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Abstract 

We estimate the short- and long-run global response of corn, soybeans, wheat, and rice 

growing areas to international crop output price changes while controlling for the effects 

of price volatility and production costs. We allow responses to vary across countries by 

adopting methods from the panel time-series literature model. Our estimates of growing-

area response are considerably lower than estimates obtained using traditional models. 

Previous findings appear biased due to the assumption of homogeneous response across 

countries. Our aggregate estimates of short- and long-run elasticities of four crop-growing 

areas, with respect to average price, are 0.024 and 0.143, respectively. Crop-specific results 

indicate that both corn and soybean growing areas are generally more responsive than 

wheat and rice. For corn and soybeans, the long-run own-price growing area elasticities are 

0.210 and 0.631, respectively. The long-run own-price elasticities for wheat and rice are 

0.372 and 0.047, respectively. The short-run own-price elasticities for corn and soybeans 

are 0.100 and 0.213, respectively, compared to wheat (0.035) and rice (0.001). Our findings 

also reveal that output price volatility acts as a disincentive for growing-area response in 

the long-run but not in the short-run. 
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Introduction  

Estimates of short- and long-run agricultural crop-growing-area elasticities, with respect to 

crop output prices, are useful to policymakers and analysts who need to understand the 

effects of land use change on the environment, food production, and other policy related 

issues (Searchinger et al., 2008; Roberts and Schlenker, 2013; Haile et al., 2016). A long-

running debate in the empirical literature over the magnitude of these elasticities continues. 

Askari and Cummings (1977), Rao (1989), and de Menezes and Piketty (2012) provide 

reviews of the literature. The estimates of elasticity vary depending on the theoretical and 

empirical model used, the method of estimation employed, as well as the sample of 

countries and crops included. In this paper, we provide consistent and updated estimates of 

the short- and long-run global agricultural growing area elasticities for four main 

agricultural commodities (corn, rice, wheat, and soybeans) using a dynamic heterogeneous 

panel model that accounts for heterogeneity in growing-area response. To the best of our 

knowledge, this is the first global study that addresses coefficient heterogeneity in a 

dynamic panel setting.  

The elasticity of growing-area with respect to own-price depends on a country’s 

share of global output, governmental domestic and trade policies, technology, random 

weather, input availability and use, the productivity of land, and price transmission of 

world prices to local prices, among other factors. Thus, there is no reason to expect that 

area elasticities are the same across crops and countries. For example, countries that 

produce a large share of world output tend to respond more in absolute terms than countries 

with a small share of world output, but likely less in relative terms. Similarly, countries 

that have higher productive land and more land available tend to respond more. This 

indicates potential for heterogeneity in the supply responses to prices across countries or 

groups of countries. Estimation of a worldwide aggregate supply model disregarding 

heterogeneous slope coefficients across countries leads to biased and inconsistent estimates 

in a dynamic model. Aggregation over countries can provide consistent estimates in a linear 

static model with heterogeneous coefficients if the proper theoretical framework of 

aggregation is adopted. However, our focus in this paper is the estimation of supply 
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response in a dynamic panel model framework. The empirical agricultural supply response 

literature uses growing area (planted land), yield, or production as a proxy to denote supply. 

Our analysis focuses on estimating growing-area response to prices, so for the remainder 

of this paper, we use growing-area response to denote supply.2 

The literature on estimating supply response to prices has mostly concentrated on 

one or a few countries (e.g., Binswanger et al., 1987; Lin and Dismukes, 2007; Barr et al., 

2011; Yu et al., 2012; Hausman, 2012; de Menezes and Piketty, 2012; Miao et al., 2015; 

Haile et al., 2016). Recently, Roberts and Schlenker (2013), Haile et al. (2014), Hendricks 

et al. (2015), and Haile et al. (2015) provide estimates of supply response at the global 

level. In estimating global growing-area response, these authors either assume 

homogeneous response across countries, disregard time-series properties of the data, 

disregard aggregation bias by aggregating over countries in a dynamic supply framework, 

provide only a short-run response, or adopt a static model. Thus, the objective of this paper 

is to address these issues in modeling and estimating growing-area response functions. 

Using a static supply model, Roberts and Schlenker (2013) and Hendricks et al. 

(2015) provide estimates of global aggregate growing-area response of four key crops 

(corn, soybeans, wheat, and rice) to average futures price while controlling for the 

endogeneity of futures price. One problem with a static model is that it ignores the dynamic 

nature of agricultural supply response. Haile et al. (2014) aggregate over countries to 

estimate their global crop-specific dynamic growing-area response model for corn, 

soybeans, wheat, and rice. In their dynamic model, they regress crop-specific growing area 

on a lagged growing area, own and competing-crop output prices, input prices, and a time 

trend. Pesaran and Smith (1995) show that aggregating over a group-specific linear 

dynamic model that includes a lagged dependent variable induces serial correlation in the 

residuals of the aggregate equation and produces biased and inconsistent estimates of the 

average coefficients on the lagged dependent variable as well as on the long-run parameters 

of interest. Haile et al. (2015) adopt a dynamic panel supply model to analyze global 

                                                           
2Planted land (growing area) is generally the best available method of gauging how cultivators translate their 
price expectations into action (Askari and Cummings, 1977). We use both growing-area response and supply 
response interchangeably throughout this paper. 
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growing-area response to price changes and price volatilities for the same four crops 

examined here. They estimate their model using pooled generalized instrumental variables 

or generalized methods of moments (GMM) estimators as developed by Arellano-Bond 

(1991) and Blundell and Bond (1998). Like other pooled panel estimators, GMM 

estimators address only intercept heterogeneity across panel units (countries). Pooled 

GMM estimators use past lagged levels as instrumental variables. However, when all the 

coefficients differ across countries, lagged levels are not valid instrumental variables in 

pooled GMM estimators. Therefore, the estimates from pooled GMM estimators are not 

consistent. It is important to examine the supply response to price changes using 

econometric methods that take care of both the heterogeneity in coefficients and 

nonstationary nature of the variables in a dynamic panel framework. Thus, we use the mean 

group (MG) estimator as developed by Pesaran and Smith (1995) to estimate our proposed 

dynamic heterogeneous panel model of global growing-area response. The MG estimator 

allows the intercepts, slope coefficients (short- and long-term), and error variances to vary 

across panel groups. 

This article contributes to the study of global growing-area response in two ways. 

First, we analyze the global growing-area response to international crop output price 

changes for four key crops while controlling for the effects of price volatility and 

production costs by adopting an unrestricted dynamic heterogeneous panel model. We 

estimate the dynamic heterogeneous panel model using the MG estimator. Second, except 

for Haile et al. (2014), the existing empirical literature on global growing-area response to 

price changes only provides a short-run response. We provide both the short- and long-run 

own-price elasticities of growing area and show that they differ significantly but their 

difference is not as not as large as previously found.  

Using country-specific yearly data on growing area, yield, futures prices, world spot 

prices, price volatilities, and world fertilizer prices from 1961 to 2014, we find that the 

estimates of short- and long-run elasticities of the aggregate growing area with respect to 

average price are about 0.024 and 0.143, respectively. With regard to crop-specific 

estimates, we show that in both the short- and long-run, corn and soybeans growing area 
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are generally more responsive to own-price changes than wheat and rice. The highest 

response comes from soybeans and the lowest response is from rice. We estimate an own-

price elasticity of 0.210 and 0.631 for corn and soybeans, respectively, in the long-run. The 

long-run responses of growing area with respect to an own-price for wheat and rice are 

0.372 and 0.047, respectively. The short-run own-price elasticities for corn, soybeans, 

wheat, and rice are 0.100, 0.213, 0.035, and 0.001, respectively. 

Along with the growing-area responses to prices, we also investigate the effects of 

price volatility shocks on growing-area allocations. Price volatility or instability acts as a 

disincentive for producers’ resource allocation and investment decisions (Sandmo, 1971; 

Moschini and Hennessey, 2001) and can make producers worse off if  relative risk aversion 

is not constant (Newbery and Stiglitz, 1982). In particular, smallholder farmers are less 

likely to invest in measures to raise productivity when price changes are unpredictable 

(FAO, 2011). Our findings reveal that crop output price volatility acts as a disincentive for 

growing-area response in the long-run but not in the short-run. 

The rest of the paper is organized as follows. Section 2 provides an overview of the 

existing supply response model and discusses the proposed empirical model. Section 3 

describes data. Section 4 presents the empirical findings and an interpretation of the 

findings. Section 5 concludes.  

   

2 The Economic Model and Empirical Strategy 

2.1 The Economic Model 

Early work on supply response mainly focused on policy issues rather than the 

development and application of theoretical or econometric methods (e.g., Bean, 1929; 

Cassels, 1933). In the late 1950s and 1970s, two major approaches were developed to 

estimate supply response: the Nerlovian (1958) supply model and the supply function 

obtained from profit maximization using duality theory. The two basic ideas behind the 

formulation of Nerlovian supply model are adaptive expectations and partial adjustment. 

This model facilitates the analysis of both the speed and level of adjustment of growing 

area towards desired growing area. The duality approach is based on the theory of 
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production and the firm and involves joint estimation of output supply and input demand 

functions. The weakness of the duality approach is that input prices are often difficult or 

impossible to obtain across countries. Thus, we base our analysis on the Nerlovian 

approach.  

