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Abstract

This paper studies asymmetric responses in consumption where the asymmetries
are endogenously generated by agents’ preferences and incomplete knowledge about
information quality. Agents form expectations about the future based on incom-
plete information which is assumed to be ambiguous and these future expectations,
distorted by ambiguity, affect spending asymmetrically. With a noisy signal of un-
certain quality, consumption features asymmetric responses: the absolute size of the
responses depends on whether the signal delivers good or bad news. I estimate the
model on U.S. data by maximum likelihood and the estimates suggest that ambiguity

plays a non-negligible role in consumption fluctuations.
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1 Introduction

There is evidence that consumption growth is left-skewed. For example, consumption ex-
penditure growth per capita! of the U.S. from 1970 to 2016 exhibits left-skewness with a
negative estimate of -0.9015.2 Van Nieuwerburgh and Veldkamp (2006) suggest that neg-
ative skewness of output, investment, employment and consumption represents a gradual
boom in economic activities and the sharp and short economic downturn.®> One poten-
tial reason for a left-skewed consumption growth is that positive and negative shocks have
asymmetric effects on consumption.* It can also be explained by agents reacting symmet-
rically to asymmetric shocks. While both explanations (or a mixture of them) can easily
justify a left-skewed unconditional distribution of consumption growth, it is not so easy to

suggest why agents react differently to positive and negative shocks.?

Table 1: Left-skewed Consumption Growth

Sample Country Skewness
1870-2009 Canada -0.7829
1820-2009 France -0.8155
1851-2009 Germany -7.8171
1861-2009 Italy -1.3680
1870-2009 Japan -2.2255

1830-2009 the United Kingdom  -0.7890

Notes: Data is yearly data. Per capital consumption data is from Barro and Ursua (2010) and can be accessed at
http://scholar.harvard.edu/barro/publications/barro-ursua-macroeconomic-data

In this paper, by focusing on agents’ preferences and information structures I attempt to
suggest a possible explanation for the asymmetric effects of (symmetric) exogenous shocks
in a simple, forward-looking consumption model where agents’ belief formation is the key

ingredient to explain consumption dynamics.® This follows a view on business cycles em-

Yang (2011) also documents that durable consumption growth in the U.S. is left-skewed.

2Table 1 reports skewness of consumption expenditure growth in the rest of the Group of Seven countries.
Consumption growth is obtained by taking the first difference of log per-capita consumption.

3Van Nieuwerburgh and Veldkamp (2006) explain growth asymmetry in macro aggregates with learning
about the aggregate technology level.

4The literature suggests that there is ample evidence of the asymmetric effects of shocks on key macro
variables. Cover (1992), for example, using the quarterly U.S. data suggests that while positive money
supply shocks do not have an effect on output, negative ones do; Kandil (2002), using aggregate data of
real output, price, and wage for the United States, provides evidence of the asymmetric effects of aggregate
demand shocks; Hussain and Malik (2016) show that the effects of tax increase and decrease are asymmetric.

SImperfect access to credit markets, precautionary saving due to income uncertainty, and loss aversion
of households have been suggested in the literature to generate the asymmetry in consumption response.

6Cao and Nie (2016) provides an explanation of asymmetric responses of the economy to symmetric
exogenous productivity shocks with market incompleteness.



phasizing the role of anticipating the future. Agents form expectations about the future
based on incomplete information which is assumed to be ambiguous; such future expecta-
tions, distorted by ambiguity, affect spending asymmetrically. An interesting feature of the
model is that the possibility of agents responding symmetrically is not entirely ruled out
such that it is possible to test which hypothesis (asymmetric or symmetric responses to
symmetric shocks) fits data better statistically in a simple unified framework and provide
a numerical characterisation of the conditional dynamics of consumption.

A common practice of modelling agents’ expectations about future outcomes in macroe-
conomic analysis has been the use of rational expectations, often called model consistent
expectations, where it requires, roughly speaking, that agents’ beliefs about future variables
coincide with expectations predicted by the model. While it has been the main ingredient of
most dynamic general equilibrium models currently used, the assumption imposes strong
restrictions on agents’ behaviours. For example, it is unlikely that consumers are fully
aware of the underlying mechanisms governing firms’ price-setting practices, technological
progress, or other types of uncertainty regarding fundamentals of the economy.”

This paper relaxes restrictions imposed on agents’ knowledge about the stochastic pro-
cesses governing the economy: A stochastic signal about a permanent component of pro-
ductivity is assumed to be not only noisy but also ambiguous in its information quality. As
agents’ beliefs about the state of the economy critically affect macroeconomic dynamics,
how expectations are formed under ambiguity turns out to be very important. In other
words, agents face an additional challenge to perceive information of uncertain quality given
their preferences. This, in turn, requires to model preferences under ambiguity and I follow
the setup axiomatised by Gilboa and Schmeidler (1989) and recently adopted by Epstein
and Schneider (2008), Ilut (2012), Ilut, Kehrig, and Schneider (2014), and Baqaee (2016),
applying the maxmin expected utility decision with multiple priors, where behaviour de-
rived from the decision rule is consistent with experimental evidence such as the Ellsberg

Paradox.®

By assuming that agents exhibit aversion to uncertainty, processing a signal
of uncertain quality to update beliefs is equivalent to estimating fundamentals consistent
with a worst-case evaluation of ambiguous information, and conditional responses of the
agents exhibit asymmetries: The absolute size of the responses depends on whether noisy

information delivers good news or bad news.

7A number of studies aim to relax such restrictions and to document subsequent macroeconomic out-
comes. For instance, Bianchi and Melosi (2016) develop methods to study general equilibrium models
where forward looking agents learn about the stochastic properties of realized events following waves of
pessimism, optimism, and uncertainty and Adam and Marcet (2011) relax the rationality assumption to
capture the notion that agents do not fully understand some underlying statistical properties.

8In these models, agents possess multiple priors about the information quality of their signals and act
upon their worst case prior to make decisions under ambiguity. In my model, in addition to an ambiguous
signal, agents receive an additional signal which is assumed to be unambiguous.



Specifically, the theory is based on a model of business cycles driven by shocks to agents’
expectations regarding productivity, where agents form anticipations about the future by
observing noisy signals about productivity as in Blanchard, I’Huillier, and Lorenzoni (2013)
and Cao and L’Huillier (2015). These signals sometimes turn out to be news and sometimes
just noise, and agents need to solve a signal extraction problem to decide their current
spending. Later on, if information turns out to be news, agents adjust their expectations
upward and the economy gradually adjusts to a new level of activity; if ex-post information
turns out to be just noise, the economy returns to its original state of activity. In my
version of the model, I modify this information structure such that agents are uncertain
about the quality of noisy signals they receive and the uncertainty is captured by the range
of precisions:

102, € [1/5%,1/02)

where 1/ 037,5 denotes the true signal precision. In such a case, if agents are assumed to
exhibit aversion toward ambiguity, they follow the mazmin optimisation by which they
make decisions that maximize their expected utility under a worst-case belief. The latter
depends on the types of signals they receive. For a signal delivering bad news, a worst case
is that the signal is very informative. Conversely, for a signal delivering good news, a worst
case is that the signal is very noisy.® This makes the agents respond more to bad news
than to good news such that the size of the response is larger in an absolute value when
bad news is delivered. In addition, when information quality becomes more ambiguous and

the range of precision gets larger, the responses exhibit a larger degree of asymmetries.

Relation to literature:

This paper follows the tradition of a business cycle model where expectations play a sig-
nificant role; the original thesis laid out in Pigou (1927), which emphasizes that recessions
could arise as a result of agents’ inability to correctly forecast the economy’s need in terms
of capital and subsequent investment swings, and a recent work by Beaudry and Portier
(2004), where agents receive an imperfect signal about future productivity growth and
make decisions about investment based upon these signals, are frequently cited works that
started this strand of literature. Distinguishing permanent and transitory productivity
shocks is one of the important ingredients in expectation-driven business cycle models and
it is closely examined in Boz, Daude, and Durdu (2011), Lorenzoni (2009), Blanchard et al.
(2013), and Rousakis (2013). While sharing similar information structures and agent’s in-

formation processing, I extend the setup to allow for uncertain quality of information and

9Differentiating a signal delivering good news from the one delivering bad news is discussed in Section
2.



agents’ aversion toward uncertainty.

Many recent papers have adopted ambiguity and study macroeconomic dynamics and
asset pricing. Epstein and Schneider (2008) discuss asset markets in which ambiguity averse
investors process news of uncertain quality with a worst-case assessment of information
quality and the model generates more stronger reaction to bad news than good news which
results in asymmetric responses in asset market; Ilut (2012) builds a model of exchange
rate determination where an ambiguity averse agent solve a signal extraction problem
with uncertain signal precision and take departures from uncovered interest rate parity;
in Ilut, Kehrig, and Schneider (2014) firms’ hiring decisions is modelled under ambiguous
information. Firms receive ambiguous information about productivity of the economy and
maximize multiple priors utility, which reflects firms’ aversion to ambiguity; Baqaee (2016)
attempts to incorporate ambiguous information and the signal extraction problem in order
to explain downward wage rigidities where an equilibrium wage is more sensitive to inflation
than to disinflation; Ilut and Saijo (2016) build an economy where firms are uncertain about
their profitability and the problem is constructed in such a way that the signal precision
varies over the cycle. Specifically, the more a firm produces the more precise the signal
becomes.°

This paper is also related to the random walk behaviour of consumption in which
the behaviour of consumption is fully determined by the long-run level of productivity
or permanent income.'’ Combined with imperfect information structure, it requires that
agents should forecast or estimate the long-run level of productivity to choose consumption
such that, since agents’ forecasts are distorted by the presence of ambiguity, ambiguity plays
an important role in explaining consumption fluctuations.

There are other explanations to generate the asymmetric response of consumption.
Carroll (1992) and Carroll (1994) suggest that a household would increase saving and raise
consumption spending moderately following a positive income shock in order to build up
precautionary savings with income uncertainty. However, with a negative income shock,
a household would cut consumption spending considerably. Deaton (1991) instead focus
on imperfect access to credit markets such that a household is unable to borrow with
a negative income shock, delivering the asymmetric consumption response. Finally, the

prospect theory (Kahneman and Tversky 1979) suggests that by weighing the prospect of

0Gimilarly, Ilut and Schneider (2013) build a state-of-the-art ambiguous business cycle model where
shocks to confidence, which is modelled as changes in ambiguity, play important role in explaining fluc-
tuations. Whereas Ilut and Schneider (2013) introduce ambiguity in a productivity shock with first-order
effects, Masolo and Monti (2015) study the implication of introducing ambiguity in a monetary policy
shock.

