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Abstract

We consider the problem of constructing honest confidence intervals (CIs) for a

scalar parameter of interest, such as the regression discontinuity parameter, in non-

parametric regression based on kernel or local polynomial estimators. To ensure that

our CIs are honest, we derive and tabulate novel critical values that take into account

the possible bias of the estimator upon which the CIs are based. We give sharp efficiency

bounds of using different kernels, and derive the optimal bandwidth for constructing

honest CIs. We show that using the bandwidth that minimizes the maximum mean-

squared error results in CIs that are nearly efficient and that in this case, the critical

value depends only on the rate of convergence. For the common case in which the rate

of convergence is n−4/5, the appropriate critical value for 95% CIs is 2.18, rather than

the usual 1.96 critical value. We illustrate our results in an empirical application.
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1 Introduction

This paper considers the problem of constructing confidence intervals (CIs) for a scalar

parameter T (f) of a function f , which can be a conditional mean or a density. The scalar

parameter may correspond, for example, to a conditional mean, or its derivatives at a point,

the regression discontinuity parameter, or the value of a density or its derivatives at a point.

The main requirement on the CIs we impose is that they be honest in the sense of Li (1989):

they need to achieve asymptotically correct coverage for all possible model parameters, that

is, be valid uniformly in f . This requires the researcher to be explicit about the parameter

space F for f by spelling out the smoothness or shape restrictions imposed on f .

The CIs that we propose are simple to construct.1 Given a desired confidence level

1− α, they take the form T̂ (k;h)± cv1−α(h; k)ŝe(T̂ (k;h)), where T̂ (k;h) is a kernel or local

polynomial estimator based on a kernel k and bandwidth h, ŝe(T̂ (k;h)) is its standard error,

and cv1−α(h; k) a critical value that which we derive and tabulate. To ensure that the CIs

maintain coverage over the whole parameter space, the critical value takes into account the

worst-case bias (over the parameter space F) of the estimator. As a result, it is larger

than z1−α/2, the usual critical value corresponding to the (1 − α/2)-quantile of a standard

normal distribution. Asymptotically, these CIs correspond to a fixed-length CIs as defined

by Donoho (1994). One-sided CIs can be constructed by subtracting the worst-case bias

from T̂ (k;h), in addition to subtracting the standard error times z1−α.

We derive three main results. First, we derive bandwidths that optimize the length of

these CIs. We show that, asymptotically, picking the length-optimal bandwidth amounts to

choosing the optimal bias-variance trade-off, which depends on the parameter T (f) and the

parameter space only through the rate of convergence r of the mean-squared error (MSE).

Consequently, the amount of over- or undersmoothing relative to the MSE-optimal band-

width (i.e. bandwidth that minimaxes the MSE) depends only on r and the desired confidence

1An R package implementing our CIs in regression discontinuity designs is available at https://github.
com/kolesarm/RDHonest.
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level 1 − α. For 95% CIs, we find that the length-optimal bandwidth always oversmooths

relative to the MSE-optimal bandwidth.

Second, we consider efficiency of CIs based on MSE-optimal bandwidth. We find that

two-sided 95% CIs constructed around the MSE-optimal bandwidth are at least 99% efficient

relative to using the optimal bandwidth, so long as the rate of convergence r is greater

than 2/3. This gives a particularly simple procedure for constructing honest CIs that are

nearly asymptotically optimal: construct the CI around an estimator based on MSE-optimal

bandwidth, adding and subtracting the standard error times a critical value that takes into

account the possible bias of the estimator. Crucially, we show that if the bandwidth is chosen

in this way, the critical value depends only on the rate of convergence r. When r = 4/5,

for example, as is the case for estimation at a point or regression discontinuity when f is

assumed to have two derivatives, the critical value for a 95% CI is 2.18, rather than the usual

1.96 critical value.

These results have implications for the common practice of constructing CIs based on

estimators that undersmooth relative to the MSE-optimal bandwidth. Questions related

to the optimality of this practice have been considered by Hall (1992) and Calonico et al.

(2016). Importantly, these papers restrict attention to CIs that use the usual critical value

z1−α/2. It then becomes necessary to choose a small enough bandwidth so that the bias is

asymptotically negligible relative to the standard error, since this is the only way to achieve

correct coverage. Our results imply that rather than choosing a smaller bandwidth, it is

better to use a larger critical value that takes into account the potential bias, which ensures

correct coverage regardless of the bandwidth. At the MSE- or length-optimal bandwidth,

the resulting CIs shrink at the optimal rate r/2, in contrast to CIs based on undersmoothing,

which shrink more slowly.

Third, we derive sharp efficiency bounds for one- and two-sided confidence intervals based

on different kernels. We show that the kernel efficiency depends only on the parameter of

interest and the parameter space, and not on the performance criterion. Consequently,
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minimax MSE efficiencies of different kernels correspond directly to kernel efficiencies for

constructing CIs. Furthermore, when the parameter space F is convex and symmetric (such

as as when F only places restrictions on the derivatives of f), it follows from calculations in

Donoho (1994) and Armstrong and Kolesár (2016) that our CIs, when constructed based on

a highly efficient kernel and length-optimal or MSE-optimal bandwidth, are highly efficient

among all CIs.

We specialize these results to the problem of inference about a nonparametric regression

function at a point (i.e. inference about f(x0) for some x0), and inference in sharp regres-

sion discontinuity (RD) designs. For inference at a point under a bound on the error of

approximating f by a Taylor approximation around x0, Fan (1993), Cheng et al. (1997), and

Fan et al. (1997) calculate bounds on minimax MSE-efficiency of local polynomial estima-

tors based on different kernels. In particular, Cheng et al. (1997) show that a local linear

estimator with triangular kernel is 97% efficient for minimax MSE estimation at a boundary

point under a bound on the error of the first order Taylor approximation. This result is

often cited in recommending the use of this estimator in RD (see, e.g., Calonico et al., 2014).

Our results show that, since the high efficiency of this estimator translates directly to the

problem of constructing CIs, this recommendation can also be given when the goal is to

construct CIs, as is often the case in practice.

Bounding the error from a Taylor approximation is one way to formalize the notion

that the pth derivative of f at x0 should be no larger than some constant M . In many

applications, this restriction may too conservative, as it allows f to be non-smooth away

from x0. We therefore also consider the problem of inference under a Hölder class, which

bounds the pth derivative globally. We derive an analytic expression for the maximum bias

and kernel efficiencies of local polynomial estimators under this parameter space, and show

that when the second derivative is bounded by a constant, a local linear estimator with

triangular kernel is over 99.9% efficient at a boundary point. Furthermore, we show that,

by bounding the second derivative globally, one can tighten the CIs by about 10–15%, with
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the exact gain depending on the kernel.

We also consider coverage and efficiency of alternative CIs, in particular the usual CIs

that use z1−α/2 as the critical value, and CIs based on the robust bias correction proposed

recently by Calonico et al. (2014) and Calonico et al. (2016). We show that while at the MSE-

optimal bandwidth, the usual CIs with nominal 95% coverage achieve honest coverage equal

to 92.1%, the undercoverage problem can be quite severe if a larger bandwidth is used. We

find that CIs based on robust bias correction have excellent coverage properties: a nominal

95% CI has asymptotic coverage equal to or just below 95%, depending on how one defines

the parameter space. However, they are longer than the honest CIs at the length-optimal

bandwidth that we propose by about 30% or shrink at a slower rate, again depending on

how one defines the parameter space.

To illustrate the implementation of the honest CIs, we reanalyze the data from Ludwig

and Miller (2007), who, using a regression discontinuity design, find a large and significant

effect of receiving technical assistance to apply for Head Start funding on child mortality

at a county level. However, this result is based on CIs that ignore the possible bias of the

local linear estimator around which they are built, and an ad hoc bandwidth choice. We

find that, if one bounds the second derivative globally by a constant M using a Hölder class

the effect is not significant at the 5% level unless one is very optimistic about the constant

M , allowing f to only be linear or nearly-linear.

Our results build on the literature on estimation of linear functionals in normal models

with convex parameter spaces, as developed by Donoho (1994), Ibragimov and Khas’minskii

(1985) and many others. As with the results in that literature, our setup gives asymptotic

results for problems that are asymptotically equivalent to the Gaussian white noise model,

including nonparametric regression (Brown and Low, 1996) and density estimation (Nuss-

baum, 1996). Our main results build on the “renormalization heuristics” of Donoho and

Low (1992), who show that many nonparametric estimation problems have renormalization

properties that allow easy computation of minimax mean squared error optimal kernels and
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rates of convergence. Indeed, our results hold under essentially the same conditions (see

Appendix B in the supplemental materials).

