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Energy historians have emphasized the multiple dramatic transformations in energy re-
source use that accompanied industrialization. According to Smil (2010, 2), the preindustrial
era saw “only very slow changes” in resource use, “but the last two centuries have seen a
series of remarkable energy transitions.” Rosenberg (1994, 169) notes that “the diversity
of energy inputs and the changing usage of those inputs over time is a central feature of
the historical record.” And in their seminal analysis, Marchetti and Nakicenovic (1979, 15)
observe that the transitions have been so regular that “it is as though the system had a
schedule, a will, and a clock.” It is important to understand the economic drivers of these
transitions. First, energy use is closely linked to the First Industrial Revolution (via coal), to
the Second Industrial Revolution (via electricity and oil), and to the distribution of output
across countries. Yet growth theory has largely abstracted from energy. Second, policy-
makers around the world are currently attempting to induce a new transition to low-carbon
resources in order to avoid dangerous climate change. Understanding the drivers of past
transitions should improve policies that aim to stimulate and sustain a new transition.

Resource economists have long focused on how depletion or exhaustion can induce tran-
sitions between resources (e.g., Nordhaus, 1973; Chakravorty and Krulce, 1994; Chakravorty
et al., 1997). For example, the Herfindahl (1967) rule holds that resources should be ex-
ploited in order of increasing cost. In contrast, energy and economic historians have argued
that technological change, not depletion, has been critical to past transitions (e.g., Marchetti,
1977; Marchetti and Nakicenovic, 1979; Rosenberg, 1983; Grübler, 2004; Fouquet, 2010; Wil-
son and Grubler, 2011).1 On this view, there has been a mismatch between economic theories
of resource use and the patterns of the past two centuries.2

I develop a model of directed technical change in which innovation-led transitions occur
endogenously. Here, a final good is produced from two types of energy services, which
are gross substitutes. Each type of energy service is produced by combining an energy
resource with specialized machines. For instance, coal is combined with steam engines to

1I give four examples. Marchetti and Nakicenovic (1979, 7–8) argue, “The causal importance of resource
availability is weakened by the fact that oil successfully penetrated the energy market when coal still had
an enormous potential, just as coal had previously penetrated the market when wood still had an enormous
potential.” Fouquet (2010, 6591) observes, “In all cases, cheaper or better services were the key to the
switch [between sources of energy]. In a majority of cases, the driver was better or different services.”
Rosenberg (1994, 169) observes that “technological innovations are often not neutral with respect to their
energy requirements.” Finally, Grübler (2004, 170) writes, “It is important to recognize that these two
major historical shifts [from biomass to coal, and then from coal to oil and natural gas] were not driven by
resource scarcity or by direct economic signals such as prices, even if these exerted an influence at various
times. Put simply, it was not the scarcity of coal that led to the introduction of more expensive oil. Instead,
these major historical shifts were, first of all, technology shifts, particularly at the level of energy end use.
Thus, the diffusion of steam engines, gasoline engines, and electric motors and appliances can be considered
the ultimate driver, triggering important innovation responses in the energy sector and leading to profound
structural change.”

2This mismatch dates back to Jevons (1865), who analyzed the implications of the advancing depletion
of British coal reserves. Madureira (2012) criticizes Jevons for underestimating the scope for innovation.
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produce mechanical motion or electricity. A fixed measure of scientists works to improve
these machines. Each scientist targets whichever type of machine provides a more valuable
patent.

I show that the elasticity of substitution between resources and machines determines
whether a transition in energy supply can occur in the absence of policy. Imagine that one
sector initially dominates research and resource extraction. The technology in the sector
that dominates research improves relative to the other sector’s technology. I show that
three forces determine how each sector’s share of research and extraction change in the
following period. First, as the dominant sector becomes more advanced, market size effects
increase that sector’s share of research and of extraction. The improvement in that sector’s
quality of machines expands the market for the energy resource, and the resulting increase
in resource extraction raises the value of a patent by expanding the market for machines.
This positive feedback between extraction and research works to lock in whichever sector
is already dominant.3 Second, a patent quality effect drives scientists to the sector where
their patent will cover a higher quality machine. This effect draws additional scientists to
the sector that dominated research in the previous period, which again works to lock in
whichever sector is already dominant. Third, a supply expansion effect reduces the value
of a patent as the average quality of a sector’s machines increases. An improvement in the
quality of a sector’s machines shifts out the supply of machine services, which reduces the
price of machine services and thus reduces the value of a patent. This force pushes scientists
away from the sector that dominated research effort in the previous period. It is the only
force that works against lock-in and in favor of a transition away from the dominant sector.

The elasticity of substitution between resources and machines determines the relative
strengths of the patent quality and supply expansion effects. When that elasticity is strictly
greater than 1 (machines are “energy-saving”), demand for machine services is elastic and
the price of machine services does not fall by much as technology improves. The patent
quality effect dominates the supply expansion effect. Whichever sector dominates research
and extraction in some period then does so to an increasing degree in all later periods.4

However, when that elasticity is strictly less than 1 (machines are “energy-using”), demand
for machine services is inelastic and the price of machine services falls by a lot as technology
improves. The supply expansion effect dominates the patent quality effect. In that case,
as the dominant sector becomes more advanced, scientists can begin switching to the other
sector. Eventually, their research output raises the quality of technology in the dominated
sector, which begins increasing that sector’s share of extraction via market size effects. The

3I actually show that a fourth force also matters. I label this a machine substitution effect. I abstract
from it in this discussion because it works in the same direction as the market size effect.

4The forces generating lock-in are similar to those explored in a related literature on path dependency in
technology adoption (e.g., David, 1985; Arthur, 1989; Cowan, 1990). That literature focuses on “dynamic
increasing returns” as the source of path dependency, where the likelihood of using a technology increases
in the number of times it was used in the past (perhaps through learning-by-doing or network effects). In
the present setting, market size and patent quality effects both act like dynamic increasing returns.
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shift in scientists away from the dominant sector can therefore generate a transition in energy
supply. An elasticity of substitution strictly less than 1 is consistent with much empirical
literature (e.g., Prywes, 1986; Manne and Richels, 1992; Chang, 1994; Koetse et al., 2008;
van der Werf, 2008; Hassler et al., 2012; Stern and Kander, 2012), and we see that it is also
consistent with historians’ observations of innovation-led transitions.

My setting generalizes Acemoglu et al. (2012).5 Their economy demonstrates a high
degree of lock-in or path dependency: whichever sector initially dominates extraction and
research effort will increase its dominance as time passes.6 This result is not consistent
with the history of energy transitions. I show that this result depends on their use of
a Cobb-Douglas aggregator to combine resources and machines, which fixes the elasticity
of substitution between resources and machines at unity. I show that a unit elasticity is
the knife-edge case in which the patent quality and supply expansion effects exactly offset
each other. The evolution of research and extraction in Acemoglu et al. (2012) is therefore
determined entirely by market size effects, which we have seen generate positive feedbacks
between research and extraction that lock in the dominant sector. I show that the assumption
of Cobb-Douglas production has qualitatively important implications for their economy’s
dynamics.7

Numerical results on the optimal emission tax are in progress.
The next section describes the theoretical setting. Section 2 analyzes the relative incen-

tive to research technologies in each sector. Section 3 describes the economy’s laissez-faire
dynamics. Section 4 argues that the case of energy-using machines best describes the world.
Section 5 numerically explores the implications for climate change policies that aim to induce

5Formally, I analyze directed technical change (Acemoglu, 2002) when final good production has a nested
constant elasticity of substitution structure that allows innovation and other inputs to be either substitutes
or complements. A prominent strand of literature argues that complementarities have been a critical—and
often overlooked—element of economic growth (Rosenberg, 1976; Matsuyama, 1995, 1999; Evans et al., 1998).
Milgrom et al. (1991) show how complementarities between techniques and inputs can generate persistent
patterns of technical change without needing to assume increasing returns. I similarly use complementarities
to explain changes in energy technologies and supply without needing to assume increasing returns to inno-
vation. We will see that increasing returns in fact here work to prevent transitions in research and resource
extraction.

6An exception is when they model resources as exhaustible or depletable. Thus, when transitions arise in
their setting, these transitions are driven by the same forces explored in the resource economics literature.

7Most analyses that combine directed technical change and energy have divided technologies between
those that augment resources and those that augment other factors such as labor (Smulders and de Nooij,
2003; Di Maria and Valente, 2008; Grimaud and Rouge, 2008; Pittel and Bretschger, 2010; André and
Smulders, 2012; Hassler et al., 2012). These studies have focused on the potential for technical change to
enable long-run growth even when an exhaustible resource is essential to production. In contrast, the present
paper and Acemoglu et al. (2012) both allow research effort to be directed between multiple types of resources
in order to study questions about energy transitions. Recently, Acemoglu et al. (2016) developed a related
setting in which two types of energy technologies compete in each of many product lines. Each product
line’s production function is Cobb-Douglas. As a result, this setting also generates strong path dependency
or lock-in.
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Figure 1: Overview of the theoretical setting.

a transition to clean energy. The final section concludes. The first appendix demonstrates
that the equilibrium is tâtonnement-stable. The second appendix contains proofs and addi-
tional formal analysis.

