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Abstract: 
 
The 20th century was a period of exceptional growth, driven mainly by the increase in total factor 
productivity (TFP). Using a database of 17 OECD countries over the 1890-2013 period, this paper 
integrates production factor quality into the measure of TFP, namely by factoring the level of 
education of the working-age population into the measure of labor and the age of equipment in the 
measure of capital stock. We then estimate how the diffusion of technology impacts the growth of this 
newly measured TFP through two emblematic general purpose technologies, electricity and 
information and communication technologies (ICT). Using growth decomposition methodology from 
instrumental variable estimates, this paper finds that education levels contribute most significantly to 
growth, while the age of capital makes a limited, although significant, contribution. Quality-adjusted 
production factors explain less than half of labor productivity growth in the largest countries except for 
Japan, where capital deepening posted a very large contribution. As a consequence, the “one big 
wave” of productivity growth (Gordon, 1999), as well as the ICT productivity wave for the countries 
which experienced it, remains only partially explained by quality-adjusted factors, although education 
and technology diffusion contribute to explain the earlier wave in the US in the 1930s-1940s. Finally, 
technology diffusion, as captured through our two general purpose technologies, leaves unexplained 
between 0.6 and 1 percentage point of yearly growth, as well as a large proportion of the two 20th 
century technology waves. These results support both a significant lag in the diffusion of general 
purpose technologies and raise further questions on a wider view on growth factors, including changes 
in the production process, management techniques and financing practices. Measurement problems 
may also contribute to the unexplained share of growth.  
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1. Introduction 
 
Growth in the 20th century was characterized by three stylized facts, which the growth literature has 
tried to explain in recent decades. First, the period starting with the second industrial revolution was a 
period of exceptional growth compared with the history of mankind including the first industrial 
revolution. World GDP per capita growth averaged 1.5% per year from 1870 to 2000, as compared 
with less than 0.1% during the pre-industrial era and 0.3% during the first industrial revolution 
(Maddison, 2001). Second, this take-off was uneven across countries, leading to a “Great Divergence” 
(Galor, 2005) between emerging and advanced economies, and was staggered across advanced 
countries (see for example Baumol, 1986, Barro, 1991 and Bergeaud et al., 2015). The subperiod 
1913-1950 thus witnessed the largest growth rate for total factor productivity in the US, with an 
average 2.4% per year, while it amounted to 1.1% in European countries. The subsequent subperiod 
1950-1974 was exceptional, with an average 3.6% growth per year. Finally, GDP per capita has 
slowed markedly since the 1970s in advanced countries, except during the 1995-2005 period in the US 
and the UK, where productivity accelerated thanks to the ICT technology revolution, raising questions 
about the durability of the pace of growth in the 21st century (Gordon, 2012, 2013 and 2014). Which 
factors drove this strong but heterogeneous productivity growth in the 20th century? When considering 
the average number of years of education in the population over 15, the US and the current euro area 
countries were at a comparable level in 1920, while in 1940 every American had spent on average 1.5 
more years in school, and 2.2 more years in 1950.2 What is the role of education in explaining the US's 
advance in terms of productivity in the 1940s and 1950s? Regarding technology adoption and 
diffusion, the US was the first country to massively integrate electricity into its economy at the 
beginning of the 20th century and was one of the most ICT-capital intensive countries at the end of that 
century. How can the use of such fundamental technologies explain the heterogeneous growth rates of 
productivity in developed countries?  
 
Growth accounting exercises presented in Solow (1957) were a first attempt to analyze the respective 
roles of production factors (capital and labor), yet they failed to explain the bulk of 20th century 
growth. As reported by Bakker et al. (2015), Solow finds that more than 85% of US productivity 
growth between 1909 and 1949 can be attributed to total factor productivity (TFP), defined as the 
residual of the decomposition of production over capital stock and labor. TFP improvements are then 
attributed to technical change, which remains more or less a “black box”. This is partly related to the 
difficulty of capturing the role of general purpose technologies (GPTs), due to their diffusion lag (see 
for instance David, 1990), their pervasiveness and dynamic technological effects (Bresnahan and 
Trajtenberg, 1995). Indeed, GPTs’ contribution goes beyond factors included in the growth accounting 
approach such as capital deepening in GPT-related equipment and TFP improvement in GPT-
producing sectors. First, GPTs lead to fundamental changes in the production process of GPT-using 
industries. These changes may be poorly accounted for in growth accounting exercises as they require 
the accumulation of complementary organizational capital (Basu and Fernald, 2007). Second, GPTs 
may generate spillovers to seemingly far-away sectors (Helpman and Trajtenberg, 1998). In fact, 
Lipsey et al. (2005) define a GPT as “a single generic (…) that initially has much scope for 
improvement and eventually comes to be widely used, to have many uses, and to have many spillover 
effects”. 
 
In spite of these difficulties, several papers have attempted to distinguish growth factors over the long 
run on a large panel of countries (see Crafts and O’Rourke, 2013, for a survey). In particular, Madsen 
develops a long-term database on OECD countries and examines the respective roles of capital 
deepening and TFP (Madsen, 2010a), production factors and TFP determinants (Madsen, 2010b) and 
human capital (Madsen, 2014). He emphasizes the major role of TFP in growth dynamics. In amongst 
the vast convergence literature, Barro (2015) emphasizes the role of education and democracy in 
conditioning β-convergence for a country panel starting in 1870; Bergeaud et al. (2016) show that the 
bulk of 20th century σ-convergence depends on TFP and capital deepening. Cervellati et al. (2013) 
find that, since 1880, income gaps between rich and poor countries have related to the health 
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environment, the occurrence of wars and geographical remoteness. They derive their analysis from 
unified growth theory (Galor, 2005), which provides microfunded and macrodynamic models that 
attempt to highlight the causal relationship between human capital, technology and growth, 
 
In this paper we estimate the role of quality-adjusted production factors and technology diffusion in 
the GDP per capita growth of 17 OECD countries over the period 1890-2013. First, we draw on a 
previously built long-run dataset (see Bergeaud et al., 2016) on a large number of countries, with data 
reconstructed in purchasing power parity and based on consistent assumptions. With these data, we 
decompose GDP growth between the contribution of production factors, capital and labor, to obtain 
TFP as a residual. Second, we adjust these production factors for quality, taking into account levels of 
education and the age of capital stock. Third, we estimate the contribution of technology diffusion to 
TFP growth, focusing on two general purpose technologies, namely electricity and ICT, which are 
often considered as characteristic of different technology diffusion periods during the 20th century (see 
among others Comin et al., 2006a and 2006b and Lipsey et al., 2005). The originality of our approach 
is twofold: the empirics are realized on an original large dataset for countries over a long period and 
we try to assess the impact on GDP per capita growth of the two indicators of factor quality (education 
and age of capital) and the two GPTs (electricity and ICT use). This assessment is carried out through 
the estimation of elasticities which are, for each of these four aspects (two concerning factor quality 
and two concerning GPTs), assumed to be the same for all countries of the dataset and over the whole 
of the 1890-2013 period. This choice seems sensible for two reasons. First, to be consistent with the 
way our database is constructed, we make common hypotheses across time and countries as much as 
possible: for example, we use the same permanent inventory methodology to build the capital stock 
and we use the same capital elasticity to compute the TFP indicator (see Bergeaud et al., 2015). 
Second, this choice has been made in the existing literature (e.g. Madsen, 2008a and 2008b; Barro and 
Lee, 2013); hence, it yields deriving elasticities that can be compared with the estimates of these 
articles.  
 
Numerous papers have attempted to characterize the role of technology diffusion in productivity 
growth using growth accounting approaches. Among others, Jorgenson and Stiroh (2000), Oliner and 
Sichel (2000) and Oliner, Sichel and Stiroh (2007) have focused on the contribution of ICT in the US 
at the end of the 20th Century. Regarding the comparison of industrial revolutions, Crafts (2002) 
studied the contribution of steam engines in the UK during 1780-1860, and electricity and ICT in the 
US during 1899-1929 and 1974-2000 respectively. Jalava and Pohjola (2008) compared the 
contribution of electricity during 1920-1938 and ICT during 1990-2004 in Finland. In the latter paper, 
electricity is believed to have accounted for 26.7% of total growth between 1920 and 1938, while the 
effect of ICT capital is considered lower, with a contribution to total growth of 16%. These numbers 
are consistent with the findings of Bakker et al. (2015) who revisited the idea that electricity was the 
main factor of growth in the US in the 1920s and found that electrification explained 28% of 
manufacturing TFP growth during this period. An abundant literature has emphasized the role of 
innovation and innovation diffusion in interaction with education and institutions. For countries at the 
technological frontier, growth relies on improved human capital through education (see Krueger and 
Lindahl, 2001, for a survey) and increasing TFP through innovation. The innovation process hinges on 
education levels and suitable institutions (labor and product market regulations, quality of the legal 
system, political system, etc.) as well as relative factor endowment and market size (“Directed 
technical change”, see Acemoglu, 1998, 2002).3  For countries not at the frontier, even those 
conducting significant R&D activity such as France, Germany and the United Kingdom, adoption of 
new technologies from abroad is the main source of technological progress (Eaton and Kortum, 1999). 
Heterogeneity in the adoption and diffusion of new technologies is large and explains a significant 

                                                           
3
  Basu and Fernald (2002) show that imperfections and frictions in output and factor markets matter in the 

relation between aggregate technology and aggregate productivity. For example, with heterogeneous firm 
mark-ups, the same resources may be valued differently in different uses. Then “reallocating resources 
towards more socially valued uses raises aggregate productivity, without necessarily reflecting changes in 
technology.” Citation from page 964 of Basu and Fernald (2002). Edquist (2001) raises the question of the 
role of innovation policy with respect to technology diffusion.  
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share of the “Great Divergence” (Comin and Mestieri, 2013). Comin and Hobijn (2010) provide 
evidence that those countries that caught up the most with the US in the postwar period are those that 
also saw an acceleration in the adoption of new technologies. But adoption of new technologies 
requires both “social capability”, relying on a minimum level of education within the population and 
appropriate institutions, and “technological congruence” making it cost effective to adopt the leader’s 
technology (Abramovitz and David, 1995). These conditions that enable one to benefit as much as 
possible from new innovations could play a growing role in the future if the rate of innovation 
accelerates, as observed for example by Fernald and Jones (2014), who suggest that such an 
acceleration could happen within the next decade due to the rise of emerging countries like China and 
India which will generate rapid growth in the number of researchers.4 One of our most significant 
contributions to this literature consists in the systematic comparison our study makes possible of a 
fairly large number of developed countries throughout the 20th century, including technological leaders 
and laggards. As stressed by van Ark and Smits (2002), most of the literature on technology diffusion, 
adoption and on estimating the impact of GPTs over the long-run has focused on the UK and the US, 
because of better data availability and coverage. However, little is known about other countries that 
were not necessarily at the productivity frontier and that might have reacted differently to the 
development of GPTs.  
 
