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Abstract. We propose a new productivity index, CoScore, that disentangles individual

from collaborative productivity. We apply it to formally account for coauthorship in

quantifying individual scientific productivity. In contrast to existing measures, CoScore

reflects the complete coauthorship network, not only the publication record of the author

being ranked. It uses the varying levels of success of all coauthor partnerships to infer,

simultaneously, an author’s productivity and her credit on each of her papers. Crucially,

the productivities of all authors are determined endogenously via the solution of a fixed

point problem. We show that CoScore is well defined and provide axiomatic foundations

for the associated rule used to allocate credit on coauthored papers.
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1. Introduction

Over the last 50 years, teams have come to dominate the production of scientific

research, both in terms of quantity and impact (Wuchty et al., 2007). The pattern

is particularly striking in science and engineering, where more than eighty percent

of the papers are now coauthored, but is also significant in the social sciences. In

economics, the average number of authors per article has increased from 1.3 to 2.2

(Card and DellaVigna, 2013), while articles with more than three authors, very rare

before the nineties, now represent over forty percent (Hamermesh, 2013). Research

has become truly collective. Yet, scientists still have to be evaluated on an individ-

ual basis for important decisions such as hiring, tenure or funding. It is therefore
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essential to properly account for coauthorship in quantifying individual scientific pro-

ductivity, disentangling individual from collaborative productivity. Unfortunately,

existing indices either ignore coauthorship, assigning full credit for a joint paper to

each of its coauthors (Garfield, 1972; Hirsch, 2005; Lehmann et al., 2006; Perry and

Reny, 2016), or only correct for it ad hoc, dividing credit equally among coauthors

(Marchant, 2009).

The biases of these approaches are well known. Assigning full credit to all coau-

thors, artificially inflates their publication record by overrating the value of coau-

thored papers (Price, 1981). This favors researchers with multiple collaborators or

belonging to large teams and gives perverse incentives for artificial coauthorship.

Dividing credit uniformly corrects this bias but dilutes the credit due to the intellec-

tual leaders of a paper, ignoring that authors’ contributions may differ substantially

(Hirsch, 2007; Hagen, 2008; Shen and Barabási, 2014). The same concern applies to

the various proposals to allocate credit when authors are listed by order of importance

or by other field-specific conventions (Hagen, 2008; Stallings et al., 2013).

The deeply collaborative nature of modern research means that individual produc-

tivity cannot be accurately quantified without assigning credit for joint research. At

the same time, credit cannot be allocated without evaluating the productive input of

the coauthors involved on a paper. That is, the twin problems of measuring individual

productivity and allocating credit for joint research can only be solved jointly.

We propose a new index of individual productivity, CoScore, capturing the rela-

tionship between credit allocation and individual productivity. A researcher’s score

is defined as her average yearly productivity, the sum of her credit on all of her pa-

pers divided by her academic age. In turn, the credit for each paper is distributed

proportionally to a fixed power of its coauthors’ scores. Crucially, the scores of all

authors are determined endogenously and simultaneously as the solution of a fixed

point problem. CoScore favors researchers who have proved their ability indepen-

dently of their coauthors or network, by successfully publishing in multiple groups

or individually. Conversely, CoScore is detrimental to authors who have not been

able to produce outside a given team, for instance, only in collaboration with a PhD

adviser.

Formally, an academic database consists of a collection of papers C and a group of

authors N . Each paper p is described by its group of coauthors S(p) and a cardinal

measure of scientific worth w(p). The worth of a paper can be thought of as the
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number of citations or any other measure of impact comparable across papers. Each

author i is described by her list of papers Ci and her academic age ai. For any such

database, the CoScore s ∈ RN
+ is such that, for each author i,

(1) si =
1

ai

∑
p∈Ci

w(p)
si
α∑

j∈S(p)

sj
α

where α ∈ [0, 1] is a fixed parameter that determines how much credit should be

allocated to more productive authors. CoScore is well defined because the system

of equations (1) has a unique solution. The existence of a solution follows from

Brouwer’s fixed point theorem; uniqueness comes from the fact that a solution of (1)

maximizes a strictly concave function over an open and convex set, an optimization

problem admitting at most one solution (see Theorem 3 in the appendix for a proof).1

When α equals 1, credit is allocated proportionally to each coauthor’s endogenous

productivity score. We call the corresponding index the proportional CoScore. As α

falls, the credit allocation becomes more egalitarian. At the extreme, when α equals

0, credit on joint papers is allocated equally. We call the corresponding index the

egalitarian score.

When α is positive, an author’s CoScore reflects the structure of the entire coau-

thorship network and the research records of possibly all scientists in the database.2

The central insight is that allocating credit on a given paper requires assessing the

relative productivity of all of its authors. Therefore, the credit assigned to a scien-

tist on a paper depends on the credit assigned to all of her coauthors on all of their

papers, which is itself determined by their coauthors’ credit on all their respective

papers, and so forth. Hence, the scientist’s score and her assigned credit depends

on the identity of her coauthors. This is in sharp contrast to existing indices that

can be computed for each scientist in isolation and can only control for coauthorship

anonymously, based solely on the number of coauthors in a publication (Marchant,

2009) or, if available, their position in the author order (Sekercioglu, 2008).

1In order for CoScore to be well defined, we assume throughout that the aggregate solo contri-
bution of each author, however small, is positive. In practice, this amounts to assigning a single
individual citation to each author in the database.

2Here, we take the coauthorship network to be the weighted hypergraph where nodes represent
different scientists and hyperedges represent partnerships of varying weights (the number of cita-
tions). This is in contrast with Newman (2001, 2004), where the coauthorship network is defined
as the undirected graph where nodes represent different scientists and two nodes are connected
whenever the corresponding scientists have coauthored.
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The endogenous formulation of CoScore as a fixed point and its intensive use of

the coauthorship network are reminiscent of various measures of network centrality

used to rigorously quantify socioeconomic phenomena such as reputation, importance,

influence, popularity, and the quality of scholarly papers.3 Most closely, eigenvector

centrality (Bonacich, 1972) defines the centrality of an individual to be proportional

to the sum of the centralities of the individuals connected to her. Such measures have

proved extremely useful in many different contexts, as shown in particular with the

PageRank algorithm used by Google to rank the relevance of web pages (Page et al.,

1998) or the recursive methods to rank journals (Pinski and Narin, 1976; Palacios-

Huerta and Volij, 2004). CoScore relies on similar insights but differs substantially

from network centrality because it is not defined on a network but on a weighted

hypergraph, the database of papers.

Although we formulate CoScore for the problem of measuring individual scientific

productivity, our approach applies to any situation where teams produce an observ-

able output but individual contributions cannot be objectively quantified. What is

the contribution of a football player to the success of her team? What is the contri-

bution of a manager to her firm’s profits? What is the contribution of an actor to the

box-office revenue of a movie? CoScore can be used to answer any of these questions,

disentangling individual from collective productivity.

The productivity of economists We illustrate CoScore for a large database (all

papers published in 33 major economics journals since 1970) using citations as a

measure of scientific worth. As expected, we observe a sharp divide between the

proportional CoScore and the egalitarian score: accounting for the identity of coau-

thors in a given paper, not only their number, yields significant differences both in

rankings and scores. Although CoScore cannot be computed independently for each

author, since it requires looking at the whole database of papers, its implementation

is straightforward. Like PageRank, it can be applied to extremely large databases

(possibly all scientific papers) in a systematic way, and provides a concrete alternative

to measure individual productivity.

