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Abstract

We show that in a general equilibrium model with heterogeneity in risk
aversion or belief, shifting wealth from an agent who holds comparatively
fewer stocks to one who holds more reduces the equity premium. Since
empirically the rich hold more stocks than do the poor, the top income
share should predict subsequent excess stock market returns. Consistent
with our theory, we find that when the income share of top earners in
the U.S. rises, subsequent one year market excess returns significantly de-
cline. This negative relation is robust to (i) controlling for classic return
predictors such as the price-dividend and consumption-wealth ratios, (ii)
predicting out-of-sample, and (iii) instrumenting with changes in estate
tax rates. Cross-country panel regressions suggest that the inverse rela-
tion between inequality and returns also holds outside of the U.S., with
stronger results in relatively closed economies (emerging markets) than in
small open economies (Europe).
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diction; wealth distribution; international equity markets.
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1 Introduction

Does the wealth distribution matter for asset pricing? Intuition tells us that
it does: as the rich get richer, they buy risky assets and drive up prices. In-
deed, over a century ago prior to the advent of modern mathematical finance,
Fisher (1910) argued that there is an intimate relationship between prices, the
heterogeneity of agents in the economy, and booms and busts. He contrasted
(p. 175) the “enterpriser-borrower” with the “creditor, the salaried man, or the
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laborer,” emphasizing that the former class of society accelerates fluctuations
in prices and production. Central to his theories of fluctuations were differences
in preferences and wealth across people.

Following the seminal work of Lucas (1978), however, the “representative
agent” consumption-based asset pricing models—which seem to allow no role
for agent heterogeneity—have dominated the literature, at least until recently.
Yet agent heterogeneity may (and is likely to) matter even if a representative
agent exists: unless agents have very specific preferences that admit the Gorman
(1953) aggregation (a knife-edge case, which is unlikely to hold in reality), the
preferences of the representative agent will in general depend on the wealth
distribution, as pointed out by Gollier (2001). Indeed, even with complete
markets, the preferences of the representative agent are typically nonstandard
when individual utilities do not reside within quite particular classes.

To see the intuition as to why the wealth distribution affects asset pricing,
consider an economy consisting of people with different attitudes towards risk
or beliefs about future dividends. In this economy, equilibrium risk premiums
and prices balance the agents’ preferences and beliefs. If wealth shifts into the
hands of the optimistic or less risk averse, for markets to clear, prices of risky
assets must rise and risk premiums must fall to counterbalance the new demand
of these agents. In this paper, we establish both the theoretical and empirical
links between inequality and asset prices.

This paper has two main contributions. First, we theoretically explore the
asset pricing implications of general equilibrium models with heterogeneous
agents. In a static model with incomplete markets, heterogeneous CRRA util-
ities, and collinear (but different) endowments, we prove that there exists a
unique equilibrium and that in this equilibrium increasing wealth concentra-
tion in the hands of stock holders (the more risk tolerant or optimistic agents)
leads to a decline in the equity premium. Although the inverse relationship
between wealth concentration and risk premiums in the presence of heteroge-
neous risk aversion has been recognized at least since Dumas (1989) and recently
emphasized by Gârleanu and Panageas (2015), our model extends the existing
results because we allow for incomplete markets, many agents with heteroge-
neous CRRA utilities, and arbitrary shocks.

Second, we empirically explore the theoretical predictions. We find that
when the income share of the top 1% income earners in the U.S. rises, the
subsequent one year U.S. stock market equity premium falls on average. That
is, current inequality appears to forecast the subsequent risk premium of the U.S.
stock market. Many heterogeneous agent general equilibrium models in both
macroeconomics and finance predict a relationship between the concentration
of income and asset prices (see Sections 1.1 and 2.3). We thus provide empirical
support for a literature which has been subject to relatively little direct testing.
Furthermore, the patterns we uncover are intuitive. In short, if one believes
top earners invest relatively more in risky assets (due to high risk tolerance or
optimism), then it should not be surprising that in the data asset returns suffer
as the rich get richer. Theorem 2.2 rigorously confirms this intuition.

More specifically, we employ regression analysis to establish the correlation
between inequality and returns. Because top income shares appear nonstation-
ary, we use a stationary component of inequality, “cgdiff,” which we define
to be the difference between the top 1% income share with and without real-
ized capital gains income. Regressions of the year t to year t+ 1 excess return
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on the year t top 1% income share indicate a strong and significant negative
correlation: when cgdiff rises by one percentage point, subsequent one year
market excess returns decline on average by about 3–5%, depending on the con-
trols included. Overall, our evidence suggests that the top 1% income share is
not simply a proxy for the price level, which previous research shows correlates
with subsequent returns, or for aggregate consumption factors: the top 1% in-
come share predicts excess returns even after we control for some classic return
forecasters such as the price-dividend ratio (Shiller, 1981) and the consumption-
wealth ratio (Lettau and Ludvigson, 2001). Our findings are also robust to the
inclusion of macro control variables, such as GDP growth. Since we get very
similar results when we detrend the top 1% income share using the Kalman
filter, HP filter, or a variety of other trend extraction methods, the construction
of cgdiff is not driving our findings. Across nearly all of our specifications,
the inverse relationship between top income shares and excess returns is large
and statistically significant. Using five year excess returns or the top 0.1% or
10% income share also yields similar results. Additionally, consistent with our
intuition, our top income share measures have significant positive contempora-
neous correlation with the price-dividend ratio. This relationship is clear even
without detrending, as we see in Figure 4.

Welch and Goyal (2008) show that excess return predictors suggested in the
literature by and large perform poorly out-of-sample, possibly due to model
instability, data snooping, or publication bias. How does the top 1% share fare
out-of-sample? Using the methodologies of McCracken (2007) and Hansen and
Timmermann (2015), we show that including the top 1% as a predictor signif-
icantly decreases out-of-sample forecast errors relative to using the historical
mean excess return. That is, top income shares predict returns out-of-sample
as well.

Given that in our regressions we lag the 1% share and given that our results
are robust to the inclusion of many macro/financial control variables, we do not
suspect our findings stem from reverse causation or omitted variable bias. How-
ever, because top tax rates have an inverse relationship with top income shares
(see, for example, Roine et al. (2009)), as an additional robustness check, we
explore using tax changes as an instrument for inequality in predicting returns.
We identify 7 periods in U.S. history (over 1915-2004) where top marginal in-
come and estate tax rates were either trending upwards or downwards. We find
that tax hike periods are on average associated with a declining 1% share, flat
price-earnings ratios, and positive subsequent excess returns. Tax cut periods,
however, are accompanied by a rising 1% income share, increasing price-earnings
ratios, and negative subsequent excess returns. As industrial production growth
is actually higher on average in our hike periods, we argue that these results
are not driven by the expansionary/contractionary effects of fiscal policy. Since
contemporaneous and lagged changes in top estate tax rates explain a substan-
tial portion of the variation in cgdiff (Table 7), we also perform instrumental
variables regressions (Table 8). Including cgdiff, industrial production growth,
and the log price-earnings ratio as endogenous explanatory variables and using
contemporaneous and three lags of top estate tax rate changes as instruments,
top income shares are still significant in predicting excess returns.

We uncover a similar pattern in international data on inequality and fi-
nancial markets: post-1969 cross-country fixed-effects panel regressions suggest
that when the top 1% income share rises above trend by one percentage point,
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subsequent one year market returns significantly decline on average by 2%.
This relationship is particularly strong for relatively “closed” economies such as
emerging markets. In countries with low levels of investing home bias (“small
open economies”), we find a large and significant inverse relationship between
the U.S. 1% share (a potential proxy of the global 1% share) and subsequent do-
mestic excess returns. These results are consistent with our theory because our
models suggest that what predicts returns is the wealth distribution amongst
the set of potential stock and bond holders. For small open economies, local
agents comprise a small fraction of this set of investors. In large or relatively
closed economies, domestic agents are a substantial proportion of the universe
of investors.

1.1 Related literature

For many years after Fisher, in analyzing the link between individual utility
maximization and asset prices, financial theorists either employed a rational
representative agent or considered cases of heterogeneous agent models that ad-
mit aggregation, that is, cases in which the model is equivalent to one with a
representative agent. Extending the portfolio choice work of Markowitz (1952)
and Tobin (1958), Sharpe (1964) and Lintner (1965a,b) established the Capital
Asset Pricing Model (CAPM).1 These original CAPM papers, which concluded
that an asset’s covariance with the aggregate market determines its return, ac-
tually allowed for substantial heterogeneity in endowments and risk preferences
across investors. However, their form of quadratic or mean-variance preferences
admitted aggregation and obviated the role of the wealth distribution.

The seminal consumption-based asset pricing work of Lucas (1978), Bree-
den (1979), and Hansen and Singleton (1983) also abstracted from investor
heterogeneity. They and others derived and tested analytic relationships be-
tween the marginal rate of substitution of a representative agent (with standard
preferences) and asset prices. Despite the elegance and tractability of the rep-
resentative agent/aggregation approach, it has failed to adequately explain the
fluctuations of asset prices in the economy. Largely inspired by the limited
empirical fit of the CAPM (in explaining the cross section of stock returns),
the equity premium puzzle (Mehra and Prescott, 1985), and excess stock mar-
ket volatility and related price-dividend ratio anomalies (Shiller, 1981), since
the 1980s theorists have extended macro/finance general equilibrium models to
consider meaningful investor heterogeneity. Such heterogeneous-agent models
can be categorized into two groups.

In the first group, agents have identical standard (constant relative risk aver-
sion) preferences but are subject to uninsured idiosyncratic risks.2 Although the
models of this literature have had some success explaining returns in calibrated
simulations, the empirical results (based on consumption panel data) are mixed
and may even be spuriously caused by the heavy tails in the cross-sectional
consumption distribution (Toda and Walsh, 2015).

1See Geanakoplos and Shubik (1990) for a general and rigorous treatment of CAPM theory.
2Examples are Mankiw (1986), Constantinides and Duffie (1996), Heaton and Lucas (1996),

Krusell and Smith (1998), Brav et al. (2002), Cogley (2002), Balduzzi and Yao (2007),
Storesletten et al. (2007), Kocherlakota and Pistaferri (2009), among many others. See Lud-
vigson (2013) for a review.
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In the second group, markets are complete and agents have either heteroge-
neous CRRA preferences3 or identical but non-homothetic preferences.4 In this
class of models the marginal rates of substitution are equalized across agents
and a “representative agent” in the sense of Constantinides (1982) exists, but
aggregation in the sense of Gorman (1953) fails. Therefore there is room for
agent heterogeneity to matter for asset pricing. However, this type of agent
heterogeneity is generally considered to be irrelevant for asset pricing because
in dynamic models the economy is dominated by the richest agent (the agent
with the largest expected wealth growth rate) in the long run (Sandroni, 2000;
Blume and Easley, 2006). One notable exception is Gârleanu and Panageas
(2015), who study a continuous-time overlapping generations endowment econ-
omy with two agent types with Epstein-Zin constant elasticity of intertemporal
substitution/constant relative risk aversion preferences. Even if the aggregate
consumption growth is i.i.d. (geometric Brownian motion), the risk-free rate and
the equity premium are time-varying, even in the long run. The intuition is that
when the risk tolerant agents have a higher wealth share, they drive up asset
prices and the interest rate. The effect of preference heterogeneity persists since
new agents are constantly born. Consistent with our empirical findings and
model, the calibration of Gârleanu and Panageas (2015) suggests that increas-
ing the consumption share of more risk tolerant agents pushes down the equity
premium. All of the above works are theoretical, and our paper seems to be the
first in the literature to empirically test the asset pricing implications of models
with preference heterogeneity. In Section 2, we both present our theoretical
results and further highlight how we contribute to these literatures.

Although the wealth distribution theoretically affects asset prices, there are
few empirical papers that directly document this connection. To the best of
our knowledge, Johnson (2012) is the only one that explores this issue using
income/wealth distribution data. However, his analysis is quite different from
ours: his model relies on a “keeping up with the Joneses”-type consumption
externality with incomplete markets. In contrast, we employ a standard general
equilibrium model (a plain vanilla Arrow-Debreu model). Moreover, Johnson
(2012) does not explore the ability of top income shares to predict market excess
returns (our main result), and he detrends inequality differently from the way
we do.

Lastly, our study is related to the empirical literature on heterogeneity in
risk preferences. A number of recent papers have found that the wealthy have
portfolios more heavily skewed towards risky assets, and many of these studies
have concluded that the wealthy are relatively more risk tolerant, either due to
declining relative risk aversion or innate heterogeneity in relative risk aversion.
See, for example, Carroll (2002), Vissing-Jørgensen (2002), Campbell (2006),
Bucciol and Miniaci (2011), or Calvet and Sodini (2014). This literature lends
credibility to our premise that the rich invest more heavily in risky assets, likely
due to higher risk tolerance.

3Examples are Dumas (1989), Wang (1996), Chan and Kogan (2002), Hara et al. (2007),
Longstaff and Wang (2012), and Bhamra and Uppal (2014). Basak and Cuoco (1998) consider
a limited market participation model with log utility.

4Examples are Gollier (2001) and Hatchondo (2008).
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2 Wealth distribution and equity premium

In this section we present a model in which the wealth distribution across het-
erogeneous agents affects the equity premium. In Section 2.1, we consider a
static model with incomplete markets and agents with heterogeneous risk aver-
sion and beliefs, and prove the uniqueness of equilibrium. In Section 2.2, we
prove that shifting wealth from an agent that holds comparatively fewer stocks
to one that holds more pushes down the equity premium. Section 2.3 compares
our results to the existing literature. All proofs are in Appendix A.