1 Setting

Consider a discrete-time economy in which final-good production uses two types of energy
intermediates. These energy intermediates are generated by combining energy resources
with machines. Resources are supplied isoelastically. A fixed measure of households works
as scientists, trying to improve the quality of machines used in producing the energy inter-
mediates. Scientists decide which type of machine to work on. The equilibrium allocation of
resources and scientists changes over time as technologies improve. Figure 1 illustrates the
model setup, which we now formalize.

Begin with final good production. The time t final good Yt is produced competitively
from two energy intermediates Yjt and Ykt. The representative firm’s production function
takes the familiar constant elasticity of substitution (CES) form:

Yt = AY

(
ν Y

ε−1
ε

jt + (1− ν)Y
ε−1
ε

kt

) ε
ε−1

.

The parameter ν ∈ (0, 1) is the distribution (or share) parameter, and AY > 0 is a pro-
ductivity parameter. We say that resource j is higher quality than resource k if and only if
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ν > 0.5. The parameter ε is the elasticity of substitution. The two energy intermediates are
gross substitutes (ε > 1).8

The energy intermediates Yjt and Ykt are the energy services produced by combining
resource inputs with machines. Production of energy intermediates has the following CES
forms:

Yjt =

(
κR

σ−1
σ

jt + (1− κ)X
σ−1
σ

jt

) σ
σ−1

, Ykt =

(
κR

σ−1
σ

kt + (1− κ)X
σ−1
σ

kt

) σ
σ−1

.

The parameter κ ∈ (0, 1) is the distribution (or share) parameter. I describe the resource
inputs R and machine service inputs X below. The elasticity of substitution between these
resource and machine inputs is σ. We call machines energy-using when resources and ma-
chines are gross complements (σ < 1), and we call machines energy-saving when resources
and machines are gross substitutes (σ > 1). Resources and machines are less substitutable
than are different types of energy intermediates (σ < ε).

Machine servicesXjt andXkt are produced in a Dixit-Stiglitz environment of monopolistic
competition from machines of varying qualities:

Xjt =

∫ 1

0

A1−α
jit x

α
jit di and Xkt =

∫ 1

0

A1−α
kit x

α
kit di,

where α ∈ (0, 1). The machines xjit and xkit that work with a given resource at time t are
divided into a continuum of types, indexed by i. The quality (or efficiency) of machine xjit
(or xkit) is then given by Ajit (or Akit). Machines of type i are produced by monopolists who
each take the price of machine services (pjXt, pkXt) as given (each is small) but recognize
their ability to influence the price (pjxit, pkxit) of machines of type i. The cost of producing
a machine is a > 0 units of the final good, which we normalize to a = α2. The first-order
condition for a producer of machine services yields the following demand curve for machines
of type i in sector j (with analogous results for sector k):

xjit =

(
pjXt
pjxit

α

) 1
1−α

Ajit. (1)

The monopolist producer of xjit therefore faces an isoelastic demand curve and accordingly
marks up its price by a constant fraction over marginal cost: pjxit = a/α = α. In equilibrium,
the producer of machine type i for use with resource j earns profits of:

πjxit = (pjxit − a)xjit = α(1− α)p
1

1−α
jXtAjit,

with analogous results for πkxit.

8The restriction that ε > 1 is consistent with recent evidence in Papageorgiou et al. (2016).

5 of 29



Lemoine Energy Transitions (Preliminary) December 29, 2016

Scientists choose which resource they want to study (j or k) and are then randomly allo-
cated to a machine type i. Each scientist succeeds in innovating with probability η ∈ (0, 1].
If they fail, scientists earn nothing and the quality of that type of machine is unchanged.
Following Acemoglu et al. (2012), successful scientists receive a one-period patent to pro-
duce their type of machine, and they improve the quality of their machine type to Ajit =
Aji(t−1) + γAji(t−1) (using resource j as an example), where γ > 0. If a scientist succeeds
in innovating at time t, she exercises her patent to obtain the monopoly profit πjxit. Her
expected reward to choosing to research machines that work with resource type j is therefore

Πjt = η α (1− α)p
1

1−α
jXt (1 + γ)Aj(t−1), (2)

where Aj(t−1) is the average quality of machines in sector j. This average quality evolves as

Ajt =

∫ 1

0

[
ηsjt(1 + γ)Aji(t−1) + (1− ηsjt)Aji(t−1)

]
di = (1 + ηγsjt)Aj(t−1), (3)

where sjt is the measure of scientists working on resource j. All relationships for resource k
are analogous. Scientists are of fixed measure, normalized to 1:

1 = sjt + skt.

The resources Rjt and Rkt are supplied to each sector isoelastically:

Rjt = Ψjp
ψ
jRt and Rkt = Ψkp

ψ
kRt, (4)

where pjRt, pkRt are the prices received for each type of resource, ψ > α/(1− α) is the price
elasticity of resource supply, and Ψj,Ψk > 0 are supply shifters. We say that resource j is
more abundant than resource k if and only if Ψj > Ψk. Requiring ψ > α/(1−α) ensures that
the own-price elasticity of resource supply is greater than the elasticity of machine services
with respect to the resource price.

The economy’s time t resource constraint is

Yt ≥ ct + a

[∫ 1

0

xjit di+

∫ 1

0

xkit di

]
,

where ct ≥ 0 is the composite consumption good. Households have strictly increasing utility
for that consumption good. Scientists therefore each choose their resource type so as to
maximize expected earnings.

We study equilibrium outcomes.

Definition 1. An equilibrium is given by sequences of prices for energy intermediates
(p∗jt, p

∗
kt), prices for machine services (p∗jXt, p

∗
kXt), prices for machines (p∗jxit, p

∗
kxit), prices
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for resources (p∗jRt, p
∗
kRt), demands for inputs (Y ∗jt, Y

∗
kt, R

∗
jt, R

∗
kt, X

∗
jt, X

∗
kt, x

∗
jit, x

∗
kit), and fac-

tor allocations (s∗jt, s
∗
kt) such that, in each period t: (i) (Y ∗jt, Y

∗
kt) maximizes profits of final

good producers, (ii) (R∗jt, R
∗
kt, X

∗
jt, X

∗
kt) maximizes profits of energy intermediate producers,

(iii) (p∗jxit, x
∗
jit) and (p∗kxit, x

∗
kit) maximize profits of the producers of machine i in sectors j

and k, respectively, (iv) (s∗jt, s
∗
kt) maximizes expected earnings of scientists, (v) prices clear

the factor and input markets, and (vi) average technologies evolve as in equation (3).

The equilibrium prices clear all factor markets and all firms maximize profits. If scientists
are employed in both sectors, they receive the same expected reward from both, and if they
are employed in only one, they receive a greater expected reward in the sector with nonzero
scientists. The first appendix establishes that the equilibrium is stable in a tâtonnement
sense. Throughout, I use the price of the final good as the numeraire and drop the asterisks
when clear.

2 The Direction of Research

We now consider the relative incentive to research technologies that work with resource j
rather than technologies that work with resource k. From equation (2), we have

Πjt

Πkt

=
Aj(t−1) + γAj(t−1)

Ak(t−1) + γAk(t−1)

[
pjXt
pkXt

] 1
1−α

. (5)

The intermediate-good producer’s first-order conditions for profit-maximization yield

pjXt = (1− κ)pjt

[
Xjt

Yjt

]−1/σ

and pjRt =κ pjt

[
Rjt

Yjt

]−1/σ

.

We see that the relative incentive to research technologies for use in sector j increases in
the relative price of the intermediates and decreases in the machine-intensity of sector j’s
output. Combining the first-order conditions, we have

pjXt =
1− κ
κ

[
Rjt

Xjt

]1/σ

pjRt. (6)

From equation (1) and the monopolist’s markup, we have

xjit = p
1

1−α
jXtAjit.

Substituting into the definition of Xjt and using the definition of Ajt, we have

Xjt = p
α

1−α
jXt Ajt. (7)
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Substitute into equation (6) and solve for equilibrium machine prices:

pjXt =

[
pjRt

1− κ
κ

] σ(1−α)
σ(1−α)+α

[
Rjt

Ajt

] 1−α
σ(1−α)+α

. (8)

This yields

Πjt

Πkt

=
Aj(t−1) + γAj(t−1)

Ak(t−1) + γAk(t−1)︸ ︷︷ ︸
patent quality effect

(
Ajt
Akt

) −1
σ+α(1−σ)

︸ ︷︷ ︸
supply expansion effect

(
Rjt

Rkt

) 1
σ+α(1−σ)

︸ ︷︷ ︸
market size effect

(
pjRt
pkRt

) σ
σ+α(1−σ)

︸ ︷︷ ︸
machine substitution effect

. (9)

We see four channels determining scientists’ relative incentive to research machines. The
first term directs research effort to the sector in which scientists will end up with the patent to
better technology. This patent quality effect depends on the realized technology, not solely
on the increment to technology produced by a scientist’s efforts, which introduces a type
of business-stealing distortion. Obtaining a patent to a sufficiently advanced technology is
valuable even if the scientist does not improve the technology. If γ differed by sector and
were very small in the more advanced sector, scientists could have a stronger incentive to
research machines in the more advanced sector even though their efforts would not improve
these machines. However, this business-stealing distortion vanishes under our assumption of
identical γ because the ratio of the increments to technology (γAji(t−1)/γAki(t−1)) is identical
to the ratio of the realized technologies (Ajit/Akit). By attracting scientists to the more
advanced sector, the patent quality effect here also attracts them to the sector where they
make the greatest advance.