Beyond our manifold results, the three main contributions to the literature are the following: (i) among 
factor quality, education levels contribute to growth the most, while the age of capital makes a 
significant, although limited, contribution; (ii) quality-adjusted production factors explain less than 
half of labor productivity growth in the largest countries, except for Japan, where capital deepening 
accounts for a large share of the growth. As a consequence, the “one big wave” of productivity growth 
(Gordon, 1999), as well as the ICT productivity wave for the countries which experienced it, remain 
unexplained by quality-adjusted factors, although the early access of the masses to higher education 
partly explains the US's lead before World War II; (iii) we estimate the contribution of general purpose 
technologies to long-term growth. Technology diffusion, as captured through our two GPTs, electricity 
production and ICT intensity, also contributes to explaining the US's lead in the 1930s-1940s and ICT 
productivity waves but leaves unexplained between 0.6 and 1 percentage point of yearly growth, as 
well as a large share of the two 20th century technology waves. These results support both a significant 
lag in the diffusion of general purpose technologies and a wider view on growth factors including 
changes in the production process, financing techniques, etc., as emphasized by Ferguson and Wascher 
(2004). Finally, and this aspect will be developed below, some measurement errors bearing on all the 
variables of interest may also contribute to the unexplained share of growth.  
 
In what follows, Section 2 presents the data sources and construction methods. Section 3 focuses on 
the contribution of factor quality. Section 4 addresses the impact of the spread of technologies. Section 
5 concludes. 
 
 
2. Data: sources, method and construction 
 
The original dataset used in this study comes from Bergeaud et al. (2015), updated and enlarged to 
include more countries (2.1.). We have completed this dataset with data on levels of education (2.2.), 
age of capital (2.3.) and the spread of some generic technologies (2.4.). 
  
 
2.1.  The original dataset 
 
Our main dataset is the one used in Bergeaud et al. (2015) and based on the works of Cette et al. 
(2009) and Bergeaud et al. (2016) consisting of data for 17 OECD countries over the period 1890-
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world researchers for at least several decades.” Citation from page 48 of Jones and Fernald (2014). 
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2013. These countries have been chosen for their economic relevance: the G7 (the United States, 
Japan, Germany, France, the United Kingdom, Italy and Canada), five other euro area countries 
(Spain, the Netherlands, Belgium, Portugal and Finland) and five other countries which are of specific 
interest in terms of productivity (Australia, Switzerland, Denmark, Sweden and Norway). In addition, 
a euro area has been reconstituted, aggregating Germany, France, Italy, Spain, the Netherlands, 
Belgium, Portugal and Finland. This approximation seems acceptable as, in 2010, these eight countries 
together accounted for 93.2% of the euro area's GDP (16 countries in 2010). The starting date, 1890, 
has been chosen so as to have sufficiently long time series to initialize our capital stock. 
  
A detailed description of the construction of this dataset is given in Bergeaud et al. (2016), in 
particular its appendix A which presents the source of the data. To compute GDP over this long 1890-
2013 period, we have drawn mostly on Maddison (2001), whose series have recently been updated and 
improved by Bolt and Van Zanden (2014). Maddison provides data for GDP and population, mainly 
from 1820. We have supplemented these data with national accounts data. For other series and in 
particular to compute capital intensity and labor productivity, three basic series are needed for each 
country: employment, average hours worked per worker and capital. The capital indicator is 
constructed by the perpetual inventory method (PIM) applied to each of the two components 
(equipment and buildings) using the corresponding investment data. The yearly depreciation rates used 
to construct the capital series by the PIM are 10% for equipment and 2.5% for buildings, following 
Cette et al. (2009) and are assumed to be constant across time and space. Finally, the damage that 
occurred during the World Wars, earthquakes in Japan and the civil war in Spain are, as far as 
information is available for these, taken into account to build the capital series.  
 
For long aggregate historical data, we have used series built by economists and historians on 
consistent assumptions. Many of these data are subject to uncertainty and inaccuracy, not only for the 
most distant periods but also for recent ones. The data are built at the country level assuming constant 
borders in their latest state. It should be noted that, however talented economists and historians are, 
strong assumptions are required to reconstitute some countries, and in addition retropolating series on 
a different year basis may bias the estimated growth rates, as argued in Prados de la Escosura (2015). 
We may nevertheless consider that the orders of magnitude of our estimates and the ensuing large 
differentials in productivity levels and growth rates are fairly reliable and meaningful. Series for GDP 
and capital are given in 2010 constant national currencies and converted to US dollars at 2010 
purchasing power parity with a conversion rate from the Penn World Tables. 
 
For this study, we have improved and completed the Bergeaud et al. (2015) database, including or 
building series for education, age of capital and the spread of technology as described below. 
 
 
2.2.  Levels of education 
 
Since the development of new growth accounting frameworks based on the addition of the stock of 
human capital in the production function, many attempts have been made to compute series of 
educational attainment. First, figures for school and university enrollment have been used. For 
example, Mankiw et al. (1992) proxied the rate of human capital accumulation by the share of the total 
population that is currently attending secondary school, while Barro (1991) used the same measure to 
proxy for the stock of human capital. However, comparing different education systems can be 
cumbersome and macroeconomic studies have struggled to find convincing experimental results that 
match theories. In addition, these approaches have been widely criticized because they focus on a flow 
which only makes sense if we are at the steady state. Since these first developments, many studies 
have chosen to focus on educational attainment as defined by the average time spent studying in the 
total population over the age of 15 or 25,5 taking advantage of newly improved datasets. Kyriacou 
(1991) was one of the first to compute and share such data. Since then, further improvements have 

                                                           
5  The calculation starts with primary school and does not include kindergarten or any other type of education 

received before 6. 
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been made and educational attainment is available every five years for a large set of countries from 
1950 to 2010 in the Barro and Lee (1993, 2010) dataset, or alternatively every 10 years from 1960 to 
2020 in Cohen and Soto (2007). These series can be extended back to 1870, with one observation 
every decade, using data from Morrisson and Murtin (2009). Finally, Barro and Lee have recently 
updated their series and cover the time period 1870-2010, with one point every 5 years. Once again, 
this measure is not perfect. First, several economists (e.g. De la Fuente, 2011; Krueger and Lindahl, 
2000; and Soto, 2002) suggest that, while they are regularly improved, these data suffer from 
measurement errors due to differences in education law across countries, which may lead to a bias in 
growth regression. Others (see in particular Pritchet, 2001) argue that the average number of years of 
education cannot be expected to be correlated with economic growth if the quality of education is not 
taken into account. For this reason, some studies have used literacy rates or exam results to capture the 
quality of education (see Hanushek and Ludger, 2012, for example). Unfortunately, such data are 
available for a very limited time period and cannot be incorporated in our study.  
 
Because we wanted to take advantage of our long time perspective, and to use on yearly data as much 
as possible, we have updated our dataset with new series of educational attainment provided by van 
Leeuwen and van Leeuwen-Li (2014) and available from 1870 to 2010, except for Denmark, for which 
before 1900, only 1890, 1880 and 1870 are given (we have linearly interpolated these data). At the 
beginning of the 20th century, Canada, France, Germany and Switzerland were the countries with the 
highest level of educational attainment with over 6 years in education, while Finland, Portugal and 
Japan recorded less than 2 years of education. At the end of our dataset, in 2010, Portugal is by far the 
country with the lowest level of education in its population, with an average duration of 7.8 years, far 
behind Australia, Canada and the US with around 13 years. Other countries stand at around 12 years, 
except for Spain (9.9), Italy (11) and Belgium (11.1), as seen in Chart 1. 
 
Chart 1 
Educational attainment in 1900, 1950 and 2010 
Average duration of schooling for the population aged over 15 (in years) 

  
Source: van Leeuwen and van Leeuwen-Li (2014). 
 
Strikingly from Chart 1, we see that the average level of education was roughly the same for the euro 
area and the US in 1900, whereas the latter had a more educated population by an average of 2.2 years 
in 1950. Educational attainment in the working-age population is a stock that is very slow to adjust to 
an increase in the average years of schooling of a new generation. Therefore, this difference cannot be 
attributed to World War II as children who were affected by the war in their curriculum during the 
early 1940s account for only a very small share of the population over 15 in 1950. This is rather the 
result of the “high school movement” in the US resulting in a large increase in secondary attainment in 
the US from 1910 to 1940 (Goldin and Katz, 1998), namely due to the building of new public schools. 
Hence, according to Sydner (1993), secondary enrollment doubled between 1920 and 1930, while it 
did not increase much in Europe in addition to being at a lower level (Goldin and Katz, 1997; 
Morisson and Murtin, 2009; Barro and Lee, 2015). At the same time, there was not much difference in 
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tertiary enrollment between the two regions according to data from Mitchell (1998a, 1998b). At the 
end of the period, the US still had a significant advance over the euro area. This difference was mostly 
driven by differences in tertiary education which emerged during the 1950s along with mass 
investment in research during the Space Race. 
 
 
2.3.  The age of capital 
 

We have calculated the average age of the equipment capital stock, which is an indicator of the 
quality of this factor and should therefore be incorporated into the production function. This simply 
translates the intuitive idea of a vintage effect: older capital should be less productive than newer 
capital, as suggested by Solow (1959, 1962) and developed subsequently in numerous papers, such as 
for example Nelson (1964) and more recently Gittleman et al. (2003). 
 