2.1 Uniqueness of equilibrium

Consider a standard general equilibrium model with incomplete markets con-
sisting of a single good, I agents, J assets, and S states (Geanakoplos, 1990).
Let ei ∈ RS++ be the initial endowment of agent i and A = (Asj) ∈ RSJ be the
S × J payoff matrix of assets. By redefining the initial endowments of goods if
necessary, without loss of generality we may assume that the initial endowments
of assets are zero. By removing redundant assets, we may also assume that the
matrix A has full column rank.

Given the asset price q = (q1, . . . , qJ)′ ∈ RJ , agent i’s utility maximization
problem is

maximize Ui(x)

subject to q′y ≤ 0, x ≤ ei +Ay,

where Ui(x) is the utility function and y = (y1, . . . , yJ)′ ∈ RJ denotes the
number of asset shares. A general equilibrium with incomplete markets (GEI)
consists of an asset price q ∈ RJ , consumption (xi) ∈ RSI+ , and portfolios (yi) ∈
RJI such that (i) agents optimize, and (ii) asset markets clear, so

∑I
i=1 yi = 0.

We make the following assumptions.

Assumption 1 (Heterogeneous CRRA preferences). Agents have constant rel-
ative risk aversion (CRRA) preferences:

Ui(x) =


(∑S

s=1 πisx
1−γi
s

) 1
1−γi

, (γi 6= 1)

exp
(∑S

s=1 πis log xs

)
, (γi = 1)

(2.1)

where γi > 0 is agent i’s relative risk aversion coefficient and πis > 0 is agent
i’s subjective probability of state s.

Note that if γi 6= 1, through the monotonic transformation x 7→ 1
1−γix

1−γi ,
Ui is equivalent to

1

1− γi
Ui(x)1−γi =

1

1− γi

S∑
s=1

πisx
1−γi
s ,

the standard additive CRRA utility function. The same holds when γi = 1
by considering logUi(x). The expression (2.1) turns out to be more convenient
since the utility function is homogeneous of degree 1.
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Assumption 2 (Collinear endowments). Agents have collinear endowments:

letting e =
∑I
i=1 ei � 0 be the aggregate endowment, we have ei = wie, where

wi > 0 is the wealth share of agent i, so
∑I
i=1 wi = 1.

While the collinearity assumption is strong, it is indispensable in order to
guarantee the uniqueness of equilibrium: Mantel (1976) shows that if we drop
collinear endowments, then even with homothetic preferences “anything goes”
for the aggregate excess demand function, and hence there may be multiple
equilibria.5 With multiple equilibria, comparative statics may go in opposite
directions, depending on the choice of equilibrium.

Assumption 3 (Tradability of aggregate endowment). The aggregate endow-
ment is tradable: e is spanned by the column vectors of A.

Under these assumptions, we can prove the uniqueness of GEI and obtain a
complete characterization.

Theorem 2.1. Under Assumptions 1–3, there exists a unique GEI. The equi-
librium portfolio (yi) is the solution to the planner’s problem

maximize
(yi)∈RJI

I∑
i=1

wi logUi(ei +Ayi)

subject to

I∑
i=1

yi = 0. (2.2)

Letting
I∑
i=1

wi logUi(ei +Ayi)− q′
I∑
i=1

yi

be the Lagrangian with Lagrange multiplier q, the equilibrium asset price is q.

Chipman (1974) shows that under complete markets, heterogeneous homo-
thetic preferences, and proportional endowments, aggregation is possible and
hence the equilibrium is unique. Our Theorem 2.1 is a stronger result since we
prove the same for incomplete markets and we also obtain a complete character-
ization of the equilibrium portfolio. Uniqueness is important for our purposes
because it rules out unstable equilibria and thus allows for the below unambigu-
ous comparative statics regarding the wealth distribution.6

2.2 Comparative statics

Assuming that only a stock and a bond are traded, we can show that a redistri-
bution of wealth from an investor that holds comparatively fewer stocks to one
that holds more reduces the equity premium. To make the statement precise,
we introduce the following assumption and notations.

Assumption 4. The only assets traded are the aggregate stock and a risk-free
asset: J = 2 and A = [e, 1], where 1 = (1, . . . , 1)′ ∈ RS++.

5See Toda and Walsh (2016) for concrete examples of multiple equilibria with canonical
two-agent, two-state economies.

6See Kehoe (1998) and Geanakoplos and Walsh (2016) for further discussion of uniqueness
in the presence of heterogeneous preferences.
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Let q = (q1, q2)′ be the vector of asset prices. By the proof of Theorem
2.1, we have q � 0. Since there is no consumption at t = 0, we can normalize
asset prices, so without loss of generality we may take the gross risk-free rate
Rf = 1/q2 as given. The vector of gross stock returns is R := e/q1. Since by
Assumption 2 we have ei = wie, the initial wealth of agent i is q1wi and the
budget constraint is

q1y1 + q2y2 ≤ 0 ⇐⇒ q1(y1 + wi) +
1

Rf
y2 ≤ q1wi.

Letting θ = y1+wi
wi

be the fraction of wealth invested in the stock, by the budget
constraint with equality we have 1 − θ = y2

q1Rfwi
. Therefore the consumption

vector satisfies

x ≤ ei +Ay = (y1 + wi)e+ y21 = q1wi(Rθ +Rf (1− θ)1).

Letting

ui(x) =

{
1

1−γix
1−γi , (γi 6= 1)

log x, (γi = 1)

by homotheticity the utility maximization problem is equivalent to

max
θ

Ei[ui(R(θ))],

where R(θ) := Rθ + Rf (1 − θ) and Ei denotes the expectation under agent i’s
belief.

Now we can state our main theoretical result.

Theorem 2.2. Suppose Assumptions 1–4 hold and let {q, (xi), (yi)} be the
unique GEI with corresponding portfolio (θi). Suppose that in the initial equi-
librium agent 1 holds comparatively fewer stocks than agent 2, so θ1 < θ2. If we
transfer wealth from agent 1 to 2, then the new equilibrium has a higher stock
price q1. The equity premium from any agent i’s point of view, Ei[R] − Rf ,
becomes lower.

The intuition for Theorem 2.2 is straightforward. In an economy with fi-
nancial assets, the equilibrium risk premiums and prices balance the agents’
preferences and beliefs. If wealth shifts into the hands of the natural buyer
(either the risk tolerant or optimistic agent), for markets to clear, prices of risky
assets must rise and risk premiums must fall to counterbalance the new demand
of these agents. While the conclusion of Theorem 2.2 is quite natural and in-
tuitive, proving it is another story. Since the direction of comparative statics
depends on the choice of equilibrium if there are multiple equilibria, we need to
rule out this possibility. Only with the uniqueness result in Theorem 2.1 are we
able to make the intuition rigorous.

The following propositions show that when agents have heterogeneous risk
aversion or beliefs, the fraction of investment in the risky asset is ordered as
risk tolerance or optimism. To define optimism, we take the following approach.
First, by relabeling states if necessary, without loss of generality we may assume
that states are ordered from bad to good ones: e1 < · · · < eS . Consider two
agents i = 1, 2 with subjective probability πis > 0. We say that agent 1 is
more pessimistic than agent 2 if the likelihood ratio λs := π1s/π2s > 0 is
monotonically decreasing: λ1 ≥ · · · ≥ λS , with at least one strict inequality.
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Proposition 2.3. Suppose Assumptions 1–4 hold and agents have common
beliefs. If γ1 > · · · > γI , then 0 < θ1 < · · · < θI .

Proposition 2.4. Suppose Assumptions 1–4 hold and agents 1, 2 have common
risk aversion. Assume that agent 1 is more pessimistic than agent 2 in the above
sense. Then θ1 < θ2.

Combining Theorem 2.2 together with either Proposition 2.3 or 2.4, shifting
wealth from a more risk averse or pessimistic agent to a more risk tolerant
or optimistic agent reduces the equity premium. In particular, if the rich are
relatively more risk tolerant, optimistic, or simply more likely to buy risky assets
(for example due to fixed information or transaction costs), rising inequality
should forecast declining excess returns.

2.3 Discussion

Dumas (1989) solves a dynamic general equilibrium model with constant-returns-
to-scale production and two agents (one with log utility and the other CRRA).
He shows (Proposition 17) that when the wealth ratio of the less risk averse
agent increases, then the risk-free rate goes up and the equity premium goes
down. Although this prediction is similar to ours, he imposes an assumption on
endogenous variables (see his equation (8)).

Following Dumas (1989), a large theoretical literature has studied the asset
pricing implication of preference heterogeneity under complete markets.7 All of
these papers characterize the equilibrium and asset prices by solving a planner’s
problem. However, this approach is not suitable for conducting comparative
statics exercises of changing the wealth distribution, for two reasons. First, al-
though by the second welfare theorem, for each equilibrium we can find Pareto
weights such that the consumption allocation is the solution to the planner’s
problem, since in general the Pareto weights depend on the initial wealth dis-
tribution, changing the wealth distribution will change the Pareto weights, and
consequently the asset prices. But in general it is hard to predict how the Pareto
weights change. Second, even if we can predict how the Pareto weights change,
there is the possibility of multiple equilibria. In such cases the comparative
statics often go in the opposite direction depending on the choice of the equi-
librium. Thus our results are quite different since we prove the uniqueness of
the equilibrium and derive comparative statics with respect to the initial wealth
distribution.

Gollier (2001) studies the asset pricing implication of wealth inequality
among agents with identical preferences. He shows that more inequality in-
creases (decreases) the equity premium if and only if agents’ absolute risk toler-
ance is concave (convex). In particular, wealth inequality has no effect on asset
pricing when agents have hyperbolic absolute risk aversion (HARA) preferences,
for which the absolute risk tolerance is linear. He also calibrates the model and
finds that the effect of wealth inequality on the equity premium is small. Our
results are different and complementary since our model features heterogeneous
CRRA agents and incomplete markets.

Gârleanu and Panageas (2015) study a continuous-time overlapping gener-
ations endowment economy with two agent types with Epstein-Zin preferences.

7Examples are Wang (1996), Chan and Kogan (2002), Hara et al. (2007), Cvitanić et al.
(2012), Longstaff and Wang (2012), Bhamra and Uppal (2014), and the references therein.
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Unlike other papers on asset pricing models with heterogeneous preferences, all
agent types survive in the long run due to birth/death, and also they solve the
model without appealing to a planning problem. As a result, all endogenous
variables are expressed as functions of the state variable, the consumption share
of one agent type. They find that the concentration of wealth to the more
risk-tolerant type (“the rich”) tends to lower the equity premium. When the
preferences are restricted to additive CRRA, then the relation between the con-
sumption share and equity premium (more precisely, market price of risk) is
monotonic (see their discussion on p. 10). Thus our results are closely related
to theirs, but again are different and complementary since our model features
many agents, discrete time (hence our shocks are arbitrary), and incomplete
markets.

3 Empirical link between inequality and equity
premium

Thus far, we have theoretically analyzed models in which the extent of inequality
across agents with different portfolios (due to, say, heterogeneous risk aversion
or belief) is key in predicting returns. In particular, we found that shifting
wealth from an agent who holds comparatively fewer stocks to one who holds
more reduces the subsequent equity premium. Many empirical papers show that
the rich hold relatively more stocks than the poor and argue that the rich are
relatively more risk tolerant.8 Since income adds up to wealth, a positive in-
come shock to the rich should negatively predict subsequent excess stock market
returns.

In this section, consistent with our theory we show that there is a strong and
robust inverse relationship between the top income share and subsequent excess
stock market returns in the U.S. That is, current inequality appears to forecast
the risk premium of the U.S. stock market. Sections 3.2 and 3.3 show that top
income shares predict returns in- and out-of-sample. In Section 4 we show that
the inverse relationship between the top income share and subsequent returns
still holds when using changes in top estate rates as instruments.

3.1 Data

We employ the Piketty and Saez (2003) inequality measures for the U.S., which
are available on the website of Alvaredo et al. (2015). In particular, we consider
top income share measures based on tax return data, which are at the annual
frequency and cover the period 1913–2014. These series reflect in a given year
the percent of income earned by the top 1% of earners pretax. We also employ
the top 0.1% share, the top 10% share, and the corresponding series that exclude
realized capital gains income. In view of the theoretical results in Section 2, top
wealth share data are also relevant. However, the 1916–2000 top wealth series
(based on estate tax data) from Kopczuk and Saez (2004) are missing many
years in the 50s, 60s, and 70s. The wealth share data of Saez and Zucman
(2014) cover 1913-2012 but are estimates created by capitalizing income. Due

8See Carroll (2002), Vissing-Jørgensen (2002), Campbell (2006), Bucciol and Miniaci
(2011), and Calvet and Sodini (2014).
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to these limitations, we perform our analysis with top income share data, which
are correlated with top wealth shares. Using first differences, the correlation
between the 1% income share and the Saez and Zucman (2014) 1% wealth
share is about .5. In levels, the correlation is .7. In previous versions of this
paper, we showed that these top wealth series also predict excess returns. The
results are omitted to save space but are available upon request.

Below, we use not the raw Piketty-Saez series but rather stationary versions
of them. Doing so ensures the validity of standard error calculations and in-
ference and prevents spurious regressions (Granger and Newbold, 1974).9 The
issue is that while excess returns are clearly stationary, top income shares (see
Figures 1a and 1b) are nonstationary. For example, the Phillips-Perron test
(Phillips and Perron, 1988) fails to reject a unit root in the top 0.1%, 1%,
and 10% shares (the p-values are .46, .59, and .84). Therefore, the regression
specification

ExcessReturnt+1 = α+ β × TopSharet + εt+1

implies the error term εt+1 cointegrates with the regressor TopSharet, which
violates OLS assumptions. If we were to regress a stationary variable Yt (re-
turns) on a nonstationary variableXt (top 1% income share), the OLS coefficient

β̂T =
∑
XtYt/

∑
X2
t would converge to 0 almost surely because the denomi-

nator diverges to ∞ faster than does the numerator. Granger (1981) explains
this problem, stating on p. 127 that “one would not expect to build a model of
[this] form” because “one is attempting to explain a finite variance series by an
infinite variance one.” See Phillips and Lee (2013) for a recent treatment of this
issue.
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Figure 1: U.S. top income shares including capital gains (1913–2014).