The popularity of the Nerlove approach (Askari and Cummings, 1977; Coleman, 

1983; de Menezes and Piketty, 2012) owes to its simplicity and ease with which the 

parameters of interest can be interpreted. For example, a linear regression of log output 

quantity on log price and lagged log output produces estimates of both short- and long-run 

supply elasticities. In addition, there is often a delayed adjustment in agricultural markets 

due to a lack of availability of resources and consideration of crop rotations. Thus, it is 

essential to adopt a dynamic approach in modeling supply analysis that recognizes time 

lags in agricultural supply response (Yu et al., 2012). In its simplest version, Nerlove’s 

structural supply model for a specific crop consists of the following three equations 

(Nerlove, 1979; Braulke, 1982) 
* *

0 1t t tA P uβ β= + +  (1)                                                                                                                               

* * *
1 1 1( )t t t tP P P Pπ− − −= + −  (2)                                                                                                     

*
1 t 1(A )t t tA A Aγ− −= + −   (3) 

where *
tA  and tA denote  desired and realized planted area of a certain crop at time t, 

respectively, *
tP  and tP refers to the vector of expected and actual own and competing crop 

prices at time t, tu  is the unobserved  random factor with zero expected mean affecting 

area under planting, π and γ are the expectation and adjustment coefficients, 

respectively.  

 Two reduced-form variants of the above structural model can be derived either 

assuming adaptive price expectations (equation 2) or assuming partial adjustment (equation 
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3). When price expectations are adaptive and *
tA tA= , then the reduced form of the above 

structural model can be expressed as3 

0 1 1 1(1 )t t t tA P A uβ π β π π− −= + + − +  (4) 

This states that growing-area supply is a function of its own lagged value and lagged price 

with the short-run price elasticity equal to 1β π . Alternatively, when only the assumption 

of partial adjustment (equation 3) holds, the Nerlovian supply function takes the following 

form 
*

0 1 1(1 )t t t tA P A uβ γ β γ γ −= + + − +  (5) 

When both adaptive expectation and partial adjustment mechanisms are present, then by 

solving the systems (1)-(3) and including other exogenous non-price variables tZ  (input 

costs, technology shifters, weather shock, risk, expected yield etc.), we find the following 

reduced form of the Nerlovian supply equation 

10 1 20 1 1 2 2t t t t t tA P Z A Aµ δ δ λ λ ε− − −= + + + + +                        (6) 

where 0 10 1 1 2, , (1 ) (1 ), (1 )(1 )µ β π γ δ β π γ λ π γ λ π γ= = = − + − = − − −  

and 1( (1 ) )t t tu uε γ π −= − − . 

 Equation (4) is not estimable because desired growing area is not observable unless
*
tA tA= . Equation (5) is estimable as long as a suitable proxy for expected price is 

available. Identification of parameters in equation (6) is difficult because it is not possible 

to distinguish between π and γ  when both adaptive expectations and partial adjustment 

are present (Nerlove, 1979; McKay et al., 1999). Among the three, most empirical 

estimations have been based on equation (5), which uses past-year realized price or futures 

price as the proxy of expected price. Thus, we rely mainly on the model specification (5) 

to estimate the global growing-area response.  

 

                                                           
3 Nerlove (1956 pp. 502) derives this model by noting that any expected price can be written as a linear 
function of growing area. The Koyck transformation also provides the same specification. 
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2.2 Empirical Strategy 

As the goal of this paper is to estimate the global growing-area response based on the 

country-specific variables that are observed in period t, country i (i=1,….,N), and crop c 

we express equation (5) in the following dynamic heterogeneous panel form 
4 4

10 20 30 , 1
1 1

(P)e
ict ic ick ikt ick ickt ic ict ic ic t ic ict

k k
A P vol FP A tµ δ δ δ λ τ ε−

= =

= + + + + + +∑ ∑  (7) 

where ictA denotes actual planted area of crop c (corn, soybeans, wheat, and rice) at time t, 

e
iktP  refers to farmers’ expected own and competing crop prices. Both are pre-planting time-

observed prices or traded futures prices. (P)vol is the measure of own and competing crop 

price risks that affect planting decisions, FP  refers to prices of variable inputs (e.g., 

fertilizer price) and t is the time trend (a proxy for technology). All variables (except price 

volatilities) are in logarithmic forms, so the estimated coefficients can be interpreted as 

elasticities. For example, when k c= , the parameter 10ickδ  can be interpreted as the own-

price growing area elasticity. Otherwise for k c≠  it can be interpreted as a cross-price 

elasticity.  

In equation (7) we assume heterogeneous elasticities across countries and crops 

because our panel of countries is not similar in terms of development. Ignoring the 

heterogeneity in the dynamic panel can lead to inconsistent estimates of the parameters of 

interest in equation (7). One way to solve this problem is an estimation of N separate 

regressions. However, if the objective is to estimate the total mean of panel group 

elasticities, it is much more common to use pooling or aggregating. We now discuss 

potential bias of applying common estimation procedures—pooled and aggregate time-

series—to the dynamic heterogeneous panel model (equation 7). 

 For simplicity, consider the following simple model, where the growing-area 

response equation of a certain crop for country i is expressed as a function of expected crop 

prices and lagged growing area 

10 , 1 , 1,2,......, , 1,2,......, ,e
it i it i i t itA P A i N t Tδ λ ε−= + + = =  (8) 
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with the short-run parameters 10iδ  and iλ  as well as the long-run parameters 

10 / (1 )i i iθ δ λ= −  and / (1 )i i iϕ λ λ= −  varying across panel group i according to the 

following two random coefficients model:4 

1 1 10 10 2: ,i i i iH λ λ η δ δ η= + = +  (9) 

and 

2 1 2: ,i i i iH ϕ ϕ ξ θ θ ξ= + = +            (10)  

First, consider the case where equation (8) is estimated using time-series data by 

aggregating across countries. In this case, aggregating (equation 8) over the panel group, 

utilizing equation (9), and including an intercept term, we can write the aggregate growing 

area of a certain crop at time t as  

(11) 

where and e
t tA P  are sample means of and e

it itA P  across i, and  

1
1 , 1 2

1
( )

N
e

t t i i t i it
i

N A Pυ ε η η−
−

−

= + +∑  (12) 

In the aggregate equation (11), the macro disturbance tυ  is correlated with crop price, as 

a result, the OLS estimators based on equation (11) will be biased and this bias does not 

disappear even if   N and T→∞ →∞ (Pesaran and Smith, 1995). These authors show 

that the aggregated disturbance term will have a complicated pattern of serial correlation 

and the aggregate equation (11) will be misspecified such that it cannot be used to obtain 

consistent estimates of 10 andδ λ . However, under two special cases, the OLS estimator 

will be consistent. Lewbel (1994) shows that if 10andi iλ δ  are independently distributed [

1 2Cov( , ) 0,i i iη η = ∀ ], then the aggregate short- and long-run growing-area elasticities can 

be estimated consistently using equation (11). The average long-run response of growing 

area to price changes will be consistent if equation (11) is estimated by allowing an infinite 

distributed lag specification between and e
t tA P  (Pesaran and Smith, 1995).  

                                                           
4 The results also hold in the case where the coefficients are fixed but differ across groups. 

10 1
e

t t t tA P Aα δ λ υ−= + + +
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Second, consider the pooled estimates of equation (8). A pooled regression assumes 

homogeneous elasticities across countries. The pooled regression of the equation (8) 

including an intercept term can be expressed as 

10 , 1
e

it i it i t itA P Aα δ λ υ−= + + +  (13) 

where  

1 , 1 2
e

it it i i t i itA Pυ ε η η−= + +  (14) 

In the empirical literature, four variants of the pooled estimator are used to estimate 

equation (13). They are pooled ordinary least squares (OLS), fixed effects (FE), random 

effects (RE), and GMM methods. Let’s consider the extreme case where 1 20, 0i iη η= =  

and iα α=  (i.e., the heterogeneity of the coefficients is completely ignored). In this case, 

the OLS regression of current-year growing area on lagged growing area and other 

explanatory variables produces inconsistent estimates, because lagged growing area is 

correlated with the country fixed effects, iα and therefore violates the strict exogeneity 

assumption. Anderson and Hsiao (1981) show that the pooled OLS regression estimates 

are inconsistent for small T and large N. However, they also show that for large T and 

small N the OLS estimates are consistent, which depends on the unrealistic assumptions 

about initial values of dependent variables. Next, consider the case where the heterogeneity 

of iα are fixed but differ across countries. In this situation, for small T and large N, the 

estimates from FE estimator will suffer from dynamic panel bias because of the correlation 

between the lagged dependent variable and the mean random error, where the mean random 

error is the mean over the time period across each country (Nickell, 1981). As a result, the 

FE estimator will be inconsistent. The FE estimator will be consistent if the regressors (e.g., 

crop output prices) are not serially correlated and T is very large. We also note here that 

the RE estimator is inconsistent in dynamic panel regression because fixed effects are 

always correlated with the lagged dependent variable. This inconsistency does not 

disappear even when T goes to infinity. The fourth estimator is the instrumental variables 

estimator, or GMM estimator, as developed by Anderson and Hsiao (1982), Arellano and 

Bond (1991), and Blundell and Bond (1998). This estimator has been used in the recent 
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literature to estimate dynamic panel models. The GMM estimator uses lagged levels of the 

dependent variables as the instrumental variables to remove dynamic panel bias. For small 

T and large N, where T/N tends to zero, it provides consistent estimates of short-run 

coefficients. However, with large T and N, where T/N tends to a positive constant, the 

GMM estimator has a negative asymptotic bias of order 1/N. When T < N, this asymptotic 

bias is always smaller than the fixed-effect bias. When T=N, the asymptotic bias of GMM 

and the fixed effect are the same. With T>=N the coefficients of the lagged dependent 

variable as estimated by GMM asymptotically coincide with the FE estimates (Alvarez and 

Arellano, 2003). Moreover, the GMM estimator is designed for micro datasets where N is 

large relative to T (Bond, 2002; Alvarez and Arellano, 2003; Roodman, 2009b). In our 

case, T is large relative to N. 