The other channels derive from the relative price of machine services: (pjXt/pkXt)
1/(1−α)

in equation (5). Figure 2 plots supply and demand for machine services Xjt, conditional
on Rjt. The intersection of these supply and demand curves determines the equilibrium
machine price pjXt. The supply of Xjt follows from equation (7). It is steeper for smaller α.
Demand for Xjt (conditional on Rjt) is given by equation (6), from the first-order conditions
for the intermediate-good producers. The left panel of Figure 2 plots a case with less elastic
demand (σ small), and the right panel of Figure 2 plots a case with more elastic demand (σ
large).

Now consider the three machine price channels. We begin with the supply expansion
effect, which pushes scientists away from the more advanced sector. From equation (7), the
supply of Xjt shifts out when its machines’ average quality Ajt increases, and it shifts out to
an especially large degree when α is small. The dashed lines in Figure 2 plot the consequence
of an increase in Ajt. When σ is small (machines are energy-using), the demand curve is steep
because the marginal product of additional machines is constrained by the supply of Rjt. By
shifting out supply, the increase in Ajt induces a relatively large decline in the equilibrium
price pjXt, from point 1 to point 2 in the left panel. However, when σ is large, machine are
energy-saving and the demand curve is relatively flat. The increase in Ajt then induces a
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(a) Strong supply expansion effect (b) Weak supply expansion effect

Figure 2: Improving the average quality of the machines in sector j shifts the supply of
machine services outward and changes the equilibrium from point 1 to point 2.

relatively small decline in the equilibrium price pjXt. Improving technology therefore pushes
scientists away to a greater degree when the demand curve is steep (σ is small) or the shift
in supply is large (α is small) because it then reduces pjXt more strongly.

Now consider the net effect of a relative improvement in sector j’s average technology. We
have seen that this relative improvement attracts scientists through the patent quality effect
and repels scientists through the supply expansion effect. From equation (9), the supply
expansion effect dominates the patent quality effect if and only if σ < 1. As σ → 0, demand
for machines becomes perfectly inelastic and the supply expansion effect becomes large.
As σ →∞, demand for machines becomes perfectly elastic and the supply expansion effect
vanishes. As σ → 1, the two effects exactly cancel, so that the incentives to research machines
in one sector or the other do not directly depend on the relative quality of technology in each
sector. This result explains the absence of relative technology from the research incentives
in Acemoglu et al. (2012): technology matters in their equation (17) via the same patent
quality effect seen here (which they call a “direct productivity effect”) and also through their
“price effect”, but substituting in for relative output prices from their equation (A.3) shows
that these two effects exactly cancel. Conditional on market size, relative technology plays
no role in steering research activity in their setting.9 We will see that whether improving

9Relative technology ends up playing a role in their setting’s equilibrium (see their equation (18)) because
relative market size is proportional to the relative quality of technology (see their equation (A.5)). As we
will discuss, this channel for relative technologies appears in our setting as well: our equation (14) will show
that relative market size increases in the relative quality of technology. However, our use of a general CES
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technology attracts or repels scientists determines whether a transition in energy supply is
possible.

The final two machine price channels in equation (9) both make the relative incentive to
research machines in sector j increase in sector j’s share of resource production. The first of
these two channels is a market size effect. From equation (6), an increase in Rjt shifts out
demand for Xjt, and does so to an especially large degree as σ becomes small. Increasing
the supply of one factor makes the other factor relatively scarce and thus increases demand
for that other factor, and does so to an especially strong degree when the two factors are
complements (σ < 1). The second of these channels is a machine substitution effect. It
increases demand for Xjt when the price of resources increases. This channel is especially
strong when the elasticity of substitution between resources and machines is large, and it
vanishes as the elasticity goes to zero. Substituting for resource prices from (4), we see that
the machine substitution effect amplifies the market size effect, and that it vanishes as the
supply of resources becomes perfectly elastic.

3 Laissez Faire Dynamics

We now consider how each sector’s share of research activity and resource extraction evolves
over time. We then analyze transitions, lock-in, and balanced growth outcomes before pro-
viding a numerical example.

3.1 Evolution of Research and Extraction

Begin by considering how the equilibrium allocation of scientists changes over time. The
appendix shows that, at an interior allocation of scientists,

sj(t+1) − sjt ∝
ψ + σ

ψ

Rkt

Rjt

(
Rj(t+1)

Rk(t+1)

− Rjt

Rkt

)
︸ ︷︷ ︸

resource channel

+2(σ − 1)(1− α)
ηγ

1 + ηγskt

(
sjt −

1

2

)
︸ ︷︷ ︸

innovation channel

. (10)

We see that the evolution of research effort depends on the evolution of extraction and of
technology. The first term is a resource channel : scientists tend to move towards whichever
sector sees its share of total resource extraction increase. This channel operates through the
market size and machine substitution effects in equation (9). The second term is an innova-
tion channel. If sjt > 0.5, then sector j is becoming relatively more advanced as a result of
time t research activity, and if sjt < 0.5, then sector k is becoming relatively more advanced
as a result of time t research activity. This channel pushes scientists towards whichever
sector is becoming relatively more advanced if and only if σ > 1. Advancing technology af-
fects relative research incentives through the patent quality and supply expansion effects in

aggregator means that the relationship between market size and relative technology is no longer linear.
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equation (9), where the patent quality effect attracts scientists to the more advanced sector
and the supply expansion effect repels scientists from the more advanced sector. We saw
that the patent quality effect dominates the supply expansion effect if and only if σ > 1.

Now consider how sector j’s share of extraction changes from time t to t + 1. Combin-
ing the intermediate good producers’ first-order condition for resources with the final good
producers’ first-order conditions, we find demand for each resource:

pjRt =κ ν

[
Yjt
Yt

]−1/ε [
Rjt

Yjt

]−1/σ

and pkRt = κ (1− ν)

[
Ykt
Yt

]−1/ε [
Rkt

Ykt

]−1/σ

. (11)

Market-clearing for each resource then implies[
Rjt

Ψj

]1/ψ

=κ ν

[
Yjt
Yt

]−1/ε [
Rjt

Yjt

]−1/σ

, (12)[
Rkt

Ψk

]1/ψ

=κ (1− ν)

[
Ykt
Yt

]−1/ε [
Rkt

Ykt

]−1/σ

. (13)

Demand for sector j’s resources (for example) shifts inward as the share of those resources in
the production of intermediate good j increases and shifts inward as the share of intermediate
good j in production of the final good increases.

Rearranging equations (12) and (13) and then dividing, we have:[
Rjt

Rkt

] 1
σ

+ 1
ψ

=
ν

1− ν

[
Ψj

Ψk

]1/ψ [
Yjt
Ykt

] 1
σ
− 1
ε

. (14)

The change in sector j’s share of resource extraction from time t to time t+1 therefore has the
same sign as the change in sector j’s share of intermediate good production. For any given
quantity of resource extraction Rjt, increasing the average quality of technology Ajt increases
production of the intermediate good Yjt. The share of resources in production of intermediate
good j falls as machine quality improves, which shifts demand for the resource Rjt outward in
proportion to 1/σ. However, intermediate good j’s share of final good production increases,
which shifts demand for Rjt inward in proportion to 1/ε. Because σ < ε, the first effect
dominates, so that increasing Ajt increases demand for Rjt (and does so more strongly
when resources and machines are stronger complements). Thus, sector j’s share of resource
extraction increases from time t to t + 1 when sj(t+1) = 1, and it decreases from time t to
t+ 1 when sj(t+1) = 0.

When sj(t+1) ∈ (0, 1), the average quality of technology improves in both sectors. The
following proposition describes what happens in these intermediate cases, where we call a
sector intensive in factor z if that factor’s share of production in greater than half.

Proposition 1. There exists a unique ŝt+1 such that sector j’s share of resource extraction
increases from time t to t+ 1 if and only if sj(t+1) ≥ ŝt+1. Let sector j be machine-intensive
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and sector k be resource-intensive. Then: ŝt+1 decreases in σ; as σ → 0, ŝt+1 → 1; as σ → 1,
ŝt+1 → 0.5; and as σ →∞, ŝt+1 → 0.

Proof. See appendix.

There exists an intermediate value of sj(t+1), labeled ŝt+1, such that each resource’s share of
extraction is constant over time if and only if sj(t+1) = ŝt+1. We will use this proposition to
develop a graphical analysis in the next subsection.

