

sample period, and thus exhibit long-run dependence. In theory, one could mitigate this

concern by using rolling estimation windows (as recommended by Giacomini and White,

2006). However, to obtain reliable estimates, one would want to have these rolling windows
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are not only different from the sample mean, they are also more reliable. We

return to this point in Section 3.6, when we evaluate efficiency.

3.3. Characteristic-sorted portfolios

An advantage of our method is its ease and wide applicability: it is not specific

to the market portfolio. To illustrate this, we highlight two additional applica-

tions, one to characteristic-sorted portfolios (this section) and to international

stock returns (the following section).

We first consider portfolios formed by sorting stocks by market equity and

then forming portfolios based on quintiles (see Fama and French (1992) for

more detail). Panel A of Table 2 shows the resulting sample means (Sample),

maximum likelihood estimates (MLE), and restricted maximum likelihood es-

timates (MLE0). The Sample row clearly replicates the classic finding of Fama

and French (1992): stocks with low market equity of higher average than stocks

with high market equity. The difference is an economically significant 0.16%

per month.

The next column re-examines this size finding from the perspective of MLE.

We repeat our analysis, using the relevant dividend-price ratio series for each

quintile (see Section 2.3) for more information. As for the market portfolio,

the use of maximum likelihood significantly reduces the estimated mean on

each portfolio. Again, replicating our results for the market portfolio, MLE

and MLE0 consistently lead to lower RMSE in out-of-sample tests across the

quintiles.

While the change to the quintiles is all in the same direction (namely,

down), the magnitude of the effect differs substantially between the quintiles.

The lowest quintile (with the smallest stocks) exhibits the greatest reduction:

around 23 basis points. The largest stocks exhibit a reduction of less than one

be large, and so, practically speaking, the long-run dependence problem would still be there.
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basis point. As the last column shows, the resulting size premium therefore

all but disappears (it is a mere 3 basis points) when MLE is used. Running

restricted MLE leads to a similar, and in fact slightly larger, reduction.

Panel B of Table 2 shows analogous results for portfolios formed on the

ratio of book equity to market equity. Again, the first row shows sample

means, and replicates the result of Fama and French (1992) that stocks with

a low ratio of book equity to market equity (growth firms) have substantially

lower returns than stocks with a high ratio of book equity to market equity

(value firms). The difference is 0.32% per month. Repeating MLE and MLE0

(again, we construct a dividend-price ratio series for each quintile), we find

a reduction in the mean estimate for all portfolios and an improved RMSE.

However, unlike for size, there appears to be no relation between the book-to-

market ratio and the magnitude of the reduction, leading the value premium,

as estimated over this sample, to be largely unchanged.

One implication of our findings for size portfolios is the estimation of the

price of risk corresponding to the size factor. As interpreted by Fama and

French (1993), the return differential on the small-minus-big portfolio rep-

resents not so much an anomaly but a return for bearing risk. Our results

suggest that this risk premium is smaller than previously believed. More

broadly, one could apply our results to the estimation of risk premiums due

to cross-sectional factors. If one is deriving these risk premiums from a two-

pass regression approach (the first pass would be to estimate expected returns

and betas, the second to estimate the risk premiums due to the factors), our

method could be used to estimate the risk premiums in the first pass. This

would imply greater precision in the estimation of the risk premiums in the

second stage.
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3.4. International stock returns

A natural question is whether the reduction in the equity premium is U.S. spe-

cific, or a feature of global financial markets. We first consider return data

on regional indices (which begin in 1976), and report the results in Table 3.

We find that a value-weighted index meant to proxy for the world portfolio

falls by nearly half, from 0.36% per month to 0.19% per month. The Asia

index falls by even more: 0.26% per month to 0.12%. However, the EU index

(with the UK included) is affected by comparatively little: the premium falls

from 0.42% to 0.33%. Clearly our results are not specific to the U.S. market.

These dramatic results reflect the power of our approach in samples that are

relatively short.

When we apply our estimation to country-level stock-market indices, some

interesting differences emerge. Results are reported in Table 4. For some

countries, nearly all the expected return appears to be due to luck (for example,

Japan and Italy). We also find that our measure concludes that “bad luck” has

caused some returns to be understated, for example, Denmark and Spain. The

findings for both regional and country-level data are consistent across MLE

and MLE0 methods, indicating that these findings are not driven by return

predictability.13

3.5. Alternative valuation measures

The discussion in Section 2.1 indicates that the dividend-price ratio has a

special role in our maximum-likelihood analysis. Because of the present-value

identity, we would expect a high correlation between shocks to this series and

shocks to realized returns. However, the determinants of firm dividend policy

13Given the short data sample available, RMSEs are particularly noisy. However, we find

that, on average, MLE has a lower RMSE than the sample mean, both for the regional

indices and country-level data.
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have been subject to long debate. Moreover, Fama and French (2001) show

that the tendency to pay dividends may not be stable over time.

The arbitrariness of dividend payments, and their apparent instability, need

not affect our results. The return measure rt and the dividend payout corre-

spond to what would actually be received by an investor who holds the CRSP

value-weighted portfolio, and thus the present-value identity of Section 2.1 is

valid. The reasons considered by Fama and French (2001) for reductions in

dividend payments are consistent with a stationary dividend-price ratio com-

bined with long-term fluctuations in expected dividend growth; note that our

method allows fluctuations in the dividend-price ratio to be due to changes

in growth expectations as well as discount rates. Alternatively, perhaps the

dividend-price ratio is subject to a structural break. We confront this possi-

bility explicitly in Section 5.3.

We can confirm that our results are not due to unusual characteristics of the

dividend series by considering other valuation ratios such as book-to-market

or earnings-to-price. Data on total book value and total market value for the

S&P 500 is available from Global Financial Database. We take the log of the

book-to-market ratio constructed from these data, and apply our maximum

likelihood estimator, first using the value-weighted CRSP return, and then the

changes in price on the S&P 500. These data are monthly and begin in 1977.

We show results in Table 5. Maximum likelihood implies an equity premium

of 0.30% per month on the CRSP portfolio, as compared with a sample mean

of 0.43% over the same period. These are stronger results than we find for our

benchmark estimation (the results for restricted maximum likelihood and for

S&P 500 returns are stronger still). For earnings-to-price, we use the CAPE

measure proposed by Shiller (2000) that eliminates short-term fluctuations

in earnings (data are available from Robert Shiller’s website). Because this

series has a much lower correlation with CRSP returns, the improvements from

maximum likelihood are likely to be smaller (see Section 4). However, even the
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earnings-to-price ratio implies a reduction from 0.43 to 0.38 per month. Thus

the book-to-market and earnings-to-price series confirm our findings from the

dividend-price ratio.14

3.6. Efficiency

So far we have shown that MLE gives different estimates for the equity pre-

mium than the sample average and that they are more reliable as measured by

the root-mean-squared error. We now conduct a formal statistical comparison

of the methods. Namely, we ask whether our procedure reduces estimation

noise in finite samples.

We simulate 10,000 samples of length equal to the postwar data. We draw

returns and predictor variable observations from (1), setting parameter values

equal to their maximum likelihood estimates (in what follows we refer to this

as the benchmark simulation). For each sample, we initialize x with a draw

from the stationary distribution. We then calculate sample averages, OLS

estimates and maximum likelihood estimates for each sample path, generating

a distribution of these estimates over the 10,000 paths.15

14We find similarly large reductions in the mean return when we adjust the dividend series

for repurchases as in Boudoukh et al. (2007), as reported in Table D.6 of the Online Appendix

(annual data are available from the website of Michael Roberts until 2003). As these authors

note, however, to be consistent one should adjust for stock market issuance as well as

repurchases (and ideally for repayment and issuance of debt as well; see Larrain and Yogo,

2008). Stock-market issuance relative to market value has essentially zero correlation with

realized returns. Shocks to the issuance-adjusted series convey relatively little information

about shocks to returns, at least as measured with our current methods. This information

transmission is crucial for our method to deliver large efficiency gains relative to the sample

mean.
15In every sample, both actual and artificial, we have been able to find a unique solution

to the first order conditions such that θ is real and between -1 and 1. Given this value for

θ, there is a unique solution for the other parameters. The distribution for these values is

shown in Figure D.1. See Appendix A for further discussion of the polynomial for θ.
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Table 6 reports means, standard deviations, and the 5th, 50th, and 95th

percentile values. Note that these statistics refer to the sampling distribution.

Therefore, the standard deviations should be interpreted as standard errors

for the corresponding estimates in Table 1. Table 6 shows that, while the

sample average of the excess return has a standard error of 0.089 (in monthly

percentage terms), the maximum likelihood estimate has a standard error of

only 0.050.

Besides lower standard errors, the maximum likelihood estimates also have

a tighter distribution. For example, the 95th percentile value for the sample

mean of returns is 0.47, while the 95th percentile value for the maximum likeli-

hood estimate is 0.40 (in monthly terms, the value of the maximum likelihood

estimate is 0.32). The 5th percentile is 0.18 for the sample average but 0.24 for

the maximum likelihood estimate. This tighter distribution can clearly be seen

in Figure 1, which shows the distribution of the maximum likelihood estimates

is visibly more concentrated around the true value of the equity premium, and

that the tails of this distribution fall well under the tails of the distribution of

sample means.

Table 6 also shows that the maximum likelihood estimate of the mean of

the predictor has a lower standard error and tighter confidence intervals than

the sample average, though the difference is much less pronounced. Similarly,

the maximum likelihood estimate of the regression coefficient β also has a

smaller standard error and tighter confidence bands than the OLS estimate,

though again, the differences for these parameters between MLE and OLS are

not large. The results in this table show that no other parameters are subject

to the same dramatic improvement in efficiency as the mean return. This is in

part due to the fact that estimation of first moments in a time series is more

difficult than that of second moments (Merton, 1980). It is also due to the

relatively high volatility of shocks to returns, as we discuss in Section 4.

The results in Table 6 also illustrate the bias in the OLS estimate of the
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predictive coefficient β (Stambaugh, 1999). While the data generating process

assumes a β value of 0.69, the mean OLS value from the simulated samples is

1.28. That is, OLS estimates the predictive coefficient to be much higher than

the true value, and thus the predictive relation to be stronger. The bias in the

predictive coefficient is associated with bias in the autoregressive coefficient on

the dividend-price ratio. The true value of θ in the simulated data is 0.993, but

the mean OLS value is 0.987. Maximum likelihood reduces the bias somewhat:

the mean maximum likelihood estimate of β is 1.24 as opposed to 1.28, but

it does not eliminate it. Note that the estimates of the equity premium are

not biased; the mean for both maximum likelihood and the sample average is

close to the population value.

These results suggest that 0.69 is probably not a good estimate of β, and

likewise, 0.993 is likely not to be a good estimate of θ. Does the superior

performance of maximum likelihood continue to hold if these estimates are

corrected for bias? We turn to this question next. We repeat the exercise

described above, but instead of using the maximum likelihood estimates, we

adjust the values of β and θ so that the mean computed across the simulated

samples matches the observed value in the data. The results are given in

Panel B. This adjustment lowers β and increases θ, but does not change the

maximum likelihood estimate of the equity premium. If anything, adjusting

for biases shows that we are being conservative in how much more efficient

our method of estimating the equity premium is in comparison to using the

sample average. The sample average has a standard deviation of 0.138, while

the standard deviation of the maximum likelihood estimate is 0.072. After

accounting for biases, maximum likelihood gives an equity premium estimate

with standard deviation that is about half of the standard deviation of the

sample mean excess return. We will refer to this as our benchmark case with

bias-correction.

These results show that our efficiency gains continue to hold after correcting
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for bias in the predictive coefficient. In fact, the result that maximum likeli-

hood is more efficient is quite robust. As we show in the Online Appendix, it

holds when we assume fat-tailed shocks (Table D.1), and when we use the OLS

estimates rather than the maximum likelihood estimates (Table D.2). While

longer data series naturally produce a smaller improvement, we still see an

economically significant reduction in standard errors in Monte Carlo experi-

ments designed to match the sample beginning in 1927 (Table D.3). Restricted

maximum likelihood is also more efficient than the sample mean (Table D.4).

In Section 5 we consider substantial departures from our data generating pro-

cess, as well the potential for structural breaks, and continue to find large

efficiency gains. Finally, we can also see the efficiency gains in asymptotic

standard errors. Because the likelihood function is available in closed form,

we can calculate well-behaved asymptotic standard errors as explained in Ap-

pendix A.4. We report these in Table 7.16 The asymptotic standard error for

maximum likelihood is 0.054, almost identical to its finite-sample counterpart,

0.50. The standard error on the sample mean is larger than its finite-sample

counterpart: 0.114 as compared to 0.089. This implies even greater efficiency

gains from maximum likelihood when evaluated using traditional asymptotics.

In the sections that follow, we explain the source of this efficiency gain, and

why it is so robust to variations in our assumptions.

4. Discussion

The previous section showed that maximum likelihood is a more efficient esti-

mator than the sample mean. This efficiency is of economic consequence: not

16We calculate standard errors for the sample averages taking into account the autocor-

relation structure in the data. Given (1), the variance of the sample mean of returns and of

xt are available in closed form (see Appendix C.2). We substitute in the series of shocks ut

and vt from maximum likelihood estimation, and bias-corrected values for β and θ.
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only does maximum likelihood give a substantially different estimate of the

equity premium, it gives a more reliable one. In Section 4.1 we discuss the

reason why maximum likelihood is more efficient. In Section 4.2 we discuss

the properties of the time series that determine these efficiency gains. This is

useful for researchers in determining when our method is likely to be of the

greatest value.

4.1. Source of the gain in efficiency

What determines the difference between the maximum likelihood estimate

of the equity premium and the sample average of excess returns? Let µ̂r

denote the maximum likelihood estimate of the equity premium and µ̂x the

maximum likelihood estimate of the mean of the dividend-price ratio. Given

these estimates, we can define a time series of shocks ût and v̂t as follows:

ût = rt − µ̂r − β̂(xt−1 − µ̂x) (8a)

v̂t = xt − µ̂x − θ̂(xt−1 − µ̂x). (8b)

By definition, then,

µ̂r =
1

T

T∑

t=1

rt −
1

T

T∑

t=1

ût − β̂
1

T

T∑

t=1

(xt−1 − µ̂x). (9)

As (9) shows, there are two reasons why the maximum likelihood estimate of

the mean, µ̂r, might differ from the sample mean 1
T

∑T

t=1 rt. The first is that

the shocks ût may not average to zero over the sample. The second, which

depends on return predictability, is that the average value of xt might differ

from µ̂x.

It turns out that only the first of these effects is quantitatively important

for our sample. For the period January 1953 to December 2001, the sample

average 1
T

∑T

t=1 ût is equal to 0.1382% per month, while β̂ 1
T

∑T

t=1(xt−1 − µ̂x)

is −0.0278% per month. The difference in the maximum likelihood estimate
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and the sample mean thus ultimately comes down to the interpretation of the

shocks ût. To understand the behavior of these shocks, we will argue it is

necessary to understand the behavior of the shocks v̂t. And, to understand

v̂t, it is necessary to understand why the maximum likelihood estimate of the

mean of xt differs from the sample mean.

4.1.1. Estimation of the mean of the predictor variable

To build intuition, we consider a simpler problem in which the true value of

the autocorrelation coefficient θ is known. We show in Appendix A that the

first-order condition in the exact likelihood function with respect to µx implies

µ̂x =
(1 + θ)

1 + θ + (1− θ)T
x0 +

1

(1 + θ) + (1− θ)T

T∑

t=1

(xt − θxt−1). (10)

We can rearrange (1b) as follows:

xt+1 − θxt = (1− θ)µx + vt+1.

Summing over t and solving for µx implies that

µx =
1

1− θ

1

T

T∑

t=1

(xt − θxt−1)−
1

T (1− θ)

T∑

t=1

vt, (11)

where the shocks vt are defined using the mean µx and the autocorrelation θ.