In the more standard case (ours is similar to this) where 1 20, 0i iη η≠ ≠ , and ,i iα α=  

the estimates from all four pooled estimators as discussed above are biased and inconsistent 

because , 1ande
it i tP A −  are correlated with itυ  (Pesaran and Smith, 1995). This bias does not 

go away even when N and T are very large. Pesaran and Smith (1995) note that this bias 

or inconsistency is different from that suffered by the FE estimator (assumes homogeneous 

slope) in small T panels as N →∞ (e.g., Nickell, 1981). When we use the FE estimator to 

estimate equation (8), the estimates of the long-run effect,θ , will be asymptotically biased, 

and overestimates the long-run effect if crop prices are positively autocorrelated, and 

underestimates it if prices are negatively autocorrelated. Even pooled GMM estimators 

such as Arellano-Bond (differenced GMM) or Blundell-Bond (system GMM) that use 

lagged values as instruments for endogenous explanatory variables are also inconsistent. 

Pooled GMM estimators are biased because the composite disturbances itυ  in equation 

(13) contains a lagged dependent variable. This means itυ will be correlated with all 

variables that are correlated with , 1ore
it i tP A − . Thus, lags of the endogenous explanatory 

variables are not valid instruments. Intuitively, only variables that are uncorrelated with 

lagged values of itε and e
itP , have a zero correlation with itυ , but such variables, assuming 
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they exist, fail to yield a valid set of instruments, since they will also be uncorrelated with 

the regressors of equation (13) (Pesaran and Smith, 1995).  

 To summarize, estimating equation (7) or equation (8) by aggregating over countries 

and applying OLS, or traditional pooled panel regression methods, or GMM will generally 

result in biased and inconsistent estimates of growing-area elasticity. First, averaging the 

data over groups and estimating aggregate time-series data using the OLS method produces 

inconsistent estimates of parameters. Second, FE estimator produces biased and 

inconsistent estimates of the parameters of interest because of dynamic panel bias caused 

by the correlation between the lagged dependent variable and the unobserved country fixed 

effects. The GMM estimators are not consistent when the coefficient on the lagged 

dependent variable and autocorrelated regressors are heterogeneous. This is because lags 

of the dependent variable are not valid instruments as used by GMM estimators. Moreover, 

GMM estimators overfit long T panels (usually for T>10), assumes cross-section 

independence among panel members, and requires stationarity of the variables. Therefore, 

we need an estimator that accounts for all of these issues and provides consistent estimates 

of the growing-area elasticity.  

 We propose to use the mean group (MG) estimator as developed by Pesaran and Smith 

(1995)5. The MG estimator allows the intercepts, elasticities (short- and long-term), and 

error variances to vary across groups. Given the characteristics of the data that we have, 

the MG estimator is the most suitable method to estimate global crop growing-area 

response. We have data on crop area, yield, prices, price volatilities, and yield shock for 

four major crops for many countries. The countries differ from each other in terms of 

production culture, technology, economic development, institution, and so on. Therefore, 

it is likely that the response of the crop growing area will differ across countries—both in 

the short- and long-run. Thus, we rely on the MG estimator to estimate our dynamic 

heterogeneous panel growing-area response model. The MG estimator involves estimating 

separate regressions for each panel group and averaging the coefficients over groups. This 

estimator provides both the short- and long-run estimates of parameters of interest.   

                                                           
5 Appendix A shows mathematical details of the consistency of MG estimator. 
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 Given the autoregressive lag relation in equation (7), we hypothesize that the growing-

area response model has the following general autoregressive distributed lag (ARDL) (1, 

1, 1, 1, 1) dynamic panel form6  
4 4 4

10 20 30 11 , 1
1 1 1

4

21 , 1 31 1 , 1
1

(P)

(P)

e e
ict ic ick ikt ick ikt ic ict ick ik t

k k k

ick ik t ic ict ic ic t ic ict
k

A P vol FP P

vol FP A t

µ δ δ δ δ

δ δ λ τ ε

−
= = =

− − −
=

= + + + + +

+ + + +

∑ ∑ ∑

∑
 (15) 

This ARDL specification improves on the usual autoregressive lag (ADL) model equation 

(7) in several ways. First, the assumption that the disturbances ictε are distributed 

independently across countries is not necessary and the assumption of its independence 

across time can be satisfied as long as we add additional lags of both dependent and 

explanatory variables in the ARDL model (Pesaran et al., 1999). Second, it is not necessary 

to have the variables be integrated of the same order. Third, and most important, it is easy 

to reparametrize the model into error correction form from which we can easily distinguish 

the estimates of the short- and long-run elasticities. Moreover, contrary to the assumption 

of stationary expectations usually made for the partial adjustment model, the error 

correction model (ECM) incorporates forward-looking behavior by agricultural producers 

as it can be derived from the minimization of an inter-temporal quadratic loss function 

(Nickell, 1985). We can also test for co-integration in the ECM by closer investigation of 

the statistical significance of the error correction term. Thus, we work with the following 

error correction (EC) reparametrization of equation (15) in estimating global growing-area 

response 
4 4 4

, 1 0 1 2 3 11
1 1 1

4

21 31 1
1

( (P) )

(P)

e e
ict ic ic t ic ick ikt ick ikt ic ict ick ikt

k k k

ick ickt ic ict ict
k

A A P vol FP P

vol FP

φ θ θ θ θ δ

δ δ ε

−
= = =

−
=

∆ = − − − − + ∆ +

∆ + ∆ +

∑ ∑ ∑

∑
 (16) 

                                                           
6 Griliches (1967) discusses adding lags of explanatory variables as additional controls in the Nerlove’s 
partial adjustment model.  
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where ∆ denotes first difference, 0 1
i

ic
ic

µθ
λ

=
−

, 0 1

1
j ic j ic

jic
ic

δ δ
θ

λ
+

=
−

 , and (1 )ic icφ λ= − − , 

1,2, .,4.k = …    

Equation (16) is our main empirical model. The objectives of this paper are to 

estimate the short-run own-price growing-area elasticity, 11icδ , and its mean; the long-run 

own-price growing-area elasticity, 1icθ , and its mean; and the error correction speed of 

adjustment parameter, icφ , and its mean. As long as the adjustment parameter, icλ  is less 

than unity, the long-run growing-area elasticity will always be greater than the short-run 

elasticity. Thus, we can express both the short- and long-run country-specific and global 

growing-area elasticities as follows: 

The short-run change in growing area with respect to own-price changes for country i and 

global elasticities are  

11 11 11
1

, /
N

ict
ic ice

iict short run

A N
P

δ δ δ
=−

∂∆
= =

∂∆ ∑  (17) 

The long-run growing-area response to own-price for country i and global elasticities are   

10 11
1 1 1 1 10 11

1

( ) , / or ( ) / (1 )
1

N
ict ic ic

ic ice
iict iclong run

A N
P

δ δθ θ θ θ δ δ λ
λ =−

∂ +
= = = = + −

∂ − ∑  (18)  

We estimate the total mean of each parameter of equation (16) by running separate OLS 

regressions for each country and taking the weighted average of the country-specific 

estimates, which is known as estimates from the MG estimator. Because of the non-linear 

nature of the parameters in equation (16), we apply Stata’s nonlinear combinations of 

estimators (nlcom command) to estimate the mean parameters.  

The central assumption for the validity of the MG estimator is the assumption of 

exogeneity of explanatory variables. The key variables in our dynamic panel model are 

expected crop price. For the expected price, we use pre-planting time futures or spot price. 

We assume that the pre-planting time price is exogenous to growing area. The standard 

assumption of no omitted variables holds as long as growing area is not affected by 

expected yield shocks and unobserved factors that affect growing area are unknown prior 
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to planting. As a result, the pre-planting futures prices are exogenous to growing area 

(Hendricks et al., 2014). Our exogeneity assumption of expected price is also supported by 

findings of existing empirical literature. Choi and Helmberger (1993) find almost no 

difference between OLS and three-stage least square estimates of the U.S. soybean 

growing-area response to price changes. Hendricks et al. (2015) find only a very small bias 

in regressions with the global growing-area response to the futures price.  

Suppose our exogeneity assumption fails and anticipated yield or demand shocks 

affect futures prices. Pesaran (1997) show that in the mean group estimation, it relatively 

straightforward to allow for the possible correlation between explanatory variables and the 

disturbances when estimating the long-run coefficients, as long as the explanatory variables 

have finite-order autoregressive representations. Moreover, to assess the robustness of our 

original regression results to our exogeneity assumption, we include current-year realized 

yield shock as a control variable for the proxy of the anticipated production shocks. This 

is similar to the approach of Roberts and Schlenker (2013) and Hendricks et al. (2015). 

These authors use current-year realized yield shock as a control variable in their empirical 

supply model to account for the endogeneity of futures prices that may arise from the 

anticipation of production shocks.  

 

3 Data and Variables  

We use a comprehensive database covering country-level data from 1961 to 2014. The data 

include area planted, area harvested, yields, futures prices, and spot prices for each of the 

four main crops. In addition, the data include fertilizer prices indices that are used as 

proxies for production costs.  

 We obtain data on area planted from country-specific statistical sources wherever data 

were available. In the case where data on planted area were not available, we use area 

harvested as a proxy for planted land. Data on area harvested and yields for each country 

are obtained from the FAOSTAT database by the Food and Agricultural Organization 

(FAO), United Nations. Crop futures prices traded in Chicago Board of Trade (CBOT) are 

obtained from the Quandl database. The international spot prices and fertilizer price indices 
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are obtained from the database Global Economic Monitor (GEM) Commodities, World 

Bank Group. All prices are converted in real terms using the U.S. urban Consumer Price 

Index (CPI). We obtain CPI from the U.S. Bureau of labor Statistics (BLS).  