3For a survey on network centrality measures see Jackson (2008) and Newman (2010).
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Axiomatic foundations We provide axiomatic foundations for CoScore in the

benchmark case where credit is allocated proportionally to each coauthor’s endoge-

nous productivity. More precisely, we show that the associated rule to allocate credit

on each paper, which we call the CoScore rule, is uniquely characterized by three log-

ically independent axioms: consistency, invariance to merging papers, and invariance

to merging coauthors (Theorem 1).

Consistency, requires the distribution of credit to remain invariant when an author

is taken away from the database, and the value of every paper she has contributed to

is reduced by the amount she was previously allocated. Similar properties, relating

databases of different sizes, have been used in the literature on the measurement of

intellectual influence (Palacios-Huerta and Volij, 2004), network centrality (Dequiedt

and Zenou, 2014) and, more extensively, in resource allocation and game theory

(Thomson, 2011).

The second property, invariance to merging papers, requires authors not to benefit

from either merging or splitting papers with the same coauthors into papers of equal

total value. The allocation of credit on joint papers should only depend on the

aggregate value produced by each group of coauthors, not on the particular breakdown

of that value in papers of different worth. The axiom is related to a property proposed

in Perry and Reny (2016), depth relevance, which prevents authors from increasing

their score by splitting a paper into two papers of equal total value.

The third property, invariance to merging coauthors, requires an author’s credit on

a paper to depend only on the strength of her own research record and the aggregate

research records of her coauthors on the paper. Thus, an author’s credit in a paper

depends only on her own productivity and the aggregate productivity of all of her

coauthors in that paper. What matters for how much credit an author receives is not

how many coauthors the paper has but how strong these coauthors are as a whole.

We also provide a second characterization (Theorem 2) replacing invariance to

merging coauthors by a simple proportionality condition: the credit assigned to each

author should be proportional to her single authored contribution when the database

only involves two authors, and both authors have exactly one paper on their own and

one paper together.
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Outline The remainder of this paper is organized as follows: Section 2 illustrates

CoScore for a large database of papers in economics. Section 3 introduces the for-

mal problem and provides two axiomatic characterizations for the rule used by the

proportional CoScore to allocate credit on coauthored papers. Section 4 discusses

various extensions to the CoScore indices. Section 5 concludes. All of the proofs are

included in the appendix.

2. The productivity of economists

We illustrate CoScore for the field of Economics, where authors are usually listed

alphabetically, and the specific role of each author in a paper is not specified. We use

Thomson Reuters’s Web of Science database to extract all published articles with at

least one citation from 33 major journals in Economics over the period 1970 − 2015

(see appendix for details). The database includes 73 732 articles, for a total of 29 226

different authors. As previously observed in other scientific databases (Seglen, 1992),

the distributions are extremely skewed, with a small number of authors producing a

large fraction of both papers and citations.4 Authors have on average 4.32 papers, for

a total of 168 citations, while the median author only has 2 papers and 22 citations.

The share of coauthored papers increases steadily from only 20% in 1970 to almost

80% in 2015, with the average number of coauthors going from 1.25 to 2.31. Papers

with more than two authors, a rare occurence before the nineties, represent almost

40% of all papers published in 2015. The increasing prominence of coauthorship also

translates in the fraction of coauthored citations, which exhibits the same trend as

the fraction of coauthored papers. Figure 1 shows the evolution of the fraction of

coauthored papers and citations since 1970.
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Figure 1. Fraction of coauthored papers (left) and citations (right) with 2, 3 and 4 or
more authors from 1970 to 2015.

4Here, the database is biased towards more productive researchers because of the restriction to
top journals. Since more productive researchers are less likely to publish in lower ranked journals,
more of their papers are represented in the database.
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We compute the proportional CoScore by repeatedly iterating the associated fixed

point operator, starting from a vector of equal scores. The process converges quickly

to the desired fixed point (see Appendix). As illustrated in Figure 2, we observe a

sharp divide between the proportional CoScore and the egalitarian score: accounting

for the identity of coauthors in a given paper, not only their number, yields signif-

icant differences both in rankings and scores. For authors with at least 5 papers

in the database, scores differ on average by 27.4%, rankings by 7.6%. Compared

to the egalitarian score, the proportional CoScore tends to favor authors who have

proved their individual quality by having published either (i) with multiple groups of

coauthors, (ii) with relatively weaker coauthors and/or (iii) single authored papers.

Conversely, the proportional CoScore tends to be unfavorable to authors who have a

limited number of stronger coauthors.
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Figure 2. Distribution of CoScore (blue) and the Egalitarian Score (red) for a random
sample of authors with at least 10 papers in the database. Both scores are bounded above
by the average yearly number of citations (green) and below by the average yearly number
of single-authored citations (yellow). Authors are displayed according to their egalitarian
rank. Scales are logarithmic.

The changes are the most dramatic for authors who have a very high fraction of

single-authored work, since they have by definition the most to lose and the most

to win from credit allocation. R. Blundell, who has 74 papers for a total of 8 113

citations, goes from being ranked 90th with the egalitarian score to being ranked

31st with the proportional CoScore, while his score is almost doubled. Despite a

very small fraction of single authored citations (0.1%), Blundell benefits from having

worked with a large number of coauthors (66 coauthors), thus showing his ability to
7



produce high quality work independently of the strength of his coauthors (some of

them being very productive as well). Figure 4 illustrates the coauthorship network

of two prominent economists.

In contrast to existing indices, CoScore cannot be computed independently for

each author, since it requires looking at the whole database of papers. However, as

illustrated here for the field of economics, its implementation is very straightforward.

Like PageRank, it can be applied to extremely large databases (possibly all scientific

papers) in a systematic way, and provides a concrete alternative to measure individual

productivity.

Figure 3. Coauthorship networks of J. Stiglitz (left) and J. Tirole (right). Lines represent
collaborations between pairs of authors, darker lines reflecting a higher number of joint
citations. Nodes represent authors whose degree of separation from Stigliltz and Tirole
(at the center) respectively is at most 2. For each author (i) the size of the inner gray
circle is proportional to the number of single-authored citations, (ii) the size of the outer
gray circle is proportional to the total number of citations and (iii) the size of the orange
ring is proportional to the number of jointly authored citations credited to the author by
CoScore. The scales are specific to each network.

3. Axiomatic foundations

We focus in this section on the simplest case where authors do not differ in their

academic age. We provide two axiomatic characterizations of the rule used by the

proportional CoScore to allocate credit on joint papers.

3.1. Model. As before, a database is specified by a collection of papers and each

paper is described by its group of coauthors and its scientific worth. We now introduce

a general model to study variations in papers, their authors, and worth. The papers

constituting a database are drawn from a countable index set C. The collection of
8



finite subsets of C is denoted by C. Similarly, authors are drawn from a countable

set N and the collection of finite subsets of N is denoted by N . For each N ∈ N , a

database involving N is a triple D ≡ (C,w, S) where

C ∈ C, w : C → R+, S : C → 2N .

Database D is thus described by the collection of papers C and, for each paper p in C,

a worth w(p) and a set of authors S(p). For each i ∈ N , let Ci denote the papers in

C involving i as an author or coauthor; for each S ⊆ N , let CS = {p ∈ C|S(p) = S}
and note that C{i} is contained in Ci and that the inclusion is strict whenever i has

coauthored. For each N ∈ N , let DN denote the domain of databases involving the

authors in N .

A score is a systematic procedure which associates to every database D ∈ DN a

profile of individual productivity scores s(D) ∈ RN
+ . We refer to the ith coordinate of

s(D), denoted by si(D), as the score of author i when there is no room for confusion.