Consider the conditional maximum likelihood estimate of µx, the estimate

that arises from maximizing the conditional likelihood (5). We will call this

µ̂c
x. Note that this is also equal to the OLS estimate of µx, which arises from

estimating the intercept (1− θ)µx in the regression equation

xt+1 = (1− θ)µx + θxt + vt+1

and dividing by 1− θ. The conditional maximum likelihood estimate of µx is

determined by the requirement that the shocks vt average to zero. Therefore,
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it follows from (11) that

µ̂c
x =

1

1− θ

1

T

T∑

t=1

(xt − θxt−1).

Substituting back into (10) implies

µ̂x =
(1 + θ)

1 + θ + (1− θ)T
x0 +

(1− θ)T

(1 + θ) + (1− θ)T
µ̂c
x.

Multiplying and dividing by 1− θ implies a more intuitive formula:

µ̂x =
1− θ2

1− θ2 + (1− θ)2T
x0 +

(1− θ)2T

1− θ2 + (1− θ)2T
µ̂c
x. (12)

Equation 12 shows that the exact maximum likelihood estimate is a weighted

average of the first observation and the conditional maximum likelihood esti-

mate. The weights are determined by the precision of each estimate. Recall

that

x0 ∼ N
(

0,
σ2
v

1− θ2

)

.

Also, because the shocks vt are independent, we have that

1

T (1− θ)

T∑

t=1

vt ∼ N
(

0,
σ2
v

T (1− θ)2

)

.

Therefore T (1 − θ)2 can be viewed as proportional to the precision of the

conditional maximum likelihood estimate, just as 1− θ2 can be viewed as pro-

portional to the precision of x0. Note that when θ = 0, there is no persistence

and the weight on x0 is 1/(T + 1), its appropriate weight if all the observa-

tions were independent. At the other extreme, as θ approaches 1, less and less

information is conveyed by the shocks vt and the “estimate” of µ̂x approaches

x0.
17

17We cannot use (12) to obtain our maximum likelihood estimate because θ is not known

(more precisely, the conditional and exact maximum likelihood estimates of θ will differ).

Because of the need to estimate θ, the conditional likelihood estimator for µx is much less

efficient than the exact likelihood estimator; a fact that is not apparent from these equations.
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While (12) rests on the assumption that θ is known, we can nevertheless

use it to qualitatively understand the effect of including the first observation.

Because of the information contained in x0, we can conclude that the last T

observations of the predictor variable are not representative of values of the

predictor variable in population. These values are lower, on average, than they

would be in a representative sample. It follows that the predictor variable must

have declined over the sample period. Thus the shocks vt do not average to

zero, as OLS (conditional maximum likelihood) would imply, but rather, they

average to a negative value.

Figure 2 shows the historical time series of the dividend-price ratio, with

the starting value in bold, and a horizontal line representing the mean. Given

the appearance of this figure, the conclusion that the dividend-price ratio has

been subject to shocks that are negative on average does not seem surprising.

4.1.2. Estimation of the equity premium

We now return to the problem of estimating the equity premium. Equation 9

shows that the average shock 1
T

∑T

t=1 ût plays an important role in explaining

the difference between the maximum likelihood estimate of the equity premium

and the sample mean return. In traditional OLS estimation, these shocks

must, by definition, average to zero. When the shocks are computed using the

(exact) maximum likelihood estimate, however, they may not.

To understand the properties of the average shocks to returns, we note that

the first-order condition for estimation of µ̂r implies

1

T

T∑

t=1

ût =
σ̂uv

σ̂2
v

1

T

T∑

t=1

v̂t. (13)

This is analogous to a result of Stambaugh (1999), in which the averages of the

error terms are replaced by the deviation of β and of θ from the true means.

Equation 13 implies a connection between the average value of the shocks to
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the predictor variable and the average value of the shocks to returns. As the

previous section shows, MLE implies that the average shock to the predictor

variable is negative in our sample. Because shocks to returns are negatively

correlated with shocks to the predictor variable, the average shock to returns

is positive.18 Note that this result operates purely through the correlation of

the shocks, and is not related to predictability.

Based on this intuition, we can label the terms in (9) as follows:

µ̂r =
1

T

T∑

t=1

rt − 1

T

T∑

t=1

ût

︸ ︷︷ ︸

Correlated shock term

− β̂
1

T

T∑

t=1

(xt−1 − µ̂x)

︸ ︷︷ ︸

Predictability term

. (14)

As discussed above, the correlated shock term accounts for more than 100%

of the difference between the sample mean and the maximum likelihood es-

timate of the equity premium, and is an order of magnitude larger than the

predictability term. Our argument above can be extended to show why these

terms tend to have opposite signs. When the correlated shock term is posi-

tive (as is the case in our data), shocks to the dividend-price ratio must be

negative over the sample. The estimated mean of the predictor variable will

therefore be above the sample mean, and the predictability term will be neg-

ative. Figure D.2 shows that indeed these terms tend to have opposite signs

in the simulated data.19

18This point is related to the result that longer time series can help estimate parameters

determined by shorter time series, as long as the shocks are correlated (Stambaugh, 1997;

Singleton, 2006; Lynch and Wachter, 2013). Here, the time series for the predictor is slightly

longer than the time series of the return. Despite the small difference in the lengths of the

data, the structure of the problem implies that the effect of including the full predictor

variable series is very strong.
19There is a small opposing effect on the sign of the predictability term. Note that the

sample mean in this term only sums over the first T − 1 observations. If the predictor

has been falling over the sample, this partial sum will lie above the sample mean, though

probably below the maximum likelihood estimate of the mean.
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This section has explained the difference between the sample mean and

the maximum likelihood estimate of the equity premium by appealing to the

difference between the sample mean and the maximum likelihood estimate of

the mean of the predictor variable. However, Table 1 shows that the differ-

ence between the sample mean of excess returns and the maximum likelihood

estimate of the equity premium is many times that of the difference between

the two estimates of the mean of the predictor variable. Moreover, Table 6

shows that the difference in efficiency for returns is also much greater than the

difference in efficiency for the predictor variable. How is it then that the dif-

ference in the estimates for the mean of the predictor variable could be driving

the results? Equation 13 offers an explanation. Shocks to returns are far more

volatile than shocks to the predictor variable. The term σ̂uv/σ̂
2
v is about −100

in the data. What seems like only a small increase in information concerning

the shocks to the predictor variable translates to quite a lot of information

concerning returns.

4.1.3. Conditional maximum likelihood

In the previous sections, we compare the results from maximizing the exact

likelihood function (6) with sample means. We can also compare our results

to conditional maximum likelihood estimates, namely the parameter values

that maximize the conditional likelihood function (5). Conditional maximum

likelihood gives identical results to OLS for the regression parameters β, θ,

and the variance-covariance matrix Σ. Based on this result, one might think

that the conditional MLEs of µr and µx would equal the sample means of rt

and xt. However, they do not.

Consider first the estimation of µx. The conditional maximum likelihood

estimate for the mean of the log dividend-price ratio is -3.67. This is below the

sample mean of -3.55. In contrast, the exact maximum likelihood estimate is

-3.50. This wedge between the conditional maximum likelihood estimate and
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the sample mean creates a wedge between the conditional maximum likelihood

estimate of µr and the corresponding sample mean, but in a very different way

than for exact maximum likelihood estimation.

To see how the estimation of µx affects µr in the conditional case, consider

(14), which must hold for any estimator of µr because it relies only on (1a). A

condition of conditional maximum likelihood is that the shocks are on average

equal to zero (recall the equivalence with OLS); thus the correlated shock term

in (14) disappears. The entire difference between the conditional MLE of µr

(we will call this µ̂c
r) and the sample mean of returns is therefore due to return

predictability. Because the conditional MLE µ̂c
x is far below the sample mean,

the predictability term in (14) is positive and large. It follows that, like its

exact counterpart, µ̂c
r is below the sample mean (it is equal to 0.31 in postwar

data). Intuitively, if the dividend-price ratio has been abnormally high in the

sample, and if returns have a component that is based on this value, then

returns, too, will have been abnormally high.

Thus conditional and exact maximum likelihood estimation are very dif-

ferent. For conditional maximum likelihood, the finding of the lower equity

premium depends entirely on stock return predictability; bias-correcting β

substantially reduces this result and restricting β to equal zero eliminates it

(in this case the equity premium simply equals the sample average excess re-

turn). In contrast, for exact MLE, the effect of predictability is small and in

the opposite direction. The difference in the estimators for µr stems from dif-

ferences in the estimators for µx. Exact maximum likelihood uses information

from the level of the series. Conditional maximum likelihood, however, solves

µ̂c
x =

1

1− θ̂c

T∑

t=1

(xt − θ̂cxt−1),

Conditional maximum likelihood thus attempts to identify the mean of xt

from its drift over the course of the sample. It divides these tiny increments

by another tiny value: 1−θ̂c. The resulting estimates of µx are highly unstable.
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In simulated data, θ̂c falls outside the unit circle in a non-trivial number of

sample paths; for these paths the estimate of µx, and hence µr, fails to exist.

In contrast, exact maximum likelihood always returns an estimate of θ that

is within the unit circle. That is, the performance of conditional likelihood

in estimating the sample mean is sufficiently poor that we cannot evaluate it

within our Monte Carlo framework.20

4.2. Properties of the maximum likelihood estimator

In this section we investigate how the improvement in precision from maxi-

mum likelihood depends on the persistence of xt, the degree to which stock

returns are predictable, the correlation between the shocks to xt and the shocks

to returns, and the length of the time series. Besides giving insight into the

mechanism behind the improvement, this section illuminates the practical sit-

uations where our method is most useful.

As in Section 3.6, our main tool is Monte Carlo simulations. We calculate

the standard deviation of our estimators across simulated sample paths. These

standard deviations correspond to finite-sample standard errors. An exception

is when we consider the length of the time series; in this case we also show

how the estimates of the equity premium change over time in the historical

data.

4.2.1. Variance of the estimator as a function of the persistence

The theoretical discussion in the previous section suggests that the persistence

θ is an important determinant of the increase in efficiency from maximum

20One way around the stationarity problem is to force θ to be less than 1. This is most

easily accomplished in a Bayesian setting with a prior on θ (for maximum likelihood, one

could define a boundary, but such a boundary would have to be a finite distance from one

and would therefore be arbitrary). Wachter and Warusawitharana (2015) demonstrate the

instability of conditional estimates of µx and µr in a Bayesian setting.
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likelihood. Figure 3 shows the standard deviation of estimators of the mean of

the predictor variable (µx) in Panel A and of estimators of the equity premium

(µr) in Panel B as functions of θ. Other parameters are set equal to their

benchmark values, adjusted for bias in the case of β. For each value of θ, we

simulate 10,000 samples.

Panel A shows that the standard deviation of both the sample mean and

MLE of µx are increasing in θ. This is not surprising; holding all else equal,

an increase in the persistence of θ makes the observations on the predictor

variable more alike, thus decreasing their information content. The standard

deviation of the sample mean is larger than the standard deviation of the

maximum likelihood estimate, indicating that our results above do not depend

on a specific value of θ. Moreover, the improvement in efficiency increases

as θ grows larger. Consistent with the results in Table 6, the size of the

improvement is small.

Panel B shows the standard deviation of estimators of µr. In contrast

to the case of µx, the relation between the standard deviation and θ is non-

monotonic for both the sample mean of excess returns and the maximum

likelihood estimate of the equity premium. For values of θ below about 0.998,

the standard deviations of the estimates are decreasing in θ, while for values

of θ above this number they are increasing. This result is surprising given the

result in Panel A. As θ increases, any given sample contains less information

about the predictor variable, and thus about returns. One might expect that

the standard deviation of estimators of the mean return would follow the same

pattern as in Panel A. Indeed, this is the case for part of the parameter space,

namely when the persistence of the predictor variable is very close to one.

However, an increase in θ has two opposing effects on the variance of the

estimators of the equity premium. On the one hand, an increase in θ de-

creases the information content of the predictor variable series, and thus of

the return series, as described above. On the other hand, for a given β, an
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increase in θ raises the R2 in the return regression. Because innovations to the

predictable part of returns are negatively correlated with innovations to the

unpredictable part of returns, an increase in θ increases mean reversion (this

can be seen directly from the expressions for the autocovariance of returns in

Appendix C.1).

This increase in mean reversion has consequences for estimation of the eq-

uity premium. Intuitively, if in a given sample there is a sequence of unusually

high returns, this will tend to be followed by unusually low returns. Thus

a sequence of unusually high observations or unusually low observations are

less likely to dominate in any given sample, and so the sample average will

be more stable than it would be if returns were iid (see Appendix C.2). Be-

cause the sample mean is simply the scaled long-horizon return, our result is

related to the fact that mean reversion reduces the variability of long-horizon

returns relative to short-horizon returns. For θ sufficiently large, the reduc-

tion in information from the greater autocorrelation does dominate the effect

of mean-reversion, and the variance of both the sample mean and the maxi-

mum likelihood estimate increase. In the limit as θ approaches one, returns

become non-stationary and the sample mean has infinite variance.

Panel B of Figure 3 also shows that MLE is more efficient than the sample

mean for any value of θ. The benefit of using maximum likelihood increases

with θ. Indeed, while the standard deviation of the sample mean falls from 0.14

to 0.12 as θ goes from 0.980 to 0.995, the maximum likelihood estimate falls

further, from 0.14 to 0.06. It appears that the benefits from mean reversion

and from maximum likelihood reinforce each other.

4.2.2. The role of predictability and of correlated shocks

The previous section established the importance of the persistence of the

dividend-price ratio in the precision gains from maximum likelihood. In this

section we focus on the two aspects of joint return and dividend-price ratio
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process that affect how information about the distribution of the dividend-

price ratio affects inference concerning returns: the predictive coefficient β

and the correlation of the shocks ρuv.

We first consider the role of predictability. As (9) shows, the difference

between the maximum likelihood estimator can be decomposed into a term

originating from non-zero shocks, and a term originating from predictability.

More than 100% of our result comes from the correlated shock term; in other

words the predictability term works against us. Without the predictability

term, our equity premium would be 0.29% per month rather than 0.32%.

This result is not surprising given that the intuition in Section 4.1 points

to negative ρuv rather than positive β as the source of our gains. If this is

correct, we should be able to document efficiency gains in simulations where

the predictive coefficient is reduced or eliminated entirely. Indeed, Table 6

shows that if we bias-correct β and θ, the efficiency gains are even larger than

when parameters are set to the maximum likelihood estimates. In this section,

we take this analysis a step further, and set β exactly to zero. We repeat the

exercise from Section 4.2.1, calculating the standard deviation of the estimates

across different values of θ. When we repeat the estimation, we do not impose

β = 0, which will work against us in finding efficiency gains.

Panel C of Figure 3 shows the results. First, because returns are iid, the

standard deviation of the sample mean is independent of θ and is a horizontal

line on the graph. The standard deviation of the maximum likelihood estimate

is, however, decreasing in θ. As θ increases, the information contained in the

first data point carries more weight. Thus the estimator is better able to

identify the average sign of the shocks to the dividend-price ratio and thus

to expected returns. Consider, for example, an autocorrelation of 0.998 (the

bias-corrected value in Panel B of Table 6). As Panel C shows, the standard

deviation of the MLE estimator is 0.12 while the standard deviation of the

sample mean is 0.17, or nearly 50% greater. Thus neither the reduction in the
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equity premium that we observe in the historical sample, nor the efficiency of

the maximum likelihood estimator depend on the predictability of returns.

So far we have shown how changes in the persistence, and changes in the

predictability of returns impact the efficiency of our estimates. In particular,

the efficiency of our estimates does not depend on return predictability. On

what, then, does it depend? The above discussion suggests that it depends,

critically, on the correlation between shocks to the dividend-price ratio and

to returns, because this is how the information from the dividend-price ratio

regression finds its way into the return regression. We look at this issue specif-

ically in Panel D of Figure 3, where we set the correlation between the shocks

to equal zero. In this figure, returns are no longer iid, which explains why the

standard deviation of the sample mean estimate rises as θ increases. On other

hand, though there is return predictability, the lack of correlation implies that

there is no mean reversion in returns, so the increase is monotonic, as opposed

to what we saw in Panel B.21 Most importantly, this figure shows zero, or neg-

ligible, efficiency improvements from MLE. In fact, for all but extremely high

values of θ, MLE performs very slightly worse than the sample mean, perhaps

because it relies on biased estimates of predictability.22 This exercise has little

empirical relevance as the correlation between returns and the dividend-price

ratio is reliably estimated to be strongly negative. Nonetheless, it is a stark

illustration of the conditions under which our efficiency gains break down.