Specifically, for our baseline results we use “cgdiff,” which we define to
be the top income share (0.1%, 1%, or 10%) including capital gains minus the
top share without capital gains. cgdiff is stationary10 and is a measure of the
component of the top 1% income share due to variation in capital gains. Since

9Creating stationary versions of return predictors is in the tradition of Campbell (1991),
for example, who removes a trend in the short-term interest rate before including it in stock
return vector autoregressions.

10The Phillips-Perron test (Phillips and Perron, 1988) rejects a unit root in cgdiff at the
1% level.
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labor income is often set by contracts, it is more slowly-moving and predictable
than is capital income. Hence using cgdiff may help us isolate shocks to
inequality not already priced into the the stock market. In any case, since the
top income share is equal to cgdiff plus the top income share excluding capital
gains, cgdiff represents an additive and stationary component of inequality.
As we show in Appendix B, we get similar results when we detrend inequality
using the Kalman filter with an AR(1) cyclical component (see Appendix C for
details). This is unsurprising since, as Figure 2 shows, the two series behave
similarly (correlation 0.73).
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Figure 2: Time series plot of the stationary component of the top 1% income
share using cgdiff and the AR(1) Kalman filter (both demeaned).

We calculate real annual one year U.S. stock market excess returns using the
annual data updated from Welch and Goyal (2008).11 The spreadsheet contains
historical one year interest rates and price, dividend, and earnings series for the
S&P 500 index, which are all put into real terms using consumer price index
(CPI) inflation. These data are used to calculate the series P/D and P/E, which
are the price-dividend and price-earnings ratios (in real terms) for the S&P 500.
The spreadsheet also contains the Lettau and Ludvigson (2001) consumption-
wealth ratio, commonly referred to as CAY, which spans the period 1945–2014.
For presentation, we multiply CAY by 100.

Our other controls are GDP growth and, inspired by Lettau et al. (2008)
and Bansal et al. (2014), consumption growth variance. Annual data for real
GDP and real consumption are from the website of the Federal Reserve Bank
of St. Louis (FRED)12 and span 1930–2014. We estimate consumption growth
variance using an AR(1)-GARCH(1,1) model for consumption growth.

3.2 Regression analysis

Table 1 shows the results of regressions of one year (t to t + 1) excess stock
market returns on a top share measure (time t cgdiff), some classic return
predictors (time t), and macro factors (time t). In column (1) we find that
when the top 1% income share with capital gains (January to December of

11http://www.hec.unil.ch/agoyal/
12http://research.stlouisfed.org/fred2/
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year t) rises above the series excluding capital gains by one percentage point,
subsequent one year market excess returns (January to December of year t+ 1)
decline on average by 3.5%. The coefficient is significant at the 1% level (using
a Newey-West standard error), and the R-squared statistic is .05. It is clear, at
least in sample, that the stationary top 1% share component (cgdiff) forecasts
the subsequent over excess return on the stock market.

In Tables 2 and 3, we see that the inverse relationship between the top
1% share and subsequent excess returns is larger in magnitude and significant
at the 1% and 5% levels, respectively, when we predict with cgdiff(10%) or
cgdiff(0.1%). Table 4 shows that all three versions of cgdiff also significantly
predict five year excess returns. Figures 3a and 3b show the corresponding scat-
ter and time series plots for five year returns. The top 1% income share appears
to forecast subsequent five year excess returns well except around 1970 and
the 1980s. Overall, a one percentage point increase in the cgdiff component
of inequality is associated with, roughly, a 3–5% decline in subsequent excess
returns.
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Table 1: Regressions of one year excess stock market returns on cgdiff (top 1%− top 1% (without capital gains)) and other predictors

Dependent Variable: t to t+ 1 Excess Stock Market Return
Regressors (t) (1) (2) (3) (4) (5) (6) (7))

Constant
14.42
(2.91)

14.32
(4.05)

15.18
(3.37)

16.42
(15.21)

16.76
(11.10)

15.31
(3.72)

23.62
(14.82)

cgdiff(1%)
-3.51***
(1.27)

-3.72**
(1.57)

-3.76**
(1.55)

-3.33*
(1.77)

-3.37**
(1.38)

-3.48**
(1.57)

-2.90*
(1.60)

Real GDP Growth
0.27

(0.40)
-0.11
(0.80)

∆Cons. Growth Variance
-10.14
(15.10)

-23.72
(16.56)

log(P/D)
-0.71
(5.13)

-2.88
(4.48)

log(P/E)
-0.97
(4.26)

CAY
1.46*
(0.74)

1.47*
(0.77)

Sample
1913-
-2014

1930-
-2014

1935-
-2014

1913-
-2014

1913-
-2014

1945-
-2014

1945-
-2014

R2 .05 .06 .07 .05 .05 .13 .15

Note: Newey-West standard errors in parentheses (k = 4). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). “cgdiff”
is top 1% minus top 1% (no cg), neither detrended, where top 1% is the pre-tax share of income going to the top 1% of earners (including capital gains).
Consumption growth volatility is from an AR(1) − GARCH(1, 1) model. P/D and P/E are the S&P500 price-dividend and price-earnings ratios. CAY is the
consumption/wealth ratio.
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Table 2: Regressions of one year excess stock market returns on cgdiff (top 10%− top 10% (without capital gains)) and other predictors

Dependent Variable: t to t+ 1 Excess Stock Market Return
Regressors (t) (1) (2) (3) (4) (5) (6) (7)

Constant
17.89
(3.47)

16.66
(4.53)

18.29
(4.01)

19.08
(14.36)

24.09
(9.78)

18.75
(4.27)

23.17
(14.23)

cgdiff(10%)
-5.46***
(1.69)

-5.36***
(1.97)

-5.67***
(2.05)

-5.34**
(2.19)

-5.05***
(1.83)

-5.46***
(1.94)

-5.36**
(2.25)

Real GDP Growth
0.32

(0.40)
0.02

(0.71)

∆Cons. Growth Variance
-12.59
(15.07)

-26.88*
(16.13)

log(P/D)
-0.43
(4.84)

-1.58
(4.59)

log(P/E)
-2.58
(3.86)

CAY
1.53**
(0.73)

1.60**
(0.73)

Sample
1917-
-2014

1930-
-2014

1935-
-2014

1917-
-2014

1917-
-2014

1945-
-2014

1945-
-2014

R2 .08 .08 .10 .08 .09 .17 .20

Note: Newey-West standard errors in parentheses (k = 4). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). “cgdiff”
is top 10% minus top 10% (no cg), neither detrended, where top 10% is the pre-tax share of income going to the top 10% of earners (including capital gains).
Consumption growth volatility is from an AR(1) − GARCH(1, 1) model. P/D and P/E are the S&P500 price-dividend and price-earnings ratios. CAY is the
consumption/wealth ratio.
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Table 3: Regressions of one year excess stock market returns on cgdiff (top 0.1%−top 0.1% (without capital gains)) and other predictors

Dependent Variable: t to t+ 1 Excess Stock Market Return
Regressors (t) (1) (2) (3) (4) (5) (6) (7)

Constant
13.44
(2.69)

12.93
(3.82)

13.20
(3.25)

17.07
(16.41)

16.13
(11.29)

13.25
(3.61)

27.16
(15.31)

cgdiff(0.1%)
-4.23**
(1.66)

-4.19**
(2.07)

-3.94*
(2.07)

-3.80
(2.55)

-4.01**
(1.86)

-3.60
(2.23)

-2.11
(2.41)

Real GDP Growth
0.24

(0.41)
-0.20
(0.81)

∆Cons. Growth Variance
-8.52

(15.24)
-22.07
(16.82)

log(P/D)
-1.27
(5.58)

-4.69
(4.60)

log(P/E)
-1.11
(4.39)

CAY
1.46**
(0.73)

1.42*
(0.79)

Sample
1913-
-2014

1930-
-2014

1935-
-2014

1913-
-2014

1913-
-2014

1945-
-2014

1945-
-2014

R2 .05 .05 .05 .05 .05 .10 .13

Note: Newey-West standard errors in parentheses (k = 4). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). “cgdiff” is
top 0.1% minus top 0.1% (no cg), neither detrended, where top 0.01% is the pre-tax share of income going to the top 0.1% of earners (including capital gains).
Consumption growth volatility is from an AR(1) − GARCH(1, 1) model. P/D and P/E are the S&P500 price-dividend and price-earnings ratios. CAY is the
consumption/wealth ratio.
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Figure 3: Year t to year t+ 5 excess stock market return (annualized) vs. year
t cgdiff (top 1% income share including capital gains minus top 1% share
without capital gains), 1913–2014.

Table 4: Regressions of five year excess stock market returns on cgdiff

(top income share− top income share (without capital gains))

Dependent Variable:
t to t+ 5 Excess Market Return

Regressors (t) (1) (2) (3)

Constant
10.79
(2.02)

11.19
(2.18)

13.12
(2.30)

cgdiff(0.1%)
-3.59***
(1.28)

cgdiff(1%)
-2.71***
(1.01)

cgdiff(10%)
-3.72***
(1.22)

Sample
1913-
-2014

1913-
-2014

1917-
-2014

R2 .17 .17 .21

Note: Newey-West standard errors in parentheses (k = 8). ***, **, and * indicate significance
at 1%, 5%, and 10% levels (suppressed for constants). Five year excess returns are annualized.
cgdiff(0.1%) is top 0.1% minus top 0.1% (no cg), neither detrended, where top 0.1% is the
pre-tax share of income going to the top 0.1% of earners (including capital gains). cgdiff(1%)
and cgdiff(10%) are defined analogously.

Given the strength of the relationship, a question immediately arises. Is
there some mechanical, non-equilibrium explanation for the relationship be-
tween inequality and subsequent excess returns? For example, might stock
returns somehow be determining the top share measures? For a few reasons,
the answer is likely no. First, the relationship is between initial inequality and
subsequent returns. Returns could affect contemporaneous top shares but not
lagged top shares. One might still worry that our results are driven by our
transformation of the top share series into cgdiff. However, as we see in Ap-
pendix B, we get similar results with other methods of creating a stationary
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series.13

But, one might say, we have known at least since Fama and French (1988)
that when prices are high relative to either earnings or dividends, subsequent
market excess returns are low. The current price could indeed affect current
inequality. Are the top shares series simply proxying for the price-dividend or
price-earnings ratios, which are known to predict returns? Again, the answer
seems to be no for two reasons. First, excluding capital gains from income does
not mitigate the relationship (see footnote 13), and capital gains are the main
avenue through which prices would determine inequality. Second, as we see in
regressions (4) and (5) from Table 1, top shares predict excess returns even when
controlling for the log price-dividend or price-earnings ratio. Including these
controls does decrease the top share coefficient slightly, but it remains large
and significant. The P/D and P/E ratios, however, are not significant after
controlling for top income shares. Controlling for P/E or P/D barely impacts
the cgdiff(10%) results (columns (4) and (5) of Table 2). With respect to
cgdiff(0.1%), we lose significance when controlling for P/D, but the top share
coefficient remains large and significant when including P/E.

In regressions (2), (3), (6), and (7) from Table 1, we also control for real GDP
growth, consumption growth variance (Lettau et al. (2008) and Bansal et al.
(2014)),14 and CAY, which Lettau and Ludvigson (2001) show forecasts market
excess returns. Including these controls (which also shortens the sample), we still
see a strong relationship between the top income share and subsequent returns.
When controlling for CAY, consumption growth variance, GDP growth, or all
three and log(P/D) (column 7)), the 1% coefficient is around -3 and significant
at the 10%, 5% or 1% level. Our results are almost uniformly stronger with
cgdiff(10%), the Kalman filter (Table 13), or the HP filter (Table 14). The
significance and magnitude of the cgdiff(0.1%) coefficient, however, appears
somewhat sensitive to varying the controls included.

Table 16 in Appendix B shows the pairwise correlations between the ex-
planatory variables in Tables 1, 2, 3, 13, and 14. Even though including P/D
and P/E as controls did not overturn our findings, it is the case that there is
substantial contemporaneous correlation between these valuation ratios and our
top share series. Even when excluding capital gains, there is statistically signif-
icant positive correlation (.26) between the Kalman-filtered 1% and log(P/D).
This is consistent with the idea that the rich push up stock prices.

Our empirical analysis thus far has relied on creating stationary inequality
series. Do the raw data indicate a relationship between asset prices and the
one percent? Figure 4 suggests that the answer is yes. Over 1913-2014, both

13Tables 13 and 14 in Appendix B repeat Table 1 but with the Kalman and HP filters,
respectively, yielding a comparable relationship between inequality and returns. Table 15
shows that we get similar results using the one-sided HP filter, the 10 year moving average
filter, and linear detrending. Furthermore, as we see in regression (3) from Table 13, which
uses the Kalman filter, when excluding capital gains, the top 1% income share coefficient
actually strengthens from -2.82 to -3.78. If returns were strongly affecting lagged inequality,
excluding capital gains would likely mitigate the result. While the top 1% coefficient is
larger in magnitude without capital gains, removing capital income increases the Newey-West
standard error and pushes the p-value from .02 to .11. This is not the case, however, when
using the HP filter. Comparing columns (1) and (3) of Table 14, we see that with the HP filter
excluding capital gains increases the magnitude of the association and maintains significance
(at the 5% level).