 We construct a panel dataset for a group of 31 countries (or regions) based on the 

country-specific caloric share in global aggregate (four crops) caloric production. A 

country that produces greater than equal to 0.5% of the total global caloric production is 

considered as single panel unit. The remaining countries are aggregated and denoted as the 

rest of southern hemisphere and northern hemisphere depending on the planting date of 

each crop.   

 Farmers around the world are assumed to make their planting decision based on the 

prices they expect to receive at harvest time. In modeling their expectation, we use two 

price series: (a) the U.S. crop futures prices measured during the pre-planting period on 

contracts for harvest-time delivery; and, (b) the pre-planting time international spot prices. 

As the crop planting dates in each country differ, the futures and spot prices vary across 

countries. Planting and harvesting calendar for corn, soybeans, wheat, and rice are reported 

in tables B1, B2, B3, and B4 of appendix B.7 For countries in the southern and northern 

hemisphere, we use the planting times of Brazil and the U.S., respectively. The futures 

price for each crop is pre-planting harvest time price traded in CBOT. The spot price is 

pre-planting time observed or actual price. Haile et al. (2015) and Miao et al. (2015) model 

the farmers’ price expectation in a similar fashion. Haile et al. (2015) model for countries 

around the world and Miao et al. (2015) model for the states of the U.S. Examples of other 

studies that use the price of harvest-time contract traded prior to planting are Orazem and 

Miranowski (1994), Roberts and Schlenker (2013), and Hendricks et al. (2015).  

 We include price volatility as a control to measure the impact of price risk on growing-

area decision. We construct the price risk (a measure of price volatility) by calculating the 

standard deviation of pre-planting 12-month price return. Price return is defined as the ratio 

of current month log prices to past month log prices (i.e., 1ln / lnt tP P− ). Price risk is also 

                                                           
7 Crop calendar for each crop is from http://www.amis-outlook.org/amis-about/calendars/en/ and Haile et al. 
(2015). 

http://www.amis-outlook.org/amis-about/calendars/en/
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country specific because we calculate the 12-month standard deviation for each country 

based on the varying planting dates. We include current-year realized yield shocks in our 

empirical model as a proxy for anticipated weather or other anticipated supply shocks that 

may affect growing area decisions as a robustness check. We assume that farmers take into 

account these expected yield shocks, defined as the actual yield deviation to predicted 

yield, while allocating land across crops. Following Roberts and Schlenker (2013), we 

model yield of each country-crop pair as a flexible time trend to construct yield shock. 

Flexible trends are approximated by a restricted cubic spline, which places knots at a 

specific interval of time. A restricted cubic spline produces a continuous smooth function 

for a variable that is linear before the first knot, a piecewise cubic polynomial between 

adjacent knots, and linear again after the last knot (StataCorp, 2013).  

 We estimate global aggregate as well as crop-specific responses for the four main 

agricultural crops. In estimating aggregate response to price changes, we sum up the 

growing area of four crops for each panel group. The average price is the caloric-weighted 

average of either the harvest time futures prices or the international spot prices of corn, 

soybeans, wheat, and rice. Price risk is the simple average of crop-specific standard 

deviation. Country-specific yield shock is constructed by taking the log of the weighted 

average of crop-specific yield shocks. In estimating crop-specific growing-area response, 

we use the variables as defined above. Fertilizer price indices are common to all of our 

empirical models and are also crop- and country-specific. 

Figure 1 shows global growing area changes from 1961 to 2014. While calculating 

both absolute and percentage changes, we take 4-year averages so that bias from year-on-

year fluctuations caused by random shocks is minimized. Several findings are noteworthy: 

first, growing area of all crops increased substantially and similarly in both the 1981–1984 

and 2011–2014 periods. Growing area increases were low from the late 1980s to early 

2000s. Second, absolute changes of corn and soybeans growing area are greater compared 

to wheat and rice area in the 2011–2014 period. Third, overall, soybeans exhibit the largest 

percentage change, while wheat exhibits the smallest change. Corn and rice are in the 

middle and exhibit similar percentage changes. Given these patterns of changes, it would 
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make sense if the growing-area response to crop prices is highest for soybeans followed by 

corn, rice, and wheat if proportional changes in prices are the same for all crops.  

 

 
Figure 1. Changes in global growing area from 1961 to 2014. 

 

 

4 Empirical Results and Discussions 

For large T and N, it is likely that the variables will have unit roots. Hence, this section 

starts by presenting the unit root tests that are shown in Table 1. We employ the Maddala 

and Wu (1999) Fisher-type, lm-Pesaran-Shin (2003), and Pesaran (2007) panel unit root 

tests. In all approaches, we conduct the test with no trend. The number of lags for each 

series is chosen in such a way that the Akaike information criteria (AIC) for the regression 

is minimized. The null hypothesis for all approaches is all panels contain unit roots.  

 The results show that most of the variables are nonstationary in levels form but their 

first difference is stationary. As expected, the yield shock is stationary. The presence of 

nonstationary variables in level imply that the pooled or standard fixed-effect regression 

model would not constitute a co-integrating regression and the parameter estimates would 

be inconsistent (Pesaran and Smith, 1995). The empirical model of equation (16) takes care 

of such problem by introducing the error correction adjustment parameter iφ . 
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Table 1. Unit Root Test Results 
 Fisher (ADF)- 

Inverse Chi Square 
lm-Pesaran-Shin (2003) Pesaran (2007) 

 H0: No Unit Root H0: No Unit Root H0: No Unit Root 
Variables Level: 

p value 
Difference: 

p value 
Difference: 

p value 
Difference: 

p value 
Level: 
p value 

Difference: 
p value 

Aggregate area 0.516 0.000 0.710 0.000 0.048 0.000 
Maize area 0.021 0.000 0.567 0.000 0.010 0.000 
Soybeans area 0.051 0.000 0.000 0.000 0.914 0.000 
Wheat area 0.004 0.000 0.000 0.000 0.011 0.000 
Rice area 0.190 0.000 0.516 0.000 0.980 0.000 
Aggregate price 0.971 0.000 0.160 0.000 0.000 0.000 
Maize price 0.910 0.000 0.162 0.000 0.981 0.000 
Soybeans price 0.847 0.000 0.545 0.000 0.974 0.000 
Wheat price 0.932 0.000 0.150 0.000 0.003 0.000 
Rice price 0.025 0.000 0.000 0.000 0.084 0.000 
Aggregate shock 0.000 0.000 0.000 0.000 0.000 0.000 
Maize shock 0.000 0.000 0.000 0.000 0.000 0.000 
Soybeans shock 0.000 0.000 0.000 0.000 0.000 0.000 
Wheat shock 0.000 0.000 0.000 0.000 0.000 0.000 
Rice shock 0.000 0.000 0.000 0.000 0.000 0.000 
Fertilizer price 0.919 0.000 0.938 0.000 0.994 0.000 

Note: Lag for each unit root test is chosen based on Akaike information criteria (AIC) 
   

   

 The primary parameters of interest are the short- and long-run global growing-area 

elasticities with respect to crop prices. We report both in terms of aggregate growing-area 

response of four crops and in terms of crop-specific growing-area response. In estimating 

aggregate growing-area response, we assume land and other input requirements are 

identical for each crop. A practical reason for aggregation is that prices for all four crops 

are highly correlated, which seriously impedes identification of multiple cross-price 

elasticities. Furthermore, separating cross-price elasticities from own-price elasticities is 

quite difficult with correlated prices (Roberts and Schlenker, 2013). When estimating crop-

specific growing-area response, we relax this assumption and instead assume producers 

reallocate their cropland across crops based on the relative crop prices. This means the area 

expansion of a particular crop can come from its competing crops rather than from new 

land.  
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 Table 2 presents the aggregate estimates of growing-area response to prices derived 

from the ECM specification (equation 16). Columns of the table differ from each other by 

the estimation methods as well as by the type of the price variables. The MG estimator 

allows heterogeneity in intercepts, coefficients, and error variances. The dynamic fixed-

effect (DFE) method allows only fixed but heterogeneous intercepts. Columns (1)–(2) of 

table 2 reports estimates of the growing-area response assuming each country faces the 

same global futures price, whereas columns (3)–(4) report the response assuming each 

country faces a country-specific price.  

 In each model, we focus on the short- and long-run estimates as well as the coefficient 

(adjustment) on the error correction term to investigate the evidence for a long-run 

relationship (table 2). The error correction parameter also allows adjustment from short-

run to long-run. In all MG and DFE models, the error correction terms are negative and 

significant—strong evidence for the long-run impact of price on the aggregate growing 

area. The results show that the growing-area response to price changes are positive and 

significant across all models—both in the short- and long-run. In general, the long-run 

response is higher when we use the DFE estimator, especially with country-specific prices. 

However, as mentioned earlier, fixed-effects estimates of long-run response are 

asymptotically biased and overestimate the long-run effect when positive autocorrelation 

is present in the explanatory variables. A simple pooled fixed-effects regression of current 

year price on lagged price with time trend provides strong evidence of positive 

autocorrelation in prices where the autocorrelation coefficient equals to 0.826 (the result is 

not reported here). The short-run response of growing area to price changes are almost the 

same across all price specifications. The results show that higher crop prices induce farmers 

to increase planted area both in the short- and long-run. These estimates also implicitly 

imply that in the short-run, the area expansion of the four key crops mainly comes through 

substitution within these crops, whereas in the long-run, the expansion comes either from 

the rest of the crop area or from non-agricultural land. 
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Table 2. Estimates of Global Aggregate Growing-Area Response to Price 
 ln(area) ln(area) ln(area) ln(area) 
 MG DFE MG DFE 
 global pricea global price country priceb country price 

 (1) (2) (3) (4) 
Long-Run     
Supply Elast. 0.144* 0.188* 0.143+ 0.239* 
 (0.032) (0.083) (0.033) (0.093) 
Trend 0.006** 0.006** 0.006** 0.008** 
 (0.002) (0.002) (0.002) (0.003) 
Short-Run     
Error Correction  -0.314** -0.066** -0.313** -0.068** 
 (0.038) (0.014) (0.037) (0.013) 
Supply Elast. 0.027* 0.029** 0.024* 0.021** 
 (0.007) (0.007) (0.007) (0.007) 
N(31*53) 1643 1643 1643 1643 
Test of parameter constancy: 
 chi-square 
 (p-value) 

   
480.86 
(0.00) 

 487.74 
(0.00) 

Note: aGlobal price means same international price for each county. bCountry price means country-specific international 
price. Estimates are obtained using STATA’s xtpmg command. The MG elasticity estimates are a weighted average. The 

weights are /ict ict
t c i t c

A A∑∑ ∑∑∑ . For each model, we use futures price weighted by crop-specific caloric share. 