A drawback of our CIs is that they are non-adaptive: one needs to pick an a priori

bound on the smoothness of f in order to implement them, and their length is determined

by the conservativeness of this smoothness bound. When the parameter space is restricted

by bounding the pth derivative by a constant M , for instance, then M need to be specified

ex ante by the researcher. However, the results of Low (1997), Cai and Low (2004), and

Armstrong and Kolesár (2016) imply that under smoothness restrictions that lead to con-

vex, symmetric parameter spaces F , this cannot be avoided, and therefore fully automatic

nonparametric inference is not possible. In particular, their results show that honest CIs

based on the worst possible smoothness constant M allowed are highly efficient at smooth

functions relative to CIs that optimize their length at these smooth functions. Therefore,

procedures that use data-driven rules to determine the smoothness of f in an attempt to

“adapt” to f must either fail to improve upon our CIs, or else fail to maintain coverage over

the whole parameter space.

On the other hand, it is often possible to form estimators that are adaptive in that they

are close (up to a log n term) to the minimax MSE without knowing the smoothness constants

of f , such as the number of its derivatives. It may therefore seem attractive to construct

CIs that are centered at such adaptive estimators. Unfortunately, Cai and Low (2005) show

that, in line with the non-adaptivity results cited above, not only is the rate of convergence

of such CIs no faster than the rate corresponding to the worst possible smoothness class, in

many cases it is strictly worse, or else such CIs have poor coverage properties. In contrast,

our CIs are centered around estimators that are minimax for the worst possible smoothness

constant allowed by the parameter space. We find that such CIs are not only optimal in

rate, but are also close to optimal in the constant.

The rest of this paper is organized as follows. Section 2 gives the main results. Section 3

applies our results to inference at a point. Section 4 applies the results to RD, and presents
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an empirical application based on Ludwig and Miller (2007). Proofs of the results in Sec-

tion 2 are given in Appendix A. The supplemental materials contain further appendices and

additional tables and figures. Appendix B verifies our regularity conditions for some exam-

ples, and includes proofs of the results in Section 3. Appendix C calculates the efficiency gain

from using different bandwidths on either side of a cutoff in RD that is used in Section 4.

Appendix D contains details on optimal kernel calculations discussed in Section 3.

2 General results

We are interested in a scalar parameter T (f) of a function f , which is typically a conditional

mean or density. The function f is assumed to lie in a function class F , which places

“smoothness” conditions on f . We have available a class of estimators T̂ (h; k) based on a

sample of size n, which depend on a bandwidth h = hn > 0 and a kernel k. Let

bias(T̂ ) = sup
f∈F

∣∣∣Ef (T̂ − T (f))
∣∣∣

denote the worst-case bias of an estimator T̂ , and let sdf (T̂ ) = varf (T̂ )1/2 denote its standard

deviation. We assume that the estimator T̂ (h; k) is centered so that its maximum and

minimum bias over F sum to zero, supf∈F Ef (T̂ (h; k)−T (f)) = − inff∈F Ef (T̂ (h; k)−T (f)).

Our main assumption is that the variance and worst-case bias scale as powers of h. In

particular, we assume that, for some γb > 0, γs < 0, B(k) > 0 and S(k) > 0,

bias(T̂ (h; k)) = hγbB(k)(1 + o(1)), sdf (T̂ (h; k)) = hγsn−1/2S(k)(1 + o(1)), (1)

where the o(1) term in the second equality is uniform over f ∈ F . Note that the second

condition implies that the standard deviation does not depend on the underlying function f

asymptotically.

In the remainder of this section, we derive our main results. Section 2.1 presents a
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heuristic derivation of the results, while Section 2.2 gives formal statements with regularity

conditions. Before continuing, we illustrate condition (1) with an example.

Example 2.1. For local linear estimation of a nonparametric regression function at an

interior point under a second-order Taylor smoothness class, (1) essentially follows from

calculations in Fan (1993). For expositional purposes, we give a full derivation of these

results in a simplified setting. We normalize the point of interest to be 0, so that we are

interested in f(0). The second-order Taylor smoothness class comprises all functions for

which the approximation error from a first-order Taylor approximation around 0 can be

bounded by Mx2/2, for some constant M ,

F = {f : |r(x)| ≤Mx2/2},

where r(x) = f(x) − f(0) − f ′(0)x. We assume that the regression error is homoskedastic,

and that the design points are non-random, and equispaced on the interval [−1/2, 1/2], so

that the data follow the model

yi = f(xi) + ui, var(ui) = σ2, xi =


− i−1

2n
i odd

i
2n

i even,

i = 1, . . . , n.

Assume that n is odd, so that the design points are symmetric around 0. Let k be a symmetric

kernel. Because the design points are symmetric around zero and k is symmetric, the local

linear and Nadaraya-Watson estimator are identical2, and are both given by

T̂ (h; k) =

∑n
i=1 yik(xi/h)∑n
i=1 k(xi/h)

,

where h = hn is a bandwidth sequence with h→ 0 and hn→∞. The standard deviation is

2If the design points are not symmetric, the local linear and Nadaraya-Watson estimators are different,
and the local linear estimator must be used to avoid infinite worst-case bias. See Section 3.
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constant over f and is equal to

sdf (T̂ (h; k)) =
σn−1/2h−1/2

√
1
nh

∑n
i=1 k(xi/h)2

1
nh

∑n
i=1 k(xi/h)

=
σn−1/2h−1/2

√∫
k(u)2 du∫

k(u) du
(1 + o(1)),

where the last equality holds under mild regularity conditions on k(·). The bias at a

function f ∈ F is
∑n
i=1[f(xi)−f(0)]k(xi/h)∑n

i=1 k(xi/h)
=

∑n
i=1 r(xi)k(xi/h)∑n
i=1 k(xi/h)

, where the equality follows since∑n
i=1 xik(xi/h) = 0 by symmetry of k and the design points. The bias is maximized by

taking r(xi) = (M/2)x2 · sign(k(xi/h)), which gives

bias(T̂ (h; k)) =
(M/2)h2 1

nh

∑n
i=1(xi/h)2|k(xi/h)|

1
nh

∑n
i=1 k(xi/h)

=
(M/2)h2

∫
u2|k(u)| du∫

k(u) du
(1 + o(1)),

where the last equality holds under regularity conditions on k(·). Thus, under regular-

ity conditions, Equation (1) holds with γs = −1/2, γb = 2, S(k) =
σ
√∫

k(u)2 du∫
k(u) du

and

B(k) =
(M/2)

∫
u2|k(u)| du∫

k(u) du
. In Section 3, we show that this result generalizes to the case with

heteroscedastic errors and general design points.

2.1 Overview of results

Let t = hγb−γsB(k)/(n−1/2S(k)) denote the ratio of the leading worst-case bias and standard

deviation terms. Substituting h =
(
tn−1/2S(k)/B(k)

)1/(γb−γs) into (1), the approximate bias

and standard deviation can be written as

hγbB(k) = trn−r/2S(k)rB(k)1−r, hγsn−1/2S(k) = tr−1n−r/2S(k)rB(k)r−1 (2)

where r = γb/(γb − γs). Since bias and standard deviation converge at a nr/2 rate, we

refer to r as the rate exponent (note that this matches with the definition in, e.g., Donoho

and Low 1992; see Appendix B in the supplemental materials). In Example 2.1, we have

r = 2/[2− (−1/2)] = 4/5.

Computing the bias-standard deviation ratio t associated with a given bandwidth allows
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easy computation of honest CIs. Let ŝe(h; k) denote the standard error, an estimate of

sdf (T̂ (h; k)). Assuming a central limit theorem applies to T̂ (h; k), [T̂ (h; k)− T (f)]/ŝe(h; k)

will be approximately distributed as a normal random variable with variance 1 and bias

bounded by t. Thus, an approximate 1− α CI is given by

T̂ (h; k)± cv1−α(t) · ŝe(h; k), (3)

where

cv1−α(t) is the 1− α quantile of the |N(t, 1)| distribution. (4)

This is an approximate version of a fixed-length confidence interval (FLCI) as defined in

Donoho (1994) (if sdf (T̂ (h; k)) is constant over f instead of approximately constant, the CI

with ŝe(h; k) replaced by sdf (T̂ (h; k)) will have fixed length). Following this definition, we

use the term fixed-length to refer to CIs of this form even though ŝe(h; k) is random. One

could also form honest CIs by simply adding and subtracting the worst case bias, in addition

to adding and subtracting the standard error times z1−α/2 = cv1−α(0), the 1− α/2 quantile

of a standard normal distribution:

T̂ (h; k)± (bias(T̂ (h; k)) + z1−α/2 · ŝe(h; k)).

However, since the estimator T̂ (h; k) cannot simultaneously have a large positive and a large

negative bias, such CI will be conservative, and longer than the CI given in Equation (3).

The usual nonparametric CIs, T̂ (h; k)±z1−α/2 · ŝe(h; k), rely on “undersmoothing:” under

the current setup, this means that the bandwidth needs to be chosen such that t = 0, so

that the bias is asymptotically negligible relative to the standard deviation of the estimator

(otherwise the CI will undercover). As a result, the CIs shrink at a slower rate than r/2.