14We difference consumption growth variance, which appears nonstationary, and drop 1930-
1934 to reduce the impact of the initial variance.
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overall and within subsamples, there is a clear positive correlation between the
top 1% income share (not detrended) and the contemporaneous price-dividend
ratio. Of course, this scatter plot does not establish causation, but it is more
evidence in favor of our theory and suggests that our empirical results are not
simply artifacts of detrending. Indeed, as we have shown, above trend inequality
predicts subsequent excess returns even when using a simple, one-sided trend
estimation method like the ten year moving average.

In summary, the data appear consistent with our theory that an increasing
concentration of income decreases the market risk premium.
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Figure 4: Top 1% income share (not detrended) vs. price-dividend ratio (in real
terms) for the S&P500. 1913-1945 (*), 1946-1978 (o), and 1979-2014 (+).

3.3 Out-of-sample predictions

So far, we have seen that the current top income share predicts future excess
stock market returns in-sample. However, Welch and Goyal (2008) have shown
that the predictors suggested in the literature by and large perform poorly
out-of-sample, possibly due to model instability, data snooping, or publication
bias.15 In this section, we explore the ability of the top income share to predict
excess stock market returns out-of-sample.

Consider the predictive regression model for the equity premium,

yt+h = β′xt + εt+h, (3.1)

where h is the forecast horizon (typically h = 1), yt+h is the year t to t + h
excess stock market return, xt is the vector of predictors, εt+h is the error term,
and β is the population OLS coefficient. Suppose that the predictors can be
divided into two groups, so xt = (x1t, x2t) and β = (β1, β2) accordingly. In this
section we are interested in whether the variables x2t are useful in predicting
yt+h, that is, we want to test H0 : β2 = 0. We call the model with β2 = 0 the
NULL model and the one with β2 6= 0 the ALTERNATIVE.

To evaluate the performance of the ALTERNATIVE model against the null,
following McCracken (2007) and Hansen and Timmermann (2015) we consider

15Rapach et al. (2010) show that instead of using a single predictive regression model,
combining forecasts significantly decreases the out-of-sample forecast errors. See Rapach and
Zhou (2013) for a review on forecasting stock returns.
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the following out-of-sample F statistic:

F =
1

σ̂2
ε

T∑
t=bρTc+1

[
(yt+h − ŷNt+h|t)

2 − (yt+h − ŷAt+h|t)
2
]
, (3.2)

where σ̂2
ε is a consistent estimator of Var[εt+h] (which we estimate from the

sample average of the squared OLS residuals of (3.1) using the whole sample),

ŷAt+h|t = β̂′txt (ŷNt+h|t = β̂′1txt) is the predicted value of yt+h based on xt using

the ALTERNATIVE (NULL) model (here β̂t, β̂1t are the OLS estimator of (3.1)
using data only up to time t), T is the sample size, and 0 < ρ < 1 is the
proportion of observations set aside for initial estimation of β and β1. Theorems
3 and 4 of Hansen and Timmermann (2015) show that under the null (H0 :
β2 = 0), the asymptotic distribution of F is a weighted sum of the difference of
independent χ2(1) variables.

For the regressors in the ALTERNATIVE model, following Welch and Goyal
(2008), we consider the simplest possible case where x1t ≡ 1 (constant) and x2t
consists of a single predictor. For the predictor x2t, we consider cgdiff and
valuation ratios (log(P/D) and log(P/E)). The reason is that (i) since the top
income series is at annual frequency, the sample size is already small at around
100 (1913 to 2014), so we cannot afford to use variables that are available only
in shorter samples (e.g., CAY) for performing out-of-sample predictions, and
(ii) since Welch and Goyal (2008) find that most predictor variables suggested
in the literature are poor, there is no point in comparing many variables. The
choice of the proportion of the training sample, ρ, is necessarily subjective.
Small ρ leads to imprecise initial estimates of β, and large ρ leads to the loss of
power. Hence we simply report results for ρ = 0.2, 0.3, 0.4. Table 5 shows the
results.

Table 5: Out-of-sample performance of the top 1% series in predicting subse-
quent 1-year excess returns

Predictor in the ALTERNATIVE Model

ρ cgdiff(1%) cgdiff(10%) cgdiff(0.1%) log(P/D) log(P/E)

0.2
4.51***
(0.0019)

7.03***
(0.0006)

2.90***
(0.0088)

0.54*
(0.0755)

-0.00
(0.1205)

0.3
3.36***
(0.0057)

4.94***
(0.0019)

1.89**
(0.0222)

1.02*
(0.0604)

0.89*
(0.0573)

0.4
2.99**

(0.0073)
5.25***
(0.0012)

1.41**
(0.0402)

0.60*
(0.0959)

0.89*
(0.0664)

Note: ρ = 0.2, 0.3, 0.4 is the proportion of observations set aside to compute an initial OLS
estimate. Columns correspond to the predictors included in the ALTERNATIVE model in
addition to a constant (∅ indicates no additional regressors). The numbers in the table are the
out-of-sample F statistic computed by (3.2). p-values (in parentheses) are computed by simu-
lating 10,000 realizations from the asymptotic distribution based on Hansen and Timmermann
(2015) (one sided). ***, **, and * indicate significance at 1%, 5%, and 10% levels.

According to Table 5, we can see that across specifications, the out-of-sample
F statistic is positive and significant when we use cgdiff, while it is insignif-
icant or marginally significant for log(P/D) or log(P/E). (Note that since the
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asymptotic distribution of F depends on the NULL model, the relationship be-
tween the F statistic in Table 5 and the p-values are not necessarily monotonic
across models.)
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(a) cgdiff(1%).
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(b) cgdiff(10%).
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(c) cgdiff(0.1%)
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(d) log(P/D).
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Figure 5: Annual performance in predicting subsequent excess returns.

Note: The figures plot the out-of-sample performance of annual predictive regressions. The
vertical axis is the cumulative squared prediction errors of the NULL model minus the cumu-
lative squared prediction error of the ALTERNATIVE model (hence a positive value favors
the ALTERNATIVE). The NULL model uses only a constant. The ALTERNATIVE model
includes the predictor variables specified in each subcaption. Predictions start at t = bρT c,
where T is the sample size and ρ = 0.2, 0.3, 0.4.

To see this result graphically, in the spirit of Welch and Goyal (2008), we plot
the difference in the cumulative sum of squared errors (the numerator of (3.2))
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over the prediction period in Figure 5. The vertical axis is the cumulative sum
for the NULL model minus the ALTERNATIVE, so a positive value favors the
ALTERNATIVE. We can see that for all cgdiff specifications, the plots roughly
monotonically increase up to 1980, decrease until 1990, and then increase again.
This result is not surprising, since 1980s was a time when income inequality
increased (see Figure 1a and Table 6) but the stock market did not suffer.
On the other hand, the log(P/D) and log(P/E) specifications deteriorate after
1970. This finding is consistent with Welch and Goyal (2008), who document
that most of the prediction gains stem from the 1973–1975 Oil Shock.

In summary, the top income series seem to predict returns out-of-sample.

4 Using tax policy as an instrument

The top 1% income share is an endogenous variable in the macroeconomy. While
in Section 3.2 we showed that top income shares are not simply proxying for
GDP growth, volatility, the consumption/wealth ratio, or the level of the stock
market in explaining subsequent returns, it is difficult to rule out the possibility
that omitted variables are leading to endogeneity bias.

Fortunately, research on inequality (see, for example, Roine et al. (2009))
suggests that increases (decreases) in top marginal tax rates reduce (exacerbate)
inequality. Indeed, the Piketty-Saez series appear to exhibit a U-shaped trend
over the century, which might be due to the change in the marginal income
tax rates. According to Figure 6, the marginal tax rate for the highest income
earners increased from about 25% to 90% over the period 1930–1945 and started
to decline in the 1960s, reaching about 40% in the 1980s. Thus the marginal
tax rate exhibits an inverse U-shape that seems to coincide with the trend in
the Piketty-Saez series.
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Figure 6: Top 1% income share including capital gains (left axis) and top
marginal tax rate (right axis), 1913–2014. Source: IRS.

Furthermore, top tax rate changes are the result of Congressional bills, which
generally take years to pass and usually stem from wars or pro-long-term growth
or anti-deficit ideologies (de Rugy, 2003a,b; Jacobson et al., 2007; Weinzierl and
Werker, 2009; Romer and Romer, 2010). Therefore, while alterations in top tax
rates impact inequality, their timing and justification are likely not the result
of financial market fluctuations. Provided top tax rate changes have a muted
effect on returns, except via inequality, they can serve as an instrument for top
income shares. We address this “excludability” condition below.
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4.1 Tax change episodes and returns

We examine how periods of changing tax rates have affected top income shares,
stock prices, and subsequent returns. We identify seven periods in U.S. history
in which top income tax and estate rates were either rising or falling. Each
period starts the year before the first tax change became effective and ends the
year after the last change. Table 6 shows how top tax rates, the top 1% income
share, and Robert Shiller’s P/E10 ratio16 evolved over each of these periods and
provides the five year excess return starting in the final year of the period.

Each of the three tax increase periods (1915-1919, 1931-1945, and 1990-
1994) was accompanied by a decline in the 1% income share (-0.24% per year,
averaging across the periods, or around -1.44% for a typical 6 year episode).
And, in line with our theory, each period was followed by 5 years of positive
excess returns on average. The five year average excess returns (annualized)
starting in 1919, 1945, and 1994 were, respectively, 2.78%, 8.61%, and 17.83%.
In contrast, the tax cut periods (1921-1927, 1963-1966, 1980-1989, and 2000-
2004) led to an increase in the top 1% share of 0.36% per year on average
(2.16% for a 6 year episode) and an average subsequent five year excess return
(annualized) of -2.88%. In tax cut periods, when top income shares rose, Shiller’s
P/E increased on average by 6.05% per year. In tax hike periods, the P/E
ratio was flat on average. In summary, tax cut periods have been associated
with increasing concentration of income, rising stock prices, and low subsequent
excess stock returns. Tax hike periods have been times of falling inequality, low
stock price growth, and higher subsequent excess returns.

However, to interpret these excess return fluctuations as the result of redis-
tribution from the taxation of the rich, one must believe that top tax rates do
not affect returns in other ways. Since we are looking at pre-tax returns, one
possibility is that tax rate shocks directly impact returns by changing the after-
tax dividend yield. To address this concern, we also consider after-tax returns,
applying the top marginal tax rate to both dividends and interest. In Table 6,
we see that doing so has an only negligible effect on five year returns: intuitively,
most of the variation in excess returns stems from stock price movements and
not from dividends or interest, the components impacted by income taxes.

A second “excludability” concern is that top tax rate changes may stimulate
or contract the overall economy. Perhaps our tax changes are simply proxying
for economic growth, which can affect stock and bond markets. For example,
a tax cut could stimulate household income/demand, leading to higher stock
prices and lower subsequent returns. In Table 6, however, we see that average
per year growth in U.S. industrial production was actually higher on average in
hike periods than in cut periods (6.12% vs. 4.37%).17 Indeed, while industrial
production boomed during the 20’s and 60’s tax cuts, it was stagnant during the
early 2000’s cuts. Conversely, average growth was a reasonable 2.42% during
the 90’s tax increases and a strong 7.18% on average over 1931-1945.

16Shiller (2000) argues that P/E10, the ratio of the S&P 500 index price to the 10 year
average of earnings, is a measure of stock market over-valuation. The series is available at
http://www.econ.yale.edu/~shiller/data.htm

17We use industrial production because, unlike GDP, it almost spans our entire sample.
FRED does not provide industrial production for the 1915-1919 period. Also, recall that in
Table 13 the 1% share strongly predicts excess returns even when controlling for GDP growth.
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Table 6: Top 1% income share and stock prices during and after top tax rate change episodes

Period ∆MTR ∆ETR ∆1% ER5yr ERa.t.
5yr %∆(P/E10) %∆IP Reason

1915-1919 66 25 -0.36 2.78 2.54 -17.74 N/A WWI
1921-1927 -48 -5 0.65 -8.65 -8.86 18.07 8.44 pro-growth
1931-1945 69 57 -0.27 8.61 4.70 3.86 7.18 WWII, budget balance
1963-1966 -21 0 0.19 -3.39 -1.00 -1.93 8.17 pro-growth
1980-1989 -42 -15 0.52 7.38 8.22 6.99 2.27 Reaganomics
1990-1994 11.6 0 -0.04 17.83 19.06 5.93 2.42 budget balance
2000-2004 -4.6 -7 -0.29 -6.86 -6.25 -8.01 0.12 pro-growth, stimulus

Across episode averages
Hikes -0.24 9.74 8.77 0.00 6.12
Cuts 0.36 -2.88 -1.97 6.05 4.37

Note: MTR and ETR: top marginal income and estate tax rates (%). ∆1%: average per year change in top 1% income share including capital gains. ER5yr:
annualized five year average excess return (%), starting in final year of period. ERa.t.

5yr : ER5yr, taxing interest and dividends at top marginal income rate.
%∆(P/E10): average per year % change in Shiller’s P/E. %∆IP: average per year % change in the industrial production index. Sources: de Rugy (2003a,b),
Jacobson et al. (2007), Weinzierl and Werker (2009), Romer and Romer (2010),Tax Foundation, IRS, and FRED.

24



4.2 Instrumental variables regressions using changes in
top estate tax rates

In line with our findings in Section 4.1, both Piketty and Saez (2003) and Piketty
(2003) argue that income inequality should decline in response to expansion of
progressive estate taxation: capital gains comprise a substantial portion of the
income of the rich, and high estate taxes decrease the ability and incentive to
amass wealth in financial assets. Thus, increasing the top estate tax rate should
disproportionately reduce the wealth of the very rich and subsequently mitigate
capital gains income inequality, which is driven by inequality in asset holdings.