Standard errors are in parentheses. Asterisks  **, *, and  + denote significance at the 1 %, 5%, and 10% levels, respectively. 
 
 
 
  Our estimates of short-run growing area elasticities in table 2 are much lower than the 

estimates of Roberts and Schlenker (2013) and Hendricks et al. (2015) as reported in table 

6. These authors use a static supply model and aggregate over countries to investigate the 

response of an aggregated four crops growing area to price. Recall that the MG estimator 

assumes all the parameters are heterogeneous across countries whereas the DFE estimator 

assumes homogeneous slope coefficients. We report the chi-square and p-value for the test 

of parameters constancy.8 The p-value (bottom row in table 2) indicates that we do not 

support the assumption of parameter constancy, which means MG estimators are preferable 

to the DFE. We hypothesize that these will also hold for the crop-specific regression. 

Hence, for the crop-specific regressions, we only report results based on the MG estimator.  

                                                           
8 Swamy (1970) random-coefficients model programmed in STATA as xtrc command provides the results 
of parameter constancy with regression output. 
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 In estimating crop-specific growing-area response, we make several assumptions 

regarding the effects of competing crop prices. First, we assume that corn and soybeans 

compete for the same land around the world, especially in top producing countries, so we 

expect a negative cross-price elasticity. This assumption seems reasonable as planting-time 

of both crops are almost the same as shown in appendix tables B1 and B2. Second, the 

prices of wheat and rice do not affect corn and soybeans growing-area decisions. The 

planting-time of wheat is different from that of corn and soybeans, so it less likely that corn 

and soybeans will compete with wheat for the same land. Land used for rice planting is not 

suitable for corn and soybeans, at least in the short-run. Third, wheat and rice prices do 

affect each other’s land allocation even though, in general, planting time for the two crops 

is different as shown in appendix tables B3 and B4.  

 Suppose we assume for a moment that we find a negative estimate of the coefficient 

on the wheat price when we run a simple linear regression of soybeans growing area on 

soybean price, wheat price, and a time trend. We argue here that this negative cross-price 

elasticity is the result of endogeneity of wheat price to soybeans growing-area decisions 

caused by different planting time. For example, Argentina plants wheat in May-August in 

year t and plants soybeans mostly in November-December at year t-1. Both are reported as 

time t growing area in the FAO database because they are both harvested in the same year. 

The most recent pre-planting wheat supply price is February-April average futures price at 

time t, whereas for soybeans the price is July-October pre-planting average futures price at 

time t-1. Using this data when we regress soybeans growing area on its own price and 

wheat price, we are likely to get a negative cross-price elasticity between soybeans and 

wheat. This is not because wheat price affects soybeans planting decision but rather the 

higher (lower) growing area in soybeans increases (decreases) its production, thereby the 

supply of soybeans increases (decreases) and its price goes down (up). This lower (higher) 

price of soybeans also forces spot price of wheat to go down (up) because both prices move 

together—this creates a negative correlation between wheat price and soybeans growing 

area and makes wheat price endogenous to soybeans growing area. We think the negative 

cross-price elasticity as found in the literature is not because wheat price affects soybeans 
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acreage decision—rather, a higher growing area in soybeans increases its production and 

makes less land available for wheat. For example, in their global annual growing area 

regression, Haile et al. (2015) find a negative cross-price elasticity between soybeans and 

wheat.9  

 We start with the crop-specific results where we assume corn and soybeans are 

substitutable in production (table 3). The results show that the responses of corn and 

soybeans growing area to own-price are positive and statistically significant both in the 

short- and long-run, which is consistent with economic theory. As expected, the short-run 

responses are smaller than the long-run responses. This happens as land is mostly a fixed 

input and it requires time to prepare new land for crop cultivation when price increases. 

The results also show that soybeans have very high long-run growing-area response to its 

price. This is not unexpected as during the sample period soybeans went through the largest 

percentage increase in growing area compared to other crops (see figure 1) and two of the 

largest producers of soybeans, Argentina and Brazil, were dramatically expanding 

production during this time period. The results suggest that holding everything else 

constant, in the short-run, a 10% increase in corn and soybeans prices tend to increase corn 

and soybeans planting area by about 1.2% and 1.7%, respectively. The corresponding long-

term growing-area responses for corn and soybeans are about 2.7% and 8.3%, respectively.  

 Both corn and soybeans cross-price elasticities are negative and statistically significant 

(table 3), which implies corn and soybeans compete for the same land at the global level. 

The results show that the negative response of soybeans growing area to an increase in corn 

price is stronger than the effect of a change in corn area to a change in soybeans price. 

These cross-price responses are higher in the long-run. The soybeans price effect on corn 

growing area is almost similar in magnitude in the short- and long-run. 

 The effects of own-price volatilities are positive in the short-run and negative in the 

long-run (columns 1a and 2a in table 3). The results suggest that an increase in price 

                                                           
9 We are not sure whether they used expected wheat price before the soybeans planting time to account for 
endogeneity of wheat price, perhaps they did. However, it will be interesting to see the effect of period t-1 
wheat supply price on soybeans planting decisions. 
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volatilities of corn and soybeans tends to increase land allocation in both crops in the short-

run but not in the long-run. The findings of short-run positive effects are consistent with 

previous global-level studies as well as national-level studies, which find similar results 

(Haile et al., 2015; de Menezes and Piketty, 2012). If mean prices are high with high price 

volatilities, then producers respond by producing more through increasing growing area.  

 

Table 3. Estimates Corn and Soybeans Growing-Area Response to Price Using MG Estimator 
 Corn Corn Soybeans Soybeans 
 (1a) (1b) (2a) (2b) 
Long-run     
Corn Price 0.235** 0.302** -0.596** -0.538** 
 (0.063) (0.076) (0.093) (0.093) 
Soybeans Price -0.059* -0.042 0.825** 0.842** 
 (0.029) (0.028) (0.036) (0.035) 
Corn Price volatility -1.699+ 0.418 0.352 -0.180 
 (0.995) (0.990) (3.625) (2.494) 
Soybeans Price volatility -0.708 0.036 -2.223** 0.353 
 (0.734) (0.677) (0.641) (0.743) 
Fertilizer Price  -0.185**  -0.152* 
  (0.052)  (0.062) 
Short-Run     
Error Correction -0.404** -0.441** -0.346** -0.372** 
 (0.054) (0.056) (0.043) (0.043) 
Corn Price 0.118** 0.115** -0.244** -0.155** 
 (0.027) (0.026) (0.037) (0.036) 
Soybeans Price -0.068** -0.073** 0.166** 0.167* 
 (0.016) (0.016) (0.046) (0.043) 
Corn Price volatility 0.767** 0.750** -0.453+ 0.500* 
 (0.235) (0.242) (0.233) (0.255) 
Soybeans Price volatility 0.003 -0.254+ 0.194 -0.055 
 (0.106) (0.138) (0.118) (0.132) 
Fertilizer Price  0.020  -0.087** 
  (0.013)  (0.015) 
N 1423 1423 1423 1423 

Note: Estimates are obtained using STATA’s xtpmg command. The own-price elasticity estimates of each crop are a 

weighted average. The weights are /ict ict
t t i

A A∑ ∑∑ . For each model, we use pre-planting futures price for the 

proxy of expected price. Standard errors are in parentheses. Asterisks **, *, and  + denote significance at the 1%, 5%, and 
10% levels, respectively. 
 
  

In addition to output price and its volatility, input price affects land use decisions. 

Fertilizer price has a negative effect on both corn and soybeans growing-area in the long-

run (table 3). A higher fertilizer price means a higher cost of production, and therefore 
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farmers tend to produce less by lowering growing area. In the short-run, the effect of 

fertilizer price on soybeans is negative and statistically significant, whereas it is not 

negative and significant for corn. From table 3, we also find that when fertilizer price (input 

cost) is not included as a control (columns a and b) in the supply equations of corn and 

soybeans, we find relatively lower long-run growing-area elasticities. This is probably 

because of the negative correlation between input costs and random error term.   

 Table 4 reports results for the wheat and rice growing area elasticities. It also reports 

corn and soybeans growing area elasticities where we include only own-price of both crops. 

Except for rice, all own-price elasticities are found to be positive and statistically 

significant. Averaging columns 1a and 1b in table 4 shows that in the short-run, a 10% 

increase in the price of wheat leads to a 0.35% increase in wheat growing area, everything 

else held constant. In the long-run, an equivalent increase in the price of wheat leads to a 

3.72% increase in wheat area.  