The proof of Proposition 1 shows that ŝt+1 is

ŝt+1 =
ΣYkt,XktCjt

ΣYjt,XjtCkt + ΣYkt,XktCjt
, (15)

where Σw,z is the elasticity of w with respect to z and where Cjt, Ckt > 0. ΣYjt,Xjt large
relative to ΣYkt,Xkt means that increasing machine services in each sector has an especially
strong effect on production of intermediate j. In this case, if scientists are divided equally
between the two sectors at time t+ 1, then Yj/Yk increases from time t to t+ 1 and Rj/Rk

therefore also increases from time t to t+ 1. Therefore, when ΣYjt,Xjt is relatively large, the
research allocation that holds Rj/Rk constant from time t to t+ 1 must have sj(t+1) < 0.5.

Now consider what makes ΣYjt,Xjt large or small relative to ΣYkt,Xkt . Note that ΣYjt,Xjt =

(1−κ)(Xjt/Yjt)
σ−1
σ . Increasing machine services in each sector by the same percentage has an

especially strong effect on intermediate good production in the relatively advanced, machine-
intensive sector if and only if σ > 1. Intuitively, if machines substitute for resources (σ > 1),
intermediate good producers respond more strongly to improving machines when machines
are relatively abundant, but if machines complement resources (σ < 1), intermediate good
producers respond more strongly to improving machines when machines are relatively scarce.
Thus, if sector j is relatively machine-intensive, then the allocation of scientists that holds
extraction constant must have sj(t+1) < 0.5 if and only if σ > 1. Proposition 1 establishes
this result formally.

Finally, note that as σ → 1, the elasticity of intermediate good production with respect
to machines is constant. Each sector responds to improved technology in the same way,
regardless of how advanced they are. In this special case, ŝt+1 = 0.5. Extraction then shifts
towards whichever sector is advancing more rapidly.

3.2 Transitions and Lock-in

We are now ready to describe when a transition is possible. We define a transition as having
occurred when one sector’s share of research and extraction is at first increasing and later
decreasing.

Definition 2. A transition from sector j to sector k occurs between times t and w > t
when Rjt/Rkt < Rj(t+1)/Rk(t+1), sjt/skt < sj(t+1)/sk(t+1), Rjw/Rkw > Rj(w+1)/Rk(w+1), and
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sjw/skw > sj(w+1)/sk(w+1). The economy is locked-in to sector j from time t onward if a
transition does not occur between t and any time w > t.

We now will see that whether a transition is possible depends on the elasticity of substitution
σ and on the relative quality of technology in the two sectors.

Assumption 1.
Aj(t−1)

Ak(t−1)
≥
[

Ψj
Ψk

] 1
(1−α)(1+ψ)

.

Proposition 2. Let sjt ≥ 0.5. If σ < 1 and (1 − σ)(1 − α) ≤ 1/2, then a transition from
sector j to sector k can occur after time t only if Assumption 1 holds, in which case sector
j’s share of scientists begins decreasing before its share of extraction begins decreasing and
sjz > 0.5 at the last time z before sector j’s share of extraction begins decreasing. If σ ∈ (1, ε)
and Assumption 1 holds, then the economy is locked-in to sector j from time t onward.

Proof. See appendix.

Corollary 3. Fix Ψj = Ψk. If σ < 1, sjt ≥ 0.5, and (1− σ)(1−α) ≤ 1/2, then a transition
from sector j to sector k can occur only if Aj(t−1)/Ak(t−1) > 1. If σ ∈ (1, ε) and ν ≥ 0.5,
then the economy is locked-in to sector j when Aj(t−1) > Ak(t−1).

Proof. See appendix.

We see two cases.10 First, if machines are energy-using (σ < 1), then a transition can occur
from the relatively advanced sector to the relatively backwards sector. This transition is
innovation-led : research activity begins switching to the relatively backwards sector even as
the relatively advanced sector’s share of extraction continues increasing. Second, if machines
are energy-using (σ ∈ (1, ε)), then a transition cannot happen. The economy is locked-in to
the sector that is growing faster.

We now consider these cases in more detail. Figure 3 uses the results in Section 3.1 to
represent the economy’s dynamics. The horizontal axis plots the elasticity of substitution σ
between resources and machines, and the vertical axis plots sj(t+1). In each region, the arrows
describe whether sj(t+1) and Rjt/Rkt are increasing over the next period. The changes in
Rjt/Rkt come from Proposition 1. The changes in sj(t+1) come from equation (10), assuming
for the purpose of exposition that the change in relative resource extraction from period t+1
to t+ 2 has the same sign as the indicated change from period t to period t+ 1.

We first explore the dynamics of an innovation-led transition, which requires σ < 1. If
sector j is increasing its share of scientists and extraction over time, then we must be moving
up in the top left region in Figure 3, labeled region 1. As technology in sector j advances
relative to that in sector k, the supply expansion effect pushes scientists towards sector k,
but sector j’s increasing share of resource extraction works to keep scientists in sector j.

10Note that (1− σ)(1− α) ≤ 1/2 holds for all σ < 1 if α ≥ 1/2 and holds for all α if σ ≥ 1/2.
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Figure 3: The evolution of research effort and extraction from times t to t + 1 under the
conditions of Proposition 1. The changes use the elasticity of substitution σ along the
horizontal axis and the time t+ 1 research allocation along the vertical axis in Proposition 1
and equation (10). The dashed line plots ŝt+1, and the arrows indicate whether variables are
increasing (↑) or decreasing (↓) in each region.

Small σ strengthens the supply expansion effect, but small σ also makes resources respond
more strongly to advancing technology, which works against the supply expansion effect to
keep scientists in sector j. As sector j’s share of resource extraction increases, the supply
expansion effect can eventually dominate, at which point research effort begins switching to
sector k. In Figure 3, the arrow on sjt switches from pointing up to pointing down and we
begin moving down in region 1.

At this point, sector j is still advancing relative to sector k (sj(t+1) > ŝt+1 > 0.5), and
sector j is still increasing its share of extraction as time passes. As we move down in region 1,
we eventually reach ŝt+1 and enter region 2. This is the moment at which extraction begins
shifting to sector k, and this is the moment when we say that the transition has occurred.
The quality of technology in sector j is still advancing relative to that in sector k, but the
improvements in the machine-scarce sector k are now increasing resource use at a faster rate
than are the improvements in the machine-rich sector j.

As we keep moving down in Figure 3, we reach a point at which sector k begins attracting
the majority of research effort and begins advancing faster than does sector j. Here, in region
3, the supply expansion effect begins pushing researchers towards sector j. Nonetheless,
sector k’s increasing share of extraction suffices to draw additional scientists to sector k for
some further length of time.

The next proposition describes the moment at which resource extraction shifts from being
dominated by one sector to being dominated by the other.

Proposition 4. Assume that σ < 1 and Rjt = Rkt.
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1. If Ψj = Ψk, then ν > 0.5 if and only if Ajt < Akt, in which case sjt > 0.5.

2. If ν = 0.5, then Ψj > Ψk if and only if Ajt < Akt, in which case sjt > 0.5.

Proof. See appendix.

The relative quality of technology at the time of dominance-switching depends on the relative
quality of each type of energy (determined by ν) and on the relative abundance of each type
of resource (determined by Ψj and Ψk). If the two resources are equally abundant (Ψj = Ψk),
then we can observe dominance switching away from the higher quality type of energy only
if the lower quality type of energy has better technology (result 1). Something must be
pulling extraction away from the higher-quality sector, and that something must be better
technology in the less useful sector. Similarly, if the two intermediates are of equal quality
(ν = 0.5), then we can observe dominance switching away from the sector with the more
abundant resource only if the other sector is relatively advanced (result 2). As before,
something must be pulling extraction away from the sector favored by primitives, and that
something must be better technology.

Putting these pieces together, we have seen from Corollary 3 that, when each resource is
equally abundant, a transition from sector j to sector k is possible only if sector j is more
advanced than sector k. For this transition to progress to the point where the formerly
backward sector k becomes dominant, some primitives must be pulling activity towards
sector k. In particular, the energy produced in sector k must be of higher quality. If sector
k is relatively backward, produces lower quality energy, and has a less abundant resource,
then it will never begin dominating resource extraction.11 This conclusion might make us
pessimistic about the likelihood of a laissez-faire transition to clean energy happening in the
next decades.

Finally, consider the case of energy-saving machines. Here, σ > 1 and ŝt+1 < 0.5, from
Proposition 1. If sector j is relatively advanced, dominating research activity, and attracting
a greater share of extraction over time, then we know from equation (10) that it must also be
attracting more scientists over time. This case corresponds to the top right region (labeled
4) in Figure 3. Here sector j is becoming more advanced relative to sector k. Its increasingly
improved relative technology attracts ever more scientists because the patent quality effect
dominates the supply expansion effect in equation (9). Further, the continuing increase in
sector j’s share of resource extraction also works to attract more scientists to sector j. We
therefore move up in Figure 3, towards a case in which all scientists work in sector j and
sector j continues increasing its dominance of resource extraction. Once some sector begins
dominating research effort and extraction, it continues increasing its share at all later times.
In contrast to the case with σ < 1, the dominant energy resource is locked-in.