"This random walk behaviour of consumption is discussed in detail in Blanchard et al. (2013) for a
baseline New Keynesian model and in Cao and L’Huillier (2015) for a small open economy RBC model.



losses more than that of gains, agents’ consumption response would exhibit asymmetry due
to the steeper value function for losses than gains.

The rest of the paper is organized as follow. Section 2 illustrates how agents update
beliefs under ambiguity, which is the key ingredient to explain the main mechanism of this
model. Section 3 presents the model and Section 4 studies quantitative implications of the

model. Section 5 concludes.

2 Belief Updating under Ambiguity

One of the key ingredients of this model is to determine how agents update beliefs under
ambiguity. In other words, it is related to how agents process ambiguous information
and update beliefs about (unobservable) fundamentals. Since consumption is assumed to
depend solely on agents’ expectation about productivity in the long run, it is essential
to study how agents update beliefs about the unobserved state of the economy. With

information quality being ambiguous, this task becomes non-trivial.

2.1 The one signal example

Consider the following case in which agents observe a noisy signal s; about an unobservable
fundamental z;:

St:.'Et—f—Vt

where v; is an i.i.d. normal shock with variance o2. The information quality of the signal is
assumed to be ambiguous such that o2 € [02,5%].12 The fundamental x; follows a stochastic
process:

Ty =Ti1t+ €

where ¢€; is an i.i.d. normal shock with variance o2. The two innovations are assumed to
be independent of each other at all leads and lags. Characterizing agents’ belief updating,
the one-step ahead prediction of the fundamental at period ¢ — 1, xy,_;, and its associated

error variance X;_; are given by

Ttjt—1 = Tr—1|t—1

2
Yie—1 = Lg14-1 + 0

12For the rest of this paper, I use both the variance o2 and the precision 1/02 interchangeably to describe
information quality. Note that o2 is not time-varying, nor are g2 and &2 such that the ambiguity is assumed
to be time-invariant.
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Figure 1: The Cutoff Rule for Belief Updating

Notes: 1/a2 is the precision of information quality which is assumed to be ambiguous such that 1/02 € [1/02,1/52].

where z;_1);—1 and ¥, 1,1 are the updated (posterior) belief at period ¢ — 1 and its associ-
ated error variance. Then, by observing the noisy signal at period ¢, agents update beliefs

about the fundamental:

Tijt = Ttjt—1 + Gamt (St — xt\t—l) (1)

o2
Y= =——— ) Zyim
tlt (Zt|t1+03) tlt—1

where x,, and X, are the updated (posterior) belief at period ¢ and its associated error

variance. Gain, is the Kalman gain defined as

tjt—1
2
Yijt—1 + 07

Gaing = (2)

Assume that, for a given utility function u(z), it is strictly increasing in = and that
agents are ambiguity averse in the sense that they maximize expected utility under a
worst case belief chosen from the family of priors.'® This leads to agents updating beliefs
according to the cut-off rule shown in Figure 1.

From (1), it is easy to show that whenever s, > Ty—1, the largest Gain, minimizes xy.
Similarly, when s; < 1, minimizing x;,; requires that Gain, takes the smallest value.
As Gain, is strictly increasing in 1/02, only the maximum (1/¢2) and the minimum (1/52)
from the range of precisions become relevant to update beliefs for ambiguity averse agents,
which simplifies solving the model.'* Intuitively, ambiguity averse agents consider a signal
very noisy when they receive good signals. On the contrary, they interpret a signal as

very informative when receiving bad signals.!'® Obviously, for the limiting case in which a

13Here, the family of priors refers to the range of precisions.
14 As the Kalam gain is given by
Yije—1

Gaing = ————
2
Yijp—1 + oy

it is straightforward to show that dGain; /002 = — -1/ (Et‘t_l + 03)2 < 0 by holding ¥;;_; constant.
15To clarify definition, a signal is said to deliver good news whenever it is greater than agents’ ex-ante
expectations and vice versa.



signal is related to a single likelihood (02 = 62 = ¢2), the gain of observing noisy signals is
pinned down by Gaing = yi—1/(Eyi—1 + o) regardless of whether the signal delivers good
(8¢ > @ye—1) or bad news (s¢ < Typ—1).

Figure 2 plots an asymmetric response to the realisation of the signals. The size of
the response is larger in absolute value when a bad signal is delivered. In addition, when
information quality becomes more ambiguous, the responses exhibit a larger degree of

asymmetries.

pemt ‘_.‘-""\,v‘ — o, € [1.00,1.00]
‘-‘.““ - ‘ mmm g, € [075,125]
2 o veeni oy € [0.50,1.50]
o ==y, € [0.25,1.75]
_3 | | | | T J
—3 -2 -1 0 1 2 3

Figure 2: Asymmetric Belief Updating

Notes: The updated belief z;|; is determined by a signal extraction problem where z;; = 441 + Gaing (st — S¢j¢—1) and
st = x¢ +v¢. The variance of x is set to 0.5 and the variance of v varies. The x-axis denotes denotes realized news (s¢ _St\t—l)
and the y-axis denotes the updated belief (zy;).

2.2 Extension to the multiple signal case

Assume now that agents receive multiple signals about the fundamental where one of the
signals is ambiguous. Here, let the number of signals be two.'¢ Specifically, in addition to
the noisy signal s; described in the previous section, agents receive an additional signal a,

whose quality is measured by the signal precision 1/ O’%Z
ay = Ty + 1)

where 7; is an i.i.d. normal shock with variance O'% and the three innovations are inde-
pendent of each other at all leads and lags. Agents use the two signals to update beliefs
about the fundamental z;. Let E.[x,] = E[x;|Z;] = zy and Ey_q[2y] = Elay|Zi1] = 2y

respectively represent the estimates of x; with the current information set (Z;) and the

6Extending the discussion to the case where the number of signals is N and N — 1 of them are unam-
biguous is trivial.



lagged information set (Z;_1):
Ty = Tje—1 + Gaing(Sy — Syi—1) (3)

where S; = (a;, ;)" is a vector of signals and Gain, = (G, H,) is a row vector representing
the gains of observing the signals. Specifically, G; and H; respectively denote the Kalman
gain of observing the ambiguous signal s; and the unambiguous signal a;.

From (3) the updated estimate on z; with two signals can be summarized by a weighted
average of the previous period estimate of the fundamental z,_; and of revisions based on

the surprises associated with the realisation of each shock:

Tyt = Tyjg—1 + Gyi(s; — 3t|t—1) + Hy(a; — at|t—1) (4)
where )
a — < Un2t|t—1 )
! 0202 + 02811 + 02N
and )
H — ( Uy2t|t—1 )
! U,%U% + 0281 + U%Eﬂtq

represent the relative importance of the errors (the surprises) with respect to the prior
estimate and X,;—; denotes the error variance of the one-step ahead prediction of the
fundamental. From (4), I can show that ambiguity averse agents update their beliefs
according to the following decision criteria:

Q.Q

v

if ap > zyp—1 and s; < Ty

=2
Oys

if ar < $t|t71 and St > -Tt|t71

As Gy (H,) is increasing (decreasing) in the signal precision (1/02), whenever revisions
to the previous period estimate of the fundamental following the signals, (a; — x4;—1) and
(8¢ — xy¢—1), have different signs, it is easy to pin down the signal precision to minimize ;.
For instance, when a; > zy;—; and s; < xy,_1, G, should take the largest values and H,
smallest value. Thus, 1/02 minimizes the estimate of the fundamental Tyj¢. Similarly, when
ay < Typ—1 and s; > xy,_1, minimizing ), requires G, to take the smallest value and H; to
take the largest possible value such that 1/52 is chosen to update beliefs. Intuitively, as a
given signal becomes less precise, the gain from observing that particular signal is relatively
smaller; at the same time, you gain relatively more from observing the other signal. Left
panel in Figure 3 depicts this cut-off rule of ambiguity averse agents. When both signals

are greater than (the upper-right quadrant) or smaller than (the lower-left quadrant) the



previous period estimate of the fundamental, (4) does not seem to produce simple decision

criteria.

st Gt = Tg|p—1 st

St = Tt|t—1 St = Tt|ay

Oy =0y Oy =0y

at at

Figure 3: The Cutoff Rules: from (4) (left) and (5) (right)

Notes: Left panel represents the decision rule of simultaneous belief updating, whereas right panel depicts the decision rule
of sequential belief updating. In this particular case, it is assumed that a; = @y 1.

2.2.1 Sequential belief updating

Now, let the agents update beliefs sequentially such that they first update beliefs with the
unambiguous signal a; and then with the ambiguous signal s; such that E[z|Z; 1, a;] = ¢,
and E[x|Z;_1, S;] = x4 respectively represent a belief updated with productivity and a
belief updated with both signals:

2
o b
n tt—1
Tty = | 5w | Tt + | 55— ]
t (O’% + 2t|t—l) tt (O’% + Et|t—1> t

) (s ) )

Tejt = Ttja, + <—
Eﬂat + 0'1%

where X, is the error variance associated with the prediction x,,. Then, ambiguity averse
agents update beliefs according to the following decision rule:

2

o, if s > @y,

g.2

v

if 5, < 244,

From the second term in (5), whenever s; > 2y, 1/5, (low precision) is chosen to
update beliefs since the attached weight to the revision based on the surprise associated
with the noise shock s; is decreasing in the signal precision. Similarly, whenever s, < xyq,,

1/, (high precision) is chosen to update beliefs. Right panel in Figure 3 depicts this

10



cut-off rule for the ambiguity averse agents. This is consistent with the way agents update
beliefs such that they would use all information including any unambiguous information
contemporaneously available in order to make decisions under ambiguity. In fact, we can
easily obtain (5) from (4), and vice versa. Thus, updating beliefs sequentially as described

in (5) is just a different way to illustrate simultaneous belief updating.!”

3 Model

Having illustrated agents’ belief updating, which will be a crucial ingredient of the model
to be followed, for the rest of the paper, I concentrate of the following simple setup which
is analytically convenient and simultaneously provides a good starting point to look at the
post-war U.S data.

The model aims to capture the notion that productivity changes follow two type of
shocks. The first one, which I call a permanent shock, has a permanent effect on produc-
tivity movements and the effects of the second one, a transitory shock, die out gradually.
Modelling productivity movements with a permanent and transitory shock is present in
Aguiar and Gopinath (2007), Garcia-Cicco, Pancrazi, and Uribe (2010), Boz, Daude, and
Durdu (2011), Blanchard et al. (2013), Cao and L’Huillier (2015) among others.