21However, if the equity premium were indeed varying over time, one would expect return

innovations to be negatively correlated with realized returns (Pastor and Stambaugh, 2009).
22Though the data generating process assumes bias-corrected estimates, MLE will still

find values of β that are high relative to the values specified in the simulation. This will

hurt its finite-sample performance.
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4.2.3. Sample length and the difference between the estimators

Because both the maximum likelihood and the sample mean are consistent

estimators for the equity premium, they should converge to the true equity

premium as the sample size goes to infinity. The central limit theorem states

that the standard deviation of both sampling distributions should fall approx-

imately at the rate
√
T , where T is the sample size. However, as with all

asymptotic arguments, there may be practical considerations (such as the dif-

ficulty of maximizing a nonlinear function) why this might not hold.

We can evaluate the convergence using Monte Carlo simulations as in the

previous section, except that here we vary the sample size rather than the

parameters of the data generating process. Figure 4 shows the standard devi-

ation of the maximum likelihood estimates, the restricted maximum likelihood

estimates, and the sample mean, shown on a log scale (because of the
√
T -

convergence). Standard deviations the three estimators decline approximately

linearly up to sample sizes of about two hundred, with the intercepts on the two

maximum likelihood estimators lying far below that of the sample mean. This

figure implies that one would expect to see the greatest (absolute) difference

in standard errors in small samples. The ratios of the standard errors should

remain roughly constant, however, even for sample sizes that are quite large.

Beyond sample sizes of two hundred, the standard deviation for the sample

mean slopes downward at a higher rate. Nonetheless, maximum likelihood is

still clearly more efficient, even for samples as large as 1000.

We can also see the convergence by estimating the equity premium in our

historical data at each point in time. Every month, we compute the sample

mean, the maximum likelihood estimate, and the restricted maximum likeli-

hood estimate using the data beginning in January 1953 and continuing up

until that month. The results are shown in Panel A Figure 5. The estimates

are quite noisy at the beginning of the sample when only a few years of data
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are used, but they quickly become smoother. This is especially the case for

the maximum likelihood estimates (maximum likelihood and restricted maxi-

mum likelihood, are nearly identical through the entire sample) than for the

sample mean. In fact, this figure shows that maximum likelihood is far more

stable than the sample mean throughout the period, and that the sample mean

appears to converge (slowly) to the maximum likelihood value.23 While the

improvement offered by maximum likelihood is significant given the full sam-

ple of data, it is even more substantial when only a subset of the data are

used.

While Panel A Figure 5 illustrates the slow convergence of the sample

mean to the maximum likelihood estimate, the figure also shows substantial

short-term variation. For example, the estimators give very similar values in

the late 1970s and early 1980s, but the values diverge again in the late 1990s.

What drives these differences? Panel B subtracts the sample mean from the

maximum likelihood estimate, and multiplies the value of
√
T . The similarity

between this figure and the time series of the log dividend-price ratio shown

in Figure 2 is clear. That is, it is the behavior of the dividend-price ratio, and

more precisely, its difference at the end of the sample from its initial value,

that largely determines whether the difference between the sample mean and

maximum likelihood is large or small. This result is not surprising given the

discussion in Section 4.1, which traces the difference in the estimators to the

sign of the average shock to the dividend-price ratio over the sample period.

For example, in the late 1970s and early 1980s, the dividend-price ratio was

close to its value in 1953, and so the maximum likelihood estimate and the

sample mean were quite close to each other. In the 1990s, the dividend-price

ratio had diverged far from its value and the maximum likelihood estimate

23This reduction in noise also occurs for the estimates of β and θ as well. Namely, the

similarity reported for β and θ hold for the full sample, they are noticeably different when,

say, only 20 or 30 years of data are available.
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and the sample mean again were far apart. During this period,, the sample

mean increased substantially relative to its value in the 1970s and 1980s. The

maximum likelihood estimate did not, interpreting (in retrospect correctly),

the higher return observations during the 1990s as an unusual series of shocks.

To summarize the results of this section: we have shown that the efficiency

gains of maximum likelihood are greatest when the variable xt is persistent,

and when its shocks are correlated with the shocks to returns. Predictability

plays only a minor role in that it reinforcing the benefits of persistence. The

method also delivers its greatest improvement when the sample size is relatively

short, though there remains significant improvement for sample lengths many

times that usually available for financial time series.

5. Estimation under alternative data generat-

ing processes

This section shows the applicability of our procedure under alternative data

generating processes. Section 5.1 shows how to adapt our procedure to cap-

ture conditional heteroskedasticity in returns and in the predictor variable.

Section 5.1 and Section 5.2 consider the performance of our benchmark pro-

cedure when confronted with data generating processes that depart from the

stationary homoskedastic case in important ways. Our aim is to map out

cases where mis-specification overwhelms the gains from introducing data on

the dividend-price ratio, and when it does not. Finally, Section 5.3 analysis

the consequences of structural breaks for our results.

5.1. Conditional heteroskedasticity

It is well known that stock returns exhibit time-varying volatility (French et al.,

1987; Schwert, 1989; Bollerslev et al., 1992). In this section we generalize our
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estimation method to take this into account. Because of our focus on maximum

likelihood, a natural approach is to use the GARCH model of Bollerslev (1986).

We will refer to this method as GARCH-MLE, and, for consistency, continue

to refer to the method described in Section 2 as MLE. We ask three questions:

(1) Do we still find a lower equity premium when we apply GARCH-MLE to

the data? (2) Is GARCH-MLE efficient in small samples? (3) If we simulate

data characterized by time-varying volatility and apply (homoskedastic, and

therefore mis-specified) MLE, do we still find efficiency gains?

While the traditional GARCH model is typically applied to return data

alone, our method closely relies on estimation of a bivariate process with cor-

related shocks. Allowing for time-varying volatility of returns but not of the

dividend-price ratio seems artificial and unnecessarily restrictive. Following

Bollerslev (1990), who estimates a GARCH model on exchange rates, we con-

sider two correlated GARCH(1,1) processes. We assume

rt+1 − µr = β(xt − µx) + ut+1 (15a)

xt+1 − µx = θ(xt − µx) + vt+1, (15b)

where, conditional on information available up to and including time t,



ut+1

vt+1



 ∼ N



0,




σ2
u,t+1 ρuvσu,t+1σv,t+1

ρuvσu,t+1σv,t+1 σ2
v,t+1







 , (15c)

with

σ2
u,t+1 = ωu + αuu

2
t + δuσ

2
u,t, (15d)

σ2
v,t+1 = ωv + αvv

2
t + δvσ

2
v,t. (15e)

We assume initial conditions

σ2
u,1 =

ωu

1− αu − δu
,

σ2
v,1 =

ωv

1− αv − δv
.
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Note that ωu

1−αu−δu
and ωv

1−αv−δv
represent the unconditional means of σ2

u,t and

σ2
v,t respectively.

24 The bivariate GARCH(1,1) log-likelihood function is there-

fore

l(r1, . . . , rT ; x1, . . . , xT |µr, µx, β, θ, ωu, αu, δu, αv, δv, ρuv, x0) =

T∑

t=1

log
[
(1− ρ2uv)σ

2
u,tσ

2
v,t

]
+

1

1− ρ2uv

T∑

t=2




u2
t

σ2
u,t

+ 2ρuv
utvt

√

σ2
u,tσ

2
v,t

+
v2t
σ2
v,t



 .

(16)

This likelihood function conditions on x0, and thus is the GARCH analogue

of the conditional maximum likelihood function (5). However, unlike in the

homoskedastic case, there is no analytical expression for the unconditional dis-

tribution of x0 (Diebold and Schuermann, 2000).25 For this reason, we adopt

a two-stage method that allows us both to estimate conditional heteroskedas-

ticity, and to take into account the initial observation on the dividend-price

ratio. While this represents a departure from “pure” maximum likelihood, it

nonetheless allows us to consistently and efficiently estimate parameters.

We proceed as follows. First, we maximize the function (16) across the full

24Applying the law of iterated expectations, we find Eu2
t = E[Et−1u

2
t ] = Eσ2

u,t. The

result for σu follows under stationarity by taking the expectation of the left and right hand

sides of (15d), and the same argument works for σv.
25In principle we could capture this distribution by simulating from the conditional bivari-

ate GARCH(1,1) over a long-period of time. To integrate this method into our optimization

would not be easy however; for each function evaluation in our numerical optimization, we

would need to simulate this distribution with enough accuracy to capture subtle effects of,

say, the autoregressive coefficient θ along with the GARCH parameters. This would be

challenging given that the parameter range of interest implies that xt is highly persistent.

We would then need to repeat the procedure thousands of times in our Monte Carlo sim-

ulations. It is hard to see the benefits (in terms of finite-sample efficiency gains) that this

procedure would have over the more computationally feasible procedure that we do adopt.
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set of parameters. We then maximize

l(r1, . . . , rT ; x0, . . . , xT |µr, µx, β, θ, ωu, αu, δu, αv, δv, ρuv) =

log

(
ωv

(1− αv − δv) (1− θ2)

)

+
(x0 − µx)

2

ωv

(1− αv − δv)
(
1− θ2

)

+

T∑

t=1

log
[
(1− ρ2uv)σ

2
u,tσ

2
v,t

]
+

1

1− ρ2uv

T∑

t=1




u2
t

σ2
u,t

+ 2ρuv
utvt

√

σ2
u,tσ

2
v,t

+
v2t
σ2
v,t



 ,

(17)

where we fix the estimates of ωu, αu, δu, ωv, αv, δv and ρuv from the first

stage, and obtain new estimates of µr, µx, β and θ. The first two terms on the

right hand side of (17) represents a density for the initial observation x0. This

density, which is normal with standard deviation E[σv,t]/(1 − θ2), represents

an approximation to the true unknown density. By performing the estimation

in two stages, we can make sure that the mis-specification in the second stage

doesn’t contaminate our GARCH estimation. Indeed, the GARCH estimation

we perform in the first stage is the standard one in the literature. As mentioned

above, we refer to this procedure as GARCH-MLE.

We report estimates in Table D.7. Similarly to previous studies (e.g. French

et al. (1987)), we find that return volatility is moderately persistent, with a

monthly autocorrelation of 0.72. Volatility of the dividend-price ratio is some-

what more persistent, with a monthly autocorrelation of 0.89. The average

conditional volatilities of ut and vt are nearly identical to the unconditional

volatilities in our benchmark case. Most importantly, given the focus of this

study, the average equity premium is very close to what we found in our

benchmark estimation: 0.335% per month, as opposed to 0.322%. The sample

mean is 0.433% per month. Thus the finding of a lower equity premium is

robust to time-varying volatility, which answers the first question we pose in

the introduction to this section.

We now move on to the question of efficiency. We simulate 10,000 samples
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from the process (15) using parameter values estimated by GARCH-MLE. We

consider the performance of OLS (where we report sample means for the equity

premium and the dividend-price ratio), the benchmark MLE procedure, and

GARCH-MLE. Table 8 reports the means, standard deviations, and the 5th,

50th, and 95th percentiles of each parameter estimate.26 We find that both

MLE and GARCH-MLE are more efficient than the sample mean, and they

are both about as efficient as each other. The efficiency gains are similar to

what we see when the data generating process is homoskedastic (Table 6).

We conclude that our estimation works well in the presence of time-varying

volatility, both when we consider a method that explicitly takes time-varying

volatility into account, and when we consider a (mis-specified) method that

does not.

5.2. Non-stationarities in the dividend-price ratio

The previous section shows that our method works equally well for a bivariate

GARCH(1,1) model as for our benchmark homoskedastic model. This may be

because our method essentially translates information from long-run changes in

the dividend-price ratio to information about returns. These long-run changes

are sufficiently large that short-term volatility fluctuations do not alter their

interpretations. Here, and in the sections that follow, we consider alternative

models that have the potential to dramatically alter the interpretation of the

time series of the dividend-price ratio, and thus the model’s results for the

equity premium. As in Section 4.2.2 where we set the correlation between

shocks to the dividend-yield and returns to be zero, our aim is to “turn off” the

gains from our method. However, in that case, a zero correlation was clearly

counterfactual. Here, we consider models which, at least on a purely statistical

26For the volatility parameters σu and σv, we report the square root of the unconditional

means of σ2
u,t and σ2

v,t for GARCH-MLE.
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level, could account for the data. To focus on our main mechanism, we consider

homoskedastic returns; however, the results of the previous section strongly

suggest that these findings are also robust to conditional heteroskedasticity.

Given the observed high autocorrelation of the dividend-price ratio, a nat-

ural extension is to consider a random walk.27 One immediate question that

we face in assuming a random walk is the role of the predictive coefficient β. If

the dividend-price ratio were to follow a random walk, and if β were nonzero,

then the equity premium would be undefined. That is, excess stock returns,

which would be non-stationary in this case, would not possess an unconditional

mean. Any method, including the sample mean and our maximum likelihood

procedure would give meaningless results. For this reason, when we consider

a non-stationary dividend-price ratio (in this and in the subsequent section),

we assume β = 0.

We therefore simulate 10,000 artificial samples from the process

rt+1 − µr = ut+1

xt+1 = xt + vt+1.

For each sample, we then apply our benchmark maximum likelihood procedure,

as well as OLS regression.28 For parameters µr and µx (this is a parameter in

the estimation, not in the data generating process), we compare our maximum

likelihood results with the sample means. Our benchmark maximum likelihood

procedure (namely, maximizing Equation 6) is mis-specified because it assumes

27See for example, Campbell (2006) and Cochrane (2008).
28In our previous simulations, we initialize x0 using a draw from the stationary distribu-

tion. Clearly this is not possible in this case. We report simulation results with x0 set equal

to its value in the data, but we have obtained identical results from randomizing over x0.

Other parameters are as follows: µr equals to its benchmark maximum likelihood estimate,

σu the standard deviation of returns, σv the standard deviation of differences in the log

dividend-price ratio, and ρuv to the correlation between returns and differences in the log

dividend-price ratio.
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stationarity and allows for predictability. Of course assumptions of OLS are

also violated, as discussed above.

Table D.8 in the Online Appendix shows the results. Maximum likelihood

still estimates the equity premium without bias, as shown by the fact that the

average estimate of µr is exactly equal to the true value from the simulation.

Besides correctly estimating the equity premium, maximum likelihood leads

to significant gains in efficiency, even relative to our benchmark case. The

standard deviation of the maximum likelihood estimate is only 30% of the

standard deviation of the sample mean. The spread between the fifth and

ninety-fifth percentile also falls by a factor greater than three. In this case,

our estimation method does not pick up the non-stationarity in the dividend-

price ratio (nor does OLS). However, the intuition of Section 4 still holds in

this limiting case, and the model successfully estimates the equity premium

with increased precision.

The previous discussion shows that our method is effective under a random-

walk model for the dividend-price ratio. What about other forms of non-

stationarity? Here, we consider what intuitively represents a worst-case sce-

nario: a time trend in the dividend-price ratio. As in the case of the random

walk model, we set β equal to zero so the equity premium is still well-defined.

We therefore consider

rt+1 − µr = ut+1 (18a)

xt+1 − µx = ∆+ θ(xt − µx) + vt+1, (18b)

where ∆ denotes the time trend. With the exceptions of ∆ and β, we set the

parameters to equal those of our benchmark calibration. We then set ∆ so

that the in-sample average of shocks to the dividend-price ratio is exactly zero.

Because
∑T

t=1 v̂t in the data is −1.051, and because the length of the sample

is 707 months, this implies a value of ∆ of −0.1487%.

