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Asset Pricing under Rational Learning
about Rare Disasters

Abstract

Why is investment in stocks so persistently weak after a rare disaster? If investors

erroneously become pessimistic about stock returns, how long does it take until negative

market outcomes due to self-ful�lling expectations revert? Rational-expectations models

with variable disaster risk often fail to tightly connect disaster episodes with post-disaster

expectations. We demonstrate that introducing limited information and learning about rare

disaster risk, while retaining full rationality, can generate stock-investment behavior that

seems similar to persistent investor fear after a rare disaster. We build a workable asset-

pricing model of variable disaster risk under rational expectations (RE) and we introduce

two limited-information variations to it: (a) rational learning for state veri�cation (RLS),

in which investors know the data-generating process of disaster riskiness but cannot observe

whether the economy is in a riskier state or not, and (b) rational learning about the data-

generating process (RLP) of disaster risk, an environment in which investors neither know

the data-generating process of disaster riskiness nor they can observe the state of disaster

riskiness. We provide analytical results for all setups (RE, RLS, and RLP), and examine

both the transitional dynamics of asset prices after a disaster and their long-run behavior.

Keywords: beliefs, Bayesian learning, controlled di¤usions and jump processes, learning

about jumps, adaptive learning, rational learning

JEL classi�cation: D83, G11, C11, D91, E21, D81, C61



1. Introduction

In the past twenty-�ve years, stock prices in the United States and other markets around

the world experienced one boom and two busts. The boom took place in the second half of

the 1990s, the �rst bust in the year 2000 and the second one at the end of 2008. Figure 1

shows that, in the US market, fundamentals have played a role in both bust episodes. In

both cases, dividends and earnings exhibited a drop of 20 to 30 percent within a short period

of time. Strikingly, price-dividend (P-D) and price-earnings (P-E) ratios started to decline

massively shortly after the drop in dividends. The fall in prices over and above the reduction

in dividends or earnings was particularly pronounced and rapid after the 2008 episode.

Clearly, achieving a better understanding of the factors that drive the movement of asset

prices following a rare stock market crash is of great importance not only for researchers and

investors, but also for policymakers keen to assess the extent of negative impact on overall

economic activity. For example, they may wonder whether these asset price movements

re�ect information about the duration and frequency of such crashes, or whether they are

driven by irrational fear and panic among investors.

This paper presents a new approach for modeling investor fear under uncertainty about

the likelihood of rare disasters. It relates two di¤erent literatures on asset-pricing that have

proceeded mostly separately from one another. First, there is the large literature on learning

under parameter uncertainty. It recognizes that market participants lack knowledge of many

key parameters +-characterizing �nancial markets. In a recent survey, Pastor and Veronesi

(2009a), point out that �many facts (in �nancial markets) that appear ba­ ing at �rst sight

seem less puzzling once we recognize that parameters are uncertain and subject to learning�.1

The other literature aims to explain asset pricing puzzles as a consequence of disaster risk

1 Recent studies include Pastor and Veronesi (2009b), who investigate the emergence of bubbles when average
productivity of a new technology is uncertain and subject to learning, and Weitzman (2007), who argues
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while maintaining the assumption of rational expectations. First proposed by Rietz (1988),

this idea received renewed interest once Longsta¤and Piazzesi (2004) and Barro (2006, 2009)

showed that empirically plausible disaster probabilities provide a powerful explanation of

historical equity premia.2 Weitzman (2007), however, questions the disaster risk literature

by pointing to the �inherent implausibility of being able to meaningfully calibrate rational-

expectations-equilibria objective frequency distributions of rare disasters because the rarer the

event the more uncertain is our estimate of its probability.�

Our paper addresses Weitzman�s criticism head-on and incorporates parameter uncer-

tainty and Bayesian learning in a disaster-risk asset-pricing model. Similarly to Longsta¤and

Piazzesi (2004), Barro (2006, 2009) andWeitzman (2007), we use the Lucas (1978) exchange-

economy asset-pricing model as a vehicle for conducting our analysis. As in Longsta¤ and

Piazzesi (2004) and Barro (2006, 2009) we assume that dividends follow a jump-di¤usion

process in continuous time. This process includes a standard Brownian motion with drift

that is interrupted by rare downward jumps. In the disaster risk literature, the probability

that such a crash occurs within a given period of time may be �xed or time-varying but

its stochastic properties are always assumed known to investors. We refer to this measure

of the frequency of disasters as the hazard rate and consider a time-variable setup with

the hazard rate switching between a high and low value at a given probability.3 Under

that learning about the parameter that controls the spread of the distribution of future consumption growth
helps explain equity premia and excess volatility relative to the rational expectations benchmark. Early on,
Timmermann (2001) studied the problem of learning investors that have imperfect information about the
rate of dividend growth following a structural break.
2 Longsta¤ and Piazzesi (2004) calibrated a Rietz-type model with large downward dividend jumps using
data from the Great Depression. More recently, Barro and Ursua (2008) put together a large international
dataset on consumption and disasters and Barro et al. (2010) provided new estimates of the variability and
persistence of disaster risk. Gabaix (2008, 2010), Wachter (2013) and Gourio (2008a,b) show that variable
disaster risk serves to explain excessive volatility of price-dividend ratios. See also, LeRoy (2008) for a survey
on asset-pricing excess volatility and existing approaches for diagnosing it in the data.
3 The inverse of the hazard rate is the number of periods it takes for a jump to occur on average. So, if a
hazard rate is high, then rare disasters are more frequent on average, meaning that any underlying sources
of rare disasters create a more hazardous environment. Technically, nature�s true disaster-shock process is a
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rational expectations� the starting point of our analysis� this probability is known, and

consequently also the average hazard rate, that is the average frequency of disasters. Fol-

lowing Weitzman�s critique, we proceed by treating this probability as unknown and model

investors�beliefs and learning about the average hazard rate explicitly.4 In other words, we

consider Bayesian learning about the key parameter governing the frequency of disasters.5

Bayes�rule implies that investors�beliefs abruptly drop to a more pessimistic level fol-

lowing a stock market crash. Investors suddenly fear that such disasters will occur much

more frequently in the future than they had thought in the past. Here, pessimism or fear

is not meant to suggest investor irrationality. Rather, increased pessimism simply means

that investors�perceived value of the probability assigned to the high hazard rate case has

risen. The exact de�nition of investor rationality under Bayesian learning will be laid out

further below. Over time, investors revise their beliefs by repeatedly applying Bayes�rule.

Bayesian learning makes e¢ cient use of historical information and new data. In the absence

of another crash, beliefs slowly turn more optimistic and learning implies a smooth reduction

in the perceived probability of the high-hazard-rate case. Thus, investors�pessimistic beliefs

exhibit a certain degree of persistence after a disaster has occurred.

In our model, asymptotic beliefs are unbiased. However, even in�nitely-lived investors

would never reach full con�dence about the average frequency of disasters, as would be the

case under rational expectations. This result is due to the slow arrival of information about

the frequency of rare disasters. Despite using Bayes� rule for updating priors, posteriors

random mixture of two Poisson processes, one with a high (constant) hazard rate and one with a low one.
The probability that the disaster is drawn from the high or low hazard rate process is also constant.
4 An alternative approach to modeling the impact of uncertainty about rare events on asset prices is o¤ered
by robust control in the presence of Knightian model uncertainty (see Liu, Pan and Wang (2005) for an
implementation).
5 The recent contribution by Pettenuzo and Timmermann (2011) provides empirical support that infrequent
breaks are a major source of investment risk and that it is important to model investors belief formation
regarding future breaks.
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never catch up with nature�s parameters with in�nite precision, even if an in�nitely long

history of actual data has been processed. These belief dynamics lend additional support

to Weitzman�s claim that analysis of rare-disaster-risk requires the modeling of subjective

expectations and investor learning.

Asset prices depend on investors�beliefs about the unknown parameter governing the

frequency of rare disasters. We solve analytically for the relationship between asset prices

and beliefs regarding disaster probability. Using this asset pricing formula, we �nd that

the abrupt increase in pessimism following a crash causes a sudden drop in price-dividend

ratios. The extent of the decline in the asset price over and above the fall in dividends is

entirely due to the shift in beliefs. Under rational expectations, jumps in prices and dividends

would be proportional and the ratio would remain the same.6 The subsequent persistence

in pessimistic beliefs implies that the price-dividend ratio remains depressed for some time.

It recovers slowly as long as no other crash occurs and investors�beliefs assign successively

lower probabilities to the high-frequency-disaster case.

The link between asset prices and beliefs is derived by solving the dynamic optimization

problem of the representative investor/household in our asset pricing model. In this context,

we distinguish between a fully rational investor and one who learns in an adaptive fashion.

Both, the rational and the adaptive learner base their decision on current beliefs regarding

disaster probabilities that were obtained by applying Bayes rule to available data. The

distinction between rational and adaptive Bayesian learning depends on whether or not

the decision maker takes into account the dynamic transition equations of beliefs in her

6 Here our setup di¤ers from other studies that introduce time-variable disaster risk in rational-expectations
asset-pricing models (cf. Gabaix (2008, 2010), Gourio (2008b) and Wachter (2013)). While their speci�-
cations of time-variable disaster risk are useful for explaining excess volatility under rational expectations,
we aim to show that such variations in P-D ratios could even be exclusively due to changes in investors�
subjective perceptions of disaster risk. Our setup implies a constant P-D ratio under rational expectations,
because the average hazard rate is known and independent of past developments.
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optimization problem, in addition to the other recursions governing laws of motion of state

variables such as the dividend process. In other words, a rational learner knows that her

beliefs will change in the future as new information arrives. In particular, as long as no

crash occurs the perceived hazard rate will smoothly decline. The adaptive learner acts as

if her beliefs will never change. Only as time advances, she re-calculates her estimate of the

average hazard rate according to Bayes rule.7 In this manner, adaptive Bayesian learning

represents a well-de�ned deviation from fully rational behavior. Any di¤erence between asset

prices under adaptive versus rational Bayesian learning could then be characterized as being

due to overly pessimistic or optimistic views.8

Under certain plausible conditions, we �nd that asset prices under rational learning are

always higher than prices that follow from the behavior of adaptively learning investors for

any given prior belief. This �nding can be attributed to the fact that rational learners

take into account that their estimates of disaster probabilities will change in the future.

Speci�cally, in the absence of another crash they anticipate the gradual emergence of a more

optimistic outlook. Thus, they demand more of the risky asset.

A recent paper that also investigates Bayesian learning about rare jumps is Benzoni,

Colline-Dufresne and Goldstein (2011). These authors aim to explain the dramatic and

lasting steepening of the implied volatility curve for equity index options after the 1987 stock

7 For other work distinguishing adaptive and rational Bayesian learning see Guidolin and Timmermann
(2007), Cogley and Sargent (2008) and Koulovatianos, Mirman, and Santugini (2009). Adaptive learning
re�ects the anticipated utility concept studied, e.g., by Kreps (1998), Cogley and Sargent (2008), and
Koulovatianos and Wieland (2011). Rational Bayesian learning may involve active experimentation, for
example in the presence of multiplicative parameter uncertainty (see Mirman, Urbano and Samuelson (1993),
Wieland (2000a,b) and Beck and Wieland (2002)). Recent work on asset pricing explores the role of Bayesian
learning in booms and busts (see Benhabib and Dave (2011) for adaptive learning and Adam and Marcet
(2010) for rational beliefs). Bansal and Shaliastovich (2011) present a model in which income and dividends
are smooth but asset prices exhibit large moves. These jumps arise from rational learning by investors about
an unobserved state.
8 Our model with subjective beliefs about disaster risk and learning may also o¤er a more useful refer-
ence point for comparison with behavioral �nance research on the consequences of investor sentiment and
overreaction (cf. Barberis et al. (1998)) than the standard rational expectations benchmark.
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market crash despite minimal changes in aggregate consumption. Similar to our approach,

they consider learning about high versus low disaster intensity, but in their model jumps are

in perceived dividends while the actual process is smooth. Benzoni et al. (2011) provide a

numerical approximation to the solution for a given parameterization of their model, while

we obtain an analytical solution to our model and derive price-dividend ratios explicitly as

a function of investor beliefs. Furthermore, we distinguish between rational and adaptive

learning and investigate the pricing implications.