A problem closely related to assigning scores is that of allocating the credit of a

given paper among its coauthors. A rule is a systematic procedure which distributes

the worth of each paper among its coauthors. Formally, a rule m is a function such

that, for each D = (C,w, S) ∈ DN ,

m(D) ∈ Z(D) ≡×
p∈C

{
x ∈ RN

+

∣∣∣ ∑
i∈S(p)

xi = w(p), xN\S(p) = 0N\S(p)

}
.

For each p ∈ C and each i ∈ S(p), mp
i (D) denotes the credit attributed to individual

i on paper p. A rule allocates credit for a paper among its coauthors so that the

credit received by all adds up to the paper’s worth,
∑

i∈S(p) m
p
i (D) = w(p). Following

Liebowitz (2013), we thus rule out the possibility that, for example, in a two-author

paper, each author receives more than one half of the credit for the paper. Authors

only get credit for papers they have contributed to.

Our main proposal, the CoScore rule, allocates credit on each paper proportionally

to the individual productivity of each coauthor, as (endogenously) measured by the

sum of the author’s credits on all of her papers: for each D = (C,w, S) ∈ DN , each

p ∈ C, and each i ∈ S(p),

(2) mp
i (D) =

∑
q∈Ci

mq
i (D)∑

j∈S(p)

∑
q∈Cj

mq
j(D)

w(p).
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The CoScore rule is closely related to the CoScore index since it can equivalently

be defined as the rule which allocates the value of each paper proportionally to the

proportional CoScore of each coauthor.5 The CoScore rule is well defined because

the proportional CoScore is itself well defined.

We could similarly define credit allocation rules for any of the other CoScore indices

(1). For example, when α = 0, we obtain the egalitarian rule that allocates the value

of each paper equally among all its coauthors: mp
i (D) =

w(p)

|S(p)|
.

Other alternative rules can also be considered. For example, the solo rule allocates

the value of each paper proportionally to the value of the (aggregate) solo contribu-

tion: for each D = (C,w, S) ∈ DN , each p ∈ C, and each i ∈ S(p),

mp
i (D) =

∑
q∈C{i}

w(q)

∑
j∈S(p)

∑
q∈C{j}

w(q)
w(p).

When assigning credit on a paper, the solo rule makes inferences on authorship

based only on the worth of the individual contributions of its coauthors.

Notation For each N ∈ N and each D = (C,w, S) ∈ DN , let C(D) ⊆ 2C denote the

subsets of papers which share exactly the same group of coauthors and let S(D) ⊆ 2N

denote the subsets of authors which share exactly the same list of coauthored papers:

C(D) = {C ′ ⊆ C| S(p) = S(q) ∀ p, q ∈ C ′}

S(D) = {N ′ ⊆ N | Ci \ C{i} = Cj \ C{j} ∀ i, j ∈ N ′}.

3.2. Characterization. We now introduce the three axioms characterizing the CoScore

rule. The first axiom, consistency, concerns the response of the rule to the withdrawal

of authors from the database. For example, starting from the database of all papers

in economics and upon removing all economic historians, we would like to assess the

distribution of credit among the remaining authors. Removing economic historians re-

quires removing papers written exclusively by them from the database. Papers written

by economic historians and other economists must remain in the database. However,

the credit assigned to the economic historians involved in these papers needs to be

deducted from these papers before we can reassess the allocation of credit among the

5As defined in system of equations (1) for α = 1, assuming that ai = 1 for each i ∈ N .
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remaining economists. Consistency, requires the distribution of credit among other

economists to remain identical after economic historians have been removed and the

value of each paper reduced accordingly.

Thus, if the assignment of credit is considered desirable for a group of authors, then

it should still be considered desirable if an author is taken away from the database

and the worth of every paper is reduced by the amount she was previously assigned.

Conversely, if an author were to be added to existing papers, her credit should be

equal to the corresponding increase in the value of the paper, while the credit of the

other authors would remain unchanged.

Formally, the database obtained from D = (C,w, S) ∈ DN upon the departure of

k ∈ N starting from credit assignment x ∈ Z(D), cxk(D) = (C̃, w̃, S̃) ∈ DN\{k}, is

such that

i. C̃ = C \ C{k},
ii. for each p ∈ C̃, w̃(p) = w(p)− xpk and S̃(p) = S(p) \ {k}.

Consistency: For each D ∈ DN , k ∈ N and p ∈ C̃, mp
N\{k}(D) = mp

N\{k}(c
m(D)
k (D)).

Thus, a rule m is consistent if the assignment of credit among the authors in N \
{k} is the same in databases D and c

m(P )
k (D). A related property is used in the

axiomatic characterization of the “invariant” journal ranking of Palacios-Huerta and

Volij (2004).6 Other conceptually related conditions have also been central in the

analysis of resource allocation and game theory.7 Consistency is satisfied by the

egalitarian and the CoScore rules but not by the solo rule.

The second axiom, invariance to merging papers, prevents authors from increasing

their credit by either fragmenting or consolidating papers with the same group of

coauthors. For example, no author should be given incentives to split one of her solo

works, say an Econometrica article, into two Journal of Economic Theory articles

of equal total worth. Perry and Reny (2016) propose8 a related property, “depth

relevance”, which requires that an author’s score does not increase upon splitting an

article in her publication list into two articles with the same total number of citations.

6This ranking relies on the same ideas at the core of PageRank (Page et al., 1998), the procedure
used by Google to rank web pages.

7See Thomson (2011) for a survey and Thomson (2012) for a discussion of the ethical content of
consistency-type requirements.

8In the context of ranking authors based only on their citations list (Hirsch, 2005).
11



In contrast, invariance to merging papers prevents authors from both splitting and

merging papers.

Formally, consider a database D = (C,w, S) ∈ DN and a set of papers C ′ ⊆ C

with the same coauthors, C ′ ∈ C(D). The database obtained by merging C ′ into a

single paper r, cC
′→r(P ) = (C̃, w̃, S̃), is such that

i. C̃ = [C \ C ′] ∪ {r},
ii. for each p ∈ C \ C ′, S̃(p) = S(p) and w̃(p) = w(p),

iii. for each p ∈ C ′, S̃(r) = S(p) and w̃(r) =
∑
p∈C′

w(p).

Invariance to merging papers: For each D = (C,w, S) ∈ DN , C ′ ∈ C(D), and r /∈
C \ C ′, mr(cC

′→r(D)) =
∑
p∈C′

mp(D) and mp(cC
′→r(D)) = mp(D) for each p ∈ C \ C ′.

Thus, a rule m satisfies invariance to merging papers if the credit allocated to any

author for the merged paper r in the new database cC
′→r(D) is equal to the the total

credit that was previously allocated to her for all papers in C ′ while the allocation of

credit on all other papers remains the same. Invariance to merging papers is satisfied

by the egalitarian, the solo, and the CoScore rules.

The third axiom captures the idea that an author’s credit on a paper should depend

only on the strength of her own research record and the aggregate research records of

her coauthors on the paper. More precisely, we consider the implication of merging

the research records of a proper sub-group of coauthors in a paper. This means that

each author in this group is replaced by a new single author in the database whose

research portfolio is comprised of all the articles previously authored by the members

of the sub-group. Our axiom, invariance to merging coauthors, requires the allocation

of credit among all remaining authors to be the same. To avoid introducing a new

coauthor in papers written only by some members of the sub-group, we only impose

the property on coauthors who share the exact same list of coauthored articles.