11Historically, transitions have indeed tended to occur in the direction of higher-quality forms of energy
(Schurr, 1984; Grübler, 2004).
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3.3 Long-Run Outcomes

Now consider long-run outcomes. We focus on a path with balanced growth in technology,
along which Ajt/Akt is constant. Begin by studying energy-using machines (σ < 1):

Proposition 5. Assume σ < 1. The following are true along a path with balanced growth
in technology:

1. sjt = 0.5.

2. Rjt/Rkt is constant.

3. Ψj > Ψk if and only if Ajt > Akt.

4. Ajt > Akt if and only if Rjt > Rkt.

5. The following are equivalent: Ψj = Ψk, Ajt = Akt, Rjt = Rkt, and ν = 0.5.

6. Rj(t+1)/Rjt and Rk(t+1)/Rkt each equal
(
1 + 1

2
ηγ
) ψ
ψ−α/(1−α) , which increases in α and

decreases in ψ.

Proof. See appendix.

Ajt/Akt is constant over time if and only if sjt = 0.5 (result 1), and via equation (A-1), any
equilibrium that keeps sjt = 0.5 for multiple periods must have Rjt/Rkt constant over those
periods (result 2). Thus, balanced growth in technology implies balanced growth in resource
extraction.

The levels of relative technology and extraction are determined by the condition for
relative extraction to be constant over time. Relative extraction is constant over time when
sj(t+1) = ŝt+1, as defined in Proposition 1. Balanced growth therefore requires ŝt+1 =
0.5, which requires, from equation (15), that ΣYjt,Xjt = ΣYkt,Xkt at sjt = 0.5. For σ < 1,
each elasticity becomes larger as that sector’s resource becomes more abundant (i.e., as Ψ
increases) and becomes smaller as that sector’s average technology improves. Thus, we can
have a balanced growth path in which Ψj > Ψk if and only if Ajt > Akt (result 3). And recall
that the relative innovation incentive in equation (9) is increasing in Rjt/Rkt and, for σ < 1,
decreasing in Ajt/Akt. A balanced growth path can therefore have Ajt > Akt if and only if
Rjt > Rkt (result 4). In sum, we have just seen that the sector with the more abundant
resource has more advanced technology and a greater share of extraction along a balanced
growth path.

Each type of extraction is increasing along a balanced growth path (result 6, using ψ >
α/(1−α)). Resource use must increase at a rate that keeps the growth rate of intermediate
good production constant. This in turn requires that resources and machine services grow
at the same rate. Each technology is improving at rate 1 + 0.5ηγ, which works to increase
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the supply of machine services over time. From equation (7), the price of machine services is
not sensitive to the supply of machine services when α is large. Therefore, when α is large,
equilibrium production of machine services increases strongly as technology improves, which
means that equilibrium resource use must also increase strongly as technology improves.

When ψ is small, resource supply is not sensitive to its price. It therefore takes a large
increase in the resource price to make extraction grow as fast as machine services, but from
equation (8), this increase in the resource price makes machine service production grow even
faster. Small ψ therefore requires faster growth in resource extraction along a balanced
growth path.

Finally, consider long-run outcomes when machines are energy-saving (σ > 1). There is
a knife-edge case in which research is divided equally between the two sectors so that the
relative quality of technology remains constant. However, in general, this economy will not
approach a path with balanced growth in technology. Instead, it tends to be locked-in to the
more advanced sector, in which case the quality of technology and the quantity of resource
extraction always grow faster in the locked-in sector.

3.4 Numerical Example

In order to make these ideas more concrete, Figure 4 plots the evolution of sector j’s share of
extraction and of research activity, starting from a point at which sector j is more advanced.12

Sector j begins with the majority of extraction and research activity, and its share of each
is initially increasing. In the case of energy-saving technologies (left panel, σ = 2), research
activity and extraction are locked-in to sector j, which attracts all research effort in all
periods and increases its share of resource extraction over time. In the case of energy-using
technologies (right panel, σ = 0.5), we see the type of innovation-led transition described
above. Research activity begins shifting to sector k after 10 periods, and after an additional
3 periods, extraction also begins shifting to sector k. Sector k begins dominating research
activity in period 18 and begins dominating extraction activity in period 36. Eventually, the
supply expansion effect begins pushing scientists back towards sector j and we approach a
balanced growth path with research activity and extraction divided equally between the two
sectors (because Ψj = Ψk).

4 Are Machines Energy-Using or Energy-Saving?

We have seen that qualitatively different dynamics emerge when machines are energy-using
rather than energy-saving. Three lines of evidence support the idea that, historically, innova-
tion in energy-using machines was more important. First, as mentioned in the introduction,

12The example’s parameters are ε = 3, ν = 0.45, α = 0.5, κ = 0.5, ψ = 3, Ψj = Ψk = 1, η = 1, γ = 0.5,
Aj0 = 0.5, and Ak0 = 0.005. The qualitative results are not sensitive to the choice of parameters.
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(a) σ = 2 (b) σ = 0.5

Figure 4: An example of lock-in (left, with σ = 2), and an example of an innovation-led
transition (right, with σ = 0.5)).

several energy and economic historians have observed that innovation, not depletion, appears
to have been responsible for past transitions in energy supply. We have seen that innovation
can indeed drive transitions when machines are energy-using. In contrast, when machines
are energy-saving, then we see a counterfactually high degree of lock-in unless there are
additional restrictions on resource supply.

Second, the endogenous dynamics of our setting with energy-using machines are qualita-
tively similar to historical patterns. Figure 5 plots resource shares since 1800. The patterns
in these shares are similar to the patterns that emerge from our numerical simulations with
energy-using machines (right panel of Figure 4) and nothing like the patterns that emerge
from our simulations with energy-saving machines (left panel of Figure 4).

Third, Hassler et al. (2012) recently estimated the elasticity of substitution between
energy and a capital-labor composite. They concluded that this elasticity is clearly less
than unity and not statistically distinguishable from zero.13 A Leontief production function
for the intermediates Yjt and Ykt may describe the world better than does a Cobb-Douglas
production function. This evidence again suggests that the case of energy-using machines is
the more empirically relevant one.

13Much other empirical work has also suggested that the elasticity of substitution between energy and
non-energy inputs is less than unity (Prywes, 1986; Manne and Richels, 1992; Chang, 1994; Koetse et al.,
2008; van der Werf, 2008; Stern and Kander, 2012).
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Figure 5: Shares of global energy supply, from Smil (2010). This plot excludes hydroelec-
tricity and nuclear, whose shares never exceed 7%.

5 In Progress: Optimal Carbon Taxation

I now consider the implications of the present model for optimal policies to address climate
change. Let resource j be carbon-intensive and resource k be carbon-free, so that consuming
resource j generates emissions that drive climate change. The evolution of environmental
quality, preferences over consumption and environmental quality, and intertemporal welfare
follow Acemoglu et al. (2012): emissions contribute to a stock of carbon dioxide that decays
over time, utility goes to negative infinity (with infinite marginal utility from a reduction in
the stock) as that stock reaches a level consistent with a global temperature T̄ that implies
disaster, and the annual utility discount rate is 1.5%.14 I here use T̄ = 2◦C. I use a five-year
timestep and a horizon of 300 years. I now describe the new aspects of my calibration before
presenting the results.

First, consider the supply of the fossil resource. McCollum et al. (2014) developed supply
curves for coal, oil, and gas for the MESSAGE energy model.15 By measuring each resource
in terms of energy and combining them into a single supply curve, I estimate ψj and Ψj as in
equation (4). Doing this, we obtain ψj = 1.58 and Ψj = 8981.28, with the resource price in
billion year 2014 dollars per EJ and resource quantity in EJ. The left panel of Figure 6 plots

14In ongoing work, I will instead use more realistic climate dynamics from Lemoine and Rudik (2014).
15I thank David McCollum for providing the data underlying the MESSAGE supply curve.
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(a) Supply of the Fossil Resource (b) Supply of the Renewable Resource

Figure 6: The constructed supply curves (solid points) for the fossil resource (left) and the
renewable resource (right), as well as the fitted curves (dashed lines) used in the simulations.
Note that the scale of the horizontal axis differs between the panels.

the constructed supply curve as well as the fitted curve used in the present simulations.
Next consider the supply of the clean resource. Drawing in part on the work of others,

Johnson et al. (2016) describe the supply of power from solar photovoltaics, concentrating
solar power, onshore wind, and offshore wind available in each region of the world, and they
do so separately for different qualities of resource. Costs are reported in dollars per unit
power and resource potential is reported in units of energy. I convert costs to dollars per
unit electrical energy by using the capacity factor reported for each resource quality bin
in each region. This capacity factor adjusts for the fact that the power producible from
renewable resources is not available throughout the day or throughout the year. And I
convert dollars per unit of electrical energy to dollars per units of energy in the resource
by using the efficiency of each type of generator.16 Aggregating across resource types and
regions, I estimate ψk and Ψk from equation (4), yielding ψk = 3.00 and Ψk = 143.01,
with the resource price again in billion year 2014 dollars per EJ and resource quantity in
EJ/year.17 The fact that Ψk is so much smaller than Ψj reflects the relative abundance of
fossil resources. The right panel of Figure 6 plots the constructed and fitted supply curves
for the renewable resource.