We simulate 10,000 samples from (18). For each of these we compute OLS
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and find the sample mean of the predictor variable and of the equity premium.

We also run our benchmark maximum likelihood estimation, which is highly

mis-specified in this case. For consistency, we continue to refer to this as

maximum likelihood.

Results are shown in Table D.9 in the Online Appendix. Unlike in the case

of the random walk, in this case mis-specification has serious consequences for

the estimation of the equity premium. Whereas the sample mean finds, on

average, the correct value, maximum likelihood finds a lower value: 0.280%

versus 0.322%. To understand this result, consider that the true mean of xt

is undefined, but that in every sample there will be an average value of xt.

This average xt will typically be lower than µx because the time trend makes

xt lower than it would be otherwise. The MLE for µx will be slightly higher

than the sample mean because it will correct for what it sees as an unusual

series of shocks (recall that we are still maximizing Equation 6). However,

what appears to be an unusual series of shocks is in fact the time trend.

Now consider the estimation of the equity premium. Unlike the mean of xt,

the equity premium is well-defined because we have set β to equal zero. This

is why the sample mean finds the correct answer. The maximum likelihood

estimator, however, uses information from the predictor variable equation,

information that is, in this case, incorrect. This information indicates that,

on average, shocks have been positive to returns over each sample period, and

thus it is necessary to adjust the equity premium downward.

While it would probably be nearly impossible to reject this time-trend

model on purely statistical grounds, it seems unappealing from the point of

view of economics. It implies that market participants would have known

in advance about the decrease in the dividend-price ratio over the post-war

sample, which is hard to believe. Not surprisingly given this basic intuition,

equilibrium models of the asset prices tend to imply not (18), but rather the
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autoregressive process (1b), at least as an approximation.29

5.3. Structural breaks

So far, we have assumed that a single process characterizes returns and the

dividend-price ratio over the postwar period. Studies including Pástor and

Stambaugh (2001), Lettau and Van Nieuwerburgh (2008) and Pettenuzzo and

Timmermann (2011) argue that this period has been characterized by a struc-

tural break. The presence of a structural break could have several implications

for our findings. Recall that the reason for our lower point estimate of the eq-

uity premium is the decline in the dividend-price ratio over the sample period.

In a limiting case, where this decline is due entirely to a structural break, then

our finding of a lower equity premium could completely disappear because the

dividend-price ratio would no longer be declining over each sub-sample. As a

related point, a structural break could make it less likely that we would find

efficiency gains because, while the relevant sample size would be smaller, the

persistence of the dividend-price ratio would be smaller as well.

To evaluate the effects, we use the framework of Lettau and Van Nieuwer-

burgh (2008), whose model is most similar to the one we consider. Lettau and

van Nieuwerburgh find evidence for a structural break in the dividend-price

ratio in 1994. Accordingly, we re-estimate our model on each sub-period. The

results are reported in Table 9. This table shows that maximum likelihood

still leads to substantially lower point estimates as compared with the sample

mean. Consider first the 1953–1994 subperiod. This subperiod is characterized

by relatively high returns, as indicated by a sample mean of 0.439%, slightly

higher than our full sample average. However, this period is characterized by a

striking decline in the dividend-price ratio, a fact that is largely undiminished

29Hansen et al. (2008) also present an example where a time-trend model for valuation

ratios creates problems for interpretation of statistical findings. They argue similarly that

the time trend model is an implausible description on economic grounds.
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by breaking the sample in 1994 (see Figure 2). Our model thus attributes

the high observed equity premium to an unusual series of shocks rather than

a high true mean. The point estimate for the equity premium, at 0.315%, is

lower than the point estimate for the full sample.

For the second sub-period, from 1995-2011, observed returns were lower,

leading to a sample mean of 0.411%. Again, the dividend-price ratio de-

clined over this sub-sample, so the maximum likelihood estimate is lower than

the sample mean, at 0.336%. Thus maximum likelihood continues to have a

substantial effect on the equity premium estimate, despite the presence of a

structural break.

We now turn to the question of efficiency. Panel A1 of Table 10 shows sim-

ulation results when the parameters and the length of each fictitious sample

are set to match the 1953–1994 subsample. We still do find efficiency gains,

but they are indeed smaller than in our benchmark case. The standard error

on the equity premium falls from 0.086 for the sample mean to 0.062 for max-

imum likelihood (in comparison, for our benchmark case, the sample mean

had a standard error of 0.089 and the maximum likelihood estimate had a

standard error of 0.050). Panel A1 also reveals the extent of the bias in the

predictive and autoregressive coefficients. The mean estimate of β is substan-

tially higher than its true value, and the mean of θ is substantially lower. This

bias was also apparent in our benchmark case discussed in Section 3.6, but

it is more substantial because of the reduction in sample size. Motivated by

these results, we also consider a bias-corrected simulation, where, as before,

we choose the true values of the parameters so that the mean in simulation

matches the observed point estimates. As Panel A2 shows, the efficiency gain

from maximum likelihood is almost as large as for our benchmark simulation

when we correct for bias. The reason is that θ is higher than in Panel A1

(though it is still below the full-sample estimate), and the sample size is lower.

We repeat this analysis for the 1995–2011 subsample, with results shown
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in Panel B. Panel B1 shows the results without the bias correction. In this

case, because the sample size is so short, we still see efficiency gains despite the

relatively low value of the autocorrelation. We also attempt a bias correction

in Panel B2. Our results indicate the difficulties of inference over short time

periods in the presence of persistent regressors. Even if we set the predictive

coefficient to zero and the autocorrelation to 0.999, we are unable to quite

match the values in the data (though we come close). Under this calibration,

a short sample, combined with a high degree of persistence implies that the

standard errors for maximum likelihood are less than half as large as for the

sample mean. In other words, our efficiency gains are larger than even in the

full sample.

To summarize, because a structural break does not entirely explain the

decline in the price-dividend ratio, our method still produces substantially

lower estimates of the equity premium than the sample mean, even when we

take a structural break into account. Moreover, our efficiency gains are the

same or larger than in our benchmark case.

6. Conclusion

A large literature has grown up around the empirical quantity known as the

equity premium, in part because of its significance for evaluating models in

macro-finance (Mehra and Prescott (1985)) and in part because of its prac-

tical significance as indicated by discussions in popular classics on investing

(e.g. Siegel (1994), Malkiel (2003)) and in undergraduate and masters’ level

textbooks.

Estimation of the equity premium is almost always accomplished by taking

sample means. The implicit assumption is that the period in question con-

tains a representative sample of returns. We show that it is possible to relax

this assumption, and obtain a better estimate of the premium, by bringing
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additional information to bear on the problem, specifically the information

contained separately in prices and dividends.

We show that the time series behavior of prices, dividends and returns,

suggests that shocks to returns have been unusually positive over the post-war

period. Thus the sample average will overstate the equity premium. We show

that this intuition can be formalized with the standard econometric technique

of maximum likelihood. Applying maximum likelihood rather than taking the

sample average leads to an economically significant reduction in the equity

premium of 1.3 percentage points from 6.4% to 5.1%. Furthermore, Monte

Carlo experiments and RMSE calculations demonstrate that our method re-

duces sampling error and more reliably captures the true equity premium. We

show similar results in international data and in characteristic-sorted portfo-

lios. In particular, applying our results to portfolios sorted on the basis of

market equity causes the well-known size premium to disappear.

Our method differs from the sample mean in that we require assumptions

on the data generating process for the dividend-price ratio. We have shown

that our findings are robust to a wide range of variations in these assumptions.

Specifically, it is not necessary for returns to be homoskedastic, or even for the

dividend-price ratio to be stationary. We also show that our method works well

in the presence of structural breaks. The main conclusion from our findings

is that the generous risk compensation offered by equities over the postwar

sample may in part be an artifact of that period, and may not be a reliable

guide to what investors will experience going forward.
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Pástor, Ľ., Stambaugh, R. F., 2001. The equity premium and structural breaks.

The Journal of Finance 56, 1207–1239.

Pastor, L., Stambaugh, R. F., 2009. Predictive systems: Living with imperfect

predictors. Journal of Finance 64, 1583 – 1628.

Pettenuzzo, D., Timmermann, A., 2011. Predictability of stock returns and

asset allocation under structural breaks. Journal of Econometrics 164, 60–

78.

Poirier, D. J., 1978. The effect of the first observation in regression models

with first-order autoregressive disturbances. Journal of the Royal Statistical

Society, Series C, Applied Statistics 27, 67–68.

Schwert, W. G., 1989. Why does stock market volatility change over time?

Journal of Finance 44, 1115–1153.

Shiller, R., 2000. Irrational Exuberance. Princeton University Press, Princeton,

NJ.

Shiller, R. J., 1981. Do stock prices move too much to be justified by subse-

quent changes in dividends? American Economic Review 71, 421–436.

Siegel, J. J., 1994. Stocks for the long run: a guide to selecting markets for

long-term growth. Irwin, Burr Ridge, IL.

Siegel, J. J., 2005. Perspectives on the equity risk premium. Financial Analysts

Journal 61, 61–73.

Singleton, K., 2006. Empirical dynamic asset pricing: Model specification and

econometric assessment. Princeton University Press, Princeton, NJ.

Stambaugh, R. F., 1997. Analyzing investments whose histories differ in length.

Journal of Financial Economics 45, 285–331.

53



Stambaugh, R. F., 1999. Predictive regressions. Journal of Financial Eco-

nomics 54, 375–421.

Torous, W., Valkanov, R., Yan, S., 2004. On predicting stock returns with

nearly integrated explanatory variables. Journal of Business 77, 937–966.

van Binsbergen, J. H., Koijen, R. S. J., 2010. Predictive regressions: A present-

value approach. The Journal of Finance 65, 1439–1471.

Wachter, J. A., Warusawitharana, M., 2009. Predictable returns and asset

allocation: Should a skeptical investor time the market? Journal of Econo-

metrics 148, 162–178.

Wachter, J. A., Warusawitharana, M., 2015. What is the chance that the equity

premium varies over time? evidence from regressions on the dividend-price

ratio. Journal of Econometrics 186, 74–93.

Welch, I., Goyal, A., 2008. A comprehensive look at the empirical performance

of equity premium prediction. Review of Financial Studies 21, 1455–1508.

Zellner, A., 1962. An efficient method of estimating seemingly unrelated re-

gressions and tests for aggregation bias. Journal of the American Statistical

Association 57, 348–368.

Zellner, A., 1986. On assessing prior distributions and bayesian regression

analysis with g-prior distributions. In: Goel, P., Zellner, A. (eds.), Bayesian

Inference and Decision Techniques: Essays in Honour of Bruno de Finetti ,

North-Holland, Amsterdam, The Netherlands, pp. 233–243.

54



Table 1. Sample, Maximum Likelihood, and OLS Estimates.

January 1953 – December 2011 January 1927 – December 2011
OLS Sample MLE MLE0 OLS Sample MLE MLE0

µr 0.433 0.322 0.312 0.464 0.391 0.395
µx −3.545 −3.504 −3.437 −3.374 −3.383 −3.397
β 0.828 0.686 0.623 0.650
θ 0.992 0.993 0.999 0.992 0.991 0.998
σu 4.414 4.416 4.426 5.466 5.464 5.473
σv 0.046 0.046 0.046 0.057 0.057 0.057
ρuv −0.961 −0.961 −0.958 −0.953 −0.953 −0.952

RMSE 4.573 4.562 4.563 4.668 4.663 4.664
p(∆MSE) 0.044 0.063 0.010 0.009

Notes: Estimation of the system

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where rt is the continuously-compounded CRSP return minus the 30-day Treasury Bill
return and xt is the log of the dividend-price ratio. Shocks ut and vt are mean zero and
iid over time with standard deviations σu and σv and correlation ρuv. Data are monthly.
Means and standard deviations of returns are in percentage terms. In the OLS columns,
parameters are estimated by ordinary least squares, with σu, σv, and ρuv estimated from the
residuals. In the Sample column, µr is the average excess return over the sample and µx is
the average of the log dividend-price ratio. In the MLE columns parameters are estimated
using maximum likelihood. In the MLE0 columns, parameters are estimated using maximum
likelihood with the restriction β = 0. RMSE denotes the square root of the mean-squared
error (MSE) from monthly out-of-sample return forecasts. p(∆MSE) denotes the p-value
for a test of whether the MSE from out-of-sample forecasts generated by MLE differs from
that generated by the sample mean.
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Table 2. Estimates of the mean for characteristic-sorted portfolios

Method Estimate of µr by quintile Premium

Panel A: portfolios sorted by size

Small Q2 Q3 Q4 Big SmB

µr

Sample 0.957 0.978 0.975 0.936 0.797 0.160
MLE 0.730 0.767 0.764 0.775 0.702 0.028
MLE0 0.709 0.752 0.758 0.777 0.689 0.020

RMSE
Sample 6.428 6.038 5.520 5.183 4.333
MLE 6.420 6.030 5.510 5.175 4.320
MLE0 6.422 6.033 5.514 5.177 4.323

p(∆MSE) 0.282 0.236 0.178 0.138 0.022

Panel B: portfolios sorted by book-to-market ratio

Low Q2 Q3 Q4 High HmL

µr

Sample 0.755 0.845 0.930 0.991 1.074 0.319
MLE 0.683 0.740 0.836 0.910 0.986 0.303
MLE0 0.631 0.735 0.840 0.903 1.013 0.382

RMSE
Sample 4.943 4.642 4.458 4.429 5.090
MLE 4.929 4.638 4.450 4.424 5.080
MLE0 4.935 4.640 4.451 4.426 5.086

p(∆MSE) 0.191 0.329 0.040 0.299 0.175

Notes: Estimates of µr (the expected net return) on characteristic-sorted portfolios in
monthly data from 1953–2011. Estimates are reported in monthly percentage terms. Sample
denotes the sample average of net returns. MLE denotes the maximum likelihood estimate
of µr using the system

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where rt is the portfolio return and xt is the dividend-price ratio on the corresponding
portfolio. MLE0 denotes maximum likelihood with β restricted to be zero. Under the
Premium column, we report the difference in the mean between the first and fifth quintile.
RMSE denotes the square root of the mean-squared error (MSE) from monthly out-of-
sample return forecasts. p(∆MSE) denotes the p-value for a test of whether the MSE from
out-of-sample forecasts generated by MLE differs from that generated by the sample mean.
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Table 3. Estimates for international indices

Sample MLE MLE0

All 0.362 0.191 0.249

Asia 0.259 0.119 0.130

EU with UK 0.423 0.327 0.360

EU without UK 0.386 0.243 0.321

Scandinavia 0.569 0.340 0.459

Notes: Estimates of the risk premium µr (the expected return less the riskfree rate) on
international indices in monthly data beginning in January of 1976 and ending in 2011.
Returns are dollar-denominated, and the U.S. 30-day Treasury Bill return proxies for the
riskfree rate. Estimates are reported in monthly percentage terms. Sample denotes the
sample average of excess returns. MLE denotes maximum likelihood of µr using the system

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where rt is the index return in excess of the Treasury Bill and xt is the dividend-price ratio
for the index. MLE0 denotes maximum likelihood with β restricted to be zero.
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Table 4. Estimates of the mean for country-level indices

Sample MLE MLE0

Australia (1976) 0.463 0.429 0.423

Austria (1988) 0.404 −0.014 0.272

Belgium (1976) 0.511 0.344 0.349

Canada (1978) 0.473 0.134 0.200

Denmark (1990) 0.390 0.405 0.417

Finland (1989) 0.353 0.160 0.387

France (1976) 0.415 0.189 0.284

Germany (1976) 0.363 0.387 0.405

Hong Kong (1976) 0.631 0.690 0.688

Ireland (1992) 0.230 0.124 0.159

Italy (1976) 0.213 −0.191 0.042

Japan (1976) 0.198 0.063 0.040

Netherlands (1976) 0.530 0.445 0.449

New Zealand (1989) 0.121 −0.117 −0.010

Norway (1976) 0.474 0.357 0.392

Singapore (1976) 0.385 0.309 0.313

Spain (1976) 0.279 0.328 0.345

Sweden (1976) 0.630 0.408 0.534

Switzerland (1976) 0.465 0.286 0.417

UK (1976) 0.495 0.433 0.430

Notes: Estimates of the risk premium µr (the expected return less the riskfree rate) on
country-level indices in monthly data beginning on the date in parentheses and ending in
2011. Returns are dollar-denominated, and the U.S. 30-day Treasury Bill return proxies for
the riskfree rate. Estimates are reported in monthly percentage terms. Sample denotes the
sample average of excess returns. MLE denotes maximum likelihood of µr using the system