Formally, to define invariance to merging coauthors, consider a database D =

(C,w, S) ∈ DN and a group of authors I ⊆ N . Suppose that each author in I has

the same list of coauthored papers, I ∈ S(D). The database obtained by merging

authors in I into author k, cI→k(D) = (C̃, w̃, S̃) ∈ DN\I∪{k}, is such that each paper

involving a coauthor in I is authored by k instead, everything else equal:

i. C̃ = C,

ii. w̃ = w, and
12



iii. for each p ∈ C̃, if I ∩ S(p) = ∅, S̃(p) = S(p), otherwise S̃(p) = [S(p) \ I] ∪ {k}.

Invariance to merging coauthors: For each D ∈ DN , I ∈ S(D), k /∈ N \ I, and

p ∈ C, mp
N\I(cI→k(D)) = mp

N\I(D).

Thus, a rule m satisfies invariance to merging coauthors if the allocation of credit

for authors in N \I remains identical after authors in I have been merged into author

k. As an implication, the credit allocated to author k must be equal to the the total

credit that used to be allocated to all individuals in I. Invariance to merging coauthors

is satisfied by the solo and the CoScore rules, but is violated by the egalitarian rule.

Theorem 1. The only rule satisfying consistency, invariance to merging papers, and

invariance to merging coauthors is the CoScore rule.

The properties in Theorem 1 are logically independent. See appendix C.

Our last property, proportionality, requires credit to be allocated proportionally to

each coauthor’s single authored contribution when the database only involves two au-

thors, and both authors have exactly one paper on their own and one paper together.

Proportionality: For each {i, j} ∈ N and each D = (C,w, S) ∈ D{i,j} where C =

{pi, pj, p}, S(pi) = {i}, S(pj) = {j}, and S(p) = {i, j}, mp
i (D)w(pj) = mp

j(D)w(pi).

In contrast to the CoScore and solo rules, the egalitarian rule does not satisfy

proportionality. The CoScore rule is uniquely characterized by consistency, invariance

to merging papers and proportionality.

Theorem 2. The only rule satisfying consistency, invariance to merging papers, and

proportionality is the CoScore rule.

The properties in Theorem 2 are logically independent. See appendix C.

4. Discussion

Non-alphabetical authorship We have formulated CoScore for academic fields

where authors are listed alphabetically, such as economics or mathematics. How-

ever, in many other fields, the order of authors is meaningful, reflecting either the

importance or the nature of their contribution to the paper. In the biological sci-

ences, for example, most recognition typically goes to the the first and last authors,

while the remaining authors’ contributions can be harder to determine. Increasingly,
13



journals also require the capacity of each coauthor (research design, research, data

analysis, writing, etc) to be specified (Allen et al., 2014). Although conventions vary

widely, even across sub-fields, this information is indicative of the contribution of each

author and should play a role in the allocation of credit. CoScore can naturally be

extended to account for ordered authorship and the capacity of each coauthor. A first

alternative is allocating relatively more credit to authors who have a higher rank or

capacity, by introducing paper-specific weights in the right hand side of the CoScore

formula. A second alternative is separating the allocation of credit across groups

of authors who have contributed to the paper in similar capacities.9 Each paper is

subdivided into several artificial papers, one for each group, where the number of

citations assigned to each paper (or group) depends on the relative importance of the

associated capacity.10 CoScore can then be applied to the resulting enlarged database.

Topic-specific experience The issue of quantitatively allocating credit on a paper

was recently considered by Shen and Barabási (2014) who suggest a simple algorithm

based on citation patterns. Their assumption is that authors with more experience

on the topic of the paper should receive more credit; their algorithm determines this

topic-specific experience and allocates credit accordingly. A researcher, however, may

often contribute more despite having relatively less topic-specific experience. This is

particularly true for intellectual leaders, who usually have broad interests, and would

therefore lose most of the credit for their coauthored work.11 Such a procedure would

thus favor specialized researchers, discouraging interdisciplinary work and atypical

collaborations, which have been shown to play an important role in the production

of scientific knowledge (Uzzi et al., 2013). In contrast, CoScore exploits the informa-

tion contained in the whole database of papers to infer the quality of each scientist,

independently of the considered topic. As in the case of ordered authorship, it can

be extended to incorporate topic-specific experience, for example, by allocating rela-

tively more credit to authors who have more experience on the topic of the paper, as

9It is common for a paper to state that several of its authors contributed in the same capacities
and for its authors not to be ranked strictly, for example, having two or more lead authors. A
paper’s authors can thus be ordered into contribution classes, whereby authors in the highest class
are considered the most significant contributors, authors in the second highest class are the second
most significant, and so forth.

10The credit allocation across groups of authors could follow the proposals of Stallings et al.
(2013) or Hagen (2008).

11Jean Tirole (Nobel 2014), for instance, has coauthored in topics ranging from game theory,
macroeconomics, industrial organization, finance to psychology.
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measured by Shen and Barabási’s algorithm.

Beyond citations Following a long tradition (Garfield, 1972), we measure the qual-

ity of a scientific paper by its total number of citations. Citations provide an objective

metric that is based on observable data and can be used systematically on a large

scale. However, citations have been shown to suffer from various shortcomings: (i)

citation patterns and intensities differ substantially across fields and even sub-fields,

making inter field comparisons problematic (Radicchi et al., 2008; Ellison, 2013), (ii)

citations take time to accumulate, underestimating the value of recent papers (Wang

et al., 2013), and (iii) citation counts treat each citation equally, ignoring that cita-

tions originating from more influential papers reflect a higher value. In response, var-

ious alternative metrics have been proposed, respectively: (i) normalizing the citation

count by the average per-paper citations in the field (sub-field) to insure comparabil-

ity (Radicchi et al., 2008), (ii) measuring the quality of the journal where the paper

was published (Palacios-Huerta and Volij, 2014) or discounting the citation count by

the age of the paper, and (iii) giving more weight to citations originating from more

influential papers, as measured by recursive network centrality measures (Pinski and

Narin, 1976; Palacios-Huerta and Volij, 2004). CoScore can be computed with any

of these alternative measures of paper quality, for which it provides complementary

assessments of a scientist’s productivity.

5. Conclusion

CoScore contributes to an array of indices that have thus far not been able to prop-

erly account for the growth of coauthorship. As all existing indices, CoScore sum-

marizes a scientist’s record into a one dimensional measure of scientific productivity,

which inevitably entails some loss of information. Since authors’ contributions are not

observable, it must necessarily involve some degree of approximation. However, scien-

tists still need to be evaluated and compared by universities and government agencies

for hiring, tenure and funding; this should be done according to objective aggregation

indices, reflecting the increasing level of coauthorship. As discussed in the previous

section, CoScore is flexible and can be adjusted to capture additional information

such as ordered authorship, topic specific experience, and alternative measures of pa-

per quality. Although we focus here on the benchmark case where credit is allocated

proportionally to each coauthor’s productivity, CoScore may also be computed for
15



other, possibly more appropriate, values of parameter α. An important objective

for future research will thus be to determine which of the CoScore indices performs

best, either in terms of predicting future productivity (Hirsch, 2007) or emulating job

market outcomes (Ellison, 2013).12 Another important avenue of research will be to

investigate the application of CoScore to other forms of joint production (boards of

directors, team sports, artistic collaborations, etc.), or to the valuation of different

attributes in consumption products (conjoint analysis).
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Appendix A. CoScore is well defined

Theorem 3. Let α ∈ [0, 1], a ∈ RN
++, and suppose that each individual has at least

one single authored contribution. Then, the system of equations (1) has a unique

solution.

Proof. We first consider the case where α > 0. Note that by assumption, since for

each i ∈ N there exists p ∈ C such that S(p) = {i} and w(p) > 0, any solution of

system (1) is necessarily in RN
++. Let φ : RN

++ → RN
++ denote the function defined by

setting, for each x ∈ RN
++ and each i ∈ N ,

(3) φi(x) =
1

ai

∑
p∈Ci

w(p)
xi
α∑

j∈S(p)

xj
α
.