In contrast, the honest FLCIs in Equation (3) explicitly take into account the possible

bias of the estimator by replacing the critical value with cv1−α(t), thus allowing for larger
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bandwidths to be used, which, for 0 < t <∞, leads to the CIs shrinking at the optimal rate

r/2. Furthermore, one can choose the bandwidth in a way that optimizes the length of the

CI, which is given by

2 · ŝe(h; k) · cv1−α(t) ≈ 2 · tr−1n−r/2S(k)rB(k)1−r · cv1−α(t). (5)

The bias-standard deviation ratio minimizing this length is given by t∗FLCI = argmint>0 t
r−1 ·

cv1−α(t), and the FLCI-optimal bandwidth is h∗FLCI =
(
t∗FLCIn

−1/2S(k)/B(k)
)1/(γb−γs).

Let us compare h∗FLCI to the optimal bandwidth for estimation under mean squared error

loss. Since under (1), the leading variance term is independent of f , the maximum (over F)

MSE is approximately equal to the worst-case squared bias plus the variance. For comparison

with CI length and other criteria, it will be convenient to consider the root mean squared

error (RMSE)—the square root of the maximum MSE. Under (1), this is approximately

equal to

√
[hγbB(k)]2 + [hγsn−1/2S(k)]

2
=
√

(t2r + t2r−2)n−r/2S(k)rB(k)1−r. (6)

This is minimized by t∗RMSE = argmint>0(t
2r + t2r−2) =

√
1/r − 1, which gives the optimal

bandwidth as

h∗RMSE =
(
t∗RMSEn

−1/2S(k)/B(k)
)1/(γb−γs)

=
(√

1/r − 1 · n−1/2S(k)/B(k)
)1/(γb−γs)

.

These calculations have several useful consequences. First, note that both (5) and (6) depend

on k only through multiplication by S(k)rB(k)1−r. Thus, the relative efficiency of two kernels

k1 and k2 is given by [S(k1)
rB(k1)

1−r]/[S(k2)
rB(k2)

1−r] regardless of whether we consider

CI length or RMSE.

Second, the optimal bias-standard deviation ratios for RMSE and FLCI depend only on

the rate exponent r: for nonparametric estimators that converge at rate n−r/2, the optimal
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bias-standard deviation ratio for RMSE is t∗RMSE =
√

1/r − 1, and the optimal bias-standard

deviation ratio for FLCI is t∗FLCI = argmint>0 t
r−1 cv1−α(t) (the latter quantity can be found

numerically). Since h is increasing in t, it follows that the FLCI optimal bandwidth under-

smooths relative to the RMSE optimal bandwidth (i.e. h∗FLCI < h∗RMSE) if t∗FLCI < t∗RMSE

and oversmooths if t∗RMSE < t∗FLCI . For 95% CIs and r/2 in the range of rates of conver-

gence typically encountered in practice, it turns out that t∗RMSE < t∗FLCI : the FLCI optimal

bandwidth oversmooths relative to the RMSE optimal bandwidth.

Third, we get formulas for CIs centered at the RMSE optimal estimate, and for their

efficiency relative to the optimal FLCI. A fixed-length CI centered at T̂ (h∗RMSE; k) takes the

form T̂ (h∗RMSE; k) ± ŝe(h∗RMSE; k) · cv1−α(
√

1/r − 1). This modified critical value depends

only on the rate r, and is given in Table 1 for some common values. By Equation (5), the

length of this CI is approximately 2 · (t∗RMSE)r−1n−r/2S(k)rB(k)1−r · cv1−α(t∗RMSE). If the

bandwidth were instead chosen to minimize the length of the CI, the length would be given

by the minimum of (5) over t, which would decrease the length of the CI by a factor of

(t∗FLCI)
r−1 · cv1−α(t∗FLCI)

(t∗RMSE)r−1 · cv1−α(t∗RMSE)
. (7)

Since t∗FLCI and t∗RMSE depend only on r, this depends only on r. Figure 1 plots this quantity

as a function of r. It can be seen from the figure that if r ≥ 4/5, CIs constructed around

the RMSE optimal bandwidth are highly efficient.

In Example 2.1, r = 4/5 for estimation of the function at a point. The optimal bias-

standard deviation ratio for RMSE is then
√

1/r − 1 = 1/2, and a 95% CI centered at

the RMSE optimal estimate adds and subtracts cv.95(1/2) ≈ 2.18 times the standard error,

rather than z.975 ≈ 1.96 times the standard error. Evaluating (7) for r = 4/5, we find that

using the RMSE optimal bandwidth to construct a CI is over 99% efficient: the width of the

CI centered at the FLCI optimal bandwidth is more than 0.99 times the width of this CI.
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2.2 Formal results

We consider a slightly more general setup that encompasses other performance criteria, such

as median absolute deviation and excess length of one-sided CIs. Let R(T̂ ) denote the worst-

case (over F) performance of T̂ according to a given criterion, and let R̃(b, s) denote the

value of this criterion when T̂ − T (f) is N(b, s2). For RMSE, these are given by

RRMSE(T̂ ) = sup
f∈F

√
Ef

[
T̂ − T (f)

]2
, R̃(b, s) =

√
b2 + s2.

For FLCI,

RFLCI,α(T̂ (h; k)) = inf
{
χ : Pf

(
|T̂ (h; k)− T (f)| ≤ χ

)
≥ 1− α all f ∈ F

}
,

R̃FLCI,α(b, s) = inf
{
χ : PZ∼N(0,1) (|sZ + b| ≤ χ) ≥ 1− α

}
= s · cv1−α(b/s),

where cv1−α(t) is the 1 − α quantile of the absolute value of a N(t, 1) random variable, as

defined in (4). Note that cv1−α(t) = R̃FLCI(t, 1).

To evaluate one-sided CIs, one needs a criterion other than length, which is infinite. A

natural criterion is expected excess length, or quantiles of excess length. We focus here

on the worst-case quantiles of excess length. For CI of the form [ĉ,∞), the worst-case β

quantile of excess length is given by supf∈F qf,β(Tf − ĉ), where qf,β(Z) is the β quantile of

a random variable Z. Under (1) and a uniform-in-f central limit theorem for T̂ (h; k), an

honest one-sided 1−α CI based on T̂ (h; k) can be formed by subtracting the maximum bias,

in addition to subtracting z1−α times the standard deviation from T̂ (h; k), leading to the

interval

[T̂ (h; k)− hγbB(k)− z1−αhγsn−1/2S(k) , ∞).

We use ROCI,α,β(T̂ (h; k)) to denote the worst-case β quantile of excess length of this CI. The

worst-case β quantile of excess length based on an estimator T̂ when T̂ − T (f) is normal

with variance s2 and bias ranging between −b and b is R̃OCI,α,β(b, s) ≡ 2b+ (z1−α + zβ)s.
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When (1) holds and the estimator T̂ (h; k) satisfies an appropriate central limit theorem,

these performance criteria will satisfy

R(T̂ (h; k)) = R̃(hγbB(k), hγsn−1/2S(k))(1 + o(1)). (8)

For our main results, we make this assumption directly. As we show in Section B, (8)

holds with the o(1) term equal to zero under the renormalization conditions of Donoho

and Low (1992). Thus, verifying this condition in a given setting essentially amounts to

verifying conditions for the renormalization heuristics of Donoho and Low (1992). We will

also assume that R̃ scales linearly in its arguments (i.e. it is homogeneous of degree one):

R̃(tb, ts) = tR̃(b, s). This holds for all of the criteria considered above. Plugging in (2) and

using scale invariance of R̃ gives

R(T̂ (h; k)) = n−r/2S(k)rB(k)1−rtr−1R̃(t, 1)(1 + o(1)) (9)

where t = hγb−γsB(k)/(n−1/2S(k)) and r = γb/(γb−γs), as defined in Section 2.1. Under (9),

the asymptotically optimal bandwidth is given by h∗R = (n−1/2S(k)t∗R/B(k))1/(γb−γs) where

t∗R = argmint t
r−1R̃(t, 1). This generalizes the optimal bandwidth derivations based on (5)

and (6) to other performance criteria: for R = RFLCI , (9) essentially reduces to (5) (note

that cv1−α(t) = R̃FLCI,α(t, 1)) and for R = RRMSE, (9) reduces to (6). This gives the optimal

bias-standard deviation ratios

t∗RMSE = argmin
t>0

tr−1R̃RMSE(t, 1) = argmin
t>0

tr−1
√
t2 + 1 =

√
1/r − 1 and

t∗FLCI = argmin
t>0

tr−1R̃FLCI,α(t, 1) = argmin
t>0

tr−1 cv1−α(t),

and the corresponding optimal bandwidths, the same as in Section 2.1.