With our yearly series on investment in volume terms, it is possible to compute an estimate of the 
average age of capital stock. To do so, we have used the fact that capital stock is computed by the PIM 
and therefore: 

�� = �����1 − 	
 + �� =	� ���1 − 	
���
�

���
+ ���1 − 	
�	

 
Where Kt and I t stand respectively for the capital stock installed at the end of year t and the investment 
realized during year t, and δ is a depreciation rate.6  
 
The average age of the capital installed at the end of year t, At, is computed using the relation:  
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�1 + ����
�1 − 	
����

��
= �1 − ��

��

�1 + ����
 (1) 

 
To use relation 1, we need the value of A0, the average age of capital at the starting year of our 
investment series. Assuming that before this starting year investment grew at a constant rate G, then A0 
is computed by the relation:7 
 

�� = 1 − 	
	 + � (2) 

 
One must also consider the case of exceptional destruction due to wars or natural disasters such as 
earthquakes. We have taken this exceptional destruction into account in our capital evaluation (see 
Bergeaud et al., 2016, for details). However, their effect on age is not trivial as it would require 
knowing exactly what type of capital was destroyed. We have considered that the destruction was 
homogenous in the age distribution of capital stock and that it therefore has no effect on the average 
age of capital. 
 
Results from these calculations are presented in Chart 2 for the US, Japan, the United Kingdom and 
the euro area for equipment capital stock. The average age varies from 4 to 8 years depending on the 
period. It increased strongly during the Great Depression in the US, which weighed strongly on 
investment; it decreased strongly during World War II due to the war effort, and more modestly during 

                                                           
6  In our model, depreciation of each element of capital follows a geometric distribution where the probability 

of depreciation is 	. This distribution is memoryless, that is, the probability of depreciation is independent of 

the age of capital, and the average life expectancy of capital is then equal to 
�
�. 

7  In practice, we compute G by taking the average of the growth rate of GDP over 10 years. This relationship 
makes a strong assumption, but the initial stock of capital is computed years before 1890, which is the first 
year in this study. The empirical impact of this simplification is then of minor importance in the age of 
capital evaluation.  
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the ICT wave as new investment was needed to incorporate the new technology. In the euro area and 
the United Kingdom, it increased strongly during World War II as the conflict depressed investment 
and decreased in the post-war reconstruction period. It has been on an increasing trend since 1990 in 
Japan due to the banking crisis and since the financial crisis in other areas, as credit constraints and 
low demand prospects weigh on investment. Smaller contra-cyclical fluctuations can be observed. 
 
Chart 2 
Average age of equipment capital (in years) 

 
Source: Authors’ calculations – see text. The depreciation rate is assumed to be equal to 10%. 
 
 
2.4. Spread of technology 
 
To measure the diffusion of technology over the whole period, we have drawn on the CHAT database 
constructed by Comin and Hobijn (2009). This database provides annual estimates of the diffusion of 
more than 100 technologies for a large set of countries. We have selected one technology which is 
often considered to be representative of the development of technologies during the 20th century, the 
production of electricity in kWh (see Comin et al., 2006a and 2006b). Data have been completed with 
series using the World Development Indicators of the World Bank up to 2013 and have been 
standardized by total population. To measure the diffusion of technology in the more recent time 
period, we have drawn on the work of Cette et al. (2015), which provides estimates of the stock of 
capital of three ICT from 1950 to 2012 for most of our countries. More details on data construction 
will be given in section 4. An alternative measure of innovation would have used the stock of patents, 
both domestic and foreign. However, using patents as a technological indicator can be very tricky 
when it comes to cross-country comparisons with different intellectual property regulations. In 
addition, as shown in Sanchis et al., (2015), the stock of patents has a heterogeneous impact on TFP 
from one country to another, which may depend on differences in education levels and domestic 
knowledge accumulation. By using measures of electricity and ICT capital, we are directly measuring 
technology diffusion at the closest level to what actually impacts TFP. 
 
 
3. Education and age of capital in a growth accounting framework 
 
The purpose of this section is to evaluate the contributions of changes in education and age of capital 
on TFP growth. To do that, we successively specify how the productivity impact of education (3.1.) 
and age of capital (3.2.) can be empirically taken into account and what the main results of the 
literature are on these aspects. We then propose some estimates of these impacts (3.3.) and an 
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evaluation of them on productivity growth over the long period of our analysis, using a growth 
accounting approach for this purpose (3.4.).  

 
 
3.1.  Education and productivity 
 
We have used the endogenous growth model of Lucas (1988), formalized, inter alia, in Hall and Jones 
(1999) to expand the approach we adopted in Bergeaud et al. (2015, 2016). Lucas updated the 
neoclassical growth model by considering the stock of human capital (denoted C) as an input in a 
Cobb-Douglas production function. This stock accumulates according to the equation: 
 

��
�� = ��1 − �
� 

 
Where u is the fraction of time spent working and �	 is a parameter representing the maximum 
reachable human capital for someone who spent his whole life studying (that is, when u = 0), also 
sometimes called the productivity of schooling (the productivity level of an individual who spends his 
whole life studying). The stock of physical capital K increases following a permanent inventory 
method and, from a Cobb-Douglas constant return to scale relation, the production function becomes: 
 

� = ���.����. �.  
��� 
 
Where Y is the production, L the number of hours worked, with L = N.H, N being the number of 
workers and H the average working hours per worker. The idea is that individuals invest in education 
through the choice of a fraction 1 - u of life spent studying and accumulating knowledge in order to 
increase their productivity. This model is a microfoundation of the way education can enter the 
production function. 
 
In Bergeaud et al. (2015, 2016), we used a classical Solow Model in which the production function 
was a Cobb-Douglas constant return to scale relation: � = ���.�� .  ���. Here we aim to understand 
what share of TFP can be attributed to human capital and we therefore consider that � =
���′. �� . � �
��� where C is the human capital stock. To calculate the stock of human capital C, we 
have followed a Mincerian approach developed in Mincer (1974) and assumed that: 
 

� = "#�$
 (3) 
 
With S representing the number of years spent studying and g being an increasing function verifying 
g(0) = 0. When g = 0, we are back to the Solow model and human capital is no longer an input. 
Otherwise, the derivative of g is called the return to education. Usually, g is assumed linear, or at least 
piecewise linear (see Psacharopoulos, 1994, for a review), but more complex formula have also been 
tested in the literature, namely by Temple (2001). In this study, we have supposed that %�&
 = '. & 
where ' is a constant and homogenous term that we shall estimate. 
 
Many studies have focused on estimating the returns to education, using micro or macro approaches. 
In the former, the return to one year of education is defined as the average increase in wage associated 
with an additional year of schooling. Even if a large number of individual datasets are available for a 
large range of countries, estimating the private return to education is not straightforward because the 
effect of schooling on wages is highly endogenous (Klein and Vella, 2009; Card, 1999; Bills and 
Klenow 2000). Indeed, the choice of the duration of schooling is likely to be correlated with 
unobserved ability that would also be positively correlated with wages. The OLS coefficient would 
then be biased upwards. Most studies use different strategies to address this issue: for example, some 
use natural experiments, among which reforms raising the minimum school leaving age to generate 
exogenous discontinuities in educational attainment (see Devereux and Wen, 2011 or Dickson and 
Smith, 2011). Angrist and Krueger (1991) use a different school age start policy for individuals born at 
the beginning of the year to instrument education by the quarter of birth while other studies look at 
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parents' or spouse' education as an instrument (Trostel et al., 2002). There is a broad empirical 
consensus in most micro studies on a private return to education of between 6% and 8% in developed 
countries, which means that each additional year of education raises the wage by 6% to 8%. For 
example, Dickson and Smith (2011) find a value of 8% for males in the UK, exploiting the reform 
raising the minimum leaving age from 15 to 16 in 1972. Trostel et al. (2002) look at 28 countries and 
find similar values when family education is taken as an instrument. Finally, Psacharopoulos (1994) 
surveys many studies and concludes that the average private return to education in the literature in 
OECD countries is 6.8%.8 
 
In macro analyses, the return to education is defined by taking the national mean of every variable 
from the Mincer wage equation to obtain the “Macro-Mincer” equation. It is thus the productivity 
gains associated with an average increase of one year in educational attainment. Due to social 
externalities, the productivity impact of education is expected to be higher at macro than at micro 
level. But unlike the relative micro literature consensus, results are subject to more uncertainty in 
macro approaches and economists find contradictory results. Some studies, among which Benhabib 
and Spiegel (1994) and Pritchett (2001), have found a non-significant coefficient on education when 
physical capital stock is also included in the regressions. This result led Pritchett to develop the idea 
that the absence of correlation between education and growth is the result of low quality education in 
developing countries in line with the idea that human capital should take into account the quality of 
education in addition to the quantity. Krueger and Lindahl (2000) suggest that measurement errors in 
education data is the main reason for these negative results and show that when capital stock in not 
included as a regressor, human capital becomes significantly positive. Since then, other studies have 
tried to solve this puzzle by using updated and improved figures of educational attainment (Soto, 
2002; Cohen and Soto, 2007; and Barro and Lee, 2010).  
 
In Barro and Lee (2010), a very similar framework as the one presented in this study is used and the 
return to education is estimated at around 4% for developed countries, using the twenty year lag in the 
education series as an instrument to proxy parental educational background. Similarly, Soto (2002) 
uses data from Cohen and Soto (2007) and finds values from 6.7% to 10% using a GMM estimator 
and after dealing with collinearity by changing the growth accounting framework. Finally, Topel 
(1999) finds a return of 6% with the Barro Lee dataset but chooses to set the coefficient of capital 
intensity. All in all, results from the macro literature suggest that the value of ' should stand between 
4% and 15%. However, every study cited above focuses on a large range of countries (the Barro-Lee 
database contains 146 countries) and on a shorter time period. Our dataset enables us to extend the 
time period from 1890 with yearly data on GDP, human capital and physical capital but in turns limits 
the number of countries to 17 developed countries, which may lead to different estimates of return to 
education. 
 