The second ingredient is that consumers’ spending decisions are based on their expec-
tations about the future, in particular, about the long-run productivity. I assume that
agents observe productivity as a whole but are not able to separately observe two compo-
nents. Allowing for the idea that agents have more information than merely current and
past productivity, agents are assumed to observe an additional signal about the permanent
productivity. The novelty of this model is that agents perceive this signal as ambiguous.
Given this information structure, agents are to solve the signal extraction problem and,
given their expectations, choose consumption spending.

To focus on the informational aspect of the model, the model is deliberately simplified
such that consumption is the only endogenous variable to be solved for, and the dynamics

of consumption is determined by productivity shocks and a shock to the noise in the signal.

3.1 Information structure

Consider a “news and noise” information structure where productivity (in logs) is composed

of two components - a permanent component z; and a transitory component z;:

Ay = T + Zt (6)

17See Appendix D.1 for discussion.
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where agents do not observe the two components separately. Instead, they observe produc-
tivity as a whole. The permanent component follows a trend that changes randomly due

to permanent productivity shocks and it follows the stochastic process:
Axy = pAxy 1+ € (7)

whereas the transitory component follows the stationary stochastic process where it dies

out after transitory productivity shocks:

2t = P21+ M (8)

The coefficients p, and p, are assumed to be in [0,1) and ¢ ~ N(0,02) and 7, ~
N(0, 02). Agents are assumed to know the precisions of the productivity shocks and both
technologies have an identical persistence such that p, = p, = p. 1 assume that the

following condition holds:

po? = (1= p)io?

which implies that the univariate process for a; is a random walk:
E[at+1|at; ag—1, - - ] = Qy

In addition to productivity, agents observe a noisy signal concerning the permanent
component of productivity:
St = Tt + Uy (9)

where v; is an i.i.d. normal shock with mean zero and variance 0. The processes {€;}:2,,
{n:}20, and {1 }22, are assumed to be independent of the process {z;}:°, and of each other.
Following Epstein and Schneider (2008) there is incomplete knowledge about signal quality
and the agents treat signals as ambiguous by updating beliefs as if they have multiple
likelihoods. Specifically, the noisy signal s; is related to the process z; by a family of
likelihoods through the signal precision:

1/03,15 € [1/937 1/53]

Therefore, agents depart from Bayesian updating'® and do not know the exact sig-
nal quality. Instead, the quality of information is captured by the range of precisions
[1/62,1/02]. In addition, agents are assumed not to be able to attach subjective probabili-

ties to the priors; if they can, agents would simply form a subjective expectation to update

181f 1/02 = 1/52, we are back to Bayesian updating.

12



beliefs.!?

A signal is said to be more ambiguous if, given the lower (1/02) or the upper bound
(1/52) of the signal precisions, the difference between the two is greater.?® At the limit
(1/02 = 1/0% = 1/0?) agents update beliefs by a Bayesian process in which they use the
standard Kalman filter with the signal precision given by 1/02 to estimate the fundamental.
The range of precisions is assumed to remain constant over time and does not depend on

other parameters.

3.1.1 Skewed consumption growth

An important implication of this model is that agents’ beliefs and consumption responses
are negatively skewed. Table 2 documents skewness of consumption expenditure growth
per capita of the U.S. from 1970:I to 2016:1 conditional on productivity process. It shows
that consumption series is skewed more to the left than productivity series is. Dividing the
sample into two sub-samples - the one with higher than the average productivity growth and
the one with lower than the average productivity growth?' and computing the skewness
of consumption expenditure growth and productivity growth of the two samples, I find
that consumption growth is more left-skewed than its productivity growth counterpart in
the high productivity sample whereas they are more or less equally skewed in the low

productivity sample.??

Table 2: Left-skewed Consumption Growth Conditional on (Labor) Productivity

Sample Consumption skewness Productivity skewness Number of observations
Whole sample -0.9014 -0.1812 185
High (labor) productivity 0.1666 1.7957 93
Low (labor) productivity -1.2042 -1.2360 92

Notes: The first sample (high productivity) contains observation for those with productivity growth higher than the average
of the whole sample where the average productivity growth in the whole sample is 0.0032. Similarly, the second sample (low
productivity) includes those observations with productivity growth lower than the average.

YFor example, if agents have a subjective belief such that p(1/52) = 1/3 and p(1/02) = 2/3, then they
can construct a subjective expectation on 1/c2: E[1/02] =1/3 (1/52) +2/3 (1/02).

20Similarly, given £ > 0 and [—f<; (1/03) K (1/03)}, higher k corresponds to a signal being more am-
biguous.

21To define productivity, I simply assume that labour is the only input of the production process:

Y = AN

and that productivity is defined to be the output divided by labour input and in the first sample, obser-
vations are those that the log difference of output, log(A4;) — log(A;—1), is greater than 0.0032 and for the
second sample, I take those such that log(A;) —log(A:—1) is less than 0.032.

22Conducting the exercise with TFP data (dtfp_util) from Fernald (2014) draws a similar conclusion
such that the estimated skewness from the TFP series for the sample period is 0.2967.

13



Similarly, I regress consumption growth on productivity growth and obtain residuals €2*

where the residuals can be thought of as the variations in consumption growth not explained
by the variations of productivity changes. The skewness of the residuals under different
specifications are all estimated to be strictly negative and statistically significant at the

1% level (p-val < 0.01), suggesting that the asymmetries are effective beyond productivity

changes.
Table 3: Consumption and Productivity Regressions
Specification Aa Aa(-1) Ac(-1) Skewness of residuals
1 0.4976 (0.0629) -0.6897
2 0.5037 (0.0618)  0.1936 (0.0621) -0.6230
3 0.4687 (0.0632)  0.1106 (0.0721) 0.1633 (0.0741) -0.5139

Notes: Standard errors are in parentheses. A constant term is included in all specifications.

However, it does not provide any concrete evidence on why a noisy signal should be
ambiguous instead of productivity observation. Conceptually, a model in which agents are
ambiguous about productivity observation can also deliver negatively skewed consumption
responses. Although I cannot tell which one of the signals is the underlying source of
ambiguity, a sensible first step is to analyse the consequence of agents receiving an ambigu-
ous noise signal about permanent productivity as productivity observation is likely coming

from more reliable sources.

3.2 Consumption behaviour

I now go on to describe the behaviour of consumption in the model. Assume that con-

sumption smoothing leads to the consumption Euler equation:
¢ =E [Ct+1|It] = E, [Ct+1]

where E to denote the consumers’ expectation based on a worst-case belief at period ¢.23

23With ambiguous information quality, consumers maximize the multiple prior utility

max m(%n E, { Z u(Ct)}

t=0

where the prior is on information quality of the signal s;: Q = [1/52,1/02] and expectation is conditional
on information available at period t (Z;), subject to a budget constraint. Consumers’ information Z;
includes observations up to time ¢ such that Z; = {5j7aj}§‘:o and the consumers’ utility maximisation
adheres to the maxmin criterion. More precisely, consumers maximize expected utility under a worst-
case evaluation of information quality chosen from 2. With the min operator consumers evaluate different
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Thus, consumption at period t is equal to expected consumption under a worst case
assessment of information quality at period ¢ + 1. As ¢; = I/[:*it [Ces1] s c1 = IAEtH [ceial, -,
by the law of iterated expectation

¢ = lim E, e )]
j—o0

Having a long-run restriction such that

]ILI{.IO ]Et [Ct-i-j — at—i—j] =0

where the lower case denotes a log transformation of a given variable, I get?*

c; = lim E; [ag]
J]—00

Thus, consumption only depends on the consumers’ expectations of productivity in

the long run under a worst case assessment of information quality. Solving the model,

consumption becomes a function of consumers’ expectations under a worst-case belief:

o= 1 (B[] — o [ (10)

=1 .
where IAEt [z;] and ]Et [z;_1] represent the consumers’ expectations on the current and the
lagged permanent components of productivity under a worst-case belief. The essential
ingredient in this mechanism is that the long-run productivity estimate is consistent with
a worst-case expectation.

This simple permanent income consumption model can be derived from widely used DS-

GEs under certain limiting conditions. For example, Blanchard et al. (2013) theoretically

scenarios according to their priors and choose the worst case scenario available conditional on their decisions
on the choice variables. With the maz operator consumers maximize the worst case expected utility by
choosing over the choice variables. For the rest of the paper, with a slight abuse of notation, I use E to
denote the consumers’ expectation based on a worst-case belief and reformulate the consumers’ problem
as follows:

M2

r%a}xﬁt { u(Ct)}

t

Il
<

subject to a budget constraint.

24The underlying assumption in this stylized model is that the supply side is drastically simplified such
that I consider an economy where consumption is the only demand component with no capital and output
is perfectly determined by the demand side. This implies that y; = ¢; and to produce output y;, conditional
on the current level of productivity a;, the labour input adjusts. On the contrary, in an open endowment
economy, whenever y; # ¢; consumption smoothing households, having access to an internationally traded
bond, borrow (lend) against (for) future income.
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show (Online Appendix Section 6.4.2) that a baseline New Keynesian (NK) model (without
capital and no bells and whistles) converges to a simple permanent income model with a
fixed real interest rate in which consumption is equal to the expectations of the long-run
level of labour productivity. Allowing for ambiguity on information quality, a baseline NK
model converges to a simple permanent income model in which consumption is equal to
the expectations of the long-run level of labour productivity where the expectations are
conditional on a worst case evaluation of information quality. Similarly, Appendix C shows
that the small open economy RBC model converges to a simple permanent income model

with a small sensitivity of the country interest-rate premium to the level of external debt.

3.3 Solving the model

As shown in (10), solving the model requires solving for consumption as a function of beliefs
about the long-run productivity (BLR) under a worst case belief.?> Consumers derive the

expectations on the state vector

/

Xt = (xb Ti—1, Zt)

using the Kalman filter. Let z,;, = E [/, Tyqp = E[2._|Z,] and 2 = E [|Z,] be
the worst case current and lagged beliefs on the permanent component of productivity
and the worst case current belief on the transitory component of productivity. Given new
observations, the previous estimate of the permanent component is updated by applying
the Kalman filter:

Xt = [I — Gaint X C] AXt71|t71 + GCL’l.TLt X St

/ /
where Xy; = (T4, Te—1jt, 2epp) and Xe_1p—1 = (Te—1jp—1, Ty—2t—1, Z—11t—1) are the worst case
. . . .
beliefs on x; at time ¢ and on x;_; at time ¢t —1 and S; = (a4, s;) is a vector of observables.
A and C' are functions of underlying parameters of the model, Gain; is a vector of Kalman

gains, and [ is the 3 x 3 identity matrix:

1+p —p O
1 01
A= 1 0 0|, C=
1 00
0 0 »p

25Beliefs about the long-run productivity under a worst-case belief refer to

lim E, [ag4;]
— 00

J
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Figure 4: The Timing of Belief Updating

As discussed in Section 2.1, Gain; depends on the type of news received.