Assuming t∗R is finite and strictly greater than zero, the optimal bandwidth decreases

at the rate n−1/[2(γb−γs)] regardless of the performance criterion—the performance criterion
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only determines the optimal bandwidth constant. Since the approximation (8) may not hold

when h is too small or large relative to the sample size, we will only assume this condition

for bandwidth sequences of order n−1/[2(γb−γs)]. For our main results, we assume directly that

optimal bandwidth sequences decrease at this rate:

n−r/2R(T̂ (hn; k))→∞ for any hn with hn/n
1/[2(γb−γs)] →∞ or hn/n

1/[2(γb−γs)] → 0. (10)

Condition (10) will hold so long as it is suboptimal to choose a bandwidth such that the bias

or the variance dominates asymptotically, which is the case in the settings considered here.

Using these conditions, we now give formal statements of the results obtained heuristically

in Section 2.1.

Theorem 2.1. Let R be a performance criterion that with R̃(b, s) > 0 for all (b, s) 6= 0 and

R̃(tb, ts) = tR̃(b, s) for all (b, s). Suppose that Equation (8) holds for any bandwidth sequence

hn with lim infn→∞ hn/n
1/[2(γb−γs)] > 0 and lim supn→∞ hn/n

1/[2(γb−γs)] <∞, and suppose that

Equation (10) holds. Let h∗R and t∗R be as defined above, and assume that t∗R > 0 is unique

and well defined. Then:

(i) The asymptotic minimax performance of the kernel k is given by

nr/2 inf
h>0

R(T̂ (h; k)) = nr/2R(T̂ (h∗R; k)) + o(1) = S(k)rB(k)1−r inf
t
tr−1R̃(t, 1) + o(1),

where h∗R is given above.

(ii) The asymptotic relative efficiency of two kernels k1 and k2 is given by

lim
n→∞

infh>0R(T̂ (h; k1))

infh>0R(T̂ (h; k2))
=
S(k1)

rB(k1)
1−r

S(k2)rB(k2)1−r
.

It depends on the rate r but not on the performance criterion R.
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(iii) If (1) holds, the asymptotically optimal bias-variance ratio is given by

lim
n→∞

bias(T̂ (h∗R; k))

sdf (T̂ (h∗R; k))
= argmin

t
tr−1R̃(t, 1) = t∗R.

It depends only on the performance criterion R and rate exponent r. If we consider

two performance criteria R1 and R2 such that these conditions hold, then the limit of

the ratio of optimal bandwidths for these criteria is

lim
n→∞

h∗R1

h∗R2

=

(
t∗R1

t∗R2

)1/(γb−γs)

.

It depends only on γb and γs and the performance criteria.

Part (ii) shows that that relative efficiency results for RMSE apply unchanged to fixed-

length CIs and minimax one-sided CIs. For example, Cheng et al. (1997) calculate bounds

on the minimax MSE efficiency of local linear estimators for estimating a conditional mean

and its derivatives at a boundary point. Theorem 2.1 shows that these calculations apply

unchanged to give efficiency comparisons for CIs based on these estimators.

Part (iii) shows that the optimal bias-standard deviation ratio depends only on r and the

performance criterion, and not on the kernel. For RMSE, we obtain t∗RMSE =
√

1/r − 1, using

the same calculations as in Section 2.1. For one-sided CIs, t∗OCI,α,β = (1/r−1)(z1−α+zβ). For

fixed-length CIs, t∗FLCI can be evaluated numerically. Figures 2 and 3 plot these quantities

as a function of r. As discussed in Section 2.1, the optimal bias-standard deviation ratio is

larger for fixed-length CI construction (at levels α = .05 and α = .01) than for RMSE. Thus,

for FLCI, the optimal bandwidth oversmooths relative to the RMSE optimal bandwidth.

The next theorem gives conditions for the asymptotic validity and relative efficiency of

a confidence interval centered at the MSE optimal bandwidth. Following the derivations in

Section 2.1, this CI takes the form T̂ (h∗RMSE; k) ± ŝe(h∗RMSE; k) · cv1−α(
√

1/r − 1), and its

relative efficiency is given by (7).
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Theorem 2.2. Suppose that the conditions of Theorem 2.1 hold for RRMSE and for RFLCI,α̃

for all α̃ in a neighborhood of α. Let ŝe(h∗RMSE; k) be such that ŝe(h∗RMSE; k)/ sdf (h
∗
RMSE; k)

converges in probability to 1 uniformly over f ∈ F . Then

lim
n→∞

inf
f∈F

Pf

(
T (f) ∈

{
T̂ (h∗RMSE; k)± ŝe(h∗RMSE; k) · cv1−α(

√
1/r − 1)

})
= 1− α.

The asymptotic efficiency of this CI relative to the one centered at the FLCI optimal band-

width, defined as limn→∞
infh>0RFLCI,α(T̂ (h;k))

RFLCI,α(T̂ (h
∗
RMSE;k))

, is given by (7). It depends only on r.

Thus, for CIs centered at the RMSE optimal bandwidth, one forms a CI by simply adding

and subtracting cv1−α(
√

1/r − 1) times the standard error. Table 1 gives this quantity for

some common values of r. The efficiency loss from using h∗RMSE rather than h∗FLCI is given

by (7), and is plotted in Figure 1.

3 Inference at a point

In this section, we apply the general results from Section 2 to the problem of inference about a

nonparametric regression function at a point, which we normalize to be zero, so that T (f) =

f(0). We allow the point of interest to be on the boundary on the parameter space. Because

in sharp regression discontinuity (RD) designs, discussed in detail in Section 4, the parameter

of interest can be written as the difference between two regression functions evaluated at

boundary points, the efficiency results in this section generalize in a straightforward manner

to sharp RD.

We write the nonparametric regression model as

yi = f(xi) + ui, i = 1, . . . , n, (11)

where the design points xi are non-random, and the regression errors ui are by definition

mean-zero, with variance var(ui) = σ2(xi). We consider inference about f(0) based on local
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polynomial estimators of order q, which can be written as

T̂q(h; k) =
n∑
i=1

wnq (xi;h, k)yi,

where the weights wnq (xi; k, h) are given by

wnq (x;h, k) = e′1Q
−1
n mq(x)k(x/h).

Here mq(t) = (1, t, . . . , tq)′, k(·) is a kernel with bounded support, e1 is a vector of zeros with

1 in the first position, and

Qn =
n∑
i=1

k(xi/h)mq(xi)mq(xi)
′.

In other words, T̂q(h; k) corresponds to the intercept in a weighted least squares regression

of yi on (1, xi, . . . , x
q
i ) with weights k(xi/h). Local linear estimators correspond to q = 1,

and Nadaraya-Watson (local constant) estimators to q = 0. It will be convenient to define

the equivalent kernel

k∗q(u) = e′1

(∫
X
mq(t)mq(t)

′k(t) dt

)−1
mq(u)k(u), (12)

where the integral is over X = R if 0 is an interior point, and over X = [0 , ∞) if 0 is a (left)

boundary point.

We assume the following conditions on the design points and regression errors ui:

Assumption 3.1. For some d > 0, the sequence {xi}ni=1 satisfies 1
nhn

∑n
i=1 g(xi/hn) →

d
∫
X g(u) du for any bounded function g with finite support and any sequence hn with 0 <

lim infn hnn
1/(2p+1) < lim supn hnn

1/(2p+1) <∞.

Assumption 3.2. The random variables {ui}ni=1 are independent and normally distributed

with Eui = 0 and var(ui) = σ2(xi) where σ2(x) is continuous at x = 0.
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Assumption 3.1 requires that the empirical distribution of the design points is smooth

around 0. When the support points are treated as random, the constant d typically corre-

sponds to their density at 0. The assumption of normal errors in Assumption 3.2 is made

for simplicity and could be replaced with the assumption that for some η > 0, E[u2+ηi ] <∞.

Because the estimator is linear in yi, its variance doesn’t depend on f , and simply cor-

responds to the conditional variance of a weighted least squares estimator. Therefore, as we

show in Appendix B.2 in the supplemental materials, under Assumptions 3.1 and 3.2,

sd(T̂q(h; k))2 =
n∑
i=1

wnq (xi)
2σ2(xi) =

(
σ2(0)

dnh

∫
X
k∗q(u)2 du

)
(1 + o(1)). (13)

The condition on the standard deviation in Equation (1) thus holds with

γs = −1/2 and S(k) = d−1/2σ(0)

√∫
X
k∗q(u)2 du. (14)

Tables S1 and S2 in the supplemental materials give the constant
∫
X k
∗
q(u)2 du for some

common kernels.

On the other hand, the worst-case bias will be driven primarily by the function class F .

We consider inference under two popular function classes. First, the p-order Taylor class, a

generalization of the the second-order Taylor class from Example 2.1,

FT,p(M) =
{
f :
∣∣∣f(x)−

∑p−1
j=0 f

(j)(0)xj/j!
∣∣∣ ≤M |x|p/p! x ∈ X

}
.