The regressions in Table 7 confirm this Piketty-Saez hypothesis: contempo-
raneous and lagged changes in the top estate tax rate significantly explain a
substantial portion of the variation in cgdiff (and the 10% and 0.1% analogs).

Table 7: Regressions of cgdiff (top income share− top income share (no cg))
on contemporaneous and lagged changed in top estate tax rates

Dependent Variable: cgdiff (t)
Regressors 0.1% 1% 10%

Constant 1.39 1.96 1.82
∆ETRt -0.04*** -0.05*** -0.04***
∆ETRt−1 -0.02** -0.03* -.03*
∆ETRt−2 -0.07*** -0.08*** -0.06***
∆ETRt−3 -0.05*** -0.06*** -.05***
R2 .29 .27 .22

Note: the table shows regressions of cgdiff on lagged changes in top estate tax rates (ETR).
***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants)
according to Newey-West standard errors (k = 4). For x = .1%, 1%, 10% cgdiff is the
difference between the top x% income shares, with and without capital gains. Sample: 1913-
2014. Sources: Tax Foundation and IRS.

Table 7 suggests that changes in top estate tax rates can instrument for
cgdiff in explaining excess returns. Whether one believes this instrument can
test causation depends on if lagged changes in estate tax rates are excludable or
not. One concern is that estate tax cuts stimulate the economy and thus stock
market returns. Another concern is that even if estate tax rates only affect
inequality, inequality may simply be proxying for the level of stock market,
which will already knows predicts returns. To control for these possibilities,
we allow cgdiff, industrial production growth, and log(P/E) to be endogenous
and instrument all three with contemporaneous and three lags of the change in
the top estate tax rate.

Table 8 shows the multivariate instrumental variables results. Including in-
dustrial production growth and log(P/E) as endogenous regressors and using
contemporaneous and three lags of changes in the top estate tax rate as instru-
ments, cgdiff is significant at the 10% level in predicting subsequent excess
returns.18 This relationship holds regardless of whether we use the top .1%,
1%, or 10% income share in constructing cgdiff.

18 The significance of cgdiff improves to 5% if we impose zero error autocorrelation, that
is, stop using the Newey-West standard error.
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In summary, our finding that rising top income shares lead to low subsequent
excess returns is robust to instrumenting inequality with changes in estate tax
rates, even when controlling for economic growth and the level of the stock
market.

Table 8: Instrumental variables regressions of one year excess stock market re-
turns on cgdiff (top income share− top income share (no cg)), industrial pro-
duction growth, and log(P/E).

Dependent Variable:
t to t+ 1 Excess Stock Market Return

Regressors (t) (1) (2) (3)

Constant
127.32

(200.86)
131.05

(191.95)
158.37

(193.01)

cgdiff(0.1%)
-13.42*
(7.30)

cgdiff(1%)
-10.58*
(5.73)

cgdiff(10%)
-14.41*
(7.79)

%∆IP
-1.60***
(0.52)

-1.56***
(0.50)

-1.54***
(0.52)

log(P/E)
-35.04
(75.32)

-35.64
(72.05)

-43.70
(72.15)

Instruments:

∆ETRt

∆ETRt−1
∆ETRt−2
∆ETRt−3

∆ETRt

∆ETRt−1
∆ETRt−2
∆ETRt−3

∆ETRt

∆ETRt−1
∆ETRt−2
∆ETRt−3

Note: the table shows instrumental variables regressions of one excess returns on lagged
cgdiff. Newey-West standard errors are in parentheses (k = 4). ***, **, and * indicate
significance at 1%, 5%, and 10% levels (suppressed for constants). For x = .1%, 1%, 10%
cgdiff is the difference between the top x% income shares, with and without capital gains.
∆ETRt is the change the top estate tax rate. %∆IP is the annual % change in the industrial
production index. P/E is the S&P500 price-earnings ratios. Sample: 1913-2014. Sources:
Tax Foundation, IRS, and FRED.

5 International evidence

Thus far, we have shown that in the U.S. shocks to the concentration of income
are associated with large and significant declines in subsequent excess returns
on average. We have also provided a theoretical explanation for this pattern:
if the rich are relatively more risk tolerant, when their wealth share rises rel-
ative aggregate demand for risky assets increases, which in equilibrium leads
to a decline in the equity premium. Our theoretical argument, however, is not
specific to the U.S. Therefore, we can test our theory by seeing whether or not
this pattern holds internationally. In this section, we employ cross country fixed
effects panel regressions and show that outside of the U.S. there also appears to
be an inverse relationship between inequality and subsequent excess returns.
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5.1 Data

We consider 29 countries, for the time period 1969-2013, spanning the conti-
nents: Americas (Argentina, Canada, Colombia, U.S.), Europe (Denmark, Fin-
land, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain,
Sweden, Switzerland, and U.K.), Africa (Mauritius and South Africa), Asia
(China, India (INI), Japan, Singapore, South Korea, Malaysia, and Taiwan),
and Oceania (Australia, Indonesia (INO), and New Zealand). Due to missing
data points for some countries, we have around 100-800 observations, depending
on the regions included. In the regressions below, we divide the countries into
the following groups: Advanced Economies (“Advanced”) (AUS, CAN, DNM,
FIN, FRA, GER, IRE, ITA, JPN, KOR, NET, NOR, NZL, POR, SIN, SPA,
SWE, SWI, TAI, UNK, and USA), IIPS (IRE, ITA, POR, and SPA), and EME
(ARG, CHN, COL, INI, INO, MAL, MAU, and SAF).

Our panel data on inequality are from Alvaredo et al. (2015). To be con-
sistent across countries, we use top 1% income shares excluding capital gains
in most specifications. The one exception is Table 12, in which we consider
cgdiff, the difference between the top 1% share with and without capital gains
income. Due to data limitations, this restricts our sample to Canada, Germany,
Japan, and the U.S. See Appendix D for country-specific details on top income
shares.

To calculate annual stock returns (end-of-period) we acquire from Datas-
tream the MSCI total return indexes in local currency. To convert returns into
local real terms, we deflate the stock indexes by local CPI (or GDP deflator when
CPI is unavailable), which we obtain from Haver’s IMF data. See Appendix D
for country-specific details on stock market and price indexes.

Given the liquidity and safety of U.S. Treasuries, T-bill returns provide a
standard and relatively uncontroversial measure of the risk-free rate in the U.S.
In markets outside of the U.S., especially emerging ones where government and
private sector default are not uncommon, it is not immediately obvious how to
measure the risk-free rate. To make the definition of excess returns relatively
consistent across countries, we use the Haver/IMF “deposit rate” series (in most
cases), which is, depending on the country, the savings rate offered on one to
twenty-four month deposits. Specifically, we take the year t safe return to be
the average of annualized rates quoted in January to September of that year.
Local nominal rates are converted into real terms by local CPI (or GDP deflator
when CPI is unavailable). See Appendix D for more details.

5.2 International regression results

In Section 3, we showed that income concentration is inversely related to subse-
quent excess returns. However, quantitatively, this result was really about stock
returns. Indeed, redoing column (1) of Table 13 with stock returns instead of
excess returns, the 1% coefficient is -2.20 with a Newey-West p-value of .085.
With cgdiff and the HP filter, the coefficients are, respectively, -2.93 and -4.57
with p-values of .041 and .002. Also, with none of our top income share measures
do we find a significant relationship between inequality and risk-free rates in the
U.S. Furthermore, due to the limited availability of similar interest rates across
countries, using stock returns instead of excess returns substantially expands
the sample size. In light of these facts and because of the nebulous nature of
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international risk-free rates, we first present the international results for stock
market returns without netting out an interest rate.

Another difference from our U.S. analysis in Section 3 is that in the post-
1969 sample there is no obvious U-shape for top income shares, which simplifies
handling the potentially nonstationary nature of inequality. In this section, we
simply include a linear time trend as one of regressors (except in Table 12, where
we use cgdiff).

Table 9 presents the panel regression results for both the whole sample and
different regions. First, we see in the column “All” that when including all
countries a one percentage point increase above trend in the top income share is
associated with a subsequent decline in stock market returns of 2% on average.
The coefficient is significant at the 5% level with standard errors clustered by
country (results are similar without clustering). Columns “IIPS” and “EME”
show that this inverse relationship is even stronger when we restrict the sam-
ple to the “GIIPS” (without Greece) or the emerging market economies. The
pattern is weaker in the more advanced economies.19

Table 9: Country fixed effects panel regressions of one year stock market returns
on top income shares

Dependent Variable: t to t+ 1 Stock Market Return
Regressors All Advanced IIPS EME

Top 1% (t)
-1.99**
(0.92)

−1.41+

(0.85)
-7.16*
(3.01)

-6.58**
(2.25)

Time Trend Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Obs. 790 699 106 91
R2 (w,b) (.01,.08) (.00,.07) (.05,.16) (.05,.15)

Note: Clustered standard errors in parentheses, ***1%, **5%, *10%, +15%. R2 (w,b): Within
and between R-squared. Constants suppressed. Top 1% is the pre-tax share of income going
to the top 1% of earners (excluding capital gains). The column headings refer to the countries
included (see the main text for details). Sample: 1969-2013 (see Appendix D for country
details).

As a robustness check, Table 17 in Appendix E shows the panel regressions
without time trends. The results are similar to the case with the linear time
trend.20

Table 10 is the same as Table 9 except with excess returns (using real de-
posit rates) as the dependent variable. For “EME” countries, the results are
essentially unchanged. Including all countries, the 1% coefficient falls in magni-
tude slightly to -1.49 but remains significant at the 10% level without clustering
standard errors (with country clustering, the p-value is .16).

19Does including the time trend mitigate potential nonstationarity? The answers appears
to be yes: the Phillips-Perron test (Phillips and Perron, 1988) rejects the presence of a unit
root in the fitted residuals for each country (at least at the 5% level) except in Argentina
(p-value of .31), Indonesia (p-value of .31), and South Africa (p-value of .052), all three of
which have small sample size (≤ 12).

20And, somewhat surprisingly, the unit root tests on the residuals have the same results as
with the inclusion of the time trend: we only fail to reject a unit root in Argentina, Indonesia,
and South Africa, all of which are short time series.
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Table 10: Country fixed effects panel regressions of one year excess returns on
top income shares

Dependent Variable: t to t+ 1 Excess Market Return
Regressors All Advanced IIPS EME

Top 1% (t)
−1.49†

(1.04)
-0.63
(0.91)

-1.42
(4.56)

-6.55**
(2.69)

Time Trend Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Obs. 660 569 72 91
R2 (w,b) (.00,.01) (.00,.20) (.01,.20) (.05,.09)

Note: Clustered standard errors in parentheses, ***1%, **5%, *10%. R2 (w,b): Within and
between R-squared. Constants suppressed. †: p-value = .16, significant at 10% level without
clustering. Top 1% is the pre-tax share of income going to the top 1% of earners (excluding
capital gains). The column headings refer to the countries included (see the main text for
details). Sample: 1969-2013 (see Appendix D for country details).

In Tables 13, 9, 10, and 17 we see that the relationship between inequality
and returns is most apparent in the U.S. and emerging markets. One potential
explanation for this finding is variation in the degree of stock market home bias.
In either very large markets (such as the U.S.) or relatively closed ones (such
as emerging markets), our theory suggests that local inequality should impact
domestic stock markets. In small open markets, however, foreigners own a
substantial fraction of the domestic stock markets and mitigate the role of local
inequality. Indeed, according to measures in Mishra (2015), many of our “EME”
countries (such as India, Indonesia, Colombia, and Malaysia) exhibit some of
the highest degrees of home bias, while most of our “Advanced” and “IIPS”
members are in the bottom half of countries ranked by home bias. Averaging
his measures, Italy, the Netherlands, Singapore, Portugal, and Norway have the
lowest home bias, and the Philippines, India, Turkey, Indonesia, and Pakistan
have the highest (with Colombia and Malaysia close behind).

While local inequality appears less important in small and open financial
markets, inequality amongst global investors should still impact excess returns
in these markets. Table 11 repeats the regressions of Table 10 but also includes
the U.S. 1% share as a proxy for global investor inequality. As conjectured, the
U.S. 1% share has a large and significant inverse correlation with subsequent
excess returns for the “Advanced” and “IIPS” groups (small open economies),
and the local 1% share is significant for emerging markets (relatively closed
economies).

Lastly, in Table 12 we restrict the sample to the U.S., Japan, Canada, and
Germany and use cgdiff to predict returns. In the first two columns, we see
that when cgdiff rises by one percentage point, both subsequent one year
returns and excess returns significantly fall by about 2%.21 In the last two
columns, we exclude the U.S. and include U.S. cgdiff as a regressor. The
coefficient for U.S. cgdiff is negative but not significant, while local cgdiff
remains similar in magnitude and significance.

21Unlike in the previous international regressions, when we restrict the sample to U.S.,
Japan, Canada, and Germany and use cgdiff, the 1% coefficients are only significant at the
10% level when clustering by country.
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Table 11: Country fixed effects panel regressions of one year excess returns on
local and U.S. top income shares

Dependent Variable: t to t+ 1 Excess Market Return
Regressors All† Advanced† IIPS EME

Top 1% (t)
-1.62
(1.17)

-0.65
(1.07)

-2.53
(4.20)

-6.16*
(2.88)

U.S. Top 1% (t)
-3.37***
(1.02)

-2.67***
(0.73)

-6.44**
(1.74)

-11.96
(8.32)

Time Trend Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Obs. 616 525 72 91
R2 (w,b) (.02,.01) (.01,.13) (.04,.00) (.09,.10)

Note: Clustered standard errors in parentheses, ***1%, **5%, *10%. †: excluding U.S. R2

(w,b): Within and between R-squared. Constants suppressed. Top 1% is the pre-tax share of
income going to the top 1% of earners (excluding capital gains). The column headings refer
to the countries included (see the main text for details). Sample: 1969-2013 (see Appendix D
for country details).