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where rt is the country return in excess of the Treasury Bill and xt denotes the dividend-
price ratio for the country. MLE0 denotes maximum likelihood with β restricted to be
zero.
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Table 5. Estimates using alternative valuation measures

log B/M ratio, 1977 – 2011 log E/P ratio, 1953 – 2011
OLS Sample MLE MLE0 OLS Sample MLE MLE0

Panel A: CRSP return in excess of the risk-free rate

µr 0.427 0.304 0.274 0.433 0.384 0.371
µx −0.739 −0.629 −0.574 −2.866 −2.839 −2.824
β 0.600 0.492 0.588 0.624
θ 0.992 0.994 0.997 0.996 0.995 0.998
σu 4.653 4.651 4.660 4.419 4.416 4.426
σv 0.045 0.045 0.045 0.036 0.036 0.036
ρuv −0.902 −0.902 −0.900 −0.698 −0.698 −0.697

RMSE 4.728 4.723 4.723 4.573 4.570 4.565
p(∆MSE) 0.371 0.365 0.299 0.030

Panel B: S&P500 capital gain in excess of the risk-free rate

µr 0.166 0.011 0.000 0.160 0.089 0.086
µx −0.739 −0.629 −0.614 −2.866 −2.839 −2.830
β 0.270 0.164 0.149 0.191
θ 0.992 0.994 0.995 0.996 0.995 0.997
σu 4.495 4.493 4.496 3.608 3.605 3.608
σv 0.045 0.045 0.045 0.036 0.036 0.036
ρuv −0.914 −0.914 −0.914 −0.994 −0.994 −0.994

RMSE 4.576 4.578 4.578 3.681 3.677 3.675
p(∆MSE) 0.566 0.545 0.248 0.151

Notes: Estimation of the system

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where rt is the continuously-compounded return minus the 30-day Treasury Bill return and
xt is the logarithm of the book-to-market ratio or the inverse CAPE ratio (10-years inflation-
adjusted earnings dividend by inflation-adjusted price), both for the S&P 500. In Panel A,
the return is on the CRSP value-weighted portfolio. In Panel B, the return corresponds
to the log price change on the S&P 500. Data are monthly. Shocks ut and vt are mean
zero and iid over time with standard deviations σu and σv and correlation ρuv. Means and
standard deviations of returns are in percentage terms. In the OLS columns, parameters
are estimated by ordinary least squares, with σu, σv, and ρuv estimated from the residuals.
In the Sample column, µr is the average excess return over the sample and µx is the average
of xt. In the MLE columns, parameters are estimated using maximum likelihood. In the
MLE0 columns, parameters are estimated using maximum likelihood with the restriction
β = 0.
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Table 6. Small-sample distribution of estimated parameters

True Value Method Mean Std. Dev. 5 % 50 % 95 %

Panel A: Parameters set to estimates in Table 1

µr 0.322
Sample 0.322 0.089 0.175 0.322 0.467
MLE 0.323 0.050 0.241 0.324 0.404

µx −3.504
Sample −3.508 0.231 −3.894 −3.507 −3.126
MLE −3.508 0.221 −3.875 −3.507 −3.145

β 0.686
OLS 1.284 0.699 0.420 1.145 2.639
MLE 1.243 0.670 0.440 1.103 2.541

θ 0.993
OLS 0.987 0.007 0.973 0.988 0.996
MLE 0.987 0.007 0.974 0.989 0.996

σu 4.416
OLS 4.408 0.119 4.213 4.408 4.603
MLE 4.406 0.119 4.211 4.406 4.600

σv 0.046
OLS 0.046 0.001 0.044 0.046 0.048
MLE 0.046 0.001 0.044 0.046 0.048

ρuv −0.961
OLS −0.961 0.003 −0.965 −0.961 −0.956
MLE −0.961 0.003 −0.965 −0.961 −0.956

Panel B: Bias Correction

µr 0.322
Sample 0.324 0.138 0.097 0.327 0.546
MLE 0.322 0.072 0.205 0.323 0.441

µx −3.504
Sample −3.510 0.582 −4.464 −3.512 −2.567
MLE −3.510 0.557 −4.425 −3.506 −2.601

β 0.090
OLS 0.750 0.643 −0.009 0.610 1.989
MLE 0.686 0.601 0.036 0.528 1.881

θ 0.998
OLS 0.991 0.007 0.978 0.992 0.999
MLE 0.992 0.006 0.979 0.993 0.998

σu 4.424
OLS 4.417 0.118 4.223 4.416 4.611
MLE 4.417 0.118 4.225 4.416 4.612

σv 0.046
OLS 0.046 0.001 0.044 0.046 0.048
MLE 0.046 0.001 0.044 0.046 0.048

ρuv −0.961
OLS −0.961 0.003 −0.965 −0.961 −0.956
MLE −0.961 0.003 −0.965 −0.961 −0.956

Notes: We simulate 10,000 monthly samples from the data generating process (DGP)

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where ut and vt are Gaussian and iid over time with standard deviations σu and σv and
correlation ρuv. The sample length is as in postwar data. In Panel A parameters are set
to their maximum likelihood estimates. In Panel B parameters are set to their maximum
likelihood estimates with θ and β adjusted for bias. We conduct maximum likelihood esti-
mation (MLE) for each sample path. As a comparison, we take sample means to estimate
µr and µx (Sample) and use ordinary least squares to estimate the slope coefficients and
the variance and correlations of the residuals (OLS). The table reports the means, stan-
dard deviations, and 5th, 50th, and 95th percentile values across simulations. The standard
deviations correspond to small-sample standard errors for the postwar estimates in Table 1.
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Table 7. Asymptotic standard errors for the 1953–2011 period

Sample MLE MLE0

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

µr 0.433 0.114 0.322 0.054 0.312 0.179
µx −3.545 0.590 −3.504 0.279 −3.437 2.416
β 0.686 0.400
θ 0.993 0.004 0.999 0.001
σ2
u 19.498 0.223 19.587 0.237

σ2
v 0.002 2.376× 10−5 0.002 2.521× 10−5

σuv −0.194 6.446× 10−7 −0.193 7.179× 10−7

Notes: Point estimates and asymptotic standard errors for the system

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where rt is the continuously-compounded CRSP return minus the 30-day Treasury Bill
return and xt is the log of the dividend-price ratio. Shocks ut and vt are mean zero and iid
over time with variances σ2

u and σ2
v and covariance σuv. Data are monthly, January 1953 –

December 2011. Returns are in percentage terms. In the Sample columns, parameters are
estimated using the sample means. In the MLE columns, parameters are estimated using
maximum likelihood. In the MLE0 columns, parameters are estimated using maximum
likelihood assuming β = 0.
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Table 8. Small-sample distribution of estimators under conditional heteroskedasticity

True Value Method Mean Std. Dev. 5 % 50 % 95 %

µr 0.335
Sample 0.335 0.088 0.190 0.335 0.478
MLE 0.335 0.049 0.253 0.335 0.415

GARCH-MLE 0.335 0.049 0.252 0.335 0.414

µx −3.569
Sample −3.570 0.225 −3.945 −3.570 −3.204
MLE −3.571 0.214 −3.926 −3.572 −3.222

GARCH-MLE −3.571 0.214 −3.922 −3.571 −3.224

β 0.689
OLS 1.288 0.694 0.425 1.156 2.621
MLE 1.244 0.668 0.436 1.103 2.554

GARCH-MLE 1.236 0.664 0.436 1.100 2.531

θ 0.993
OLS 0.987 0.007 0.973 0.988 0.996
MLE 0.987 0.007 0.974 0.989 0.996

GARCH-MLE 0.987 0.007 0.974 0.989 0.996

σu 4.351
OLS 4.343 0.131 4.128 4.341 4.565
MLE 4.342 0.131 4.126 4.340 4.563

GARCH-MLE 4.341 0.133 4.125 4.339 4.566

σv 0.045
OLS 0.045 0.001 0.043 0.045 0.047
MLE 0.045 0.001 0.043 0.045 0.047

GARCH-MLE 0.045 0.001 0.043 0.045 0.047

ρuv −0.959
OLS −0.959 0.003 −0.964 −0.959 −0.954
MLE −0.959 0.003 −0.964 −0.959 −0.954

GARCH-MLE −0.959 0.003 −0.964 −0.960 −0.954

Notes: We simulate 10,000 monthly data samples from

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where ut and vt follow GARCH processes with conditional correlation ρuv. The parameter
σu equals

√

E[σ2
ut] and similarly for σv. Parameters are set equal to estimates from GARCH-

MLE as described in Section 5.1. For each sample path, we estimate parameters by OLS
(and report sample means for µr and µx), by MLE (assuming homoskedastic shocks), and
by GARCH-MLE.
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Table 9. Sub-sample estimates

January 1953 – December 1994 January 1995 – December 2011
OLS Sample MLE MLE0 OLS Sample MLE MLE0

µr 0.439 0.315 0.311 0.411 0.336 0.247
µx −3.342 −3.337 −3.318 −4.048 −3.955 −3.845
β 2.538 2.186 2.614 1.968
θ 0.977 0.981 0.999 0.972 0.979 0.995
σu 4.205 4.210 4.238 4.840 4.842 4.879
σv 0.043 0.043 0.043 0.051 0.051 0.051
ρuv −0.967 −0.967 −0.960 −0.948 −0.949 −0.941

RMSE 4.413 4.398 4.399 5.129 5.150 5.121
p(∆MSE) 0.014 0.033 0.823 0.329

Notes: Estimates of

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where ut and vt are Gaussian and iid over time with correlation ρuv. rt is the continuously-
compounded CRSP return minus the 30-day Treasury Bill return and xt is the log of the
dividend-price ratio. Two monthly data samples are considered: 1953–1994 and 1995–2011.
Means and standard deviations of returns are in percentage terms. In the OLS columns,
parameters are estimated by ordinary least squares, except for µr and µx, which are equal
to the sample averages of excess returns and the log dividend-price ratio respectively. In the
MLE columns, parameters are estimated using maximum likelihood. In the MLE0 columns,
parameters are estimated using g maximum likelihood under the restriction β = 0. RMSE
denotes the square root of the mean-squared error (MSE) from monthly out-of-sample return
forecasts. p(∆MSE) denotes the p-value for a test of whether the MSE from out-of-sample
forecasts generated by MLE differs from that generated by the sample mean.
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Table 10. Small-sample distribution of estimators in simulations calibrated to subsamples

from Table 9

True Value Method Mean Std. Dev. 5 % 50 % 95%

Panel A1: 1953–1994, Calibration to MLE

µr 0.315
Sample 0.315 0.086 0.176 0.315 0.457
MLE 0.316 0.062 0.214 0.315 0.417

µx −3.337
Sample −3.336 0.097 −3.494 −3.337 −3.179
MLE −3.336 0.093 −3.488 −3.337 −3.183

β 2.186 MLE 2.983 1.133 1.518 2.776 5.122

θ 0.981 MLE 0.973 0.012 0.951 0.975 0.988

Panel A2: 1953–1994, Bias Correction

µr 0.315
Sample 0.315 0.115 0.125 0.314 0.504
MLE 0.315 0.080 0.184 0.315 0.447

µx −3.337
Sample −3.336 0.166 −3.610 −3.337 −3.061
MLE −3.336 0.158 −3.595 −3.336 −3.074

β 1.400 MLE 2.185 0.961 1.007 1.983 4.066

θ 0.990 MLE 0.981 0.010 0.962 0.983 0.993

Panel B1: 1995–2011, Calibration to MLE

µr 0.336
Sample 0.333 0.187 0.028 0.332 0.639
MLE 0.334 0.110 0.153 0.335 0.516

µx −3.955
Sample −3.952 0.145 −4.194 −3.951 −3.712
MLE −3.953 0.139 −4.183 −3.952 −3.721

β 1.968 MLE 3.841 2.220 1.158 3.358 8.071

θ 0.979 MLE 0.958 0.024 0.913 0.963 0.986

Panel B2: 1995–2011, Bias Correction

µr 0.336
Sample 0.331 0.339 −0.232 0.336 0.891
MLE 0.332 0.152 0.083 0.332 0.582

µx −3.955
Sample −3.941 1.091 −5.741 −3.949 −2.161
MLE −3.941 1.079 −5.733 −3.952 −2.175

β 0 MLE 2.109 1.877 0.136 1.620 5.831

θ 0.999 MLE 0.976 0.020 0.937 0.981 0.996

Notes: We simulate 10,000 monthly samples from the data generating process (DGP)

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where ut and vt are Gaussian and iid over time with correlation ρuv. In Panel A, sample
length and paramaters are for the 1953–1994 subsample, without bias correction (A1) and
with bias correction (A2). In Panel B is constructed similarly for the 1995-2011 sample,
except that here the bias-correction is partial. For each sample path, we conduct maximum
likelihood estimation (MLE) and, for comparison, take sample means to find µr and µx

(Sample). The table reports the means, standard deviations, and 5th, 50th, and 95th
percentile values across simulations.
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Fig. 1. Densities of the estimators of the equity premium in repeated samples of length equal

to the postwar data. The solid line shows the density of the maximum likelihood estimate.

The dashed line shows the density of the sample mean. Densities smoothed using a normal

kernel.
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Fig. 2. The logarithm of the dividend-price ratio for the CRSP value-weighted portfolio.

The dotted line indicates the mean, and the black dot the initial value.
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Panel A: Mean of the log dividend-price ratio Panel B: Equity premium, benchmark
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Fig. 3. Standard deviation of estimators of the mean of the log-dividend price ratio (Panel A)

and of the equity premium (Panels B–D). Estimators are the sample mean (dots) and max-

imum likelihood (crosses). For each value of the autocorrelation θ, we simulate 10,000

monthly samples and calculate the standard deviation of estimates across samples. Param-

eters other than θ are set equal to their maximum likelihood estimates with the following

exceptions. In Panel B, the predictive coefficient is bias-corrected. In Panel C, the predictive

coefficient is set equal to zero. In Panel D, the predictive coefficient is bias-corrected and

the correlation of the shocks is set equal to zero. Standard deviations on the mean return

are in monthly percentage terms.
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Fig. 4. Standard deviation of estimators of the equity premium as a function of sample size.