This class consists of all functions for which the approximation error from a (p− 1)-th order

Taylor approximation around 0 can be bounded by 1
p!
M |x|p. It formalizes the idea that the

pth derivative of f at zero should be bounded by some constant M . Using this class of

functions to derive optimal estimators goes back at least to Legostaeva and Shiryaev (1971),

and it underlies much of existing minimax theory concerning local polynomial estimators

(see Fan and Gijbels, 1996, Chapter 3.4–3.5).
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While analytically convenient, the Taylor class may not be attractive in some empirical

settings because it allows f to be non-smooth and discontinuous away from 0. We therefore

also consider inference under Hölder class3,

FHöl,p(M) =
{
f : |f (p−1)(x)− f (p−1)(x′)| ≤M |x− x′|, x, x′ ∈ X

}
,

This class is the closure of the family of p times differentiable functions with the pth derivative

bounded by M , uniformly over X , not just at 0. It thus formalizes the intuitive notion that

f should be p-times differentiable with a bound on the pth derivative. The case p = 1

corresponds to the Lipschitz class of functions.

Theorem 3.1. Suppose that Assumption 3.1 holds. Then, for a bandwidth sequence hn with

0 < lim infn hnn
1/(2p+1) < lim supn hnn

1/(2p+1) <∞,

biasFT,p(M)(T̂q(hn; k)) =
Mhpn
p!
BT
p,q(k)(1 + o(1)), BT

p,q(k) =

∫
X
|upk∗q(u)| du

and

biasFHöl,p(M)(T̂q(hn; k)) =
Mhpn
p!
BHöl
p,q (k)(1 + o(1)),

BHöl
p,q (k) = p

∫ ∞
t=0

∣∣∣∣∫
u∈X ,|u|≥t

k∗q(u)(|u| − t)p−1 du
∣∣∣∣ dt.

Thus, the first part of (1) holds with γb = p and B(k) = MBp,q(k)/p! where Bp,q(k) = BHöl
p,q (k)

for FHöl,p(M), and Bp,q(k) = BT
p,q(k) for FT,p(M).

If, in addition, Assumption 3.2 holds, then Equation (8) holds for the RMSE, FLCI

and OCI performance criteria, with γb and B(k) given above and γs and S(k) given in

Equation (14).

As we will see from the relative efficiency calculation below, the optimal order of the

3For simplicity, we focus on Hölder classes of integer order.
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local polynomial regression is q = p− 1 for the kernels considered here. The theorem allows

q ≥ p− 1, so that we can examine the efficiency of local polynomial regressions that are of

order that’s too high relative to the smoothness class (when q < p− 1, the maximum bias is

infinite).

Under the Taylor class FT,p(M), the least favorable (bias-maximizing) function is given

by f(x) = M/p! · sign(wnq (x))|x|p. In particular, if the weights are not all positive, the

least favorable function will be discontinuous away from the boundary. The first part of

Theorem 3.1 then follows by taking the limit of the bias under this function. Assumption 3.1

ensures that this limit is well-defined.

Under the Hölder class FHöl,p(M), it follows from an integration by parts identity that

the bias under f can be written as a sample average of f (p)(xi) times a weight function that

depends on the kernel and the design points. The function that maximizes the bias is then

obtained by setting the pth derivative to be M or −M depending on whether this weight

function is positive or negative. This leads to a pth order spline function maximizing the

bias. See Appendix B.2 in the supplemental materials for details.

For kernels given by polynomial functions over their support, k∗q also has the form of a

polynomial, and therefore BT
p,q and BHöl

p,q can be computed analytically. Tables S1 and S2 in

the supplemental materials give these constants for selected kernels.

3.1 Kernel efficiency

It follows from Theorem 2.1 (ii) that the optimal equivalent kernel minimizes S(k)rB(k)1−r.

Under the Taylor class FT,p(M), this minimization problem is equivalent to minimizing

(∫
X
k∗(u)2 du

)p(∫
X
|upk∗(u)| du

)
, (15)

The solution to this problem follows from Sacks and Ylvisaker (1978, Theorem 1) (see also

Cheng et al. (1997)). We give details of the solution as well as plots of the optimal kernels in
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Appendix D in the supplemental materials. In Table 2, we compare the asymptotic relative

efficiency of local polynomial estimators based on the uniform, triangular, and Epanechnikov

kernels to the optimal Sacks-Ylvisaker kernels.

Fan et al. (1997) and Cheng et al. (1997), conjecture that minimizing (15) yields a sharp

bound on kernel efficiency. It follows from Theorem 2.1 (ii) that this conjecture is correct,

and Table 2 match the kernel efficiency bounds in these papers. One can see from the tables

that the choice of the kernel doesn’t matter very much, so long as the local polynomial is of

the right order. However, if the order is too high, q > p− 1, the efficiency can be quite low,

even if the bandwidth used was optimal for the function class or the right order, FT,p(M),

especially on the boundary. However, if the bandwidth picked is optimal for FT,q−1(M), the

bandwidth will shrink at a lower rate than optimal under FT,p(M), and the resulting rate

of convergence will be lower than r. Consequently, the relative asymptotic efficiency will

be zero. A similar point in the context of pointwise asymptotics was made in Sun (2005,

Remark 5, page 8).

The solution to minimizing S(k)rB(k)1−r under FHöl,p(M) is only known in special cases.

When p = 1, the optimal estimator is a local constant estimator based on the triangular

kernel. When p = 2, the solution is given in Fuller (1961) and Zhao (1997) for the interior

point problem, and in Gao (2016) for the boundary point problem. See Appendix D in the

supplemental materials for details, including plots of these kernels. When p ≥ 3, the solution

is unknown. Therefore, for p = 3, we compute efficiencies relative to a local quadratic

estimator with a triangular kernel. Table 3 calculates the resulting efficiencies for local

polynomial estimators based on the uniform, triangular, and Epanechnikov kernels. Relative

to the class FT,p(M), the bias constants are smaller: imposing smoothness away from the

point of interest helps to reduce the maximum bias. Furthermore, the loss of efficiency

from using a local polynomial estimator of order that’s too high is smaller. Finally, one can

see that local linear regression with a triangular kernel achieves high asymptotic efficiency

under both FT,2(M) and FHöl,2(M), both at the interior and at a boundary, with efficiency
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at least 97%, which shows that its popularity in empirical work can be justified on theoretical

grounds. Under FHöl,2(M) on the boundary, the triangular kernel is nearly efficient.

3.2 Gains from imposing smoothness globally

The Taylor class FT,p(M), formalizes the notion that the pth derivative at 0, the point of

interest, should be bounded by M , but doesn’t impose smoothness away from 0. In contrast,

the Hölder class FHöl,p(M) restricts the pth derivative to be at most M globally. How much

can one tighten a confidence interval or reduce the maximum RMSE due to this additional

smoothness?

It follows from Theorem 3.1 and from arguments underlying Theorem 2.1 that the risk

of using a local polynomial estimator of order p− 1 with kernel kH and optimal bandwidth

under FHöl,p(M) relative using an a local polynomial estimator of order p− 1 with kernel kT

and optimal bandwidth under FT,p(M) is given by

infh>0RFHöl,p(M)(T̂ (h; kH))

infh>0RFT,p(M)(T̂ (h; kT ))
=

(∫
X k
∗
H,p−1(u)2 du∫

X k
∗
T,p−1(u)2 du

) p
2p+1

(
BHöl
p,p−1(kH)

BTp,p−1(kT )

) 1
2p+1

(1 + o(1)),

where RF(T̂ ) denotes the worst-case performance of T̂ over F . If the same kernel is used, the

first term equals 1, and the efficiency ratio is determined by the ratio of the bias constants

Bp,p−1(k). Table 4 computes the resulting reduction in risk/CI length for common kernels.

One can see that in general, the gains are greater for larger p, and greater at the boundary.

In the case of estimation at a boundary point with p = 2, for example, imposing global

smoothness of f results in reduction in length of about 13–15%, depending on the kernel,

and a reduction of about 10% if the optimal kernel is used.

3.3 RMSE and pointwise optimal bandwidth

We follow the literature on nonparametric efficiency bounds by using minimaxity within a

smoothness class as our measure of efficiency: our relative efficiency comparisons are based
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on the worst-case performance of T̂ over a class F , where F formalizes the notion that f

should be “smooth.” Since we take limits of bounds that hold for all f ∈ F for a given

n, this approach can be called “uniform-in-f .” Similarly, the honesty requirement on CIs

requires that coverage converges to 1−α uniformly over f ∈ F . An alternative is to base rel-

ative efficiency comparisons and confidence statements on pointwise-in-f asymptotics. The

pointwise approach has been criticized, since it can lead to “superefficient” estimators that

perform poorly in finite samples (see Chapter 1.2.4 in Tsybakov, 2009). Thus, it is of interest

to know for which questions these two approaches give substantively different answers. We

now compare our optimal bandwidth calculations to optimal bandwidth calculations based

on pointwise asymptotics.