Finally, it is important to understand what a given value of ' implies for productivity. From the 
neoclassical framework, we indeed have: 
 

� = ���′. �� .  ���"����
(.$ (4) 
Which yields: 
 

�
 = ���′. )� *

�
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But another transformation can also yield:  
 

�
 = ���′ )��*

�
��� "(.$ 

                                                           
8  As raised in Psacharopoulos (1994), this return can be higher in other regions of the world (12.4% in Latin 

America, 13.4% in Sub-Saharan Africa and 9.6% in Asia). 
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Hence, conditionally on the fact that 
+
, is constant, an increase of one year in educational attainment 

leads to an increase of productivity of �1 − -
. ' points and conditionally on the fact that 
+
. remains 

constant, a similar increase in education leads to an increase in productivity of ' points. Soto (2002) 
calls �1 − -
. ' the “short-time” return to education and ' the “long-time” return to education.9 
  
 
3.2. Age of capital and productivity 
 
It is very intuitive that older investment is less productive than newer investment as technical progress 
is partly embodied in capital.10 Constant-quality price indexes attempt to take productive performance 
improvements in investment into account. For a stable value of investment spending over two years, 
an embodied productive performance improvement would correspond to an increase in the investment 
volume and to a decrease in the investment price index. The embodied technical change is, from this 
point of view, a determinant of the price of investment (see the survey by Gordon, 1990, on this 
debate). From a broader point of view, and as raised by different papers, for example Jorgenson and 
Griliches (1967), if the production function is perfectly specified and if all the productive factors are 
well measured and taken into account, the TFP measurement using the Solow residual approach would 
be small and would mostly correspond to the impact of externalities.  
 
Nevertheless, the measurement of investment price indexes takes only partly into account the 
improvements in investment productive performance for several reasons, and at least for the two 
following ones: (i) these improvements are taken into account only for some products, mainly 
automobiles and, within ICT, hardware, prepackaged and partly custom software, and some 
communication equipment. For other investment products, there is almost no impact of an investment 
quality change on the measurement of investment prices. This partial approach is explained by the cost 
of the methods (hedonic or matching approaches, mainly) used to take into account changes in quality 
in investment price indexes; (ii) whatever the efforts of national accountants and their degree of 
sophistication, these methods remain imperfect and take only partially into account the embodied 
technical progress in investment price indexes. For these reasons, an unknown part of the embodied 
technical progress is not included in the increase in investment volume and a decrease in investment 
prices. From this mismeasurement channel, the vintage composition of capital should influence the 
productivity level. 
 
A large amount of literature takes into account the vintage composition of capital in production 
functions through a synthetic capital age variable. In this approach, a negative impact of capital age on 
productivity is expected. To take account of this idea, we define effective productive capital stock 
(KP) as the productive capital stock (K) times an exponentially decreasing function of the average age 
of capital (A): 
 

��� = ��"�/.01 
 
Where ε is the elasticity of the age of capital. This representation was suggested by Solow (1959, 
1962) and developed later by Nelson (1964) among others. So far, we have considered two types of 
assets to construct our series of capital: equipment and buildings. The vintage effect of capital is not 
necessarily relevant for this latter type, or at least, it is negligible when compared to the vintage effect 
of equipment. An older piece of machinery is likely to be less productive than a newer one, either 
because of technological obsolescence or because of physical depreciation. This is not necessarily the 

                                                           
9  Over the long run, the ratio of capital to output is very stable, as seen in Madsen (2010). Such stability is 

consistent with the idea that the saving rate results from aggregated individual preferences that are quite 
constant over time. 

10  A reverse impact could come from a learning by doing effect: firms may manage to use a capital vintage 
better as it ages. Our estimates encompass this effect, which appears not to be predominant. 



12 

 

case for a building. For this reason, in what follows, we have only considered the average age of 
equipment capital stock. Numerous papers have estimated an empirical impact of the capital vintage 
structure on productivity, both on macro and micro data. On industry level data, Gittleman et al. 
(2003) survey the literature and show that the capital vintage productivity impact can vary a lot across 
industries. 
 
On macroeconomic data, some papers assume a vintage effect without estimates. For example, 
Jorgenson (1966) assumes, for the US, a value of the elasticity of the average age of capital to 
productive capital (which correspond to our parameter ε) of 0.13, which would mean, if we suppose a 
value of the capital elasticity α of 0.3, an impact of the age of capital on productivity of nearly 4% 
(α.ε = 0.039).11 Clark (1979) directly assumes an impact of the average age of capital on productivity 
of 1% using US macro data (α.ε = 0.01), which corresponds to a low value compared to estimate 
results. For example, Wolf (1991, 1996) proposes some estimates of the impact of the average capital 
age on productivity on a country level dataset panel composed of the G7 countries over the 1950-1989 
period. His results are within a range of 3% to 6.5% (0.03 ≤ α.ε ≤ 0.065), and for his growth 
accounting exercise, Wolf later assumes a value of 4.1% (α.ε = 0.041).  
 
Other analyses have proposed estimates of the impact of the average age of capital on productivity 
based on firm level data. To the best of our knowledge, these studies mostly focus on French firms. 
Using a sample of 124 to 195 manufacturing firms over the period 1966 to 1975 and a dataset of 
16,885 manufacturing firms in 1962 and 275 manufacturing firms in 1972, Mairesse (1977, 1978) and 
Mairesse and Pescheux (1980) estimate a capital age productivity impact of about 4% (α.ε = 0.04). On 
a panel of 3,200 French manufacturing firms over the period 1972-1984, Cette and Szpiro (1989) also 
estimate a capital age productivity impact of about 4% (α.ε =0.04).  

 
 

3.3.  Estimation strategy and results 
 

Taking into account these considerations, we have included education and age of capital into the 
production function: 
 

� = ���′. ��. "�/.0
�� "(.$
��� (5) 

 
Where TFP’ is the new measurement of total factor productivity (taken as a Solow residual), from 
which the effects of embodied technical progress and human capital (education) are removed.  
 
Dividing equation (5) by L, the total number of hours worked, yields the following breakdown:  
 

�
 = ���′. )� *

�
. "�/.�.0. "����
(.$ (6) 

 
Finally, taking relation (6) in log form gives: 
 

23 = tfp7 + α. 9: − ε. -. � + �1 − -
'. & (7) 

 

Where lp and ik are the logarithms of labor productivity and capital intensity (�� = +
,), and tfp’ is the 

logarithm of total factor productivity excluding the effects of the age of physical capital and of human 
capital. With our data, we want to estimate the values of ' and ε using equation (6). To do so, we first 
                                                           
11  The effect of the age of the capital stock on productivity is of course negative. We will however present the 

effect in absolute value terms in the following paragraphs to better relate it to the value of ε, which is 
positive. 
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assume that the value of α is 0.3, which is equivalent to setting the dependent variable in the regression 
to 23<,� − 0.3. 9:<,� for a country i, 1 ≤ 9 ≤ 17 and a year t. On the right-hand side of the equation, we 
use the average years of education &<,�  and the average age of equipment capital stock Ai,t as 
regressors. The induced values of '  and ε can then be obtained after division of the estimated 
coefficients of these two explaining variables by 1 - α and α respectively. In a second step, we 
generally estimate α, ' and ε by including capital intensity on the right-hand side, the dependent 
variable now only being the logarithm of labor productivity.  
 
Results from these two OLS regressions are presented in Table 1, columns 1 and 2. 12 13 Because the 
data are highly volatile between 1890 and 1895, we remove these first five years from the regressions. 
We find a coefficient of education that is highly significant and positive in both cases, equal to 0.037 
and 0.031, and a negative coefficient for the age of capital equal to -0.010. When the coefficient α is 
estimated, its value can be directly read from the coefficient on the log of capital intensity which is 
equal to 0.323 in column 2. These results in turn imply a value of ε of around 3% while ' is estimated 
at around 5% which are both lower than expected, although still acceptable as far as macro returns to 
education are concerned. Remarkably, at odds with results from Barro and Lee (2013), Soto (2002) 
and Krueger and Lindahl (2000), we find a convincing and standard value for α in column 2. In the 
latter studies, when physical capital intensity is included in the regressions, the implicit value of α is 
always larger than expected. This led Soto (2002) to argue in favor of an endogeneity issue stemming 
both from measurement errors in education and capital stock14 and simultaneity between education and 
growth: when people anticipate future growth, they are likely to spend more time studying. Bils and 
Klenow (2000) also suggest that better enforcement of property rights may explain both higher levels 
of schooling and an increase in productivity and is therefore a potential omitted variable. 
 
To better compare our results with those already mentioned in the literature, we have restricted the 
time period to 1950-2010 and run the same regressions. The results are presented in columns 3 and 4 
of Table 1, from which we see that when α is set to 0.3 the value of ' is 9.14%, which is within the 
expected range, whereas ε is still lower than expected but higher than previously (7.67%). From 
column 4 however, the estimated value of α is very large (0.638) and the education coefficient loses its 
significance. These results are common across the literature and can for example be found in Barro 
and Lee (2013). This could be due to the high correlation between capital intensity and education in 
this 1950-2010 period over our set of countries, the correlation being lower over the longer 1890-2010 
period as increases in education were mostly driven by compulsory attendance at the primary and 
secondary levels during the first half of the century. Finally, going back to our whole 1895-2010 
period, we have followed Barro and Lee (2013) and instrumented school attainment by its 20-year 
lagged value to proxy for parental education, which is likely to be less endogenous. In addition, 
physical capital intensity is instrumented by its 1-year lag value to correct for correlation in 
measurement error with the current value of the left-hand side variable. These results are presented in 
columns 5 and 6 and imply a value for ' of around 7%, suggesting that our OLS estimators were 
biased downward. 
  
We then reproduce the exact same regressions, but after deleting average working time per worker, 
that is, by defining labor productivity as the ratio of GDP to employment, and capital intensity as the 
ratio of physical capital to employment. Removing average working time per worker is a way of 
reducing the inaccuracy in our measures as it is by far the trickiest series to measure. In addition, this 
would enable us to derive the elasticity of education with regard to labor productivity per employee 
which is most in line with the existing literature. As shown in Table 2, the value of ' remains stable 

                                                           
12  The dependent variable shows very strong autocorrelation of degree one which disappears when looking at 

longer lags. We thus check that our results are still valid when autocorrelation and heteroskedasticity robust 
standard errors using the Newey-West variance estimator are implemented (of course this does not affect the 
coefficients). 

13  For these columns and for all the others, we include time and country fixed effects and remove war periods. 
14  Capital stock is constructed from investment which is included in GDP, so any measurement error in 

investment would impact both labor productivity and capital intensity. 
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and around its expected value. The coefficient on capital intensity is still too high between 1950 and 
2010, but this time education has a positive and significant effect on productivity. The other changes 
are for ε which is now higher and much closer to its 10%-13% expected value. 
 