We now show that φ has a unique fixed point. Let W =
∑

p∈C w(p) and, for each

i ∈ N , let Wi =
∑

p∈C|S(p)={i}w(p). Thus, W denotes the total scientific worth in the

database and Wi denotes the the total independent contribution of author i. Note

that, for each x ∈ RN
++ and each i ∈ N , aiφi(x) ≥ Wi > 0 and

∑
i∈N aiφi(x) = W .

Thus, letting

K =
{
x ∈ RN

∣∣∣∀i ∈ N, Wi ≤ aixi ≤ W
}
,
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we can redefine φ as a function mapping K into K. Note that K is compact and

convex. Furthermore, φ is continuous on K. Thus, by Brouwer’s fixed point theorem,

φ has at least one fixed point. We now prove that this fixed point is unique. Let

x∗ denote any one of such fixed points. By (3) and since the coordinates of x∗ are

positive, for each i ∈ N ,

(4)
∑
p∈Ci

w(p)
x∗i

α−1∑
j∈S(p)

x∗j
α

= ai.

Let f : RN
++ → R denote the function defined by setting, for each x ∈ RN

++,

f(x) ≡ −
∑
i∈N

aixi +
1

α

∑
p∈C

w(p) ln

 ∑
j∈S(p)

xj
α

 .

We first show that f is strictly concave. Let g : RN
++ → R be defined, for each

x ∈ RN
++, by g(x) = 1

α

∑
i∈N Wi ln (xi

α). The function g is strictly concave since its

Hessian is negative definite and, for each i ∈ N , Wi > 0. Let D ⊆ C consist of all

of the papers in C with at least two coauthors: p ∈ D if and only if |S(p)| ≥ 2. Let

h : RN
++ → R be defined, for each x ∈ RN

++, by:

h(x) = −
∑
i∈N

aixi +
1

α

∑
p∈D

w(p) ln

∑
i∈S(p)

xi
α

 .

As the sum and composition of concave functions, h is concave. Note that f = g+h.

Since the sum of a strictly concave function and a concave function is strictly concave,

f is strictly concave.

By the strict concavity of f and the fact that RN
++ is open and convex, x∗∗ is the

unique maximizer of f over RN
++ if and only if ∇f(x∗∗) = 0. That is, for each i ∈ N ,

0 =
∂f

∂xi
(x∗∗) = −ai +

∑
p∈Ci

w(p)
x∗∗i

α−1∑
j∈S(p)

x∗∗j
α
.

Thus, by (4), x∗ = x∗∗. Recall that x∗ is an arbitrary fixed point of φ. By uniqueness

of x∗∗, we conclude that the fixed point of φ is indeed unique.
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It remains to consider the case where α = 0. The system of equations (1) reduces

to, for each i ∈ N ,

si =
1

ai

∑
p∈Ci

w(p)

|S(p)|
.

The system thus (trivially) has a unique solution. v

Appendix B. Proof of Theorem 2

Lemma 1. The CoScore rule satisfies Consistency, Invariance to merging papers,

Invariance to merging coauthors, and proportionality.

Proof. Let m̌ denote the CoScore rule and š denote the score defined in (1) for α = 1

and ai = 1 for each i ∈ N . Let N ∈ N and D = (C,w, S) ∈ DN .

Consistency

Let k ∈ N , x ≡ m̌(D), and y ≡ m̌(cxk(D)). Recall that cxk(D) = (C̃, w̃, S̃) is such

that:

- C̃ = C \ C{k}
- For each p ∈ C̃ such that p ∈ Ck, w̃(p) = w(p)− xpk.
- For each p ∈ C̃ such that p /∈ Ck, w̃(p) = w(p).

- For each p ∈ C̃, S̃(p) = S(p) \ {k}.

Then, for each p ∈ Ck \ C{k}, and each i ∈ S(p) \ {k},

ypi = [w(p)− xpk]

∑
q∈Ci

yqi∑
j∈S(p)\{k}

∑
q∈Cj

yqj

= w(p)

1−

∑
q∈Ck

xqk∑
j∈S(p)

∑
q∈Cj

xqj


∑
q∈Ci

yqi∑
j∈S(p)\{k}

∑
q∈Cj

yqj

= w(p)


∑

j∈S(p)\{k}

∑
q∈Cj

xqj∑
j∈S(p)

∑
q∈Cj

xqj


∑
q∈Ci

yqi∑
j∈S(p)\{k}

∑
q∈Cj

yqj

(5)
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while for each p ∈ C \ Ck, and each i ∈ S(p),

(6) ypi = w(p)

∑
q∈Ci

yqi∑
j∈S(p)

∑
q∈Cj

yqj
.

On the other hand, for each p ∈ Ck \ C{k} and each i ∈ S(p) \ {k},

(7) xpi = w(p)


∑
q∈Ci

xqi∑
j∈S(p)

∑
q∈Cj

xqj

 = w(p)


∑

j∈S(p)\{k}

∑
q∈Cj

xqj∑
j∈S(p)

∑
q∈Cj

xqj


∑
q∈Ci

xqi∑
j∈S(p)\{k}

∑
q∈Cj

xqj
.

while for each p ∈ C \ Ck, and each i ∈ S(p),

(8) xpi = w(p)

∑
q∈Ci

xqi∑
j∈S(p)

∑
q∈Cj

xqj
.

Let z ∈ Z(rxk(D)) be such that, for each p ∈ C̃ and each i ∈ N \ {k}, zpi = xpi . Note

that, by (7) and (8), z satisfies the system of equations in (5) and (6). By (2), (5) and

(6) uniquely define y. Thus, z = y. Thus, for each i ∈ N \ {k}, m̌i(c
x
k(D)) = m̌i(D),

so m̌ satisfies consistency.

Invariance to merging papers

Let C ′ ∈ C(D) and recall that cC
′→r(P ) = (C̃, w̃, S̃) ∈ DN is such that:

- C̃ = [C \ C ′] ∪ {r} where r /∈ C \ C ′.
- w̃(r) =

∑
q∈D w(q) and, for each q ∈ C \ C ′, w̃(q) = w(q).

- For each q ∈ C̃, S(q) = S̃(q).

From (1), š(cC
′→r(D)) = š(D). By definition of m̌, for each p ∈ C ′ and each i ∈ S(p),∑

q∈D

m̌q
i (D) =

∑
q∈D

w(q)
ši(D)∑

j∈S(p)

šj(D)
= w̃(r)

ši(c
C′→r(P ))∑

j∈S(p)

šj(c
C′→r(D))

= m̌r
i (c

C′→r(D))

while for each p̂ ∈ C \ C ′ and each i ∈ S(p̂),

m̌p̂
i (D) = w(p)

ši(D)∑
j∈S(p)

šj(D)
= w̃(p̂)

ši(c
C′→r(P ))∑

j∈S(p)

šj(c
C′→r(D))

= m̌p̂
i (c

C′→r(D)).

Thus, m̌ satisfies invariance to merging papers.
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Invariance to merging coauthors

Let I ∈ S(D), k ∈ N \ N , and recall that cI→k(D) = (C̃, w̃, S̃) ∈ D[N\I]∪{k} is such

that:

- C̃ = C,

- for each p ∈ C̃, w̃(p) = w(p),

- for each p ∈ C̃, S̃(p) = [S(p) \ I] ∪ {k} if I ∩ S(p) 6= ∅ and S̃(p) = S(p)

otherwise.

