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Abstract

Revealed preference theory is brought to bear on the problem of recovering approxi-

mate parametric preferences from consistent and inconsistent consumer choices. We

propose measures of the incompatibility between the revealed preference ranking im-

plied by choices and the ranking induced by the considered parametric preferences.

These incompatibility measures are proven to characterize well-known inconsistency

indices. We advocate a recovery approach that is based on such incompatibility mea-

sures, and demonstrate its applicability for misspeci�cation measurement and model

selection. Using an innovative experimental design we empirically substantiate that

the proposed revealed-preference-based method predicts choices signi�cantly better

than a standard distance-based method.
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1 Introduction

This paper studies the problem of recovering stable preferences from individ-

ual choices. The renewed interest in this problem emerges from the recent

availability of relatively large data sets composed of individual choices made

from linear budget sets. These rich data sets allow researchers to recover ap-

proximate individual stable utility functions and report the magnitude and

distribution of behavioral characteristics in the population. We bring revealed

preference theory to bear on this problem of recovering approximate paramet-

ric preferences from both consistent and inconsistent consumer choices.

Classical revealed preference theory studies the conditions on observables

(choices) that are equivalent to the maximization of some utility function. If

a data set is constructed from consumer choice problems in an environment

with linear budget sets, Afriat (1967) proves that no revealed preferences cy-

cles among observed choices, a condition known as the Generalized Axiom of

Revealed Preference (henceforth GARP), is equivalent to assuming that the

consumer behaves as if she maximizes some locally non satiated utility func-

tion. In his proof, Afriat constructs a well behaved piecewise linear utility

function that is consistent with the consumer choices. Theorem 1 shows that

similar reasoning may be applied for approximate preferences when GARP

is not satis�ed, by adjusting the revealed preference information to exclude

cycles.

The method above requires recovering twice the number of parameters as

there are observations and therefore the behavioral implications of the con-

structed functional forms may be di�cult to interpret and apply to economic

problems. In many cases researchers assume simple functional forms with few

parameters that lend themselves naturally to behavioral interpretations. The

drawback of this approach is that simple functional forms are often too struc-

tured to capture every nuance of individual decision making. Thus, preferences

recovered in this way are almost always misspeci�ed. That is, the ranking

implied by the recovered preferences may be incompatible with the ranking

information implied by the decision maker's choices (summarized through the
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revealed preference relation1). We argue that given a parametric utility spec-

i�cation, one should seek a measure to quantify the extent of misspeci�cation

and minimize it as a criterion for selecting from the functional family.

Our proposed measures of misspeci�cation rely on insights gained from the

literature that quanti�es internal inconsistencies inherent in a data set. The

Houtman and Maks (1985) Inconsistency Index searches for the minimal sub-

set of observations that should be removed from a data set in order to eliminate

cycles in the revealed preference relation. Similarly, the Varian (1990) Incon-

sistency Index is calculated by aggregating the minimal budget adjustments

required to remove revealed preference relations that cause the data set to fail

GARP. A special case of the Varian Inconsistency Index is the Critical Cost

Ine�ciency Index (Afriat 1972; 1973) in which adjustments are restricted to

be identical across all observations.

Theorem 2 provides the following novel theoretical characterization of these

indices: for every utility function a loss can be calculated that aggregates

budget adjustments required to remove incompatibilities between the ranking

information induced by the utility function and the revealed preference infor-

mation contained in the observed choices. The loss function corresponding

to the Houtman-Maks Inconsistency Index is the Binary Incompatibility In-

dex (henceforth BII), which counts the observations that are not rationalized

by a given utility function. Similarly, the loss function corresponding to the

Varian Inconsistency Index is the Money Metric Index (proposed by Varian,

1990, henceforth MMI), which aggregates the minimal budget adjustments

required to remove all incompatibilities. We prove that the inconsistency in-

dices equal the in�mum of their corresponding loss functions taken over all

continuous, acceptable2 and locally non-satiated utility functions. Hence, the

inconsistency indices lend themselves naturally as benchmarks for minimizing

incompatibilities between the data set and all considered utility functions.

We argue that parametric recovery should generalize the principle intro-

1If choices are inconsistent the �revealed preference relation� refers to the ranking re-
maining after excluding cycles in some �minimal� way (see De�nition 1 below).

2A utility function is acceptable if the zero bundle is weakly worse than every other
non-negative bundle. See also De�nition 13 in Appendix A.4.
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duced in characterizing the inconsistency indices, by calculating the in�mum

of the loss function over a restricted subset of utility functions. If a data set is

consistent (satis�es GARP), the incompatibility measures we propose quan-

tify the extent of misspeci�cation that arises solely from considering a speci�c

family of utility functions, rather than all continuous, acceptable and locally

non-satiated utility functions. If the data set does not satisfy GARP, each

measure can be additively decomposed into the respective inconsistency in-

dex and a misspeci�cation index. Since for a given data set the inconsistency

index is constant, the incompatibility measures can be minimized to recover

parametric preferences within some parametric family.

This discussion continues a line of thought proposed by Varian (1990), who

was unsatis�ed with the standard approach which relies on parametric speci�-

cation when testing for optimizing behavior. Varian suggested separating the

analysis into two parts. The �rst part, which does not rely on a parametric

speci�cation, tests for consistency and quanti�es how close choices are to be-

ing consistent using an inconsistency index. The second part uses the money

metric as a �natural measure of how close the observed consumer choices come

to maximizing a particular utility function� (page 133) and employs it as a

criterion for recovering preferences. Varian argued that measuring di�erences

in utility space has a more natural economic interpretation than measuring

distances between bundles in commodity space.

We augment Varian's intuition by providing theoretical and practical sub-

stance for the use of loss functions as measures of misspeci�cation. First, we

relate the budget adjustments implied by the proposed loss functions to the

Houtman-Maks, Varian and Afriat inconsistency indices. Second, we advo-

cate recovery methods that utilize as much ranking information encoded in

observed choices rather than distance-based methods, since making a choice

from a menu reveals that the chosen alternative is preferred to every other

feasible alternative, not only to the predicted one. Therefore, our rationale

for using the MMI is di�erent from Varian's, and could be equally applied to

other loss functions, as the BII. Third, since we show that the goodness of �t

can be decomposed into an inconsistency index and a misspeci�cation mea-
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sure, it lends itself naturally to several novel applications including evaluating

parametric restrictions and model selection. Thus, ultimately we show that

the two parts proposed by Varian (1990) are closely related, as the di�erence

between them can be attributed to the sets of utility functions considered.

Finally, while Varian takes the theory to a representative agent data, we use

individual level data gathered in the laboratory to provide evidence for the

predictive superiority of the MMI.

As an illustration of a practical application, we use the MMI to recover

parameters for the data set collected by Choi et al. (2007) in which subjects

choose a portfolio of Arrow securities. Using the Disappointment Aversion

model of Gul (1991) with the CRRA functional form, we recover parameters

using Non-Linear Least Squares (henceforth NLLS) and MMI. We �nd sub-

stantial numerical di�erences with respect to the recovered parameters that in

some cases imply signi�cant quantitative and qualitative di�erences in prefer-

ences.

However, the data collected by Choi et al. (2007) was not designed to com-

pare the accuracy in which di�erent recovery methods represent the decision

maker's preferences. Therefore, we propose a general empirical-experimental

methodology whereby recovery methods are evaluated based on their predic-

tive success and apply it in an experimental setting similar to Choi et al.

(2007). The experiment utilizes a unique two-part design. In the �rst part of

the experiment we collect choice data from linear budget sets and instanta-

neously recover individual parameters from this data using the two di�erent

parametric recovery methods (MMI and NLLS). We use the individually recov-

ered parameters to construct a sequence of pairs of portfolios (per individual)

such that one of the portfolios in each pair is preferred according to the para-

metric preferences recovered by the MMI and the other is preferred by the

parametric preferences recovered by the NLLS. Then, in the second part of

the experiment, the subject is presented with these individually constructed

pairs of portfolios and their choices are used to evaluate the predictive success

of each recovery method.

This methodology enables us not only to compare the relative predictive
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success of the recovery method but also to observe subject's choices in regions

that may otherwise be unobservable. In particular, when subjects choose from

linear budget sets, non-convex preferences imply the existence of bundles that

are never chosen if the subject chooses optimally. This may make it di�cult to

identify di�erent sets of parameters that may nevertheless imply substantially

di�erent behavior (e.g. the extent of local risk seeking). By o�ering the

subjects pairwise choices located in the region of non-convexity we can directly

observe their true preferences in this region and identify which set of recovered

parameters more accurately represents their underlying preferences.

For our sample of 203 subjects, we �nd that the MMI recovery method

predicted subjects' choices signi�cantly more accurately than the NLLS recov-

ery method. At the aggregate level, approximately 54% of pairwise choices

are predicted by the MMI recovery method. At the individual level, consider

those subjects for whom one of the methods correctly predicted more than two

thirds of the pairwise choices. The choices of almost 60% of those subjects were

more accurately predicted by the MMI recovery method. Moreover, when we

focus our attention to only those subjects for which the recovered parameters

imply non-convex preferences (i.e. local risk-seeking behavior), the MMI re-

covery method predicted more accurately in 62.5% of pairwise choices and for

75% of subjects for which more than two thirds of the choices are correctly

predicted. We interpret these results as suggesting that our proposed MMI

recovery method is more reliable than measures based on the distance between

observed and predicted choices in commodity space, especially in decision mak-

ing environments where closeness does not necessarily imply similarity.

We use the data from the experiment and the data collected by Choi et

al. (2007) to show that the preferences of approximately 40% of the subjects

are well approximated by expected utility compared to the general Disappoint-

ment Aversion functional form. In addition, we demonstrate non-nested model

selection, by providing evidence that the choices of most subjects are better

approximated by the Disappointment Aversion model with the CRRA util-

ity index than by the Disappointment Aversion model with the CARA utility

index.
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In the next section we generalize the standard de�nitions of revealed pref-

erence relations and provide a proof of an extension of Afriat (1967) Theorem

for inconsistent data sets (Theorem 1). In Section 3 we introduce the main

inconsistency indices discussed in the paper and in Section 4 we introduce

the Money Metric and the Binary Incompatibility measures and use them to

characterize the inconsistency indices (Theorem 2). In Section 5 we analyze

the data gathered by Choi et al. (2007) and point out the need for an external

criterion to decide between the recovery methods. The experimental design

is described in Section 6 while the results are reported in Section 7. Section

8 demonstrates the use of our theoretical results for hypothesis testing and

model selection. Section 9 concludes.

2 Preliminaries

Consider a decision maker (henceforth DM) who chooses bundles xi ∈ <K+ (i ∈
1, . . . , n) from budget menus

{
x : pix ≤ pixi, pi ∈ <K++

}
. LetD =

{
(pi, xi)

n
i=1

}
be a �nite data set, where xi is the chosen bundle at prices pi. The following

de�nitions generalize the standard de�nitions of revealed preference (for similar

concepts see Afriat, 1972, 1987; Varian, 1990, 1993; Cox, 1997).

De�nition 1. Let D be a �nite data set. Let v ∈ [0, 1]n.3 An observed bundle

xi ∈ <K+ is

1. v−directly revealed preferred to a bundle x ∈ <K+ , denoted xiR0
D,vx, if

vipixi ≥ pix or x = xi.

2. v−strictly directly revealed preferred to a bundle x ∈ <K+ , denoted

xiP 0
D,vx, if v

ipixi > pix.

3Throughout the paper we use bold fonts (as v or 1) to denote vectors of scalars in
<n. We continue to use regular fonts to denote vectors of prices and goods. For v,v′ ∈ <n
v = v′ if ∀i : vi = v′i, v = v′ if ∀i : vi ≥ v′i, v ≥ v′ if v = v′and v 6= v′ and v > v′ if
∀i : vi > v′i.
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3. v−revealed preferred to a bundle x ∈ <K+ , denoted xiRD,vx, if

there exists a sequence of observed bundles
(
xj, xk, . . . , xm

)
such that

xiR0
D,vx

j, xjR0
D,vx

k, . . . , xmR0
D,vx.

When v = 1 De�nition 1 reduces to the standard de�nition of revealed prefer-

ence relation. When v decreases, more revealed preference information is being

relaxed as summarized in the following observation (for a proof see Appendix

A.1).

Fact 1. Let v′ ≤ v. Then: R0
D,v′ ⊆ R0

D,v, P
0
D,v′ ⊆ P 0

D,v and RD,v′ ⊆ RD,v.

Consider the following notion of consistency for data sets (Varian, 1990):

De�nition 2. Let v ∈ [0, 1]n. D satis�es the General Axiom of Revealed

Preference Given v (GARPv) if for every pair of observed bundles, xiRD,vx
j

implies not xjP 0
D,vx

i.

When v = 1De�nition 2 is equivalent to Afriat's (1967) cyclical consistency

(GARP, see Varian (1982)). Practically, the vector v is used to generate an

adjusted relation R0
D,v that contains no strict cycles while R0

D,1 may contain

such cycles. Obviously, usually there are many vectors such that D satis�es

GARPv. Following are two useful and trivial properties of GARPv (proofs in

appendices A.2 and A.3, respectively):

Fact 2. Every D satis�es GARP0.

Fact 3. Let v,v′ ∈ [0, 1]n and v ≥ v′. If D satis�es GARPv then D satis�es

GARPv′.

The following de�nition of v−rationalizability relates the revealed pref-

erence information implied by observed choices to the ranking induced by a

utility function.

De�nition 3. Let v ∈ [0, 1]n. A utility function u(x) v−rationalizes D, if for
every observed bundle xi ∈ <K+ , xiR0

D,vx implies that u(xi) ≥ u(x). We say

that D is v−rationalizable if such u (·) exists.
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That is, the intersection between the set of bundles which are ranked

strictly higher than an observed bundle xi according to u, and the set of

bundles to which xi is revealed preferred when the budget constraint is ad-

justed by vi, is empty. 1−rationalizability reduces to the standard de�nition

of Rationalizability (Afriat, 1967).4

v−Rationalizability does not imply uniqueness. There could be di�er-

ent utility functions (not related through monotonic transformation) that

v−rationalize the same data set. Afriat's (1967) celebrated theorem provides

tight conditions for the rationalizability of a data set.5 Afriat's (1967) theorem

was generalized in many directions. For example, Reny (2015) extended to in-

�nite data sets, Forges and Minelli (2009) to general budget sets and Fujishige

et al. (2012) to indivisible goods. The following Theorem generalizes Afriat's

result to inconsistent data sets.

Theorem 1. The following conditions are equivalent:

1. There exists a non-satiated utility function that v−rationalizes the data.

2. The data satis�es GARP v.

3. There exists a continuous, monotone and concave utility function that

v−rationalizes the data.

Proof. See Appendix A.4.6

4Throughout the paper rationalizability means 1−rationalizability, D is rationalizable if
it is 1−rationalizable and D satis�es GARP if it satis�es GARP1.

5For discussion and alternative proofs of the original theorem see Diewert (1973); Varian
(1982); Teo and Vohra (2003); Fostel et al. (2004); Geanakoplos (2013).

6Afriat (1973) uses the Theorem of the Alternative to provide a non-constructive proof
for the uniform case. Afriat (1987) states Theorem 1 without a proof (Theorem 6.3.I on
page 179). In his unpublished PhD dissertation Houtman (1995, Theorem 2.5) considers
non-linear pricing and monotone adjustments. While the proof in Afriat (1973) can be easily
generalized to our case, we preferred to adapt the construction suggested in Houtman (1995)
for the case of scale adjustments of linear budget sets. In addition, while Afriat (1973) does
not require the chosen bundle to remain feasible following an adjustment, our proof (as the
one in Houtman (1995)) respects this requirement.
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3 Inconsistency Indices

For some of the following inconsistency measures we make use of a general

aggregator function across observations.7

De�nition 4. fn : [0, 1]n → [0,M ], where M is �nite, is an Aggregator Func-

tion if fn(1) = 0, fn(0) = M and fn(·) is continuous and weakly decreasing.8

Varian (1990) proposed an inconsistency index that measures the minimal

adjustments of the budget sets that remove cycles implied by choices. While

Varian suggests to aggregate the adjustments using the sum of squares, we

de�ne this index with respect to an arbitrary aggregator function.9

De�nition 5. Let f : [0, 1]n → [0,M ] be an aggregator function. Varian's

Inconsistency Index is,10

IV (D, f) = inf
v∈[0,1]n:D satis�es GARPv

f(v)

Varian (1990) suggested this index as a non-parametric measure for the

extent of utility maximizing behavior implied by a data set of consumer

choices. Varian's Inconsistency Index is a generalization of the Critical Cost

E�ciency Index (suggested earlier by Afriat (1972; 1973)) that is restricted

to uniform adjustments. Denote the set of vectors with equal coordinates by

7In most of this paper we assume a �xed data set of size n, therefore we will abuse
notation by omitting the subscript, unless required for clarity.

8An aggregator function fn is weakly decreasing if for every v,v′ ∈ [0, 1]n :
v ≥ v′ =⇒ fn(v) ≤ fn(v′)
v >v′ =⇒ fn(v) < fn(v

′)
. One may wish to restrict the set of potential aggrega-

tor functions to include only separable functions that satisfy the cancellation axiom. The
results do not require the richness of possible aggregator functions.

9Alcantud et al. (2010) follow Varian (1990) to suggest the Euclidean norm of the ad-

justments vector. Tsur (1989) uses
∑n

i=1(log vi)
2

n while Varian (1993) and Cox (1997) men-
tion the maximal adjustment and Smeulders et al. (2014) consider the generalized mean∑n
i=1 (1− vi)

ρ
where ρ ≥1.