The general results from Section 2 imply that given a kernel k and order of a local

polynomial q, the RMSE-optimal bandwidth for FT,p(M) and FHöl,p(M) is given by

h∗RMSE =

(
1

2pn

S(k)2

B(k)2

) 1
2p+1

=

(
σ2(0)p!2

2pndM2

∫
X k
∗
q(u)2 du

Bp,q(k)2

) 1
2p+1

,

where Bp,q(k) = BHöl
p,q (k) for FHöl,p(M), and Bp,q(k) = BT

p,q(k) for FT,p(M).

In contrast, the optimal bandwidth based on pointwise asymptotics is obtained by mini-

mizing the sum of the leading squared bias and variance terms under pointwise asymptotics

for the case q = p− 1. This bandwidth is given by (see, for example, Fan and Gijbels, 1996,

Eq. (3.20))

h∗pointwise =

(
σ2(0)p!2

2pdnf (p)(0)2

∫
X k
∗
q(u)2 du

(
∫
X t

pk∗q(t) dt)2

) 1
2p+1

.

Thus, the pointwise optimal bandwidth replaces M with the pth derivative at zero, f (p), and

Bp,q(k) with
∫
X t

pk∗q(t) dt. In general implementing this bandwidth is not feasible, because the

pth derivative cannot be estimated without assuming the existence of more than p derivatives,

and, if more than p derivatives are assumed to exist, setting the order of the local polynomial

to q = p− 1 is no longer optimal.

Suppose, therefore, that f ∈ Fp(M), where Fp(M) corresponds to either FT,p(M) and
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FHöl,p(M), and that it is known that the pth derivative at zero exists and equals M . Then

both h∗RMSE and h∗pointwise are feasible, and their ratio is given by

h∗pointwise

h∗RMSE

=

(
Bp,q(k)

|
∫
X t

pk∗q(t) dt|

) 2
2p+1

≥ 1. (16)

The inequality obtains because the Taylor expansion used to derive the leading bias term

under pointwise asymptotics effectively assumes that f(x) = ±Mxp/p!, which leads to the

bias constant |
∫
X t

pk∗q(t) dt|. This choice of f is feasible under Fp(M), but may not maximize

the bias in general.

Under FT,p(M), the inequality will be strict for p ≥ 2, so that the pointwise optimal

bandwidth will in general be too large. For example for p = 2 and local linear regression

with the triangular kernel at the boundary, the ratio of bandwidths in Equation (16) evaluates

to
(

3/16
1/10

)2/5
≈ 1.28588, so that the pointwise optimal bandwidth is about 30% too large.

Consequently, the minimax efficiency for root MSE is

(t∗MSE/tpointwise)
−1/5

(
1 + (t∗MSE)2

1 + t2pointwise

)1/2

= (8/15)−1/5
(

1 + (1/2)2

1 + (15/16)2

)1/2

≈ 0.925.

On the other hand, under FHöl,2(M), Equation (16) holds with equality, so that the pointwise

and minimax optimal bandwidths coincide, because, as we show in Appendix B.2 in the

supplemental materials, the least favorable function is indeed given by Mx2/2.

3.4 Confidence intervals based on pointwise asymptotics

Let us consider the performance of confidence intervals (CIs) justified by pointwise asymp-

totics. Suppose that the smoothness class is either FT,p(M) and FHöl,p(M) and denote it

by Fp(M). Suppose, for concreteness that p = 2, and q = 1. A näıve, but popular way of

constructing confidence intervals in practice is to center the CI around the estimator T̂1(h; k),

simply add and subtract z1−α/2 times its standard deviation, disregarding the possibility that
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the estimator may be biased. If bandwidth used equals h∗RMSE, then the resulting CIs are

shorter than the 95% fixed-length CIs by a factor of z0.975/ cv0.95(1/2) = 0.90. Consequently,

their coverage is 92.1% rather than the nominal 95% coverage. At the RMSE-optimal band-

width, the worst-case bias-sd ratio equals 1/2, so disregarding the bias doesn’t result in

severe undercoverage. If one uses a larger bandwidth, however, the worst-case bias-sd ratio

will be larger, and the undercoverage problem more severe: for example, if the bandwidth is

50% larger than h∗RMSE, so that the worst-case bias-sd ratio equals 1/2 ·(1.5)(5/2) the coverage

is only 71.9%.

In an important recent paper, to improve the coverage properties of the näıve CI, Calonico

et al. (2014) consider recentering T̂1(h; k) by an estimate of the leading bias term, and

adjusting the standard error estimate to account for the variability of the bias estimate. For

simplicity, consider the case in which the main bandwidth and the pilot bandwidth (used to

estimate the bias) are the same, and that the main bandwidth is chosen optimally in that it

equals h∗RMSE. In this case, their procedure amounts to using a local quadratic estimator, but

with a bandwidth h∗RMSE, optimal for a local linear estimator. The resulting CI obtains by

adding and subtracting z1−α/2 times the standard deviation of the estimator. The maximum

bias to standard deviation ratio of the estimator is given by

tCCT = (h∗RMSE)5/2
MB2,2(k)/2

σ(0)(
∫
k∗2(u)2 du/dn)1/2

=
1

2

B2,2(k)

B2,1(k)

(∫
X k
∗
1(u)2 du∫

X k
∗
2(u)2 du

)1/2

. (17)

The resulting coverage is given by Φ(tCCT + z1−α/2) − Φ(tCCT − z1−α/2). The CCT interval

length relative to the fixed-length 1 − α CI around a local linear estimator with the same

kernel and minimax MSE bandwidth is the same under both FT,p(M), and FHöl,p(M), and

given by

z1−α/2
(∫
X k
∗
2(u)2 du

)1/2
cv1−α(1/2)

(∫
X k
∗
1(u)2 du

)1/2 (1 + o(1)). (18)

The resulting coverage and relative length is given in Table 5 for the class FT,2(M), and

in Table 6 for the class FHöl,2(M) and α = 0.05. One can see that although the coverage
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properties are excellent (since tCCT is quite low in all cases), the intervals are about 30%

longer than the fixed-length CIs around the RMSE bandwidth.

Under the class FHöl,2(M), the CCT intervals are also reasonably robust to using a larger

bandwidth: if the bandwidth used is 50% larger than h∗RMSE, so that the bias-sd ratio in

Equation (17) is larger by a factor of (1.5)5/2, the resulting coverage is still at least 93.0%

for the kernels considered in Table 6. Under FT,2(M), using a bandwidth 50% larger than

h∗RMSE yields coverage of about 80% on the boundary and 87% in the interior.

If one instead considers the classes FT,3(M) and FHöl,3(M) (but with h∗RMSE still chosen

to be MSE optimal for FT,2(M) or FHöl,2(M)), then the CCT interval can be considered

an undersmoothed CI based on a second order local polynomial estimator. In this case,

the limiting bias-sd ratio is tCCT = 0 and the limiting coverage is 1 − α (this matches the

pointwise-in-f coverage statements in CCT, which assume the existence of a continuous

third derivative in the present context). Due to this undersmoothing, however, the CCT CI

shrinks at a slower rate than the optimal CI. Thus, depending on the smoothness class, the

95% CCT CI has close to 95% coverage and efficiency loss of about 30%, or exactly 95%

coverage at the cost of shrinking at a slower than optimal rate.

4 Application to sharp regression discontinuity

In this section, we apply the results for estimation at a boundary point from Section 3 to

sharp regression discontinuity (RD), and illustrate them with an empirical application.

In a sharp RD, we are given data from a nonparametric regression model (11), and the

goal is to estimate a jump in the regression function f at a known threshold, which we

normalize to 0, so that the parameter of interest is

T (f) = lim
x↓0

f(x)− lim
x↑0

f(x).

The threshold determines participation in a binary treatment: units with xi ≥ 0 are treated;
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units with xi < 0 are controls. If the regression functions of potential outcomes are contin-

uous at zero, then T (f) measures the average effect of the treatment for units with xi = 0

(Hahn et al., 2001).

For brevity, we focus on the most empirically relevant case in which the regression function

f is assumed to lie in the class FHöl,2(M) on either side of the cutoff:

f ∈ FRD(M) = {f+(x)1(x ≥ 0)− f−(x)1(x < 0) : f+, f− ∈ FHöl,2(M)}.

We consider estimating T (f) based on running a local linear regression on either side of the

boundary. Given a bandwidth h and a second-order kernel k, the resulting estimator can be

written as

T̂ (h; k) =
n∑
i=1

wn+(xi;h, k)yi −
n∑
i=1

wn−(xi;h, k)yi,

with the weight wn+ given by

w+(x;h, k) = e′1Q
−1
n,+m1(x)k+(x/h)

=
k+(x/h)

∑n
i=1 k+(xi/h)(x2i − xi · x)∑n

i=1 k+(xi/h)
∑n

i=1 k+(xi/h)x2i − (
∑n

i=1 k+(xi/h)xi)2
, k+(u) = k(u)1(u ≥ 0),

and Qn,+ =
∑n

i=1 k+(xi/h)mq(xi)m1(xi)
′. The weights wn−, Gram matrix Q̂n,− and kernel

k− are defined similarly. That is, T̂ (h; k) is given by a difference between estimates from

two local linear regressions at a boundary point, one for units with non-negative values

running variable xi, and one for units with negative values of the running variable. Let

σ2
+(x) = σ2(x)1(x ≥ 0), and let σ2

−(x) = σ2(x)1(x < 0).