Assumption 1 Consumers sequentially update beliefs by first updating beliefs with produc-

tivity and then with a noisy signal.

Under Assumption 1, the solution to the model can be tracked down by a simple cut-off
rule on the ambiguity parameter o,. As discussed in Appendix D.1, updated beliefs are
the same whether consumers update beliefs sequentially as in Assumption 1 or consumers
update beliefs simultaneously. In the simultaneous belief updating, agents would use all
available information including current productivity to make decisions under ambiguity,
which by definition is exactly the same as updating beliefs sequentially.?® Figure 4 describes

the timing of belief updating.

Proposition 1 (The sequential updating of beliefs) The sequential updating of con-

sumers’ beliefs can be given by
Xt = Axy—1i—1 + Brag + Gysy (11)

where Ay = [I — GrCs) [I — H,Ch] A, By = [I — G1Cs] Hy, Hy is the Kalman gain of observ-
ing productivity a;, Gy is the Kalman gain of observing a noisy signal sy, and A, Cy, and

Cs are the matrices of underlying parameters:
=1 o01],=]10 0

Proof. See Appendix B.1. =
The types of news that the noisy signal delivers play a crucial role in updating beliefs
in terms of choosing the appropriate signal precision. Formalizing the notion, good and

bad news are defined as follows:

Definition 1 (Types of news) A noisy signal delivers good mews when it is greater
than the ex-ante belief, xyq,, where the ex-ante belief is an expectation about the permanent

component of productivity updated with all “unambiguous information” available contempo-

26This does not imply that there do not exist order effects. See Appendix D.1 for details.
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raneously, which is ]/E:[xt|at,It,1]. Similarly, it delivers bad mews when it is smaller than

xt\at'

A large noisy signal does not necessarily mean that it delivers good news. Instead, the
types of news are related to the surprises carried by the signal relative to the ex-ante belief.
The three shocks in the model are not identical in terms of the types of news that they
deliver. Specifically, while a positive permanent productivity shock and a positive noise
shock deliver good news to consumers, a positive transitory shock generates bad news. The
intuition for these results is straightforward. A positive permanent shock to productivity
increases a noisy signal one-to-one but due to the presence of the transitory component,
agents underestimate the productivity increase such that s; > xy,. Consequently, it
delivers good news to consumers. Also, as a (positive) noise shock does not affect agents’
beliefs, it also delivers good news. Finally, for a positive transitory shock, an increase in
n, positively affects productivity but it has no effect on a noisy signal. As s, < xy,, it
delivers bad news to consumers. Table 4 summarizes the relationship between the shocks
and the types of news delivered. In addition, as discussed in Section 2, the types of news
that signals deliver are directly associated with perceived information quality. For example,
signals delivered by permanent productivity shocks and noise shocks are perceived (by the
consumers) as low quality whereas transitory shocks to productivity generate signals with

high perceived quality.

Table 4: Shocks, News, and Information Quality

Shocks (+) News type Information quality A ¢ Aa
Permanent tech shock (¢) Good Low + +
Transitory tech shock (n) Bad High + +

Noise shock (v) Good Low +  no change

Notes: Assume that the shocks are positive ones. +’s in Ac and Aa refer to the increases in consumption and productivity.

Proposition 2 (The cut-off rule with good news) Let x;; be the beliefs updated with
both productivity and a noisy signal and X4, be the beliefs updated with productivity:

xie = B [ze{as} o, {5} 0]

Xtlay = E [xtHas}i:Oa {Ss Z;a

Then, if s¢ > 544, (delivering good news), the following conditions are satisfied:

(1) Ty — Tyja, > 0, Ty—1j¢ — Te—1ja, > 0, 24t — Z4ja, = 0
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(ZZ) Ct\t - Ct|at >0
(iii) for ambiguity averse consumers, o2 = G>
Proof. See Appendix B.2. m

Proposition 3 (The cut-off rule with bad news) Similarly, if s; < sy, (delivering

bad news), the following conditions are satisfied:
(1) e — Tyja, <0, Ty—1jt — Te—1ja, < 0, 24t — Z4ja, = 0

(ZZ) ct\t - Ct|at <0

2

(iii) for ambiguity averse consumers, o> = g2

Proof. See Appendix B.2. =

Proposition 2 and 3 suggest that for ambiguity averse agents updating beliefs is con-
sistent with choosing an extremum of the range of precisions. Only the boundaries of
the range of precisions (1/62 and 1/02) need to be evaluated to solve the model and the
relevant gains of observing the noisy signal can be either G4(1/02) or G4(1/52), where
G(+) represents the Kalman gain of observing the noise signal with the given precision of
noise at period t. Specifically, noisy signals delivering good news are treated as if they are

uninformative and the ones delivering bad news are considered very precise.

Definition 2 (The limit case) A limit case refers to the specification in which the range

of precisions degenerates to 1/02.

Solving the model, then, requires consumers to determine beliefs about the long-run
productivity under a worst case belief, which is the right-hand side of (10), to satisfy

consuimers’ aversion to ambiguity.?”

3.3.1 The steady-state Kalman gain

In practice of computing the Kalman gain, one often applies the steady state concept in
the sense that the economy is assumed to have been in operation long enough that the
Kalman gain has converged to its steady state value. When the signal precision is known,
ie. 1/02 = 1/6% = 1/02, for a reasonable value of signal precision, the convergence of
the Kalman gain to its steady state value is achieved relatively quickly. Figure 5 shows
that the rate of numerical convergence of the Kalman gain in different signal precisions

for the model illustrated in Section 2.1 with a single likelihood. 1t shows that numerical

27Specifically, consumers’ filtering in (11) is combined with (10) to determine consumption.
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convergence of the Kalman gain is achieved relatively quickly. Thus, the assumption of
the steady-state Kalman gain is not so restrictive in this case where the variances of the

stochastic processes are constant over time.
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Figure 5: Kalman Filter: Convergence

Notes: The three lines represent the convergence of Kalman gains with the following signal precision (o, = 1/3, oo, = 1,
oy =3). z1)0 and Xj|g are respectively set to 0 and 106,

However, this is not the case when ambiguity is introduced in the model such that
the convergence of the Kalman gain is not achieved even in the long-run.?® Figure 6 (Left
Panel) shows the values for the Kalman gain for a 100-period simulation where o, = 0, = 1
and g, = 1.25 and ¢, = 0.75. It shows that the Kalman gain numerically do not converge
to the steady state values, the high and low gain respectively for the case of good news (g,)
and bad news (7, ), which are denoted by the dotted lines. This implies that the Kalman
gain is not time-invariant even in the long-run as the signal-to-noise ratio does not remain
constant and depends on the types of news that agents receive.

The high (low) gain is associated with agents receiving bad (good) news. Moreover,
agents tend to overly sensitive to signals they receive: Agents attach more (less) value on

the signals they receive in case of bad (good) news than at the steady state. This is due to

2

2 move the Kalman

the fact that the error variance ¥;,_; and the variance of the noise o
gain in (2) in opposite directions.

When a spell of consecutive bad (or good) observations is realized, the Kalman gain
indeed converges to the steady state value; however, if agents receive a different type of
news, the Kalman gain does not immediately converge to the (other) steady state value.
In fact, history dependence is crucially important in this case as past realisations of news
affect agents’ present belief formation.

The exception is when the variance of the noisy signal is sufficiently high (02 >> o2)

28The only exception is when the fundamental z; is an i.i.d such that z; = ¢. In that case, Yije—1
and Y;; are constants and that Y;;_; = Xy, = o2 for all t. Therefore, the Kalman gain takes the value

[ 2
for the good news regime and Gainy = Gain = 02170_2 for the bad news regime.

2
. _ . _ (75
Gaing; = Gain = Fewa
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as shown in Figure 6 (Right Panel) where it shows the values for the Kalman gain for a

100-period simulation where o, = 1, 0, = 10, 6, = 12.5, and ¢, = 7.5.
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Figure 6: Kalman Filter: Convergence (Ambiguous Signal)

Notes: The black solid line depicts the Kalman gain according to (2) and the gray dotted lines denote the steady state
Kalman gains for o, = g, (Top) and ¢, = 5, (Bottom).

3.3.2 Ambiguity toward the Kalman gain

So far, the assumption has been that agents have beliefs about the information precision
and that the information precision is ambiguous:
1/0y,, = o7, 7))
While this way of making explicit assumptions about means and variances of stochastic
variables and deriving implications for Kalman gains and conditional best forecasts is a
standard approach, it is not unreasonable to assume that agents directly form beliefs about
how much they learn from one new data point, i.e. beliefs about Kalman gains. Assuming
that such beliefs are ambiguous, the uncertainty can be captured by the range of Kalman
gains:

Gaing = [Gain, Gain|

In other words, agents do not know the Kalman gain due to new information at period ¢.
Furthermore, they do not believe it is constant, nor do they have a subjective probability
distribution over it. They are firmly convinced that it falls into the range, Gain (low
gain) to Gain (high gain), and exhibit aversion toward uncertainty. Then, with good news
(8¢ > xy¢—1), the computed Kalman gain takes the smallest value (Gain, = Gain) and with
bad news (s; < @44-1), Gaing = Gain.

Assuming that agents are ambiguous about the Kalman gain simplifies the analysis as

computing the Kalman gain is no longer history-dependent as illustrated in the previous
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section. For the rest of the paper, I will stick to the following assumption of the steady

state Kalman gains.

Assumption 2 (The steady-state Kalman gains) The steady-state Kalman gains are

achieved with respect to 1/a, for the case of good news and 1/a, for the case of bad news.

4 Quantitative Exercises

In this section I adopt the solution procedure described in Section 3.3 and proceed to

analyse asymmetries generated by ambiguous information.