10Consider a data set of two points D =
{(
p1, x1

)
; (p2, x2)

}
such that p1x2 = p1x1 but

p2x1 < p2x2. D is inconsistent with GARP (since x1RD,1x
2 and x2P 0

D,1x
1), but consider

the sequence vl = (1 − 1
l , 1) where l ∈ N>0. It is easy to verify that for every l ∈ N>0, D

satis�es GARPvl
. Therefore IV (D, f) = 0.
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I =
{
v ∈[0, 1]n : v = v1,∀ v ∈ [0, 1]

}
and a coordinate of a typical vector

v ∈ I by v.

De�nition 6. Afriat's Inconsistency Index is,

IA(D) = inf
v∈I:D satis�es GARPv

1− v

Houtman and Maks (1985) proposed an inconsistency index based on the

maximal subset of observations that satis�es GARP . This is identical to

restricting the adjustments vector to belong to {0, 1}n (see also Smeulders et

al. (2014); Heufer and Hjertstrand (2015)) and to aggregate using the sum (n−∑n
i=1 vi). Again, we de�ne this index with respect to an arbitrary aggregator

function.

De�nition 7. Let f : [0, 1]n → [0,M ] be an aggregator function. Houtman-

Maks Inconsistency Index is,

IHM(D, f) = inf
v∈{0,1}n:D satis�es GARPv

f(v)

Fact 4. IV (D, f), IA(D) and IHM(D, f) always exist.

Proof. See Appendix A.5.

Afriat's and Houtman-Maks inconsistency indices are considerably more

prevalent in the empirical-experimental literature than Varian's Inconsis-

tency Index, mainly due to computational considerations (discussed in Ap-

pendix B.1).11 However, de�nitions 5, 6 and 7 demonstrate that Afriat's and

Houtman-Maks inconsistency indices are merely reductions of Varian's Incon-

sistency Index to subsets of adjustment vectors (and a speci�c functional form

in the case of Afriat's Inconsistency Index). Moreover, in Appendix B.1 we

11The Money Pump Inconsistency Index proposed by Echenique et al. (2011), the Mini-
mum Cost Inconsistency Index suggested by Dean and Martin (2015) and the Area Incon-
sistency Index mentioned in Heufer (2008, 2009) and Apesteguia and Ballester (2015) are
discussed and compared to the Varian Inconsistency Index in Appendix B.2. In Appendix
B.3 we discuss an inconsistency index based on Euclidean distance rather than on revealed
preference related to an index mentioned in Beatty and Crawford (2011).
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claim that, practically, for most individual level data sets, the Varian Incon-

sistency Index can be computed exactly or with an excellent approximation.

In the consistency literature, Afriat (1973) and Varian (1990; 1993) view

the extent of the adjustment of the budget line as the amount of income

wasted by a DM relative to a fully consistent one (hence the term �Ine�ciency

Index�). An alternative interpretation (due to Manzini and Mariotti, 2007,

2012; Masatlioglu et al., 2012; Cherepanov et al., 2013), views the adjusted

budget set as a consideration set which includes only the alternatives from the

original budget menu that the DM compares to the chosen alternative. By

construction, those bundles not included in the attention set are irrelevant for

revealed preference consideration. Houtman (1995), for example, holds that

the DM overestimates prices and hence does not consider all feasible alter-

natives. Another line of interpretation for inconsistent choice data, is mea-

surement error (Varian, 1985; Tsur, 1989; Cox, 1997). These errors could be

the result of various circumstances as (literally) trembling hand, indivisibility,

omitted variables, etc. All the interpretations above take literally the existence

of an underlying �welfare� preferences that generate the data (Bernheim and

Rangel, 2009). In addition there exist other plausible data generating pro-

cesses that may result in approximately (and even exactly) consistent choices

(Simon, 1976; Rubinstein and Salant, 2012).

We do not �nd a clear reason to favor one interpretation over the other, and

would rather remain agnostic about the nature of the adjustments required to

measure inconsistency. Moreover, this paper takes the data set as the primitive

and the utility function as an approximation. As such, the adjustments serve

as a measurement tool (�ruler�) for quantifying the extent of misspeci�cation.

4 Parametric Recoverability

The proof of Theorem 1 is constructive: if a data set D of size n satis�es

GARPv then �nding a utility function that v-rationalizes the data reduces to

�nding 2n real numbers that satisfy a set of n2 inequalities (see the proofs
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of Lemma 4 and Theorem 1 in Appendix A.4).12 Although the constructed

utility function does not rely on any parametric assumptions, the large num-

ber of parameters makes it di�cult to directly learn from it about behavioral

characteristics of the DM, which are typically summarized by few parameters

(e.g. attitudes towards risk, ambiguity and time).13 Moreover, generically, a

data set can be v-rationalized by more than a single utility function. Hence,

if one can �nd a �simpler� (parametric) utility function that rationalizes the

data set, it will have an equal standing in representing the ranking informa-

tion implied by the data set. If one accepts that �simple� may be superior,

then one should consider the tradeo� between simplicity and misspeci�cation.

We pursue this line of reasoning by considering the minimal misspeci�cation

implied by certain parametric speci�cations.

The problem of parametric recoverability is to approximately rationalize

observed choice data by a parametric utility function. We approach this prob-

lem by acknowledging that in the case where the data set is consistent (satis�es

GARP) the representation of choice data by utility function almost always en-

tails some tension between two rankings over alternatives. The �rst is the

ranking implied by choices, which is captured by the revealed preference (par-

tial) relation, and the other is the complete ranking induced by the parametric

utility function. If the utility function rationalizes the data then the two rank-

ings are compatible. Otherwise, the two rankings are incompatible and we say

that the utility function is misspeci�ed with respect to the data. The incom-

patibility is manifested by the existence of a pair of alternatives on which the

two rankings disagree.

In Section 4.1 we propose two loss functions that measure the incompati-

12Varian (1982) builds on the celebrated Afriat (1967) theorem to construct non paramet-
ric bounds that partially identify the utility function, assuming that preferences are convex
(see Halevy et al. (2016)). His approach has been extended and developed in Blundell et
al. (2003, 2008) (see also Section 3.2 in Cherchye et al. (2009)). However, to the best of our
knowledge, it has not been expanded to include treatment of inconsistent data sets. The
parametric approach developed in the current paper extends naturally to inconsistent data
sets and easily accommodates non-convex preferences.

13We thank a referee for pointing out that this problem resembles the known issue of
�over�tting� in statistical estimation.
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bility between the two rankings. Obviously, there are loss functions that are

not based on the incompatibility between the suggested utility function and

the revealed preference relation. For example, Non Linear Least Squares is

a loss function that is based on the distance between the choice predicted

by the suggested utility function and the observed choice. In sections 5 and

7 we demonstrate empirically the di�erence between these two types of loss

functions.

The main theoretical contribution of the paper is presented in Section 4.2.

This result establishes that the loss functions we propose do not depend on

the choice data being consistent. In the case of inconsistent choices, the loss

functions capture both the extent of inconsistency and the misspeci�cation

of the parametric utility function with respect to the data. We prove that

the loss functions can then be additively decomposed into a corresponding

inconsistency index and a misspeci�cation measure. Section 8 demonstrates

the empirical implications of this decomposition to model selection.

4.1 Incompatibility Indices

4.1.1 The Money Metric Index

Consider a bundle xi that is chosen at prices pi and a utility function u (·).
While xi is revealed preferred to all feasible bundles, u may rank some of

these bundles above xi. The �rst loss measure for the incompatibility between

a data set D and a utility function u is based on the Money Metric Utility

Function (Samuelson, 1974) and was suggested by Varian (1990) (see also

Gross (1995)). It measures the minimal budget adjustment that makes bundles

that u ranks above xi infeasible, thus eliminating the incompatibility between

the two rankings.

De�nition 8. The normalized money metric vector for a utility function

u(·), v?(D, u), is such that v?i(D, u) = m(xi,pi,u)
pixi

where m(xi, pi, u) =

min{y∈<K+ :u(y)≥u(xi)}p
iy. Let f : [0, 1]n → [0,M ] be an aggregator function.

The Money Metric Index for a utility function u(·) is f (v? (D, u)).

14



Let U c denote the set of all locally non-satiated, acceptable and continuous
utility functions on <K+ .

Proposition 1. Let D =
{

(pi, xi)
n
i=1

}
, u ∈ U c and v ∈ [0, 1]n. u (·) v-

rationalizes D if and only if v 5 v?(D, u).

Proof. See Appendix A.6.

Proposition 1 establishes that f (v? (D, u)) may be viewed as a function

that measures the loss incurred by using a speci�c utility function to describe

a data set. v? (D, u) measures the minimal adjustments to the budget sets

required to remove incompatibilities between the revealed preference informa-

tion contained in D and the ranking information induced by u. It also implies

that each coordinate of v? (D, u) is calculated independently of the other ob-

servations in the data set.14,15

If v? (D, u) = 1 then Proposition 1 is merely a restatement of the familiar

de�nition of rationalizability using the money metric as a criterion. A utility

function u ∈ U c rationalizes the observed choices if and only if there is no

observation such that there exists an a�ordable bundle that u ranks above the

observed choice. In this case we would say that the utility function is correctly

speci�ed.

Recall that given an aggregator function f (·), f (v? (D, u)) measures the

incompatibility between a data set D and a speci�c preference relation repre-

sented by the utility function u. Given a set of utility functions U ⊆ U c, the
Money Metric Index measures the incompatibility between U and D.

14One may intuitively believe that such independent calculation uses only the directly
revealed preference information and may fail to rationalize the data based on the indirect
revealed preference information. However, since RD,v is the transitive closure of R0

D,v, it
follows that a utility function is compatible with the directly revealed preference information
if and only if it is compatible with all the indirectly revealed preference information.

15An additional implication of this property is that given m data sets Di

of ni observations, and utility function u (·), since u v? (Di, u)− rationalizes Di

for every i, then u v? (
⋃m
i=1Di, u)− rationalizes

⋃m
i=1Di where v? (

⋃m
i=1Di, u) =(

v? (D1, u)
′
, . . . ,v? (Dm, u)

′)′
. Moreover, if fn (·) is additive separable for every n then

f∑m
i=1 ni

(v? (
⋃m
i=1Di, u)) =

∑m
i=1 fni

(v? (Di, u)).
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De�nition 9. For a data set D and an aggregator function f (·) let U ⊆ U c.
The Money Metric Index of U is

IM(D, f,U) = inf
u∈U

f (v? (D, u))

4.1.2 The Binary Incompatibility Index

In this subsection we introduce a new loss measure that treats all incompati-

bilities similarly, by assigning them a maximal loss value.

De�nition 10. The Binary Incompatibility vector for a utility function u(·),
b?(D, u), is such that b?i(D, u) = 1 when @x such that pixi ≥ pix and

u (x) > u (xi), and b?i(D, u) = 0 otherwise. Let f : [0, 1]n → [0,M ] be an

aggregator function. The Binary Incompatibility Index for a utility function

u(·) is f (b? (D, u)).

Consider a datum set that includes only the i -th observation fromD. Then,

the i-th element of the Binary Incompatibility vector tests whether the util-

ity function rationalizes this datum set. While the Money Metric Index is

restricted to the classical environment of choice from linear budget sets, the

Binary Incompatibility Index may be easily applied to more general settings of

choice from menus. The following proposition is the counterpart of Proposition

1 for the Binary Incompatibility Index.

Proposition 2. Let D =
{

(pi, xi)
n
i=1

}
, u ∈ U c and b ∈ {0, 1}n. u (·) b-

rationalizes D if and only if b 5 b?(D, u).

Proof. See Appendix A.7.

De�nition 11. For a data set D and an aggregator function f(·), let U ⊆ U c.
The Binary Incompatibility Index of U is

IB(D, f,U) = inf
u∈U

f (b? (D, u))
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4.1.3 Monotonicity of the Incompatibility Indices

The following observation follows directly from the de�nitions of IM(D, f,U)

and IB(D, f,U) and concerns their monotonicity with respect to U (see proof

in Appendix A.8).

Fact 5. For every U ′ ⊆ U : IM(D, f,U) ≤ IM(D, f,U ′) and IB(D, f,U) ≤
IB(D, f,U ′).

In particular, Fact 5 implies that for every U ⊆ U c: IM(D, f,U c) ≤ IM(D, f,U)

and IB(D, f,U c) ≤ IB(D, f,U). That is, the value of the loss measures calcu-

lated for all continuous, acceptable and locally non-satiated utility functions

is a lower bound on the incompatibility indices for every subset of utility func-

tions.

4.2 Decomposing the Incompatibility Indices

The methods we propose to construct v? (D, u) and b? (D, u) do not depend

on the consistency of the data set D. Therefore, even if a DM does not satisfy

GARP,16 we can recover preferences (within the parametric family U) that

approximate the consistent revealed preference information encoded in choices.

The di�culty with this approach arises from the fact that the loss indices

include both the inconsistency with respect to GARP and the misspeci�cation

implied by the chosen parametric family.

We show that the suggested incompatibility indices can be decomposed

into these two components. Our strategy in developing the decomposition is

to use an inconsistency index as a measure of internal inconsistency, which is

independent of the parametric family under consideration. We prove that the

incompatibility indices calculated for all locally non-satiated, acceptable and

continuous utility functions coincide with the respective inconsistency indices.

That is, IM(D, f,U c) equals Varian's Inconsistency Index (in particular, using

16Andreoni and Miller (2002); Porter and Adams (2015) �nd that a great majority of the
subjects satisfy GARP. However, other experimental studies (Ahn et al., 2014; Choi et al.,
2007, 2014; Fisman et al., 2007) report that more than 75 percent of the subjects did not
satisfy GARP.
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the minimum aggregator, IM(D, f,U c) equals Afriat Inconsistency Index), and
IB(D, f,U c) coincides with the Houtman-Maks Inconsistency Index. The proof

of the Theorem invokes Theorem 1 and is provided in Appendix A.9.

Theorem 2. For every �nite data set D and aggregator function f :

1. IV (D, f) = IM(D, f,U c).

2. IHM(D, f) = IB(D, f,U c).

3. If f(v) = 1−mini∈{1,...,n} v
i, then IA(D) = IM(D, f,U c).

Theorem 2 enables us to decompose the loss indices into familiar measures

of inconsistency and natural measures of misspeci�cation that quantify the

cost of restricting preferences to a subset of utility functions (possibly through

a parametric form). By the monotonicity of IM and IB (Fact 5), for every

U ⊆ U c we can write the loss indices of U in the following way:

IM(D, f,U) =IV (D, f) + (IM(D, f,U)− IM(D, f,U c))

IB(D, f,U) =IHM(D, f) + (IB(D, f,U)− IB(D, f,U c))

In each decomposition, the �rst addend is a measure of the cost associated

with inconsistent choices that is independent of any parametric restriction and

depends only on the DM's choices, while the second addend measures the cost

of restricting the preferences to a speci�c parametric form by the researcher

who tries to recover the DM's preferences. A graphical demonstration of this

decomposition appears in Appendix C.

Two reasons lead us to believe that such decomposition is essential for any

method of recovering preferences of a DM who is inconsistent. First, since for

a given data set the inconsistency index is constant (zero if GARP is satis-

�ed), the decomposition implies that minimizing IM(D, f,U) or IB(D, f,U) is

equivalent to minimizing the misspeci�cation within some parametric family

U . Second, only when the incompatibility measure can be decomposed, one

can truly evaluate the cost of restricting preferences to some parametric fam-

ily compared to the cost incurred by the inconsistency in the choices. The

18



following sections demonstrate the importance of these theoretical insights in

analyzing experimental data.

5 Application to Choice under Risk

The goal of this section is to demonstrate the empirical applicability of the

Money Metric Index (MMI) as a criterion for recovering parametric prefer-

ences.17 We show that the suggested method can be used to recover approxi-

mate preferences for both consistent and inconsistent decision makers. For the

inconsistent subjects, we use Theorem 2 to assess the degree to which these

recovered preferences encode the revealed preference information contained in

the choices. We compare the parameters resulting from employing the MMI

and a recovery method that minimizes a loss function that is based on the

Euclidean distance between observed and predicted choices in the commodity

space (Non-Linear Least Squares, NLLS) and show that important qualitative

di�erences arise.

As a starting point, we analyze in this section a data set of portfolio choice

problems collected by Choi et al. (2007). In their experiment, subjects were

asked to choose the optimal portfolio of Arrow securities from linear budget

sets with varying prices. We focus our analysis only on the treatment where

the two states are equally probable. For each subject, the authors collect 50

observations and proceed to test these choices for consistency (i.e. GARP).

Then, they estimate a parametric utility function in order to determine the

magnitude and distribution of risk attitudes in the population. Choi et al.

(2007) estimate a Disappointment Aversion (DA) functional form introduced

by Gul (1991) (for more details see Appendix D).

u(xi1, x
i
2) = γw

(
max

{
xi1, x

i
2

})
+ (1− γ)w

(
min

{
xi1, x

i
2

})
(5.1)

17In analyzing choices from budget menus, recovery based on Money Metric Index retains
more ranking information from the data than recovery based on the Binary Incompatibility
Index.
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x1

(a) Disappointment aversion, β > 0.

x2

x1

(b) Elation seeking, −1 < β < 0.

Figure 5.1: Typical indi�erence curves induced by Gul (1991) Disappointment
Aversion function with β 6= 0.

where

γ =
1

2 + β
β > −1 w(z) =

{
z1−ρ
1−ρ ρ ≥ 0 (ρ 6= 1)

ln(z) ρ = 1

The parameter γ is the weight placed on the better outcome. For β > 0,

the better outcome is under-weighted relative to the objective probability (of

0.5) and the decision maker is disappointment averse. For β < 0, the better

outcome is over-weighted relative to the objective probability (of 0.5) and

the decision maker is elation seeking. In the knife-edge case, where β = 0,

Expression (5.1) reduces to expected utility.