Furthermore, we discovered an older yet unpublished study by Comon (2001) which also

introduces rational Bayesian learning with extreme events.9 Comon introduces parameter

uncertainty regarding the hazard rate of rare dividend jumps in a variant of the Cox, Inger-

soll and Ross (1985) exchange economy. Contrary to our approach, he assumes that prior

subjective hazard rates of investors are Gamma distributed. One consequence of his frame-

work is that learning only matters in in�uencing price-dividend ratios during the transition

to rational expectations, which complicates empirical identi�cation. On this we contribute

two insights. First, we communicate that typical time-series models that investors may

consider as data-generating processes of disasters have the property of exchangeability. We

then refer to De Finetti�s (1931, 1937, 1964) theorem on exchangeable 0-1 processes, which

demonstrates that beliefs about the frequency of rare disasters should be beta-distributed

with well-speci�ed hyperparameters, as long as one assumes beta-distributed non-informative

beliefs (i.e., beliefs before any observation is available). Björk and Johansson (1993) have

demonstrated that De Finetti�s (1931, 1937, 1964) theorem holds in continuous time, with

beliefs about the frequency of rare disasters being gamma-distributed with well-speci�ed hy-

perparameters. Second, we provide an exact solution for asset-pricing which demonstrates

9 We are grateful to Pietro Veronesi for mentioning it in commenting on the �rst version of our paper and
to Comon�s adviser at Harvard, John Campbell, for scanning and sending us chapter 1 of his dissertation.
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the asset-pricing mechanics. While the belief and asset-pricing mechanics of parameter

learning are similar to these of state-veri�cation learning, these mechanics disappear in the

long run. For this reason, we think that a combination of both learning setups, the state-

veri�cation and the parameter-learning setup may be ideal in asset-pricing research that

focuses on understanding weak investment after a rare disaster.

Finally, we calibrate our model and conduct dynamic simulations that illustrate the

model�s potential to capture key elements of the dynamic path of price-dividend ratios

following the two crashes in the U.S. stock market in 2000 and 2008 shown in Figure 1.

The calibration requires setting an initial prior belief on the average hazard rate of disasters.

It turns out that it is possible to generate sudden drops followed by slowly improving P-

D ratios under rational and adaptive learning. However, the adaptive learning simulation

requires a prior belief that is roughly twice as optimistic as under rational learning. Since

beliefs are the main driver of P-D dynamics in our model, it is of great interest to compare

the behavior of model beliefs with survey data on investors�perception of the threat of a

crash. Fortunately, such data is available in the form of Robert Shiller�s Crash Con�dence

Index. The questionnaire underlying this data is explained in Shiller, Kon-Ya and Tsutsui

(1996). Interestingly, our simulations of the boom and busts in the U.S. stock market are

broadly consistent with dynamics of the beliefs indicated by the survey.

The remainder of the paper proceeds as follows. Section 2 presents the asset pricing

model under rational expectations and demonstrates our solution approach. In Section 3,

we then analyze and compare the decision making of households/investors that learn in an

adaptive or rational Bayesian fashion. In the fourth section, closed-form solutions for asset

prices are derived. To illustrate the power of the model to �t the behavior of price-dividend

ratios and survey measures of beliefs following the last two crashes in the U.S. stock market,
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we present dynamic simulations conditional on given priors and the timing of these two

busts. An extension to Epstein-Zin-Weil preferences, which do not restrict the intertemporal

elasticity of substitution to be equal to the inverse of the coe¢ cient of relative risk aversion,

is discussed in Section 5. It is meant to address concerns regarding the special nature of the

standard asset-pricing model with constant relative risk aversion (CRRA) preferences (see,

for example, Barro (2009) and Wachter (2013)). Section 6 concludes.

2. The Model

We use a simple representative-agent Lucas (1978) tree economy with disaster shocks hitting

the dividend process in order to achieve two goals. First, we provide analytical results

throughout the paper, which facilitate a clearer understanding of the model�s mechanics

in each setting of learning. Second, following the spirit of Barro (2006), we show that

this simplest possible version of asset-pricing models can put the theoretical analysis in the

correct ballpark of matching empirical observations. Such quantitative properties of simple

models corroborate that the potential for key future extensions is open.

2.1 Stochastic structure

The dividend process is given by,

dD (t)

D (t)
= �dt+ �dz (t)� � (t) dN (t) , (1)

in which dz (t) is a standard Brownian motion, i.e., dz (t) = " (t)
p
dt, with " (t) � N (0; 1),

for all t � 0. Moreover, N (t) is a counting process driving random downward jumps in

dividends of size � (t) � D (t), where � (t) 2 (0; 1) is a random variable with given time-

invariant distribution having compact support, Z � (0; 1). The counting process N (t) is
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characterized by,

dN (t) =

8><>: 1

0

with Probability � (t) dt

with Probability 1� � (t) dt
. (2)

Following and extending Gabaix (2012) and Wachter (2013), a central feature of our analy-

sis is that variable disaster risk is allowed. This disaster-risk variability means that � (t) in

equation (2), is also random. In order to enable exact solutions for our model, we approxi-

mate any stochastic process driving � (t) by a two-point Markov chain in continuous time.

Speci�cally, we assume that � (t) is allowed to take two values only, a high value, �h, and a

low value, �l, with �h > �l > 0.10 The Markov-chain transition probabilities are given by,

Pr (� (t+ dt) = �h j � (t) = �l) = !lhdt , and Pr (� (t+ dt) = �l j � (t) = �h) = !hldt , (3)

in which 0 � !lh; !hl � 1. We assume that this two-point Markov chain is a time-invariant

data-generating process of � (t) governed by the continuous-time stochastic matrix


 =

264 �!hl !lh

!hl �!lh

375 , (4)

that asymptotically converges to the (unconditional) binomial distribution,

� (t) =

8><>: �h

�l

with Probability ��

with Probability 1� ��
, (5)

for all t � 0, and with �� 2 (0; 1).11 A particularly interesting case is this of a data-generating

process for � (t) without autocorrelation, referring to a special matrix,

�
 �

264 � (1� ��) ��

1� �� ���

375 , (6)

10So our analysis nests speci�c stochastic processes that imply a persistent � (t), as, for example, in Wachter
(2013, eq. 2, p. 990). Our Markov chain is more general at the negligible expense of the two-point
approximation.
11Equation (5) means that (��; 1� ��) is the normalized eigenvector corresponding to the 0-valued eigenvalue
of matrix 
.
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in which with !lh = �� and !hl = 1� ��, i.e., the current state does not matter for shaping

the probability of moving to another state.12 Finally, we assume that variables z (t), N (t),

� (t), and � (t) are all independent from each other at all times.

2.2 Utility and budget constraint

The Lucas-tree-fruit economy is an exchange economy of a large number of identical in�nitely-

lived agents of total mass equal to one. Agents trade only one risky asset, the market port-

folio, which has returns given by equation (1). The representative agent maximizes expected

lifetime utility given by,

E0

"Z 1

0

e��t
c (t)1�
 � 1
1� 
 dt

#
(7)

with c (t) denoting an individual�s consumption, with � > 0 being the rate of time pref-

erence, and with 
 � 0 being the coe¢ cient of relative risk aversion (the special case of


 = 0 corresponds to a risk-neutral investor, and is possible to be studied in the context

of a representative-agent Lucas-tree economy). With time-separable utility given by (7),

coe¢ cient 
 is also equal to the inverse of the elasticity of intertemporal substitution. As

in Gabaix (2012), for the main body of our analysis we use time-separable utility in order

to obtain analytical results, but for the simpler case of adaptive learning we use Epstein-

Zin-Weil (EZW) preferences based on the work of Epstein and Zin (1989), Weil (1990), and

Epstein-Du¢ e (1992a,b).

At any time t � 0, an individual holds s (t) � 0 shares of the risky asset. At time t = 0,

the aggregate supply of the asset is S (0) > 0, and there is no new issuing of shares, so

S (t) = S (0) for all t � 0. Moreover, at time t = 0, the endowment of a representative

12Notice that the normalized eigenvector corresponding to the 0-valued eigenvalue of matrix �
 is (��; 1� ��).
A previous version of this paper (see Koulovatianos and Wieland, 2011) has focused exclusively on this special
case of a process governing � (t) without autocorrelation, assuming also that learners try to verify the state
of � (t) 2 f�h; �lg assuming that the data-generating process of � (t) is non-autocorrelated, driven by some
(possibly unknown) matrix �
.
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individual is s (0) = S (0). The budget constraint in continuous time is,13

ds (t) =
1

P (t)
[s (t)D (t)� c (t)] dt . (8)

Our solution approach relies on Hamilton-Jacobi-Bellman (HJB) equations. HJB equa-

tions introduce a common solution technique through undetermined coe¢ cients and a com-

mon recursive language that e¢ ciently describes conceptual distinctions among asset-pricing

problems in four environments: (a) rational expectations (RE), (b) rational learning on

state veri�cation (RLS), (c) rational learning on the data-generating process (RLP ), and

(d) adaptive learning on state veri�cation (ALS).

3. Rational Expectations (RE)

There are two aspects of knowledge about the stochastic structure that are known under

rational learning: (a) the data-generating processes of all risks, including the data-generating

process of variable parameter � (t), are all known, and (b) the current state of disaster risk,

� (t) 2 f�h; �lg, is also observed and known.

In order to solve the asset-pricing problem an individual agent must determine her de-

mand for the risky asset at any time t � 0. So, given any possible path (P (t))t�0 generated

by a price function with P (t) > 0 for all t � 0, the agent must pick the paths (s (t) ; c (t))t�0

that maximize her utility given by (7), subject to (8) and (1). Yet, the determination of

these demand functions is a stationary discounted dynamic programming problem that can

13For the derivation of equation (8) from its discrete-time counterpart, which is

Ptst = st�1 (Pt +Dt)� ct ,

notice that the above equation can be re-written as

�st � st � st�1 =
�
st�1

Dt
Pt
� ct
Pt

�
�t ,

where �t = 1 under the convention that the discrete-time period length is unity. In continuous time, taking
the limit �t! 0 results in (8) .
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be solved through a recursive time-invariant functional-choice problem with a pricing rule,

P = 	RE (D;�) .

We denote a value function that is subject to the pricing rule	RE (D;�) by JRE
�
s;D; � j 	RE

�
.

The two possible states of � are two, �h and �l. So, asset prices conditional on state �i with

i 2 fh; lg are jointly determined by the pair of two HJB equations given by,

�JRE
�
s;D; �i j 	RE

�
= max

c�0

(
c1�
 � 1
1� 
 + JREs

�
s;D; �i j 	RE

�
�
�

1

	RE (D;�i)
(sD � c)

�
+

+JRED
�
s;D; �i j 	RE

�
� �D + JREDD

�
s;D; �i j 	RE

� (�D)2
2

+

+�i

�
(1� !ij)E�

�
JRE

�
s; (1� �)D;�i j 	RE

��
+

+ !ijE�
�
JRE

�
s; (1� �)D;�j j 	RE

��
� JRE

�
s;D j 	RE

��)
, i; j 2 fh; lg , i 6= j, (9)

with E� denoting the expectations operator with respect to the random variable � only.

In the Appendix we show that the price-dividend (P-D) ratio conditional on state �i with

i 2 fh; lg is given by,

P

D
=
	RE (D;�i)

D
=

=
Q+ �j� + (�j!ji + �i!ij) (1� �)

(Q+ �i�) (Q+ �j�) + [(Q+ �i�)�j!ji + (Q+ �j�)�i!ij] (1� �)
, (10)

in which

Q � �� (1� 
)
�
�� 
�

2

2

�
, and � � 1� E�

�
(1� �)1�


�
.

In the special case of 
 = 1, Q = � and � = 0, so the pricing function given by (10) implies

	RE (D;�i) =D = 1=�, i 2 fh; lg. This means that if 
 = 1 the presence of risk does not

a¤ect pricing, no matter if this risk stems from the di¤usion or from the jump process. For

12




 6= 1, notice that all terms in (10) are symmetric across states i 2 fh; lg, except the term

��j��in the numerator.