4.1 Asymmetric responses of consumption

Figure 7 reports the responses of consumption to the shocks in two different set-ups: When
the noisy signal is unambiguous (the limit case) and when it is ambiguous. The time unit
is one quarter and the impulse responses are one standard deviation positive and negative
shocks. Responses of the positive shocks are depicted in the first column and those of
the negative shocks are depicted in the second column. I use the estimated parameters in
Table 6 as parameters. More precisely, the persistence parameter for productivity p is set to
0.9754 and o, is set to 0.68% which implies that the standard deviations of the technology
shocks are given by o. = 0.02% and o,, = 0.67% and that of the noise shock, o, is set to
3.86% and the range of precisions is given by [4.65%, 3.51%)]. Since ambiguity has no effect
on the dynamics of productivity, the responses are completely symmetric as depicted in
Figure 8. Obviously, as productivity does not depend on the consumers’ expectations, a
noise shock does not move productivity at all.

In response to a permanent technology shock ¢;, consumption increases slowly, which
implies that the volatilities of other shocks, which cloud consumers’ ability to recognize and
adjust consumption, are large. In response to a transitory technology shock 7;, consump-
tion initially increases but then declines. As productivity initially increases and then slowly
declines, consumers partly believe that this increase in productivity is due to a permanent
increase in productivity. However, consumers do learn over time that the increase in pro-
ductivity is due to the transitory shock and consumption returns to the original level. For
a noise shock v4, consumption increases and then returns to normal over time. It is such
that the consumption responses are symmetric in the limit case. However, with ambiguity,
consumption, in most cases, tends not to move as much as in the limit case.

The effects of ambiguity can be observed from the asymmetric responses of consumption

to the signs of the shocks. Under ambiguity, consumers are hesitant to respond to good news
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Figure 7: Impulse Responses: Consumption

Notes: Plots in the left column correspond to the IRF's of positive shock of one standard deviation and those in the right
column correspond to the IRF's of negative shock of one standard deviation. The solid line corresponds to the case in which

the noisy signal is ambiguous whereas the dotted line corresponds to the limit case in which o2 = 2.

but are more willing to react to bad news. The intuition is that, with ambiguity, consumers
become pessimistic about the future (which is not only uncertain but also ambiguous) and
that such pessimism directly translates into consumption responses in this setup.

Figure 9 depicts the asymmetric responses of consumption more closely by comparing
the size of consumption responses to the shocks with different signs. In the limit case,
the magnitudes of the effects are completely symmetric. However, when the noisy signal
is ambiguous, the magnitudes of the responses are greater with the negative shocks (solid
line) than with the positive shocks (dotted line). To examine how the downward bias of
ambiguity averse consumers translate into consumption dynamics, I conduct the following

simulation exercise: I keep the underlying (unambiguous) parameters the same as in the
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Figure 8: Impulse Responses: Productivity

Notes: The IRF of productivity is identical in both the limit case and ambiguous specification. Productivity does not respond
to a noise shock.
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Figure 9: Size of Impulse Responses: Consumption

Notes: In order to compare the magnitude of the responses, I multiply -1 to the responses of consumption with negative
shock and plot it with the responses to the positive shock. The solid line corresponds to the case in which the shocks are
positive and the dotted line corresponds to consumption responses the following negative shocks.

previous exercise and use different values for the range of precisions of the ambiguity
parameter o, to evaluate the effects of ambiguity on consumption dynamics. Specifically,

I assume that
out = [(1 =80y, (1+§)o,]

and consider the following cases where ¢ takes the value 0, 0.1, 0.25, 0.5, 0.75, and 0.9.%°
Table 5 reports the simulated consumption moments. The first row represents the limit

case (£ = 0) and the rest considers the case in which the signal is ambiguous. The degree

of ambiguity is in increasing order and the higher degree of ambiguity is associated with

more negatively skewed consumption growth and higher volatility.

297 fix the length of series to 1000 periods and the number of replication is set to 10000.
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Table 5: Consumption Moments Simulation

Specification ¢ o, 7] Skewness Variance (%) Mean
1. 0 [3.860, 3.860] 0.000 0.680 0.000
2. 0.1 [3.474,4.246) -0.176 0.684 0.000
3. 0.25 [2.895,4.825]  -0.454 0.704 0.000
4. 0.5 [1.930,5.790] -1.035 0.793 0.000
d. 0.75 [0.965,6.755] -2.092 1.062 0.000
6. 0.9 [0.386,7.334] -3.634 1.677 0.000

Notes: The true signal precision is given by 1/(0.0386)2. For this exercise I assume that degrees of ambiguity is symmetric
such that it is captured by the parameter o where o, € [(1 — &) 0, (1 4 €) o] and o, = 0.0386. More precisely, the six cases
depicted here correspond to o being 0, 0.1, 0.25, 0.5, 0.75, and 0.9.

4.2 Separation of beliefs from fundamentals

One of the interesting features of this model is when information is assumed to be am-
biguous, the relationship between agents’ beliefs and fundamentals can potentially become
unrelated to each other. For example, consider the simple model in Section 2.1. Specifically,

take the extreme case where the range of precisions is given by
1/a§,t € [0, +o0]

which implies that when agents receive good news (s; > xy;_1), they would consider this
information useless, whereas when agents receive bad news (s; < xt|t_1), they would take
this information at face value. Since z; follows a random walk, agents’ beliefs can be

characterized by
Tyt < Tt—jlt—7s Vi<j<t (12)

implying that agents’ beliefs are non-increasing. Given the initial condition such that
Tojp = o (agents’ beliefs are correct to begin with), this amounts to more and more
negative beliefs about fundamentals over time. At the same time, the series for agents’
beliefs can become flat for extremely long periods as agents’ beliefs would become detached
from fundamental as in (12). This would lead to the flattened series of agents’ beliefs.
Departing from this extreme case example, a presence of ambiguity would still generate
separation of beliefs from fundamentals and how severe a detachment is can be attributed
to the degree of ambiguity. First, assuming that noisy signals are unambiguous, I run the
Kalman smoother on U.S. data to extract the sequence of structural shocks and construct
productivity series (a;) and noisy signals (s;) - the two signals consumers observe. Then, I

feed these signals into my benchmark model with ambiguity and reconstruct the series for
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Figure 10: Reconstructed Consumption with Ambiguity

Notes: The figure shows the detrended consumption. The smoothed estimates of productivity and noisy signals are obtained
from the U.S data with the limiting assumption (¢, = &,). The solid line corresponds to the path of consumption without
ambiguity. The dashed lines correspond to the counterfactual sample paths obtained with different degrees of ambiguity. The
size of ambiguity is captured by the parameter £ such that o, € [(1 — &) o, (1 4 £) o] where o = 4.36%.

beliefs about the fundamental and consumption growth. I use four different sets of values
on the range of precisions, 0,; € [(1 — &)o,, (1 4 £)o,| where o, is the estimated standard
deviation of the noise shock: (1) £ =0, (2) £ =0.1, (3) £ = 0.25, and (4) £ = 0.5.

Figure 10 shows that agents consume less with more ambiguous the signals are. This
may provide some interesting welfare consequences. Less (more) willingness to react to
good (bad) news translates into underestimating the economy’s long run potential, which

in turn decreases contemporaneous consumption and is welfare worsening.

4.3 Estimation
4.3.1 Econometrician’s filtering

While the econometrician does not observe noisy signals, she observes consumption such
that the econometrician’s set of observables include productivity and consumption series.
The consumers’ filtering suggests that only a maximum and minimum of the range of
precisions needs to be evaluated for the ambiguity averse consumers’ belief updating. The
econometrician use this decision rule for consumers’ filtering, and the econometrician’s filter
as well becomes state dependent — the one with the low precision (1/52) and the one with
the high precision (1/c?). The underlying mechanism for constructing the econometrician’s
filter is based on the fact that even though the econometrician does not observe a noisy
signal, she can fully recover the state (or the types of news that consumers received) each
period. The econometrician is able to determine whether beliefs have been updated with
the high or low precision using information available contemporaneously. In fact, similar
to the consumers’ cut-off rule to update beliefs, a cut-off rule to determine how consumers

have updated beliefs at each period can be applied to the econometrician’s filter. Then, a
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likelihood function can be constructed accordingly and the model is estimated through the

maximum likelihood estimation.

Proposition 4 (The econometrician’s cutoff rule) Let x,; be the beliefs updated with

both productivity and a noisy signal and Xy q, be the beliefs updated with productivity:

Xttt = E [Xt|{as}§:0= {Ss}izo}

Xija, = [Xt‘{as}g:m {55 i;%)}
!

where X, = (az’t‘t, Tyt zt|t) . Then,
1. 54 > Ttla, < Ct > Ci|a,
2. S < xt|at = C > Ct\at

where c¢yq, i the consumption that consumers would have consumed had not observed the

noisy signal s;.

Proof. See Appendix B.3. =

By observing productivity, the econometrician is able to determine consumption that
consumers would have chosen to spend without observing a noisy signal, which is denoted
by ¢4jq,- Comparing this with the observed consumption in the data and applying the cut-
off rule in Proposition 4, the econometrician can recover the types of news that consumers
received. Essentially, much like the belief updated with productivity xy,, is used for the
cut-off rule of the consumers, ¢4, is similarly used for the cut-off rule of the econometrician.

For instance, consider the case in which the observed consumption ¢; is greater than
Ct|q,- From Proposition 4 this implies that consumers have updated beliefs with the signal
precision 1/52. Intuitively, as the observed consumption is greater than the consumption
consumers would have consumed without having observed a (contemporaneous) noisy sig-
nal, consumers must have received good news from the noisy signal and have decided to
consume more. At the same time, with good news, consumers must have considered this
signal not so informative.