Columns 2a and 2b of table 4 report rice growing area elasticities. The results in both 

columns show that rice growing area does not respond to changes in price, as indicated by 

insignificant statistical results. These are evident both in the short- and long-run. We 

explain these low or insignificant responses using two facts. First, the top rice producing 

countries in the world are either developing countries or least-developed countries, where 

rice is the staple food and where government intervention (price subsidy or other supports) 

is a common case whenever a production shock occurs. For example, in late 2007, the 

Indian government took protectionist measures, banning the export of non-basmati rice and 

imposing an export tariff on basmati rice to increase domestic supply and lower domestic 

price. This action resulted in a reduction in rice supply in global markets and price hike in 

the world rice price that was not reflected in the domestic market. Therefore, supply did 

not respond with respect to higher world prices. China and Bangladesh, the first- and fifth-

ranked rice producers in the world, respectively, hardly participate in the international rice 

export market. Therefore, the growing-area response of rice in these two countries are 

likely to depend on domestic producer price rather than the international price. 
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The growing-area elasticities of corn and soybeans are positive and significant 

(columns 3a–4b in table 4). We find that, in the short-run, a 10% increase in the price of 

corn leads to a 1% increase in corn growing area, everything else held constant. In the long-

run, an equivalent increase in the price of corn leads to a 2.10% increase in corn area. The 

short-and long-run responses of soybeans growing area to own-price are higher than the 

corresponding responses of corn growing area. 

 
Table 4. Estimates of Crop-Specific Growing-area response to Price Using MG Estimator 
 Wheat Rice Corn Soybeans 
 ln(area) ln(area) ln(area) ln(area) ln(area) ln(area) ln(area) ln(area) 
 (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) 
Long-Run         
Supply Elast. 0.345** 0.398** 0.033 0.060 0.193** 0.229** 0.539** 0.722** 
 (0.134) (0.163) (0.106) (0.115) (0.046) (0.063) (0.076) (0.065) 
Price Volatility -4.974** -3.716** 0.610 0.365 -5.113** -1.113 -6.866** 0.716 
 (1.403) (1.315) (2.491) (2.153) (1.537) (1.121) (1.971) (0.909) 
Fertilizer price  -0.129  0.032  -0.210**  -0.634** 
  (0.109)  (0.128)  (0.058)  (0.079) 
Short-Run         
Error Correction -0.333** -0.390** -0.326** -0.348** -0.345** -0.380** -0.185** -0.287** 
 (0.040) (0.045) (0.031) (0.035) (0.047) (0.046) (0.014) (0.022) 
Supply Elast. 0.038** 0.032+ 0.001 -0.005 0.089** 0.109** 0.221** 0.205** 

 (0.029) (0.034) (0.021) (0.023) (0.028) (0.028) (0.045) (0.037) 
Price Volatility 0.207 0.130 -0.001 -0.001 0.958** 0.888** 0.333* -0.024 
 (0.257) (0.212) (0.213) (0.202) (0.260) (0.237) (0.133) (0.108) 
Fertilizer price  0.008  -0.012  -0.011  -0.073** 
  (0.017)  (0.019)  (0.010)  (0.016) 
N 1440 1440 1456 1456 1560 1560 1423 1423 
Test of 
parameter 
constancy: Chi-
square 
(p-value) 

657.31 
(0.000) 

 465.47 
(0.000) 

 1602.73 
(0.000) 

 3224.71 
(0.000) 

 

Note: Estimates are obtained using STATA’s xtpmg command. The elasticity estimates of each crop are a weighted 

average. The weights are /ict ict
t t i

A A∑ ∑∑ . Except for rice, we use pre-planting futures price for the proxy of 

expected price. For rice, we use pre-planting international spot price. Standard errors in parentheses. Asterisks **, *, and  
+ denote significance at the 1%, 5%, and 10% levels, respectively. 

 

 

In general, the effects of price volatilities on growing area are positive in the short-

run and negative in the long-run (columns 1a, 2a, 3a, and 4a of table 4). In the short-run, 

the effects are statistically significant for corn and soybeans; whereas in the long-run, the 
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effects are significant for wheat, corn, and soybeans. These findings are consistent with 

producers being well-informed about the price risks, and absorbing risk in the short-run 

through several risk management tools such as insurance, hedging, options, and so on. In 

the long-run, producers focus more on wealth accumulation than absorbing price risks. 

Larger commercial farms increasingly accounted for the bulk of the production of U.S. 

grains and oilseeds and these larger commercial farms perhaps place more focus on net 

wealth accumulation in the long-run and less in avoiding production and market risks in 

the short-run (Lin and Dismukes, 2007). An alternative explanation is, of course, that price 

volatility does not belong in the model, and we are picking up a spurious correlation. 

The effects of fertilizer price indices on growing area are negative across all four 

crops, with the long-run effect being stronger than the short-run effect (table 4). This is 

consistent with the economic theory that predicts that production cost increases will lead 

to reductions in planted acres. Another explanation of the negative coefficients on the 

fertilizer prices is that a higher fertilizer price may induce farmers to adopt high yielding 

but less fertilizer-intensive seeds—which, perhaps, provide higher production for a given 

or lower amount of land. 

The error correction speed of adjustment parameters iφ is negative across all crops 

and statistically significant. This provides evidence of a long-run relationship and implies 

that the long-run coefficients are consistently estimated (table 4). The estimates of 

adjustment parameters indicate the slow speed of adjustment towards the long-run 

equilibrium. In the last row of table 4, we also report the results for parameter constancy. 

In all crop cases, we reject the null hypothesis of parameter constancy across countries. 

These results provide justification for using MG estimators in estimating crop growing-

area response. 

Robustness Check  

We check the robustness of our original regression results by including the current-year 

realized yield shocks as an additional control variable in the supply equation. The observed 

yield shocks will proxy for anticipated yield shocks if there is any predictability about 

growing season weather at planting time. If there is, then futures prices will be correlated 
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with the error term in the supply model. Results are reported in appendix tables C1, C2, 

C3, and C4 of appendix C, which are analogous to tables 2, 3, 4, and 5 of this article. 

Estimated elasticities that control for predicted yield shocks are quite similar to the results 

without control. Therefore, endogeneity of futures prices does not seem to be an issue of 

concern in our supply response model.  

Results with Alternative Estimators 

Estimating a dynamic heterogeneous panel-data model disregarding heterogeneity in 

coefficients can lead to biased and inconsistent estimates. Estimates of growing-area 

responses to prices using several alternative estimators are given in table 5. The estimates 

in column 1 are from pooled OLS, which assume all coefficients are the same across the 

panel group. The estimates in columns 2–4 are from alternative pooled estimators, which 

assume panel-specific intercepts but same slope coefficients for each panel group. The 

estimates in column 5 are from a random-coefficient estimator in which separate 

regressions are estimated for each panel group by treating all the parameters as a realization 

(in each panel) of a stochastic process. Results in columns 1–3 and 5 are derived from a 

Nerlovian partial adjustment model and results in column 4 are derived from the dynamic 

specification of equation (16). Results of table 5 are comparable with the results (which do 

not include fertilizer price) of tables 2 and 4.  

 The pooled OLS estimates in column 1 indicate that the long-run growing area 

elasticities are quite high and are not consistent with simple observations of the data. For 

example, the results show that the OLS estimate of aggregate growing-area response to 

price is negative and the estimate of wheat growing-area response is quite low. These 

estimates are biased because the lagged dependent variable (growing area) is correlated 

with the panel group heterogeneity. The pooled FE in column 2 and DFE in column 4 

overestimate the long-run responses because prices are autocorrelated and incorrectly 

ignoring heterogeneity in coefficients induces serial correlation in the disturbances. By 

similar logic, the Blundell-Bond GMM estimates in column 3 are biased and inconsistent. 

Moreover, lagged levels are not valid instruments when heterogeneity in coefficients are 

present.  
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Table 5. Estimates of Growing-Area Response with Alternative Estimators 
 Pooled 

OLS 
FE GMM  DFE Random 

Coefficients 
 (1)  (2) (3) (4) (5) 
Long-run      
Aggregate -504.1 0.294** 0.199** 0.239* 0.043** 
Corn 1.79* 0.794** 0.361* 0.638** 0.315** 
Soybeans 1.21** 0.957** 1.13** 1.023** 0..894** 
Wheat 0.628 0.635** 0.449** 0.516** 0.323** 
Rice 38.30 0.315** 0.745** 0.259* 0.084 
Short-run      
Aggregate 0.019** 0.020** 0.043** 0.021** 0.011 
Corn 0.021* 0.121* 0.095* 0.463** 0.117** 
Soybeans 0.062* 0.533** 0.233** 0.752** 0.450** 
Wheat 0.005 0.076** 0.087** 0.169** 0.097** 
Rice 0.013 0.033* 0.100** 0.043 0.022 

Notes: Right-hand side variables in columns 1–3 and 5 are a lagged dependent variable, expected own-crop price, own-
crop price volatility, a trend, and country-specific intercepts. Column 4 uses the similar specification as shown in equation 
(16). Elasticity estimates in column 3 are from the two-step system-GMM estimator that use two-years lagged dep. var. 
and treat lagged dependent variable and price as endogenous. Results in column 3 also use robust standard errors with 
Windmeijer (2005) finite sample correction. The results in column 3 are estimated using XTABOND2 in STATA and a 
collapsed instrument matrix as suggested by Roodman (2009a). The lags used for instruments vary by crop—usually 
from 3 lags to 5 lags. The results in column 5 are from Swamy (1970) random coefficient estimator and are estimated 
using XTRC in STATA. Asterisks  **, *, and  + denote significance at the 1%, 5%, and 10% levels, respectively. 
  

 

 The random coefficients estimates in column 5 reveal that in general, the responses of 

growing area are larger in magnitude than the MG estimates. The estimates from random 

coefficients estimator are consistent, but the estimator is applicable only when coefficients 

are random across groups. Our proposed MG estimator is applicable irrespective of 

whether the slope coefficients are random or fixed, in the sense that the diversity in the 

slope coefficients across cross-sectional units cannot be captured by means of a finite 

parameter probability distribution (Pesaran, 2015 pp. 718) Moreover, the MG estimator is 

more efficient than random coefficients estimator in random- and fixed-coefficients 

models. 