In general,

� S 0, 
 T 1 . (11)

The parametric relationship given by (11) implies that in the state of increased disaster

risk, �h, the P-D ratio decreases prices only if 
 < 1. If 
 > 1, which can be loosely

interpreted as having higher risk aversion, increased disaster risk implies higher P-D ratios.

This paradoxical result has been discussed by Bansal and Yaron (2004, p. 1487), and also by

Barro (2009, p. 249). Both of these studies attribute the paradox to the fact that, with power

utility, the coe¢ cient of relative risk aversion and the elasticity of intertemporal substitution

cannot be disentangled, as the one equals the reciprocal of the other. As a resolution to this

rigid feature of constant-relative-risk-aversion (CRRA) preferences, the studies by Bansal

and Yaron (2004) and Barro (2009) suggest the use of Epstein-Zin (1989) and Weil (1990)

utility functions. In our learning application, expected hazard rates will be moving over

time together with beliefs, so a parameter-value choice 
 < 1 vs. 
 > 1 becomes important

for some additional mechanics related to learning. To tackle such calibration concerns we

discuss possible extensions to Du¢ e-Epstein (1992a,b) preferences in a later section. For the

time being, we note that the model exhibits plausible mechanics if 
 < 1.

4. Rational Learning for State Veri�cation (RLS)

4.1 Characterization of Beliefs

Here we take only a small but still very in�uential step away from rational expectations. Our

investors cannot observe which hazard rate (�h vs. �l) is triggered by nature at any point

in time. An investor observes stock market crashes but does not have data on histories of

13



disaster-risk realizations � (t) (dates and number of instances in which �h vs. �l have been

triggered in the past). So state veri�cation takes place through the history of past disaster

events. This is a standard �ltering problem.14

In a �nite-state-veri�cation problem a rational learner assigns subjective probabilities to

each state, expressing beliefs on the likelihood of being at a particular state. In our two-

state veri�cation problem, such subjective beliefs are given by the time-speci�c Bernoulli

distribution

~� (t) =

8><>: �h

�l

with Probability � (t)

with Probability 1� � (t)
, (12)

in which the tilde denotes random variables governed by distributions that depend on subjec-

tive beliefs. Based on (12), the ex-ant subjective perception of process N (t) by the investor

at time t � 0 is,

d ~N (t) =

8><>: 1

0

with Probability � (� (t)) dt

with Probability 1� � (� (t)) dt
, (13)

in which

� (� (t)) � �h� (t) + �l [1� � (t)] , (14)

i.e., the perceived disaster risk equals the expected hazard rate according to priors � (t),

E�

�
~� (t)

�
= � (� (t)). Proposition 1 characterizes the dynamics of these subjective beliefs.

Proposition 1 If learners are aware of the transition probabilities 0 � !lh; !hl �

1 given by (3), then Bayesian updating implies that the dynamics of ex-ante per-

ceived beliefs � about the current state of disaster risk � (t) 2 f�h; �lg (denoted

by d~�) are governed by,

d~� (t) = f��� (t) [1� � (t)] + !lh [1� � (t)]� !hl� (t)g dt+
14See, for example, Liptser and Shiryaev (2001).
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+

�
�h� (t)

� (� (t))
� � (t)

�
d ~N (t) , (15)

in which � � (�h � �l). If learners assume that the data generating process

of � (t) is non-autocorrelated and is based on a (not necessarily known) Markov

transition matrix with the same structure as �
 in equation (6), then the dynamics

of ex-ante perceived beliefs � about the current state of disaster risk � (t) are

governed by,

d~� (t) = ��� (t) [1� � (t)] dt+
�
�h� (t)

� (� (t))
� � (t)

�
d ~N (t) . (16)

The jump process d ~N (t) in both (15) and (16) is given by (13).

Proof This is a direct application of Liptser and Shiryaev (2001, Theorem 19.6, p. 332),

after following the arguments outlined in the proofs of Liptser and Shiryaev (2001, Examples

1-3, pp. 333-5). �

Equation (16) corresponds to equation (19.86) in Liptser and Shiryaev (2001, p. 333).15

Equation (15) has also been used by Benzoni et al. (2011, eq. 8, p. 556).

4.1.1 Belief dynamics

Both equations (15) and (16) imply that whenever a rare disaster occurs subjective be-

liefs, � (t), jump upward, towards pessimism. This is evident by the fact that the term

[�h=� (�)� 1]� that multiplies the jump process of dividends, d ~N , is strictly positive. Dur-

ing times that there are no disasters the negatively-valued drift terms in both (15) and

(16) imply a smooth transition to optimism. These belief dynamics play a central role in

explaining why investment is so persistently weak after a rare disaster.

15A similar characterization of beliefs has been used by Keller and Rady (2010). They study a game-
theoretical application of learning with Poisson di¤erential equations (Poisson bandits) analytically.
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4.2 Asset Pricing by Rational Learners Verifying States (RLS)

We are interested in analyzing both state-veri�cation-learning setups indicated by Proposi-

tion 1: one in which learners assume that the data generating process of � (t) is governed

by some matrix 
 as in (4), exhibiting autocorrelation, and the other case in which learners

assume a data-generating process without autocorrelation. A mechanistic way of joining

equations (15) and (16) together can be achieved through an indicator function IA with,

IA =

8><>: 1

0

if the data-generating process of � (t) has autocorrelation

else
.

Combining IA with equations (15) and (16) we obtain

d~� =
�
��� (1� �) + IA!lh (1� �)� IA!hl�

�
dt+

�
�h�

� (�)
� �

�
d ~N . (17)

Introducing equation (17) into the HJB of a rational learner who veri�es states (denoted by

RLS), we can cover the two cases of data-generating processes indicated by IA. Speci�cally,

the HJB equation of RLS is,

�JRLS
�
s;D; � j 	RLS

�
= max

c�0

�
c1�
 � 1
1� 
 + JRLSs

�
s;D; � j 	RLS

�
�
�

1

	RLS (D; �)
(sD � c)

�
+

+JRLSD

�
s;D; � j 	RL

�
� �D + JRLSDD

�
s;D; � j 	RLS

� (�D)2
2

+

+JRLS�

�
s;D; � j 	RLS

�
�
�
��� (1� �) + IA!lh (1� �)� IA!hl�

�
+

+� (�)

�
E�

�
JRLS

�
s; (1� �)D; �h�

� (�)
j 	RLS

��
� JRLS

�
s;D; � j 	RLS

��)
,

(18)

given a pricing rule P = 	RLS (D; �), and while the dynamics of � are driven by equation

(17).

In the Appendix we prove that the P-D ratio implied by the RLS problem is.

P

D
=
	RLS (D; �)

D
=

� (Q+ �l�) + (1� �) (Q+ �h�) + IA � (!hl + !lh)
(Q+ �h�) (Q+ �l�) + IA � [!hl (Q+ �l�) + !lh (Q+ �h�)]

. (19)
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The case of a non-autocorrelated data-generated process for � (t) gives a remarkably simple

formula. After setting IA = 0 in (19) we obtain,

P

D
=
	RLS (D; �)

D
=

�
�

1

Q+ �h�
+ (1� �) 1

Q+ �l�

�
. (20)

It is also notable that in the case 
 = 1, the P-D ratio is equal to 1=�, as was the case

under rational expectations. Logarithmic utility seems to balance out any con�icting risk

considerations intertemporally, so the e¤ects of incomplete information about risk also seem

to be balanced out in asset pricing. As in the rational-expectations case, we focus on

examining the special case of 
 < 1.

4.3 Mechanics of RLS

The key message from equations (19) and (20) is that as � jumps upward with every disaster

event and then slowly drops during periods without disasters, with 
 < 1, the P-D ratio

also jumps downward and abruptly after a disaster, while it slowly rebounds during periods

without disasters. Unlike the rational-expectations environment in which often weak invest-

ment can be attributed to changing expectations without observing any disasters, in the

rational-learning case weak investment follows a disaster. This synchronization between dis-

aster events and pessimistic spells under rational learning can explain why stock prices can

remain low for long periods after a disaster. In our toy calibration exercise below we examine

whether formulas as simple as (20) have the potential of capturing observed stock-market dy-

namics. Before that exercise we examine rational learning about the data-generating process

of � (t).
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5. Rational Learning About the Data-Generating Process (RLP)

In the setting of rational learning with state veri�cation (RLS) we have assumed that an

investor has at least partial knowledge about the structure of the data-generating process,

but cannot observe the states � (t) 2 f�h; �lg. Here, apart from assuming again that the

observation of the state � (t) is again impossible, we also relax the assumption that investors

know the structure of the data-generating process. We only make a loose assumption, that

all learners assume that the data-generating process of � (t) is exchangeable.16

5.1 Theoretical Underpinnings Regarding Exchangeability: De
Finetti�s Theorem

We have assumed that nature�s data-generating process is some Markov chain with transition

probability matrices given either by (4) or (6). Our additional assumption that all learners

believe that the data-generating process is loosely related to nature�s stochastic structure

since weakly convergent Markov chains are exchangeable processes.17 Nevertheless, a very

broad class of time-series processes generates exchangeable realizations, so investors may

have truly di¤erent data-generating processes in mind.

The weak assumption of exchangeability has quite precise implications about how RLP

agents form beliefs. De Finetti�s (1931, 1937, 1964) theorem states that any in�nite se-

quence of exchangeable �0-1�random variables is a unique mixture of independent Bernoulli

16Based on Heath and Sudderth (1976, p. 188),

De�nition of exchangeability in discrete time: The 0-1 random variables q1; :::; qn are
exchangeable if the n! permutations

�
q�(1); :::; q�(n)

�
have the same n-dimensional probability

distribution. The variables of an in�nite sequence, fqng1n=0, are exchangeable if q1; :::; qm are
exchangeable for each m.

17The proof of the exchangeability of Markov chains is intuitive, considering that future outcomes generated
by Markov chains are conditionally dependent on the current state. For a general treatment that immediately
implies this result see Chow and Teicher (1988, p. 222). See also Diaconis and Fredman (1980) for more
results regarding exchangeability and Markov chains.
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sequences.18 This means that if we want to learn the probability that parameter � takes

speci�c values based on prior disaster observations in a discrete-time setting, our priors

can be quite speci�c: every investor with the same beta-distributed non-informative priors

would have the same beta beliefs with the same hyperparameters (common priors). In fact,

even if non-informative priors are heterogeneous, after some disasters (about three disaster

episodes), the non-informative priors become dominated by the beta-distributed informative

priors.