The econometrician’s filtering can be obtained with the consumer’s filter described
in the previous section and the econometrician’s cutoff rule in Proposition 4. Let the
consumers’ belief updating be given by equation (11) and the econometrician’s state vector
be xF = (x4, Ti_1, 20, Tjt, Ti-1es zt|t)/. Furthermore, let ¢,, be the consumption after

observing productivity a,:
1 ~ ~
Ctlay = Tp (E [xt|ata:zt—1] — pE [xt—1|at,It—ﬂ>
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where Z,_; = {a;, s, ;;%). Then, the measurement equation for the econometrician’s state

vector xZ is

x = Qx, + RV, (13)

where V: = (&, M, ) and R and @ are defined by

R=(1-j)R +jR
Q=(1-7Q"+jQ

The matrices 7 and R’ depend on the realized news such that j = 0 corresponds to
the realisation of good news and j = 1 indicates the realisation of bad news. According to
Proposition 4, j = 0 if ¢; > ¢4, and j = 1 if ¢; < ¢44,. Since the econometrician observes

productivity and consumption, the observation equation is

(ar, ¢) = TxE (14)
where
101 0 0 0
000 1% = 0
p p

The econometricians’ filtering problem can, then, be solved with (13), (14), and the

cutoff rule in Proposition 4.3°

30For identification, Blanchard et al. (2013) illustrate two special cases, when the signal is perfectly
informative or when it is completely uninformative, in which a structural VAR recovers ¢; and 7;, and
their dynamics effects. In the presence of ambiguity, however, it is not possible, even in these special cases,
to simply rely on a structural VAR to recovers shocks in the model. First, consider the case of a fully
uninformative signal where 1/02 = 0 where the range of precisions is given by

1/012/ = [07 1/912/]

such that agents would believe either that signal is fully uninformative or that its precision is given by
1/02. In this case, even if the signal is useless, it may affect the agents’ belief updating. Similarly, when
the signal is fully informative such that 1/02 = oo where the range of precision is defined by

1/0} = [1/57, o],

agents might believe that the signal is less than fully informative depending on the types of news they
receive. This is an interesting departure from the limit case benchmark. In the limit case, if the signal is
fully informative, consumers are able to identify the permanent shock to productivity directly. However,
when information quality is given by the range of precisions, even if the signal is fully informative, consumers
are not able to recover the permanent shock perfectly.
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4.3.2 Structural estimation

The model is estimated through maximum likelihood where a likelihood function depends
on the types of news realized. The econometrician can fully recover the regime, i.e., whether
a noisy signal delivers good or bad news, with the contemporaneously available information
as discussed in the previous section. Therefore, the regime can be revealed in each period

and the likelihood function can be modified to incorporate that.

Table 6: Parameter Estimates, US 1970:1-2016:1

Parameter Description Value s.e.

p Persistence productivity 0.9754  0.0021
Oy Std dev. productivity 0.0068  0.0002
Oc Std dev. permanent shock (implied) 0.0002 -

oy Std dev. transitory shock (implied)  0.0067 -

gy Std dev. noise shock (lower bound)  0.0351  0.0003
T, Std dev. noise shock (upper bound) 0.0465  0.0003
oy Std dev. noise shock 0.0386  0.0020

log-likelihood 1336.15

Notes: o. and o, are obtained with random walk assumption of (9). Hence, no standard errors are given.

Consumption is constructed by taking the first difference of the logarithm of the ra-
tio of NIPA consumption to population whereas productivity is constructed by taking
the first difference of the logarithm of the ratio of GDP to employment. Real personal
consumption expenditure (PCECC96), real gross domestic product (GDPC1), population
(LNS10000000Q), and employment (LNS12000000Q)) series are from 1970:I to 2016:1 and
are available at the U.S. Bureau of Economic Analysis for the first two series and at the
U.S. Bureau of Labor Statistics for the next two series. Following Blanchard et al. (2013), I
remove secular drift in the consumption-to-productivity ratio from the consumption series.
Table 6 shows the estimation results with US consumption and productivity data.3!

The qualitative implications of the dynamic effects of each shock are as follows. Per-
manent shocks on productivity slowly and steadily increase productivity and consumption.
Transitory shocks on productivity have slowly decreasing effects on productivity and con-
sumption while noisy shocks generate slowly decreasing effects on consumption only. The
main takeaway is that the effects are asymmetric such that as depicted in Figure 9 the
absolute size of the responses are larger for negative shocks than for positive ones.

The limit case, as defined in Definition 3, refers to the case in which a noisy signal is

assumed to be unambiguous. Table 7 reports the parameters obtained when estimating

31For maximum likelihood estimation I initialize the variance covariance matrix of the estimator with a
diagonal of 100.
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Table 7: Parameter Estimates, US 1970:1-2016:1 (the limit case)

Parameter Description Value s.e.

p Persistence productivity 0.9763  0.0044

Ou Std dev. productivity 0.0067  0.0002

Oc Std dev. permanent shock (implied) 0.0002 -

oy Std dev. transitory shock (implied)  0.0066 -

o, Std dev. noise shock 0.0436  0.0093
log-likelihood 1332.68

Notes: o and o, are obtained with random walk assumption. As they are indirectly recovered, no standard errors are given.

the model by assuming that o, = &,. This limit case indicates that consumers are aware
of the exact signal precision and the impulse responses are symmetric to the sign of the
shocks. The estimated standard deviation of a noise shock, &, in the limit case is shown
to lie inside the estimated range of precisions in Table 6.

Since this limit model (unambiguous signal) is a special case of the benchmark model
(ambiguous signal), a likelihood ratio test can be used to compare the goodness of fit of
the two models. Specifically, the “null” model (unambiguous signal) has 3 parameters
with a log-likelihood of 1332.68 whereas the “alternative” model (ambiguous signal) has 5
parameters with a log-likelihood of 1336.15 such that the test statistic is 2 x (1336.15 —
1332.68) = 6.94 with degrees of freedom equal to 2. Thus, the null model is rejected in

favour of the alternative model at a significance level of 0.05.

4.3.3 Recovering states and shocks via the Kalman smoother

A useful exercise is to exploit the fact that the econometrician has access to the whole
sample (t=1:T) and she is able to estimate states and shocks using the Kalman Smoother.
Having more information available, we are able to have better estimates what the states
and shocks were.

Figure 11 plots the smoothed estimate of the permanent component of productivity
(x¢) and of long-run productivity (x;;) for the two models - the benchmark ambiguous
signal model and the limit case unambiguous signal model. The permanent component of
productivity (Left panel) is estimated to be higher in the benchmark ambiguous case than
in the limit case. Neglecting the presence of ambiguity, thus, implies underestimating the
state of the economy (measured by its permanent productivity). Similar results hold for
estimating long-run productivity: Misspecification of the model (by not taking into account
of the presence of ambiguity) results in underestimating the economy’s long-run potential

for the sample period.
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Figure 11: Smoothed Estimates of the Permanent Component of Productivity and of Long-
run Productivity for the the Two Specifications

Notes: Left panel depicts the smoothed estimate of xy and Right panel depicts the smoothed estimate of x4 o, With ambiguous
signals (solid line) and with unambiguous signal (dashed line). I use the parameters estimated in Section 4.3.2, i.e., for the
benchmark ambiguous signal model o, € [0.0351,0.0465] and for the limit case unambiguous signal model o, = 0.436.

5 Concluding Remarks

I have provided a simple theory of asymmetric consumption fluctuations due to ambiguous
quality of information and agents’ aversion toward ambiguity. Methodologically, I have
attempted to solve a simple forward looking model of consumption with ambiguous infor-
mation quality. It allows one to examine the dynamics of consumption when agents face
strong uncertainty. In the stylized permanent income model, the closed form solution of
consumption dynamics is obtained where consumption is driven by consumers’ beliefs about
the long run under a worst case belief. Since the consumers’ belief updating is consistent
with evaluating the boundaries of the range of information precisions, the econometrician’s
filtering can be expressed as a regime switching model where the regime is fully retrieved
by the econometrician. The structural estimation using U.S. data suggests an asymmetric
nature of consumption responses to exogenous shocks.

Throughout the paper, I have made a strict assumption such that there is no learning
about ambiguity where it remains the same over time and that all agents are alike (no
heterogeneity) in terms of their perception toward ambiguity that they face or in the sense
that they all receive a common noisy signal. Studies incorporating the interaction between
learning and heterogeneity when dealing with strong uncertainty may be the natural exten-
sion of this model to explore a future research avenue. For example, a more realistic setup
on ambiguity such that agents adhere the a-mazrmin expected utility with a time varying
« may produce some interesting dynamics, e.g. a time-varying skewness of consumption

growth.
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A Constructing the Data Series

The following describes the data series used in this paper. The data are from the Federal
Reserve Economic Database (FRED) and span the period from the first quarter of 1970
through the first quarter of 2016. All of the series are seasonally adjusted and are quarterly
unless otherwise indicated. The two key variables of this model are constructed as follows:

(Labour) Productivity: 1 measure labour productivity, denoted a;, as the logarithm of

the ratio of GDP to employment such that
a; =log Ay = log Y, — log N,

where Y} is real gross domestic product (in billions of chained 2009 dollars) and Ny is the
employment level.
Consumption: 1 measure consumption, ¢;, as the logarithm of the ratio of NIPA con-

sumption to population such that
¢t = log Cy = log Cons; — log Pop,

where Cons, is real consumption expenditure (in billions of chained 2009 dollars) and Pop,
is the population level at period t.

As discussed in Blanchard et al. (2013), there is an issue such that in contrast to any
balanced growth model, productivity and consumption have different growth rates over the
sample (0.32 percent per quarter for productivity, versus 0.41 percent for consumption),
which potentially reflects factors left out of this simple model. To deal with the issue, in
the empirical analysis, I allow for a secular drift in the consumption-to-productivity ratio
and remove it from the consumption series.

For the TFP variable, I use the utilisation adjusted quarterly TFP series from Fernald

(2014). It measures the business section TFP less utilisation of capital and labour.
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B Proofs

B.1 Proposition 1

Proof. Conditional on xy,,, consumers’ filtering is given by

Xejt = Xtja, + Ge(St — Stja,)
= X¢|q, T G151 — G1O1Xy)q,
= [[ — Gtcl]Xt|at + Gtst

where G is the Kalman gain for the following system of equations:

x; = Ax,_1 + BV,
St — Clxt + D1Wt

and x; = (x4, m1, z21), Vi= (&, 0, n,), Wy =y, Dy =1,

14p —p 0 10 0
A= 1 o0 ol B=|0oo0 0 Olz[loo}
0 0 p 00 1

Similarly, conditional on X;;_1, X4, is given by

Xtla, = Xt[t—1 T H(a; — at|t—1)
= Axy_1y—1 + Hay — HCy A%y 1)
== [I — HOQ]AXt_l‘t_l + Hat

where H is the Kalman gain for the following system of equations

Xt = AXt_l + BVZ
Ay = OQXt + DQWt

and Xt = (:L'ta Ti—1, Zt)/7 ‘/t = (€t7 07 nt)l7 Wt =V, D2 = 07

14p —p 0 100
A=| 1 0 ol B=1o 0 0 02:[101}
0 0 00 1
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Substituting xy,, from (17) into (16)

Xt|t = [_[ — Gtcl][l — HCQ]AXt—l‘t—l + [I — Gtol]H(lt + GtSt

B.2 Proposition 2 and 3

Proof. From (15), I have

X¢jt = Xt|a; T Gyi(sy — 5t|at)

where G is a 3 x 1 column vector such that Gi is the Kalman gain associated with the
i-th component of x;;. For example, G} is the gain of observing the noisy signal s; on
2. Furthermore, G = YxC}[Ci1ExC R]™! where R, = Var(W,) = o%(t) and Sx =

Var,_(x;):32
Yo Y2 i3
Yx = (X1 Yo X3
Yig1 Y3z Xag

where ¥;; is the Var,_1(x;,) and X;; is the Cov,_1(x;,,%;,). With a little bit of algebra,
each component of G can be defined by

G% = 211(211 —+ O'g(t))_l (18)
G? =91 (S +o2(t) ! (19)
G} =35 +oo(t) ™!