Table 12: Country fixed effects panel regressions of one year returns on local
and U.S. cgdiff (top 1% − top 1% (no cg))

Dependent Variable: t to t+ 1 Return

Regressors R R−Rf R† R−R†f

cgdiff (t)
-2.19***
(0.31)

-1.81*
(0.70)

-2.24**
(0.56)

-1.25*
(0.32)

U.S. cgdiff (t)
-2.87
(1.55)

-2.86
(1.36)

Time Trend No No No No
Country FE Yes Yes Yes Yes
Obs. 143 135 99 91
R2 (w,b) (.01,.04) (.01,.70) (.04,.48) (.03,.63)

Note: Clustered standard errors in parentheses, ***1%, **5%, *10%. The column heading R
(R−Rf ) denotes that the dependent variable is the stock market return (excess stock market
return). Countries included: CAN, JPN, GER, USA. †: excluding U.S. R2 (w,b): Within
and between R-squared. Constants suppressed. “cgdiff” is top 1% minus top 1% (no cg),
neither detrended, where top 1% is the pre-tax share of income going to the top 1% of earners
(including capital gains). “no cg” refers to the series that excludes capital gains. Sample:
1969-2013 (see Appendix D for country details).

6 Concluding remarks

In this paper we built a general equilibrium model with agents that are het-
erogeneous in both wealth and attitudes towards risk or beliefs. We proved
that the concentration of wealth/income drives down the subsequent equity
premium. Our model is a mathematical formulation of Irving Fisher’s narrative
that booms and busts are caused by changes in the relative wealth of the rich
(the “enterpriser-borrower”) and the poor (the “creditor, the salaried man, or
the laborer”). Consistent with our theory, we found that the income/wealth

30



distribution is closely connected with stock market returns. When the rich are
richer than usual the stock market subsequently performs poorly, both in- and
out-of-sample.

Could one exploit the predictive power of top income shares to beat the mar-
ket on average? The answer is probably no since the top income share—which
comes from tax return data—is calculated with a substantial lag. One would
receive the inequality update too late to act on its asset pricing information.
However, our analysis provides a novel positive explanation of market excess
returns over time. We conclude, as decades of macro/finance theory have sug-
gested, that stock market fluctuations are intimately tied to the distribution of
wealth, income, and assets.
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Nicolae Gârleanu and Stavros Panageas. Young, old, conservative, and bold:
The implications of heterogeneity and finite lives for asset pricing. Journal of
Political Economy, 123(3):670–685, June 2015. doi:10.1086/680996.

John Geanakoplos. An introduction to general equilibrium with incomplete
asset markets. Journal of Mathematical Economics, 19(1-2):1–38, 1990.
doi:10.1016/0304-4068(90)90034-7.

John Geanakoplos and Martin Shubik. The capital asset pricing model as a
general equilibrium with incomplete markets. Geneva Papers on Risk and
Insurance Theory, 15(1):55–71, 1990. doi:10.1007/BF01498460.

John Geanakoplos and Kieran Walsh. Uniqueness and stability of equilibrium
in economies with two goods. 2016.

Christian Gollier. Wealth inequality and asset pricing. Review of Economic
Studies, 68(1):181–203, January 2001. doi:10.1111/1467-937X.00165.

William M. Gorman. Community preference fields. Econometrica, 21(1):63–80,
January 1953. doi:10.2307/1906943.

Clive W. J. Granger. Some properties of time series data and their use in
econometric model specification. Journal of Econometrics, 16(1):121–130,
May 1981. doi:10.1016/0304-4076(81)90079-8.

Clive W. J. Granger and Paul Newbold. Spurious regressions in economet-
rics. Journal of Econometrics, 2(2):111–120, July 1974. doi:10.1016/0304-
4076(74)90034-7.

James D. Hamilton. Time Series Analysis. Princeton University Press, Prince-
ton, NJ, 1994.

Lars Peter Hansen and Kenneth J. Singleton. Stochastic consumption, risk
aversion, and the temporal behavior of asset returns. Journal of Political
Economy, 91(2):249–265, April 1983.

Peter Reinhard Hansen and Allan Timmermann. Equivalence between out-
of-sample forecast comparisons and Wald statistics. Econometrica, 83(6):
2485–2505, November 2015. doi:10.3982/ECTA10581.

Chiaki Hara, James Huang, and Christoph Kuzmics. Representative consumer’s
risk aversion and efficient risk-sharing rules. Journal of Economic Theory, 137
(1):652–672, November 2007. doi:10.1016/j.jet.2006.11.002.

Juan Carlos Hatchondo. A quantitative study of the role of wealth inequality
on asset prices. Federal Reserve Bank of Richmond Economic Quarterly, 94
(1):73–96, 2008.

John Heaton and Deborah J. Lucas. Evaluating the effects of incomplete markets
on risk sharing and asset pricing. Journal of Political Economy, 104(3):443–
487, June 1996.

Darien B. Jacobson, Brian G. Raub, and Barry W. Johnson. The estate tax:
Ninety years and counting. SOI Bulletin, 27(1):118–128, Summer 2007. URL
https://www.irs.gov/pub/irs-soi/ninetyestate.pdf.

33

http://dx.doi.org/10.1086/680996
http://dx.doi.org/10.1016/0304-4068(90)90034-7
http://dx.doi.org/10.1007/BF01498460
http://dx.doi.org/10.1111/1467-937X.00165
http://dx.doi.org/10.2307/1906943
http://dx.doi.org/10.1016/0304-4076(81)90079-8
http://dx.doi.org/10.1016/0304-4076(74)90034-7
http://dx.doi.org/10.1016/0304-4076(74)90034-7
http://dx.doi.org/10.3982/ECTA10581
http://dx.doi.org/10.1016/j.jet.2006.11.002
https://www.irs.gov/pub/irs-soi/ninetyestate.pdf


Timothy C. Johnson. Inequality risk premia. Journal of Monetary Economics,
59(6):565–580, October 2012. doi:10.1016/j.jmoneco.2012.06.008.

Timothy J. Kehoe. Uniqueness and stability. In Alan Kirman, editor, Elements
of General Equilibrium Analysis, chapter 3, pages 38–87. Wiley-Blackwell,
1998.

Narayana R. Kocherlakota and Luigi Pistaferri. Asset pricing implications of
Pareto optimality with private information. Journal of Political Economy,
117(3):555–590, June 2009. doi:10.1086/599761.

Wojciech Kopczuk and Emmanuel Saez. Top wealth shares in the United States,
1916–2000: Evidence from estate tax returns. National Tax Journal, 57(2):
445–487, 2004.

Per Krusell and Anthony A. Smith, Jr. Income and wealth heterogeneity in the
macroeconomy. Journal of Political Economy, 106(5):867–896, October 1998.
doi:10.1086/250034.

Martin Lettau and Sydney C. Ludvigson. Consumption, aggregate wealth,
and expected stock returns. Journal of Finance, 56(3):815–849, June 2001.
doi:10.1111/0022-1082.00347.

Martin Lettau, Sydney C. Ludvigson, and Jessica A. Wachter. The declining eq-
uity premium: What role does macroeconomic risk play? Review of Financial
Studies, 21(4):1653–1687, 2008. doi:10.1093/rfs/hhm020.

John Lintner. The valuation of risk assets and the selection of risky investments
in stock portfolios and capital budgets. Review of Economics and Statistics,
47(1):13–37, February 1965a. doi:10.2307/1924119.

John Lintner. Security prices, risk, and maximal gains from diversification.
Journal of Finance, 20(4):587–615, December 1965b. doi:10.1111/j.1540-
6261.1965.tb02930.x.

Francis A. Longstaff and Jiang Wang. Asset pricing and the credit market.
Review of Financial Studies, 25(11):3169–3215, 2012. doi:10.1093/rfs/hhs086.

Robert E. Lucas, Jr. Asset prices in an exchange economy. Econometrica, 46
(6):1429–1445, November 1978. doi:10.2307/1913837.

Sydney C. Ludvigson. Advances in consumption-based asset pricing: Empirical
tests. In George M. Constantinides, Milton Harris, and René M. Stultz,
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A Proofs

A.1 Proof of Theorem 2.1

Since by Assumption 3 the aggregate endowment e is spanned by the column
vectors of A, without loss of generality we may assume A = [e,A2, . . . , AJ ].
Let ni = (wi, 0, . . . , 0)′ be the vector of initial endowment of assets. Then by
Assumption 2 we have ei = wie = Ani. Letting z = y+ni, the budget constraint
becomes q′z ≤ q′ni and x ≤ Az. Therefore the utility maximization problem
becomes equivalent to

maximize Ui(x)

subject to q′z ≤ q′ni, 0 ≤ x ≤ Az. (A.1)
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Similarly, the planner’s problem (2.2) is equivalent to

maximize

I∑
i=1

wi logUi(Azi)

subject to

I∑
i=1

zi = n, (A.2)

where n =
∑I
i=1 ni = (1, 0, . . . , 0)′ is the vector of aggregate endowment of

assets.

Step 1. logUi(x) is strictly concave.

Proof. Let us suppress the i subscript and define

f(x) = logU(x) =

{
1

1−γ log
(∑S

s=1 πsx
1−γ
s

)
, (γ 6= 1)∑S

s=1 πs log xs. (γ = 1)

If γ = 1, then f is clearly strictly concave. If γ 6= 1, let Σ =
∑S
s=1 πsx

1−γ
s .

Then by simple algebra we have

∇f(x) =
1

Σ

π1x
−γ
1

...

πSx
−γ
S

 ,

∇2f(x) =− 1− γ
Σ2

π1x
−γ
1

...

πSx
−γ
S

 [π1x−γ1 · · · πSx
−γ
S

]
+

1

Σ
diag

[
−γπ1x−γ−11 · · · −γπSx−γ−1S

]
.

To show that ∇2f(x) is negative definite, it suffices to show that −Σ2∇2f(x) is
positive definite. To this end, let h = (h1, . . . , hS)′ be any vector. Then

h′[−Σ2∇2f(x)]h = (1−γ)

(
S∑
s=1

πsx
−γ
s hs

)2

+γ

(
S∑
s=1

πsx
1−γ
s

)(
S∑
s=1

πsx
−γ−1
s h2s

)
.

Define u, v ∈ RS by u = (· · · (πsx1−γs )
1
2 · · · )′ and v = (· · · (πsx−γ−1s )

1
2hs · · · )′.

Then the above expression becomes

h′[−Σ2∇2f(x)]h = (1− γ)(u · v)2 + γ ‖u‖2 ‖v‖2

= γ(‖u‖2 ‖v‖2 − (u · v)2) + (u · v)2 ≥ 0,

where we have used the Cauchy-Schwarz inequality. Equality occurs when u, v
are collinear and u · v = 0. Since u 6= 0, this is true if and only if v = ku for
some k and k ‖u‖2 = 0, so k = 0 and therefore h = 0. Hence f = logU is
strictly concave.

Step 2. The planner’s problem (2.2) has a unique solution.
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Proof. Let

Ω =

{
x = (xi) ∈ RSI+

∣∣∣∣∣ (∃z = (zi))(∀i)xi ≤ Azi,
I∑
i=1

zi = n

}

be the set of all feasible consumption allocations. Then the planner’s problem
(A.2) is equivalent to maximizing f(x) =

∑I
i=1 wi logUi(xi) subject to x ∈ Ω.

Clearly f is continuous, and by the previous step strictly concave. Therefore
to show the uniqueness of the solution, it suffices to show that Ω is nonempty,
compact, and convex. Clearly Ω 6= ∅ because we can choose the initial endow-
ment zi = ni and xi = Ani = ei. Since Ω is defined by linear inequalities and
equations, it is closed and convex. If x ∈ Ω, by definition we can take z = (zi)

such that xi ≤ Azi for all i and
∑I
i=1 zi = n. Then

I∑
i=1

xi ≤
I∑
i=1

Azi = A

I∑
i=1

zi = An = e.

Since xi ≥ 0 and e� 0, Ω is bounded.
Let x = (xi) be the unique maximizer of f on Ω. Since f is strictly increasing,

we have xi = Azi for some z = (zi) such that
∑I
i=1 zi = n. If there is another

such z′ = (z′i), then Azi = Az′i ⇐⇒ A(zi − z′i) = 0. Since by assumption A
has full column rank, we have zi− z′i = 0 ⇐⇒ zi = z′i. Therefore the planner’s
problem (A.2) has a unique solution.

Step 3. x = (xi) is a GEI equilibrium allocation and the Lagrange multiplier to
the planner’s problem gives the asset prices.

Proof. Let

L(z, q) =

I∑
i=1

wi logUi(Azi) + q′

(
n−

I∑
i=1

zi

)
be the Lagrangian of the planner’s problem (A.2). By the previous step, a unique
solution z = (zi) exists. Furthermore, since Ui satisfies the Inada condition, it
must be Azi � 0. Hence by the Karush-Kuhn-Tucker theorem and the chain
rule, we have

q′ = wi
DUi(Azi)A

Ui(Azi)
(A.3)

for all i, where DUi denotes the (1×S) Jacobi matrix of the function Ui. Since
Ui is homogeneous of degree 1, for all x � 0 and λ > 0 we have Ui(λx) =
λUi(x). Differentiating both sides with respect to λ and setting λ = 1, we have
DUi(x)x = Ui(x). Hence multiplying zi from the right to (A.3), we get

q′zi = wi
DUi(Azi)Azi
Ui(Azi)

= wi.