Importantly for our analysis, Björk and Johansson (1993) show that De Finetti�s (1931,

1937, 1964) theorem also holds in continuous time. Speci�cally, if sampling is in�nite and

the data-generating �0-1�process produces sequences of exchangeable events, then beliefs

about � based on information It by time t are given by,

Pr (� j It; p0 (�)) _ T̂ (t) e�T̂ (t)�
h
T̂ (t)�

iN̂(t)�1
| {z }

data-driven beliefs

� p0 (�)| {z }
noninformative priors

in which N̂ (t) is the cumulative sum of disasters since sampling started and T̂ (t) = T (0)+

t is the elapsed sampling time since sampling started at time T (0). For example, with

non-informative priors distributed as Gamma (�0; 0), which are �agnostic�since the second

hyperparameter is set equal to zero, beliefs are given in the section below. As we have

18Based on Heath and Sudderth (1976, p. 189), a statement of de Finetti�s theorem in discrete time is,

Theorem (de Finetti, taken from Heath and Sudderth, 1976, p. 189) To any in�nite
sequence of exchangeable random variables, fqng1n=0, having values in f0; 1g, there corresponds
a probability density p0 (�) concentrated on the interval [0; 1], such that,

Pr
�
q1 = 1; :::; qN̂t

= 1; qN̂t+1
= 0; :::; qT̂t = 0

�
=

Z 1

0

�N̂t�1 (1� �)T̂t�N̂t�1| {z }
informative priors

� p0 (�)| {z }
noninformative priors

d� , (21)

for all T̂t, and all 0 � N̂t � T̂t, with N̂t being the cumulative count of past jumps up to period
t, N̂t = N̂0 +

Pt
i=0 qi, and with T̂t = T̂0 + t being the elapsed sampling time up to period t.
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assumed common priors for all investors in the case of RLS, we also assume common non-

informative priors here.19

5.2 Posterior beliefs, posterior-belief moments, and dynamics

From this section and on we view the elapsed sampling time as a state variable, for conve-

nience in dynamic-programming applications. We denote the length of the elapsed sampling

time by T (t) for all t � 0. In addition, we assume that T (0) > 0 and N (0) � 1. Theorem

1 implies that the posterior distribution of the virtual econometrician�s beliefs at any time

t � 0, is given by,

Pr (� j Ft) = f(N(t) ; [T (0)+t]�1) (�) =

8><>: [T (0) + t] e�[T (0)+t]� f[T (0)+t]�g
N(t)�1

�(N(t))

0

, if � � 0

, if � < 0
,

(22)

in which � (a) �
R1
0
e�vva�1dv is the Gamma function, and Ft is the �ltration at time

t � 0. Equation (22) demonstrates the well-known result that the posterior distribution of

a Gamma prior is also Gamma.20 Based on standard results about the moments of Gamma-

distributed variables, the mean and variance of the posterior distribution for all t � 0 are,21

E
h
~� (t) j N (t) = N (0) + n

i
=
N (0) + n

T (0) + t
, (23)

and

V ar
h
~� (t) j N (t) = N (0) + n

i
=
N (0) + n

[T (0) + t]2
, (24)

for all n 2 f0; 1; :::g.
19Comon (2001) has assumed gamma-distributed priors without pointing out the theoretical background and
learning intuition that stems from de Finetti�s theorem.
20See, for example, Gelman et al. (2004, p. 53).
21See, for example, Papoulis and Pillai (2002, p. 154) for the moment-generating function of the Gamma
distribution.
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In the context of optimization through HJB equations, the key result to use is the mean

jump-frequency belief. Speci�cally, learners�perceived counting process ~N (t) is given by,

d ~N (t) =

8><>: 1

0

with Probability N(t)
T
dt

with Probability 1� N(t)
T
dt

. (25)

In the related formula given by (23), the denominator is a continuously and linearly-growing

variable, while the numerator is a discrete point process. The point process in the nu-

merator means that once a jump occurs, average jump frequency beliefs jump upwards to

a pessimistic level. After a period without further busts, average jump frequency beliefs

decay, implying that the learning agents become more optimistic. In brief, the trajectory

of average jump-frequency beliefs will exhibit spikes which coincide with the occurrence of

busts. Qualitatively, the belief dynamics of E
�
~� (t)

�
under RLP , are similar to the belief

dynamics of � (t) under RLS.

5.3 Asset Pricing by Rational Learners of Data-Generating Processes
(RLP)

Given a history of disaster observations characterized by the pair (N; T ), for some state-

space represented pricing rule, P = 	RLP (D;N; T ), the Hamilton-Jacobi-Bellman (HJB)

equation is,

�JRLP (s;D;N; T ) = max
c�0

�
c1�
 � 1
1� 
 + JRLPs (s;D;N; T )

1

	RLP (D;N; T )
(sD � c)

+JRLPD (s;D;N; T )�D + JRLPDD (s;D;N; T )
(�D)2

2
+ JRLPT (s;D;N; T )

+
N

T
E�
�
JRLP (s;D (1� �) ; N + 1; T )

�
� JRLP (s;D;N; T )

)
. (26)
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In the Appendix we prove that the P-D ratio based on 	RLP (D;N; T ) is given by,

P

D
=
	RLP (D;N; T )

D
=
1

Q

�
Q

�
T

�N
e
Q
�
T�

�
1�N; Q

�
T

�
, (27)

in which � (a; b) �
R1
b
e�vva�1dv is the incomplete gamma function.

5.4 Mechanics of RLP

While equation (27) is an exact solution of the P-D ratio, it is not as tractable as the

other closed-form solutions we have achieved for P-D ratios so far. Demonstrating that the

mechanics of the P-D ratio in the RLP case are similar to those of the RLS case using

analytical methods is not straightforward. The P-D ratio given by equation (27) needs

computation, so, in a later section where we numerically compare alternative learning setups

we provide numerical results for equation (27). The general �nding is that, qualitatively, the

P-D ratio in the RLP case works in exactly the same way as the P-D ratio in the RLS case

with 
 < 1: after a rare disaster the P-D ratio jumps downward, and then slowly recovers

after a long period without disaster episodes.

6. Long-Run Dynamics: Comparing RLS and RLP

Muth (1961) has suggested the concept of asymptotic convergence to rational expectations.

We prove that neither under RLS nor under RLP convergence to rational expectations takes

place.

6.1 Long-run Dynamics in the case of RLS

Proposition 2 provides a characterization of long-run dynamics of subjective beliefs, as these

are captured by �. The central message of Proposition 2 is that the limiting distribution

of beliefs under RLS has non-zero variance. We focus on the case of non-autocorrelated
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riskiness regimes, i.e., the special case in which the dynamics of subjective beliefs, �, are

governed by (16).

Proposition 2 Let beliefs about the occurrence of a jump event be given by

equation (16). Then for all � (0) = �0 2 (0; 1), � (t) 2 (0; 1) for all t � 0, and

lim
t!1

E [� (t)] = ��, (28)

while

lim
t!1

V ar [� (t)] =

n
�� � 4�l +

�
(��)2 + 8���h

� 1
2

o2
16�2

� (��)2 > 0 . (29)

Proof See the Appendix. �

Proposition 2 states that, even without persistence in transitory belief shocks (!lh =

!hl = 0), after collecting in�nite rare-disaster data drawn from nature�s realizations, the

beliefs of learning investors about � are asymptotically unbiased, but learners do not reach

in�nite precision about this limiting average parameter. The variance of belief parameter

� (t) is bounded away from 0, as indicated by equation (29). A direct implication from

equation (20) is that the P-D ratios should also exhibit a non-zero asymptotic variance.

We are con�dent that this qualitative result for non-autocorrelated riskiness regimes carries

through to the case of serial autocorrelation in the riskiness regimes (governed by equation

(15)), too.22

Empirically capturing priors on belief parameter � (t) alone, is su¢ cient to describe the

implied dynamics of learning in our model. In a section appearing below we use survey data

collected through a questionnaire described in Shiller et al. (1996) that approximate belief

parameter � (t) in order to calibrate our model.

22The proof of Proposition 2 is involved and we do not think it is necessary to extend it to the case of
dynamics governed by equation (15), since this is also veri�able numerically, e.g., through performing a
Monte-Carlo simulation.
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6.2 Long-run Dynamics in the case of RLP

In the Appendix we prove two interesting results. First, that the asymptotic distribution

of beliefs about � is degenerate, converging to �� = ���h + (1� ��). Second, that the P-D

ratio given by equation (27) converges to,

lim
t!1

	RLP (D;N; T )

D
=

1

Q+ ���
. (30)

6.3 Summary of comparison between RLS and RLP

Under both RLS and RLP, the asymptotic mean of the distributions is learned, but state

veri�cation cannot be achieved in neither of the two learning setups in an environment of

variable disaster risk. Interestingly RLP converges to degenerate beliefs, and to a constant

P-D ratio, a limit that leads to large deviations from understanding some real-world process

with latent variable-disaster risk. On the contrary, RLS leads to an asymptotic behavior ac-

cording to which the occurrence of disasters still shifts investor priors. This limiting behavior

of investors under RLS potentially leads to fewer perception mistakes, especially if disaster

risk has high positive autocorrelation (persistent regimes of riskiness). This potentially

higher performance of RLS in comparison with RLP is intuitive: RLP is an environment

with less information compared to that of RLS.

7. Transitional Dynamics of Learning

We perform simple simulations of the RLS model using survey data on disaster expectations.

In addition we compute P-D ratios under the RLP setting. In order to better understand the

RLS framework we compare our results with asset prices by adaptive learning under state

veri�cation (denoted by �ALS�).The ALS framework corresponds to �anticipated utility�in
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Cogley and Sargent (2008).23 Given the attention the literature gives to the ALS framework

we contrast it in the simulations.

In the following we use the continuous-time formulation and parameterization of recursive

�Epstein-Zin-Weil�preferences, suggested by Du¢ e and Epstein (1992a,b) to specify the AL

investor�s utility, namely,

JALS
�
s (t) ; D (t) ; � (t) j ~	ALS

�
=

Z 1

t

f
�
c (�) ; J

�
s (�) ; D (�) ; � (�) j ~	ALS

��
d� ,

(31)

with f (c; J) being a normalized aggregator of continuation utility, J , and current consump-

tion, c, with

f (c; J) � � (1� 
) � J �

�
c

[(1�
)J ]
1

1�


�1� 1
�

� 1

1� 1
�

, (32)

where � > 0 denotes the investor�s elasticity of intertemporal substitution, while 
 > 0 is

the coe¢ cient of relative risk aversion. Moreover, ~	AL (D; �) denotes the pricing rule under

Epstein-Zin-Weil preferences. Using a HJB solution approach, we show in the Appendix

that,

~	ALS (D; �)

D
=

1

��
�
1� 1

�

� �
�� 
 �2

2

�
+ � (�)

1� 1
�

1�

�
1� E� (1� �)1�


	 =
=

1

�� 1� 1
�

1�
 [�� � (�) �]
, (33)

in which � = (1� 
) (�� 
�2=2). The special case of 
 = 1=�, corresponds to

~	ALS (D; �)

D
=

1

Q+ � (�) �
. (34)

23The conceptual distinction between an adaptive learner (AL) and a rational learner (RL) is based on how
the decision maker accounts for her own ignorance regarding ��. AL is aware of her ignorance at the current
time instant. However, she simply assumes that her beliefs will not change in the future. By contrast, RL,
apart from being aware of her ignorance at the current time, is also aware of the future evolution of her
beliefs according to Bayes�rule. So, RL approaches her lack of information in a fully rational manner, while
AL is boundedly rational, because she neglects the knowledge that beliefs will be revised in the future with
new data.
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Pricing implied by (34) above, since this is the case in which Epstein-Zin-Weil preferences

collapse to standard time-separable preferences with constant relative-risk aversion.

7.1 Comparing dynamic model simulations to data on P-D ratios
and survey expectations

This section serves two purposes. First, it uses dynamic simulations of a calibrated version

of our asset pricing model to provide a simple visual illustration of the interaction of disaster

risk, subjective beliefs of investors and price-dividend ratios. This illustration helps improve

our understanding of the analytical results discussed in the preceding sections. Secondly,

this section examines similarities between actual data on price-dividend ratios and survey

expectations after a stock-market crash and such model simulations. In particular, we inves-

tigate whether the dynamics of subjective beliefs regarding disaster probabilities can cause

P-D ratio drops and persistence similar to the U.S. stock market experience in the last two

decades. We also check whether these belief dynamics remain roughly within the range of

belief variations apparent in surveys of the perceived threat of such a crash. Such a compar-

ison may help to motivate a thorough empirical investigation of the role of subjective beliefs

relative to fundamentals in future research.

The U.S. data on P-D-ratios from Figure 1, is plotted again in the two top panels of

Figure 2 (dashed lines). The dashed lines in the two bottom panels of Figure 2 represent

survey-based beliefs about the likelihood of an imminent stock-market crash in the United

States, produced using a survey method described in Shiller et al. (1996). Shiller�s Crash

Con�dence Index (CCI) refers to the percentage of the respondents who stated that the

probability of a stock-market crash occurring within the following semester is less than

10%.24 So, the higher the CCI, the higher the optimism (more accurately, the higher the

24Data are taken from the website
http://icf.som.yale.edu/stock-market-confidence-indices-united-states
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fraction of non-pessimistic survey respondents). At the time when the two incidents of the

massive drops in dividends occurred, the Crash Con�dence Index (CCI) was at its lowest

level. Most interestingly, after the November 2008 crash, the CCI continued dropping for

almost a year. Stock-market prices broadly seemed to follow the change in beliefs and

declined substantially.25

The spirit of our exercise is to initiate a model simulation in the second semester of the

year 1989 setting a level of initial beliefs for agent RLS, �RL1989, which is close to values from

CCI data. Then we impose two unforeseen jumps, one in the summer of year 2000, and one

in the fall of 2008. To be able to simulate the model, we also need to calibrate a number

of other parameters. In doing so, we choose values close to those used by Barro (2006) for

explaining the equity premium puzzle. Investors�preference parameters are set to 
 = 0:2

and � = 2:5%. The parameters of the di¤usion process with drift are set to � = 2:62% and

� = 2%.26 Regarding the magnitude of the impact of a disaster on dividends, �, we use a

generic distribution, in which � = 20% with probability 1, if a disaster occurs.