The parameter β has an important economic implication: if β > (=)0 the deci-

sion maker exhibits �rst-order (second order) risk aversion (Segal and Spivak,

1990). That is, the risk premium for small fair gambles is proportional to

the standard deviation (variance) of the gamble. First-order risk aversion can

account for important empirical regularities that expected utility (with its im-

plied second-order risk aversion) cannot, such as in portfolio choice problems

(Segal and Spivak, 1990), calibration of risk aversion in the small and large,

and disentangling inter-temporal substitution from risk aversion (see Epstein,
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1992 for a survey). A negative value of β corresponds to a DM who is lo-

cally risk-seeking. Figure 5.1 illustrates characteristic indi�erence curves for

disappointment averse and elation seeking (locally non-convex) subjects, re-

spectively. Additionally, w(x) is a standard utility function and is represented

here by the CRRA functional form (we also report results where the utility

for wealth function is CARA, i.e. w(z) = −e−Az where A ≥ 0).

We recover parameters using two di�erent methods. The �rst is the NLLS

which is based on the Euclidean distance between the predicted and the ob-

served choices,

min
β,ρ

n∑
i=1

∥∥∥∥xi − arg max
x:pix≤pixi

(u (x; β, ρ))

∥∥∥∥ (5.2)

where ‖·‖ is the Euclidean norm. The second is the MMI, IM (D, f,U),

using the normalized average sum-of-squares (henceforth, SSQ) aggregator,

f (v) =
√

1
n

∑n
i=1 (1− vi)2. For both methods, we use an optimization algo-

rithm that allows us to recover individual parameters from observed choices

for each subject.18

5.1 Recovering Preferences for Inconsistent Subjects

In Section 4.2 we prove the decomposition of the Money Metric Index into the

Varian Inconsistency Index - which serves as a measure of inconsistency, and

a remainder - which measures misspeci�cation. As such, by using the MMI,

we recover parameters that are closest to approximate preferences for those

18The recovery code implements an individual level data analysis and includes four mod-
ules. The �rst module implements the GARP test and calculates various inconsistency
indices (see Appendix B.1). The other three modules implement the NLLS, MMI (with
various aggregators) and BI recovery methods. Each of these three modules can recover
preferences in the Disappointment Aversion (CRRA and CARA) functional family for port-
folio choice data and in the CES functional family for other-regarding preferences data.
The MATLAB code package is available online and user instructions are included in the
package. The disaggregated results (using NLLS, MMI-SSQ and MMI-MEAN) of the Choi
et al. (2007) data are available in a separate Excel �le named �Choi et al. (2007) - Results�.
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Subject IV β ρ IM

320 0 -0.509 0.968 0.1322
209 0.0288 0.164 0.352 0.0563

Table 1: Comparing consistent and inconsistent subjects.

subjects who fail GARP.19 Throughout the analysis, we exclude subjects with

an unreliable Varian Inconsistency Index (9 out of 47 subjects).20

To illustrate, consider Table 1 that compares the recovered parameters

using the Money Metric Index with the SSQ aggregator for two subjects taken

from Choi et al. (2007). Subject 320's choices are consistent with GARP while

Subject 209's choices are inconsistent. In spite of the fact that Subject 320

is consistent, the parametric preferences considered do not accurately encode

the ranking implied by her choices, as it requires 13.22% wasted income on

average. On the other hand, the revealed preference information implied by

Subject 209's choices are nicely captured by the parametric family, since it

implies incompatibility of only 5.63%, in spite of the fact that her choices are

inconsistent (114 violations of GARP). Additionally, since IV = 0.0288, the

decomposed misspeci�cation for Subject 209 amounts to only 2.75% (IM − IV )

wasted income on average with respect to her approximate preferences. The

lesson from this example is that although Subject 320 is consistent with GARP,

the choices of Subject 209 are better approximated using the Disappointment

19Approximate preferences are de�ned by the set Ũ =
{u ∈ Uc : IV (D, f) = IM (D, f, {u})}. In general, this set is not a singleton as the
vector of budget adjustments, v, required by the calculation of the Varian Inconsistency
Index, is not unique nor is the utility function that rationalizes a given revealed preference
relation, RD,v, for a particular vector of adjustments.

20Computing the Varian Inconsistency Index is a hard computational problem (see the
discussion in Appendix B.1.2). The data of Choi et al. (2007) includes 47 subjects, 12 are
consistent (pass GARP) and 35 are inconsistent. We take advantage of the sample size and
calculate the exact index for 22 of the 35 inconsistent subjects (63%) and for 4 additional
subjects we are able to provide a very good approximation. For the other 9 subjects we report
a weak approximation computed using an algorithm that over-estimates the real index.
The implication of overestimation is that the decomposition of the MMI overestimates the
inconsistency component and underestimates the misspeci�cation component. That said,
while the extent of misspeci�cation with respect to the approximate preferences may be
underestimated, the recovered parameters are independent of the calculation of the Varian
Inconsistency Index.
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Figure 5.2: Disappointment Aversion Parameter: NLLS vs. MMI (SSQ).

Aversion with CRRA functional form. As such, the MMI can be applied

uniformly to all data sets, and the appropriateness of a certain functional

form can be evaluated ex-post (as will be further demonstrated in Section 8).

5.2 Comparison of Recovered Parameters by Method

Figure 5.2 demonstrates graphically the di�erence between the recovered pa-

rameters by comparing the disappointment aversion parameter (β) as recov-

ered by the NLLS and MMI (SSQ) recovery methods. When NLLS recovers

convex preferences (β > 0) then usually MMI recovers convex preferences as

well, although there may be considerable quantitative di�erences between the

recovered parameters. However, when the preferences recovered by NLLS are

non-convex (β < 0), there seem to be no qualitative relation between the

recovered parameters by the two methods.

Moreover, the parameters recovered by NLLS in some of the non-convex

cases imply extreme elation seeking. This property can also be seen clearly
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from the distribution of the disappointment aversion parameter (β) and the

curvature of the utility function (ρ) across subjects which is reported in Ap-

pendix E.21

In light of the considerable di�erences between the recovered parameters,

an essential next step is to compare these two recovery methods based on an

out of sample criterion that is independent of the objective function of the

candidate methods.

6 Experimental Design and Procedures

In this section we propose and describe a controlled experiment designed to

perform a comparison between NLLS and MMI based on predictive power.

Speci�cally, in the �rst part of the experiment we used a design inspired by

Choi et al. (2007), to collect individual level portfolio choices from linear bud-

get sets. From each subject's choices we instantaneously recovered approxi-

mate parametric preferences by each of the two recovery methods. Using this

information, we constructed pairs of portfolios such that the ranking induced

by each set of approximate preferences on these portfolios disagree. There-

fore, each recovery method implied opposite prediction on the subject's choice

from each pair of constructed portfolios. In the second and �nal part of the

experiment, the subject chose a portfolio from each of the constructed pairs

of portfolios, thus providing an out of sample direct criterion for the relative

predictive success of each method.

6.1 Procedures and Details

For the experiment we recruited 203 subjects using the ORSEE system

(Greiner, 2015) which is operated by the Vancouver School of Economics (VSE)

21Note that the recovered parameters for NLLS may di�er from those reported in Choi
et al. (2007) for several reasons: we allow for elation seeking (−1 < β < 0); we permit
boundary observations (xi = 0); we use Euclidean norm (instead of the geometric mean)
and we use multiple initial points (including random) in the optimization routine (instead
of a single predetermined point). We were able to replicate the results reported by Choi et
al. (2007).
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at the University of British Columbia. Subjects participated voluntarily and

were primarily undergraduate students representing many disciplines within

the university. Before subjects began the experiment, the instructions were

read aloud as subjects followed along by viewing a dialog box on-screen (see

Appendix F.1 for the instructions). The experiments were conducted over

several sessions in October 2014 and February 2015 at the Experimental Lab

at the Vancouver School of Economics (ELVSE). Each experimental session

lasted approximately 45 minutes.

In the �rst part of the experiment, the subjects selected portfolios of con-

tingent assets from a series of 22 linear budget sets with di�ering price ratios

and/or relative wealth levels. These choices were used instantaneously to re-

cover individual preferences using the two recovery methods introduced above.

From these two sets of recovered parameters we constructed, uniquely for each

subject, a sequence of 9 pairs of portfolios from which subjects chose during

the second part of the experiment. Each pair included one risky portfolio,

where outcomes di�ered across states, and one safe portfolio, where the sub-

ject obtained a certain payo� regardless of the state. Note that the subjects

were unaware of the background calculation and the relation between the two

parts of the experiment.

In total, each subject made 31 choices across the two parts of the exper-

iment. After both rounds were completed, one of these rounds was selected

randomly to be paid according to the subject's choice. For whichever round

was selected, subjects were asked to �ip a coin in order to determine for which

state they would be paid. The choices were made over quantities of tokens

which were converted at a 2 to 1 exchange rate to CAD. Subjects were paid

privately upon completion of the experiment and their earnings averaged about

19.53 CAD in addition to a �xed fee of 10 CAD for showing up to the experi-

ment on time.
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6.2 Part 1: Linear Budget Sets

In this part of the experiment subjects chose portfolios of contingent assets

from linear budget sets. Each portfolio, xi = (xi1, x
i
2) , consisted of quantities

of tokens such that subjects received xi1 tokens if state 1 occurred and xi2

tokens if state 2 occurred, with each state equally likely to occur. Portfolios

were selected from a linear budget set, de�ned by normalized prices, pi, and

displayed graphically via a computer interface. All participants faced the same

budget sets and in the same order, however, this was not known to the subjects.

The interface was a two-dimensional graph that ranged from 0 to 100 tokens

on each axis. Subjects were able to adjust their choices in increments of 0.2

tokens with respect to the x-axis. Additionally, token allocations are rounded

to one decimal place. Screen shots of the graphical interface are included in

Appendix F.1. Subjects chose a particular portfolio by left-clicking on their

desired choice on the budget line, and were asked to con�rm their choice before

moving on to the next round. Subjects were restricted to choose only those

points which lie on the boundary of the budget set to eliminate potential

violations of monotonicity.22

The budget sets, and associated prices, were speci�cally chosen to address

two issues. First, a su�cient overlap between budget sets is required so that

GARP test will have su�cient power.23 Second, an emphasis on moderate price

ratios was required to identify the role of First-order Risk Aversion/Seeking

(represented by β) in the subject's preferences. For further details on the

budget lines selection see Appendix F.2.

22Two special cases were treated slightly di�erently by the interface. First, when subjects
chose a point close to the certainty line, a dialog box appeared that asked them if they meant
to choose the allocation where the value in both accounts is equal, guaranteeing themselves
a sure payo�, or if they prefer to stick with the point they chose. Second, when subjects
chose a point that is close to either axis, a dialog box appeared that asked them if they
meant to choose a corner choice or if they prefer to stick with the point they chose. This is
done to overcome mechanical aspects of precision in the interface at points that have speci�c
qualitative signi�cance.

23For a detailed analysis of a test that demonstrates that this set of budget sets is
su�ciently powerful, see Appendix F.2.
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6.3 Part 2: Pairwise Choices

Upon completion of the tasks in Part 1, the subject's choices were used to

recover structural parameters for the Disappointment Aversion functional form

with CRRA using both NLLS and MMI (SSQ). These two sets of parameters

were used to construct a sequence of 9 pairwise choice problems. In each

pairwise comparison, subjects chose one of two portfolios - one risky portfolio

(where payo�s di�er across states) and one safe portfolio (where the payo� is

certain) - represented as points in the coordinate system.24

As preferences are a binary relation over bundles, pairwise choices allow

us to directly observe the subject's preferences in their most fundamental

form. Therefore, we employed pairwise choice procedure to adjudicate be-

tween the two sets of recovered parameters, θ̂NLLS =
{
β̂NLLS, ρ̂NLLS

}
and

θ̂MMI =
{
β̂MMI , ρ̂MMI

}
. Given a risky portfolio, xR, we calculated the

certainty equivalent, CEi(CEj), for both sets of parameters, θ̂i(θ̂j) where

i, j ∈ {NLLS,MMI}. In the case where both β̂NLLS > 0 and β̂MMI > 0

(both recovered preferences are convex) we selected the safe portfolio to be

the mid-point between the two certainty equivalents, xS = (CEi + CEj) /2.

Then, if CEi > CEj, in ranking the risky portfolio xR and the safe portfolio

xS, θ̂i induces a preference for the risky portfolio while θ̂j induces a preference

for the safe one. Since pairwise choices reveal the DM's underlying prefer-

ences, choice of the risky portfolio reveals that the set of parameters θ̂i better

approximates the DM's preferences, while choosing the safe portfolio reveals

the opposite.

In the case where at least one recovery method resulted in an elation seeking

preferences (β̂NLLS < 0 or β̂MMI < 0), Part 2 of the experiment enabled

us to identify the extent of non-convexity of the underlying preferences, in

addition to driving a wedge between the two sets of parameters. To achieve this

24A fundamental design requirement was that subjects would view the two related but
distinct tasks in the same frame. Hence, the interface was designed so that the pairwise
choice problems were presented in the same two-dimensional coordinate system as the budget
lines task. Moreover, as most subjects view the pairwise choice as a more primitive task,
the instructions were written so that the presentation of Part 1's interface was through a
natural extension of a pairwise choice task. See the instructions in Appendix F.1.
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additional goal we note that for locally non-convex preferences the certainty

equivalent may exceed the expected value for some risky portfolios. Therefore,

the pairwise choice procedure searched for a risky portfolio xR, such that

CEj(x
R) < E[xR] < CEi(x

R) and chose the safe portfolio, xS such that xS =

E[xR].25 Similarly to the mid-point design, choice of the risky portfolio reveals

that the set of parameters θ̂i better approximates the DM's preferences, while

choosing the safe portfolio reveals the opposite. In addition, the choice of the

safe (risky) portfolio reveals local risk aversion (seeking) in the neighborhood

of the portfolio xR, providing a direct evidence to the extent of non convexity

of the underlying DM's preferences.26

To investigate the nature of local risk attitudes across subjects, the pairwise

choice problems were constructed so that in 6 of them the risky portfolio was

of low variability while in the other 3 problems, the risky portfolio was of high

variability. For a detailed description of the algorithm that constructs the

pairwise choices see Appendix F.3.

6.4 Incentive Compatibility

Finally, two comments regarding the incentive compatibility of this design.

First, since this is a chained experimental design, had subjects been aware that

parts of the experiment are connected and understood the precise structure of

the pairwise choice procedure, they may have been able to manipulate their

choices in order to maximize their expected gains. We are con�dent that

this is not the case since the instructions and the experimental procedure

were designed carefully not to reveal that the portfolios o�ered in Part 2 were

calculated based on the choices in Part 1. Moreover, an extremely detailed

knowledge of the experimental design and the recovery procedures is essential

in order to manipulate the choices successfully.

25Since risk attitude depends on both β and ρ it is possible to have β < 0 and have
the associated utility function exhibit risk aversion with respect to some risky portfolio.
However, β < 0 is su�cient for a utility function to display, at least locally, risk seeking
behavior with respect to portfolios with small variance.

26The safe portfolio was the preferred alternative by the MMI recovery method in 927 of
the 1827 pairwise choices in our sample (50.7%).
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Second, subjects were paid according to their decision in a randomly se-

lected problem. If subjects isolate their decisions in di�erent problems this

payment system is incentive compatible. If they had integrated their decisions

(by reducing the compound lottery induced by the random incentive system

and their decisions), their choices would have been biased towards expected

utility behavior (β = 0), a pattern observed for only about 40% of the subjects,

as will be shown in Section 8.2.

7 Results: Pairwise Choice

The results of Part 1 of the experiment exhibit patterns broadly similar to

those reported in Section 5 for the data sets gathered by Choi et al. (2007) (see

Appendix G).27 We use these results extensively (together with the results of

Choi et al. (2007)) in Section 8 to demonstrate several important implications

of Theorem 2.

The current section, however, is devoted to the results from Part 2 of the

experiment. This part was designed so that in each pairwise comparison, one

of the portfolios is preferred according to the recovered parameters of the

MMI(SSQ) and the other is preferred according to the recovered parameters

of the NLLS. Hence, in this section we analyze the choices of the subjects to

infer on the relative predictive accuracy of the two recovery methods.

The results provided here are based on the full sample. As the complete

sample includes subjects and choices that arguably should not be included

in such a comparison (as the choices in Part 1 are too inconsistent or the

algorithm could not meaningfully separate the recovery methods), Appendix

H reports similar results for a re�ned sample.

In the following, statistical signi�cance is de�ned with respect to the null

hypothesis that MMI predictions are not better than random predictions,

which entails a one-sided binomial test. The p-values should be interpreted as

27The data gathered in the experiment are available in a separate Excel �le named �Halevy
et al (2016) - Data�. The disaggregated results of Part 1 are available in a separate Excel
�le named �Halevy et al (2016) Part 1 - Results�.
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# of Observations Correct Predictions by MMI (%) p-value

Complete Sample 1827 986 (54.0%) 0.0004
Low-variability 1218 652 (53.5%) 0.0074
High-variability 609 334 (54.8%) 0.0093

Table 2: Aggregate Results

the likelihood that the MMI correctly predicts x or more out of n choices cor-

rectly by chance alone. Results are reported at the aggregate and individual

levels.

7.1 Results

7.1.1 Aggregate Results

In the aggregate analysis we treat all observations as a single data set. The

�rst row of Table 2 reports the predictive success of the MMI recovery method

over all 1827 observations (203 subjects times 9 observations per subject). The

next two rows report similar results for the low-variability and high-variability

portfolios separately. These results suggest that the MMI is a signi�cantly (p-

value smaller than 1%) better predictor of subjects' choices both overall and for

the two sub-classes of portfolios separately (at an odds ratio of approximately

1.17).