The parameters of the innovation process are the same as in Acemoglu et al. (2012), and
I also follow them in exploring cases with ε = 3 and ε = 10. I calibrate 1− κ to match the
share of machines in intermediate-good production in Acemoglu et al. (2012), which yields

16From the Energy Information Administration’s Annual Energy Review 2011, the efficiencies are 12% for
solar photovoltaic, 21% for solar thermal, and 26% for wind.

17The cost calculations assume that generators last for 20 years. All simulations assume that generators
last for only a single timestep (i.e., five years).
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κ = 2/3. I fix α = 0.5, which has no analogue in Acemoglu et al. (2012). I explore values
for σ of 0.5 and 2.

There are three differences with respect to Acemoglu et al. (2012) on the environmental
side of the model. First, Acemoglu et al. (2012) have emissions arising from use of the dirty
intermediate Yjt, which implies that advancing technology Ajt in the fossil sector increases
emissions. However, emissions should depend directly on dirty resource use, not on the
quality of technology for using dirty resources. Second, and relatedly, Acemoglu et al.
(2012) model their emission tax τt as being placed on the dirty intermediate and multiplying
its price (so that the price becomes (1 + τt) pjt). I instead follow the more conventional
approach of taxing emissions through an additive tax on resource use. The supply of the
dirty resource j becomes Rjt = Ψj [pjRt − τt]ψj . Third, I update the initial conditions to
reflect more recent data: initial carbon dioxide becomes 400 ppm (based on observations in
2015), and multiplying year 2011 global carbon dioxide emissions from fossil fuel combustion
(from the Carbon Dioxide Information Analysis Center) by the timestep length gives the
initial increase in CO2 as 20.6 ppm per timestep. I calculate the emission intensity of the
fossil resource from the initial increase in CO2 and initial consumption of the fossil resource.

We have four remaining free parameters: Aj0, Ak0, ν, and AY . I calibrate these so that the
first period’s equilibrium matches conditions on Rj0, Rk0, sk0, and Y0. Initial fossil resource
consumption Rj0 comes from summing the consumption of oil, gas, and coal from 2011–2015,
as reported in the BP Statistical Review of World Energy. This yields Rj0 = 2333 EJ. Using
the analogous values for non-hydro renewables yields Rk0 = 112 EJ.18 The NSF’s Business
Research and Development and Innovation 2014 gives worldwide employment in fossil R&D
as 19,000 people and in renewable R&D as 2,000 people.19 This implies sk0 = 0.0952. Finally,
World Bank data for global output implies Y0 = 64, 750 in billion year 2014 dollars. For
σ = 0.5, this calibration yields Aj0 > Ak0, with ν = 0.17 for ε = 3 and ν = 0.24 for ε = 10.
For σ = 2 and ε = 10, this calibration yields Aj0 < Ak0 and ν = 0.54.20

Figure 7 plots laissez-faire outcomes for cases with ε = 10.21 When machines are energy-
using (σ = 0.5), we see clean technologies begin to dominate research activity within fifty
years (top panel). The clean resource’s share of resource use begins increasing as this re-
search effort leads to improved clean energy technologies, but the clean resource’s share

18To obtain the energetic content of renewables for the reported tonnes of oil equivalent, use BP’s assumed
thermal efficiency of 38% to obtain the equivalent electrical energy and then use a 20% generator efficiency
to convert electrical energy to energy in the renewable resource (see footnote 16).

19For fossil R&D, I use NAICS 21 (“mining, extraction, and support activities”), and for renewable R&D,
I use NAICS 22 (“utilities”).

20There does not seem to be a way to choose Aj0, Ak0, ν, and AY to match the conditions on Rj0, Rk0,
sk0, and Y0 when σ = 2 and ε = 2.

21The case with σ = 0.5 and ε = 3 has the clean resource’s share of scientists (energy supply) increase at
a slightly slower (faster) rate than in the plotted case with σ = 0.5 and ε = 10. The resulting temperature
trajectory for the case with σ = 0.5 and ε = 3 is similar to the plotted trajectory for the case with σ = 2
and ε = 10.
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remains below 12% until after the next century (middle panel). The clean resource’s increas-
ing contribution to energy supply is not sufficient to prevent temperature from increasing
rapidly (bottom panel). When machines are energy-saving (σ = 2), the fossil resource is
more strongly locked-in. We see the clean resource’s share of research effort quickly drop
to zero (bottom panel), and we see its share of production decline monotonically (middle
panel). Temperature therefore increases even faster than in the case of energy-using ma-
chines (bottom panel). The laissez-faire dynamics corresponding to σ = 0.5 appear more
plausible than the laissez-faire dynamics corresponding to σ = 2 and are also consistent
with the numerous projections that renewable resources will supply a greater share of energy
over the next decades. For either value of σ, policy will be required to avoid exceeding the
disaster temperature of 2◦C.

In Acemoglu et al. (2012), a temporary subsidy to clean research can suffice to avoid
an environmental disaster. However, we here see that research will quickly switch towards
clean resources even in the absence of policy but that clean resources will nonetheless remain
a small share of total energy production for many decades. A temporary research subsidy
cannot suffice to avoid reaching the disaster temperature. An emission tax becomes critical
once we weaken the lock-in generated by the assumption of σ = 1 in Acemoglu et al. (2012).

Figure 8 explores the optimal emission tax for cases with σ = 0.5. When ε = 3, the
tax begins around $5 per tCO2 and declines towards zero as the clean resource becomes
sufficiently advanced (top panel). The emission tax immediately and permanently redirects
all research effort towards the clean resource (not shown), and it increases the clean resource’s
share of energy supply above the laissez-faire level (middle panel). As a result, the world
avoids the disaster temperature of 2◦C.22 When ε = 10, it is easier to substitute renewable
energy for fossil energy. A fairly small emission tax of just over $14 per tCO2 then suffices
to redirect nearly all energy supply towards renewable resources, and we see the optimal tax
indeed take such a path. As a result, temperature declines even more swiftly than in the
case with ε = 3.

6 Conclusion

In progress.

First Appendix: Tâtonnement Stability and Uniqueness

This first appendix considers the stability of each period’s equilibrium. One may be con-
cerned that interior equilibria are not “natural” equilibria in the presence of positive feed-
backs from resource extraction to innovation and of potential complementarities. Indeed,

22In fact, we see temperature decline fairly quickly towards zero. These dynamics are unrealistic. In
ongoing work, I will implement more realistic climate dynamics from Lemoine and Rudik (2014).
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(a) Clean Resource Share of Research

(b) Clean Resource Share of Resource Use

(c) Temperature

Figure 7: Laissez-faire outcomes. Plotted results use ε = 10.
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(a) Emission Tax

(b) Clean Resource Share of Resource Use

(c) Temperature

Figure 8: Outcomes under an optimized emission tax, with T̄ = 2◦C.
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Acemoglu (2002) and Hart (2012) have emphasized the role of knowledge spillovers in al-
lowing interior research allocations to be stable in the long run. This appendix shows that
interior equilibria are in fact “natural” equilibria in the present setting, and it also shows
that the equilibrium is unique.

Substituting from the resource supply functions, we can rewrite equation (9) as

Πjt

Πkt

=
Aj(t−1) + γAj(t−1)

Ak(t−1) + γAk(t−1)

(
Aj(t−1) + ηγsjtAj(t−1)

Ak(t−1) + ηγsktAk(t−1)

) −1
σ+α(1−σ)

(
Rjt

Rkt

) 1+σ/ψ
σ+α(1−σ)

[
Ψj

Ψk

] −σ/ψ
σ+α(1−σ)

.

(A-1)

Rearranging and using sjt + skt = 1, we obtain sjt as an explicit function of Aj(t−1)/Ak(t−1)

and of Rjt/Rkt at an interior allocation.23 Substituting into equations (12) and (13) then
gives us two equations in two unknowns, which define the equilibrium Rjt and Rkt that clear
the markets for each resource.

Define the tâtonnement adjustment process and stability as follows:

Definition 3. A tâtonnement adjustment process increases Rjt if equation (12) is not sat-
isfied and its right-hand side is greater, decreases Rjt if equation (12) is not satisfied and its
left-hand side is greater, and obeys analogous rules for Rkt using equation (13). We say that
an equilibrium (R∗jt, R

∗
kt) is tâtonnement-stable if and only if the tâtonnement adjustment

process leads to (R∗jt, R
∗
kt) from (Rjt, Rkt) sufficiently close to (R∗jt, R

∗
kt).

The tâtonnement process changes Rjt and Rkt so as to eliminate excess supply or demand,
and tâtonnement stability requires that this adjustment process converge to an equilibrium
point from values close to the equilibrium. We can show that our equilibrium is tâtonnement-
stable:

Proposition A-1. The equilibrium is tâtonnement-stable.

Proof. See appendix.