The hazard rates determining disaster risk are set to �h = 1=5, and �l = 1=40. �h = 1=5

implies an upper bound for pessimism, namely that sudden drops in the dividend process of

magnitude 20% arrive once every �ve years on average. The most optimistic view, determined

by �l = 1=40, is that such jumps arrive once every forty years on average. These values for

�h and �l are not far from hazard rates motivated by rare-disaster data presented in Barro

(2006, 2009). Moreover, the choice of upper bound provides a natural link to the Crash

25An alternative approach to measuring con�dence using the cross-section of quarterly real GDP forecasts
from the survey of professional forecasters is presented in Bansal and Shaliastovich (2010). They provide
evidence that con�dence and returns are negatively correlated and develop a model with jump-like con�dence
shocks and recency-biased learning.
26Barro (2006) uses similar values in order to match historical data on consumption growth and volatility.
An alternative calibration that would match growth and volatility data of dividends during the examined
period would be: � = 9%, � = 10% and, � = 7:4%. It would imply the same dynamics, because the
magnitude of the expression �� � is the same.
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Con�dence Index. Since the hazard rate re�ects the average rate of disasters per year, the

value �h = 1=5 implies the perceived probability that a disaster may occur with probability

10% each semester. Since � (t) is the probability placed on such an event, the value 1�� (t)

can serve as a proxy for the CCI index, viewed as the percentage of respondents who think

that there is a lower than 10% probability of disaster (i.e., 1�� (t) is interpreted as percentage

of respondents who think that the hazard rate is lower than �h = 1=5)).

The two bottom panels of Figure 2 plot the dynamics of 1 � � (t) (solid lines), under

rational (bottom-left panel) and adaptive learning (bottom-right panel) that follow from

equation (16) relative to the CCI index (dashed lines). We have assumed no autocorrelation

in the underlying riskiness regimes, which makes the exercise potentially more demanding.

The P-D ratio formulas that we use are (20) for RLS and (34) for ALS. The prior belief

regarding the average hazard rate is to 85 percent for the RLS and ALS investors (all with

time-separable preferences), that is �RL1989 = �
AL
1989 = 79%. Thus, 1��1989 = 21%, which could

be compared with a CCI index value indicating a 21% share of optimistic respondents. Since

the dynamics of beliefs, � (t), are driven by the same equation, and the disaster data is the

same (namely, two crashes in 2000 and 2008 respectively), the evolution of beliefs is the same

for both types of investors. These beliefs exhibit variations in the same range as the CCI

index in the last two decades, namely between 20 to 50 percent. There is a gradual increase

in optimism prior to the crashes in 2000 and 2008. A crash causes a drop to pessimistic

levels that persists and is followed by a slow improvement. There are some di¤erences and

some similarities with the movements of the CCI index. This index did not rise so much

before 2000. However, there is a local minimum around 2000, which is then followed by a

slow improvement to optimistic heights prior to the global �nancial crisis. Then it rapidly

declines reaching a minimum around the Lehman collapse, followed by another improvement.
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The resulting dynamics of the price-dividend ratio are shown in the top panels of Figure

2. Though they share the same beliefs, asset demand by rational and adaptive learners is

di¤erent and therefore also the evolution of price dividend ratios. As apparent in the top-

left panel, RLS investors anticipate more optimistic perceptions in the absence of another

crisis and value the risky asset more highly. The simulation under rational learning thereby

exhibits a continuing increase in the price-dividend ratio throughout the 1990s that almost

reaches the observed U.S. stock market peak prior to the crash in 2000. The simulated P-D

ratio then slowly rises from this depressed level to a lower peak followed by the rash in

2008. The comparison with the actual U.S. P-D data serves to illustrate that variations in

subjective beliefs may well be capable of causing such dramatic movements.

Under adaptive learning (top right-hand panel) the movements in the P-D ratio are much

smaller. This observation is fully consistent with Corollary 2 in Section 4.4, given that the

preference parameter 
 is set to a value below unity. ALS investors act as if their beliefs

will remain unchanged in the future. On balance they value the risky asset less than the

RLS investors. Thus, the P-D ratio remains substantially smaller under adaptive learning

and its dynamics less pronounced. However, this simulation is not meant to propose that

the assumption of adaptive learning is necessarily inconsistent with observed behavior the

P-D ratio in the U.S. stock market. It is possible to change the calibration so as to achieve

more pronounced movements in the P-D ratio under adaptive learning. For example, a more

optimistic prior would result in higher valuations of the risky asset from the ALS investors�

perspective. As shown in the dynamic simulation reported in the right-hand-side panels

of Figure 3 (solid lines), an initial prior of �AL1989 = 47%, is su¢ cient to generate more

dramatic rises and falls in the P-D ratio over time. This prior implies a level of optimism,

1 � �AL1989 = 53%, that is more than double the value used in Figure 2 and above the CCI
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data of that period.

Clearly, these simulations indicate that subjective belief dynamics can play an important

role in understanding P-D ratios after stock market crashes. A thorough empirical investi-

gation should be the subject of a future study. Before closing, however, we want to address

a possibly important concern with regard to the theoretical speci�cation of preferences we

have used. Barro (2009) and others have suggested that asset-pricing models with CRRA

preferences have di¢ culty matching certain empirical regularities because they restrict the

intertemporal elasticity of substitution to be equal to the inverse of the coe¢ cient of relative

risk aversion. Instead, Epstein-Zin (1989) and Weil (1990) preferences allow to di¤erentiate

between risk aversion and the elasticity of substitution.

Finally, Figure 4 plots the computed P-D ratio based on equation (27). In the Online

Appendix we show how this P-D ratio can be computed, based on both the formula of equa-

tion (27) and on HJB recursions which can numerically tackle Epstein-Zin-Weil preferences.

Figure 4 uses the benchmark calibrating parameters employed in Figures 1 and 2. Clearly,

Figure 4 demonstrates the same qualitative mechanics as in the RLS and ALS cases: the

P-D ratio is decreasing in N , which implies that P-D ratios jump down every time that a

disaster occurs, and also the P-D ratio is increasing in T , which means that P-D ratios slowly

rebound after a long period of no disasters. Nevertheless, the P-D ratios in Figure 4 seem

too high. Figure 5 shows P-D ratios in the case of setting the rate of time preference � to

3%. This increase in � brings the P-D ratio to the ballpark indicated by the data.

8. Conclusion

Recent research on rational-expectations asset-pricing models focuses on proposing variabil-

ity in disaster risk as an explanation for several asset pricing puzzles and, in particular,
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for excessively volatile price-dividend (P-D) ratios (see, for example, Gabaix (2008, 2011),

Wachter (2013), and Gourio (2008) and Barro et al. (2010)). Another line of research focuses

on subjective beliefs and learning by investors and questions the assumption of knowledge

of objective frequency distributions of disasters (for example, Weitzman (2007)). We have

developed an asset pricing model with time variable disaster risk and Bayesian learning

by imperfectly informed investors. We have also shown that this model helps understand

episodes in which P-D ratios drop both rapidly and massively, at times intimately connected

with jumps in the dividend process (e.g., see Figure 1). Such observations have also moti-

vated research on bounded rationality and investor sentiment (see, for example, Barberis et

al. (1998)). Instead of following such a research approach, here, we have proposed a theory

that does not require relaxing rationality. Our analysis has only assumed limited informa-

tion, i.e. we have relaxed that investors know everything about the structure of disaster-risk

variability and we have introduced rational Bayesian learning. In addition, we have de�ned

and analyzed a particular deviation from fully rational behavior in the form of adaptive

Bayesian learning.

A key reason motivating our limited-information approach has been the particular nature

of rare disasters. Given the slow rate at which rare disasters arrive, it is rather di¢ cult to

argue that investors con�dently reach rational expectations about the average frequency of

arrival of disasters (hazard rate).

In our model, rational investors may be perfectly aware of their ignorance, and fully

forward-looking, anticipating new information to arrive and future learning to take place.

We show that in such an environment, Bayes�rule implies that beliefs jump to pessimistic

levels after a rare disaster occurs. These jumps towards pessimism create massive jumps

in demands for assets, and therefore imply massive downward jumps in P-D ratios. When
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disasters take long to occur, optimism gradually takes over, and it can lead to high P-D

ratios. These dynamics imitate behavior that is often attributed to investor psychology,

such as sudden investment freezing due to fear after a sudden event with dramatic short-run

consequences occurs, and slow restoration of con�dence after a long period of no stock-market

crashes. So, our �ndings suggest that, under the assumption of not knowing the stochastic

structure of rare events with dramatic short-run consequences, emotion and logic may meet

each other, in the sense that what is perceived as emotion can be fully rationalized. An

evolutionary psychology perspective might suggest that our results formalize an argument

that the instinct of fear is an endowment by nature that complements rationality.

Asset-pricing dynamics in our illustrative simulations are qualitatively similar between

adaptive and rational learners. However, there are substantial quantitative di¤erences. The

study of such quantitative di¤erences between adaptive and rational learning could be an

interesting topic for future research in asset-pricing models. Other important extensions

would concern belief-heterogeneity among investors and second-order learning about rare

disasters and �black-swan� incidents as in Orlik and Veldkamp (2014). Our setup and

analysis could also be generalized in order to include learning about the possibility of upward

jumps. For example, the emergence of a new general-purpose technology, may motivate

optimistic expectations for a �new economy�with sudden bursts of investor enthusiasm,

triggered by rare upward jumps in the dividend process (sometimes triggered by the sudden

massive entry of new �rms).
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9. Appendix

Proof of the asset pricing equation under rational expectations (RE �equation

(10))

For the derivation of equation (10), we �rst show that JRE is given by,

JRE
�
s;D; �i j 	RE

�
=

8><>:
	RE(D;�i)

D
(sD)1�


1�
 � 1
�(1�
)

	RE(D;�i)
D

ln (sD) + �REi
�
	RE

� , if 
 6= 1

, if 
 = 1
(35)

in which �REi
�
	RE

�
is some constant that does not a¤ect optimization. The �rst-order

conditions of (9) are,

c�
 =
1

	RE (D;�i)
� JREs

�
s;D; �i j 	RE

�
. (36)

In order to solve the di¤erential equation given by (9) subject to (36), we take a guess on

the general functional form of JRE
�
s;D j 	RE

�
with undetermined coe¢ cients. First, we

examine the case 
 6= 1, taking the guess,

JRE
�
s;D; �i j 	RE

�
= a+ bi

(sD)1�


1� 
 , i 2 fh; lg , (37)

in which the undetermined coe¢ cients may depend on 	RE, and thus be functionals of the

form a
�
	RE

�
and bi

�
	RE

�
. We drop the dependence of � and b on 	RE for notational

simplicity. Equation (37) implies,

JREs
�
s;D; �i j 	RE

�
= bis

�
D1�
 , (38)

JRED
�
s;D; �i j 	RE

�
= bis

1�
D�
 ,

and,

JREDD
�
s;D; �i j 	RE

�
= �
bis1�
D�
�1 . (39)
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Combining equation (36) with (38) gives,

c =

�
bi

D

	RE (D;�i)

�� 1



sD . (40)

Since all agents are identical, in equilibrium there is no trade among individuals, and the

representative agent�s demand for assets is s (t) = S (t) = S (0) for all t � 0. This means

that ds (t) = 0 for all t � 0. So, the budget constraint, equation (8), implies that, for all

t � 0, each household consumes her dividend, i.e.

c = sD . (41)

From (41) and (40) we obtain,

bi =
	RE (D)

D
, (42)

which recon�rms the claim in (35), that bi equals the P-D ratio. Plugging equations (37)

through (42) into the HJB equation given by (9), we arrive at,

�

�
a+

1

� (1� 
)

�
+
�
1�

�
�iibi + �ijbj

�� (sD)1�

1� 
 = 0 , (43)

in which bj corresponds to JRE
�
s;D; �j j 	RE

�
, and with

�ii = Q+ �i [!ij (1� �) + �] , and �ij = ��i!ij (1� �) . (44)

Following the same procedure for (9) in the case of � = �j, we obtain

�

�
a+

1

� (1� 
)

�
+
�
1�

�
�jibi + �jjbj

�� (sD)1�

1� 
 = 0 , (45)

in which

�ji = ��j!ji (1� �) , and �jj = Q+ �j [!ji (1� �) + �] . (46)

Setting both the constants and the factors of (sD)1�
 in equations (43) and (45) equal to

zero, we have to solve the linear system of equations264 �ii �ij

�ji �jj

375
264 bi

bj

375 =
264 1
1

375 ,
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which leads to the pricing function given by (10) and recon�rms the functional form of

JRE
�
s;D; �i j 	RE

�
given by the branch of (35) corresponding to the case of 
 6= 1.