By definition of the CoScore rule, for each p ∈ C and each r ∈ S(p):

m̌p
r(D) = w(p)

∑
q∈Cr

m̌q
r(D)∑

t∈S(p)

∑
q∈Ct

m̌q
t (D)

.(9)

Let z ∈ Z(cI→k(D)) be such that, for each p ∈ C̃,

zpk =
∑
i∈I

m̌p
i (D) and, for each r ∈ S̃(p) \ {k}, zpr = m̌p

r(D).

Then, by (9), for each p ∈ C̃ and each r ∈ S̃(p),

zpr = w̃(p)

∑
q∈C̃r

zqr∑
t∈S̃(p)

∑
q∈C̃t

zqt

which means z satisfies the system of equations (2) for database cI→k(D). By (2), since

CoScore is well defined, m̌(cI→k(D)) = z. Thus, m̌ satisfies invariance to merging coauthors.

Proportionality

Suppose that N = {i, j}, C = {pi, pj, p}, S(pi) = {i}, S(pj) = {j}, and S(p) = {i, j}.
Then, it follows from the system of equations (2) that:

m̌p
i (D)

m̌p
j(D)

=
w(pi) + m̌p

i (D)

w(pj) + m̌p
j(D)

and thus mp
i (D)w(pj) = mp

j(D)w(pi). Thus, m̌ satisfies proportionality. v

We introduce two additional properties that will be useful in the proof of Theorem 2.

The first of these reflects the requirement that the indexing of papers is irrelevant to
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the credit assignment. Only the worth of papers and the coauthorship relations are

taken into consideration:

Neutrality: For each N ∈ N and each pair D = (C,w, S), D′ = (C ′, w′, S ′) ∈ DN ,

if there is a bijection σ : C → C ′ such that, for each p ∈ C, w′(σ(p)) = w(p) and

S ′(σ(p)) = S(p), then, for each p ∈ C and each i ∈ S ′(σ(p)), m
σ(p)
i (D′) = mp

i (D).

The second property specifies that the name of authors bears no influence on the

credit assignment. Again, only the worth of papers and the coauthorship pattern are

taken into consideration:

Anonymity: For each pair N,N ′ ∈ N , each D = (C,w, S) ∈ DN , and each D′ =

(C ′, w′, S ′) ∈ DN ′
, if C = C ′, w = w′, and there is a bijection π : N → N ′ such

that, for each p ∈ C, S ′(p) = π(S(p)), then, for each p ∈ C and each i ∈ S(p),

mp
i (D) = mp

π(i)(D
′).

Remark 1. Invariance to merging papers implies neutrality. Invariance to merging

coauthors implies anonymity.

Proof of Theorem 2. Let m denote a rule satisfying consistency, invariance to merging

papers, and proportionality. Let m̌ denote the CoScore rule. By Lemma 1, it suffices

to prove that m = m̌.

Step 1: For each N ∈ N such that |N | = 2 and each D ∈ DN , m(D) = m̌(D).

Let {i, j} ∈ N and D = (C,w, S) ∈ DN . Let K denote the total value of the

joint papers in D, K =
∑

p∈C{i,j}
w(p). Let Q ⊆ DN consist of all databases Q =

(C̃, w̃, S̃) ∈ DN such that:

- C̃{i} = C{i} and C̃{j} = C{j}.

- for each p ∈ C̃{i} ∪ C̃{j}, w̃(p) = w(p).

-
∑

p∈C̃{ij}
w̃(p) = K.

Note that D ∈ Q. The argument proceeds in three steps.

Step 1A: For each D′ = (C ′, w′, S ′), D′′ = (C ′′, w′′, S ′′) ∈ Q, each p′ ∈ C ′{i,j}, and

each p′′ ∈ C ′′{i,j}, w′(p′) = w′′(p′′) implies mp′(D′) = mp′′(D′′).
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Let all of the notation be as in the statement of Step 1A. Without loss of generality,

suppose that |C ′{i,j}| ≥ 2 and |C ′′{i,j}| ≥ 2.13 Let D̂ = (Ĉ, ŵ, Ŝ) ∈ Q be such that

Ĉ{i,j} = {p′, p̂}, ŵ(p) = w′(p′), and ŵ(p̂) = K − w′(p′). By invariance to merging

papers, merging all the papers in C ′{ij} \ {p′} into p̂, mp′(D′) = mp′(D̂). Similarly,

let D̃ = (C̃, w̃, S̃) ∈ Q be such that C̃{ij} = {p′′, p̃}, w̃(p) = w′′(p′′), and w̃(p̃) =

K − w′′(p′′). By invariance to merging papers, merging all the papers in C ′′{ij} \ {p′′}
into p̃, mp′′(D′′) = mp′′(D̃). By neutrality, which is implied by invariance to merging

papers (Remark 1), since the databases D̂ and D̃ differ only in the indexing of papers,

mp′(D′) = mp′(D̂) = mp′′(D̃) = mp′′(D′′).

Step 1B: For each pair p, q ∈ C,
mp
i (D)

mq
i (D)

=
w(p)

w(q)
.

Let f : [0, K]→ R be such that

f(x) = mp
i (Q) ∀x ∈ [0, K]

where Q = (C̊, ẘ, S̊) ∈ Q and p is any paper in C̊ such that ẘ(p) = x and S̊(p) =

{i, j}. By Step 1A, f is well defined. Furthermore, by invariance to merging papers,

f(x+ y) = f(x) + f(y) ∀x, y ∈ [0, K] such that x+ y ≤ K.

Thus, f satisfies the Cauchy functional equation and there is a constant cK such that,

for each x ∈ [0, K], f(x) = cKx (see Theorem 3 on page 48 of Aczél, 2006). Since D ∈
Q, for any p, q ∈ C, mp

i (D) = f(w(p)) = cKw(p) and mq
i (D) = f(w(q)) = cKw(q).

This establishes Step 1B.

Step 1C: Let w{i} and w{j} denote the total worth of i and j’s individual contribu-

tions, respectively.14 For each q ∈ C{ij}, mq
i (D) =

w{i}
w{i} + w{j}

w(q).

Let D∗ = (C∗, w∗, S∗) ∈ DN be such that

C∗ = {pi, pi, pij}

S∗(pi) = {i}, S∗(pj) = {j}, S∗(pij) = {i, j},

w∗(pi) = w{i}, w∗(pj) = w{j}, w∗(pij) =
∑

p∈C{i,j}

w(p).

By invariance to merging papers,

13Otherwise, we necessary have |C ′
{i,j}| = |C

′′
{i,j}| = 1 and the result simply follows from neutrality

which, by Remark 1, is implied by invariance to merging papers.
14Thus, w{i} =

∑
p∈C{i}

w(p).
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(10) m
pij
i (D∗) =

∑
p∈C{i,j}

mp
i (D).

By proportionality,

(11) m
pij
i (D∗) =

w∗(pi)

w∗(pi) + w∗(pj)
w∗(pij).

By Step 1B, for each pair p, q ∈ C,

mp
i (D) =

w(p)

w(q)
mq
i (D)

Thus, by (10),

m
pij
i (D∗) =

∑
p∈C{i,j}

w(p)

w(q)
mq
i (D) =

mq
i (D)

w(q)

∑
p∈C{i,j}

w(p) =
mq
i (D)

w(q)
w∗(pij).

Thus, by (11),

w∗(pi)

w∗(pi) + w∗(pj)
=
mq
i (D)

w(q)
.

Thus, for each q ∈ C{i,j},

mq
i (D) =

w∗(pi)

w∗(pi) + w∗(pj)
w(q) =

w{i}
w{i} + w{j}

w(q) = m̌q
i (D).