All in all, these results suggest that over the whole period, and for the set of 17 countries under 
study, the coefficient of education in the Macro-Mincer equation ' is roughly equal to 8%, which 
implies a short-term return to education of 5.6% (assuming the elasticity of capital to be equal to 0.3). 
Note that, in this study, we have followed the growth literature on a relatively long period and measure 
the elasticity of the average years of education in the population aged over 15 to TFP. For this reason, 
the results presented in Table 3 might differ from other estimates on the most recent period. For 
example, the Bureau of Labor Statistics uses a more detailed and sophisticated measure of human 
capital by estimating a Mincer equation from microdata, taking into account many parameters such as 
gender, type of education, etc. Of course, over such a long period as the one considered in this study, it 
is impossible to conduct a similarly detailed analysis. 

 
 
3.4.  The impact of education and age of capital on TFP growth  
  
We can now evaluate TFP’ corrected by the impact of education and age of capital and compare its 
evolution to that of TFP not excluding these two factors. To do this, we have used the growth 
accounting approach corresponding to equation (5) and set parameter values to α = 0.3 for the share of 
capital, ' = 7% for the impact of education and ε = 10% for the impact of the age of capital.  
 
We can see from Table 315 that changes in human capital and the age of capital contribute significantly 
to TFP growth. Over the whole 1890-2010 period, human capital and the age of physical capital 
account together for 21% of the US's TFP growth, 17% for the euro area, 25% for the UK and 26% for 
Japan. However, it appears that the amplitude of TFP’ growth does not differ a lot from that of TFP.  
 
In particular, the "one big wave" that occurred during the 20th century is still persistent as shown in 
Chart 316 concerning the US and this is also the case for the mid-1990s wave. The same result is 
obtained for different values of '	and	E	within the ranges which seem reasonable from previous 
developments (5% < ' < 10%	and	5% < E < 15%
. Our results for the contribution of education 
closely compares to that of Madsen (2010) but, as his methodological approach tries to identify TFP-
induced capital deepening and attributes its contribution to TFP, the contribution of capital stock 
growth is smaller than in our estimates, the bulk of growth being attributed to TFP. Hence, Madsen’s 
results leave an even greater share of the productivity waves unexplained by his growth accounting 
estimates. These results are important: they indicate that even if education (mainly) and the age of 
capital have a strong impact on productivity levels and growth, they do not explain the productivity 
waves observed during the 20th century. Interestingly, the one big wave is the one most affected by the 
exclusion of education and age of capital: for the US, the peak is reduced by 25%. This is not 
surprising as this wave is associated with an acceleration in educational attainment. In the US, the 
average duration of schooling increased by more than 2 years between 1935 and 1955. Other 
contributions have to be found among numerous candidates. We try, in the following section, to 
evaluate the impact of some generic technologies on TFP growth. 
 
Nevertheless, we see from Table 3 that education significantly contributed to the first productivity 
wave in the United States, with a contribution of 0.42 percentage point (pp) during the 1913-1950 
period, only slightly decreasing in the following periods (0.38 pp in 1950-1974 and 0.34 pp in 1974-
1990). Hence, the early opening up of education to the masses in the US yielded a lasting contribution 

                                                           
15  Periods in Table 3 are based on productivity breaks from Bergeaud et al. (2016). 
16  The waves presented in Charts 3 and 6 have been computed by removing the cyclical component of our time 

series using a HP filter with a coefficient of 500. The choice of this coefficient has been made to better 
capture 30-year-long business cycles, consistent with Norbert (2006). On these aspects, see Bergeaud et al. 
(2015). 
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to productivity and partly explains the US advance. Indeed, the increase in the contribution of 
education appears one period later, in the 1950s, in the other areas (euro area, the United Kingdom). In 
Japan, education posts a significant contribution throughout the century due to the initial very low 
level of education. The age of capital makes a significant contribution mainly during the 
reconstruction period after World War II in the euro area and Japan.  

 
Conversely, education and capital age barely contribute to explaining the ICT wave in the US, as 
education reached a plateau and the age of capital only slightly decreased during the 1990s and 
increased when the financial crisis struck. In other areas, the contribution of education is lower than 
before, although it posted a significant contribution in the euro area and Japan, where the opening-up 
of college education to the masses was delayed compared to the US. Equipment has aged since 1990 
in Japan due to the banking crisis and since the 2000s in the euro area.  
 
Chart 3 
Filtered growth rate of TFP for the US including (TFP) and excluding (TFP’ ) the impact of age of capital 
and human capital  
The series have been computed using a HP filter with coefficient 500 (λ = 500) over the period 1870-2010 to 
address the issue of initial values. 

 
Source: See text (human capital has been computed with a value of 7% for ' and age of capital with a value of 
10% for ε). α is set to 0.3. 
 
 
4. The spread of technologies 
 
As shown in numerous papers, notably Comin and Hobijn (2010), the speed of adoption of new 
technologies plays a key role in productivity developments and growth. We have identified two 
technologies often considered to be characteristic of different technology diffusion periods across the 
20th century (see Comin et al., 2006a and 2006b). First, electricity which, in addition to being a good 
indicator of global technology development, is the major characteristic GPT of the mid-20th century. 
Second, information and communication technologies (ICT) to try to capture the most recent 
productivity growth wave starting at the end of the 20th century. These two technologies were selected 
because, as general purpose technologies, they may yield network effects and externalities beyond 
their direct capital intensity impact in the using sectors. We successively describe the measurement of 
the spread of the two technologies (4.1.), the channels of the productivity impact of the spread of the 
new technologies (4.2.), the estimation strategy of these channels and the results (4.3.) and, using these 
estimates, an evaluation of the impact of the spread of technologies on TFP growth (4.4.). 
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4.1.  Measurement of the spread of the two new technologies 
 
For our first measure of technology, we have taken the production of electricity per capita. This 
measure has increased over time for all countries, but this increase slowed from the 1970s onwards 
(see Chart 4).17 In line with the literature that focuses on the impact of electricity on US productivity 
growth (Bakker et al., 2015, among others), we can clearly see from Chart 4 that the take-off of 
electricity in the US started at the beginning of the 20th century and accelerated during the 1920s. The 
United Kingdom just lags behind with a take-off that started in the 1930s, while euro area countries 
and Japan started to massively adopt electricity after World War II. The take-off date depends on both 
the decline in electricity prices and on a reorganization of the production process to fully benefit from 
electricity (David, 1990) 
 
Chart 4 
Production of electricity per inhabitant for the four main areas 
Log of kWh per thousand inhabitants - 1890-2010 

 
Source: See text. 
 
Concerning the second measure of technology, we have taken the ratio of the stock of ICT capital to 
GDP in current value. To compute this ratio, we have drawn on the work of Cette et al. (2015) based 
on investment data provided by the OECD. ICT is split into three products: hardware, software and 
communication equipment, and capital stock is computed using a permanent inventory method. 
Because such data were not available for Norway, Portugal, Denmark and Switzerland, we have 
conducted all the following estimates on the remaining 14 countries. 18 Chart 5 shows the evolution of 
this ratio for the US, the euro area, Japan and the UK. Note that for ICT, we have used a measure of 
stock and for electricity we have used a measure of production. However, electricity production should 
reflect productive capacity, as electricity cannot be stored, electricity imports and exports are low 
compared to country production, and utilization of productive capacities should not create a systematic 
bias. 
 
ICT capital stock took off in the 1980s in the US, with a peak at the end of the 1990s. This early 
diffusion of ICT in the US can be explained by education levels and low market rigidities in the US 
(Cette and Lopez, 2012). ICT diffusion accelerated at the end of the 1990s in Japan and the UK, while 
the euro area lagged behind due to its stringent employment protection legislation and product market 
regulation. 
 

                                                           
17  When data were missing, we have interpolated them with the production of CO2 emissions from the Global 

Carbon Project. 
18  When all countries are included (and when we only estimate the effect on electricity), the coefficients remain 

extremely stable. 
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We assume that both electricity and ICT enters linearly into the production function. Our new baseline 
equation thus becomes:  
 

�
 = ���77�I I�
J"K.LMN )� *

�
"�/.�.0"����
(.$ (8) 

 
Where η and µ are the two new coefficients corresponding to the effect of electricity per inhabitant 
(denoted ELEC) and ICT to GDP ratio (denoted ICT) on productivity and TFP’’  is the new residual 
and therefore our new TFP excluding the effects of education, age of capital and these two 
characteristic technologies. 
  
As our series start in 1890, we do not capture the whole of the first industrial revolution which was 
already tailing off at the end of the 19th century in many countries. For example, in an attempt to 
capture the effect of GPTs during the first industrial revolution, van Ark and Smits (2002) selected the 
period 1800-1913 in the Netherlands. In what follows, we have chosen to start our series in 1905, and 
we do so for our subsequent estimations.19 With longer series and fewer countries, we could have 
chosen other General Purpose Technologies such as the steam engine or railways to focus on the 
second half of the 19th century and measure their effect on 19th century growth. 

 
Chart 5 
Ratio of ICT capital stock to GDP in value terms (multiplied by 1000) 
1950-2010 
ICT capital stock is the sum of communication equipment, software and computers capital stock, all assumed to 
be equal to 0 in 1950. The euro area does not include Portugal. 

 
Source: Authors’ calculation based on Cette et al. (2015).  
 
Equation 8 makes the assumption that electricity enters log linearly in the production function, which 
in turn implies the underlying assumption that the elasticity of electricity was constant over time. 
Therefore, the measured effect is probably a lower bound of the elasticity of electricity during some 
periods. For example, if we assume that a technological shock makes the use of electricity more 
efficient, then this quality improvement will not be captured in our regression and due to this effect we 
will underestimate the impact of electricity over TFP. An alternative would be to allow non-linearity 
in the effect of technology on growth, for example by fitting a logistic function with three parameters, 
the first one determining the speed of diffusion, the second the maximum possible effect and the third 
                                                           
19  Small variations in this starting date do not affect our results; we do however believe that 1905 is a good 

starting point at the end of the first industrial revolution since from Chart 4 we can see that it is the beginning 
of the surge in electricity production in the US. Results are also robust to starting the estimations in 1895 or 
1913. 
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the date at which the marginal effect of electricity is the largest. However, the fitting of this function 
would necessarily be arbitrary. The constant elasticity assumption, as it has been chosen for the 
productivity impact of education and although it is a strong one, appears preferable to an ad hoc rule. 
 

4.2.  Channels of the productivity impact of the spread of new technologies 
 
New technologies may have three distinct types of effects on productivity (see Jorgenson, 2001; Cette 
et al., 2005; or Cette, 2014, for more details). 
 