Adding across i and using the complementary slackness condition, we get

q′n = q′
I∑
i=1

zi =

I∑
i=1

wi = 1.
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Therefore
q′zi = wi = wiq

′n = q′(win) = q′ni,

so the budget constraint holds with equality. Furthermore, letting λi = 1
wi

, by
(A.3) we obtain D[logUi(Azi)] = λiq

′, which is the first-order condition of the
utility maximization problem (A.1) after taking the logarithm. Since logUi is

concave, zi solves the utility maximization problem. Since
∑I
i=1 zi = n, the

asset markets clear, so {q, (xi), (zi)} is a GEI.

Step 4. The GEI is uniquely given as the solution to the planner’s problem
(A.2).

Proof. Let {q, (xi), (zi)} be a GEI. By the first-order condition to the utility
maximization problem, there exists a Lagrange multiplier λi ≥ 0 such that

λiq
′ = D[logUi(Azi)] =

DUi(Azi)A

Ui(Azi)
. (A.4)

Since DUi � 0, A = [e,A2, . . . , AJ ], and e� 0, comparing the first element of
(A.4), we have

λiq1 =
DUi(Azi)e

Ui(Azi)
> 0.

Therefore λi > 0 and q1 > 0. By scaling the price vector if necessary, we may
assume q1 = 1 and hence q′n = 1 · 1 + q2 · 0 + · · · + qJ · 0 = 1. Multiplying
zi to (A.4) from the right and using DUi(x)x = Ui(x) and the complementary
slackness condition, we have

λiq
′ni = λiq

′zi =
DUi(Azi)Azi
Ui(Azi)

= 1 ⇐⇒ 1

λi
= q′ni = wiq

′n = wi.

Substituting into (A.4), we obtain q′ = wiD[logUi(Azi)], which is precisely
(A.3), the first-order condition of the planner’s problem (A.2) with Lagrange
multiplier q. Since (zi) is feasible and the objective function is strictly concave,
(zi) is the unique solution to the planner’s problem.

A.2 Proof of Theorem 2.2 and Propositions 2.3, 2.4

Let u be a general von Neumann-Morgenstern utility function with u′ > 0 and
u′′ < 0. In Theorem 2.2, we have u(x) = 1

1−γx
1−γ or u(x) = log x, but most of

the following results do not depend on the particular functional form. Then a
typical agent’s optimal portfolio problem is

max
θ

E[u(R(θ)w)],

where w is initial wealth. The following lemma is basic.

Lemma A.1. Let everything be as above and θ be the optimal portfolio. Then
the following is true.

1. θ is unique.

2. θ ≷ 0 according as E[R] ≷ Rf .
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3. Suppose E[R] > Rf . If u exhibits decreasing relative risk aversion (DRRA),
so −xu′′(x)/u′(x) is decreasing, then ∂θ/∂w ≥ 0, i.e., the agent invests
comparatively more in the risky asset as he becomes richer. The opposite
is true if u exhibits increasing relative risk aversion (IRRA).

Proof. 1. Let f(θ) = E[u(R(θ)w)]. Then f ′(θ) = E[u′(R(θ)w)(R−Rf )w] and
f ′′(θ) = E[u′′(R(θ)w)(R−Rf )2w2] < 0, so f is strictly concave. Therefore
the optimal θ is unique (if it exists).

2. Since f ′(θ) = 0 and f ′(0) = u′(Rfw)w(E[R]−Rf ), the result follows.

3. Dividing the first-order condition by w, we obtain E[u′(R(θ)w)(R−Rf )] =
0. Let F (θ, w) be the left-hand side. Then by the implicit function theorem
we have ∂θ/∂w = −Fw/Fθ. Since Fθ = E[u′′(R(θ)w)(R − Rf )2w] < 0, it
suffices to show Fw ≥ 0. Let γ(x) = −xu′′(x)/u′(x) > 0 be the relative
risk aversion coefficient. Then

Fw = E[u′′(R(θ)w)(R−Rf )R(θ)]

= − 1

w
E[γ(R(θ)w)u′(R(θ)w)(R−Rf )].

Since E[R] > Rf , by the previous result we have θ > 0. Therefore R(θ) =
Rθ + Rf (1 − θ) ≷ Rf according as R ≷ Rf . Since u is DRRA, γ is
decreasing, so γ(R(θ)w) ≤ γ(Rfw) if R ≥ Rf (and reverse inequality if
R ≤ Rf ). Therefore

γ(R(θ)w)(R−Rf ) ≤ γ(Rfw)(R−Rf )

always. Multiplying both sides by −u′(R(θ)w) < 0 and taking expecta-
tions, we obtain

wFw = −E[γ(R(θ)w)u′(R(θ)w)(R−Rf )]

≥ −E[γ(Rfw)u′(R(θ)w)(R−Rf )] = 0,

where the last equality uses the first-order condition.

Proof of Theorem 2.2. Let θi be the optimal portfolio of agent i. By Lemma
A.1, θi ≷ 0 according as Ei[R] ≷ Rf .

Suppose that θ1 < θ2 and we transfer some wealth ε > 0 from agent 1 to 2.
Let θ′i be the new portfolio of agent i. The change in agent 1 and 2’s demand
in the risky asset is

∆ = (w1 − ε)θ′1 + (w2 + ε)θ′2 − (w1θ1 + w2θ2)

= w1(θ′1 − θ1) + w2(θ′2 − θ2) + ε(θ′2 − θ′1).

Suppose that the risk-free rate does not change. Since agents have CRRA
preferences, we have θ′i = θi, so ∆ = ε(θ2 − θ1) > 0. Since agents i > 2 are
unaffected unless the risk-free rate changes, there is a positive excess demand
in the risky asset.

Regard θi as a function of the risk-free rate Rf . By the maximum theorem,
θi is continuous, and so is the aggregate demand. Since θi < 0 if Rf > Ei[R] by
Lemma A.1, the aggregate excess demand of the risky asset becomes negative
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as Rf → maxi Ei[R]. Therefore by the intermediate value theorem, there exists
an equilibrium risk-free rate higher than the original one. Since by Theorem
2.1 the equilibrium is unique, in the new equilibrium the risk-free rate is higher,
and hence the equity premium is lower.

Lemma A.2. Consider two agents indexed by i = 1, 2 with common beliefs.
Let wi, ui(x), γi(x) = −xu′′i (x)/u′i(x), and θi be the initial wealth, utility func-
tion, relative risk aversion, and the optimal portfolio of agent i. Suppose that
γ1(w1x) > γ2(w2x) for all x, so agent 1 is more risk averse than agent 2. Then

E[R] > Rf =⇒ θ2 > θ1 > 0,

E[R] < Rf =⇒ θ2 < θ1 < 0,

so the less risk averse agent invests more aggressively.

Proof. Since γ1(w1x) > γ2(w2x), we have

d

dx

(
u′2(w2x)

u′1(w1x)

)
=
w2u

′′
2u
′
1 − u′2w1u

′′
1

(u′1)2
=

1

x

u′2
u′1

(γ1(w1x)− γ2(w2x)) > 0,

so u′2(w2x)/u′1(w1x) is increasing. Suppose E[R] > Rf . By Lemma A.1, we
have θ1 > 0. Then R(θ1) ≷ Rf according as R ≷ Rf . Since u′2(w2x)/u′1(w1x)
is increasing (and positive), we have

u′2(R(θ1)w2)

u′1(R(θ1)w1)
(R−Rf ) >

u′2(Rfw2)

u′1(Rfw1)
(R−Rf )

always (except when R = Rf ). Multiplying both sides by u′1(R(θ1)w1) > 0 and
taking expectations, we get

E[u′2(R(θ1)w2)(R−Rf )] = E

[
u′2(R(θ1)w2)

u′1(R(θ1)w1)
u′1(R(θ1)w1)(R−Rf )

]
> E

[
u′2(Rfw2)

u′1(Rfw1)
u′1(R(θ1)w1)(R−Rf )

]
=
u′2(Rfw2)

u′1(Rfw1)
E [u′1(R(θ1)w1)(R−Rf )] = 0,

where the last equality uses the first-order condition for agent 1. Letting f2(θ) =
E[u2(R(θ)w2)], the above inequality shows that f ′2(θ1) > 0. Since f2(θ) is
concave and f ′2(θ2) = 0 by the first-order condition, we have θ2 > θ1.

The case E[R] < Rf is analogous.

Proof of Proposition 2.3. Since agents have common beliefs, we have θi ≷ 0
for all i if E[R] ≷ Rf . Since the stock is in positive supply, in equilibrium we
must have E[R] > Rf . Therefore by Lemma A.2, if γ1 > · · · > γI , we have
0 < θ1 < · · · < θI .

Proof of Proposition 2.4. Let u(x) be the common CRRA utility function
of agents 1 and 2, and

fi(θ) = Ei[u(R(θ))] =

S∑
s=1

πisu(Rf +Xsθ)
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be the objective function of agent i, where Xs = Rs − Rf denotes the excess
return in state s. By the first-order condition, we have

f ′i(θi) =

S∑
s=1

πisu
′(Rf +Xsθi)Xs = 0. (A.5)

Letting q be the stock price, since Rs = es/q and e1 < · · · < eS , we have
X1 < · · · < XS . Since πis > 0 and u′ > 0, by (A.5), it must be X1 < 0 < XS .
Let s∗ = max {s |Xs < 0} be the best state with negative excess returns. Clearly
1 ≤ s∗ < S.

Using the definition of the likelihood ratio λs = π1s/π2s, by (A.5) we obtain

0 = f ′1(θ1) =

S∑
s=1

π1su
′(Rf +Xsθ1)Xs = λs∗

S∑
s=1

λs
λs∗

π2su
′(Rf +Xsθ1)Xs.

Since by assumption the likelihood ratio λs is monotonically decreasing, we have
λs/λs∗ ≥ (≤) 1 for s ≤ (≥) s∗. Furthermore, since beliefs are heterogeneous,
either λ1/λs∗ > 1 or λS/λs∗ < 1 (or both). Combined with X1 < 0 < XS and
Xs < (≥) 0 for s ≤ (≥) s∗, it follows that

0 = λs∗
S∑
s=1

λs
λs∗

π2su
′(Rf +Xsθ1)Xs

< λs∗
S∑
s=1

π2su
′(Rf +Xsθ1)Xs = λs∗f

′
2(θ1),

where the inequality is due to the fact that replacing λs/λs∗ ≥ (≤) 1 by 1 for
s ≤ (≥) s∗ makes the term less negative (more positive), and the inequality is
strict for s = 1 or s = S. Therefore f ′2(θ1) > 0, and since f2 is strictly concave
and f ′2(θ2) = 0, we obtain θ1 < θ2.

B Robustness of predictability

Tables 13–15 explore the robustness (with respect to detrending) of the result
that when the top income share is above trend, subsequent one year excess
returns are significantly below average. Table 16 shows the pairwise correlations
between the explanatory variables used in Section 3.2.

As described in Section 3.2, Table 13 repeats the analysis of Table 1 but with
the Kalman filter with an AR(1) cyclical component as discussed in Appendix C,
which is one-sided (the cycle estimate in year t is based only on data up to year
t). The results are roughly the same as in Table 1. Table 14 is similar to Table
13 but with the HP filter with a smoothing parameter of 100, which is standard
for annual frequencies. The one difference is that column (2) uses the HP filter
with a smoothing parameter of 10, whereas column (2) of Table 13 considers
the AR(2) Kalman filter. With the exception of the 1945-2014 specifications
including CAY (regressions (9) and (10)), the HP results are stronger and more
significant, with top share coefficients ranging from around -4 to -6 and most
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p-values below 1%. When including CAY, the 1% coefficient is roughly the same
in both the Kalman and HP specifications.22

Table 15 explores other detrending techniques. In column (1), we use the
one-sided HP filter with a smoothing parameter of 100. The one-sided HP filter
detrends each data point by applying the filter only to the previous data. In
column (2), we estimate and remove two linear trends, a downward one pre-
1977 and an upward one post-1977. Each case gives a slightly stronger result
than in our baseline regression but a slightly weaker result than with the two-
sided HP filter. Finally, in column (3) we estimate the trend using a ten year
moving average. Compared with the AR(1) Kalman filter, this method, which is
also one-sided, yields a slightly weaker but still significant relationship between
inequality and subsequent excess returns.

As we saw in Section 3.2, controlling for the price-dividend (or price-earnings
ratio) mitigates to a small degree the estimated effect of inequality on subsequent
excess returns. But, in the post-1944 sample, when controlling for the price-
dividend ratio, CAY, and the other macro factors, the 1% coefficient increases
in magnitude (from -2.82 to -4.86) and becomes significant at the 1% level.
However, because the rich hold more stock than do the poor, high prices and the
resulting capital gains likely have some direct impact on the top income shares.
To see this point, Table 16 shows the correlations between top income shares
and classic return predictors. The only control variables significantly correlated
with the top share measures are log(P/D) and log(P/E). This relationship is
consistent both with the idea that rising income concentration pushes up stock
prices and that the rich are disproportionately exposed to stocks.