We conclude that m(D) = m̌(D).

Step 2: For each N ∈ N and each D ∈ DN , m(D) = m̌(D).

Induction hypothesis: Let n denote a positive integer and suppose that, for each

N ∈ N such that |N | ≤ n and each D ∈ DN , m(D) = m̌(D).

Let N ∈ N be such that |N | = n+ 1, D = (C,w, S) ∈ DN , and x ≡ m(D). For each

k ∈ N , let Nk = N \ {k}. Let k ∈ N and consider database cxk(D). By consistency,

(12) for each p ∈ C \ C{k} and each i ∈ S(p) \ {k}, mp
i (c

x
k(D)) = xpi .

By the induction hypothesis, since |Nk| = n, for each p ∈ C \ C{k} and each i ∈
S(p) \ {k},

mp
i (c

x
k(D)) = m̌p

i (c
x
k(D)).
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Thus, by the definition of m̌, for each p ∈ C \ C{k} and each i ∈ S(p) \ {k},

mp
i (c

x
k(D)) = (w(p)− xpk)

∑
q∈Ci

mq
i (c

x
k(D))∑

j∈S(p)\{k}

∑
q∈Cj

mq
j(c

x
k(D))

where, abusing notation, if p ∈ Ck, we let xpk = 0. Thus, by (12), for each p ∈ C \Ck
and each i ∈ S(p) \ {k},

xpi = (w(p)− xpk)

∑
q∈Ci

xqi∑
j∈S(p)\{k}

∑
q∈Cj

xqj

where, again, abusing notation, if p ∈ Ck, we let xpk = 0. Thus, for each p ∈ C \ C{k}
and each pair i, j ∈ S(p) \ {k},

xpj
xpi

=

∑
q∈Cj

xqj∑
q∈Ci

xqi
.

Repeating the same argument for each k ∈ N , for each p ∈ C and each pair i, j ∈ S(p),

xpj = xpi

∑
q∈Cj

xqj∑
q∈Ci

xqi
.

Thus, for each p ∈ C and each i ∈ S(p), summing over j ∈ S(p),

w(p) =
∑
j∈S(p)

xpj = xpi

∑
j∈S(p)

∑
q∈Cj

xqj∑
q∈Ci

xqi
.

Thus, for each p ∈ C and each i ∈ S(p),

xpi = w(p)

∑
q∈Ci

xqi∑
j∈S(p)

∑
q∈Cj

xqj
.

Hence, x satisfies the system of equations (2) defining m̌(D). However, m̌(D) is the

only solution to the system of equations (2). Thus, in fact, m̌(D) = x = m(D), as

desired. v
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Lemma 2. If m satisfies neutrality and invariance to merging coauthors, then it

satisfies proportionality.

Proof. Suppose that m satisfies neutrality and invariance to merging coauthors. By

Remark 1, m also satisfies anonymity. For each N ∈ N , let QN ⊆ DN consist of

all databases such that each author i ∈ N has exactly one single-authored paper,

denoted by pi, and one joint paper coauthored by every author in N , denoted by

p. Let {i, j} ∈ N and D = (C,w, S) ∈ Q{i,j}. For each a ∈ [0, w(pi) + w(pj)], let

Da = (Ca, wa, Sa) ∈ Q{i,j} be such that

wa(pi) = a, wa(pj) = w(pi) + w(pj)− a and wa(p) = w(p).

Note that D = Dw(pi). Let a′, a′′ ∈ [0, w(pi) + w(pj)] be such that a′ + a′′ = a. Let

i′, i′′ ∈ N \ {i, j} and D′a = (C ′, S ′, w′) ∈ Q{i′,i′′,j} be such that

w′(pi′) = a′, w′(pi′′) = a′′, w′(pj) = wa(pj), w′(p) = w(p).

Since w′(pi′) + w′(pi′′) = wa(pi), by invariance to merging coauthors,

(13) mp
i (Da) = mp

i′(D
′
a) +mp

i′′(D
′
a).

Similarly, let j′, j′′ ∈ N \ {i, j} and D′′a = (C ′′, S ′′, w′′) ∈ Q{i,j′,j′′} be such that

w′′(pi) = a′, w′′(pj′) = a′′, w′′(pj′′) = wa(pj), w′′(p) = w(p).

Since w′′(pj′) + w′′(pj′′) = wa
′
(pj), by invariance to merging coauthors,

mp
i (Da′) = mp

i (D
′′
a).

By anonymity and neutrality,

mp
i (D

′′
a) = mp

i′(D
′
a).

Combining the two previous equations, mp
i (Da′) = mp

i′(D
′
a). Similarly, mp

i (Da′′) =

mp
i′′(D

′
a). Thus, by (13) and since a = a′ + a′′,

mp
i (Da′+a′′) = mp

i (Da′) +mp
i (Da′′).

Define f : [0, w(pi) + w(pj)] → [0, w(p)] by setting, for each a ∈ [0, w(pi) + w(pj)],

f(a) = mp
i (Da). Then, f(a′ + a′′) = f(a′) + f(a′′). Thus, f satisfies the Cauchy

functional equation and there is a constant cD such that, for each a ∈ [0, w(pi)+w(pj)],

f(a) = cDa (Theorem 3, page 48, Aczél, 2006). Since D = Dw(pi), m
p
i (D) = cDw(pi).
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Furthermore, by anonymity and neutrality , mp
j(D) = mp

j(Dw(pj)) = cDw(pj). We

conclude that

mp
i (D)w(pj) = mp

j(D)w(pi)

That is, m satisfies proportionality. v

Proof of Theorem 1. By Lemma 1, the CoScore rule satisfies the properties in The-

orem 1. Conversely, let m denote a rule satisfying these properties. By Remark 1,

m satisfies neutrality. Thus, by Lemma 2, m satisfies proportionality. Thus, by

Theorem 2, m is the CoScore rule. v

Appendix C. Logical independence

Proposition 1. Consistency, invariance to merging papers, and proportionality are

logically independent.

Proof. First note that the egalitarian rule satisfies consistency and invariance to merg-

ing papers but not proportionality while the solo rule satisfies invariance to merging

papers and proportionality but not consistency. We conclude the proof by exhibiting

a rule that satisfies consistency and proportionality but not invariance to merging

papers.

Let m̌ denote the CoScore rule. Let i ∈ N and x : C → {0, 1}. Let N ∈ N and

D = (C,w, S) ∈ DN . If i ∈ N , let z(D) ∈ Z(D) be such that, for each p ∈ C,

zpi (D) = x(p)w(p). Define the rule m̊ as follows:

1st Case: i appears in at most 2 papers in C. Then, for each paper p ∈ C,

m̊p(D) = m̌p(D).

2nd Case: i appears in at least 3 papers in C. Then, for each paper p ∈ C,

m̊p
i (D) = x(p)w(p)

m̊p
j(D) = m̌p

j(c
z(D)
i (D)) for each j 6= i.

First note that proportionality only applies in Case 1. Therefore, by Lemma 1, m̊

satisfies proportionality. Let D = (C,w, S) ∈ DN be such that i ∈ N and that there
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are two papers p and q in Ci with i ∈ S(p) = S(q) and w(p) = w(q). Then, since x(·)
may be chosen in an arbitrary way, we can write:

m̊p
i (D) = x(p)w(p) 6= x(q)w(q) = m̊q

i (D)

thus violating invariance to merging papers (which implies that two identical papers

are shared in the same way).

Finally, we show that m̊ satisfies consistency. Let N ∈ N and D = (C,w, S) ∈ DN .