- First, sectors producing new technologies benefit from a fast pace of technological progress, 

leading to a rapid increase in their TFP. In ICT-producing sectors, according to Moore’s law, 
the number of transistors in a dense integrated circuit has doubled approximately every two 
years, leading to a fast decrease in the ICT production deflator and a fast increase in ICT 
production volume. 
 

- Second, due to the price decrease of investment including the new technology, this 
technological progress can accelerate the capital deepening process in the new technology-using 
industries, leading to an increase in capital intensity and hence in labor productivity, but not 
necessarily in TFP. But as mentioned earlier, national accounts only take partially into account 
in investment price indexes embodied technical progress, which is not fully included in 
increases in investment volume and decreases in investment prices. Consequently, the 
accounting split between capital deepening and TFP within labor productivity growth is biased, 
the role of the capital deepening component being undervalued and, conversely, the role of TFP 
growth being overvalued. The usual methodology adopted to evaluate this capital deepening 
effect for ICT is described in Appendix 1.  

 
- Finally, the two selected technologies can be considered to be general purpose technologies (see 

Lipsey et al., 2005, for possible examples of GPT from the invention of writing and Jovanovic 
and Rousseau, 2005, for a comparison between ICT and electricity and Kander et al. (2007) for 
arguments in favor of considering electricity as a GPT) and their joint utilization across firms 
may lead to TFP gains through spillovers, which means externalities or network effects at the 
macroeconomic level, this impact being “manna from heaven”, to use the expression from 
Hulten (2000).  

 
Usual growth accounting approaches are able to characterize empirically the role of the first two 
channels (with nevertheless, for reasons mentioned above regarding the second channel, an 
undervaluation of the capital deepening impact and an overvaluation of TFP growth) but not of the 
third. Concerning these studies, among numerous others, Jorgenson and Stiroh (2000), Oliner and 
Sichel (2000) and Oliner et al. (2007) evaluate the contribution of ICT in the US at the end of the 20th 
Century. For industrial revolution comparisons, among others also, Crafts (2002) compares the 
contributions of steam engines in the UK during 1780-1860, electricity and ICT in the US during 
1899-1929 and 1974-2000 respectively, and Jalava and Pohjola (2008) compare the contributions of 
electricity during 1920-1938 and ICT during 1990-2004 in Finland. 
 
Our approach goes one step further by trying to decompose TFP growth into the impact of the 
different technologies, taken into account as explained below through these three channels, and an 
unexplained component which corresponds to a residual.  

 
- Concerning electricity, the three channels are empirically taken into account simultaneously in 

the estimates using the electricity production elasticity. Concerning the first channel, as 
mentioned above, production and use of electricity are very similar for all countries (there is no 
storage of electricity and electricity imports and exports are low compared to production), and 
spillovers can realistically be considered as highly correlated to production and use. The second 
channel is characterized only for the share that is not already taken into account through electric 
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equipment and consequently through capital deepening or the age of equipment. Due to the 
measurement problems mentioned above, the impact of electricity production on TFP growth 
may be undervalued. And the third channel is implicitly taken into account in our evaluation, 
externalities being realistically considered as highly correlated to electricity use. 
  

- Concerning ICT, the first channel is not taken into account as a large and variable share of ICT 
investment goods are imported and not produced domestically. Even in the US, the share of ICT 
production in GDP has decreased in the last 15 years (Byrne et al., 2013) due to the 
delocalization of some parts of ICT production and conversely, chip production, which benefits 
most from technological progress, mainly remained in the US. Unfortunately, we do not have 
enough detailed data to characterize this first channel for all countries. The second channel (ICT 
diffusion) is, as for electricity, explicitly considered for the share that is not already taken into 
account through ICT equipment and consequently through capital deepening. But here again, 
due to the measurement problems mentioned before, the impact of ICT on TFP growth may be 
undervalued. And the third channel (externalities) can realistically be considered as highly 
correlated to ICT use (as for electricity), which means that we take it into account.  

  
 
4.3.  Estimation strategy and results 
 
The technology TFP effects are included in our TFP and TFP’ measures. To evaluate them for each of 
the two technologies, we have regressed	�O37, the logarithm of TFP’, on the two technology indicators 
(in log form), each of them assumed to correspond to the spread of a specific general purpose 
technology. 
 
Table 4 columns 1, 2 and 3 display the results from OLS regressions when we use as regressors the 
logarithm of the production of electricity per capita (column 1), the ratio of ICT capital stock to GDP 
in value terms (column 2, over 1950-2010, as 1950 is the starting date of the ICT series and the 
starting date of a significant use of ICT in the economy) or the two jointly (column 3). Coefficients for 
the two technologies are positive and significant in each case. From 1905 to 2010, when electricity is 
the only regressor the estimated coefficient value is 0.077, while it increases to 0.096 when ICT 
intensity is added as a regressor. In the same specification, the effect of ICT is equal to 1.46. These 
results suggest that in the long run, a 1% increase in the production of electricity per capita increases 
productivity by almost 0.1% while a one standard deviation (0.049) increase in the ratio of ICT to 
GDP in value terms generates an increase of 7.4% in productivity.  

 
Of course, it is likely that the effect of electricity is not constant over time. Many economists consider 
for instance that electrification had a massive effect in the US during the 1920s and 1930s (see for 
example David, 1990 and Field, 2003) which is much larger than today. To take this into account, one 
could look at the effect of electricity using different sub-periods. We conduct the same regression as in 
column 1 of Table 1 over the periods 1895-1930, 1895-1940, 1905-1940, 1905-1974 and 1950-2010. 
The coefficient on electricity is estimated respectively at 0.043, 0.044, 0.064, 0.138 and a non-
significant coefficient of 0.027. These results suggest that the effect of electricity was indeed less after 
1974, and the strongest from 1905 to 1974, but not particularly during the interwar period. This is 
probably due to the fact that most of the countries in our dataset did not benefit from electrification 
before the end of World War II. Nevertheless, in this study we seek to estimate the average long-run 
effect of electricity over our time period and for many different OECD countries. For this reason, just 
as we did for the return to education and age of capital, and consistent with the growth accounting 
literature, we consider a constant coefficient from our baseline regressions presented in Table 4. 
 
All the previous results are based on an OLS estimator. However, in such growth accounting 
regressions, endogeneity and reverse causality effects are likely for both electricity and ICT. Indeed, 
the demand for new technologies increases with standards of living and other TFP-improving changes 
in areas such as management, financing and production processes (Ferguson and Wascher, 2004) can 
take place along with the diffusion of the three technologies. We therefore utilize a new strategy based 
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on instrumental variables. In columns 4, 5 and 6 of Table 4, we have run the same regressions as in 
columns 1, 2 and 3 but we instrumented these technologies with the sum of the other countries’ 
technological diffusion measures, weighted by the logarithm of distance. Indeed, trade is one vector of 
technological diffusion and is closely related to distance, which in turn is a good indicator of the 
intensity of technology diffusion (Madsen, 2016). Of course, reflection effects may lead our 
instruments to include the improvement in the country's technological diffusion themselves. To limit 
this effect, we have lagged our indicator by one year.  
 
In the IV regressions, the coefficients of the two technologies are positive. The ICT one is highly 
significant while electricity is no longer significant. However, when estimated together, the 
coefficients are both significant. This regression presented in column 6 is our preferred one and we 
therefore use the corresponding coefficients. A 1% increase in electricity production would lead to a 
7.9% increase in TFP’. A 1 standard deviation increase in the ratio of ICT capital stock to GDP would 
lead to an increase of 8.1% in TFP’. Instrumentation reduces the electricity coefficient, which may be 
the most prone to reverse causality as it is a production measure (the wealthier a country, the more it 
will consume electricity). 

 
One could question the choice of population to standardize the production of electricity. The 
production of electricity per capita could be considered as a demand variable inserted in the production 
function (the average consumption of electricity). Our instrumentation strategy is designed to address 
this potential endogeneity problem. However, ideally, we would like to proceed as in some country-
specific articles (see for example Jalava and Pohjola, 2008) and to measure the capital deepening due 
to highly electricity intensive sectors. Since such data are unfortunately not available for our set of 
countries and for the whole of the 20th century, an alternative would be to standardize the production 
of electricity by GDP. But doing so would lead to a specification problem as the log of GDP 
intervenes in the left-hand side variable of the equation, leading to a negative coefficient on electricity 
per unit of output.  
 
 
4.4.  The impact of technology diffusion on TFP growth  
 
From our previous estimation, we can now look at the shape of our new estimate of TFP (denoted 
TFP’’ ). To do this, we have used the values P  = 0.079 for electricity and Q  = 1.56 for ICT, 
corresponding of Table 4 column 6 estimate results, which seem to us the most interesting.  
 
Chart 7 plots the three waves from 1905 to 2010 for the US for TFP, TFP’ and TFP’’ growth rates. 
We can see that the general evolution is still persistent, especially as far as the one big wave is 
concerned. However, the amplitude of this one big wave has been reduced and is almost 40% lower 
for TFP’’  than for TFP’. This result seems comparable to that of David (1990), who estimates for 
example that “… approximately half of the 5 percentage point acceleration recorded in the aggregate 
TFP growth rate of the US manufacturing sector during 1919-29 (compared with 1909-19) is 
accounted for … by the growth in manufacturing secondary electric motor capacity during that 
decade.” The ICT wave is also significantly explained. However, the impact of ICT diffusion may 
seem low as only about 35% of the corresponding productivity wave is explained by education, age of 
capital and the inclusion of ICT diffusion in our regressions.  
 
Table 5 gives more detail about the share of TFP growth that is attributed to electricity and ICT. 
Because of data restrictions, we have started this decomposition in 1913: the period 1905-1913 would 
be of poor statistical interest with only 9 years. We also mention the whole 1913-2010 period. In 
addition, because we have removed four countries from our dataset, we do not plot results for "the 
World". Looking for instance at the euro area, we can see that electricity explains a large share of TFP 
growth (23%), and accounts for 20% in the US on average over the whole period. ICT appears 
especially important in the US and the UK. 
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Although the difference in contribution is not very large across areas, the spread of electricity 
contributed significantly to the US advance on the euro area, as its contribution peaked in the 1913-
1950, while it increased during the 1950-1974 period in the euro area. The UK appears not to lag in 
terms of electricity diffusion, with a very large contribution in the 1913-1950 period. Broadberry and 
Crafts (1990) trace the productivity lead that the US took over the UK during this period rather to 
barriers to competition allowing high cost producers to remain in business.  
 