7.1.2 Individual Results

For the individual level analysis each subject is treated as a single data point.

Denote the number of correct MMI predictions by X. With only 9 choices

per subject it may be di�cult to declare one of the two methods as decisively

better for moderate values (X ∈ {3, 4, 5, 6}), as the probability to get each

one of these values at random is greater than 15%. Hence, Table 3 reports

the number of subjects for whom one method was decisively better - able to

predict more than two thirds of the choices correctly (X ∈ {0, 1, 2, 7, 8, 9}).
There are 103 subjects for which one recovery method was decisively bet-

ter. The probability that one recovery method would be decisively better by
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Subjects in Complete Sample (203)
X ≥ 7 X ≤ 2 p-value
61 42 0.0378

Table 3: Individual Level Results

random prediction alone for a single subject is approximately 18%, so the

probability of having 103 decisive predictions out of 203 subjects is close to

zero. One preliminary conclusion is that our design and algorithm was able to

separate the predictions made by NLLS and MMI e�ectively.

The empirical distribution of correct MMI predictions is signi�cantly dif-

ferent from a null-hypothesis of random prediction.28 As is evident from Table

3, MMI is a signi�cantly better predictor at the individual level as well (one-

sided p-value29 0.038), as it is decisively better predictor for 45% more subjects

than NLLS.

7.2 Disappointment Aversion

7.2.1 De�nite vs. Inde�nite Disappointment Aversion

To further our understanding of the results we divide the sample into two

classes according to the recovered parameters. The De�nite Disappointment

Averse (DDA) group is composed of those subjects for which both methods

recover β ≥ 0, whereas the Inde�nite Disappointment Averse (IDA) group is

composed of those subjects for which β is negative for one or both recovery

methods. The DDA group includes 150 subjects while the other 53 subjects

belong to the IDA group.

28The statistic for the multinomial likelihood ratio test is
−2 ln(L/R) = −2

∑k
i=1 xi ln(πi/pi) where the categories are the number of correct

predictions by the MMI, πi is the theoretical probability of category i if the prediction is
random while pi is the frequency of category i in the data. This statistic for the complete
sample equals 85.523 which, by a chi-squared distribution with 9 degrees of freedom has a
p-value of approximately zero. Pearson's chi-squared test provides similar results.

29The p-value in the third column is calculated for the group of 103 subjects for whom
one recovery method was decisively better than the other, under the null hypothesis that
each recovery method has an equal chance to be decisive.
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# Observations # Correct Predictions % Correct Predictions p-value
by MMI by MMI

DDA 1350 706 52.3% 0.0484
IDA 477 280 58.7% < 0.0001

Table 4: Aggregate Results by Group.

DDA (150) IDA (53)
X ≥ 7 X ≤ 2 p-value X ≥ 7 X ≤ 2 p-value
38 30 0.1981 23 12 0.0448

Table 5: Individual Level Results by Group

In the aggregate analysis we treat the whole set of observations as a single

data set with 1350 observations for the DDA group and 477 for the IDA

group. Table 4 demonstrates that the MMI recovery method remains a better

predictor in both groups. When the sample includes only the DDA group

the advantage of the MMI is signi�cant at 5% level (but the advantage is not

signi�cance in the re�ned sample, see Table 12 in Appendix H.3). However,

when the sample includes only the IDA group, the advantage of the MMI

recovery method is highly signi�cant in spite of the smaller sample size (and

is robust to the re�nement).

At the individual level Table 5 shows that although the MMI recovery

method predicts decisively better than NLLS in both DDA and IDA, the dif-

ference in predictive accuracy within the DDA group is insigni�cant. However,

the di�erence within the IDA group is substantial and statistically signi�cant

as MMI predicts decisively for almost twice as many subjects for which NLLS

predicts decisively.

7.2.2 De�nite Elation Seeking

Further, we focus on a subset of IDA group, referred to as the De�nite Elation

Seeking (DES) group, that includes the 29 subjects for whom both recovery

methods recover β < 0. The MMI recovery method predicted correctly 163 of

the 261 choice problems these subjects encountered, which amount to 62.5% of

the observations. Hence, the di�erence between the recovery methods within

32



the DES group is even more substantial than in the whole IDA group and it

is highly signi�cant (p-value smaller than 0.0001).

The individual results are similar: for 20 out of the 29 subjects in the

DES group, one recovery method predicted decisively better (more than two

thirds of pairwise choices) than the other, and for 75% of them (15 out of

20) the MMI produced the better prediction (p-value equals 0.0207). These

results suggest that the di�erence in predictive success between the MMI and

NLLS recovery methods can be attributed mostly (but not only) to subjects

for which the recovery methods resulted in apparent non-convex preferences.

7.2.3 MMI vs. NLLS when Preferences are Non-convex

The pairwise comparisons in Part 2 of the experiment allow us to directly ob-

serve the subject's preferences in these non-convex regions of their indi�erence

curves. Our results imply that the MMI recovers a signi�cantly more accu-

rate representation of subject preferences when the underlying preferences are

non-convex.

Speci�cally, for 21 of the 29 subjects in the DES group (72.4%) the disap-

pointment aversion parameter recovered by the NLLS is more negative than

the one recovered by the MMI.30 While we cannot conclude that NLLS sys-

tematically overstates the extent of elation seeking, this pattern of di�erences

does correspond to particular patterns of choices observed in Part 1 of the

experiment. Figure 7.1 illustrates the choices from Part 1 of the experiment

for three characteristic subjects as well as their corresponding parameter esti-

mates. Generally, as the subject's choices drift farther from the certainty line

the greater is the di�erence between the parameter recovered by the NLLS

and the MMI recovery methods.

30For 19 of these 21 subjects the di�erence is more than 0.1. For 6 of the 8 subjects
where the parameter recovered by the NLLS is less negative than the one recovered by the
MMI, the di�erence is less than 0.1.
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(a) Subject 1203 (b) Subject 1512

(c) Subject 2203 (d) Subject 301

Figure 7.1: Patterns of Choice - Non-convex Preferences

7.3 Illustrative Discussion

To conclude this section we wish to suggest an informal explanation for our

�nding. Brie�y, when choices exhibit non-convex preferences (in our context,

elation seeking behavior), many parametric utility functions can provide an

equally good approximation of the underlying preferences. In these cases,

the NLLS recovery method will most probably pick a set of parameters that

imply greater non-convexity than implied by the set of parameters recovered

by the MMI method. The results of Part 2 of the experiment suggest that the

parameters recovered by the MMI are considerably better in predicting the

subjects' choices in the non-convex region.

To demonstrate the multiplicity of approximated preferences given the
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xS

(a) Typical indi�erence curves (b) Choices given the linear choice
problems presented in Part 1 of the
experiment

Figure 7.2: Two Simulated Subjects

same data set, consider two simulated subjects with preferences represented

by the utility functions u and u′ with the characteristic indi�erence curves

shown in Figure 7.2a. Faced with the same sequence of linear budget sets as

our subjects in Part 1 of the experiment, the implied optimal choices for these

simulated subjects are exactly the same and are illustrated in Figure 7.2b.31

This pattern of choices is highly structured and may result from a reasonable

heuristic according to which the subject wants to guarantee a payment of 10

tokens, but is willing to bet with the remainder of her income on the cheaper

asset (unless the relative prices are extreme). In order to accommodate this

behavior, NLLS resorts to substantial non-convexity while the MMI can ra-

tionalize these choices within the DA model without making strong claims

on behavior that is unobservable using linear budget lines. For an informal

demonstration, see Appendix I.

31Notice that the pattern of choice for these simulated subjects is very similar to Subject
301 in Figure 7.1d. Not surprisingly, the recovered parameters for our simulated subject
are also very similar to Subject 301, βMMI = −0.24, ρMMI = 0.40, βNLLS = −0.91,
ρNLLS = 1.55.
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8 Results: Choice from Budget Lines

The usage of the MMI as a recovery method relies on the observation that

it can be decomposed into an inconsistency index, which is independent of

the speci�c utility function evaluated, and a misspeci�cation index � which

depends on the subset of utility functions considered. Given two parametric

families U and U ′, a researcher will calculate the value of the MMI loss index

for each family (IM(D, f,U ′) and IM(D, f,U)), and since both incorporate the

same inconsistency measure - IV (D, f), the data set D may be better approx-

imated by U or U ′ depending on the magnitude of the loss index. Moreover,

an important implication of Fact 5 is that if we impose an additional para-

metric restriction on preferences, the misspeci�cation will necessarily (weakly)

increase. If U ′ is nested within U , the di�erence between the value of the loss

indices at U and U ′ is a measure of the marginal misspeci�cation implied by

the restriction of U to U ′.
In this section we demonstrate the application of these insights for evalu-

ating nested and non-nested model restrictions in the two experimental data

sets. We perform a subject level analysis for the data collected in Part 1 of the

experiment and the data collected by Choi et al. (2007). We begin by evalu-

ating the misspeci�cation implied by the Disappointment Aversion functional

form (with CRRA and CARA utility functions). Then we demonstrate the

evaluation of nested parametric restrictions by measuring the misspeci�cation

implied by restricting the functional form to expected utility. Finally, we com-

pare the CRRA and CARA functional forms as an example for the evaluation

of non-nested model restrictions.32

8.1 Evaluating Misspeci�cation

Using the decomposition of the Money Metric Index into the Varian Inconsis-

tency Index (measure of consistency) and a residual which measures misspec-

32For conciseness, throughout this Section we use the SSQ aggregator. Similar calcula-
tions are available using the MEAN aggregator in the results �le �Choi et al (2007) - Results�
and �Halevy et al (2016) Part 1 - Results�.
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Part 1 of the Experiment Choi et al. (2007)
Original Sample 203 subjects 47 subjects

Consistent 92 (45%) 12 (26%)
Dropped 3 (1.5%) 9 (19%)

Inconsistency Level at most 6% at most 2.5%
Utility index CRRA CARA CRRA CARA

# of Subjects with at most 136 127 26 23
5% misspeci�cation (68%) (63.5%) (68.4%) (60.5%)

# of Subjects with at least 4 10 3 6
10% misspeci�cation (2%) (5%) (7.9%) (15.8%)

Subjects for whom misspeci�cation 149 153 26 27
is more than 90% of the MMI (74.5%) (76.5%) (68.4%) (71.1%)

Subjects for whom misspeci�cation 0 0 1 1
is less than 50% of the MMI (0 %) (0 %) (2.6%) (2.6%)

The sample includes all the subjects for whom Varian Inconsistency Index was calculated

exactly or with good approximation.

Table 6: Misspeci�cation using the Disappointment Aversion functional form
(with CRRA or CARA).

i�cation, we can calculate the misspeci�cation for each subject.

One practical challenge is that the calculation of the Varian Inconsistency

Index is computationally hard. However, as discussed in detail in Appendix

B.1, we are able to calculate the exact values (or very good approximations)

of this index for most of the subjects in the two samples.

Table 6 provides some descriptive statistics on the misspeci�cation in the

recovered preferences of subjects for whom the Varian Inconsistency Index

was calculated exactly or with tight approximation. It demonstrates that for

approximately two thirds of them, the Disappointment Aversion model entails

less than 5% misspeci�cation. In addition, Table 6 provides a preliminary

evidence that, on an aggregate level, the Disappointment Aversion may be

more misspeci�ed with CARA than with CRRA.

The bottom two rows of Table 6 suggest that in both samples, the portion

of misspeci�cation in the loss index is considerably larger than the portion of

inconsistency. In fact, there are almost no subjects for whom the portion of
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Part 1 of the Experiment Choi et al. (2007)
CRRA 40.8% (80 of 196) 32.4% (11 of 34)
CARA 44.7% (85 of 190) 45.2% (14 of 31)

Percentage of subjects for which the additional misspeci�cation implied by the expected

utility restriction is less than 10% (number of subjects that are well approximated by

expected utility out of the number of subjects in the sample).

Table 7: Evaluating the restriction to expected utility.

inconsistency is larger than the portion of misspeci�cation.33

8.2 Evaluating a Restriction to Expected Utility

Expected utility is nested within the disappointment aversion model, satisfy-

ing the restriction that β = 0. We evaluate whether or not this restriction is

justi�ed by examining the additional misspeci�cation implied by this restric-

tion.34 Given the choice of functional form (Disappointment Aversion with

CRRA or CARA utility index), we use the ratio IM (D,f,EU)−IM (D,f,DA)
IM (D,f,DA)−IV (D,f)

where

DA stands for the Disappointment Aversion (unrestricted) model, EU stands

for the expected utility model and f is the chosen aggregator.

If the restriction to expected utility implies a proportional increase in the

misspeci�cation of more than 10% then we tend to reject the expected utility

speci�cation. Included in the sample are subjects whose Varian Inconsistency

Index was calculated exactly or with good approximation and whose measured

misspeci�cation of the disappointment aversion model was less than 10%, im-

plying that it is a reasonable model to capture their choices.

The results in Table 7 demonstrate that choices of between one third and

33Since those subjects for whom the Varian Inconsistency Index could not have been
calculated properly were dropped, the sample slightly over-represents the less inconsistent
subjects.

34In the results �les (�Choi et al (2007) - Results� and �Halevy et al (2016) Part 1 -
Results�) we include descriptive statistics of the parameter frequencies in 1000 re-samplings
of each individual data set in every reported recovery scheme. Potentially, we could have
used these distributions to evaluate whether the restriction can be rejected. However, since
we do not provide any proof that these re-samplings indeed recover con�dence sets for the
parameters, we merely interpret them as a measure for the sensitivity of the recovered
parameters to extreme observations.
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Part 1 of the Experiment Choi et al. (2007)
Full Sample* 71.4% (145 of 203) 80.9% (38 of 47)

Restricted Sample** 88% (103 of 117) 80% (24 of 30)

The percentage of subjects with lower misspeci�cation using CRRA than CARA (num-
ber of subjects better approximated by CRRA than CARA out of the number of subjects
in the sample).
*Includes all subjects for whom the loss function was calculated.

**Includes subjects whose Varian Ine�ciency Index was calculated exactly or with good

approximation and that the di�erence in misspeci�cation between the two indices is

greater than 10%.

Table 8: Choice of utility index.

half of the subjects are well approximated by the expected utility model, while

for the others (more than half) the restriction to expected utility implies sub-

stantial increase in misspeci�cation.

8.3 Comparison of Non-nested Alternatives

The Money Metric Index also allows the researcher to evaluate non-nested

alternatives. Here, we compare two utility indices for the Disappointment

Aversion functional form - CRRA and CARA. We can calculate the extent

of misspeci�cation implied by each functional form and select the functional

form that represents a decision maker's preferences best on a subject by subject

basis.

Table 8 reports that choices made by about three quarters of subjects are

better approximated by the Disappointment Aversion model with CRRA than

with CARA utility index.

This result strengthens if we restrict the samples to include only those

subjects who are not too inconsistent (i.e. the Varian Ine�ciency Index was

calculated exactly or with good approximation) and the di�erence between the

models is substantial (i.e. the di�erence in misspeci�cation between the two

models is greater than 10%).
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9 Conclusions

This paper proposes a general methodology to structurally recover parameters

(in the current study � preferences) based on minimizing the incompatibility

between the ranking information encoded in choices and the ranking induced

by a candidate structural model (here � utility function). We show that this

incompatibility can be decomposed into an inconsistency index, which mea-

sures how far is the data from optimizing behavior (GARP), and a remainder

which captures the model's misspeci�cation - which is in the researcher's con-

trol. This approach is applicable to a variety of incompatibility indices and

aggregator functions.

We demonstrate the proposed method in an environment of choice under

risk and show that it may lead to di�erent recovered parameters than stan-

dard NLLS, which represents recovery methods that minimize the distance

between the observed data and the model's prediction. In order to compare

the two methods based on an objective criterion we design and execute an

experiment that distinguishes between the methods based on their predictive

success in out-of-sample pairwise comparisons. The results demonstrate that

the proposed recovery method does a better job in predicting choices, espe-

cially when choices imply non-convex preferences � an environment in which

minimizing the distance between observed and predicted choices is problem-

atic. Although the goal of the experiment is to distinguish parametric recovery

methods, it is fully based on subject's choices: her choices in Part 1 (choice

from linear budgets sets) determine the pairwise comparisons she will face in

Part 2, and her choices in the latter part inform an outside observer which

recovery method provides better predictions. Moreover, choice made in pair-

wise comparisons reveal preferences in their purest form, and permit their

identi�cation in scenarios where other elicitation methods can only provide

bounds.

The empirical analysis followed the theoretical decomposition result, which

allows a researcher to evaluate the change in misspeci�cation implied by nested

and non-nested models. In the context of choice under risk, we demonstrate
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the relative importance of misspeci�cation relative to inconsistency, and that

although a non-negligible minority of the subjects are well approximated by

the expected utility model, the choices of the majority of subjects are better

approximated by a more general model of non-expected utility.

The current investigation includes theoretical foundations, empirical im-

plications and experimental evaluation, but we view it only as a necessary

�rst-step in integrating insights from revealed preference theory into otherwise

standard structural recovery problems in Economics. The model selected here

is simple (utility maximization), yet central in Economics and Finance. The

implied non-convexities are non-coincidental, as they result from a reasonable

calculated procedure. We believe that an important next step in this research

program is the integration of stochastic component into the present determin-

istic model, while retaining the crucial distinction between inconsistency and

misspeci�cation.
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A Proofs

A.1 Fact 1.

Let v′ ≤ v. Then: R0
D,v′ ⊆ R0

D,v, P
0
D,v′ ⊆ P 0

D,v and RD,v′ ⊆ RD,v.