22In contrast to the Kalman filter, the HP filter uses past, current, and future data to obtain
a smooth trend, thereby potentially introducing a look-ahead bias. For example, since the
rich are likely to be more exposed to the stock market, when the stock market goes up at year
t+ 1, the rich will be richer than usual. But then the trend in the top income share will shift
upwards, and the year t deviation of the top income share will be lower. Therefore the low
income share at year t may spuriously predict a high stock return at t+1. This might explain
the generally stronger results in Table 14.
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Table 13: Regressions of one year excess stock market returns on top income shares and other predictors (using Kalman filter)

Dependent Variable: t to t+ 1 Excess Stock Market Return
Regressors (t) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Constant
8.49

(1.76)
8.40

(1.76)
8.44

(1.74)
9.10

(1.73)
7.62

(2.36)
8.75

(1.53)
22.65

(13.35)
19.10

(10.86)
9.53

(1.88)
25.18

(15.44)

Top 1%
-2.82**
(1.21)

-4.11**
(1.63)

-4.69***
(1.62)

-2.22*
(1.18)

-2.60**
(2.12)

-4.23**
(1.78)

-4.86***
(1.76)

Top 1% (p = 2)
-2.64**
(1.15)

Top 1% (no cg)
-3.78
(2.36)

Top 0.1%
-4.66***
(1.58)

Real GDP Growth
0.37

(0.37)
0.35

(0.79)

∆Cons. Growth Variance
-17.11
(16.43)

-30.05*
(17.18)

log(P/D)
-4.34
(3.94)

-4.98
(4.23)

log(P/E)
-3.98
(3.88)

CAY
1.85**
(0.75)

1.92***
(0.71)

Sample
1913-
-2014

1913-
-2014

1913-
-2014

1913-
-2014

1930-
-2014

1935-
-2014

1913-
-2014

1913-
-2014

1945-
-2014

1945-
-2014

R2 .04 .04 .02 .05 .06 .09 .05 .04 .13 .19

Note: Newey-West standard errors in parentheses (k = 4). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). Unless
otherwise stated, Top 1% is the pre-tax share of income going to the top 1% of earners (including capital gains). “no cg” refers to the series that excludes capital
gains. The top shares series are detrended with the Kalman filter (p = 1) unless otherwise noted. Consumption growth volatility is from an AR(1)−GARCH(1, 1)
model. P/D and P/E are the S&P500 price-dividend and price-earnings ratios. CAY is the consumption/wealth ratio.
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Table 14: Regressions of one year excess stock market returns on top income shares and other predictors (using HP filter)

Dependent Variable: t to t+ 1 Excess Stock Market Return
Regressors (t) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Constant
8.10

(1.73)
8.10

(1.72)
8.12

(1.73)
8.11

(1.70)
5.59

(2.34)
7.57

(1.59)
24.54

(13.26)
22.97

(11.30)
7.74

(1.67)
28.97

(14.50)

Top 1%
-4.21***
(1.24)

-5.22***
(1.70)

-5.54***
(1.50)

-3.93***
(1.18)

-4.24***
(1.26)

-4.03***
(1.46)

-4.21***
(1.46)

Top 1% (HP param.= 10)
-5.89***
(1.75)

Top 1% (no cg)
-4.40**
(2.18)

Top 0.1%
-6.00***
(1.53)

Real GDP Growth
0.60*
(0.36)

0.02
(0.72)

∆Cons. Growth Variance
-16.28
(15.90)

-27.81*
(15.76)

log(P/D)
-5.02
(3.89)

-6.38
(4.12)

log(P/E)
-5.57
(4.06)

CAY
1.59***
(0.58)

1.50**
(0.70)

Sample
1913-
-2014

1913-
-2014

1913-
-2014

1913-
-2014

1930-
-2014

1935-
-2014

1913-
-2014

1913-
-2014

1945-
-2014

1945-
-2014

R2 .09 .10 .03 .09 .10 .13 .10 .10 .14 .20

Note: Newey-West standard errors in parentheses (k = 4). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). Unless
otherwise stated, Top 1% is the pre-tax share of income going to the top 1% of earners (including capital gains). “no cg” refers to the series that excludes capital
gains. The top shares series are detrended with the HP filter (smoothing parameter of 100 unless otherwise stated). Consumption growth volatility is from an
AR(1)−GARCH(1, 1) model. P/D and P/E are the S&P500 price-dividend and price-earnings ratios. CAY is the consumption/wealth ratio.
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Table 15: Regressions of one year excess stock market returns on top income
shares (using different trend estimates)

Dependent Variable: t to t+ 1 Excess Stock Market Return
Regressors (t) (1) (2) (3)

Constant
7.97

(1.89)
8.16

(1.68)
8.78

(1.87)

Top 1% (one-sided HP)
-3.63*
(1.87)

Top 1% (linear detrending)
-3.11***
(0.98)

Top 1% (10 year MA trend)
-1.97**
(0.96)

Sample
1936-
-2014

1913-
-2014

1922-
-2014

R2 .04 .09 .04

Note: Newey-West standard errors in parentheses (k = 4). ***, **, and * indicate significance
at 1%, 5%, and 10% levels (suppressed for constants). Top 1% is the pre-tax share of income
going to the top 1% of earners (including capital income). The one-sided HP filter uses a
smoothing parameter of 100. The MA trend is a 10 year moving average. To linearly detrend,
we impose a downward time trend before 1977 and an upward one after.
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Table 16: Pairwise correlations between explanatory variables

Top 1%
Kal.

cgdiff

(10%)
Top 1%
(no cg)

Top 0.1%
Kal.

cgdiff

(1%)
cgdiff

(0.1%)
%∆RGDP ∆CGV log(P/D) log(P/E) CAY

Top 1% (Kal.) 1.00
cgdiff(10%) 0.73* 1.00
Top 1% (no cg) 0.87* 0.44* 1.00
Top 0.1% (Kal.) 0.95* 0.75* 0.83* 1.00
cgdiff(1%) 0.73* 0.97* 0.41* 0.70* 1.00
cgdiff(0.1%) 0.68* 0.93* 0.39* 0.67* 0.99* 1.00
%∆RGDP 0.12 0.06 0.03 0.13 0.01 -0.04 1.00
∆CGV -0.22 -0.12 -0.19 -0.20 -0.08 -0.05 -0.01 1.00
log(P/D) 0.37* 0.62* 0.26* 0.33* 0.68* 0.70* -0.04 0.00 1.00
log(P/E) 0.16 0.39* 0.08 0.11 0.44* 0.46* -0.21 -0.04 0.74* 1.00
CAY 0.18 -0.05 0.17 0.17 -0.10 -0.13 -0.16 0.11 -0.21 -0.09 1.00

Note: This table shows annual frequency time series correlations for the explanatory variables used in Section 3.2. * indicates significance
at the 5% level. Top 1% (Kal.) is the pre-tax share of income going to the top 1% of earners (including capital gains), detrended with the
Kalman filter (p = 1). Top 0.1% (Kal.) is defined analogously. “no cg” refers to the Kalman filtered series that excludes capital gains.
“cgdiff” is top 1% minus top 1% (no cg), neither detrended. cgdiff(0.1%) and cgdiff(10%) are calculated analogously. Consumption
growth volatility (CGV) is from an AR(1) − GARCH(1, 1) model. %∆RGDP is the percentage change in real GDP. P/D and P/E are
the S&P500 price-dividend and price-earnings ratios. CAY is the consumption/wealth ratio. The samples are 1913-2014 for the top share
series and price ratios, 1930-2014 for GDP, 1935-2014 for consumption volatility, 1945-2014 for CAY.
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C Kalman filter

This appendix explains how we detrend the top income/wealth share using the
Kalman filter.

Let yt be the observed top income/wealth share data at time t. Let

yt = gt + ut, (C.1)

where gt is the trend and ut is the cyclical component. We conjecture that the
trend is an I(2) process, and the cycle is an AR(p) process, so

(1− L)2gt = εt, εt ∼ i.i.d. N(0, σ2
ε ), (C.2a)

φ(L)ut = wt, wt ∼ i.i.d. N(0, σ2
w), (C.2b)

where L is the lag operator and

φ(z) = 1− φ1z − · · · − φpzp

is the lag polynomial for the autoregressive process. For concreteness, assume
p = 1 so φ(z) = 1− φ1z. Then (C.1) and (C.2) can be written as[

gt
gt−1

]
=

[
2 −1
1 0

] [
gt−1
gt−2

]
+

[
εt
0

]
, (C.3a)

yt = φ1yt−1 + gt − φ1gt−1 + wt. (C.3b)

Letting ξt = (gt, gt−1)′, vt = (εt, 0)′, xt = yt−1, A = φ1, F =

[
2 −1
1 0

]
, and

H =
[
1 −φ1

]
, (C.3) reduces to

ξt = Fξt−1 + vt, (C.4a)

yt = Axt +Hξt + wt. (C.4b)

(C.4a) is the state equation and (C.4b) is the observation equation of the state
space model. We can then estimate the model parameters φ1, σ

2
ε , σ

2
w as well as

the trend {gt} by maximum likelihood: see Chapter 13 of Hamilton (1994) for
details. The extension to a general AR(p) model is straightforward.

D International data

Unless otherwise noted, the top income share series is the “Top 1% income
share” excluding capital gains from Alvaredo et al. (2015) (see also their docu-
mentation), the price index is the Haver/IMF CPI, and the interest rate is the
Haver “Deposit Rate” series.

1. Argentina (ARG)

Coverage 1998-2005.

Local Currency Deposit Rate 30-59 day deposit rate.

2. Australia (AUS)

Coverage 1970-2011.

Local Currency Deposit Rate 1972-2011.
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3. Canada (CAN)

Coverage 1970-2011.

1% Income Share LAD series post-1995.

Local Currency Deposit Rate 90 day deposit rate. 1971-2011.

4. China (CHN)

Coverage 1993-2004.

Local Currency Deposit Rate 1 year deposit rate.

5. Colombia (COL)

Coverage 1994-2011.

6. Denmark (DNM)

Coverage 1971-1973, 1975-2011.

1% Income Share “Adults” series.

Local Currency Deposit Rate 1980-2002.

7. Finland (FIN)

Coverage 1988-2010.

1% Income Share “Tax data” series pre-1993 and “IDS” 1993-. We average the two
for 1990-1992.

Local Currency Deposit Rate 23 month deposit rate, 1988-2005.

8. France (FRA)

Coverage 1970-2010.

9. Germany (GER)

Coverage 1972, 1975, 1978, 1981, 1984, 1986, 1990, 1993, 1996, 1999, 2002-2009.

Local Currency Deposit Rate 3 month deposit rate, 1978-2003.

Price Index GDP deflator pre-1991.

10. India (INI)

Coverage 1993-2000.

Local Currency Deposit Rate Bank discount rate from Haver.

11. Indonesia (INO)

Coverage 1988, 1991, 1994, 1997, 1999-2005.

Local Currency Deposit Rate 3 months deposit rate.

12. Ireland (IRE)

Coverage 1988-2010.

Local Currency Deposit Rate 1988-2006.

Price Index http://www.cso.ie

13. Italy (ITA)

Coverage 1975-1996, 1999-2010.

Local Currency Deposit Rate 1983-2004.

14. Japan (JPN)

Coverage 1970-2011.

Local Currency Deposit Rate 3 month deposit rate.

15. South Korea (KOR)

Coverage 1996-2013.

49



Local Currency Deposit Rate 1 year deposit rate.

16. Malaysia (MAL)

Coverage 1989, 1994-1996, 2001-2004, 2006, 2010-2013.

Local Currency Deposit Rate 3 month deposit rate.

Price Index blabla

17. Mauritius (MAU)

Coverage 2003-2009, 2011-2012.

Local Currency Deposit Rate 3 month deposit rate.

18. Netherlands (NET)

Coverage 1971, 1974, 1976, 1978, 1982, 1986, 1990-2013.

19. New Zealand (NZL)

Coverage 1988-2012.

1% Income Share “Adults” series.

Local Currency Deposit Rate 6 month deposit rate, 1990-2012.

20. Norway (NOR)

Coverage 1970-2012.

Local Currency Deposit Rate 1979-2010.

21. Portugal (POR)

Coverage 1990-2006.

Local Currency Deposit Rate 180-360 day deposit rate, 1990-2000.

22. South Africa (SAF)

Coverage 1993-1994, 2003-2012.

1% Income Share Pre-1990, “Married Couples and Single Adults” series. Post-1990,
“Adults” series.

Local Currency Deposit Rate 88-91 day deposit.

23. Singapore (SIN)

Coverage 1970-1992, 1994-2013.

Local Currency Deposit Rate 3 month deposit rate, 1977-2013.

Price Index blabla

24. Spain (SPA)

Coverage 1982-2013.

Local Currency Deposit Rate 6-12 month deposit rate, 1982-2013.

25. Sweden (SWE)

Coverage 1970-2013.

Local Currency Deposit Rate 1970-2006.

26. Switzerland (SWI)

Coverage 1970, 1972, 1974, 1976, 1978, 1980, 1982, 1984, 1986, 1988, 1990, 1992,
1994, 1996-2011.

Local Currency Deposit Rate 3 month deposit rate,

Price Index 1982-2011.

27. Taiwan (TAI)

Coverage 1988-2014.

50



Local Currency Deposit Rate Missing.

Price Index CPI, Datastream.

28. United Kingdom (UNK)

Coverage 1970-2013.

1% Income Share Pre-1990, “Married Couples and Single Adults” series. Post-1990,
“Adults” series.

Local Currency Deposit Rate 90 day T-bill rate.

Price Index GDP deflator pre-1988.

29. United States (USA)

Coverage 1970-2013.

Local Currency Deposit Rate 3 month T-bill rate.

E Additional international results

Table 17: Country fixed effects panel regressions of one year stock returns on
top income shares

Dependent Variable: t to t+ 1 Stock Market Return
Regressors All Advanced IIPS EME

Top 1% (t)
-1.45**
(0.67)

-1.05*
(0.56)

-5.42**
(1.47)

-5.53*
(2.45)

Time Trend No No No No
Country FE Yes Yes Yes Yes
Obs. 790 699 106 91
R2 (w,b) (.01,.11) (.00,.06) (.05,.06) (.04,.18)

Note: Clustered standard errors in parentheses, ***1%, **5%, *10%. R2 (w,b): Within and
between R-squared. Constants suppressed. Top 1% is the pre-tax share of income going to
the top 1% of earners (excluding capital gains). The column headings refer to the countries
included (see the main text for details). Sample: 1969-2013 (see Appendix D for country
details).
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