For each T , we simulate 10,000 monthly samples of length T and calculate the standard

deviation across samples. MLE0 denotes maximum likelihood estimation with β restricted

to be zero. Standard deviations are shown on a log-log scale. Standard deviations, which

have the interpretation of standard errors on the estimates, are in monthly percentage terms.
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Panel A: Estimates of the equity premium
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Fig. 5. For each month, beginning in January 1953, we estimate the equity premium using

maximum likelihood (MLE), maximum likelihood with the β = 0 restriction (MLE0), and

the sample mean of returns less the riskfree rate (Sample) using data from January 1953

up until that month. The resulting time series is shown in Panel A. Panel B shows the

difference between the maximum likelihood estimate and the sample mean, scaled by the

length of the sample. Estimates of the equity premium are in monthly percentage terms.
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Online Appendix

A. Derivation of the maximum likelihood es-

timators

A.1. Benchmark

We denote the maximum likelihood estimate of parameter q as q̂. Here we

derive the estimators for µr, µx, β, θ, σ
2
u, σ

2
v and σuv. We note in particular

that σ̂2
u is the estimator of σ2

u, not the square of the estimator of σu, and

similarly for σ̂2
v . Maximizing the exact log likelihood function is the same as

minimizing the function L:

L(β, θ, µr, µx, σuv, σu, σv) = log(σ2
v)− log(1− θ2) +

1− θ2

σ2
v

(x0 − µx)
2

+ T log(|Σ|) + σ2
v

|Σ|
T∑

t=1

u2
t − 2

σuv

|Σ|
T∑

t=1

utvt +
σ2
u

|Σ|
T∑

t=1

v2t , (A.1)

where |Σ| = σ2
uσ

2
v − σ2

uv. The function L is −2 times the logarithm of the

likelihood function (6) modulo constants. The first-order conditions arise from

setting the following partial derivatives of L to zero:

0 =
∂

∂β
L = 2

[

σ2
v

|Σ|
T∑

t=1

ut(µx − xt−1)−
σuv

|Σ|
T∑

t=1

(µx − xt−1)vt

]

(A.2a)

0 =
∂

∂θ
L = 2

[

θ

1− θ2
− θ

(x0 − µx)
2

σ2
v

− σuv

|Σ|
T∑

t=1

ut(µx − xt−1) +
σ2
u

|Σ|
T∑

t=1

vt(µx − xt−1)

]

(A.2b)

0 =
∂

∂µr

L = 2

[

− σ2
v

|Σ|
T∑

t=1

ut +
σuv

|Σ|
T∑

t=1

vt

]

(A.2c)
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0 =
∂

∂µx

L = 2

[

− 1− θ2

σ2
v

(x0 − µx) +
σ2
v

|Σ|
T∑

t=1

βut

− σuv

|Σ|
T∑

t=1

(βvt − (1− θ)ut)−
σ2
u

|Σ|
T∑

t=1

(1− θ)vt

]

(A.2d)

0 =
∂

∂σuv

L = −T
2σuv

|Σ|

+ 2
σuvσ

2
v

|Σ|2
T∑

t=1

u2
t − 2

σ2
uσ

2
v + σ2

uv

|Σ|2
T∑

t=1

utvt + 2
σuvσ

2
u

|Σ|2
T∑

t=1

v2t

(A.2e)

0 =
∂

∂σ2
u

L = T
σ2
v

|Σ| −
σ4
v

|Σ|2
T∑

t=1

u2
t + 2

σuvσ
2
v

|Σ|2
T∑

t=1

utvt −
σ2
uv

|Σ|2
T∑

t=1

v2t (A.2f)

0 =
∂

∂σ2
v

L =
1

σ2
v

+ T
σ2
u

|Σ| − (1− θ2)(x0 − µx)
2 1

σ4
v

− σ2
uv

|Σ|2
T∑

t=1

u2
t + 2

σuvσ
2
u

|Σ|2
T∑

t=1

utvt −
σ4
u

|Σ|2
T∑

t=1

v2t .

(A.2g)

Define the residuals

ût = rt − µ̂r − β̂(xt−1 − µ̂x) (A.3a)

v̂t = xt − µ̂x − θ̂(xt−1 − µ̂x). (A.3b)

We now outline the algebra that allows us to solve these first-order conditions.

Step 1: Express µ̂x in terms of θ̂ and the data.

Combining the first-order conditions (A.2c) and (A.2d) gives

T∑

t=1

v̂t =
(

1 + θ̂
)

(µ̂x − x0) , (A.4)
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which we can write as

µ̂x =

(

1 + θ̂
)

x0 +
∑T

t=1

(

xt − θ̂xt−1

)

(

1 + θ̂
)

+
(

1− θ̂
)

T
. (A.5)

Step 2: Express the covariance matrix in terms of µ̂x, θ̂, µ̂r, β̂ and the data.

The first-order conditions (A.2e), (A.2f) and (A.2g) give the relations

T σ̂2
u = − σ̂uv

σ̂2
v

σ̂uv + (1− θ̂2)(x0 − µ̂x)
2

(
σ̂uv

σ̂2
v

)2

+
T∑

t=1

û2
t , (A.6)

(T + 1)σ̂2
v = (1− θ̂2)(x0 − µ̂x)

2 +

T∑

t=1

v̂2t , (A.7)

σ̂uv

σ̂2
v

=

∑T

t=1 ûtv̂t
∑T

t=1 v̂
2
t

. (A.8)

Step 3: Solve for θ̂ in terms of the data. This also gives µ̂x and σ̂2
v in terms

of the data.

Combining the first-order conditions (A.2a) and (A.2b) gives

0 =
T∑

t=1

(µ̂x − xt−1)v̂t + σ̂2
v

θ̂

1− θ̂2
− θ̂(x0 − µ̂x)

2. (A.9)

Here µ̂x and v̂t are functions of only θ̂ and the data, so if we combine (A.27)

and (A.7) we can get an equation for θ̂:

0 = (T + 1)

T∑

t=1

(µ̂x − xt−1)v̂t +
θ̂

1− θ̂2

T∑

t=1

v̂2t − T θ̂(x0 − µ̂x)
2. (A.10)

Because we require that −1 < θ̂ < 1, we can multiply this by

(

(T + 1)− (T − 1)θ̂
)2 (

1− θ̂2
)

(A.11)

and rearrange to obtain
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0 = T
(

θ̂ − 1
)(

(T + 1)
(

1− θ̂2
)

+ 2θ̂
)
(

T∑

t=0

xt − θ̂
T−1∑

t=1

xt

)2

+
(

(T + 1)− (T − 1)θ̂
)(

θ̂ − 1
)
(

T∑

t=0

xt − θ̂

T−1∑

t=1

xt

)

×
[

2T θ̂(1 + θ̂)

(
T−1∑

t=1

xt

)

−
(

(T + 1) + (T − 1)θ̂
)
(

T∑

t=0

xt +

T−1∑

t=1

xt

)]

+
(

(T + 1)− (T − 1)θ̂
)2

×
[

θ̂
((

1− θ̂2
)

T + 1
)
(

T−1∑

t=1

x2
t

)

+
(

θ̂2(T − 1)− (T + 1)
) T∑

t=1

xtxt−1 + θ̂
T∑

t=0

x2
t

]

.

(A.12)

This is a fifth-order polynomial in θ̂ where the coefficients are determined by

the sample. As a consequence, it is very hard to establish analytical results

on existence and uniqueness of solutions that would be accepted as estimators

of θ. Nevertheless, in lengthy experimentation and simulation runs we have

always found that this polynomial only has one root within the unit circle of

the complex plane and that this root is real. Therefore this root is a valid

MLE of θ. Given this solution for θ̂, (A.5) gives the estimator for µx and (A.7)

gives the estimator for σ2
v .

Step 4: Solve for µ̂r and β̂ in terms of the data. This also gives the solution

for σ̂uv and σ̂2
u.

The first-order condition (A.2c) gives

T∑

t=1

ût =
σ̂uv

σ̂2
v

T∑

t=1

v̂t. (A.13)

Combining this with the first-order condition (A.2a) yields

β̂ = βOLS +
σ̂uv

σ̂2
v

(

θ̂ − θOLS
)

, (A.14)
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where

θOLS =
1

1
T

∑T

t=1 x
2
t−1 −

(
1
T

∑T

t=1 xt−1

)2

[

1

T

T∑

t=1

xt−1xt−
(

1

T

T∑

t=1

xt−1

)(

1

T

T∑

s=1

xs

)]

(A.15)

is the OLS coefficient of regressing xt on xt−1 and

βOLS =
1

1
T

∑T

t=1 x
2
t−1 −

(
1
T

∑T

t=1 xt−1

)2

[

1

T

T∑

t=1

xt−1rt−
(

1

T

T∑

t=1

xt−1

)(

1

T

T∑

s=1

rs

)]

(A.16)

is the OLS coefficient of regressing rt on xt−1.

Equations (A.8), (A.13) and (A.14) constitute a system of three equations

in the three unknowns µ̂r, β̂ and σ̂uv

σ̂2
v
. The solution is

µ̂r =
1

J

[

1

T

T∑

t=1

rt −
(

1

T

T∑

t=1

xt − µ̂x

)

F − βOLSH

1 + (θ̂ − θOLS)H

−
(

1

T

T∑

t=1

xt−1 − µ̂x

)

βOLS(1 + θ̂H)− θOLSF

1 + (θ̂ − θOLS)H

]

(A.17)

β̂ =
βOLS + (θ̂ − θOLS)F

1 + (θ̂ − θOLS)H
− (θ̂ − θOLS)G

1 + (θ̂ − θOLS)H
µ̂r (A.18)

σ̂uv

σ̂2
v

=
F − βOLSH

1 + (θ̂ − θOLS)H
− G

1 + (θ̂ − θOLS)H
µ̂r, (A.19)

where

J = 1− G

1 + (θ̂ − θOLS)H

[

1

T

T∑

t=1

xt − µ̂x − θOLS

(

1

T

T∑

t=1

xt−1 − µ̂x

)]

(A.20a)

F =

∑T

t=1 rtv̂t
∑T

t=1 v̂
2
t

(A.20b)

G =

∑T

t=1 v̂t
∑T

t=1 v̂
2
t

(A.20c)

H =

∑T

t=1(xt−1 − µ̂x)v̂t
∑T

t=1 v̂
2
t

. (A.20d)
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Expressions (A.17) and (A.18) provide the estimators for µr and β because

they depend only on the data and µ̂x and θ̂, which we have already expressed

in terms of the data. Finally, (A.19) gives the estimator the estimator of σuv

via (A.7), which further yields the estimator of σ2
u via (A.6).

A.2. Restricted maximum likelihood

We consider maximum likelihood estimation under the restriction β = 0. We

denote the restricted maximum likelihood estimate of parameter q as q̌. This

case turns out to be less tractable than the unrestricted case, and for this

reason, we fix the entries of the variance-covariance matrix Σ. We implement

the estimator in two stages; in the first stage we run OLS to find Σ under the

assumption of β = 0. In the second stage, we solve the equations that follow.

Consider (A.1) with the restriction of β = 0. The first-order conditions are

as follows:

0 =
∂

∂θ
L = 2

[

θ

1− θ2
− θ

(x0 − µx)
2

σ2
v

− σuv

|Σ|
T∑

t=1

ut(µx − xt−1) +
σ2
u

|Σ|
T∑

t=1

vt(µx − xt−1)

]

(A.21a)

0 =
∂

∂µr

L = 2

[

− σ2
v

|Σ|
T∑

t=1

ut +
σuv

|Σ|
T∑

t=1

vt

]

(A.21b)

0 =
∂

∂µx

L = 2

[

− 1− θ2

σ2
v

(x0 − µx) +
σ2
v

|Σ|
T∑

t=1

βut

− σuv

|Σ|
T∑

t=1

(βvt − (1− θ)ut)−
σ2
u

|Σ|
T∑

t=1

(1− θ)vt

]

(A.21c)

Define the residuals

ǔt = rt − µ̌r (A.22a)
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v̌t = xt − µ̌x − θ̌(xt−1 − µ̌x). (A.22b)

We now outline the algebra that allows us to solve these first-order conditions.

Step 1: Express µ̌x and µ̌r in terms of θ̌ and the data.

The first-order condition (A.21b) gives

T∑

t=1

ǔt =
σuv

σ2
v

T∑

t=1

v̌t. (A.23)

Combining this with the first-order condition (A.21c) gives

T∑

t=1

v̌t =
(
1 + θ̌

)
(µ̌x − x0) , (A.24)

which we can write as

µ̂x =

(
1 + θ̌

)
x0 +

∑T

t=1

(
xt − θ̌xt−1

)

(
1 + θ̌

)
+
(
1− θ̌

)
T

. (A.25)

Combining (A.24) and (A.23) yields

µ̌r =
1

T

T∑

t=1

rt −
1

T

σuv

σ2
v

(
1 + θ̌

)
(µ̌x − x0) . (A.26)

Step 2: Solve for θ̌ in terms of the data.

Substituting (A.23), (A.24) and (A.26) into the first-order condition (A.21a)

gives

0 = σ2
v

θ̌

1− θ̌2
− θ̌(x0 − µ̌x)

2 +
(
1 + θ̌

)
µ̌x (µ̌x − x0)

+
1

|Σ|

(
T∑

t=1

xt−1

)[
σ2
uv

T

(
1 + θ̌

)
(µ̌x − x0) + σ2

uσ
2
v

(
1− θ̌

)
µ̌x

]

+
1

|Σ|

[

σuvσ
2
v

T∑

t=1

xt−1

(

rt −
1

T

T∑

s=1

rs

)

− σ2
uσ

2
v

T∑

t=1

xt−1

(
xt − θ̌xt−1

)

]

(A.27)
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Here µ̌x is a function of only θ̌ and the data, so given σ2
u, σ

2
v and σuv the above

an equation for θ̌. Similarly to Appendix A, multiplying through by

(
(T + 1)− (T − 1)θ̌

)2 (
1− θ̌2

)
(A.28)

and carrying out the algebra gives a fifth-order polynomial in θ̌ where the

coefficients are determined by the sample. As for the exact ML estimator in

Appendix A, in lengthy experimentation and simulation runs we have always

found that this polynomial only has one root within the unit circle of the

complex plane and that this root is real. Therefore this root is a valid MLE

of θ. Given this solution for θ̌, (A.25) gives the estimator for µx and (A.26)

gives the estimator for µr.

A.3. The multivariate case

Our model is

rt+1 − µr =
N∑

i=1

βi(xit − µxi) + ut+1

x1t+1 − µx1 = θ1(x1t − µx1) + v1t+1 (A.29)

...

xNt+1 − µxN = θN(xNt − µxN) + vNt+1

where, with vt = (v1t, . . . , vNt)
>, the vector (ut, v

>

t )
> is Gaussian and iid over

time with covariance matrix

Σ =




σ2
u σ>

uv

σuv Σv



 . (A.30)

Let Σx denote the covariance matrix of the vector xt = (x1t, . . . , xNt)
>. Ele-

ment (i, j) of matrix Σx equals

σij

1− θiθj
, (A.31)
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where σij is element (i, j) of matrix Σv. Let µx denote the vector (µx1, . . . , µxN)
>,

β denote the vector (β1, . . . , βN)
>, θ denote the vector (θ1, . . . , θN)

>, and Θ

denote the N ×N diagonal matrix with the vector θ as its diagonal.

We denote the maximum likelihood estimate of parameter q as q̆. Here we

derive the estimators for µr, µx, β, and θ, taking σ2
u, Σv, and σuv as given.

Maximizing the exact log likelihood function is the same as minimizing the

function L:

L(β, θ, µr, µx) = log |Σx|+ (x0 − µx)
>Σ−1

x (x0 − µx)

+ T log(|Σ|) +
T∑

t=1

(

ut v>t

)

Σ−1




ut

vt



 (A.32)

where |Q| is notation for the determinant of matrix Q.

Let ei denote a column vector with one as its ith element and zeros every-

where else. The first-order conditions arise from setting the partial derivatives

of the likelihood function to zero.

0 =
∂

∂βi

L ⇒ 0 =
σ2
v

|Σ|
T∑

t=1

(µx − xit−1)
(
ut − σ>

uvΣ
−1
v vt

)
(A.33a)

0 =
∂

∂θi
L ⇒ 0 = tr

(

Σ−1
x

∂

∂θi
Σx

)

− (x0 − µx)
>Σ−1

x

(
∂

∂θi
Σx

)

Σ−1
x (x0 − µx)

+ 2
T∑

t=1

(xit−1 − µxi)e
>

i

[

1

σ2
ε

Σ−1
v σuvut

−
(

Σ−1
v +

1

σ2
ε

Σ−1
v σuvσ

>

uvΣ
−1
v

)

vt

]

(A.33b)

0 =
∂

∂µr

L ⇒
T∑

t=1

ut = σ>

uvΣ
−1
v

T∑

t=1

vt (A.33c)

0 =
∂

∂µxi

L ⇒ e>i Σ
−1
x (x0 − µx) = (θi − 1)

(

0 e>i

)

Σ−1





∑T

t=1 ut

∑T

t=1 vt



 ,

(A.33d)
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where

σ2
ε = σ2

u − σ>

uvΣ
−1
v σuv. (A.34)

Define the residuals

ŭt = rt − µ̆r − β̆> (xt−1 − µ̆x) (A.35a)

v̆t = xt − µ̆x − Θ̆ (xt−1 − µ̆x) . (A.35b)

We now outline the algebra that allows us to solve these first-order conditions.