In principle, one could allow the bandwidths for the two local linear regressions to be

different. We show in Appendix C in the supplemental materials, however, that the loss in

efficiency resulting from constraining the bandwidths to be the same is quite small unless

the ratio of variances of Yi on either side of the cutoff, σ2
+(0)/σ2

−(0), is quite large.

It follows from the results in Section 3 that if Assumption 3.1 holds and the functions
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σ2
+(x) and σ2

−(x) are right- and left-continuous, respectively, the variance of the estimator

doesn’t depend on f and satisfies

sd(T̂ (h; k))2 =
n∑
i=1

(
wn+(xi)

2 + wn−(xi)
2
)
σ2(xi) =

∫∞
0
k∗1(u)2 du

dnh

(
σ2
+(0) + σ2

−(0)
)

(1 + o(1)),

with d defined in Assumption 3.1.

Because T̂ (h; k) is given by the difference between two local linear regression estimators,

it follows from Theorem 3.1 and arguments in Appendix B.2 in the supplemental materials

that the bias of T̂ (h; k) is maximized at the function f(x) = −Mx2/2 ·(1(x ≥ 0)−1(x < 0)).

The worst-case bias therefore satisfies

bias(T̂ (h; k)) = −M
2

(
n∑
i=1

wn+(xi)x
2
i +

n∑
i=1

wn−(xi)x
2
i

)
= −Mh2 ·

∫ ∞
0

u2k∗1(u) du · (1 + o(1)).

The RMSE-optimal bandwidth is given by

h∗RMSE =

( ∫∞
0
k∗1(u)2 du

(
∫∞
0
u2k∗1(u) du)2

·
σ2
+(0) + σ2

−(0)

dn4M2

)1/5

. (19)

This definition is similar to the optimal bandwidth definition derived under pointwise asymp-

totics in Imbens and Kalyanaraman (2012), except that they replace 4M2 with (f
′′
+(0) −

f
′′
−(0))2, which gives infinite bandwidth if the second derivatives at zero are equal in magni-

tude and of opposite sign. Consequently, any feasible implementation of pointwise asymp-

totically optimal bandwidth will require an ad-hoc regularization term to avoid selecting an

overly large bandwidth in practice4.

The bias-standard deviation ratio at h∗RMSE equals 1/2 in large samples; a two-sided CI

around T̂ (h∗RMSE; k) for a given kernel k can therefore be constructed as

T̂ (h∗RMSE; k)± cv1−α(1/2) · sd(T̂ (h∗RMSE; k)). (20)

4Furthermore, as pointed out in Section 3.3, it is not possible to estimate the second derivative without
assuming the existence of more than 2 derivatives.
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Alternatively, one could use the critical value cv1−α(bias(L̂(h∗RMSE; k))/ sd(L̂(h∗RMSE; k)))

based on the finite-sample bias-sd ratio.

In practice, this CI cannot be implemented directly because the variance function σ2(x)

and the density d of x at 0 that are required to calculate h∗RMSE and the standard error

sd(T̂ (h∗RMSE; k)) are unknown. One therefore needs to replace h∗RMSE and sd(T̂ (h∗RMSE; k))

in the previous display by their feasible versions.

Because sd(T̂ (h∗RMSE; k)) corresponds to the conditional variance of a weighted least

squares estimator in a regression with potentially non-linear conditional expectation func-

tion f , it can be consistently estimated using the nearest neighbor variance estimator con-

sidered in Abadie and Imbens (2006) and Abadie et al. (2014); using the usual Eicker-

Huber-White estimator will overestimate the conditional variance. To describe the estima-

tor, given a bandwidth h, let ûi denote the estimated residuals, that is, for xi ≥ 0 ûi = yi −

m1(xi)Q
−1
n,+

∑n
j=1m1(xj/h)k+(xi/h)yi, and ûi = yi − m1(xi)Q

−1
n,−
∑n

j=1m1(xj/h)k−(xi/h)yi

for xi < 0. Then sd(T̂ (h; k)) can be estimated as ŝe(T̂ (h; k)) =
∑n

i=1w
n
+(xi)

2σ̂2(xi) +∑n
i=1w

n
−(xi)

2σ̂2(xi), where

σ̂2(xi) =
J

J + 1

(
Yi −

1

J

J∑
m=1

Yj(i)

)2

,

for some fixed (small) J ≥ 1, where j(i) denotes the j-th closes observation to i among

units with the same sign of the running variable. In contrast, the usual Eicker-Huber-White

estimator sets σ̂2(xi) = û2i .

For h∗RMSE, there are two feasible choices. One can either use a plug-in estimator that

replaces the unknown quantities d, σ2
−(0), and σ2

+(0) by some consistent estimates d̂, σ̂2
−(0),

and σ2
+(0). Alternatively, one can try to directly minimize the finite-sample MSE over the

bandwidth h,

MSE(h) =
M2

4

(
n∑
i=1

(
wn+(xi;h) + wn−(xi;h)

)
x2i

)2

+
n∑
i=1

(
wn+(xi)

2 + wn−(xi)
2
)
σ2(xi), (21)
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by replacing σ2(x) with the estimate σ̂2(xi) = σ̂2
+(0)1(x ≥ 0) + σ̂2

−(0)1(x < 0). This method

was considered previously in Armstrong and Kolesár (2016), who show that the resulting

confidence intervals will be asymptotically valid and equivalent to the infeasible CI given in

Equation (20). This method has the advantage that it avoids having to estimate d, and it

can also be shown to work when the covariates are discrete.

4.1 Empirical illustration

To illustrate the implementation of feasible versions of the CIs (20), we use a subset of the

dataset from Ludwig and Miller (2007).

In 1965, when the Head Start federal program launched, the Office of Economic Op-

portunity provided technical assistance to the 300 poorest counties in the United States to

develop Head Start funding proposals. Ludwig and Miller (2007) use this cutoff in technical

assistance to look at intent-to-treat effects of the Head Start program on a variety of out-

comes using as a running variable the county’s poverty rate relative to the poverty rate of

the 300th poorest county (which had poverty rate equal to approximately 59.2%). We focus

here on their main finding, the effect on child mortality due to causes addressed as part of

Head Start’s health services. The main health services provided by Head Start comprise

vaccinations, screening, and medical referrals; this variable therefore measures deaths due

to causes such as tuberculosis, meningitis, or respiratory causes, but excludes injuries and

neoplasms. See the appendix in Ludwig and Miller (2007) for a detailed description of this

variable.

Relative to the dataset used in Ludwig and Miller (2007), we remove two observations,

one corresponding to a duplicate entry for Yellowstone County, MT, and an outlier that

corresponds to Yellowstone National Park, MT. Mortality data is missing for counties in

Alaska. We are therefore left with 3,103 observations that correspond to US counties, with

294 of them above the poverty cutoff.

Figure 4 plots the data. To estimate the discontinuity in mortality rates, Ludwig and
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Miller (2007) use a uniform kernel5 and consider bandwidths equal to 9, 18, and 36. This

yields point estimates equal to −1.895, −1.198 and −1.114 respectively, which are large

effects given that the average mortality rate for counties not receiving technical assistance

was 2.15 per 100,000. The p-values reported in the paper, based on bootstrapping the t-

statistic (which ignores any potential bias in the estimates), are 0.036, 0.081, and 0.027. The

standard errors for these estimates, obtained using the nearest neighbor method described

above (with J = 3) are 1.038, 0.696, and 0.522.

These bandwidth choices are optimal in the sense that they minimize the RMSE ex-

pression (21) if M = 0.038, 0.0076, and 0.0014, respectively. Thus, for bandwidths 18

or 36 to be optimal, one has to be very optimistic about the smoothness of the regres-

sion function. For these smoothness parameters, the finite-sample critical values based on

cv0.95(bias(L̂(h∗RMSE; k))/ sd(L̂(h∗RMSE; k))) are given by 2.152, 2.201 and 2.115 respectively,

which is very close to the asymptotic value cv.95(1/2) = 2.182. The resulting 95% confidence

intervals are given by

(−4.154, 0.297), (−2.729, 0.333), and (−2.219,−0.010),

respectively. The p-values based on these estimates are given by 0.091, 0.123, and 0.047.

These values are higher than those reported in the paper, as they take into account the

potential bias of the estimates. Thus, unless one is confident that the smoothness parameter

M is very small, the results are not significant at 5% level.

Using a triangular kernel helps to tighten the confidence intervals by about 2% in length,

as predicted by the relative asymptotic efficiency results from Table 3, yielding

(−4.196, 0.172), (−2.977, 0.055), and (−2.286,−0.091).