A Walrasian auctioneer would find our equilibrium at any time t.
Now use equations (12) and (13) to define Rjt and Rkt as functions of sjt,

24 and then
restate equation (A-1) as a function only of sjt:

Πjt

Πkt

=
Aj(t−1) + γAj(t−1)

Ak(t−1) + γAk(t−1)

(
Aj(t−1) + ηγsjtAj(t−1)

Ak(t−1) + ηγ(1− sjt)Ak(t−1)

) −1
σ+α(1−σ)

(
Rjt(sjt)

Rkt(sjt)

) 1+σ/ψ
σ+α(1−σ)

[
Ψj

Ψk

] −σ/ψ
σ+α(1−σ)

.

(A-2)

The following corollary gives us the derivative of Πjt/Πkt with respect to sjt:

23Technically, this function should be written to allow for corner solutions in the research allocation. The
proof of stability will account for corner solutions.

24Rearrange equations (12) and (13) to put all terms on the right-hand side. For given sjt, the Jacobian
of this system in Rjt and Rkt is negative definite.
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Corollary A-2. The right-hand side of equation (A-2) strictly decreases in sjt.

Proof. See appendix.

The supply expansion effect makes the relative incentive to research in sector j decline in
the number of scientists working in sector j. However, when sector j’s share of resource
extraction increases in the relative quality of its technology, we have a positive feedback
between research and extraction that maintains sector j’s research incentives even as more
scientists move to sector j. The proof shows, as is intuitive, that whether the relative
incentive to research in sector j declines in the number of scientists working in sector j
is identical to whether the equilibrium is tâtonnement-stable: tâtonnement-stability is not
consistent with positive feedbacks that are strong enough to overwhelm the supply expansion
effect. And we have already seen that interior equilibria are in fact tâtonnement-stable.
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Second Appendix: Proofs and Derivations

This second appendix derives results that will be useful in the proofs before providing proofs
and derivations omitted from the main text.

Useful Lemmas

First, note that equations (7) and (8) imply

Xjt =

[
1− κ
κ

pjRt

] ασ
σ(1−α)+α

[
Rjt

Ajt

] α
σ(1−α)+α

Ajt. (A-3)

Rearranging equation (A-1) and using sjt + skt = 1, we obtain sjt as an explicit function
of Aj(t−1)/Ak(t−1) and of Rjt/Rkt at an interior allocation:

sjt

(
Rjt

Rkt

,
Aj(t−1)

Ak(t−1)

)
=

(1 + ηγ)
(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt
Rkt

[
[Rjt/Ψj ]

1/ψj

[Rkt/Ψk]1/ψk

]σ
− 1

ηγ + ηγ
(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt
Rkt

[
[Rjt/Ψj ]

1/ψj

[Rkt/Ψk]1/ψk

]σ . (A-4)

Let Σx,y represent the elasticity of x with respect to y, and let Σx,y|z represent the
elasticity of x with respect to y holding z constant. The following lemma establishes signs
and bounds for key elasticities:

Lemma A-3. The following hold, with analogous results for sector k:

1. ΣYt,Yjt ,ΣYt,Ykt ∈ [0, 1] and ΣYt,Yjt + ΣYt,Ykt = 1.

2. ΣYjt,Rjt|Xjt ,ΣYjt,Xjt ∈ [0, 1] and ΣYjt,Rjt|Xjt + ΣYjt,Xjt = 1.

3. ΣXjt,Ajt = σ(1−α)
σ(1−α)+α

∈ (0, 1)

4. ΣXjt,Rjt = ασ/ψ+α
σ(1−α)+α

∈ (0, 1) if and only if ψ > α
1−α

5. ΣAjt,sjt =
ηγsjt

1+ηγsjt
∈ [0, 1)

6. Σsjt,Rjt = ψ+σ
ψ

2+ηγ
ηγsjt

Zt > 0, where Zt ∈
[

1+ηγ
(2+ηγ)2

, 1
4

]
. Σsjt,Rkt = −Σsjt,Rjt.

7. Σsjt,Aj(t−1)
= − (1−σ)(1−α)

Aj(t−1)

(2+ηγ)
ηγ

Zt, which is < 0 if and only if σ < 1. Zt is as above.

Σsjt,Ak(t−1)
= −Σsjt,Aj(t−1)

.

8. Σsjt,skt = −skt/sjt ≤ 0

A-1
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Proof. All of the results follow by differentiation and the definition of an elasticity. #1
follows from differentiating the final-good production function Yt(Yjt, Ykt), #2 follows from
differentiating the intermediate-good production function Yjt(Rjt, Xjt), #3 and #4 follow
from differentiating equation (A-3), #5 follows from differentiating equation (3), #6 and #7
follow from differentiating equation (A-4), and #8 follows from the research constraint.

To derive #6 and #7, define

Zt ,

(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt
Rkt

[
[Rjt/Ψj ]

1/ψj

[Rkt/Ψk]1/ψk

]σ
[
1 +

(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt
Rkt

[
[Rjt/Ψj ]

1/ψj

[Rkt/Ψk]1/ψk

]σ ]2

and recognize that sjt ∈ (0, 1) implies(
Aj(t−1)

Ak(t−1)

)−(1−σ)(1−α)
Rjt

Rkt

[
[Rjt/Ψj]

1/ψj

[Rkt/Ψk]1/ψk

]σ
∈
(

1

1 + ηγ
, 1 + ηγ

)
from equation (A-1).

Note that ΣX,A and ΣX,R are the same in each sector. We therefore often omit the sector
subscripts on these terms.

Using sjt

(
Rjt
Rkt
,
Aj(t−1)

Ak(t−1)

)
, the equilibrium is defined by equations (12) and (13), which

are functions only of Rjt and Rkt. Rewrite these equations as (suppressing the technology
arguments)

1 = κ ν

[
Yt (Rjt, Rkt, sjt (Rjt/Rkt))

Yjt (Rjt, sjt (Rjt/Rkt))

]1/ε [
Yjt (Rjt, sjt (Rjt/Rkt))

Rjt

]1/σ [
Rjt

Ψj

]−1/ψj

,Gj(Rjt, Rkt),

1 = κ (1− ν)

[
Yt (Rjt, Rkt, sjt (Rjt/Rkt))

Ykt (Rkt, sjt (Rjt/Rkt))

]1/ε [
Ykt (Rkt, sjt (Rjt/Rkt))

Rkt

]1/σ [
Rkt

Ψk

]−1/ψk

,Gk(Rjt, Rkt).

Then we have:

Lemma A-4. ∂Gj(Rjt, Rkt)/∂Rjt < 0 and ∂Gk(Rjt, Rkt)/∂Rkt < 0.
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Proof. Differentiating, we have:

∂Gj(Rjt, Rkt)

∂Rjt

=Gj

{
−
(

1

ψ
+

1

σ

)
1

Rjt

+

(
1

σ
− 1

ε

)
1

Yjt

[
∂Yjt
∂Rjt

+
∂Yjt
∂sjt

∂sjt
∂Rjt

]
+

1

ε

1

Yt

[
∂Yt
∂Yjt

∂Yjt
∂Rjt

+
∂Yt
∂Yjt

∂Yjt
∂sjt

∂sjt
∂Rjt

+
∂Yt
∂Ykt

∂Ykt
∂skt

∂skt
∂sjt

∂sjt
∂Rjt

]}
=
Gj

Rjt

{
− 1

ψ
− 1

σ

[
1− ΣYjt,Rjt|Xjt − ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]
− 1

ε

[(
1− ΣYt,Yjt

)(
ΣYjt,Rjt|Xjt + ΣYjt,XjtΣXjt,Rjt + ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
− ΣYt,YktΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

]}
.

If we are at a corner in sjt, then Σsjt,Rjt = 0 and, using Lemma A-3, the above expression
is clearly negative. So consider a case with interior sjt. The final two lines are negative. So
the overall expression is negative if the third-to-last line is negative, which is the case if and
only if

0 ≥− 1

ψ
+

1

σ

[
− 1 + ΣYjt,Rjt|Xjt + ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]
=− 1

ψ
+

1

σ

[
− 1 + ΣYjt,Rjt|Xjt + ΣYjt,Xjt

(
σ + ψ

ψ

α + σ(1− α) 2+ηγ
1+ηγsjt

Zt

σ(1− α) + α

)]
=− 1

ψ
+

1

σ
ΣYjt,Xjt

[
− 1 +

σ + ψ

ψ

α + σ(1− α) 2+ηγ
1+ηγsjt

Zt

σ(1− α) + α

]
, (A-5)

where we use results from Lemma A-3. Note that 2+ηγ
1+ηγsjt

Zt ≤ 3/4, which implies that

ΣYjt,Xjt

α+σ(1−α) 2+ηγ
1+ηγsjt

Zt

σ(1−α)+α
< 1. Using this, inequality (A-5) holds if and only if

σ

ψ
≥ΣYjt,Xjt

−1 +
α+σ(1−α) 2+ηγ

1+ηγsjt
Zt

α+σ(1−α)

1− ΣYjt,Xjt

α+σ(1−α) 2+ηγ
1+ηγsjt

Zt

α+σ(1−α)

. (A-6)

2+ηγ
1+ηγsjt

Zt ≤ 3/4 implies that
α+σ(1−α) 2+ηγ

1+ηγsjt
Zt

α+σ(1−α)
< 1, which implies that the right-hand side of

inequality (A-6) is negative. Thus, inequality (A-6) always holds and ∂Gj(Rjt, Rkt)/∂Rjt <
0.