Step 1: Express µ̆x in terms of Θ̆ and the data.

Stacking the first-order conditions for µxi in a vector, we get, after carrying

out the algebra,

(Θ̆− I)Σ−1
v

[
T∑

t=1

v̆t +
1

σ2
ε

σuv

(

σ>

uvΣ
−1
v

T∑

t=1

v̆t −
T∑

t=1

ŭt

)]

= Σ−1
v (x0 − µ̆x) .

(A.36)

Using (A.33c) we can simplify this to

(

Θ̆− I

)

Σ−1
v

T∑

t=1

v̆t = Σ̆−1
x (x0 − µ̆x) , (A.37)

where Σ̆x is a matrix with
σij

1− θ̆iθ̆j
(A.38)

as its (i, j)th element. We can write (A.37) as

µ̆x =
[

I+ T Σ̆x

(

Θ̆− I

)

Σ−1
v

(

Θ̆− I

)]−1

×
[

x0 − Σ̆x

(

Θ̆− I

)

Σ−1
v

(
T∑

t=1

xt − Θ̆
T∑

t=1

xt−1

)]

. (A.39)

Given σ2
u, Σv, and σuv, this equation expresses µ̆x in terms of the data and Θ̆.
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Step 2: Solve for θ̆ in terms of the data. This also gives µ̆x in terms of the

data.

Using (A.33a) in (A.33b) gives

0 = tr

(

Σ̆−1
x

∂

∂θi
Σ̆x

)

− (x0 − µx)
>Σ̆−1

x

(
∂

∂θi
Σ̆x

)

Σ̆−1
x (x0 − µx)

− 2e>i Σ
−1
v

T∑

t=1

(xit−1 − µxi)v̆t, (A.40)

for i = 1, . . . , N . From (A.39) we have µ̆x in terms of θ̆ and the data, so if

we combine (A.39) and (A.40) we get a system of N nonlinear equations for

θ̆1, . . . , θ̆N . Given the solution of this system for θ̆1, . . . , θ̆N , (A.39) gives the

estimator for µx.

Step 3: Solve for µ̆r and β̆ in terms of the data.

The first-order condition (A.33c) gives

µ̆r =
1

T

T∑

t=1

rt − σ>

uvΣ
−1
v

1

T

T∑

t=1

v̆t − β̆>

(

1

T

T∑

t=1

xt−1 − µ̆x

)

. (A.41)

Using this in (A.33a) and carrying out the algebra we get

[

1

T

T∑

t=1

xit−1rt −
(

1

T

T∑

t=1

xit−1

)(

1

T

T∑

t=1

rt

)]

− β̆>

[

1

T

T∑

t=1

xit−1xt−1 −
(

1

T

T∑

t=1

xit−1

)(

1

T

T∑

t=1

xt−1

)]

= σ>

uvΣ
−1
v

{

1

T

T∑

t=1

xit−1xt −
(

1

T

T∑

t=1

xit−1

)(

1

T

T∑

t=1

xt

)

− Θ̆

[

1

T

T∑

t=1

xit−1xt−1 −
(

1

T

T∑

t=1

xit−1

)(

1

T

T∑

t=1

xt−1

)]}

, (A.42)

for i = 1, . . . , N . Recall that we have solved for Θ̆ in terms of the data,

so (A.42) constitutes a system of linear equations in β̆1, . . . , β̆N . Given the

solution of this system for β̆, (A.41) gives the estimator for µr.
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A.4. Asymptotic standard errors

Here we derive asymptotic standard errors for our maximum likelihood esti-

mates using the methodology described in Hayashi (2000). Let q denote the

vector

(µr, µx, β, θ, σ
2
u, σ

2
v , σuv)

>, (A.43)

and let st denote the score vector for observation t. In addition, let

p (x0|q) =
(
2πσ2

x

)− 1

2 exp

{

−1

2

(
x0 − µx

σx

)2
}

(A.44)

denote the likelihood of the initial draw x0, and let

p (ut, vt|q) = |2πΣ|− 1

2 exp

{

−1

2

(
σ2
v

|Σ|u
2
t − 2

σuv

|Σ|utvt +
σ2
u

|Σ|v
2
t

)}

(A.45)

denote the likelihood of the shock vector (ut, vt)
>. We specify our objective

function as 1/T times our exact likelihood function,

1

T
log p (r1, . . . , rT ; x0, . . . , xT |q) =

1

T

T∑

t=1

[

log p (ut, vt|q) +
1

T
p (x0|q)

]

,

(A.46)

where the equality follows by independence of the shocks over t, and by writing

p (x0|q) =
∑T

t=1
1
T
p (x0|q). The score st is

st =
∂

∂q

[

log p (ut, vt|q) +
1

T
p (x0|q)

]

. (A.47)

We can see that the exact score is the conditional score ∂
∂q

log p (ut, vt|q) plus
the “correction” term ∂

∂q
1
T
p (x0|q).

The usual approach of obtaining the asymptotic covariance matrix is to

derive a “sandwich estimator.” Hayashi (2000, section 7.3) shows that, under

maximum likelihood, the sandwich estimator simplifies due to the informa-

tion matrix equality. One particularly convenient estimator of the asymptotic

covariance matrix is

Avar (q̂) =

[

1

T

T∑

t=1

st s
>

t

]−1

. (A.48)
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Hayashi notes that this estimator often has better finite-sample performance

than the more complicated sandwich estimator, due the ease with which it is

computed. The standard errors for our parameter estimates are given by the

square root of the diagonal elements of Avar (q̂) divided by
√
T .

It is straightforward to adopt the method above for restricted MLE; we set

β = 0 and we drop the element of the score corresponding to β.

B. Further properties of maximum likelihood

B.1. The equity premium in levels

In this section we discuss how to translate our results for log returns into

levels. For simplicity, assume that the log returns log (1 +Rt) are normally

distributed. Then

E[Rt] = E
[
elog(1+Rt)

]
− 1 = eE[log(1+Rt)]+

1

2
Var(log(1+Rt)) − 1. (B.1)

Using the definition of the excess log return, E [log(1 +Rt)] = E[rt]+E[log(1+

Rf
t )], so the above implies that

E[Rt −Rf
t ] = eE[rt]eE[log(1+R

f
t )]+ 1

2
Var(log(1+Rt)) − 1− E[Rf

t ]. (B.2)

Our maximum likelihood method provides an estimate of E[rt] and all other

quantities above can be easily calculated using sample moments. Taking the

sample mean of the series Rt − Rf
t for the period 1953-2011 yields a risk

premium that is 0.530% per month, or 6.37% per annum. On the other hand,

using the above calculation and our maximum likelihood estimate of the mean

of rt gives an estimate of E[Rt − Rf
t ] of 0.422% per month, or 5.06% per

annum.30 Thus our estimate of the risk premium in return levels is 131 basis

30In the data, in monthly terms for the period 1953-2011, the sample mean of Rt is

0.918%, the sample mean of Rf
t is 0.387%, the sample mean of log(1 + Rf

t ) is 0.386% and

the variance of log(1 +Rt) is 0.194%.

81



lower than taking the sample average, in line with our results for log returns.

B.2. Comparison with Fama and French (2002)

Fama and French (2002) also propose an estimator that takes the time series

of the dividend-price ratio into account in estimating the mean return. Noting

the following return identity:

Rt =
Dt

Pt−1
+

Pt − Pt−1

Pt−1
, (B.3)

and taking the expectation:

E[Rt] = E

[
Dt

Pt−1

]

+ E

[
Pt − Pt−1

Pt−1

]

, (B.4)

they propose replacing the capital gain term E[(Pt−Pt−1)/Pt−1] with dividend

growth E[(Dt −Dt−1)/Dt−1]. They argue that, because prices and dividends

are cointegrated, their mean growth rates should be the same. They find that

the resulting expected return is less than half the sample average, namely

4.74% rather than 9.62%.

While their argument seems intuitive, a closer look reveals a problem. Let

Xt = Dt/Pt, and let lower-case letters denote natural logs. Then

dt+1 − dt = xt+1 − xt + pt+1 − pt. (B.5)

Because Xt is stationary, E[xt+1 − xt] = 0 and it is indeed the case that

E[dt+1 − dt] = E[pt+1 − pt]. (B.6)

However, exponentiating (B.5) and subtracting 1 implies

Dt+1 −Dt

Dt

=
Xt+1

Xt

Pt+1

Pt

− 1. (B.7)

That is, stationarity ofXt implies (B.6), but not E[(Pt−Pt−1)/Pt−1] = E[(Dt−
Dt−1)/Dt−1]. Namely it does not imply that the average level growth rates are

equal.
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For expected growth rates to be equal in levels, (B.7) shows that it must be

the case that E
[
Xt+1

Xt

Pt+1

Pt

]

= E
[
Pt+1

Pt

]

. It seems unlikely that there are general

conditions under which this holds. Note that it follows from E[log(Xt+1/Xt)] =

0 and Jensen’s inequality that E[Xt+1/Xt] > 1.31 This implies that the es-

timator proposed by Fama and French (2002) is inconsistent for the equity

premium, and thus it is not necessary (or possible) to evaluate efficiency.

Nonetheless, our results show that assuming cointegration of prices and

dividends can be very informative for estimation of the mean return.32 Indeed,

the intuition that we will develop in the next section is closely related to

that conjectured by Fama and French (2002): The sample average of realized

returns is “too high” because shocks to discount rates (proxied for by the

dividend-price ratio) were negative on average over the sample period.

31Indeed, if we assume that growth rates of dividends and prices are log-normal, a neces-

sary and sufficient condition for equality of expected (level) growth rates is that the variances

of the log growth rates are equal:

Var(dt+1 − dt) = Var(pt+1 − pt). (B.8)

To see this, note that (B.6), combined with log-normality, implies that

E

[
Dt+1

Dt

]

e−
1
2
Var(dt+1−dt) = E

[
Pt+1

Pt

]

e−
1
2
Var(pt+1−pt). (B.9)

If (B.8) holds, then the second terms on the right and left hand side cancel, yielding the

result. This is a knife-edge result in which the variance of the log dividend-price ratio xt

and the covariance of xt with log price changes cancel out. However, it is well-known that

prices are more volatile than dividends (Shiller, 1981).
32This point is also made by Constantinides (2002), who suggests adjusting the mean

return by the difference in the valuation ratio between the first and last observation. Con-

stantinides derives conditions such that the resulting estimator has lower variance than the

average return.
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C. Properties of the time series of returns un-

der the benchmark data generating process

C.1. Mean reversion in returns

Consider the effect of a series of shocks on excess returns (in this subsection,

we will assume, for expositional reasons, that the mean excess return is zero):

rt = βxt−1 + ut

rt+1 = βθxt−1 + βvt + ut+1 (C.1)

rt+2 = βθ2xt−1 + βθvt + βvt+1 + ut+2

and so on. Thus, for k ≥ 1, the autocovariance of returns is given by

Cov (rt, rt+k) = θkβ2Var(xt) + θk−1βσuv, (C.2)

where Var(xt) = σ2
v/(1 − θ2). An increase in θ increases the variance of the

predictor variable. In the absence of covariance between the shocks u and

v, this effect would increase the autocovariance of returns through the term

θkβ2Var(xt). However, because u and v are negatively correlated, the second

term in (C.2), θk−1βσuv is also negative. We show below that this second term

dominates the first for all positive values of θ up until a critical value, at which

point the first comes to dominate.

Assume θ > 0, β > 0 and σuv < 0, as we estimate the case to be in our

data. Substituting in Var(xt) = σ2
v/(1 − θ2), multiplying by (1 − θ2) > 0 and

dividing through by θk−1β > 0 shows that the autocovariance of returns is

negative whenever

−σuvθ
2 + βσ2

vθ + σuv < 0. (C.3)

The left-hand side is a quadratic polynomial in θ with a positive leading coeffi-

cient. As a result, whenever this polynomial has two real roots in θ, the entire

expression is negative if and only if θ lies in between those roots. Indeed, the
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polynomial has two real roots because its discriminant equals β2σ4
v+4σ2

uv > 0.

Let θ1 be the smaller of the two roots and let θ2 be the larger one, that is,

θ2 =
−βσ2

v +
√

β2σ4
v + 4σ2

uv

−2σuv

. (C.4)

Under our assumptions it is straightforward to prove that θ1 < −1 and −1 <

θ2 < 1, so the only possible change of sign of the return autocovariance happens

at θ2. In particular, Cov (rt, rt+k) < 0 whenever θ < θ2 and Cov (rt, rt+k) > 0

whenever θ > θ2.

C.2. The variance of the sample mean return

By definition

1

T

T∑

t=1

rt = µr + β

(

1

T

T∑

t=1

xt−1 − µx

)

+
1

T

T∑

t=1

ut, (C.5)

thus

Var

(

1

T

T∑

t=1

rt

)

= β2Var

(

1

T

T∑

t=1

xt−1

)

+Var

(

1

T

T∑

t=1

ut

)

+ 2βCov

(

1

T

T∑

t=1

xt−1,
1

T

T∑

t=1

ut

)

. (C.6)

The variance of the average predictor is available and it depends on θ. The

variance of the average residual does not depend on θ. Finally, the covariance

of the average predictor and the average predictor depends on θ and ρuv. It is

not a trivial quantity because even though ut is uncorrelated with xt−1, it is

correlated with xt via vt whenever ρuv 6= 0 and thus it is also correlated with

xt+1, xt+2, . . . , xT−1 whenever θ 6= 0. In particular,

Var

(

1

T

T∑

t=1

ut

)

= σ2
u

1

T
, (C.7)
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Var

(

1

T

T∑

t=1

xt−1

)

=
σ2
v

1− θ2

[
1

T

(

1 + 2
θ

1− θ

)

+
2

T 2

θ(θT − 1)

(1− θ)2

]

,

(C.8)

Cov

(

1

T

T∑

t=1

xt−1,
1

T

T∑

t=1

ut

)

= σuv

[
1

T

1

1− θ
+

1

T 2

θT − 1

(1− θ)2

]

, (C.9)

so that

Var

(

1

T

T∑

t=1

rt

)

=
1

T

(

σ2
u + 2β

σuv

1− θ
+ β2 σ2

v

1− θ2

)

− 1

T 2
2β

1− θT

(1− θ)2

(

βθ
σ2
v

1− θ2
+ σuv

)

. (C.10)

It follows that

Var

(

1

T

T∑

t=1

rt

)

=
1

T

(

σ2
u + β2 σ2

v

1− θ2
+ 2β

σuv

1− θ

)

+O

(
1

T 2

)

. (C.11)

The term σ2
u + β2σ2

v/(1 − θ2) measures the contribution of the return shocks

and the predictor to the variability of the sample-mean return. The term

βσuv/(1− θ) measures the contribution of the covariance of the return shocks

and the predictor shocks to the variability of the sample-mean return. The

former term increases as θ increases, which says that the sample-mean return

is more variable because the predictor is more variable. At the same time, the

latter term becomes more negative as θ increases, so that in fact the overall

variability of the sample-mean return can decrease.
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D. Omitted tables and figures

Table D.1. Small-sample distribution of estimators: t-distributed shocks

True Value Method Mean Std. Dev. 5 % 50 % 95 %

µr 0.322
Sample 0.323 0.138 0.098 0.320 0.552
MLE 0.322 0.072 0.204 0.322 0.440

µx −3.504
Sample −3.504 0.578 −4.454 −3.498 −2.543
MLE −3.504 0.549 −4.404 −3.498 −2.589

β 0.090
OLS 0.746 0.634 −0.007 0.601 1.947
MLE 0.683 0.594 0.040 0.533 1.836

θ 0.998
OLS 0.991 0.007 0.978 0.993 0.999
MLE 0.992 0.006 0.980 0.993 0.998

σu 4.430
OLS 4.419 0.185 4.136 4.411 4.727
MLE 4.419 0.185 4.136 4.410 4.727

σv 0.046
OLS 0.046 0.002 0.043 0.045 0.049
MLE 0.046 0.002 0.043 0.045 0.049

ρuv −0.961
OLS −0.961 0.004 −0.967 −0.961 −0.954
MLE −0.961 0.004 −0.967 −0.961 −0.954