For the case in which 
 = 1, the guess for JRE
�
s;D; �i j 	RE

�
is,

JRE
�
s;D; �i j 	RE

�
= a1 + b1;i ln (sD) ,

and the same procedure as above leads to the expression given by the branch of (35) corre-

sponding to the case of 
 6= 1. �

Proof of the asset pricing equation under rational learning for state veri�cation

(RLS �equation (19))

We prove that JRLS is given by,

JRLS
�
s;D; � j 	RLS

�
=

8><>:
	RLS(D;�)

D
(sD)1�


1�
 � 1
�(1�
)

	RLS(D;�)
D

ln (sD) + �RL
�
� j 	RLS

� , if 
 6= 1

, if 
 = 1
(47)

in which �RL
�
� j 	RLS

�
is a constant that does not a¤ect optimization. The �rst-order

conditions of (18) are given by,

c�
 =
1

	RLS (D; �)
� JRLSs

�
s;D; �j 	RLS

�
, (48)

and the guess we take for the undetermined-coe¢ cients functional form of JRL in the case


 6= 1 is

JRLS
�
s;D; �j 	RLS

�
= �+ (a+ b�)

(sD)1�


1� 
 (49)

in which the undetermined coe¢ cients, �, a, and b, may depend on 	RL, but we do not

denote this dependence for notational simplicity. Moreover, undetermined coe¢ cients a and
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b are di¤erent from these de�ned in other appendices. Equation (49) implies

JRLSs

�
s;D; �j 	RLS

�
= (a+ b�) s�
D1�
 ,

and after this is combined with (48), the implied formula for consumption is,

c =

�
D

	RLS (D; �)
� (a+ b�)

��

sD . (50)

So, provided that the guess given by (49) proves to be correct, the market-clearing condition

c = sD combined with (50) implies that the P-D ratio is,

	RLS (D; �)

D
= a+ b� . (51)

Focusing on the case 
 6= 1, and using the guess given by (49) in order to calculate JRLSs ,

JRLSD , JRLSDD , and J
RLS
� , substitution of the resulting functions into the HJB equation (18),

together with the market-clearing condition c = sD, after some algebra, results in the

following expression,

�1 + (�2 + �3 � �)
(sD)1�


1� 
 = 0 , (52)

in which,

�1 = �

�
�+

1

� (1� 
)

�
,

�2 = (Q+ �l�)

�
a� 1 + b!lh

Q+ �l�

�
,

and

�3 = b (Q+ �h� + !lh + !hl) + a�� .

Ideally, it should be possible to make equation (52) hold for any levels of the model�s vari-

ables, �, s, and D. The functional form on the left-hand side of equation (52) reveals that

the only way to have equation (52) hold for any arbitrary levels of �, s, and D is to set

�1 = �2 = �3 = 0. Indeed, there exist unique values for the undetermined coe¢ cients �, a,
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and b, that make conditions �1 = �2 = �3 = 0 to hold. These values are, � = �1= [� (1� 
)],

a = (1 + b!lh) = (Q+ �l�), and b = �a��= (Q+ �h� + !lh + !hl), and after these values are

combined with (51), and (49), equation (19) and the part of equation (47) that refers to the

case in which 
 6= 1 are both validated.

For the case 
 = 1, we take a guess of the form

JRLS
�
s;D; �j 	RLS

�
= a1 � ln (sD) + b1� + �1 ,

and following the same procedure as above we arrive at the part of equation (47) that refers

to the case in which 
 = 1. �

Proof of the asset pricing equation under rational learning for data-generating

process (RLP �equation (27))

Unlike all other cases above in which we took a guess on the functional form of the value

function, here we use the insight that in the standard representative-agent Lucas-tree model

investors consume the dividend in equilibrium. So, we compute the utility function through

stochastic integration.

Our �rst goal is to calculate the expectation E0
�
D (t)1�


�
conditional on information

available at time 0, which is given by (N0; T0) = (N (0) ; T (0)). At any future point in

time, (N; T ) = (N (t) ; T0 + t). Denote a perceived value of � (t) by ~� (t). Remember that

the belief density of ~� (t) is Gamma-distributed conditional on hyperparameters (N (t) ; T ),

given by,

f
�
~� j N; T

�
=

TN

� (N)
e�

~�T ~�
N�1

=
(T0 + t)

N(t)

� (N (t))
e�

~�(T0+t)~�
N(t)�1

= f
�
~� j N (t) ; T0 + t

�
.

(53)

37



A key insight from (53) is that by �xing a certain value for ~� over time, the resulting

conditional jump process forD (t) in equation (1) becomes Poisson with �xed jump frequency

~�. This observation is useful for calculating E0
�
D (t)1�


�
for any t � 0, using the law of

total expectation,

E0
�
D (t)1�


�
=

Z 1

0

n
EN(t)

n
E
h
D (t)1�
 j N (t) ; ~�

i
f
�
~� j N (t) ; T0 + t

�oo
d~� , (54)

in which EN(t) (�) refers to the expectation with respect to possible cumulative sums of

disasters N (t) within the time interval [0; t]. Applying Itô�s lemma on (1) for a �xed ~� we

obtain,

d ln
�
D1�
� = (1� 
)��� �2

2

�
dt+ (1� 
)�dz + (1� 
) ln (1� �) dN . (55)

Because z (t), N (t), and � (t) are all independent among each other, we can condition

equation (55) on �xed values of �. So, we stochastically integrate both sides of equation

(55) with respect to time, we exponentiate both sides of the resulting equation, and we take

the total expectation conditioning on the �xed value of ~� and on N (t) arriving at,

E
h
D (t)1�
 j N (t) ; ~�

i
= e(Q��)tD (0)1�
 � (1� �)N(t) . (56)

Given that ~� is �xed, after applying Posch and Wälde (2006, Lemma 3, p. 23) on equation

(56) we obtain,

EN(t)

n
E
h
D (t)1�
 j N (t) ; ~�

i
f
�
~� j N (t) ; T0 + t

�o
= e(Q���

~��)tD (0)1�

TN00
� (N0)

e�
~�T0~�

N0�1 .

(57)

Substituting (57) into (54) gives,

E0
�
D (t)1�


�
= e�(Q��)t

TN00
� (N0)

D (0)1�

Z 1

0

e�(T0+�t)
~�~�
N0�1

d~�| {z }
q
A

,
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which can be re-written as,

E0
�
D (t)1�


�
= e�(Q��)t

TN

� (N)
D (0)1�
 � A , (58)

with

A �
Z 1

0

e�(T+�t)
~�~�
N�1

d~� ,

for notational simplicity. In order to calculate A, use the transformation z = (T + �t) ~�,

which implies, ~� = (T + �t)�1 z and d~� = (T + �t)�1 dz, leading to,

A = (T + �t)�N
Z 1

0

e�zzN�1dz = (T + �t)�N � (n) . (59)

Given that,

JRLP (s;D;N; T ) = E0

(Z 1

0

e��t
[sD (t)]1�
 � 1

1� 
 dt

����� D (0) = D
)
, (60)

after combining (59) with (58) and substituting it into (60) we obtain,

JRLP (s;D;N; T ) = b (N; T )
(sD)1�


1� 
 � 1

� (1� 
) , (61)

in which

b (N; T ) = TN
Z 1

0

e�Qt (T + �t)�N dt . (62)

Following the steps of the proofs for derive the P-D ratio in the RE case, notice that b (N; T )

is the P-D ratio. In order to simplify the expression for b (N; T ), use the transformation

y = (Q=�) (T + �t), which implies t = y=Q � T=�, dt = dy=Q, and also that y0 = QT=� is

the value of y corresponding to t = 0, substitute all these values into (62) to obtain,

b (N; T ) =
e
QT
�

Q

�
QT

�

�N Z 1

QT
�

e�yy�Ndy| {z }
q

�(1�N;QT� )

,
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which proves equation (27). The proof is essentially complete here. In order to cross verify

that equation (27) is also consistent with the HJB equation, use (61) above as the guess to

substitute into (26) to obtain,

Qb (N; T ) = 1 + bT (N; T ) +
N

T
[(1� �) b (N + 1; T )� b (N; T )] . (63)

Using the formula given by (62) for b (N; T ), we can show at a �rst stage that (63) simpli�es

to,

Qb (N; T ) + �
N

T
b (N + 1; T ) = 1 . (64)

Using either equation (27) or equation (62), after some integration by parts we can prove

that (64) holds, completing the proof. �

Proof of Proposition 2 Equation (16) has two parts, a deterministic part and a

stochastic part. The deterministic part is the �rst term of the RHS of (16), which is equal

to ��� (1� �), and it de�nes a deterministic �rst-order di¤erential equation,

_� = ��� (1� �) , (65)

which can be re-written as,

_� = ��2 � �� . (66)

Equation (66) is a Bernoulli di¤erential equation. So, we can use the Bernoulli transforma-

tion

z� (t) � � (t)�1 for all t � 0 . (67)

From (67) it is,

_z� (t) = �� (t)�2 � _� (t) for all t � 0 . (68)
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So, after multiplying both sides of equation (66) by ���2 and also substituting (67) and

(68) it is,

_z� = �z� � � . (69)

The solution to equation (69) is,

z� (t)� 1 = e�t [z� (0)� 1] ,

and substituting (67) gives

� (t) =
1

1 + e�t 1��0
�0

, for all t � 0 . (70)

Equation (70) shows that, no matter howmuch time has passed without any jumps occurring,

probability � always stays within the open interval (0; 1).

The second part of equation (16) is stochastic and given by a jump process, such that the

probability jumps from its original level � to the level given by �h � �=� (�). The statement

� 2 (0; 1)) �h�

� (�)
2 (0; 1) (71)

holds, because �h ��=� (�) > 0 for all � 2 (0; 1), and �h ��=� (�) < 1, � < 1, which is also

true for all � 2 (0; 1). Combining (71) with (70) proves the part of the proposition which

states that for all � (0) = �0 2 (0; 1), � (t) 2 (0; 1) for all t � 0.

Applying analytical techniques that pertain to Poisson di¤erential equations on (16), we

obtain,27

E (d�)

dt
= ��� (1� �) + ��

�
�h�

� (�)
� �

�
. (72)

Using the fact that � (��) = �� implies �� = (�� � �l) =�, after some algebra, equation (72)

gives,

_�e = �2� (1� �) �
� � �
� (�)

. (73)

27See, for example, Merton (1971, pp. 395-401) and Kushner (1967, pp. 16-22).
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For calculating the limit limt!1E [� (t)], notice that, according to Dynkin�s formula (we

denote the Dynkin operator by D),

E [� (t)] = � (0) + E

�Z t

0

D� (�) d�
�
, (74)

in which,

D� (�) = �2� (1� �) �
� � �
� (�)

, (75)

which is a formula based on equation (73). The expectations operator in the expression

E
hR t
0
D� (�) d�

i
of the RHS of (74) transforms the dynamics of (73) into

_�e = �2�e (1� �e) �
� � �e
� (�e)

, (76)

where �e � E (�). To see that the expectations operator in the expression E
hR t
0
D� (�) d�

i
of the RHS of (74) leads to (76), �x any t � 0 and any �t > 0, and consider equation (74)

expressed as,

�e (t+�t) = E [� (t+�t)] = � (t) + E

�Z t+�t

t

D� (�) d�
�
. (77)

If we set �t > 0 arbitrarily small, then (77) and (75) give rise to an approximate recursion

with respect to �e, given by the di¤erence equation,

�e (t+�t) = �e (t) + �2�e (t) [1� �e (t)] �
� � �e (t)
� (�e (t))

��t , (78)

for all discrete periods with interval length [t ; t+�t] and any t � 0. Equation (78) is a

deterministic equation, since its initial conditions are non-stochastic (�e (0) = � (0) = �0).