Proof. For example, the proof of R0
D,v′ ⊆ R0

D,v is as follows: If x = xi the

statement holds by De�nition 1.1. Otherwise, if xiR0
D,v′x then v′ipixi ≥ pix .

v′ ≤ v implies that for every observation i, v′i ≤ vi . Therefore, vipixi ≥ pix,

meaning xiR0
D,vx.

A.2 Fact 2.

Every D satis�es GARP0.

Proof. For every pair of observed bundles xi and xj, xjP 0
D,0x

i is false since for

every bundle x, pjx ≥ 0 = 0× pjxj (P 0
D,0 is the empty relation).

A.3 Fact 3.

Let v,v′ ∈ [0, 1]n and v ≥ v′. If D satis�es GARPv then D satis�es

GARPv′.

Proof. By Fact 1, for every pair of observed bundles xi and xj, xiRD,v′x
j

implies xiRD,vx
j. By De�nition 2, since D satis�es GARPv for every pair

of observed bundles xi and xj, xiRD,v′x
j implies not xjP 0

D,vx
i. By Fact 1,

for every pair of observed bundles xi and xj, xiRD,v′x
j implies not xjP 0

D,v′x
i.

Therefore, D satis�es GARPv′.

A.4 Theorem 1.

Notation. Let � be a binary relation. Then, � is de�ned as x � y if and only

if x � y and not y � x, while ∼ is de�ned as x ∼ y if and only if x � y and

y � x. Denote by X/ ∼ the set of all equivalence classes on X induced by ∼.
Also, denote by �? the transitive closure of � and by �c the relation where

x �c y if and only if y � x.
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De�nition 12. Let v ∈ [0, 1]n. A transitive and re�exive binary relation �
v-rationalizes-by-relation D, if R0

D,v ⊆� and P 0
D,v ⊆�.

Notation. Let x ∈ <K+ and δ > 0. Bδ (x) =
{
y ∈ <K+ : ‖y − x‖ < δ

}
.

De�nition 13. A utility function u : <K+ → < is

1. Locally non-satiated if ∀x ∈ <K+ and ∀ε > 0, ∃y ∈ Bε (x) such that

u(x) < u(y).

2. Continuous if ∀x ∈ <K+ and ∀ε > 0 there exists δ > 0 such that y ∈ Bδ (x)

implies u (y) ∈ Bε (u (x)).

3. Acceptable if ∀x ∈ <K+ , u(0) ≤ u(x).35

4. Monotone if ∀x, y ∈ <K+ , x ≤ y implies u(x) ≤ u(y).

5. Concave if ∀x, y ∈ <K+ and 0 ≤ α ≤ 1: αu (x) + (1− α)u (y) ≤
u (αx+ (1− α) y).

Lemma 1. Let � be transitive and re�exive binary relation on a set X. Then,

there exists a complete, transitive and re�exive binary relation �′ on X such

that �⊆�′ and �⊆�′.

Proof. Construct the mapping Π : X → X/ ∼ where each element of X is

mapped into its equivalence class (the Canonical Projection Map). Consider

the relation �̄ on X/ ∼ where x � y implies Π(x)�̄Π(y). �̄ is re�exive and

transitive since � is re�exive and transitive. Also, �̄ is antisymmetric since if

x ∼ y then Π(x) = Π(y). By Szpilrajn (1930)'s Extension Theorem, there is a

complete, transitive, re�exive and antisymmetric binary relation, �̄′, such that
�̄ ⊆ �̄′. Consider now the relation �′ on X where Π(x)�̄′Π(y) implies x �′ y.
�′ is complete, re�exive and transitive since �̄′ is complete, re�exive and

transitive. Also, suppose x � y, then, by the �rst construction, Π(x)�̄Π(y),

35For everyD =
{(
pi, xi

)n
i=1

}
and for every v ∈ [0, 1]n, ∀i ∈ 1, . . . , n : xiR0

D,v0 (where 0 is
the zero bundle). Therefore, a necessary condition for a binary relation� to v-rationalize-by-
relation D is that for every observed bundle x ∈ <K+ , x � 0. Similarly, for a utility function
u(x) to v-rationalize D it must be that for every observed bundle x ∈ <K+ , u(x) ≥ u(0).
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by the Extension Theorem Π(x)�̄′Π(y) and by the second construction x �′ y.
Therefore �⊆�′. Similarly, �⊆�′.

Lemma 2. Let R and P be two arbitrary binary relations on X. The following

statements are equivalent:

1. There exists a transitive and re�exive binary relation � on X such that

R ⊆� and P ⊆�.
2. There exists a complete, transitive and re�exive binary relation �′ on

X such that R ⊆�′ and P ⊆�′.
3. (R ∪ P )? ∩ P c = ∅.

Proof. By Lemma 1, the �rst two statements are equivalent. Next, suppose

(1) holds. Then, (R ∪ P ) ⊆ (� ∪ �) and therefore (R ∪ P )? ⊆ (� ∪ �)?.

Also, P c ⊆�c. Therefore, (R ∪ P )? ∩ P c ⊆ (� ∪ �)?∩ �c. Since �⊆� and

since � is transitive we get (R ∪ P )? ∩ P c ⊆� ∩ �c. But, � ∩ �c= ∅ and
hence (R ∪ P )? ∩ P c = ∅.

Last, suppose (3) holds. We construct a transitive and re�exive binary

relation � on X such that R ⊆� and P ⊆�. Let � be such that x � y if and

only if x(R ∪ P )?y or x = y. � is re�exive by de�nition and transitive since

(R ∪ P )? is transitive. Moreover, since R ⊆ (R ∪ P )? and P ⊆ (R ∪ P )? then

R ⊆� and P ⊆�. It is left to show that P ⊆�. Suppose xPy. Since P ⊆�
then x � y. Moreover, since xPy then yP cx and since (R ∪ P )? ∩ P c = ∅ we
get that it cannot be that y(R ∪ P )?x. In particular, it cannot be that yPx

and therefore x 6= y. Thus, by the de�nition of �, it cannot be that y � x.

Therefore, x � y and we conclude that P ⊆�.

Lemma 3. Let v ∈ [0, 1]n and let D =
{

(pi, xi)
n
i=1

}
be a �nite data set of

choices from budget sets. The following statements are equivalent:

1. There exists a transitive and re�exive binary relation � on <K+ such

that � v-relation-rationalizes D.

2. There exists a complete, transitive and re�exive binary relation �′ on
<K+ such that �′ v-relation-rationalizes D.

3. D satis�es GARPv.
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Proof. By Lemma 2 and De�nition 12 if X = <K+ , R = R0
D,v and P = P 0

D,v

then the �rst two statements are equivalent and both are also equivalent to

(R0
D,v ∪ P 0

D,v)? ∩ P 0
D,v

c = ∅. But, (R0
D,v ∪ P 0

D,v)? ∩ P 0
D,v

c = ∅ holds if and only

if for every pair of bundles x and y, xRD,vy implies not yP 0
D,vx. If x is an

unobserved bundle or y is an unobserved bundle then by De�nition 1, xRD,vy

implies not yP 0
D,vx. Therefore, (R0

D,v ∪ P 0
D,v)? ∩ P 0

D,v
c = ∅ holds if and only if

for every pair of observed bundles x and y, xRD,vy implies not yP
0
D,vx. Hence,

by De�nition 2, (R0
D,v ∪ P 0

D,v)? ∩ P 0
D,v

c = ∅ holds if and only if D satis�es

GARPv.

Lemma 4. Let D =
{

(pi, xi)
n
i=1

}
be a �nite data set and let{(

zi : <K+ → <
)n
i=1

}
be a family of real functions. De�ne the following two bi-

nary relations on
{

(xi)
n
i=1

}
: xiRxj ⇔ zi(x

j) ≤ 0 and xiPxj ⇔ zi(x
j) < 0. If

there exists a transitive and re�exive binary relation �̄ on
{

(xi)
n
i=1

}
such that

R ⊆ �̄ and P ⊂ �̄ then there exists a function f(x) = mini∈{1,...,n} fi +λizi(x)

such that λi > 0 and f(xi) ≥ fi.

Proof. By Lemma 2, there exists a complete, transitive and re�exive binary

relation � on
{

(xi)
n
i=1

}
such that R ⊆� and P ⊂�. Since � is complete

and transitive and
{

(xi)
n
i=1

}
is �nite we can partition the observed bundles

and rank them according to �. Let I = {1, . . . , n}. Then E1 = {i ∈ I|@y ∈
{(xi)i∈I}, y � xi} is the set of indices of those observed bundles that are not

dominated by any other observed bundle according to �. Similarly, from the

remaining observed bundles, E2 = {i ∈ I/E1|@y ∈ {(xi)i∈I/E1}, y � xi}, is
the set of indices of those observed bundles that are not dominated according

to � by any other observed bundle, and so E3 = {i ∈ I/(E1 ∪ E2)|@y ∈
{(xi)i∈I/(E1∪E2)}, y � xi}, etc. Denote the number of classes by l. Transitivity
guarantees that there are no empty classes while completeness assures that for

every k ∈ 1, . . . , l and for every pair of observed bundles x, y ∈ Ek it must be
that x ∼ y.

The following procedure uses this partition and the functions{(
zi : <K+ → <

)n
i=1

}
to construct a mapping (fi, λi) :

{
(xi)

n
i=1

}
→ <2 such

that λi > 0 and f(xi) ≥ fi where f(x) = mini∈I {fi + λizi(x)}:
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1. For every i ∈ E1, set fi = 1 and λi = 1. Also, set k = 1. If l = 1 the

procedure terminates, otherwise continue.

2. Set k := k + 1.

3. Denote Bk = ∪k−1m=1Em.

4. Calculate αk = mini∈Bk minj∈Ek min

{
fi + λizi(x

j), fi

}
.

5. Choose some f < αk and set fj = f for every j ∈ Ek.
6. Calculate βk = maxi∈Bk maxj∈Ek

fi−fj
zj(xi)

.

7. Choose some λ > βk and set λj = λ for every j ∈ Ek.
8. If k < l return to step 2, otherwise the procedure terminates.

Stage 1 guarantees that for every i ∈ E1, λi = 1 and fi = 1. Suppose

i ∈ E1, l ≥ 2 and k ∈ {2, . . . , l}. Then i ∈ Bk and for every j ∈ Ek, xi � xj

(since � is complete). Steps 4 and 5 guarantee that xi � xj implies that

fi > fj or fi − fj > 0. In addition, xi � xj implies that zj(x
i) > 0 (otherwise

xjRxi and therefore xj � xi). Therefore, steps 6 and 7 guarantee that for

every observation i ∈ I, λi > 0. It is left to show that for every observation

i ∈ I, f(xi) ≥ fi. That is, minj∈I [fj + λjzj(x
i)] ≥ fi or, equivalently, for every

pair of observations i, j ∈ I, fj + λjzj(x
i) ≥ fi. First, if x

j � xi steps 4 and 5

guarantee that fj + λjzj(x
i) > fi. If x

j ∼ xi then zj(x
i) ≥ 0 (otherwise xjPxi

and therefore xj � xi) and in addition by step 5, fj = fi. Since for every

j ∈ I, λj > 0 we get that xj ∼ xi implies fj + λjzj(x
i) ≥ fi. Last, if x

i � xj

then zj(x
i) > 0 and fi − fj > 0 and steps 6 and 7 guarantee that λj >

fi−fj
zj(xi)

.

Therefore, xi � xj implies fj + λjzj(x
i) > fi. Thus, for every observation

i ∈ I, f(xi) ≥ fi. If l = 1 then for every pair of observations i, j ∈ I, we

have xi ∼ xj. Therefore, for every pair of observations i, j ∈ I,zj(x
i) ≥ 0.

In addition, for every i ∈ I, λi = 1 and fi = 1. Hence, for every i ∈ I,

f(xi) ≥ fi.

Lemma 5. If u is a locally non satiated utility function that v-rationalizes

D =
{

(pi, xi)
n
i=1

}
, then xiP 0

D,vx implies u (xi) > u (x).

Proof. If xiP 0
D,vx then xiR0

D,vx. Since u (·) v-rationalizes D, xiR0
D,vx implies

u (xi) ≥ u (x). Suppose that u (xi) = u (x). Since vipixi > pix, ∃ε > 0 such

that ∀y ∈ Bε (x) : vipixi > piy. By local non-satiation ∃y′ ∈ Bε (x) such
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that u (y′) > u (x) = u (xi). Thus, y′ is a bundle such that vipixi > piy′ and

u (y′) > u (xi), in contradiction to u (·) v-rationalizing D. Therefore, u (xi) >

u (x).

We proceed to the proof of Theorem 1,

Proof. First, suppose there exists a locally non-satiated utility function u(·)
that v-rationalizes D. If, in negation, D does not satisfy GARPv then, by

De�nition 2, there are two observed bundles xi, xj such that xiRD,vx
j and

xjP 0
D,vx

i. By De�nition 1.3, xiRD,vx
j implies that there exists a sequence of

observed bundles
(
xk, . . . , xm

)
such that xiR0

D,vx
k, . . . , xmR0

D,vx
j. Therefore,

by De�nition 3, xiRD,vx
j implies u(xi) ≥ u(xk) ≥ · · · ≥ u(xm) ≥ u(xj),

meaning xiRD,vx
j implies u(xi) ≥ u(xj) . However, by Lemma 5, since u (·) is

a locally non-satiated utility function that v-rationalizes D, xjP 0
D,vx

i implies

u (xj) > u (xi). Contradiction. Therefore, D satis�es GARPv.

Since the third statement implies the �rst statement, it is left to be shown

that if D satis�es GARPv then there exists a continuous, concave, acceptable

and monotone utility function that v-rationalizes D.

By Lemma 3 and by De�nition 12, we have to show that for every data set

D and adjustments vector v, if � is a transitive and re�exive binary relation on

<K+ such that R0
D,v ⊆� and P 0

D,v ⊆� then there exists a continuous, concave,

acceptable and monotone utility function that v-rationalizes D.

De�ne zi(x) = 1
vi
pix− pixi if x 6= xi and zero otherwise. Then, xiR0

D,vx⇔
zi(x) ≤ 0 and xiP 0

D,vx⇔ zi(x) < 0. Thus, by Lemma 4, there exists a function

f(x) = mini∈{1,...,n} fi + λizi(x) such that λi > 0 and f(xi) ≥ fi.

Next we show that f(·) v-rationalizes D. Suppose xiR0
D,vx. By the de�ni-

tion of f we get f(x) ≤ fi + λizi(x). Since, λi > 0 and since xiR0
D,vx we get

λizi(x) ≤ 0 and therefore f(x) ≤ fi. However, f(xi) ≥ fi. Therefore, x
iR0

D,vx

implies f(xi) ≥ f(x), that is f(·) v-rationalizes D.

The functions zi are discontinuous at xi when vi < 1. Therefore, f

is continuous everywhere except maybe at the observed bundles. We use

f to construct a continuous utility function f̂ that v-rationalizes D. Let

ẑi(x) = limy→x zi(y) then ẑi(x) ≥ zi(x) for x = xi and ẑi(x) = zi(x) otherwise.

47



Construct f̂(x) = mini∈{1,...,n} fi + λiẑi(x) where fi and λi are the same as in

f and therefore λi > 0 and f(xi) ≥ fi. Note that ẑj(x
i) ≥ zj(x

i) = 0 for all

j ∈ {1, . . . , n} implies f̂(xi) ≥ f(xi) ≥ fi. If x 6= xi then zi(x) ≤ 0 implies

ẑi(x) ≤ 0 and therefore f̂(x) ≤ fi. Hence, for every bundle x 6= xi such that

zi(x) ≤ 0 we get f̂(x) ≤ f̂(xi). Thus, for every bundle x such that xiR0
D,vx

we get f̂(x) ≤ f̂(xi), that is f̂ v-rationalizes D. Obviously, ẑi(x) is continuous

and therefore for every observation i ∈ I, fi + λiẑi(x) is continuous. Since the

minimum of any �nite number of continuous functions is continuous we get

that f̂(x) = mini∈{1,...,n} fi + λiẑi(x) is continuous.

For every i ∈ I, since ẑi(x) is linear with positive slope, the zero bundle,

x = 0, minimizes fi + λiẑi(x). Therefore, f̂(0) = min x∈<K+ f̂(x). Hence, f̂

satis�es acceptability. Also, since ẑi(x) is increasing monotonically, for every

observation i ∈ I, fi + λiẑi(x) is increasing monotonically and therefore f̂ is

monotonic. ẑi(x) is linear and therefore for every observation i ∈ I, fi+λiẑi(x)

is linear. Since the minimum of a set of linear functions is concave, f̂ is

concave.

A.5 Fact 4.

IV (D, f), IA(D) and IHM(D, f) always exist.

Proof. The aggregator function f(·) is bounded. In addition, by Fact 2, the

sets {v ∈ [0, 1]n : D satisfies GARPv}, {v ∈ I : D satisfies GARPv} and

{v ∈ {0, 1}n : D satisfies GARPv} are non-empty. Hence, IV (D, f), IA(D)

and IHM(D, f) always exist.

A.6 Proposition 1.

Let D =
{

(pi, xi)
n
i=1

}
, u ∈ U c and v ∈ [0, 1]n. u (·) v-rationalizes D if

and only if v 5 v?(D, u).

Proof. First, let us show that if u (·) v-rationalizes D then v 5 v?(D, u).

Suppose that v is such that u (·) v-rationalizes D and for observation i, vi >

v?i (D, u). By De�nition 3, u (xi) ≥ u (x) for all x such that vipixi ≥ pix.
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By De�nition 8 and since vi > v?i (D, u) we get that vipixi > m (xi, pi, u) =

pix? where x? ∈ argmin{y∈<K+ :u(y)≥u(xi)}p
iy. It follows that ∃ε > 0 such that

∀y ∈ Bε (x?) : vipixi > piy. By local non-satiation ∃y′ ∈ Bε (x?) such that

u (y′) > u (x?) ≥ u (xi). Thus, y′ is a bundle such that vipixi > piy′ and

u (y′) > u (xi) contradicting that u (·) v-rationalizes D.