Table 6 reports a summary of the global growing-area elasticities estimated by recent 

studies. Our estimate of short-run aggregate elasticity is lower than estimates of Roberts 

and Schlenker (2013) and Hendricks et al. (2015). Studies that provide crop-specific short-

run elasticities generally have higher estimates than ours. For example, the long-run 

growing-area response of soybeans as found in previous work is more than double relative 
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to our estimate. A comparison of our results in table 5 with the table 4 results indicates that 

these differences are likely due to the use of a static model or a lack of accounting for 

coefficient heterogeneity in the dynamic panel data model. 

 
 
Table 6. Estimates of Global Growing-Area Response in Different Studies  

Study Crop Price 
Used 

Elasticity: 
Short-run 

Elasticity: 
Long-run 

Model/Estimator 

Roberts and 
Schlenker 
(2013)  

Aggregate 
four crops Futures 0.078 

 
N/A Static (Aggregate) /IV 

     
Hendricks et al. 
(2015) Aggregate 

four crops Futures 0.064 

 
 

N/A 

Static (Aggregate or 
Country-Specific) /OLS 

or IV 
 
Haile et al. 
(2014) 

 
Corn Spot 0.18 

 
0.23 Dynamic (Aggregate) 

/OLS Soybeans Spot 0.37 1.15 
Wheat Spot 0.09 0.20  
Rice Spot 0.02 0.06  

 
 
Haile et al. 
(2016b) 

 
 

Corn Spot 0.23 

 
 

N/A 

 
 

Dynamic Panel (Fixed 
Effect: homogenous 

slope) 
/GMM 

Soybeans Spot 0.37 N/A 
Wheat 

Spot 0.11 
N/A 

Rice Spot 0.06 N/A  
 
FAPRI* 

 
Corn Domestic 0.14 

  
N/A 

 Soybeans Domestic 0.31   
 Wheat Domestic 0.18   
 Rice Domestic 0.07   
This article** Aggregate Futures 0.024 0.144 Dynamic Panel 

(Heterogeneous 
coefficients) 

/MG 

 Corn Futures 0.089 0.193 
 Soybeans Futures 0.229 0.539 
 Wheat Futures 0.038 0.345 
 Rice Spot 0.001 0.033  

Note: *From Haile et al. (2016b). ** Aggregate estimates are with respect to average price and crop-specific estimates 
are with respect to own prices and its volatilities.  
 

 

5 Conclusions  

This paper makes two contributions. First, it demonstrates that use of a dynamic 

heterogeneous panel data model to account for heterogeneous (country-specific) growing-

area response to price provides consistent estimates of global growing area supply 
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elasticities. Second, by applying the MG estimator to the dynamic model, we demonstrate 

that it results in more inelastic elasticities than estimators that have been used previously. 

In contrast to previous studies, which attribute more inelastic response to the price being 

endogenous, we demonstrate that more elastic estimates are the result of a misspecified 

model.  

 Using annual data for the period 1961 to 2014, this paper provides both long- and 

short-run elasticities of growing area with respect to price. As expected, long-run 

elasticities are much higher than short-run elasticities, which is consistent with Nerlove’s 

partial adjustment theory and with the existing empirical literature (Roberts and Schlenker, 

2013; Haile et al., 2014; Haile et al., 2015). However, our results differ from previous 

global-level estimates in terms of magnitude as well as differences between short- and 

long-run responses because we account for parameter heterogeneity across crop-producing 

countries.  

 We find that the short- and long-run elasticities estimates of the aggregate growing 

area with respect to own prices are about 0.024 and 0.143, respectively. The existing short-

run aggregate estimates are much higher than our estimate. With regard to crop-specific 

estimates, we find that corn and soybeans growing area are more responsive to price 

changes than rice and wheat area. Soybeans exhibits the highest response, whereas rice 

shows the lowest response. These are evident both in the short- and long-run. The short-

run own-price elasticities for corn and soybeans are 0.100 and 0.213, respectively, 

compared to wheat (0.035) and rice (0.001). The long-run response of growing area for 

corn and soybeans with respect to price changes are 0.210 and 0.631, respectively, 

compared to wheat (0.372) and rice (0.047). Price transmission from the international rice 

market to domestic producer markets is perhaps very low because of government 

intervention (input price support or some sort of subsidy), which may lead to these low rice 

growing-area response to international price changes. For example, in late 2007, India, the 

top exporter of rice (as of 2015/16), imposed an export ban on all non-basmati rice exports 

in an effort to ensure sufficient supplies for their population. This intervention causes a 

spike in international rice price but that price hike perhaps was not transmitted to the 
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domestic market and thereby producers did not get the actual price signal to plant more 

rice.  

 Economic theory shows that in a competitive market situation, higher price 

volatilities act as a disincentive for production expansion if a producer is risk averse 

(Sandmo, 1971). However, our empirical findings in the short-run are not in line with the 

theory. Except for wheat, the own-price volatilities impact on growing-area decisions are, 

in general, positive in the short-run. These may happen because the leading producers of 

these crops (particularly corn and soybeans) adopt several risk management tools such as 

insurance products, hedging, and options to absorb price risk in the short-run. Therefore, 

in the long-run, producers lower their effort (growing area) with respect to higher price 

volatilities. The impact of wheat price volatilities on the wheat growing area is negative in 

the short-run but statistically insignificant. 
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Appendix A    Derivation of the Consistency of MG Estimator 

We show the consistency of MG estimator following Pesaran et al. (1996). For simplicity, 

we work with the model specification as shown in equation (8). Let’s write the model (8) 

more compactly as 
2, i.i.d. (0, ), 1,2,......, , 1,2,......, ,it i it it it iA x i N t Tγ ε ε σ= + = =          (A1) 

where , 1( , )e
it i tit P Ax −
′ ′=  and 10( , )i ii δ λγ = . The disturbance itε is assumed to be distributed 

independently of the parameters and regressors. We also assume that the between group 

disturbances covariances are zero, i.e., ( ) 0 for all and , .it jtE t t i jε ε ′ ′= ≠ Now, the 

estimator of iγ for each group i given by 

1ˆ ( ) , 1,2,.....,i i T i i T iX H X X H A i Nγ −′ ′= =             (A2) 

where iX and iA are the 2T × and 1T × observation matrices for the explanatory variables 

and the dependent variable for the thi  country. 1( )T T T T T TH I l l l l−′ ′= −  , where TI is identity 

matrix of order T and TI is a 1T × unit vector.  We compute the MG estimator of iγ  as 

1

ˆ ˆ /
N

MG i
i

Nγ γ
=

= ∑                         (A3) 

which can be expressed as 

1

1

1ˆ ( )
N

MG i T i i T i
i

X H X X H
N

γ γ ε−

=

′ ′= + ∑                       (A4) 

where 1

1

N

ii
Nγ γ−

=
= ∑ . For a fixed N , as T →∞  we have 

1

1

1ˆp lim ( ) p lim
N

i T i i T i
T MG T

i

X H X X H
N T T

ε
γ γ γ

−

→∞ →∞
=

′ ′
= + +

   
=   

   
∑                    (A5) 

where p lim 0i T i
T

X H
T

ε
→∞

′
=

 
 
 

, given the assumptions that we made about the disturbances. 

Now let’s assume that ' s
iγ are independently distributed across groups. Then by the law of 

large numbers (as N →∞ ) we have pγ γ→ . This confirms the consistency of the MG 

estimator ˆMGγ .  
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Appendix B    Planting and Harvesting Calendar 

 

Table B1. Corn Planting and Harvesting Calendar for the Sample Countries  
Country Year t Year t+1 
 J F M A M J J A S O N D J F M A M J J A S O N D 
Argentina 

            
            

Australia 
            

            
Bangladesh 

            
            

Brazil 
            

            
Canada 

            
            

China 
            

            
Egypt 

            
            

India 
            

            
Indonesia 

            
            

Iran 
            

            
Japan 

            
            

Mexico 
 

 
          

            
Myanmar 

            
            

Pakistan 
            

            
Philippines 

            
            

South 
Africa 

            
            

Thailand 
            

            
Turkey 

            
            

U.S. 
            

            
Vietnam 

            
            

F. USSR 
            

            
F. Yugoslav 

            
            

France 
            

            
Germany 

            
            

Hungary 
            

            
Italy 

            
            

Rest of 
North 

            
            

Rest of 
South 

            
            

Romania 
            

            
Spain 

            
            

UK 
            

            
 

 
Planting 

 
Harvesting 

 
Both Plant. And Harvest. 
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Table B2. Soybeans Planting and Harvesting Calendar for the Sample Countries  

 Year t Year t+1 
 J F M A M J J A S O N D J F M A M J J A S O N D 
Argentina 

            
            

Australia 
            

            
Brazil 

            
            

Canada 
            

            
China 

            
            

India 
            

            
Indonesia 

            
            

Iran 
            

            
Japan 

            
            

Mexico 
            

            
Myanmar 

            
            

Pakistan 
            

            
Philippines 

            
            

South 
Africa 

            
            

Thailand 
            

            
Turkey 

            
            

U.S. 
            

            
Vietnam  

           
            

Bangladesh 
            

            
Egypt 

            
            

Former 
USSR 

            
            

F Yugoslav  
            

            
France 

            
            

Germany 
            

            
Hungary 

            
            

Italy 
            

            
R. of North 

            
            

R. of South 
            

            
Romania 

            
            

Spain 
            

            
UK 

            
            

 
 

Planting 
 

Harvesting 
 

Both Plant. And Harvest 
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Table B3. Wheat Planting and Harvesting Calendar for the Sample Countries  
 Year t Year t+1  
Country J F M A M J J A S O N D J F M A M J J A S O N D 
Argentina 

            
            

Australia 
            

            
Bangladesh 

            
            

Brazil 
            

            
Canada 

            
            

China 
            

            
Egypt 

            
            

India 
            

            
Iran 

            
            

Japan 
            

            
Mexico 

            
            

Myanmar 
            

            
Pakistan 

            
            

South 
Africa 

            
            

Turkey 
            

            
U.S. 