5The paper states that the estimates were obtained using a triangular kernel. However, due to a bug in
the code, the results reported in the paper were actually obtained using a uniform kernel.
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The underlying optimal bandwidths are given by 11.8, 22.8, and 45.7, respectively. The

p-values associated with these estimates are 0.072, 0.059, and 0.033, tightening the p-values

based on the uniform kernel. Thus, in contrast to the findings in the paper, these results

indicate that, unless one is very optimistic about the smoothness of the regression function,

the effect of Head Start assistance on child mortality is not significant at the 5% level.

Appendix A Proofs of theorems in Section 2

A.1 Proof of Theorem 2.1

Parts (ii) and (iii) follow from part (i) and simple calculations. To prove part (i), note that,

if it did not hold, there would be a bandwidth sequence hn such that

lim inf
n→∞

nr/2R(T̂ (hn; k)) < S(k)rB(k)1−r inf
t
tr−1R̃(t, 1).

By Equation (10), the bandwidth sequence hn must satisfy lim infn→∞ hn/n
1/[2(γb−γs)] > 0 and

lim supn→∞ hn/n
1/[2(γb−γs)] < ∞. Thus, nr/2R(T̂ (hn; k)) = S(k)rB(k)1−rtr−1n R̃(tn, 1) + o(1)

where tn = hγb−γsn B(k)/(n−1/2S(k)). This contradicts the display above.

A.2 Proof of Theorem 2.2

The second statement (relative efficiency) is immediate from (9). For the first statement

(coverage), fix ε > 0 and let sdn = n−1/2(h∗RMSE)γsS(k) so that, uniformly over f ∈ F ,

sdn / sdf (T̂ (h∗RMSE; k)) → 1 and sdn /ŝe(h∗RMSE; k)
p→ 1. Note that, by Theorem 2.1 and the

calculations above,

R̃FLCI,α+ε(T̂ (ĥ∗RMSE; k)) = sdn · cv1−α−ε(
√

1/r − 1)(1 + o(1))
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and similarly for R̃FLCI,α−ε(T̂ (ĥ∗RMSE; k)). Since cv1−α(
√

1/r − 1) is strictly decreasing in α,

it follows that there exists η > 0 such that, with probability approaching 1 uniformly over

f ∈ F ,

RFLCI,α+ε(T̂ (ĥ∗RMSE; k)) < ŝe(T̂ (ĥ∗RMSE; k)) · cv1−α(
√

1/r − 1)

< (1− η)RFLCI,α−ε(T̂ (ĥ∗RMSE; k)).

Thus,

lim inf
n

inf
f∈F

P
(
Tf ∈

{
T̂ (ĥ∗RMSE; k)± ŝe(T̂ (ĥ∗RMSE; k)) · cv1−α(

√
1/r − 1)

})
≥ lim inf

n
inf
f∈F

P
(
Tf ∈

{
T̂ (ĥ∗RMSE; k)±RFLCI,α+ε(T̂ (ĥ∗RMSE; k))

})
≥ 1− α− ε

and

lim sup
n

inf
f∈F

P
(
Tf ∈

{
T̂ (ĥ∗RMSE; k)± ŝe(T̂ (ĥ∗RMSE; k)) · cv1−α(

√
1/r − 1)

})
≤ lim sup

n
inf
f∈F

P
(
Tf ∈

{
T̂ (ĥ∗RMSE; k)±RFLCI,α−ε(T̂ (ĥ∗RMSE; k))(1− η)

})
≤ 1− α + ε,

where the last inequality follows by definition of RFLCI,α−ε(T̂ (ĥ∗RMSE; k)). Taking ε→ 0 gives

the result.
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1− α

r b 0.01 0.05 0.1

0.0 2.576 1.960 1.645

0.1 2.589 1.970 1.653

0.2 2.626 1.999 1.677

0.3 2.683 2.045 1.717

0.4 2.757 2.107 1.772

6/7 0.408 2.764 2.113 1.777

4/5 0.5 2.842 2.181 1.839

0.6 2.934 2.265 1.916

0.7 3.030 2.356 2.001

2/3 0.707 3.037 2.362 2.008

0.8 3.128 2.450 2.093

0.9 3.227 2.548 2.187

1/2 1.0 3.327 2.646 2.284

1.5 3.826 3.145 2.782

2.0 4.326 3.645 3.282

Table 1: Critical values cv1−α(b) and cv1−α(
√

1/r − 1) for selected confidence levels, values
of maximum absolute bias b, and values of r. For b ≥ 2, cv1−α(b) ≈ b + z1−α/2 up to 3
decimal places for these values of 1− α.

Boundary Point Interior point

Kernel Order p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform

1(|u| ≤ 1)

0 0.9615 0.9615

1 0.5724 0.9163 0.9615 0.9712

2 0.4121 0.6387 0.8671 0.7400 0.7277 0.9267

Triangular

(1− |u|)+

0 1 1

1 0.6274 0.9728 1 0.9943

2 0.4652 0.6981 0.9254 0.8126 0.7814 0.9741

Epanechnikov
3
4
(1− u2)+

0 0.9959 0.9959

1 0.6087 0.9593 0.9959 1

2 0.4467 0.6813 0.9124 0.7902 0.7686 0.9672

Table 2: Relative efficiency of local polynomial estimators of different orders for the function
class FT,p(M), relative to the optimal equivalent kernel k∗SY . Functional of interest is value
of f at a point.
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Boundary Point Interior point

Kernel Order p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform

1(|u| ≤ 1)

0 0.9615 0.9615

1 0.7211 0.9711 0.9615 0.9662

2 0.5944 0.8372 0.9775 0.8800 0.9162 0.9790

Triangular

(1− |u|)+

0 1 1

1 0.7600 0.9999 1 0.9892

2 0.6336 0.8691 1 0.9263 0.9487 1

Epanechnikov
3
4
(1− u2)+

0 0.9959 0.9959

1 0.7471 0.9966 0.9959 0.9949

2 0.6186 0.8602 0.9974 0.9116 0.9425 1

Table 3: Relative efficiency of local polynomial estimators of different orders for the function
class FHöl,p(M). Functional of interest is value of f at a point. For p = 1, 2, efficiency is
relative to optimal kernel, for p = 3, efficiency is relative to local quadratic estimator with
triangular kernel.

Boundary Point Interior point

Kernel p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform 1 0.855 0.764 1 1 0.848

Triangular 1 0.882 0.797 1 1 0.873

Epanechnikov 1 0.872 0.788 1 1 0.866

Optimal 1 0.906 1 0.995

Table 4: Gains from imposing global smoothness: asymptotic risk of local polynomial es-
timators of order p − 1 and a given kernel under the class FHöl,p(M) relative to risk under
FT,p(M). “Optimal” refers to using optimal kernel under given smoothness class.
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Kernel Length Coverage tCCT

Boundary

Uniform 1.35 0.931 0.400

Triangular 1.32 0.932 0.391

Epanechnikov 1.33 0.932 0.393

Interior

Uniform 1.35 0.941 0.279

Triangular 1.27 0.940 0.297

Epanechnikov 1.30 0.940 0.298

Table 5: Performance of CCT CIs that use minimax MSE bandwidth for local linear regres-
sion under FT,2. Coverage (Coverage), bias-sd ratio (tCCT), and length (Length) relative to
95% fixed-length CIs around local linear estimator that uses the same kernel and minimax
MSE bandwidth.

Kernel Length Coverage tCCT

Boundary

Uniform 1.35 0.948 0.138

Triangular 1.32 0.947 0.150

Epanechnikov 1.33 0.947 0.148

Interior

Uniform 1.35 0.949 0.086

Triangular 1.27 0.949 0.110

Epanechnikov 1.30 0.949 0.105

Table 6: Performance of CCT CIs that use minimax MSE bandwidth for local linear regres-
sion under FHöl,2. Coverage (Coverage), bias-sd ratio (tCCT), and length (Length) relative to
95% fixed-length CIs around local linear estimator that uses the same kernel and minimax
MSE bandwidth.
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Figure 1: Efficiency of fixed-length CIs based on minimax MSE bandwidth relative to fixed-
length CIs based on optimal bandwidth.
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Figure 2: Optimal ratio of maximum bias to standard deviation for fixed length CIs (FLCI),
and maximum MSE (MSE) performance criteria.
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OCI, α = 0.05, β = 0.5
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Figure 3: Optimal ratio of maximum bias to standard deviation for one-sided CIs (OCI),
and maximum MSE (MSE) performance criteria.
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Figure 4: Average county mortality rate per 100,000 for children aged 5–9 over 1973–83 due
to causes addressed as part of Head Start’s health services (labeled “Mortality rate”) plotted
against poverty rate in 1960 relative to 300th poorest county. Each point corresponds to an
average for 25 counties. Data are from Ludwig and Miller (2007).
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