Next, let us show that if v 5 v?(D, u) then u (·) v-rationalizes D. We

begin by establishing that u(·) v?(D, u)-rationalizes D. Suppose, in nega-

tion, that for some observation (pi, xi) ∈ D there exists a bundle x such that

xiR0
D,v?(D,u)x and u (xi) < u (x). If x = 0 then we get a contradiction by

acceptability. If x 6= 0 then by De�nition 1.1, v?i(D, u)pixi ≥ pix. By De�ni-

tion 8, m (xi, pi, u) ≥ pix. By continuity of u (·) there exists γ > 0 such that

u (xi) < u ((1− γ)x). However, since pi (1− γ)x < m(xi, pi, u), we reach a

contradiction to De�nition 8.

Finally, since u(·) v?(D, u)-rationalizes D, for every observation (pi, xi) ∈
D, v?i(D, u)pixi ≥ pix implies u (xi) ≥ u (x). Since v 5 v?(D, u), for every ob-

servation (pi, xi) ∈ D, v?i (D, u) pixi ≥ vipixi. Therefore, for every observation

(pi, xi) ∈ D, vipixi ≥ pix implies u (xi) ≥ u (x). Hence, u (·) v-rationalizes

D.

A.7 Proposition 2

Let D =
{

(pi, xi)
n
i=1

}
, u ∈ U c and b ∈ {0, 1}n. u (·) b-rationalizes D if

and only if b 5 b?(D, u).

Proof. First, let us show that if u (·) b-rationalizes D then b 5 b?(D, u). Sup-

pose, in negation, that b is such that u (·) b-rationalizes D and for observation

i, bi = 1 while b?i (D, u) = 0. By De�nition 10, b?i (D, u) = 0 implies that

there exists y ∈ <K+ such that pixi ≥ piy and u (y) > u (xi). Thus, xiR0
D,bx

does not imply u(xi) ≥ u(x), contradicting that u (·) b-rationalizes D.

Next, let us show that if b 5 b?(D, u) then u (·) b-rationalizes D. Since,

b 5 b?(D, u), for every observation (pi, xi) ∈ D, bi = 1 implies b?i (D, u) =

1. By De�nition 10, this means that bipixi ≥ pix implies u (xi) ≥ u (x).

Otherwise, if bi = 0 by the acceptability of u(·), bipixi ≥ pix implies u (xi) ≥
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u (x). Therefore, bipixi ≥ pix implies u (xi) ≥ u (x) and by De�nition 1.1

xiR0
D,bx implies u(xi) ≥ u(x). Hence, by De�nition 3 u(·) b-rationalizesD.

A.8 Fact 5.

For every U ′ ⊆ U : IM(D, f,U) ≤ IM(D, f,U ′) and IB(D, f,U) ≤
IB(D, f,U ′).

Proof. U ′ ⊆ U implies infu∈U ′ f (v? (D, u)) ≥ infu∈U f (v? (D, u)) and therefore

IM(D, f,U) ≤ IM(D, f,U ′) and similarly for the Binary Incompatibility Index.

A.9 Theorem 2.

Proof. We begin with the proof of part (1). First, we show that IV (D, f) ≤
IM(D, f,U c). If IV (D, f) = 0 then by de�nitions 4 and 9 we get IV (D, f) ≤
IM(D, f,U c). Otherwise, if IV (D, f) > 0, suppose that IV (D, f) >

IM(D, f,U c). Then, there exists u ∈ U c such that f (v? (D, u)) < IV (D, f).

By Proposition 1, u(·) v?(D, u)-rationalizes D. By Theorem 1 D satis�es

GARPv?(D,u). However, since D satis�es GARPv?(D,u) and f (v? (D, u)) <

IV (D, f), IV (D, f) cannot be the in�mum of f(·) on the set of all v ∈ [0, 1]n

such that D satis�es GARPv. Contradiction.

For the converse direction note that by Theorem 1, D satis�es GARPv

if and only if there exists u ∈ U c that v-rationalizes D. By Proposition 1,

v 5 v? (D, u). Since f(·) is weakly decreasing f (v? (D, u)) ≤ f(v). Therefore,

by De�nition 9, D satis�es GARPv implies that IM(D, f,U c) ≤ f(v). Since

IV (D, f) = infv∈[0,1]n:D satis�es GARPv f(v) we have IV (D, f) ≥ IM(D, f,U c).
Hence, IV (D, f) = IM(D, f,U c).

To prove part (2) we �rst show that IHM(D, f) ≤ IB(D, f,U c). If

IHM(D, f) = 0 by de�nitions 4 and 11 we get IHM(D, f) ≤ IB(D, f,U c).
Otherwise, if IHM(D, f) > 0 suppose that IHM(D, f) > IB(D, f,U c). Then,

there exists u ∈ U c such that f (b? (D, u)) < IHM(D, f). By Proposition 2

u(·) b?(D, u)-rationalizes D. By Theorem 1, D satis�es GARPb?(D,u). How-
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ever, since D satis�es GARPb?(D,u) and f (b? (D, u)) < IHM(D, f), IHM(D, f)

cannot be the in�mum of f(·) on the set of all v ∈ {0, 1}n such that D satis�es

GARPv. Contradiction.

Second, by Theorem 1, D satis�es GARPb if and only if there exists

u ∈ U c that b-rationalizes D. By Proposition 2, b 5 b? (D, u). Since

f(·) is weakly decreasing f (b? (D, u)) ≤ f(b). Therefore, by De�nition 11,

D satis�es GARPb implies that IB(D, f,U c) ≤ f(b). Since IHM(D, f) =

infv∈{0,1}n:D satis�es GARPv f(v) we have IHM(D, f) ≥ IB(D, f,U c). Hence,

IHM(D, f) = IB(D, f,U c).
We conclude with the proof of part (3). By part (1), since f(v) = 1 −

mini∈{1,...,n} vi is continuous and weakly decreasing then for every �nite data set

D, IV (D, f) = IM(D, f,U c). By De�nition 6, since I ⊂ [0, 1]n then if f(v) =

1−mini∈{1,...,n} vi we get IV (D, f) ≤ IA(D). Suppose that IV (D, f) < IA(D),

then there exists v̂ ∈ [0, 1]n such that D satis�es GARPv̂ and f(v̂) < IA(D).

By Fact 3, for every v ∈ [0, 1]n such that D satis�es GARPv there exists

v′ ∈ I such that D satis�es GARPv′ where v
′ = mini∈{1,...,n} vi. Hence, there

exists v̂′ ∈ I such that D satis�es GARPv̂′ and f(v̂) = f(v̂′) < IA (D).

Contradiction.

B Inconsistency Indices

This appendix provides detailed information regarding inconsistency indices

mentioned or related to this work. Section B.1 describes the theoretical and

practical computational issues concerning the indices analyzed in Theorem 2.

Three important alternative inconsistency indices based on revealed prefer-

ences are discussed in Section B.2. A fourth alternative, which is not based

on revealed preferences, is discussed in Section B.3.36

36We do not discuss indices based on the number of violations of the revealed preference
axioms (see Swo�ord and Whitney (1987); Famulari (1995) and Harbaugh et al. (2001)) or
indices based on the distance of the observed Slutsky matrix from the set of rational Slutsky
matrices (see Jerison and Jerison, 1993; Aguiar and Serrano, 2015a,b).
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B.1 Computation

Theorem 2 relates three inconsistency indices to loss functions used in the

recovery of parametric preferences. Since an inconsistency index is constant

(given a data set), its value is inconsequential to the selection of the best

approximating function within a parametric family. However, the value of the

index is necessary in order to determine the decomposition of the loss between

the subject's inconsistency and the researcher's inaccuracy in her choice of

functional form. Therefore, a practical consideration in the choice of a loss

function is the computability of the corresponding inconsistency index.

B.1.1 Afriat's Inconsistency Index

Theorem 3 in Afriat (1973) suggests an NP-Hard algorithm to calculate

Afriat's inconsistency index. Based on a similar idea, Smeulders et al. (2014)

provide a polynomial time algorithm to calculate this index. Houtman and

Maks (1987) describe an e�cient binary search routine that approximates

Afriat's inconsistency index with an arbitrary accuracy in polynomial time.

In the supplemented code package we follow Houtman and Maks (1987).

Let GL denote a lower bound on the index (initialized to zero) and let GU de-

note an upper bound on the index (initialized to one). At each iteration we cut

the di�erence between the bounds by half, by testing the data for GARPGU+GL
2

and updating the upper bound in case of a failure and the lower bound oth-

erwise. l iterations guarantee an accuracy of approximately log10 2l ≈ 0.3l

signi�cant decimal digits (we implement l = 30). Finally, we report GL.

B.1.2 Varian's Inconsistency Index

The problem of �nding the exact value of Varian's Inconsistency Index is

equivalent to solving the minimum cost feedback arc set problem.37 Karp

(1972) shows that this problem is NP-Hard and therefore �nding the exact

value of Varian's Inconsistency Index is also NP-Hard (as mentioned in Varian

37Given a directed and weighted graph, �nd the �cheapest� subset of arcs such that its
removal turns the graph into an acyclic graph.
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(1990)).38 Moreover, Smeulders et al. (2014) show that no polynomial time

algorithm can achieve a constant factor approximation (a ratio of o
(
n1−δ)).

Tsur (1989), Varian (1993) and Alcantud et al. (2010) suggest approximation

algorithms that overestimate the actual Varian's Inconsistency Index.

Our calculation of Varian's Inconsistency Index in the supplemented code

package attempts to take advantage of the moderate size of the analyzed

datasets (at most 50 observations per subject). Denote the number of GARP

violations by m and the set of all GARP violations byM = {h1, . . . , hm} (each
element is an ordered sequence of observations). For every violation hi, denote

the set of budget line adjustments that can potentially prevent it by Hi (each

element is an ordered pair of an observation and an adjustment percentage).

If
∑m

i=1 |Hi| < K1 then we take a �brute force� approach (we implement

K1 = 26). For each subset of ∪mi=1Hi, we construct the corresponding adjust-

ment vector v and check whether GARPv is satis�ed. We report three versions

of Varian's Inconsistency Index, each minimizing a di�erent aggregator func-

tion - the Minimum aggregator (1 − mini∈{1,...,n} vi), the MEAN aggregator

( 1
n

∑n
i=1 (1− vi)) and the SSQ aggregator (

√
1
n

∑n
i=1 (1− vi)2).

Otherwise, we take advantage of the small commodity space (K = 2).

Rose (1958) shows that in this case WARP is satis�ed if and only if SARP

is satis�ed. Denote the set of WARP violations by W (each element, wi, is

an unordered pair of observations). If |W | ≤ K2 we take a similar approach,

on budget adjustments that can prevent the WARP violations (we implement

K2 = 12). For each of ∪|W |i=1wi, we construct the corresponding adjustment vec-

tor v and check whether GARPv is satis�ed. We report the minimum of the

three aggregators mentioned above. We observe that resolving WARP viola-

tions provides a very good approximation to the actual Varian's Inconsistency

Index.

Finally, if
∑m

i=1 |Hi| ≥ K1 and |W | > K2 we implement Algorithm 3 of

Alcantud et al. (2010). This algorithm initializes the vector of adjustments,

v, to 1. Then, a loop is implemented that ends only when the data satis-

38Smeulders et al. (2014) show a similar result for the generalized mean aggregator func-
tion.
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�es GARPv. Inside the loop, the matrix A is maintained where the cell in

the ith row and the jth column contains
pjxi
vjpjxj

if xiRv,Dxj and xjP
0
v,Dxi and

zero otherwise. In each iteration, the maximal element of A is picked and

substituted into the corresponding element in the vector of adjustments. We

report the three aggregators mentioned above operated on the resulted vector

of adjustments v.

For the data collected in the �rst part of our experiment, where each subject

made 22 choices from linear budget lines, we are able to calculate the Varian

Inconsistency Index exactly for 91.6% (186 out of 203) of the subjects. We fail

to calculate a reliable index for only 3 subjects (we provide good approximation

for 14 subjects). Since Choi et al. (2007) collected 50 observations per subject,

the success rate of our algorithm is somewhat lower. We are able to calculate

the index exactly for 72.3% (34 out of 47) of the subjects and to provide good

approximation for 4 other subjects. We fail to calculate a reliable result for 9

subjects.

B.1.3 Houtman-Maks Inconsistency Index

Boodaghians and Vetta (2015) show that there exists a polynomial time algo-

rithm to calculate the Houtman-Maks Inconsistency Index for the two com-

modities case (K = 2).39 In addition, they follow Houtman and Maks (1985)

and Smeulders et al. (2014) to show that for three commodities or more, cal-

culating the Houtman-Maks Inconsistency Index is NP-Hard. Smeulders et al.

39Rose (1958) shows that in the two commodity case (K = 2) WARP is satis�ed if
and only if SARP is satis�ed. Let G be an undirected graph where each node is a chosen
bundle and two nodes are linked if they constitute a pair that violates WARP. Boodaghians
and Vetta (2015) use Rose (1958) to prove that in the two commodity case calculating the
Houtman-Maks Inconsistency Index is equivalent to �nding the minimal vertex cover of G
(the smallest set of nodes S such that every edge in G has an endpoint in S). Next, a graph
is perfect if the chromatic number (the smallest number of colors needed to color all nodes
where no two adjacent vertices share the same color) of every induced subgraph equals the
size of the largest clique (a set of fully connected nodes) of that subgraph. Boodaghians and
Vetta (2015) show that G is perfect and recall that �nding the minimal vertex cover of a
perfect graph is solvable in polynomial time. Hence, they conclude that the calculation of the
Houtman-Maks Inconsistency Index in two commodities case is also solvable in polynomial
time.
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(2014) show that no polynomial time algorithm can achieve a constant factor

approximation (a ratio of o
(
n1−δ)) for this Index (see also the discussion in

Boodaghians and Vetta (2015) following Lemma 2.1).

Our calculation of the Houtman-Maks Inconsistency Index in the supple-

mented code package begins with an exhaustive search approach.40 Given a

dataset D of size n, denote by Dm the set of all subsets of D of size m < n.

Also, denote M = minm∈{1,...,n−1}m s.t. | ∪n−1l=m Dl| < K3. The algorithm

�rst goes over every element in Dn−1, then over every element in Dn−2, etc.

The algorithm terminates either after an adjusted dataset that satis�es GARP

is found, or after every element inDM was checked (we implementK3 = 108).41

If the algorithm terminated without �nding a subset that satis�es GARP, we

use a modi�ed complementary package42 where the Houtman-Maks Inconsis-

tency Index problem for the case of two goods is represented as an integer

linear program which is solved by an approximation algorithm provided by

Matlab. This solution is an upper bound since the removals suggested by the

linear program might not be minimal.43

For the data collected in the �rst part of our experiment, where each sub-

ject made 22 choices from a linear budget line, we are able to calculate the

Houtman-Maks Inconsistency Index for all subjects. For the data collected

by Choi et al. (2007) (50 observations per subject) we failed to calculate the

exact index for 7 subjects (14.9%).

40Algorithm 1 in Gross and Kaiser (1996) is a di�erent, more e�cient algorithm, for an
exact calculation of the Houtman-Maks Inconsistency Index.

41For example, if the data set includes 50 observations then all subsets of size 46 or more
are tested while if the data set is of size 22 then all subsets are checked (in fact for every
dataset of size 23 or less, all subsets will be examined).

42Downloaded from Daniel Martin's personal website on November 5th 2011. The modi-
�cations are mainly due to the simpli�cations enabled by the result of Rose (1958) for the
case of two commodities. The second algorithm in Heufer and Hjertstrand (2015) is closely
related to Martin's implementation.

43Another, more e�cient approximation is implemented by the algorithm suggested by
Algorithm 2 in Gross and Kaiser (1996) and Algorithm 1 in Heufer and Hjertstrand (2015).
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B.2 Alternative Indices Based on Revealed Preferences

The Money Pump Index (MPI, Echenique et al., 2011) and the Minimum Cost

Index (MCI, Dean and Martin, 2015) are recently proposed alternatives to the

Varian, Afriat and Houtman-Maks Inconsistency Indices. In this section we

describe and discuss these indices and their relation to those characterized by

Theorem 2. In addition, we discuss an additional possible inconsistency index,

and highlight the challenges in its application.

B.2.1 Money Pump Index

The premise of the MPI is that every violation of GARP corresponds to a cycle

of observed bundles.44 Each cycle can be interpreted as a sequence of trades,

resulting in a sure loss of money, that the DM will accept. The MPI of a cycle

is the monetary loss, relative to the total income in the cycle, incurred by one

sequence of these trades. The MPI of a data set is an aggregation of these

losses.45 The MPI is the only inconsistency index mentioned in the current

study that does not minimize any loss function, but rather calculates some

measure of severity for each GARP violation.46 In addition, the MPI takes

into account every link in a cycle, rather than focusing only on the weakest

link as the other indices analyzed here.

B.2.2 Minimum Cost Index

The MCI is based on the fact that SARP is satis�ed if and only if the direct

revealed preference relation is acyclic. Dean and Martin (2015) suggest to

remove direct revealed preference relations between observed bundles until

R0
D,1 becomes acyclic. They calculate the cost of removing the ordered pair

(xki , xki+1) from R0
D,1 by pkixki−pkixki+1∑

k∈1,...,n p
kxk

, and propose the MCI as the minimal

44A sequence of observed bundles xk1 , xk2 , . . . , xkl in dataset D is a cycle of length l if
xk1R0

D,1x
k2 ,...,xkl−1R0

D,1x
kl and xklP 0

D,1x
k1 .