            
            

FUSSR 
            

            
F Yugoslav  

            
            

France 
            

            
Germany 

            
            

Hungary 
            

            
Indonesia 

            
            

Italy 
            

            
Philippines 

            
            

Rest of 
North 

            
            

Rest of 
South 

            
            

Romania 
            

            
Spain 

            
            

Thailand 
            

            
UK 

            
            

Vietnam 
            

            
 

 
Planting 

 
Harvesting 

 
Both Plant. And Harvest 

 

 



41 
 
 

Table B4. Rice Planting and Harvesting Calendar for the Sample Countries  
 Year t Year t+1 

country J F M A M J J A S O N D J F M A M J J A S O N D 
Argentina 

            
            

Australia 
            

            
Bangladesh 

            
            

Brazil 
            

            
China 

            
            

Egypt 
            

            
India 

            
            

Indonesia 
            

            
Iran 

            
            

Japan 
            

            
Mexico 

            
            

Myanmar 
            

            
Pakistan 

            
            

Philippines 
            

            
South Africa 

            
            

Thailand 
            

            
Turkey 

            
            

U.S. 
            

            
Vietnam 

            
            

Canada 
            

            
Former USSR 

            
            

Former 
Yugoslav 
SFR 

            
            

France 
            

            
Germany 

            
            

Hungary 
            

            
Italy 

            
            

Rest of North 
            

            
Rest of South 

            
            

Romania 
            

            
Spain 

            
            

UK 
            

            
 

 
Planting 

 
Harvesting 

 
Both Plant. And Harvest 
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Appendix C    Further Empirical Results 

 
Table C1. Estimates of Global Aggregate Growing-Area Response to Price 

Note: Estimates are obtained using STATA’s xtpmg command. The MG elasticity estimates are a weighted average. The 

weights are /ict ict
t c i t c

A A∑∑ ∑∑∑ . For each model, we use futures price weighted by crop-specific caloric share. 

Standard errors in parentheses. Asterisks  **, *, and  + denote significance at the 1 %, 5%, and 10% levels, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ln(area) ln(area) ln(area) ln(area) 
     
 MG DFE MG DFE 
 Global price and 

shock 
Global price and 

shock 
County price and 

shock 
County price and 

shock 
 (1) (2) (5) (6) 
Long-Run     
Supply Elast. 0.142+ 0.158+ 0.146** 0.227* 
 (0.038) (0.089) (0.039) (0.096) 
Shock 0.027 -0.449 0.138 0.060 
 (0.399) (1.180) (0.149) (0.309) 
Trend 0.006** 0.006* 0.006** 0.007** 
 (0.002) (0.002) (0.002) (0.003) 
Short-Run     
Error 
Correction  

-0.313** -0.065** -0.307** -0.065** 

 (0.038) (0.013) (0.037) (0.013) 
Supply Elast. 0.025* 0.027** 0.024* 0.018** 
 (0.007) (0.007) (0.007) (0.007) 
Shock 0.089 0.135+ 0.066* 0.084** 
 (0.057) (0.069) (0.029) (0.014) 
N (31*53) 1643 1643 1643 1643 
Test of parameter constancy : chi-square 
 (p-value) 

534.637 
(0.000) 
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Table C2. Estimates Corn and Soybeans Growing-Area Response to Price Using MG 
Estimator 

 Corn Corn Soybeans Soybeans 
 (1a) (1b) (2a) (2b) 
Long-run     
Corn Price 0.218** 0.325** -0.533** -0.496** 
 (0.059) (0.072) (0.091) (0.093) 
Soybeans Price -0.071* -0.074* 0.821** 0.822** 
 (0.028) (0.031) (0.041) (0.035) 
Corn Price volatility -0.986 0.969 -2.563+ -2.366 
 (1.093) (1.239) (1.545) (1.551) 
Soybeans Price volatility -0.975 -0.309 -1.449** 0.865 
 (0.830) (0.785) (0.537) (0.695) 
Fertilizer Price  -0.179**  -0.151* 
  (0.061)  (0.065) 
Short-Run     
Error Correction -0.410** -0.436** -0.366** -0.385** 
 (0.050) (0.053) (0.048) (0.048) 
Corn Price 0.111** 0.110** -0.249** -0.155** 
 (0.026) (0.026) (0.040) (0.037) 
Soybeans Price -0.067** -0.073** 0.143** 0.156** 
 (0.016) (0.016) (0.047) (0.045) 
Corn Price volatility 0.716* 0.634* -0.552* 0.388+ 
 (0.291) (0.277) (0.277) (0.228) 
Soybeans Price volatility 0.048 -0.237 0.239+ 0.054 
 (0.102) (0.145) (0.143) (0.163) 
Fertilizer Price  0.023+  -0.093** 
  (0.012)  (0.016) 
N (28*T) 1423 1423 1423 1423 

Note: Estimates are obtained using STATA’s xtpmg command. The MG elasticity estimates of each crop are a weighted 

average. The weights are /ict ict
t t i

A A∑ ∑∑ . For each model, we use pre-planting futures price for the proxy of 

expected price. Standard errors in parentheses. Asterisks **, *, and  + denote significance at the 1 %, 5%, and 10% levels, 
respectively. 
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Table C3. Estimates of Crop-Specific Growing-Area Response to Price Using MG Estimator 
 Wheat Rice Corn Soybeans 
 ln(area) ln(area) ln(area) ln(area) ln(area) ln(area) ln(area) ln(area) 
 (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) 
Long-Run         
Supply Elast. 0.336** 0.394** 0.021 0.048 0.194** 0.234** 0.544** 0.733** 
 (0.118) (0.160) (0.114) (0.125) (0.049) (0.065) (0.101) (0.048) 
Price Volatility -4.803** -3.395** 0.886 0.476 -5.479** -1.541 -7.272** 1.413 
 (1.322) (1.279) (2.513) (2.157) (1.748) (1.411) (1.466) (1.231) 
Fertilizer price  -0.125  -0.004  -0.212**  -0.647** 
  (0.112)  (0.104)  (0.057)  (0.103) 
Short-Run         
Error 
Correction 

-0.323** -0.377** -0.329** -0.345** -0.356** -0.389** -0.183** -0.289** 

 (0.038) (0.043) (0.033) (0.036) (0.048) (0.047) (0.014) (0.023) 
Supply Elast. 0.051** 0.038** 0.002 -0.006 0.088** 0.108** 0.228** 0.207** 

 (0.024) (0.026) (0.021) (0.022) (0.027) (0.027) (0.045) (0.038) 
Price Volatility -0.146 -0.114 0.028 0.031 0.946** 0.903** 0.334** -0.074 
 (0.188) (0.176) (0.220) (0.204) (0.261) (0.252) (0.129) (0.114) 
Fertilizer price  -0.014  -0.002  -0.013  -0.072** 
  (0.016)  (0.018)  (0.010)  (0.017) 
N 1432 1432 1459 1458 1560 1560 1423 1423 
Test of 
parameter 
constancy: Chi-
square 
(p-value) 

776.274 
(0.000) 

 835.417 
(0.000) 

 1533.622 
(0.000) 

 3236.142 
   (0.000) 

 

Note: Estimates are obtained using STATA’s xtpmg command. The elasticity estimates of each crop are a weighted 

average. The weights are /ict ict
t t i

A A∑ ∑∑ . Except for rice, we use pre-planting futures price for the proxy of 

expected price. For rice, we use pre-planting international spot price. Standard errors in parentheses. Asterisks **, *, and  
+ denote significance at the 1%, 5%, and 10% levels, respectively. 
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Table C4. Estimates of Growing-Area Response with Alternative Estimators 
 Pooled 

OLS 
FE GMM DFE Random 

Coefficients 
 (1)  (2) (3) (4) (5) 
Long-run      

Aggregate -295.1 0.302** 0.125* 0.227* 0.045** 
Corn 1.80* 0.795** 0.369+ 0.639** 0.307** 

Soybeans 1.21** 0.957** 1.04** 1.024** 0..891** 
Wheat 0.617 0.630** 0.451** 0.494** 0.318** 

Rice 39.86 0.317** 4.74 0.255* 0.091 
Short-run      

Aggregate 0.019** 0.021** 0.031* 0.018** 0.012 
Corn 0.021* 0.121* 0.083* 0.467** 0.119** 

Soybeans 0.062* 0.447** 0.294* 0.752** 0.450** 
Wheat 0.005 0.075** 0.065* 0.202** 0.095** 

Rice 0.013 0.033* 0.055* 0.044 0.024 
Notes: Right-hand side variables in columns (1)-(3) and (5) are a lagged dependent variable, expected own-crop price, 
own-crop price volatility, a trend, and country-specific intercepts. Column (4) uses the similar specification as shown in 
equation (16). Elasticity estimates in column (3) are from the two-step system-GMM estimator that treat the lagged 
dependent variable as predetermined and the price as endogenous. Results in column (3) also use robust standard errors 
with Windmeijer (2005) finite sample correction. The results in column (3) are estimated using XTABOND2 in STATA 
and a collapsed instrument matrix as suggested by Roodman (2009a). The lags used for instruments vary by crop—
usually from 3 lags to 5 lags. The results in column (5) are from Swamy (1970) random coefficient estimator and are 
estimated using XTRC in STATA. Asterisks  **, *, and + denote significance at the 1%, 5%, and 10% levels, respectively. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