Equation (78) is a construction by approximation that leads to di¤erential equation (76) by

subtracting �e (t) from both sides of (78), dividing by �t, and taking the limit �t ! 0.

Equation (76) implies dynamics given by,

for all �e 2 (0; 1) , _�e T 0, �e S �� . (79)
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With the help of a one-dimensional phase diagram it can be veri�ed that limt!1E [� (t)] =

limt!1 �
e (t) = ��, which proves equation (28) of the proposition.

In order to prove equation (29), after applying analytical techniques that pertain to

Poisson di¤erential equations on (16), we obtain,

E (d�2)

dt
= �2��2 (1� �) + ��

(�
�h�

� (�)

�2
� �2

)
,

which simpli�es to,

E (d�2)

dt
= ��2 (1� �)

�
�� (�h + �l + ��)

� (�)2
� 2
�
. (80)

Using the same argument as above, we can show that (80) yields

E (d�2)

dt
= �E

�
�2
�n
1�

�
E
�
�2
�� 1

2

o264��
n
�h + �l + � [E (�

2)]
1
2

o
�
�
[E (�2)]

1
2

�2 � 2

375 . (81)

For notational simplicity, we can use the transformation z � E (�2), which makes (81) be

expressed as,

_z = �z
�
1� z 12

�264��
�
�h + �l + �z

1
2

�
�
�
z
1
2

�2 � 2

375 , (82)

since � 2 (0; 1). Because the term �z
�
1� z 12

�
in (82) is always positive for all � 2 (0; 1),

we can focus on the sign of the expression in the bracket of the right-hand side of equation

(82), which is determined by the sign of the expression

f
�
z
1
2

�
� z � ��

� � 3�l
2�

z
1
2 � �

��h � �l + (�� � 1)�l
2�2

, (83)

and

f
�
z
1
2

�
S 0, _z T 0 . (84)

There exist two real roots for the quadratic form given by (83), namely,

z
1
2
1;2 =

�� � 4�l � (��)
1
2 (�� + 8�h)

1
2

4�
,
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and it is easy to verify that one root is negative, while the other is positive. Since � 2 (0; 1)

for all t � 0, we discard the negative root and we keep the positive root which is,

ẑ
1
2 =

h
\E (�2)

i 1
2
=
�� � 4�l + (��)

1
2 (�� + 8�h)

1
2

4�
,

implying that,

ẑ = \E (�2) =

"
�� � 4�l + (��)

1
2 (�� + 8�h)

1
2

4�

#2
. (85)

Most importantly, f
�
z
1
2

�
S 0 , z S ẑ for all z 2 (0; 1), so through the aid of a one-

dimensional phase diagram, the relationship given by (84) con�rms that ẑ is globally stable,

for all z 2 (0; 1). This means that as t ! 1, E (�2) ! \E (�2). Using the fact that,

asymptotically, V ar (�) = \E (�2) � (��)2, proves (29). Given that �� = (�� � �l) =�, after

some algebra, it can be shown that \E (�2) � (��)2 > 0 , �h > �
�. The right-hand side of

this equivalence is a true statement, completing the proof of the proposition. �

Proof of that under RLP beliefs converge to a degenerate distribution in the

long run

Since the Markov transition matrix governing � (t) asymptotically leads to (��; 1� ��),

from a modeler�s perspective, the expected value of N (t) is �� � t (�� = ���h + (1� ��)�l.

Denote the expected realization from a modeler�s perspective by Em [N (t)] = �
� � t). After

applying the law of iterated expectations on equations (23) and (24) it is,

Em

h
~� (t)

i
=
N (0) + �� � t
T (0) + t

, (86)

and

V arm

h
~� (t)

i
=
N (0) + �� � t
[T (0) + t]2

. (87)
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The asymptotic distribution is directly characterized from (86) and (87) which imply,

lim
t!1

Em

h
~� (t)

i
= �� , (88)

and

lim
t!1

V arm

h
~� (t)

i
= 0 . (89)

Equation (89) implies in�nite con�dence asymptotically, and together with the unbiasedness

implied by (86) the result is proved. �

Proof of equation (30)

For notational simplicity, denote 	RLP (D;N; T ) by 	(D;N; T ).

Using formulas, we show that,

lim
t!1

	(D (t) ; Em [N (t)] ; T + t)

D (t)
=

1

Q+ ���
, (90)

in which Em [N (t)] = N (0) + �� � t denotes the expected realization from a modeler�s

perspective. Using Em [N (t)] in rational learner�s expression for the P-D ratio given by (27)

is equivalent to a Monte-Carlo simulation expression.28 So, based on the theorem of the

limit of composition of functions,

lim
t!1

	(D (t) ; Em [N (t)] ; T + t)

D (t)
= lim

t!1

	(D (t) ; N e
1; T + t)

D (t)
, (91)

in which,

N e
1 � lim

t!1
Em [N (t)] ,

28This equivalence can be proved using Dynkin�s formula. The procedure of such a proof is explained in the
proof of Proposition 2 above.
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and notice that N e
1 need not be �nite. Based on (27),

lim
t!1

	(D (t) ; N e
1; T + t)

D (t)
= lim

t!1

1

Q

�
Q

�
(T + t)

�Ne
1

e�l(t)
�1
�

�
1�N e

1;
Q

�
(T + t)

�
. (92)

Let

x � Q

�
(T + t)

and notice that t!1 implies x!1. So, (92) implies,

lim
t!1

	(D (t) ; N e
1; T + t)

D (t)
=
1

Q
lim
x!1

� (1�N e
1; x)

e�x � x�Ne
1

. (93)

The incomplete-Gamma function corresponds to

� (1�N e
1; x) =

Z 1

x

e�zz(1�N
e
1)�1dz =

Z 1

x

e�zz�N
e
1dz ,

and limx!1 � (1�N e
1; x) = 0, no matter if N

e
1 =1 or if N e

1 <1. Similarly, limx!1 e
�x �

x�N
e
1 = 0, no matter if N e

1 = 1 or if N e
1 < 1, too. So, we apply L�Hôpital�s rule on the

limit of expression (93) to obtain,

lim
t!1

	(D (t) ; N e
1; T + t)

D (t)
=
1

Q
lim
x!1

@�(1�Ne
1;x)

@x

@(e�x�x�Ne1)
@x

which implies,

lim
t!1

	(D (t) ; N e
1; T + t)

D (t)
=
1

Q
lim
x!1

�e�x � x�Ne
1

e�x � x�Ne
1

�
�1� Ne

1
x

� ,
or,

lim
t!1

	(D (t) ; N e
1; T + t)

D (t)
=
1

Q
lim
x!1

1

1 + Ne
1
x

. (94)

Now we can restore that x = Q
�
(T + t) on the right-hand side of (94), keeping in mind that

x!1, t!1, so,

lim
t!1

	(D (t) ; N e
1; T + t)

D (t)
=
1

Q
lim
t!1

1

1 + Ne
1

Q
�
(T+t)

,
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which implies (after taking into account thatN e
1 = limt!1Em [N (t)] = limt!1Em [N (0) + �

� � t]),

lim
t!1

	(D (t) ; N e
1; T + t)

D (t)
=
1

Q

1

1 + lim
t!1

N(0)+���t
Q
�
(T+t)

,

i.e.,

lim
t!1

	(D (t) ; N e
1; T + t)

D (t)
=
1

Q

1

1 + ���
Q

, (95)

which proves the statement. �

Proof of the asset pricing equation under adaptive expectations and Epstein-

Zin-Weil preferences (Equation (33))

For the derivation of equation (33), notice that the form of the HJB equation with

Epstein-Zin-Weil preferences is,

0 = max
c�0

�
f
�
c; J

�
s;D; � j ~	AL

��
+ Js

�
s;D; � j ~	AL

�
�
�

1
~	AL (D; �)

(sD � c)
�
+

+JD

�
s;D; � j ~	AL

�
� �D + JDD

�
s;D; � j ~	AL

� (sD)2
2

+

+� (�)
n
E�

h
J
�
s; (1� �)D; � j ~	AL

�i
� J

�
s;D; � j ~	AL

�o)
. (96)

First-order conditions are,

fc

�
c; J

�
s;D; � j ~	AL

��
=
Js

�
s;D; � j ~	AL

�
~	AL (D; �)

. (97)

Our guess for the functional form of J is,

J
�
s;D; � j ~	AL

�
= b (�)

(sD)1�


1� 
 , (98)

and we denote b (�) by b for notational simplicity. Since c = SD in equilibrium, (97) implies,

D
~	AL (D; �)

= �b
1
��1
1�
 . (99)
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Substituting (98) and its implied derivatives into (96) gives, after some algebra,

�b
1
��1
1�
 = ��

�
1� 1

�

��
�� 
�

2

2

�
+
1� 1

�

1� 
� (�)
�
E� (1� �)1�
 � 1

	
. (100)

Combining (99) with (100) leads to (33).
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Figure 1 Monthly US stock-market data 1989-2016. Source: Datastream (TOTMKUS).
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Figure 4   P-D ratio in the RLP case, using the benchmark calibrating parameters 
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Figure 5   P-D ratio in the RLP case, setting ρ=3% 
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1. The Hamilton-Jacobi-Bellman Equation

Let the continuous-time version of the Epstein-Zin-Weil expected utility function,

J (t) = Et

�Z 1

t

f (c (�) ; J (�)) d�

�
, (1)

in which f (c; J) is a normalized aggregator of continuation utility, J , and current consump-

tion, c, with

f (c; J) � � (1� 
) � J �

�
c

[(1�
)J ]
1

1�


�1� 1
�

� 1

1� 1
�

, (2)

in which �; �; 
 > 0. For notational simplicity we set,

� �
1� 1

�

1� 
 . (3)

Given that in the Lucas-tree model c = D at all times, the Hamilton-Jacobi-Bellman (HJB)

equation is,

0 = f (D; J) + �DJD +
(�D)2

2
JDD + JT +

N

T
fE� [J (N + 1; T; (1� �)D)]� Jg , (4)

in which J denotes J (N; T;D) for notational simplicity. Based on notation dictated by (3),

the preference aggregator f (D; J) can be written as,

f (D; J) =
�

� (1� 
)

n
D�(1�
) [(1� 
) J ]1�� � (1� 
) J

o
. (5)

The solution of (4) is of the multiplicatively-separable form,

J (N; T;D) = b (N; T )
D1�


1� 
 , (6)
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and throughout we will be using b for b (N; T ) unless it becomes necessary to distinguish

that the inputs of function b are arguments taking values other than (N; T ). Substituting

(6) into (5) gives,

f (D; J) =
�

�

�
b1�� � b

� D1�


1� 
 . (7)

In turn, substituting (7) into (4) gives,

Q

�
b =

�

�
b1�� + bT +

N

T
[(1� �) b (N + 1; T )� b] , (8)

in which

� � 1� E�
�
(1� �)1�


�
,

and

Q � �� � (1� 
)
�
�� 
�

2

2

�
.

In light of equation (8), the goal of the recursive algorithm is to compute function b (N; T ).