The contribution of ICT to TFP growth appears to be smaller than that of electricity in all areas. This 
result seems consistent with, for example, those from Crafts (2002) or Jalava and Pohjola (2008) 
mentioned above, which find that in the US and Finland ICT's contribution to growth is lower than the 
electricity's. And their approaches differ from ours. As explained previously, their growth accounting 
methodologies characterize two channels of the growth impact of technology shocks: TFP gains in the 
producing sectors and capital deepening in using sectors. Conversely, our approach partly 
characterizes the capital deepening channel, more precisely the share not already taken into account in 
our capital measurement and consequently in the explicit capital deepening channel, and the spillover 
channel which cannot be measured through growth accounting approaches. For these reasons, our 
results cannot strictly be compared to these previous ones.  
 
One other reason for the low contribution of ICT diffusion to explaining the second productivity wave 
could come from the fact that ICT investment data compiled by national accountants (and taken into 
account here as ICT investment) underestimate productive ICT expenditure. Indeed, spending on ICT 
is regarded as investment only when the corresponding products are physically isolated. Therefore, 
generally speaking, ICT that is included in productive investment (for example machine tools or 
robots) is not counted as ICT investment but as intermediate consumption of companies producing 
these capital goods. Beretti and Cette (2009) have tried to correct French ICT investment data in 2000 
by considering intermediate consumption ICT components integrated in non-ICT productive 
investment as ICT investment. Their main result is that the amount of ‘indirect ICT investment’ 
appears to be small compared with ‘direct ICT investment’, and that considering them as ICT 
investment changes numbers only slightly. But we cannot rule out that this result could differ for other 
countries and on more recent periods. Another reason could stem from the fact that ICT had not yet 
yielded their full productivity benefits. Previous GPTs took a very long time to be fully profitable: 
between the first practical design of a dynamo in 1867 and the actual conversion of industrial 
processes to electricity in the US, which only took off in 1914-1917, 50 years elapsed and the full 
productivity benefits were only felt 70 years afterwards (David, 1990). Part of the current productivity 
debate hinges on whether a second productivity wave could be expected from ICT, with Gordon 
(2014) on the pessimistic side and, among others, Brynjolfsson and McAfee (2014) on the optimistic 
side. 
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Chart 7 
Filtered growth rate of different TFP measurements for the US, 1905-2010 
TFP is the residual including education, age of capital, electricity and ICT. TFP’ excludes the impact of 
education and age of capital and TFP’’  also excludes the impact of electricity and ICT. 
The series have been computed using a HP filter with coefficient 500 (λ = 500) over the period 1890-2010 to 
address the issue of initial values. 

 
Source: See text (human capital has been computed with a value of 7% for ' and age of capital with a value of 
10% for ε). α is set to 0.3. The coefficients for electricity and ICT are 0.079 and 1.557 respectively. 
 
 
5. Conclusion 
 
This paper examines the contributions to increases in productivity of quality-adjusted factor growth 
and technology diffusion. Accordingly, to explain the main stylized facts of 20th century growth, a 
long-term view is required. First, after centuries of “Malthusian stagnation”, growth took off in the 
19th century and accelerated further in the 20th century, leading to questions about the timing and 
reasons for this take-off. Second, growth has been highly heterogeneous, with both a “Great 
Divergence” splitting the world between advanced and emerging countries and a staggered take-off 
among advanced countries. Finally, growth has slowed down since the 1970s in advanced countries, 
leading economists to question the durability of 20th century growth.  
 
We address these questions by looking at productivity growth factors in the 20th century. First, 
productivity, and more precisely total factor productivity (TFP), was indeed the main contributor to 
20th century growth (Madsen, 2010a; Bergeaud et al., 2015). As TFP is computed as a residual of a 
growth decomposition equation, there is always the suspicion that production factors have been 
improperly measured, which contributes to ascribing too much weight to TFP in growth dynamics. In 
this paper, production factors are adjusted for quality: education for labor and the age of equipment for 
capital. Second, technology diffusion appears to be a large contributor to TFP growth (Comin and 
Mestieri, 2013), even in innovating countries such as France, Germany and the United Kingdom 
(Eaton and Kortum, 1999). This paper assesses the contribution of technology diffusion by means of 
two 20th century general purpose technologies, electricity and information and communication 
technologies (ICT).  
 
To do this, we use an original capital, labor and GDP database built over 1890-2013 for seventeen 
advanced countries. We completed this database with data on education, age of capital and technology 
so that we were able to decompose GDP growth. 
 
GDP growth was then decomposed into the contribution of production factors, capital and labor, to 
obtain TFP as a residual. In a second step, the quality of production factors, education and the age of 
capital, was introduced through an estimation of their contribution to this gross TFP, taking into 
account their potential endogeneity through instrumental variables regressions. In a third step, the 
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contribution of technology diffusion was estimated, endogeneity being treated with a similar 
estimation procedure.  
 
The main results are the following: (i) among factor quality, levels of education have contributed the 
most to growth, while the age of capital has a significant, although limited, contribution; (ii) quality-
adjusted production factors explain less than half of labor productivity growth in the largest countries, 
except for Japan, where capital deepening posted a very large contribution. Although the US's “one 
big wave” of productivity growth, which took place some two decades before other advanced 
countries (Gordon, 1999) is partially explained by earlier access to higher education by the masses, 
this wave, as well as the ICT productivity wave for the countries which experienced it, remains partly 
unexplained by quality-adjusted factors; (iii) technology diffusion, as captured through our two 
general purpose technologies, also constitutes a partial explanation for the earlier US “one big wave” 
and for the ICT productivity wave, but leaves between 0.6 and 1 percentage point yearly growth, as 
well as a large share of the two 20th century technology waves, unaccounted for.  
 
These results are consistent with previous ones on the role of education and TFP in a standard growth 
accounting approach. Education posted a very significant contribution to productivity growth 
throughout the period, explaining part of the US's lead in the first productivity wave, but not the extent 
of the wave itself. Our analysis goes further by taking into account the quality of the capital stock 
using the age of equipment, which posts a significant contribution mostly in the post-World War II 
reconstruction period. But another major contribution consists in trying to estimate the role of general 
purpose technologies beyond their capital-deepening impact and TFP growth in GPT-producing 
sectors. While ICT contribution remains limited at this point, both in duration and extent, the diffusion 
of electricity explains a significant share of 20th century growth and part of the US's advance in the 
first productivity wave. However, it still cannot account for the whole extent of the productivity 
waves, which points to a major role of factors beyond technology diffusion and production factors in 
20th century growth. Candidates are numerous: among them, improvement in the production process 
such as assembly lines in large manufacturing firms (implemented for example for the Ford Model T 
in the Ford Motor Company in 1913), enhanced management practices (Bloom et al., 2014) and new 
financing techniques (Ferguson and Wascher, 2004). Interactions between these different growth 
factors are large and further research appears necessary to disentangle their respective roles. Another 
limitation of our analysis is that we have assumed a linear (in log form) impact of education, capital 
age, electricity or ICT capital on TFP. We cannot rule out that in reality, these impacts might be non-
linear. But more detailed data would be necessary to go further in these directions. A final limitation 
which has been highlighted in the paper corresponds to measurement problems. Two examples of 
these measurement problems deserve to be underlined. First, concerning labor quality, we have used 
information only on the average years of education in the working-age population, without any 
information concerning the quality of this education or the average years of education among the 
employed population. Second, concerning ICT, for the reasons detailed in the previous section, 
available numbers underestimate the value of ICT investment and, within this value, overestimate 
growth in prices and consequently underestimate growth in volume.  
 
This study has empirically given some partial explanations for the sources of TFP's contribution to 
growth over the 20th century. That is its main contribution. But a large part of this contribution remains 
unexplained, and, as a consequence, remains “manna from heaven”…  
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Appendix 1: Methodology for the evaluation of the contribution of ICT to labor productivity 
growth through capital deepening 
 
 
The evaluation of the contribution of ICT to hourly labor productivity growth, through capital 
deepening, is calculated by applying the growth accounting methodology set out by Solow (1956, 
1957). This contribution in year t, noted as �R�LMN, is evaluated using the following relation: 
 

�R�LMN = -�LMN	�∆:���LMN − ∆T� − ∆ℎ�
	
 
Where ����LMN  corresponds to the ICT capital installed at the end of year t-1, V�  refers to total 
employment in year t, and W� designates the average annual hours worked per person per year t. The 
notation of the variables in lowercase corresponds to their natural log �X = 2T�Y

, and the growth 
rate of a variable is approximated by the variation of its logarithm. The ∆  symbol refers to the 
variation of a variable �∆Y� = Y� − Y���
.  
 
The coefficient -�,ZLMN is the Törnquist index of the coefficient -�: 
 

-�,ZLMN = 1
2 �-�

LMN + -���LMN
	 
 
The coefficient -�LMN corresponds to the share of capital remuneration in GDP: 
 

-�LMN =	��
LMN	����LMN

�.1 	. ��
 

 
Where ��LMN corresponds to the user cost of capital, �.1 corresponds to the GDP deflator, and �� refers 
to GDP in volume. 
 
The user cost of ICT capital � is calculated employing the relation proposed by Jorgenson (1963): 
 

��LMN = ��LMN	�9� + 	LMN + ∆3�LMN
 
 
Where �LMN  corresponds to the investment price of ICT, 9  refers to the nominal interest rate, and 
	LMNdesignates the assumed invariant depreciation rate of ICT. 

	
We have considered two alternative options for the nominal interest rate: 10-year government bond 
yields and a fixed rate of 10%. The evaluation of both approaches is close to one another in the growth 
contribution calculation. In this study, we have used the 10-year government bond yields taken from 
the OECD's main economic indicators.  
 
The overall share of capital, α, is assumed to be invariant and the same for all countries, with α = 0.3. 
This means that to evaluate the overall capital deepening effect, we have assumed that -�\LMN, the non-
ICT capital share, is obtained, for each year t and country i observation, from the relation: 
 

-� = -�LMN + -�\LMN = 0.3 and then -�\LMN = 0.3 − -�LMN 
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Appendix 2: Tables 
 
 
Table 1 
Results from estimates of labor productivity (lp) or tfp (lp – 0.3.ik) in log form, on school attainment and 
age of equipment capital stock. Labor input is measured by total hours worked. 
Time and country fixed effects included. Heteroskedasticity robust standard errors are in brackets. Estimations 
start in 1895 because GDP is highly volatile during the first five years. 
 