Since X3 > 0, 0 < p < 1, and (41 + 02(¢))"' > 0, G; > 0 such that if s, >
Stlag> Telt — Ty, > 0 and that if s, < sy4,, Tep — Tye, < 0. Similarly, as 31 > 0 and
(X11 +02(t))~" > 0, Gf > 0 such that if s, > syq,, 41t — Te—1]a, > 0 and that if s, < sy,
Ty_1t — Ty—1)a, < 0. Finally, given that X3, = 0, G? = 0 such that 24t = Ztla, = 0, V 5 and
St|a, -

For consumption, ¢; and ¢, are given by

1
1 —
1
1 —

Cy = P (fL"t|t - th—l\t) (20)

Ct|at - p (It|at - p$t71|at)

328111(36 etJ_l/t+j, ntJ_l/t+j,Vj, 213 = 223 = 231 = 232 =0.
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Substituting x;; and x,_1; from (15) into (20) gives

1
Ct = 1=, (th|t - th—1|t)
1
= 11— (xtIat + G% (St - Stlat) — Pli—tla; — pG?(St - St|at))
1
= Ct|a; T 1Tp ((St - 3t|at)(G§ - PGf)) (21)

From (18) and (19), it gives

G — pGi = Eu(En + oy (t) ™! = pEa (B + o (1)
= (211 - P221)<211 + 0_3@))—1

As ¥y > 39 and 0 < p < 1, G} — pG7 > 0. Therefore, when s, > sy4,, the second
term on the right-hand side of (21) is positive and when s; < syq,, it is negative. Thus, if
8¢ > Stla, Ct — Ctlq, > 0. Similarly, if s, < syq,, ¢t — ¢y, < 0.

From (21) when s; — syq, > 0, G — pG} should be as small as possible to minimize ¢;.
Since G} — pG? = (211 — pXa1)(X11 + 02(t))~ !, it is such that o, = 7,. Similarly, when
St — Stja, < 0, minimizing ¢, requires that G} — pG} takes the largest possible values. Thus,
when s; — 544, <0, 0, = 0,

This completes the proof of Proposition 2 and Proposition 3. =

B.3 Proof to Proposition 4

Proof. Rewrite equation (21):

1—p
St = Stlas = A1 o2 (Ct - Ct\m)
Gy — pGi

. 1— . .
Since Gl_—;GQ > 0, ¢; — ¢ya, and s; — 844, should have the same sign: if ¢; > ¢yja,, ¢ > Stja,
t t

and if ¢; < ¢y, St < Stja,- W

C SOE-RBC Model

This appendix derives a permanent income consumption model under a worst-case belief

from the small open economy RBC model as in Cao and L’Huillier (2015).
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C.1 Setup

A representative consumer maximizes multiple priors utility:

I/E\:t Z 5t log C;
t=0

where ]ﬁt is the expectation operator under a worst-case belief that is chosen from a set of

conditional probabilities on information quality. The maximisation is subject to
Ci+ By =Y, + QB

where B; is the external debt of the country, @); is the price of this debt, and Y; is the
output of the country. Output is produced using only labor

}/;5 - AtN
where the labour input is assumed constant. The resource constraint is
Ci+ NX, =Y,

The price of debt is sensitive to the level of outstanding debt:

L R=R 1y { R 1}
— = = e Xt —
Q

where b denotes the steady state level of Byi1/X;.

C.2 Optimality conditions

The first order condition from the optimisation problem delivers

1 ~ 1
~ _BRE
Cy PR, {Cwl]

For log-linearisation, we define endogenous variables ¢, v, q¢, bii1, nxy as
¢ = log(Ci/ X, 1) — log(C/X)

ye = log(Y:/X;-1) — log(Y'/X)

q = log Q, — logQ
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NX, NX
nry = — — —
t Y, %
For notational convenience, I also define:
C Y B . NX
C=— Y == B=— = NX =—
X ) X Y X ) Q Q? Y
C.3 Log-linearisation
Start from
NX; = B — QB
Diving both sides by Y;:
By Xi 4 By Xi 1 Xy
NX,/Y, = —
(A0S S R N T
leads to . GO B B
nTy = ?bt — Tbtﬂ - ?GQ(Qt — 1y + Axy) — v Y
Dividing both sides of the resource constraints by Y;:
Cy X NX
t t—1 + t -1
X1 Yy Y:
leads to
Q(E —y) +ne, =0
v\t Yt t =
Substituting nz, from (22) into (23), I get
C . 1 G B B
?(Ct — ) + ?bt - Tth+1 - ?GQ(% — Y+ Axy) — v = 0

Dividing the both sides of the production function by X;_i:

v, X
X X

N
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leads to
Yr = 2+ Ay (25)

Multiplying both sides of the first order condition by X;_i:

X ~ [ Xy Xi_
tlzﬁRtE|: t tl}
C; Cip1 Xy
leads to
G =q + 1+ Az (26)
where ¢; = —ry.

Rest of the model is specified similar to Cao and L’Huillier (2015):

@ = — Qb (27)

=0+ x (28)

Thus, (24) to (28) along with technology processes comprise the log-linearised version
of the model.

C.4 Steady states

The following steady state relations hold:

Q=p
(1-pg=1-0/y

C.5 Closed-form solution and limit result for consumption

Define a new variable l;t:
Bt =b+ Bxy

Using the definition of the log-deviation of consumption:

Ct = C¢ + Ti—1
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I make a following conjecture:

C = DbZA)t + DxXt
= Dbi)t + D1y + Dy oxyq1 + Dy 32 (29)

where x; = [y, x; 1, zt} I claim that as 8 — 1 and “h ﬁ) — 0, consumption ¢; is only a
function of belief about the long-run (BLR) under a worst-case belief:

1

Ct = 1 — <]Et [l’t] P]Et [%4])

expressed in the following proposition.

Proposition 5 (Limit consumption) As § — 1 and = =) ﬁ) — 0,

lim lim Dy, =0
B—19P—0
1 1
Al e = Ty T,
L —p
s Hm Doz =
lim lim D, 3 =0
B—119p—0

Proof. From (24) and (25), I have
0=Y(z+ Ax,) + BB(Axy — YBbiy1) + fbi — by — CG
and with the definition of ¢; and Zt, I get

~ 1 ~
bt+1 = m bt + CCt — YZt — (Y + BBwﬁB)th] (30)

The Euler equation (26) and the debt equation (27) imply that
Ciy1 — &+ Axy — Qb =0
which by using the definition of ¢; and Et becomes

Cri1 — ¢ — YBbiys + BB, = 0 (31)
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Using the conjecture (29), (31) becomes
(_Db — T/)/B)/gt+1 + DmAXt ‘I— Tp/BBlL't — Ct = O

and combined with (30)

[1 ~ M] ¢ — ((Db;wﬂ) (E _ th) + DA%, + Kz,

(1-vpBB)p 1—yBB)A
where (Dy — 0B)
y —
K== [ 25y O + 9809 o
and
1+p —p O
A= 1 0 O
0 0 p
Rearranging (32) leads to
(1—2)ei = Zhi— =Y+ DA, — [ (Y + BBUSB)| a0 + v5Ba
where
o Dy —¥Q)C
(1-v@B)GQ

Finding D, in the limit leads to D, = 0.%3

331 get the following quadratic equation in Dj:

D§+[é—(l—¢ﬁ3)g—wﬁ}Db—%ﬁ:0

(32)

(33)

where I pick the negative root to ensure the stability of the dynamic system and in the limit Dy — 0:

. —(é—(l—wﬁB)é—wﬁ)—\/(é—u—wﬁB)é—wﬁ)Z%
-

For C =1 in the limit:
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From (33), collecting the terms for x;:

z

(1=2) Doy = =5 (Y + BBYBB) + BB + (1+ p) Dy + Day (34)

Similarly, collecting the terms for z;_;:

(1 — i’) D%Q = _po,l (35)

Finally, for z:
(1 - f) DCC,S = pr,S

Thus, D, 3 = 0 and from (35)

Substituting D, » into (34),

z

1—2)D,; = —
( ‘CE) z,1 C

(V + BBYSB) + BB + (1+ p) Do = 17— Da

Then, I can solve for D, ;:

Do = (125 ) (3) [5 0 + smusm) - v

With the limit conditions,
1-z 1 1-z 1
limlimD,1=(——| | = | (V BYpB)— | ——— | | = B
B ! (1—p—f)(0)< + FBYEB) (1—p—f>(f)wﬁ

e ()

as ( 1-2 ) (1) ¥BB goes to zero in the limit.** Given D, in (36), with the limit condi-

1—p—2

341n the limit,
1-z 1

l—p—z 1—p
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tions, I find D, o:

i imlim —L D, = (=L
A P = I I T P T oy (1 —p)

Thus, it shows that Proposition 5 holds and when C/Y = 1:

1

c = Tp <]Et 4] — P]/Et [xt—1]>

Thus, only need to show that %wﬁB — 0 in the limit. Using the definition of Z, I have

(1—BB)B (1-C
(Db—wmc(l—ﬂ)W

Lysp =
X

As D, = 0 in the limit, I have

PB(1-C)1—9ypB)B _ 1-C ((1—wﬁB)Bw,@> _0

—yBC(1 - ) - C 1-3

as long as C # 0. Since % — 0 and % < 0.
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D Online Appendix (not for publication)

D.1 Sequential Belief Updating under Ambiguity

Updating beliefs sequentially or simultaneously makes no difference on ex-post revised
beliefs when the quality of information is certain. However, under ambiguity, such claim
may not necessarily be materialized.