45Echenique et al. (2011) suggest the mean and the median aggregators, while Smeulders
et al. (2013) recommend, due to computational complexity concerns, the minimum or the
maximum aggregators.

46Counting the violations of the revealed preference axioms is a similar approach in this
respect, see Swo�ord and Whitney (1987); Famulari (1995); Harbaugh et al. (2001).
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Figure B.1: Comparing Inconsistency Indices.

cost of removals that make R0
D,1 acyclic. The MCI does not take into account

that a budget line adjustment required to remove one relation may also remove

additional relations. In comparison, such inter-dependencies between cycles

are accounted for by the Varian Inconsistency Index.

B.2.3 MCI and MPI vs. other Indices

Echenique et al. (2011, Section III.B) and Dean and Martin (2015, Section 2.1)

provide thorough discussions on the relative merits of the MPI and the MCI,

respectively. Here, we provide an example that highlights a property common

to both indices. Note that the MPI is de�ned over cycles of observations and

the MCI over pairs of observations, while the Varian Inconsistency Index is

de�ned observation-by-observation. As a consequence, the latter internalizes

the e�ect of a single adjustment on all cycles or pairs (in which this observation

is involved), while the former two do not. The most important implication of

this property, in the context of parametric recovery of preferences, is that it is

not clear that there exist corresponding measures of incompatibility that can

be decomposed into these inconsistency indices (MPI or MCI) and misspeci�-

cation measures, in the spirit of Theorem 2.
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Consider the data set demonstrated in Figure B.1. This data set is of

size 3, D = {(p1, x1) , (p2, x2) , (p3, x3)} where pixi = 1. The strict direct re-

vealed preference relation P 0
D,1 (and hence also R0

D,1) includes the ordered

pairs (x1, x2), (x2, x1), (x1, x3) and (x3, x1) and therefore the data set is incon-

sistent with GARP. A budget set adjustment vijpixi, where vij is such that

vijpixi = pixj, is the dashed line denoted by vij.

We �rst attend to the Varian Inconsistency Index. There are three pos-

sible minimal adjustment vectors v such that GARPv is satis�ed: vA =

(v12, 1, 1), vB = (v13, v21, 1) and vC = (1, v21, v31). Note that in vA,

where the budget line of Observation 1 is adjusted to x2, both cycles

((x1, x2, x1) and (x1, x3, x1)), are broken at once. Therefore IV (D, f) =

min{f(vA), f(vB), f(vC)} and if f is the MEAN aggregator of 1− v, then

IV (D, f) = min{1−v12
3
, 2−v

21−max{v13,v31}
3

}. Alternatively, if we use the min-

imum aggregator (f(v) = 1 − mini∈{1,...,n} vi) we get that IV (D, f) =

1 − max {v12,min {v13, v21} ,min {v21, v31}}. By Theorem 2.3, IA(D) = 1 −
max {v12,min {v13, v21} ,min {v21, v31}}, as well. There are two minimal ad-

justment vectors for the Houtman-Maks Inconsistency Index: vA′ = (0, 1, 1)

and vC′ = (1, 0, 0). Therefore, IHM(D, f) = min{f(vA′), f(vC′)}. If f is

anonymous then IHM(D, f) = f(vA′).

The MPI takes into account three cycles - (x1, x2, x1), (x1, x3, x1) and

(x2, x1, x3, x1, x2). For each cycle it accounts for all the links. Therefore,

the measure for (x1, x2, x1) is 2−v12−v21
2

, the measure for (x1, x3, x1) is 2−v13−v31
2

and the measure for (x2, x1, x3, x1, x2) is 4−v12−v21−v13−v31
4

and using the MEAN

aggregator we get MPI = 4−v12−v21−v13−v31
4

≥ IV (D, f).

The MCI ignores the fact that adjusting the budget line of Observation

1 to x2 resolves also the cycle that includes x1 and x3. Therefore, MCI =
2−max{v12,v21}−max{v13,v31}

3
≥ IV (D, f).

B.2.4 Area-based Measures

A natural alternative to the incompatibility indices discussed in the current

study is an Intersection Incompatibility Index, which is based on the area

bounded between the upper contour set of the indi�erence curve passing
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Figure B.2: Modi�ed budget sets

through the chosen bundle and the set of feasible alternatives.

A related measure is introduced in the online appendix (Part D.3) of

Apesteguia and Ballester (2015) in which they extend their Minimal Swaps

Index to the case of in�nite number of alternatives.47 Their proposal is based

on the Lebesgue measure of the bounded area and the sum aggregator over

observations. They de�ne the Consumer Setting Swaps Index as the in�mum

of this sum over the set of all continuous, strictly monotone and quasi-concave

utility functions.

In light of Theorem 2, one needs to have, in addition, a corresponding mea-

sure of inconsistency, so that when the set of utility functions is restricted, this

index measures the inconsistency embedded in choices, while the remainder of

the Intersection Incompatibility Index represents the misspeci�cation implied

by the chosen parametric family.

One option is to de�ne an index of inconsistency based on the area of inter-

section between the revealed preferred set and the budget set corresponding to

47For the case of �nite number of alternatives, Apesteguia and Ballester (2015) de�ne
the Swaps Index of a given preference relation to be the minimal number of swaps re-
quired to reconcile the observations with the ranking induced by the given preference. The
Minimal Swaps Index minimizes the Swaps Index over all possible rankings. Applying
the current paper's terminology, the Swaps Index is an incompatibility measure. However,
since Apesteguia and Ballester (2015) domain includes a �nite number of alternatives and
therefore a �nite number of rankings, the Minimal Swaps Index becomes an inconsistency
measure, in the spirit of Theorem 2.
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an observed choice. De�ne the revealed preferred set of a given bundle as only

those bundles that are either revealed preferred or those that monotonically

dominate a bundle that is revealed preferred to the given bundle. Hence, as

illustrated in Figure B.2, violations of consistency are removed by modifying

budget sets so as to eliminate the area of overlap between the budget set and

those bundles which are revealed preferred. These violations can be measured

and aggregated to construct the Area Inconsistency Index.48

Nevertheless, the Area Inconsistency Index is not ideal. First, currently,

there does not exist an elegant theoretical analog to Theorem 1 with respect

to the modi�ed budget sets in Figure B.2 as there does for the speci�c type of

adjustments utilized in calculating the Varian and the Houtman-Maks Incon-

sistency Indices. Therefore a decomposition result may be di�cult to achieve.

Second, computing the inconsistency index suggested above would not be any

easier than computing the Varian or Houtman-Maks Inconsistency Indices,

problems which are NP-hard (see Appendix B.1 above). Third, we conjecture

that any recovery procedure related to the Area Inconsistency Index would

be biased towards non-convex preferences due to the geometric characteristics

of the suggested budget line adjustments. Finally, the Area Inconsistency In-

dex lacks intuitive interpretation that the considered indices enjoy. All these

are surmountable di�culties, that we think are worthwhile pursuing in future

work.

B.3 Distance-based Indices

The common method for parametric recovery of individual preferences mini-

mizes some loss function of the distance between observed and predicted bun-

dles. Similar to the money metric and binary incompatibility measures, the

result of this method can also be decomposed into an inconsistency and mis-

speci�cation measures.

48Heufer (2008, 2009, Section 9.2.3) suggests, in the spirit of of Varian's (1982) non-
parametric bounds, a similar inconsistency index with the additional external assumption
of convexity of preferences. Apesteguia and Ballester (2015) provide a simple example in
their online appendix in which they implement a measure that corresponds to Heufer's
index, assuming its equivalence to their Consumer Setting Swaps Index.
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One example of such decomposition can be based on an inconsistency index

suggested by Beatty and Crawford (2011). This index measures the Euclidean

distance between the observed data set and the set of potential data sets

that satisfy GARP.49 It can be shown that a generalization of the proposed

index equals the in�mum of the appropriate loss function calculated over all

continuous and locally non-satiated utility functions. Therefore, the di�erence

between the minimal loss calculated over a subset of utility functions and the

proposed inconsistency index results in a natural measure of misspeci�cation.

However, this method ignores the fact that making a choice from a menu re-

veals that the chosen alternative is preferred to every other feasible alternative,

not only to the predicted one. In addition, this measure entails an additional

assumption on the ranking of unchosen alternatives. It requires that the closer

is a bundle to the choice, the higher it is ranked. Such ranking can be justi�ed

only by the auxiliary assumption that the choices were generated through a

maximization of convex preferences, which is not part of revealed preference

theory. Therefore, if choices were generated by a maximization of non-convex

preferences then this additional assumption will lead to an erroneous ranking

of unchosen alternatives, as demonstrated by the results of the experiment

reported in sections 6 and 7.

C Decomposition: Graphical Example

Figure C.1 demonstrates the decomposition graphically. Consider the data

set: D = {(p1, x1) , (p2, x2)}. The data set is inconsistent with GARP since

x1RD,1x
2 and x2P 0

D,1x
1. Note that the dashed line v2p2x2, together with the

original budget line from which x1 was chosen, represent graphically the ad-

justments that lead D to satisfy GARP(1,v2). If v
2 ≥ v1, for any anonymous

aggregator, the Varian Inconsistency Index is IV (D, f) = f ((1, v2)) and the

49Let Ri = {x ∈ <K+ : pix = pixi} be the set of bundles that cost pixi at prices pi.

Then, the set of all potential data sets given data set D is
{{(

pi, x
)n
i=1

}
: x ∈ Ri

}
. Beatty

and Crawford (2011) propose 1 − d
dmax as an inconsistency index where d is the Euclidean

distance between the data set and the closest element in the set of potential data sets that
satisfy GARP and it is normalized by dmax to restrict the index to [0, 1].
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Figure C.1: Decomposition

Houtman-Maks Inconsistency Index is IHM (D, f) = f ((1, 0)).

Now consider the monotonic and continuous function u. Since {(p1, x1)}
is rationalizable by this utility function, then v?1 (D, u) = b?1 (D, u) = 1. In

addition, v?2 (D, u) is the minimal expenditure required to achieve utility level

of u (x2) under prices p2, which is represented graphically by the dotted line

v?2p2x2 while b?2 (D, u) = 0 since u does not rationalize {(p2, x2)}.
Thus, IM (D, f, {u}) = f ((1, v?2 (D, u))) and since v?2 (D, u) is smaller

than v2, it implies that IM (D, f, {u}) is weakly greater than IV (D, f). Since

in this speci�c example, no other adjustments are required, the di�erence be-

tween the original budget line from which x2 was chosen and the dashed line

- v2p2x2, represents graphically the inconsistency implied by D, while the dif-

ference between the dashed line and the dotted line - v?2p2x2, represents the

misspeci�cation implied by u. Their sum is the goodness of �t measured by

the money metric index. However, IB (D, f, {u}) = IHM (D, f), meaning that

no misspeci�cation is implied by the binary incompatibility index since u ra-

tionalizes {(p1, x1)} which is the largest subset of D that can be rationalized by

any utility function as suggested by the Houtman-Maks Inconsistency Index.50

50If one considers an alternative utility function u′ such that
{(
p1, x1

)}
is not ratio-

nalizable by u′ (but suppose v?2 (D,u′) = v?2 (D,u)), this would not a�ect the inconsis-
tency indices but would imply weakly higher loss indices than those measured for u (e.g.
IB (D, f, {u′}) = f (0)).

62



D Disappointment Aversion Preferences

Let p = (p1, x1; ...pn, xn) be a lottery such that x1 ≤ · · · ≤ xn. Assum-

ing (for simplicity) that ce (p) /∈ supp (p), the support of p can be parti-

tioned into elation and disappointment sets: there exists a unique j such

that for all i < j : (xi, 1) ≺ p and for all i ≥ j : (xi, 1) � p. Let

α =
∑n

i=j pi. Gul's elation/disappointment decomposition is then given by

r =(x1, r1; · · · ;xj−1, rj−1), q = (xj, qj; · · · ;xn, qn) such that ri = pi
1−α and

qi = pi
α
. Note that p = αq + (1− α) r. Then:

uDA (p) = γ (α)E (v, q) + (1− γ(α))E (v, r)

and ∃ − 1 < β <∞ such that

γ (α) =
α

1 + (1− α) β

where v (·) is a utility index and E (v, µ) is the expectation of the functional

v with respect to measure µ. If β = 0 disappointment aversion reduces to

expected utility, if β > 0 the DM is disappointment averse (γ (α) < α for all

0 < α < 1), and if β < 0 the DM is elation seeking (γ (α) > α for all 0 < α <

1). Gul (1991) shows that the DM is averse to mean preserving spreads if and

only if β ≥ 0 and v is concave. That is, if v is concave then, by Yaari (1969),

preferences are convex if and only if the DM is weakly disappointment averse.

For binary lotteries: Let (x1, p;x2, 1− p) be a lottery. The elation compo-

nent is x2 and the disappointment component is x1 and α = 1− p (in our case

α = 0.5). Therefore:

uDA (x1, p;x2, 1− p) = γ (1− p) v (x2) + (1− γ (1− p)) v (x1)

and since γ (0) = 0, γ (1) = 1 and γ (·) is increasing, γ (·) can be viewed as

a weighting function, and DA is a special case of Rank Dependent Utility

(Quiggin, 1982).
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Figure E.1: The distribution of the recovered β (upper) and ρ (lower) by MMI
(SSQ), MMI (MEAN) and NLLS in Choi et al. (2007).

E CRRA Parameters: Distributions

Figure E.1 provides the distribution of the recovered parameters for the Dis-

appointment Aversion functional form with the CRRA utility index by three

recovery methods - NLLS, MMI (SSQ) and MMI (MEAN). Both distributions

provide some evidence as to the extreme values recovered by NLLS.

Consider for example, the distribution of the disappointment aversion pa-

rameter (upper panel of Figure E.1). The NLLS recovers β < −0.9 or β > 1.3

for 11 subjects, while the MMI methods recover such extreme values only

once. Similar pattern can be easily observed in the lower panel for the CRRA

parameter.
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F The Experiment

F.1 Instructions

Welcome

Welcome to the experiment. Please silence your cell phone and put it away

for the duration of the experiment. Additionally, please avoid any discussions

with other participants. At any time, if you have any questions please raise

your hand and an experiment coordinator will approach you.

Please note: If you want to review the instructions at any point during

the experiment, simply click on this window (the instructions window). To

return to the experiment, please click on the experiment icon on the task bar.

Study Procedures

This is an experiment in individual decision making. The study has two parts

and the second part will begin immediately following completion of the �rst

part. Before Part 1, the instructions will be read aloud by the experiment

coordinator and you will be given an opportunity to practice. The practice

time will allow you to familiarize yourself with the experimental interface and

ask any questions you may have. We describe the parts of the experiment in

reverse order, beginning with Part 2 now.

Part 2

You will be presented with 9 independent decision problems that share a com-

mon form. In each round you will be given a choice between a pair of alloca-

tions of tokens between two accounts, labeled x and y. Each choice will involve

choosing a point on a two-dimensional graph that represents the values in the

two accounts. The x-account is represented by the x-axis and the y-account is

represented by the y-axis.
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For all rounds, in Option 1 the amount allocated to the x-account and y-

account will di�er, and in Option 2 the amount allocated to each account will

be the same. For both options, the values allocated to each account will be

displayed beside the point corresponding to each option on the graph, as well

as, in the dialog box labeled �Options� on the right-hand side of the screen.

Figure F.1 illustrates some examples of types of choices you may face.

Figure F.1: Pairwise Choices
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For the round that is selected for payment, your payment is determined by

the number of tokens allocated to each account. At the end of the experiment,

you will toss a fair coin to randomly select one of the two accounts, x or y. For

each participant, each account is equally likely to be chosen. That is, there

is a 50% chance account x will be selected and a 50% chance account y will

be chosen. You will only receive the amount of tokens you allocated to the

account that was chosen. The round for which you will be paid will be selected

randomly at the conclusion of the experiment and each round is equally likely

to be chosen. Remember that tokens are valued at the following conversion

rate: 2 tokens = $1.

Please Note: Only one round (from both parts combined) will be selected

for payment and your payment will be determined only after completion of

both parts.

Each round begins with the computer selecting a pair of allocations. For

example, as illustrated in Figure F.2, Option 1, if selected, implies a 50%

chance of winning 32.0 tokens and a 50% chance of wining 58.0 tokens, where

as Option 2, if selected, implies winning 43.0 tokens for sure.

Figure F.2: Pairwise Choices - Example
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In some cases, the two options will be so close to each other that it will be

di�cult to distinguish between them graphically. In this case, you may refer

to the �Options� box on the right-hand side of the screen where the values

associated with each option are listed. Additionally, it may be di�cult to

select your preferred option by clicking on the graph itself, so instead you may

use the radio buttons in the �Options� box to make you selection. Figure F.3

provides an example of this situation.

Figure F.3: Pairwise Choices - Overlapping Points

In all rounds, you may select a particular allocation in either of two ways:

1) You may use the mouse to move the pointer on the computer screen to the

option that you desire, and when you are ready to make your decision, simply

left-click near that option, or 2) You may select your preferred option using

the radio buttons on the right-hand side of the screen, and when you are ready

to make your decision, simply left-click on the radio button that corresponds

to your choice. In either case, a dialog box, illustrated in Figure F.4, will ask

you to con�rm your decision by clicking �OK�.
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Figure F.4: Pairwise Choices - Con�rmation Screen

If you wish to revise your choice simply click �Cancel� instead. After you

click �OK�, your choice will be highlighted in green and the screen will darken,

as illustrated in Figure F.5, indicating that your choice is con�rmed. You may

proceed to the next round by clicking on the �>�>� button located in the lower

right-hand corner of the screen in the box labeled �Controls�. Please note

that you will be given an opportunity to review and edit your choices upon

completion of Part 2 of the experiment.