2. Numerical Computation of the Exact Solution in the case of

� = 1

In order to test the e¤ectiveness of the recursive algorithm it is useful to numerically compute

the available exact solution when � = 1, as a yardstick for controlling approximation errors

of the polynomial approximation in the recursive procedure outlined below. The closed-form

solution for b (N; T ) in the case of � = 1 is,

b (N; T ) =
1

Q

�
Q

�
T

�N
e
Q
�
T�

�
1�N; Q

�
T

�
, (9)

in which � (a; x) is the incomplete gamma function � (a; x) =
R1
x
e�zza�1dz, i.e.,

�

�
1�N; Q

�
T

�
=

Z 1

Q
�
T

e�zz�Ndz .
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Matlab does not have a built-in routine calculating incomplete gamma functions, and since

(9) involves an integral, one idea is to use numerical integration. But Matlab has a built-in

routine that calculates the exponential integral, which is closely related to the incomplete

gamma function. In particular, according to Paris (2010, eq. 8.19.1, p. 185),

EN (x) = x
N�1� (1�N; x) , (10)

in which EN (x) denotes the generalized exponential integral of degree N (boldface is used

in order to avoid confusion with expectations operators), given by,

EN (x) =

Z 1

1

e�xzz�Ndz .

Combining (9) and (10), the computation of b (N; T ) boils down to computing the formula,

b (N; T ) =
1

Q

�
Q

�
T

�
e
Q
�
TEN

�
Q

�
T

�
. (11)

Matlab has a built-in routine under the command �expint(x)�, that corresponds to the

special case of the exponential integral of degree N = 1, namely,

expint(x) = E1 (x) =

Z 1

1

e�xzz�1dz =

Z 1

x

e�yy�1dy ,

in which the last expression, resulting after a change-of-variables trasformation (y = xz),

coincides with the opening equation presented in Temme (2010, eq. 6.2.1, p. 150). Fast

and e¢ cient computation of generalized exponential integrals, EN (x), is achieved through

a recursion appearing in Paris (2010, eq. 8.19.12, p. 186),

EN+1 (x) =
1

N

�
e�x � xEN (x)

�
. (12)
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3. Chebyshev Algorithm

First, we need to pick zero-nodes for the Chebyshev algorithm. First, notice that the domain

of Tj (x) is [�1; 1].1 Thanks to linearity properties of vector spaces it is straightforward

to implement the Chebyshev projection method to values Z 2
�
Z; �Z

�
through the linear

transformation,

X (Z) =
2

�Z � Z
� Z �

�Z + Z
�Z � Z

. (13)

Important is also the inverse transformation of (13), according to which,

Z (x) =
(x+ 1)

�
�Z � Z

�
2

+ Z . (14)

3.1 Zeros of the n-th degree Chebyshev polynomial

The idea here is that an n-th degree Chebyshev polynomial, Tn (x) = cos (n � arccos (x)), is

a periodic fuction with codomain [�1; 1]. We can minimize rounding errors even further if

our gridpoints are endogenously chosen. Speci�cally rounding errors minimized if gridpoints

correspond to values xk, such that Tn (xk) = 0, k 2 f1; :::; ng.2

The usual transformation is �k = arccos (xk), so Tn (x) can be expressed as cos (n � �k).

We know where the cos (n � �k) cuts the abscissa, it is the values �=2, 3�=2, 5�=2, and so on,

namely all odd positive integers divided by 2, which do not exceed n. With some algebra,

we can �nd that xk is given by,

xk = cos

�
2k � 1
2n

�

�
, k 2 f1; :::; ng . (15)

The Matlab program �Chebyshev_zeros.m�implements the formula given by equation

(15), using the straightforward commands,

1 The Chebyshev polynomials algorithm follows closely Heer and Maußner (2005, Ch. 8).
2 This error-minimizing property of gridpoints fxkgnk=1 with Tn (xk) = 0 can be proved formally. See, for
example, Judd (1992) and further references therein.
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function x_k = Chebyshev_zeros(n)

k = 1:n;

x_k = cos((2*k-1)./(2*n)*pi);

end

Notice a great advantage of this endogenous gridpoint choice procedure. In practice we

deal with interpolating known functions and unknown functions. The choice of gridpoints

fxkgnk=1 with Tn (xk) = 0 is independent of whether we know the function to be approximated

or not. The choice of gridpoints only depends on the choice of the polynomial degree, n,

of Tn (x), because it is desirable to have more gridpoints than the highest degree n of a

sequence of Chebyshev polynomials fTj (x)gnj=0. These technical issues become clearer while

implementing of the Chebyshev regression algorithm.

3.2 The two-dimensional grid in matrix form

The Chebyshev-approximated function will have the form,

f (z1; z2) '
�1�1X
j1=0

�1�1X
j1=0

�j1;j2Tj1 (X (z1))Tj2 (X (z2)) . (16)

In order to take advantage of the discrete-orthogonality conditions we will approximate the

Chebyshev form given by (16) through Chebyshev-zero grids. In Heer and Maußner (2005,

Ch. 8, pp. 440-1) we can see that if we have a two-dimensional function f (z1; z2), then the

Chebyshev-zero grids, (�x1;k1 ; �x2;k2), will produce anm1�m2 matrix, �Y, with generic element

�yk1;k2 = f (Z1 (�x1;k1) ; Z2 (�x2;k2)), in which,

Zi (x) =
(x+ 1)

�
�Zi � Zi

�
2

+ Zi , i = 1; 2 .
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Heer and Maußner (2005, Ch. 8, p. 441) prove that the optimal Chebyshev-approximation

estimator �̂j1;j2 is given by,

�̂0;0 =
1

m1m2

m1X
k1=1

m2X
k2=1

�yk1;k2 (17)

�̂j1;0 =
2

m1m2

m1X
k1=1

m2X
k2=1

�yk1;k2Tj1 (�x1;k1) (18)

�̂0;j2 =
2

m1m2

m1X
k1=1

m2X
k2=1

�yk1;k2Tj2 (�x2;k2) (19)

�̂j1;j2 =
4

m1m2

m1X
k1=1

m2X
k2=1

�yk1;k2Tj1 (�x1;k1)Tj2 (�x2;k2) , (20)

for j1 2 f1; :::; �1 � 1g and j2 2 f1; :::; �2 � 1g.

Consider the matrices,

T1
�
X
�
�Z1
��
= T1 (�x1) =

2666666664

T0 (�x1;1) T1 (�x1;1) � � � T�1�1 (�x1;1)

T0 (�x1;2) T1 (�x1;2) � � � T�1�1 (�x1;2)

...
...

. . .
...

T0 (�x1;m1) T1 (�x1;m1) � � � T�1�1 (�x1;m1)

3777777775
,

and

T2
�
X
�
�Z2
��
= T2 (�x2) =

2666666664

T0 (�x2;1) T1 (�x2;1) � � � T�2�1 (�x2;1)

T0 (�x2;2) T1 (�x2;2) � � � T�2�1 (�x2;2)

...
...

. . .
...

T0 (�x2;m2) T1 (�x2;m2) � � � T�2�1 (�x2;m2)

3777777775
.

Notice that T1 (�x1) is of size m1� �1, while T2 (�x2) is an m2� �2 matrix. Consider also the

two matrices,

Im1 =

2666666664

1
m1

0 � � � 0

0 2
m1

� � � 0

...
...

. . .
...

0 0 � � � 2
m1

3777777775
,
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and

Im2 =

2666666664

1
m2

0 � � � 0

0 2
m2

� � � 0

...
...

. . .
...

0 0 � � � 2
m2

3777777775
,

with Im1 being of size m1 �m1, and with Im2 being of size m2 �m2.

In the special case in which �1 = m1 and �2 = m2, we can verify that the �1 � �2

(= m1 �m2) matrix �̂ that contains all Chebyshev coe¢ cients �̂j1;j2 for j1 2 f0; :::; �1 � 1g

and j2 2 f0; :::; �2 � 1g, as these are given by

�̂ = Im1 �T1 (�x1)
T � �Y �T2 (�x2) �Im2 . (21)

Expression (21) is helpful for introduction to Matlab.

Finally, notice that

�Y = T1 (�x1) � �̂ �T2 (�x2)T , (22)

which is easy to verify from the expression given by (21) and the Chebyshev discrete-

orthogonality conditions, which imply,

T1 (�x1) � Im1 �T1 (�x1)
T = I(m1�m1) and T2 (�x2) � Im2 �T2 (�x2)

T = I(m2�m2) ,

and in which I(m1�m1) and I(m2�m2) are identiy matrices of size m1 �m1 and m2 �m2.

3.3 The Chebyshev-approximated partial derivative

The Chebyshev-approximated partial derivative fz1 (z1; z2) for the special case in which �1 =

m1, uses the formula,

fz1 (z1; z2) '
 

2�
�Z1 � Z1

�!| {z }
q

X0(z1)

�T1 (�x1) � (I�A)�1B � �̂ �T2 (�x2)T , (23)
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in which,

A =

26666666666666666664

0 0 1
2
0 0 � � � 0

0 0 0 1 0 � � � 0

0 0 0 0 1 � � � 0

...
...
...
...
...
. . .

...

0 0 0 0 0 � � � 1

0 0 0 0 0 � � � 0

0 0 0 0 0 � � � 0

37777777777777777775

, (24)

B = 2 �

26666666666666664

0 1
2
0 0 � � � 0

0 0 2 0 � � � 0

0 0 0 3 � � � 0

...
...
...
...
. . .

...

0 0 0 0 � � � � � 1

0 0 0 0 � � � 0

37777777777777775
, (25)

are m1�m1 matrices. The formulas given by (23), (24), and (25), implement the rearrange-

ment of coe¢ cients of matrix �̂ suggested by Press et al. (2003, Ch. 5, §5.9, p. 240).

The error-minimization properties of the suggestion in Press et al. (2003, Ch. 5, §5.9, p.

240) for univariate functions are formally studied by Bruno and Hoch (2012). Equation (23)

implements the same matrix-rearrangement idea for partial derivatives.

Alternatively, for the calculation of Chebyshev-approximated partial derivatives one can

use the formula,

T 0j (x) =
@ cos (j � arccos (x))

@x
= j

sin (j arccos (x))p
1� x2

, (26)
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in order to generate the matrix,

T01 (�x1) =

2666666664

T 00 (�x1;1) T 01 (�x1;1) � � � T 0�1�1 (�x1;1)

T 00 (�x1;2) T 01 (�x1;2) � � � T 0�1�1 (�x1;2)

...
...

. . .
...

T 00 (�x1;m1) T 01 (�x1;m1) � � � T 0�1�1 (�x1;m1)

3777777775
,

in order to use the approximation,

~fz1 (z1; z2) '
 

2�
�Z1 � Z1

�!| {z }
q

X0(z1)

�T01 (�x1) � �̂ �T2 (�x2)
T . (27)

3.4 Choice of grids

As an example, we use the Barro-Ursua (2008) values � = 2:5%, � = 2%, � = 22%, � = 4%,

�� = 1=28, and initial conditions for the start date, T (0) = T = 140 (the di¤erence between

year 2010 and 1870), and we consider 60 years ahead, i.e., the highest value of elapsed time in

the grid for T is �T = 200. For implementing the additive-separability constraint by setting


 = 1=�, we pick 
 = 1=2 and � = 2. Regarding the range of the N grid,
�
N; �N

�
, it is

driven by the 95% con�dence interval around N� (T ) � ��T , based on the Gamma density

function,

� (� j N; 1=T ) = T � e��t (�T )
N�1

(N � 1)! ,

which has cumulative density,

Pr (x � �) = � (� j N; 1=T ) =
Z �

0

T � e�xt (xT )
N�1

(N � 1)!dx . (28)

So,

N = min

��
��1

�
Pr (x � �) = 5%

2
j �� �T ; 1�T

�
� �T
�
;

�
��1

�
Pr (x � �) = 5%

2
j ��T ; 1

T

�
� T
��
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and

�N = max

��
��1

�
1� 5%

2
j �� �T ; 1�T

�
� �T
�
;

�
��1

�
1� 5%

2
j ��T ; 1

T

�
� T
��

,

in which ��1 is the inverse of the function given by (28). For the above calibration, using

the Matlab command �gaminv�, the results are, N = 2 and �N = 13. Finally, well-behaved

Chebyshev grid sizes and polynomial values are, m1 = m2 = �1 = �2 = 100. We start from a

61�12-point grid that uses (11) in order to compute b (N; T ). Comparing the exact solution

from the paper with the results from the HJB equation we are able to examine both the

correctness and the performance of the code that uses the HJB equation.
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