The aim of this section is two-fold. First, I show that the simultaneous and sequen-
tial belief updating do not necessarily generate identical revised beliefs under ambiguity.
Second, I show that the simultaneous belief updating under ambiguity can be described
as updating beliefs sequentially when the agents first update beliefs with an unambiguous
signal. The discussion is based on the case in which there are two signals and one of which
is ambiguous. But it is easy to generalize the discussion with N signals where N > 2 and
there are N — 1 unambiguous signals.

Let the process x ~ N(6,02) and agents receive two signals about x:

a=x+n

S=x+ v,

where 7 and v are i.i.d. Gaussian shocks such that 7 ~ N(0,07), v ~ N(0,07). Agents
update beliefs about x with the two signals. The key assumption here is that the signal s
is ambiguous such that o2 € [o2, 52].

Consider the three alternative belief updating schemes. First, agents update beliefs first
with the unambiguous signal and then with the ambiguous signal. Second, agents update
beliefs simultaneously. Finally, agents first update beliefs with the ambiguous signal and

then with the unambiguous signal.

D.1.1 Sequential updating [seq-1]:

Assume that agents update beliefs sequentially - first with the unambiguous signal and
then with the ambiguous signal. Conditional on an ex-ante expectation on z, initial step is

to update belief with the observed signal a. For simplicity, assume that the agents’ utility

3

is strictly increasing in z.3° and agents maximize the multiple priors utility:

max min E [u(z; w)]

35The results may not hold if U is a non-monotonic function of z.
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where the set €, the priors, is on the range of precisions such that Q = [1/52,1/02]
and Ju/0xr > 0. While the agents’ utility is strictly increasing in z, it also depends on
the ambiguity parameter w as a belief on x is a function of a signal precision. Then, the
mazxmin operation suggests that w which minimizes the expected utility is chosen to satisfy
agent’ aversion toward ambiguity.

The procedure to update beliefs is summarized as follows.

updating with a: the updating beliefs with a is given by

2 2
g g
tla = —"=0+ 5—"=a (37)
oy + 0, oy + o,
2,2
00,

Var(z|a) = 02 =
o2+ ol

In other words, the revised belief with the first signal is just a weighted average of an
ex-ante expectation (the unconditional expectations of x) and the observed signal where

the weights depends on the precision of fundamental and the noise.

updating with s: conditional on z|a, the updating beliefs with the ambiguous signal is

given by

o2
rla,s =zla+ | —2— ) (s — z|a 38
o= afa+ (572 ) (s el (39)
Since z|a and agn do not depend on o2, the following simple cut-off rule can be applied

to update beliefs:

Proposition 6 With sequential belief updating, when s > x|a, agents update beliefs with

2 =2 2
V_JV' v

o When s < z|a, agents update beliefs with o = o

Proposition 6 can be proved just by checking the second term in the right-hand side

of (38). When the observed signal s is greater than x|a, the weight attached to the signal
2

should be as small as possible since the weight is inversely related to o2 such that o2 = 52.
Same logic applies when s < z|a.

Intuitively, in terms of comparison between the signal observed (s) and the agents ex-
ante expectations (r|a), when good news arrives, agents are hesitant to believe that the
signal is precise. On the contrary, when bad news are delivered, agents would believe that

the signal is very informative.

46



D.1.2 Simultaneous updating [sim]:

Agents update beliefs with the signals S = (a, s)" where

S =Ax + €

2

with A = [1, 1}/, e = [n, V]/. V = Var(e) is a diagonal matrix with o and o7 being the

diagonal components. Then, the updating of beliefs is given by

2.2 2.2 2,2
B UVU,,] 0_;[;077 axau
x\S—22 252 220+22 252 2,25 T 52 252 5,24 (39)
0,0, +0,0,+0,0, 0,0, +0,0,+ 0,0, 030, +0,0,+ 0,0,

where the multiplicative terms for s and a are relative gains of observing the signal s and

a, respectively, and o2 is chosen to minimize z|S. Let § = s — 0 and @ = a — 6, then (39)

becomes
2 2 2 2
oio oio
X ~ ~
m|S:9—|—22 22 5 25T 55 2; 2 2@
030, + 030, + 0,0, 030, + 030, + 0,0,

Lemma 1 x|S is a monotonic function of o>

Proof. To prove Lemma 1, it is sufficient to show that % does not change the sign

for Voo € [o2,57) given ¥ = {02,07,0,s,a}. Taking the derivative of z|S with respect to
2

o,
ox|S N _
00’2 = (0503) 5 (0:3012, + Jicrf] + 072705) 2 (—=1) (Ji + 072]) +
1%
+ (‘792503) a (aia,% + 0303] + 0203) - (—1) (az + UZ) +
+ oz (030, + 020, + 0203)_2 (020, +0lor +0707)
_ oy0p (@ —3) — 020,58 (40)
(0202 + 0202 + 0303)2

From (40), it is easy to see that the denominator is always positive while the numerator
can either be positive or negative depending on the parameters. As o2 does not enter into
numerator, the sign of dx|S/da? does not depend on ¢2. z|S, therefore, is a monotonic

function of o2. m

Proposition 7 With the simultaneous belief updating, agents update beliefs as if they do

it sequentially described in Proposition 6. Specifically, when s > x|a, agents update beliefs
2 2

with 02 = 2. When s < z|a, the agents update beliefs with o2 = o2.
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Proof. From (37), z|a can be written as z|a = 6+ <i> a, where, as before, a = a—#0.

o%—&—o%
It is sufficient to show that when s > x|a, %ﬂf < 0, whereas when s < z|a, %ﬂf > 0. Since

the denominator of (40) is always positive, I only need to consider the numerator of (40),

which is
0;10727 (a—3§)— 0?035 (41)
Divide (41) by 020} gives
o2a— (02 +02)5 (42)
Dividing (42) by (02 + 07) gives
o2 _
04— 3§
(0% +07)
Therefore, the sign of %ﬂf depends on whether s is greater or less than [O’i / (Jg + 0727)] a.
Since the denominator of (40) is always positive when (J%‘f”a%)d > 5,
oz|S
>0
do?
On the contrary, when %G < 3,
(w2+3)
oz|S
<0
Jo?

The first case coincides with s < z|a and the second case with s > x|a. Since z|S is

a monotonic function and %ﬂf < 0, when s > z|a, agents update beliefs with o2 = 52.

2

v

Similarly, when s < z|a, agents update beliefs with 02 = ¢
Thus, simultaneously updating beliefs can be represented as sequentially updating be-
liefs [seq-1] described in the previous section. m

D.1.3 Sequential updating [seq-2]:

Consider the case in which agents update beliefs first with the ambiguous signal and then

with the unambiguous signal.
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updating with s: the updating of beliefs with s can be given by

2

zls =0 + r (s—0

| 09234—03( )
2 02‘73

V = %) = -
Therefore, the following cutoff criteria would apply to update beliefs:
=52 (43)

s<f=o02=qg> (44)

updating with a: conditional on z|s, updating beliefs with the unambiguous signal a

can be given by

& Oz
x|s,a - ﬁmls + =2 5 2¢
(o= —{—077 0% +c777

where 62, and z|s are chosen with cutoff rule in (43) and (44).

Proposition 8 Updating beliefs sequentially defined as above (seq-2) does not necessarily

produce the identical updated beliefs as in the other schemes.

Belief updating under ambiguity crucially depends on how agents apply cut-off rules.
In the previous two cases (sim and seg-1), the cutoff rules apply with the reference level
s = x|a. However, in seq-2, the reference level to apply cut-off rule is s = 6. Unless x|a = 6,
therefore, the updated beliefs (in seq-2) are not the same as the ones obtained from the

other cases.

D.2 Consumption

Productivity is assumed to have two components, a permanent component x; and a tran-
sitory component z,:

at:$t+zt

and since consumption depends on agents’ beliefs about the long-run under a worst-case

belief, it can be solved by

o = lim E;[ar;] = lim Ey [0 + 244]
j—o0 j—00
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such that

Ct = hm ]/Et [A$t+j + Axt_t'_j_l + R + ACL‘t+1 ‘I— Tt + Zt+j]

Jj—00

= lim E, [piAxtH +p Azt Axt+1] + lim E, ] + + lim E, [ijZJ
J—00 Jj—o0

Jj—o0
= @y +p]1Lr§OIEt (L4 p+-+p) Axy]

A~

E; [Ax,]

:$t|t+1p

1
1—

= Tyt + ($t|t — It—1|t) =

p
1—p P ($t|t - Pl't—1|t)

where x,;, = E, 2] and @1, = E, [z,_1] are the worst case beliefs on current and lagged

permanent productivity.

D.3 Econometrician’s filtering
Let the state vector xy,, be given by

/

Xt|at = (xt‘ata wtfl‘ata Zt|at)
and the dynamics of consumers’ beliefs on xy,, be summarized by

Tt|ay T—1)t—1 T
Tp e, | =1 —HC A |2y oy | + H [1 +p —p —p| |T2| + Her + Hy

Zt|at Zt—1|t—1 Zt—1
where A and C5 are given in Proposition 1 and H represents the gains of observing pro-

ductivity. Similarly, conditional on expectations xy,,, the econometrician’s state vector x;;

becomes

Lyt Tt|a, T
| = =GO |2qj, | +Ge|l+p —p O] |@—a| + Geer + Geme + Givy
2|t Zt|at Zt—1

where (' is given in Proposition 1 and G; represents the gains of observing a noisy signal

at period ¢. Substituting x4, into xy, it gives

Tt Ti—1)t—1 Ti—
T | = A |zopor | +B |zs |+ — GCIH + G e+ [[I — GCLH + Gy e + Gy

2|t ft—1]t—1 Zt—1
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where

A=[I-GCi|[I—HCA

and
B:<H[1+p —p —p]JrGt[l—f—p 4 OD

Denoting the econometrician’s state vector as xZ such that
x; = (xt, Te—1, Zts Tifts Te—1ft; Zt\t)
the transition equation can be summarized by
x; = Qx; ., + R (e, mi, 1) (45)

where () and R are given respectively by

—1+p —p 0 |
1 0 O 0
0 0 »p
Q=
Q A
R =
R
with
_ 1 —
Q-B tp —p p
I1+p —p O
and
_ 1 1 1
R_B +p 0 0 +p 00 +p 0 0
1+p 0 0 1+p 0 0 1+p 0 O

As the econometrician observes productivity a; and consumption ¢;, the observation
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equation is

where
1 01 0 0 0

000 1/(1=p) p/(1=p) O
Thus, the econoemtrician’s filtering problem can be solved by (45) and (46) and the

decision rule stated in Proposition 4.
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