Figure F.5: Pairwise Choices - Con�rmed Choice
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Next you will be asked to make an allocation in another independent deci-

sion problem. This process will be repeated until all 9 rounds are completed.

At the end of the last round, you must click the �Finish� button, located in

the lower right-hand corner of the screen in the box labeled �Controls�, and

you will be given an opportunity to review your choices. You may use the

navigation buttons to move between choices or the �Jump to� feature in the

�Edit Panel� to navigate to a speci�c round. If you are content with your

choices, you may exit the review by clicking on the �Finish� button. At this

stage you may no longer go back to review and/or edit your choices. Instead,

click �OK� to complete the experiment.

Part 1

In Part 1, you will be presented with 22 independent decision problems that

are very similar to those in Part 2. However, rather than selecting an allocation

from among only two options, now you will have many options to choose from.

In each round your available options will be illustrated by a straight line on

the graph and you will make your choice by selecting a point on this line. As

in Part 2, your payo� in the round that is selected for payment is determined

by the number of tokens allocated to each account. Examples of di�erent lines

you may face are illustrated in Figure F.6.
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Figure F.6: Budget Lines
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Figure F.7 illustrates the di�erences and similarities between the problems

in Part 1 and Part 2. In Part 2, you are o�ered the choice between only

two options, A and B. On the other hand, if we were to draw a straight line

between these options and allow one to choose any point on this line, then this

would increase the number of available choices. Notice, however, that the two

original options are still available as well as many more. Hence, the problems

in Part 1 are conceptually the same as in Part 2, but with many more possible

allocations.

Figure F.7: Budget Lines - Relationship to Pairwise Choice

The following two examples further illustrate the nature of the problem.

If, in a particular round, you were to select an allocation where the amount in

one of the accounts is zero, for example if you allocate all tokens to account

x and $0 to account y (or vice versa), then in the event that this round is

chosen for payment there is a 50% chance you will receive nothing at all, and

a 50% chance you will receive the highest possible payment available in that

round. In contrast, if you were to select an allocation where the amount in

accounts x and y are equal, then in the event that this round is chosen for

payment you will receive this amount regardless of which account is chosen
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by the coin toss.

Each round begins with the computer selecting a line. As in Part 2, the

lines selected for you in di�erent rounds are independent of each other. For

example, as illustrated in Figure F.8, choice A represents an allocation in which

you allocate approximately 9.4 tokens in the x-account and 60.7 tokens in the

y-account. Another possible allocation is choice B, in which you allocate 22.6

tokens in the x-account and 33.6 tokens in the y-account.

Figure F.8: Budget Lines - Examples
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To choose an allocation, use the mouse to move the pointer on the computer

screen to the allocation that you desire. On the right hand side of the program

dialog window you will be able to see the exact allocation where the pointer is

located. Please note that, in each choice, you may only choose an allocation

which lies on the line provided. Additionally, if you select an allocation that

is close to the x-axis or the y-axis, you will be asked if you would like to

select an allocation on the boundary or if you intended for your choice to be

as originally selected. Similarly, if you select an allocation that is close to

the middle, (roughly the same amounts in each account), you will be asked if

you would like to select an allocation where the amounts in both accounts are

exactly equal or if you intended for your choice to be as originally selected.

The dialog boxes associated with these scenarios are illustrated in Figure F.9.

Figure F.9: Budget Lines - Special Cases
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The controls to con�rm your choices and navigate between rounds are

identical to those described above for Part 2. Once you have �nished with all

22 rounds, you will be given an opportunity to review your choices. You may

conclude your review by clicking on the �nish button in the �Edit Panel� at

any time. Once complete, please click on the instructions window in order to

move on to Part 2.

Please remember that there are no �right� or �wrong� choices.

Your preferences may be di�erent from other participants, and as

a result your choices can be di�erent. Please note that as in all

experiments in Economics, the procedures are described fully and

all payments are real.

Compensation

After completing both parts of the experiment you will be informed of your

payment via an on-screen dialog box. Payments are determined as follows:

The computer will randomly select one decision round from both parts

(combined) to carry out. The round selected depends solely on chance and it

is equally likely that any particular round will be chosen. The payment dialog

box will inform you of which round was randomly chosen as well as your

choice in that round. At this point please raise your hand and an experiment

coordinator will provide you with a fair coin, e.g. a quarter. To determine

your �nal payo�, please �ip the coin. If it lands heads, you will be paid

according to the amount of tokens in the x-account and if it lands tails, you

will be paid according to the amount of tokens in the y-account. For both

parts of the experiment, tokens are valued at the following conversion rate:

2 tokens = $1

You will receive your payment, along with the $10 show-up bonus, privately
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Figure F.10: Subset of the budget lines shown in Part 1

before you leave the lab. You will be asked to sign a receipt acknowledging

receipt of your payment, after which time you may leave.

F.2 Choice of Budget Lines

Section 6.2 describes the set of budget sets chosen for the �rst part of the

experiment as a result of two considerations: su�cient power and �rst-order

risk aversion/seeking identi�cation. The 22 budget lines were divided into two

subsets of 11 budget lines such that each subset was composed of the same

price ratios, where the only di�erence was the wealth level. For each of the

two subsets, 5 of the 11 price ratios had relatively moderate slopes, where as

the other 6 were much steeper. Figure F.10 shows the set of 11 budget lines

for the higher wealth level.

To corroborate that this set of budget sets submits the subjects to a suf-

�ciently powerful test of consistency, we conducted a power test (following

Bronars (1987)) by constructing 1000 simulated data sets.51 First, not a sin-

gle simulated data set passed GARP while in the experimental data 44.4%

were found to be consistent. Second, in the simulation, 1.3% (4.5%) of the

data sets had Afriat Inconsistency Index below 0.05 (0.1) while in the experi-

mental data 86% (93.7%) of the subjects exhibited this level of inconsistency.

51The results of the power test are available in a separate Excel �le named �Halevy et al
(2016) Part 1 - Power Test�.
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Third, the Houtman-Maks Inconsistency Index (calculated exactly) suggests

that 91.9% (57.9%) of the simulated data sets require at least 4 (6) obser-

vations to be discarded to satisfy GARP. However, in the experimental data,

only 8.7% (0.05%) of the data sets require as many observations to be dropped

to achieve consistency. Finally, while we were able to calculate the Varian In-

consistency Index exactly (or with very good approximation) for 98.6% of the

experimental data sets, this was feasible for only 25.9% of the simulated data

sets. In fact, even within this set, using the MEAN aggregator, while 57.1% of

the simulated data sets exhibited Varian Inconsistency Index greater than 0.05,

only 2.9% of the experimental data sets showed similar levels of inconsistency.

F.3 The Construction of the Pairwise Choices

In Section 6.3 we describe the basic logic behind the algorithm used to con-

struct the pairwise choices for Part 2 of the experiment. Here, we provide a

more detailed description of this algorithm.

Each pairwise choice is constructed using the following search algorithm.

First, we �x an expected value for the risky portfolio. Then, we search over

the line that connects all the portfolios with the same expected value until

a risky portfolio, xR, is found that satis�es certain stopping conditions. The

starting point for the search as well as the stopping conditions are chosen to

construct a su�ciently rich set of choices that are appropriate for addressing

the research questions.

To investigate the nature of local risk attitudes across subjects we desig-

nated 6 out of the 9 pairwise choices to this task by beginning our search for

xR at certainty and progressing along the equal expected value line in the di-

rection of increasingly variable portfolios until the stopping rule is satis�ed. In

the case where both methods recover β ≥ 0, the stopping rule requires that the

di�erence in certainty equivalents exceeds one token. Hence, to construct these

low-variability portfolios we search for the lowest variance portfolio among all

those with the same expected value such that there is su�cient di�erence in

certainty equivalents between recovered parameters. For sets of parameters
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where the di�erence between certainty equivalents does not exceed one token

for all low-variability portfolios we reduce this threshold incrementally until a

valid pairwise comparison is chosen. In all cases the safe portfolio, xS, is cho-

sen as the mid-point between the certainty equivalents of the risky portfolio,

xR (see Section 6.3).

For subjects where either or both methods recover β < 0, we use a di�erent

stopping rule. In these cases the search terminates as soon as a risky portfolio is

found such that the certainty equivalent corresponding to one method exceeds

the expected value of the portfolio and the certainty equivalent corresponding

to the other method is less. Here we choose the safe portfolio as the expected

value of the risky portfolio, i.e. xS = E[xR].

The remaining 3 out of 9 pairwise choices are constructed such that the

risky portfolio is close to, but not literally on, the axis. We refer to these pair-

wise choices as high-variability portfolios. We avoid o�ering corner choices as

they can be di�cult to rationalize with the CRRA functional form. We choose

risky portfolios as close to the axis as possible by starting with a portfolio that

includes a minimum payo� of two tokens and searching towards the certainty

line. The stopping condition is that the di�erence in certainty equivalents is

at least one token. High-variability portfolios are chosen in the same manner

regardless of the recovered values for β.52

G Part 1: Comparison to Choi et al. (2007)

This Appendix compares the results of Part 1 of the experiment and the data

collected by Choi et al. (2007). Table 9 summarizes the inconsistency indices

and the parameters recovered for the Disappointment Aversion with CRRA

utility index. We attribute the slight di�erences to the di�erence in instruc-

tions, interface, the number of rounds and to the variability and range of the

price ratios.

52The six low-variability portfolios have expected values of 50, 45, 40, 35, 30, and 25
tokens, where as the three high-variability portfolios have expected values of 50, 40, and 30
tokens.
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Choi et al. (2007) Part 1 of the Experiment

Consistent Subjects 12 (25.5%) 91 (44.8%)
Median (mean) Afriat Inconsistency Index* 0.045 (0.0881) 0.0126 (0.0374)

Median (mean) Houtman-Maks Inconsistency Index* 0.06 (0.079) 0.0909 (0.097)
Median (mean) Varian Inconsistency Index (SSQ)** 0.006 (0.007) 0.0027 (0.0084)

MMI (SSQ) NLLS MMI (SSQ) NLLS
β ρ β ρ β ρ β ρ

Complete Sample (Median) 0.3326 0.3559 0.171 0.5799 0.39 0.3764 0.3343 0.3674
Consistent Subjects Only (Median) 0.4121 0.7319 0.0058 1.277 0.4065 0.4137 0.3443 0.5597

# Subjects with Non-Convex Preferences 8 (17%) 15 (31.9%) 37 (18.2%) 45 (22.2%)
Subjects with β ≥ 0 (Median) 0.3759 0.295 0.4058 0.3404 0.4668 0.3022 0.4654 0.1964
Subjects with β < 0 (Median) -0.1047 0.8691 -0.3275 3.8642 -0.1575 0.8008 -0.8941 4.0782

* Computed on inconsistent subjects.

** Computed on inconsistent subjects with reliable index.

Table 9: Choi et al. (2007) vs. Part 1 of the Experiment.

Figure G.1: Disappointment Aversion Parameter: NLLS vs. MMI (SSQ).

Figure G.1 replicates Figure 5.2 for the data collected in Part 1 of the

experiment. Also here, when the NLLS recovery method recovers convex pref-

erences then in most cases the MMI method recovers convex preferences as

well, while when the preferences recovered by the NLLS are non-convex, there

seem to be no qualitative relation between the recovered parameters by the

two methods.

H Pairwise Choice: Re�ned Results

The complete sample includes subjects and choices that arguably should not be

included in a comparison between the MMI and the NLLS recovery methods.
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In Section 7 we report the results using the full sample while in this Appendix

we re�ne the sample and recalculate the results reported in the main text using

the re�ned sample.

H.1 The Re�nement

We �nd two reasons to consider dropping an observation from the sample.

First, the subject's choices may be too inconsistent to believe that there exists

some underlying stable preference that guides her choices. Second, since the

pairwise choices the subject encountered in Part 2 of the experiment were

generated automatically, in some cases the two proposed portfolios were too

similar for the subject to be able to thoughtfully distinguish between them.53

Hence, our re�nement scheme apply two criteria - inconsistency and similarity.

The inconsistency re�nement removes two subjects whose Afriat Inconsis-

tency Index greater than 0.2.54

The similarity re�nement removes observations for which there is little

di�erence between the portfolios constructed in Part 2 of the experiment. We

consider a pairwise choice to be inde�nitive if the two sets of parameters imply

similar local risk attitude (either min
{
CEMMI(x

R), CENLLS(xR)
}
> E

[
xR
]

or max
{
CEMMI(x

R), CENLLS(xR)
}
< E

[
xR
]
) and the di�erence in implied

certainty equivalents is very small (|CEMMI(x
R)− CENLLS(xR)| < 0.5).
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# of Observations Correct Predictions by MMI (%) p-value

Re�nement 1489 804 (54.0%) 0.0011

Table 10: Preliminary Results - Aggregate Level Analysis (re�ned sample)

Re�ned Sample
X≥7 X≤2 p-value
41 25 0.032

Table 11: Preliminary Results - Individual Level Analysis (re�ned sample)

H.2 Results: Re�ned Sample

Table 10 recalculates the aggregate level analysis reported in Table 2 in Section

7 for the re�ned sample. These results are almost identical to the results

reported for the complete sample.

In the individual level analysis, for the similarity re�nement we remove

all subjects who confronted one or more inde�nitive pairwise comparison in

Part 2. Thus, the remaining 131 subjects are deemed su�ciently rational and

exhibit a su�cient di�erence in predictions between recovery methods to admit

a reasonable comparison.

Table 11 recalculates the individual level analysis reported in Table 3 in

Section 7 for the re�ned sample. As the results reported for the complete sam-

ple, Table 11 also provide statistically signi�cant evidence for the predictive

superiority of the MMI recovery method over the NLLS recovery method.

53While in some of these cases, the similarity can be traced back to the NLLS and the
MMI recovering very similar parameters, in other cases it may be a consequence of the
substitutability between the two parameters, β and ρ, with respect to the subject's local
risk attitude.

54In fact, these two subjects also have the highest number of GARP violations. Moreover,
we provide an exact calculation of the Varian Inconsistency Index for all but three subjects
(for whom we report overestimates, see Appendix B.1.2). These three subjects include
the pair with the extreme Afriat Inconsistency Index values. The approximated Varian
Inconsistency Index values for these two subjects are substantially greater than 0.1 for the
minimum, MEAN and the SSQ aggregators. No other subjects have Varian Inconsistency
Index greater than 0.1.
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# of Observations # Correct Predictions % Correct Predictions p-value
by MMI by MMI

DDA 1025 528 51.5% 0.1744
IDA 464 276 59.5% <0.0001

Table 12: Re�ned Sample Results by Group - Aggregate Level Analysis.

DDA IDA
X≥7 X≤2 p-value X≥7 X≤2 p-value
19 16 0.3679 22 9 0.0147

Table 13: Re�ned Sample Results by Group - Individual Level Analysis.

H.3 Disappointment Aversion: Re�ned Sample

The De�nite Disappointment Averse (DDA) group is composed of those sub-

jects for which both methods recover β ≥ 0, whereas Inde�nite Disappoint-

ment Averse (IDA) group is composed of those subjects for which β is negative

for one or both recovery methods. After the inconsistency re�nement we are

left with 148 subjects in the DDA group and 53 subjects in the IDA group.

In the aggregate analysis we treat the whole set of observations as a single

data set with 1332 observations for the DDA group and 477 for the IDA

group. Then we remove all the inde�nitive pairwise comparisons. Table 12

demonstrates that, also when using the re�ned sample, the MMI recovery

method remains a better predictor in both cases, but while its advantage is

insigni�cant in the DDA group, it is highly signi�cant in IDA group.

In the individual level analysis, using the re�nement we are left with 84

subjects in the DDA group and 47 subjects in the IDA group. Table 13 demon-

strates that also here, although the MMI recovery method predicts better than

the NLLS recovery method in both DDA and IDA, the di�erence in predic-

tive accuracy within the DDA group is insigni�cant. However, this di�erence

within the IDA group is substantial and statistically signi�cant.

Next, consider the De�nite Elation Seeking (DES) group that includes

those subjects for whom both recovery methods recover β < 0. After the

re�nement is applied, for the aggregate analysis the DES group includes 248

observations. The MMI recovery method predicted correctly 156 of the choice
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Figure I.1: MMI vs NLLS - Non-convex Preferences Recovery

problems, which amount to 62.9% of the observations. Hence, the di�erence

between the recovery methods within the DES group is even more substantial

than in the whole IDA group and it is highly statistically signi�cant (p-value

smaller than 0.0001).

The individual results for the DES group are similar - for 16 out of the

25 subjects that survive the re�nement one method predicted correctly more

than two thirds of the pairwise choices. It turns out that in 13 of the 16 cases,

it was the MMI (81.3%, p-value 0.0106).55

I Recovery of Non-Convex Preferences

Figure I.1 demonstrates how the MMI and NLLS may recover di�erent sets of

parameters for the same data set. Suppose we take two observations, x1 and

x2, and try to determine which of two utility functions � u and u′, is a better

�t for the data. De�ne x̂iv as the utility maximizing choice from budget line i

given utility function v.

The left panel shows that the NLLS recovery method selects u′ over u, as

55We exclude Subject 1702 from the DES group since βNLLS ≈ 0. For similar reason
we excluded also the de�nitive observations of Subject 604 from the previously mentioned
aggregate analysis.
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the distance between the utility maximizing bundle and the observed choice

is identical at x1, and smaller for u′ at x2. This arises from the lower price

elasticity (higher non-convexity) implied by u′. The right panel demonstrates

that the MMI selects u over u′ using minimal budget set adjustment. The

farther the observed portfolio is from the certainty line, the smaller is the

adjustment required for the ��atter� (less non-convex) u compared to u′.
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