Let k ∈ N and consider the database c
m̊(D)
k (D) = (C̃, w̃, S̃).

1st Case: i appears in at most 2 papers in C. Then, whether k = i (i is taken out) or

k 6= i, i still appears in at most 2 papers in C̃. Therefore, for each p ∈ C and each

j ∈ N \ {k}:

m̊p
j(D) = m̌p

j(D) = m̌p
j(c

m̌(D)
k (D)) = m̊p

j(c
m̊(D)
k (D))

since the CoScore rule m̌ satisfies consistency.

2nd Case: i appears in at least 3 papers in C.

2.1: k = i. Then, since i doesn’t appear in any paper in C̃ (i has been taken out),

we have m̊p
j(c

m̊(D)
k (D)) = m̌p

j(c
m̊(D)
k (D)). Furthermore, since c

m̊(D)
k (D) = c

z(D)
k (D), we

also have: m̊p
j(D) = m̌p

j(c
z
i (D)) = m̌p

j(c
m̊(D)
k (D)) so that m̊p

j(D) = m̊p
j(c

m̊
k (D)). We

conclude that m̊ satisfies consistency.

2.2: k 6= i. Then i still appears in at least 3 papers in C̃. Therefore, for each p ∈ C,

m̊p
i (c

m̊(D)
k (D)) = x(p) (w(p)− m̊p

k(D)) = x(p)w(p) = m̊p
i (D)

For each j ∈ N \ {i, k},

m̊p
j(c

m̊(D)
k (D)) = m̌p

j(c
z(c

m̊(D)
k (D))

i (c
m̊(D)
k (D)))

Furthermore, since i is allocated the same share of paper p in databases cm̊k (D) and

D:

c
z(r

m̊(D)
k (D))

i (c
m̊(D)
k (D)) = c

z(D)
i (c

m̊(D)
k (D))

and since (a) reducing D first by taking out k (according to m̊(D)) then by taking out

i (according to z(D)) is equivalent to (b) reducing D first by taking out i (according

to z(D)), then by taking out k (according to m̊(c
z(D)
i (D))), which is also equivalent
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to (c) reducing D first by taking out i (according to z(D)), then by taking out k

(according to m̌(c
z(D)
i (D))):

c
z(D)
i (c

m̊(D)
k (D)) = c

m̊(c
z(D)
i (D))

k (c
z(D)
i (D)) = c

m̌(c
z(D)
i (D))

k (c
z(D)
i (D))

We conclude that

m̊p
j(c

m̊(D)
k (D)) = m̌p

j(c
m̌(r

z(D)
i (D))

k (c
z(D)
i (D))) = m̌p

j(c
z(D)
i (D)) = m̊p

j(D),

using the fact that m̌ satisfies consistency. Thus, m̊ satisfies consistency. v

Proposition 2. Consistency, invariance to merging papers, and invariance to merg-

ing coauthors are logically independent.

Proof. First note that the egalitarian rule satisfies consistency and invariance to merg-

ing papers but not invariance to merging coauthors while the solo rule satisfies in-

variance to merging papers and invariance to merging coauthors but not consistency.

We conclude the proof by exhibiting a rule that satisfies consistency and invariance

to merging coauthors but not invariance to merging papers.

Let q ∈ C. For each D = (C,w, S) ∈ DN , define the following associated databases:

• D−q = (C ′, w′, S ′) ∈ DN such that C ′ = C \ {q} and, for each p ∈ C ′,

w′(p) = w(p) and S ′(p) = S(p). Thus, D−q denotes the database obtained

from D by removing paper q.

• D+q = (C ′, w′, S ′) ∈ DN such that C ′ = {q} ∪
⋃
i∈N C{i} and, for each p ∈ C ′,

w′(p) = w(p) and S ′(p) = S(p). Thus, D+q denotes the database obtained

from D by removing all joint papers except perhaps for q.

Define the rule ṁ as follows: for each D = (C,w, S) ∈ DN ,

ṁq(D) = m̌q(D+q) and ṁp(D) = m̌p(D−q) for each p ∈ C \ {q}.

Rule ṁ violates invariance to merging papers because two papers with the same worth

and the same group of authors (one of them being q) may be shared in different ways.

It satisfies invariance to merging coauthors and consistency because the CoScore rule

does. v
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Appendix D. Data

The data was retrieved from Thomson Reuters’s Web of Science database on Febru-

ary 10th 2016 (http://ipscience.thomsonreuters.com/product/web-of-science/). We

extracted all published articles with at least one citation from the following 33 major

journals in Economics over the period 1970− 2015:

Econometrica, Quarterly Journal of Economics, Journal of Economic Literature,

American Economic Review, Journal of Political Economy, Review of Economic Stud-

ies, Journal of Monetary Economics, Journal of Economic Theory, Games and Eco-

nomic Behavior, Journal of Economics Perspectives, Journal of Econometrics, Rand

Journal of Economics, Economic Theory, Journal of Labor Economics, Journal of

Human Resources, Journal of Public Economics, Review of Economics and Statis-

tics, Econometric Theory, Journal of Risk and Uncertainty, International Economic

Review, Journal of Applied Econometrics, European Economic Review, International

Journal of Game Theory, Social Choice and Welfare, Journal of Environmental Eco-

nomics and Management, Economic Journal, Journal of International Economics,

Journal of Economic Dynamics and Control, Journal of Mathematical Economics,

Economic Inquiry, Scandinavian Journal of Economics, Economics Letters, Oxford

Bulletin of Economics and Statistics.

The Web of Science database is not entirely consistent regarding the name of the

authors. Authors are sometimes identified with their first initial only, all their initials

and in some cases their full name. We choose here to retain the first initial only,

which prevents the same author from being identified under two or more labels but

means that authors with the exact same name and first initial are collapsed together.

Note that the number of citations provided by Web of Science is usually smaller than

the one of Google Scholar.

We compute CoScore by repeatedly iterating the fixed point operator φ (see Ap-

pendix A), starting from a vector of equal scores. We assign an extra 10 single

authored citations to all authors in the database to compensate for the restricted set

of journals. In doing so, we ensure that every author has at least one single-authored

citation, so that CoScore is indeed well defined. The process converges quickly to the

desired fixed point. After a hundred iterations, ‖φ(x)− x‖∞ = 0.0332 ≤ 0.001‖x‖∞,

after a thousand iterations, ‖φ(x)− x‖∞ = 4.10−8 ≤ 3.10−9‖x‖∞. Table 1 gives the

top 15 economists according to CoScore.
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Rank Scholars # Papers Solo cit. (%) # Coauthors CoScore Eg. Score

1 Shleifer, A 77 0,05 41 564,1 231,8

2 Kahneman, D 23 0,04 20 559,0 314,8

3 Heckman, J 115 0,50 68 508,5 369,4

4 Acemoglu, D 101 0,19 51 425,7 230,7

5 Stiglitz, J 137 0,18 43 419,8 267,6

6 Engle, R 52 0,31 43 368,6 277,4

7 Bollerslev, T 41 0,51 29 365,8 273,2

8 Barro, R 75 0,59 23 331,0 279,2

9 Fehr, E 56 0,001 47 310,1 146,8

10 Tirole, J 113 0,12 29 304,9 199,8

11 Lucas, R 59 0,80 18 295,1 272,1

12 White, H 65 0,81 43 290,2 266,4

13 Alesina, A 59 0,06 38 275,1 156,4

14 Romer, P 20 0,91 9 272,3 260,5

15 Stock, J 46 0,08 27 270,0 146,0

Table 1. Top 15 economists according to CoScore. Solo cit. gives the fraction of single
authored citations.
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