Notes: We simulate 10,000 monthly samples from

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where [ut, vt] has a bivariate t-distribution. The sample length is as in postwar data. Param-
eters are set to their maximum likelihood estimates (assuming normally distributed shocks)
where β and θ are adjusted for bias. We conduct benchmark maximum likelihood estimation
(MLE) for each sample path (this assumes normality and is therefore mis-specified). As a
comparison, we take sample means to estimate µr and µx (Sample) and use ordinary least
squares to estimate the slope coefficients and the variance and correlations of the residuals
(OLS). The table reports the means, standard deviations, and 5th, 50th, and 95th percentile
values across simulations. We set the degrees of freedom for the t-distribution to 5.96. This
matches the average kurtosis of the estimated residuals for returns and the dividend-price
ratio, and takes into account that the kurtosis is downward biased.
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Table D.2. Small-sample distribution of estimators: Calibration to OLS estimates and

sample means

True Value Method Mean Std. Dev. 5 % 50 % 95 %

µr 0.433
Sample 0.432 0.082 0.297 0.431 0.565
MLE 0.432 0.049 0.352 0.432 0.513

µx −3.545
Sample −3.550 0.192 −3.865 −3.551 −3.232
MLE −3.550 0.184 −3.854 −3.552 −3.242

β 0.828
OLS 1.414 0.715 0.512 1.276 2.801
MLE 1.372 0.689 0.515 1.241 2.675

θ 0.992
OLS 0.986 0.007 0.971 0.987 0.995
MLE 0.986 0.007 0.972 0.988 0.995

σu 4.414
OLS 4.410 0.118 4.215 4.410 4.603
MLE 4.408 0.118 4.214 4.408 4.601

σv 0.046
OLS 0.046 0.001 0.044 0.046 0.048
MLE 0.046 0.001 0.044 0.046 0.048

ρuv −0.961
OLS −0.961 0.003 −0.965 −0.961 −0.956
MLE −0.961 0.003 −0.965 −0.961 −0.956

Notes: We simulate 10,000 monthly samples from

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where ut and vt are Gaussian and iid over time with standard deviations σu and σv and
correlation ρuv. The sample length is as in postwar data. Parameters µr and µx are set to
their sample averages, and parameters β, θ and variances and correlations are set to their
OLS estimates. We conduct maximum likelihood estimation (MLE) for each sample path.
We also report sample averages for µr and µx (Sample) and OLS estimates for the remaining
parameters.
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Table D.3. Small-sample distribution of estimators: calibration to 1927–2011 sample

True Value Method Mean Std. Dev. 5 % 50 % 95 %

µr 0.391
Sample 0.390 0.080 0.258 0.389 0.522
MLE 0.391 0.058 0.295 0.390 0.485

µx −3.383
Sample −3.383 0.196 −3.710 −3.385 −3.063
MLE −3.384 0.190 −3.701 −3.384 −3.074

β 0.650
OLS 1.039 0.547 0.336 0.941 2.063
MLE 1.018 0.530 0.345 0.923 2.007

θ 0.991
OLS 0.987 0.006 0.976 0.988 0.995
MLE 0.987 0.006 0.977 0.989 0.994

σu 5.464
OLS 5.460 0.119 5.265 5.459 5.655
MLE 5.458 0.119 5.263 5.458 5.653

σv 0.057
OLS 0.057 0.001 0.055 0.057 0.059
MLE 0.057 0.001 0.055 0.057 0.059

ρuv −0.953
OLS −0.953 0.003 −0.958 −0.953 −0.948
MLE −0.953 0.003 −0.958 −0.953 −0.948

Notes: We simulate 10,000 monthly samples from

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where ut and vt are Gaussian and iid over time with standard deviations σu and σv and
correlation ρuv. The sample length is set to match the 1927–2011 sample, and parameters are
set to their maximum likelihood estimates over this period. We conduct maximum likelihood
estimation (MLE) for each sample path. As a comparison, we take sample means to estimate
µr and µx (Sample) and use ordinary least squares to estimate the slope coefficients and
the variance and correlations of the residuals (OLS). The table reports the means, standard
deviations, and 5th, 50th, and 95th percentile values across simulations.
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Table D.4. Small-sample distribution of MLE0

True Value Method Mean Std. Dev. 5 % 50 % 95%

µr 0.312
Sample 0.312 0.169 0.040 0.309 0.591
MLE 0.312 0.090 0.164 0.312 0.458
MLE0 0.312 0.089 0.164 0.312 0.460

µx −3.437
Sample −3.439 1.078 −5.226 −3.450 −1.675
MLE −3.436 1.051 −5.172 −3.438 −1.713
MLE0 −3.436 1.044 −5.156 −3.435 −1.718

β 0
OLS 0.678 0.601 −0.048 0.550 1.845
MLE 0.602 0.558 0.012 0.450 1.694
MLE0

θ 0.9992
OLS 0.9920 0.0063 0.9798 0.9933 0.9996
MLE 0.9928 0.0058 0.9812 0.9944 0.9988
MLE0 0.9982 0.0012 0.9959 0.9985 0.9995

Notes: We simulate 10,000 monthly data samples from

rt+1 − µr = ut+1

xt+1 − µx = θ(xt − µx) + vt+1.

where ut and vt are Gaussian and iid over time with correlation ρuv. The sample length is as
in postwar data. The parameters are set to their restricted maximum likelihood estimates
in Table 1. For each sample path, we compute sample averages for µr and µx (Sample),
OLS estimates of β and θ (OLS), unrestricted maximum likelihood (MLE, mis-specified in
this case), and restricted maximum likelihood (MLE0, correctly specified).
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Table D.5. Estimates using multiple predictors

returns d/p dsfp tmsp

Panel A: ML estimates

µr 0.338
µxi −3.493 0.903 −0.871
βi 0.893 −0.524 −0.143
θi 0.994 0.969 0.972
RMSE 4.569

Panel B: Sample and OLS estimates

µr 0.441
µxi −3.548 0.904 −0.871
βi 1.239 −0.157 −0.480
θi 0.991 0.968 0.973
RMSE 4.581

Panel C: Covariance matrix

σ 4.391 0.046 0.101 0.246
ρui −0.957 −0.058 −0.115
ρ1i 0.067 0.133
ρ2i −0.130

Notes: Estimates of

rt+1 − µr =

N∑

i=1

βi(xit − µxi
) + ut+1

x1,t+1 − µx1
= θ1(x1t − µx1) + v1,t+1

...

xN,t+1 − µxN
= θN (xNt − µxN) + vN,t+1

where ut and v1t, . . . , vNt are Gaussian and iid over time with covariance matrix

Σ =








σ2
u ρu1σuσ1 . . . ρuNσuσN

ρu1σuσ1 σ2
1 . . . ρ1Nσ1σN

...
...

. . .

ρuNσuσN ρ1Nσ1σN σ2
N







,

where rt is the continuously-compounded CRSP return minus the 30-day Treasury Bill
return, x1t is the log dividend-price ratio, x2t is the default spread, and x3t is the term
spread. Data are monthly, April 1953 – December 2011. Means and standard deviations
of returns are in percentage terms. In Panel A, parameters are estimated using maximum
likelihood. In Panel B, µr and µxi

are estimated by sample averages, and βi and θi are
estimated by ordinary least squares. Panel C gives the standard deviations of the shocks
(top row) and the correlations between the shocks estimated using OLS residuals. Variables
are the dividend-price ratio (d/p), the continuously-compounded yield of BAA-rated bonds
minus the continuously-compounded yield of AAA rated bonds (dfsp), and the continuously-
compounded yield of ten-year treasury bonds minus the continuously-compounded yield of
one-year treasury bonds (tmsp).
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Table D.6. Annual estimates using repurchase-adjusted dividend-price ratios

Treasury-stock adjusted d/p Cash-flow adjusted d/p
OLS Sample MLE MLE0 OLS Sample MLE MLE0

µr 5.718 4.252 4.092 5.718 4.806 4.558
µx −3.352 −3.334 −3.318 −3.258 −3.240 −3.221
β 19.556 17.221 21.343 19.868
θ 0.897 0.923 0.977 0.865 0.883 0.958
σu 16.164 16.185 17.195 16.167 16.113 17.195
σv 0.125 0.126 0.125 0.130 0.130 0.130
ρuv −0.700 −0.708 −0.658 −0.668 −0.674 −0.628

RMSE 17.233 16.470 16.598 17.233 16.581 16.606
p(∆MSE) 0.021 0.102 0.023 0.094

Notes: Estimates of

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where rt is the continuously-compounded CRSP return minus the annual Treasury Bill
return and xt is the logarithm of the dividend yield, adjusted for repurchases. Two such
adjusted dividend-price ratios are considered: the cash-flow based yield (cfby) and the
Treasury-stock based yield (tsby). Shocks ut and vt are mean zero and iid over time with
standard deviations σu and σv and correlation ρuv. Return data and dividend-yield data
are annual, 1953–2003. Means and standard deviations of returns are in percentage terms.
Under the OLS columns, parameters are estimated by ordinary least squares, with σu, σv,
and ρuv estimated from the residuals. In the Sample column, µr is the average excess return
over the sample and µx is the average of the log dividend-price ratio. In the MLE column
parameters are estimated using maximum likelihood. In the MLE0 columns, parameters
are estimated using maximum likelihood assuming β = 0. RMSE denotes the root-mean-
squared error from monthly out-of-sample return forecasts.
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Table D.7. Estimation of a predictive regression with heteroskedasticity

Panel A: Panel B: Panel C:
Means and coefficients Volatility parameters Covariance matrix

µr 0.335 ωu 4.763 σ∗

u 4.351
µx −3.569 αu 0.029 σ∗

v 0.045
β 0.688 δu 0.719 ρuv −0.959
θ 0.993 ωv 1.855× 10−4

αv 0.016
δv 0.892

Notes: We estimate the bivariate process

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1,

where, conditional on information available up to and including time t,

[
ut+1

vt+1

]

∼ N

(

0,

[
σ2
u,t+1 ρuvσu,t+1σv,t+1

ρuvσu,t+1σv,t+1 σ2
v,t+1

])

,

and

σ2
u,t+1 = ωu + αuu

2
t + δuσ

2
u,t,

σ2
v,t+1 = ωv + αvv

2
t + δvσ

2
v,t.

Here, rt is the continuously compounded return on the value-weighted CRSP portfolio in
excess of the return on the 30-day Treasury Bill and xt is the log of the dividend-price ratio.
Starred parameters are implied by other estimates, namely σ∗

u =
√

ωu/(1− αu − δu) and

σ∗

v =
√

ωv/(1− αv − δv). Parameters are estimated using a two-stage process by which
the means and coefficients (Panel A) are treated as fixed and the volatility parameters
(Panels B and C) are estimated using conditional maximum likelihood in the first stage,
and the volatility parameters are treated as fixed, while the means and coefficients are re-
estimated in the second stage. Data are monthly, from January 1953 to December 2011.
Means and standard deviations of returns are in percentage terms.
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Table D.8. Small-sample distribution of estimators when the dividend-price ratio follows a

random walk

True Value Method Mean Std. Dev. 5 % 50 % 95 %

µr 0.322
Sample 0.325 0.166 0.050 0.327 0.599
MLE 0.322 0.047 0.246 0.323 0.401

µx −3.504
Sample −2.988 0.699 −4.130 −2.996 −1.845
MLE −2.986 0.637 −4.006 −2.997 −1.971

θ 0.993
OLS 0.992 0.006 0.980 0.994 1.000
MLE 0.993 0.006 0.981 0.995 0.999

σu 4.416
OLS 4.413 0.117 4.221 4.414 4.605
MLE 4.415 0.117 4.223 4.417 4.607

σv 0.046
OLS 0.046 0.001 0.044 0.046 0.048
MLE 0.046 0.001 0.044 0.046 0.048

ρuv −0.961
OLS −0.962 0.003 −0.967 −0.962 −0.957
MLE −0.962 0.003 −0.967 −0.962 −0.957

Notes: We simulate 10,000 monthly data samples from

rt+1 − µr = ut+1

xt+1 = xt + vt+1

where ut and vt are Gaussian and iid over time with correlation ρuv. For each sample path
we conduct (mis-specified) maximum likelihood estimation (MLE) of

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1.

For comparison, we take sample means to estimate µr and µx (Sample) and use ordinary
least squares to estimate the slope coefficients and the variance and correlations of the
residuals (OLS). The table reports the means, standard deviations, and 5th, 50th, and 95th
percentile values across simulations.
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Table D.9. Small-sample distribution of estimators when the dividend-price ratio has a time

trend

True Value Method Mean Std. Dev. 5 % 50 % 95 %

µr 0.322
Sample 0.322 0.168 0.044 0.321 0.599
MLE 0.280 0.145 0.044 0.280 0.516

µx −3.504
Sample −3.682 0.234 −4.066 −3.682 −3.292
MLE −3.663 0.223 −4.028 −3.661 −3.296

β 0
OLS 0.590 0.684 −0.255 0.460 1.880
MLE 0.514 0.660 −0.270 0.375 1.756

θ 0.993
OLS 0.987 0.007 0.974 0.988 0.996
MLE 0.988 0.007 0.975 0.989 0.996

σu 4.416
OLS 4.410 0.117 4.219 4.410 4.602
MLE 4.409 0.117 4.218 4.410 4.601

σv 0.046
OLS 0.046 0.001 0.044 0.046 0.048
MLE 0.046 0.001 0.044 0.046 0.048

ρuv −0.961
OLS −0.961 0.003 −0.965 −0.961 −0.956
MLE −0.961 0.003 −0.965 −0.961 −0.956

Notes: We simulate 10,000 monthly data samples from

rt+1 − µr = ut+1

xt+1 − µx = ∆+ θ(xt − µx) + vt+1

where ut and vt are Gaussian and iid over time with correlation ρuv. We set µr, µx, θ,
σu, σv and ρuv to their benchmark maximum likelihood estimates (Table 1) and ∆ to the

mean residual (1/T )
∑T

t=1 v̂t = −0.14868. For each sample path we conduct (mis-specified)
maximum likelihood estimation (MLE) of

rt+1 − µr = β(xt − µx) + ut+1

xt+1 − µx = θ(xt − µx) + vt+1.

For comparison, we take sample means to estimate µr and µx (Sample) and use ordinary
least squares to estimate the slope coefficients and the variance and correlations of the
residuals (OLS). The table reports the means, standard deviations, and 5th, 50th, and 95th
percentile values across simulations.
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Fig. D.1. Histogram of maximum likelihood estimates of θ, the autocorrelation of the

dividend-price ratio from simulated data. We simulate 10,000 monthly data samples from

(1) with length and parameters as in the postwar data series.
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Fig. D.2. We simulate 10,000 monthly data samples from (1) with length and parameters as

in the postwar data series. The figure shows the joint distribution of the predictability term

β̂ 1
T

∑T

t=1(xt−1 − µ̂x) and the correlated shock term 1
T

∑T

t=1 ût that sum to the difference

between the maximum likelihood estimate and the sample mean.
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Fig. D.3. For each month, beginning in January 1953, we estimate the mean of the dividend-

price ratio using maximum likelihood (MLE), maximum likelihood with the restriction β = 0

(MLE0), and the sample mean (Sample), using data from January 1953 up until that month.
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Fig. D.4. For each month, beginning in January 1953, we estimate the coefficient of pre-

dictability (β) using maximum likelihood (MLE), and Ordinary Least Squares (OLS), using

data from January 1953 up until that month. For our restricted maximum likelihood method

(MLE0), β = 0 by assumption.
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Fig. D.5. For each month, beginning in January 1953, we estimate the autocorrelation

coefficient of the dividend-price ratio using maximum likelihood (MLE), maximum likelihood

with the restriction β = 0 (MLE0), and Ordinary Least Squares (OLS), using data from

January 1953 up until that month.
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