 
(1) (2) (3) (4) (5) (6) 

Dependent variable: ]^ − _. `. ab ]^ ]^ − _. `. ab ]^ ]^ − _. `. ab ]^ 

Estimator OLS OLS OLS OLS IV IV 

School 0.037*** 
(0.005) 

0.031*** 
(0.006) 

0.064*** 
(0.009) 

0.007 
(0.009) 

0.050*** 
(0.006) 

0.047*** 
(0.008) 

Age of equipment -0.010** 
(0.005) 

-0.010** 
(0.005) 

-0.023*** 
(0.007) 

-0.022*** 
(0.005) 

-0.012** 
(0.005) 

-0.011** 
(0.005) 

Log of capital 
intensity 

- 
0.323*** 
(0.011) 

- 
0.638*** 
(0.016) 

- 
0.315*** 
(0.012) 

Implicit θ 5.29% 4.58% 9.14% 1.93% 7.14% 6.86% 

Implicit ε 3.33% 3.10% 7.67% 3.45% 4.00% 3.49% 

Implicit α Set to 0.3 0.323 Set to 0.3 0.638 Set to 0.3 0.315 

Time period 1895-2010 1895-2010 1950-2010 1950-2010 1895-2010 1895-2010 

Number of Obs. 1,714 1,714 1,037 1,037 1,714 1,714 

Adjusted cd 0.961 0.983 0.920 0.981 0.983 0.982 

Notes: *** p value < 1%, ** p value < 5%, * p value < 10% 
 
 

Table 2 
Results from estimates of labor productivity (lp) or tfp (lp – 0.3.ik) in log form, on school attainment and 
age of equipment capital stock. Labor input is measured by number of workers. 
Time and country fixed effects included. Heteroskedasticity robust standard errors are in brackets. Estimations 
start in 1895 because GDP is highly volatile during the first five years. 
 

 
(1) (2) (3) (4) (5) (6) 

Dependent variable: ]^ − _. `. ab ]^ ]^ − _. `. ab ]^ ]^ − _. `. ab ]^ 

Estimator OLS OLS OLS OLS IV IV 

School 0.060*** 
(0.004) 

0.053*** 
(0.006) 

0.074*** 
(0.010) 

0.018** 
(0.009) 

0.076*** 
(0.006) 

0.074*** 
(0.008) 

Age of equipment -0.017*** 
(0.005) 

-0.016*** 
(0.005) 

-0.035*** 
(0.007) 

-0.029*** 
(0.004) 

-0.019** 
(0.005) 

-0.018** 
(0.005) 

Log of capital 
intensity 

- 
0.323*** 
(0.010) 

- 
0.605*** 
(0.015) 

- 
0.312*** 
(0.011) 

Implicit θ 8.57% 7.83% 10.6% 4.56% 10.9% 10.8% 

Implicit ε 5.67% 4.95% 11.7% 3.08% 6.33% 5.77% 

Implicit α Set to 0.3 0.323 Set to 0.3 0.638 Set to 0.3 0.315 

Time period 1895-2010 1895-2010 1950-2010 1950-2010 1895-2010 1895-2010 

Number of Obs. 1,714 1,714 1,037 1,037 1,714 1,714 

Adjusted cd 0.948 0.977 0.898 0.975 0.948 0.978 

Notes: *** p value < 1%, ** p value < 5%, * p value < 10% 
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Table 3 
Average growth rates for various subperiods for labor productivity (col. 1) and some of its contributors: 
capital intensity (col. 2), TFP (col 3= col 1 - col 2), education (col 4), age of capital (col 5) and TFP’  (col 6 = 
col 3 - col 4 - col 5)  

 (1) (2) (3) (4) (5) (6) 
Subperiods ∆lp α.∆ik ∆tfp  (1-α).θ.∆S -αε∆A ∆tfp’ 

 The United States 
1890-1913 1.76% 0.57% 1.19% 0.14% 0.18% 0.87% 
1913-1950 2.85% 0.45% 2.41% 0.42% 0.03% 1.96% 
1950-1974 2.25% 0.57% 1.68% 0.38% -0.02% 1.32% 
1974-1990 1.27% 0.29% 0.98% 0.34% 0.04% 0.60% 
1990-2010 1.83% 0.58% 1.25% 0.17% -0.03% 1.11% 
1890-2010 2.21% 0.51% 1.70% 0.31% 0.04% 1.34% 

 Euro area 
1890-1913 1.82% 0.49% 1.34% 0.23% 0.11% 1.22% 
1913-1950 1.49% 0.39% 1.10% 0.15% -0.13% 1.08% 
1950-1974 5.19% 1.58% 3.62% 0.48% 0.33% 2.81% 
1974-1990 2.77% 1.02% 1.74% 0.34% -0.18% 1.58% 
1990-2010 1.28% 0.59% 0.69% 0.26% -0.06% 0.48% 
1890-2010 2.52% 0.80% 1.72% 0.29% 0.01% 1.43% 

   United Kingdom 
1891-1913 0.72% 0.16% 0.55% 0.22% 0.04% 0.29% 
1913-1950 1.51% 0.34% 1.17% 0.19% 0.00% 0.98% 
1950-1974 2.97% 1.43% 1.55% 0.62% 0.11% 0.82% 
1974-1990 2.22% 0.74% 1.48% 0.49% -0.06% 1.05% 
1990-2010 2.18% 0.70% 1.48% 0.07% -0.06% 1.47% 
1890-2013 1.93% 0.66% 1.27% 0.31% 0.01% 0.94% 

 Japan 
1890-1913 2.35% 1.59% 0.76% 0.53% 0.05% 0.18% 
1913-1950 1.78% 1.08% 0.70% 0.47% -0.19% 0.42% 
1950-1974 6.58% 2.20% 4.38% 0.50% 0.44% 3.44% 
1974-1990 3.61% 1.62% 1.99% 0.31% -0.21% 1.88% 
1990-2010 1.70% 1.06% 0.64% 0.29% -0.21% 0.56% 
1890-2010 3.20% 1.52% 1.67% 0.45% -0.02% 1.25% 

 World 
1890-1913 1.84% 0.64% 1.19% 0.25% 0.14% 0.80% 
1913-1950 2.15% 0.48% 1.68% 0.28% -0.03% 1.43% 
1950-1974 3.75% 1.11% 2.64% 0.48% 0.13% 2.03% 
1974-1990 2.24% 0.78% 1.46% 0.36% -0.06% 1.16% 
1990-2010 1.68% 0.65% 1.03% 0.22% -0.09% 0.90% 
1890-2010 2.42% 0.73% 1.70% 0.32% 0.02% 1.35% 

Source: See text. World includes all of the 17 countries: Australia, Belgium, Canada, Denmark, Germany, 
Finland, France, Italy, Japan, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, the United 
Kingdom and the United States of America. 
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Table 4 
Results from estimates of labor productivity (in log form and corrected for capital intensity, school 
attainment, age of equipment capital stock and hours worked) on the production of electricity per 
inhabitant (in log form) and the ratio of ICT capit al stock to GDP in value terms 
Time and country fixed effects included. Heteroskedasticity robust standard errors are under brackets. 
 

 
(1) (2) (3) (4) (5) (6) 

Dependent variable: tfp’ with ICT capital deepening 

Estimator OLS OLS OLS IV IV IV 

Log(electricity/pop) 0.077*** 
(0.022) - 

0.096*** 
(0.021) 

0.039 
(0.038) 

- 
0.079** 
(0.039) 

ICT  
0.938***  
(0.142) 

1.459***  
(0.162) 

- 
1.585 *** 
(0.210) 

1.557***  
(0.247) 

Time period 1905-2010 1950-2010 1905-2010 1905-2010 1950-2010 1905-2010 

First stage F stat - - - 271.63 140.86 109.95 

Number of Obs. 1180 732 1180 1180 732 1180 

Adjusted cd 0.968 0.963 0.968 0.963 0.962 0.965 

*** p value < 1%, ** p value < 5%, * p value < 10% 
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Table 5 
Average growth rates for various subperiods for TFP (col. 1), TFP’  (col. 2), electricity per capita (col. 3), 
ICT capital stock ratio (col. 4) and TFP’’ (col. 5= col. 2 - col. 3 - col. 4). 

 (1) (2) (3) (4) (5) 
Subperiods ∆tfp ∆tfp’ η∆elec µ∆ICT ∆tfp’’ 

 The United States 

1913-1950 2.41% 1.96% 0.46% 0.00% 1.49% 

1950-1974 1.68% 1.32% 0.43% 0.27% 0.62% 

1974-1990 0.98% 0.60% 0.16% 0.35% 0.09% 

1990-2010 1.25% 1.11% 0.04% 0.18% 0.89% 

1913-2010 1.70% 1.34% 0.32% 0.14% 0.88% 
 Euro area 

1913-1950 1.10% 1.08% 0.42% 0.00% 0.67% 

1950-1974 3.62% 2.81% 0.56% 0.27% 1.97% 

1974-1990 1.74% 1.58% 0.21% 0.15% 1.22% 

1990-2010 0.69% 0.48% 0.08% 0.05% 0.35% 

1913-2010 1.72% 1.43% 0.36% 0.09% 0.98% 
 United Kingdom 

1913-1950 1.17% 0.98% 0.67% 0.00% 0.31% 

1950-1974 1.55% 0.82% 0.41% 0.13% 0.28% 

1974-1990 1.48% 1.05% 0.07% 0.34% 0.65% 

1990-2010 1.48% 1.47% 0.03% 0.19% 1.25% 

1913-2010 1.27% 0.94% 0.38% 0.11% 0.45% 
 Japan 

1913-1950 0.70% 0.42% 0.63% 0.00% -0.21% 

1950-1974 4.38% 3.44% 0.64% 0.24% 2.55% 

1974-1990 1.99% 1.88% 0.23% 0.21% 1.44% 

1990-2010 0.64% 0.56% 0.10% 0.30% 0.17% 

1913-2010 1.67% 1.25% 0.47% 0.13% 0.65% 
Source: See text. The euro area does not include Portugal. 