The analysis of ∂Gk(Rjt, Rkt)/∂Rkt is virtually identical.

A-3
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Now define the matrix G:

G ,

[
∂Gj(Rjt,Rkt)

∂Rjt

∂Gj(Rjt,Rkt)

∂Rkt
∂Gk(Rjt,Rkt)

∂Rjt

∂Gk(Rjt,Rkt)

∂Rkt

]
.

Then we have:

Lemma A-5. The determinant of G is positive.

Proof. Analyze det(G):

det(G) ∝
{
− 1

ψ
− 1

σ
+

(
1

σ
− 1

ε

)[
ΣYjt,Rjt|Xjt + ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]}
{
− 1

ψ
− 1

σ
+

(
1

σ
− 1

ε

)[
ΣYkt,Rkt|Xkt + ΣYkt,Xkt

(
ΣXkt,Rkt + ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)]}
+

{
− 1

ψ
− 1

σ
+

(
1

σ
− 1

ε

)[
ΣYjt,Rjt|Xjt + ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
− ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

]}
{

1

ε

[
ΣYt,Ykt

(
ΣYkt,Rkt|Xkt + ΣYkt,XktΣXkt,Rkt + ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)
+ ΣYt,YjtΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

]}
+

{
− 1

ψ
− 1

σ
+

(
1

σ
− 1

ε

)[
ΣYkt,Rkt|Xkt + ΣYkt,Xkt

(
ΣXkt,Rkt + ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)
− ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

]}
{

1

ε

[
ΣYt,Yjt

(
ΣYjt,Rjt|Xjt + ΣYjt,XjtΣXjt,Rjt + ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
+ ΣYt,YktΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

]}
−
(

1

σ
− 1

ε

)2

ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,RktΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt ,

where we factored GjGk/RjtRkt. Use ΣYt,Y jt+ΣYt,Ykt = 1 from Lemma A-3 and cancel terms
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with 1/ε2 to obtain:

det(G) ∝
{
− 1

ψ
− 1

σ

[
1− ΣYjt,Rjt|Xjt − ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]}
{
− 1

ψ
− 1

σ

[
1− ΣYkt,Rkt|Xkt − ΣYkt,Xkt

(
ΣXkt,Rkt + ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)]}
− 1

σ

(
1

σ
− 1

ε

)(
ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

) (
ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

)
+

{
− 1

ψ
− 1

σ

}
1

ε
ΣYt,Yjt[

−
(

ΣYkt,Rkt|Xkt + ΣYkt,XktΣXkt,Rkt + ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)
+ ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

]
+

{
− 1

ψ
− 1

σ

}
1

ε
ΣYt,Ykt[

−
(

ΣYjt,Rjt|Xjt + ΣYjt,XjtΣXjt,Rjt + ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
+ ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

]
+

1

ε

1

σ

[
ΣYjt,Rjt|Xjt + ΣYjt,Xjt

(
ΣXjt,Rjt + ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)]
[
ΣYkt,Rkt|Xkt + ΣYkt,Xkt

(
ΣXkt,Rkt + ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

)]
. (A-7)

All lines after the first three are positive by results from Lemma A-3. Expanding the products
in those first three lines and rearranging, those first three lines become:

1

ψ2

+
1

σ2

[
1− ΣX,R

]
ΣYjt,XjtΣYkt,Xkt

(
1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

)
+

1

ψ

1

σ
ΣYkt,Xkt

[
1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

]
+

1

ψ

1

σ
ΣYjt,Xjt

[
1− ΣX,R − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

]
+

1

σ

1

ε

(
ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

) (
ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

)
, (A-8)
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where we write ΣX,R because this elasticity is the same in each sector. The term in paren-
theses on the second line becomes

1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

=
1

ψ

σ

σ(1− α) + α

{
ψ[1− α]− α− (1− α)[σ + ψ]

(2 + ηγ)2

(1 + ηγsjt)(1 + ηγskt)
Zt

}
. (A-9)

Substituting for Zt and using equation (A-1) at Πjt/Πkt = 1, we have

Zt
(1 + ηγsjt)(1 + ηγskt)

=
1

[2 + ηγ]2
.

Equation (A-9) then becomes

1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt =− σ

ψ
.

Substituting into (A-8), we have that the first three lines of (A-7) are equal to

1

ψ2

− 1

ψ

1

σ

[
1− ΣX,R

]
ΣYjt,XjtΣYkt,Xkt

+
1

ψ

1

σ
ΣYkt,Xkt

[
1− ΣX,R − ΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

]
+

1

ψ

1

σ
ΣYjt,Xjt

[
1− ΣX,R − ΣXjt,AjtΣAjt,sjtΣsjt,Rjt

]
+

1

σ

1

ε

(
ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rkt

) (
ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rjt

)
.

The final line is positive. If the first through fourth lines are positive with nonzero Σsjt,Rjt

and nonzero Σsjt,Rkt , then they are also positive if sjt is fixed (as at a corner solution). So
det(G) > 0 if we are at a corner allocation in research. Factoring 1/ψ, the first through
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fourth lines are positive if and only if:

0 ≤ 1

ψ
+

1

σ

[
(1− ΣX,R)

(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
− ΣYjt,XjtΣXjt,AjtΣAjt,sjtΣsjt,Rjt − ΣYkt,XktΣXkt,AktΣAkt,sktΣskt,sjtΣsjt,Rkt

]
=

1

ψ
+

1

σ

(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
− 1

σ

σ + ψ

ψ

1

σ(1− α) + α

[
α
(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
+ σ(1− α)

(
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ

]
,

(A-10)

where we use Zt
(1+ηγsjt)(1+ηγskt)

= 1
[2+ηγ]2

. Note that ΣYjt,Xjt+ΣYkt,Xkt−ΣYjt,XjtΣYkt,Xkt increases

in ΣYjt,Xjt and thus reaches a maximum at ΣYjt,Xjt = 1.

ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt ≤ 1 + ΣYkt,Xkt − ΣYkt,Xkt = 1.

Also note that ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt) increases in each elasticity, and each
elasticity is ≤ 1. Thus,

ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt) ≤ (1 + ηγskt) + (1 + ηγsjt) = 2 + ηγ,

which implies (
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ
≤ 1.

These results together imply that

α + σ(1− α)

≥α
(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
+ σ(1− α)

(
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ
.

(A-11)
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Using this, we have that inequality (A-10) holds if and only if

σ

ψ
≥
{
−
(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
+

1

σ(1− α) + α

[
α
(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
+ σ(1− α)

(
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ

]}
{

1− 1

σ(1− α) + α

[
α
(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
+ σ(1− α)

(
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
1

2 + ηγ

]}−1

.

(A-12)

The denominator on the right-hand side is positive via inequality (A-11). The numerator on
the right-hand side is equal to:(

ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)−1 +
1

σ(1− α) + α

α + σ(1− α)

(
ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
(2 + ηγ)

(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)



(A-13)

Consider the fraction in brackets. If that fraction is ≤ 1, then the whole expression is
negative. Assume that the fraction is > 1. Then:(

ΣYjt,Xjt(1 + ηγskt) + ΣYkt,Xkt(1 + ηγsjt)

)
> (2 + ηγ)

(
ΣYjt,Xjt + ΣYkt,Xkt − ΣYjt,XjtΣYkt,Xkt

)
⇔ηγsktΣYjt,Xjt + ηγsjtΣYkt,Xkt ≥ (1 + ηγ)

(
ΣYjt,Xjt + ΣYkt,Xkt

)
− (2 + ηγ)ΣYjt,XjtΣYkt,Xkt

Assume without loss of generality that ΣYjt,Xjt > ΣYkt,Xkt . Then the left-hand side of the
last line attains its largest possible value when skt = 1. The inequality on the last line is
then satisfied only if

0 > ΣYjt,Xjt + (1 + ηγ)ΣYkt,Xkt − (2 + ηγ)ΣYjt,XjtΣYkt,Xkt . (A-14)

The right-hand side is monotonic in ΣYjt,Xjt . At ΣYjt,Xjt = 1, the right-hand side is

1 + (1 + ηγ)ΣYkt,Xkt − (2 + ηγ)ΣYkt,Xkt = 1− ΣYkt,Xkt ≥ 0.

But this contradicts inequality (A-14). Now consider the other extremum: ΣYjt,Xjt = 0. The
right-hand side of inequality (A-14) becomes:

(1 + ηγ)ΣYkt,Xkt ≥ 0,
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which again contradicts inequality (A-14). Because the right-hand side of inequality (A-14)
was monotonic in ΣYjt,Xjt and was not satisfied for either the greatest or smallest possible
values for ΣYjt,Xjt , the inequality is not satisfied for any values of ΣYjt,Xjt . Thus, the fraction
in brackets in (A-13) is ≤ 1, which means that the right-hand side of inequality (A-12) is
≤ 0 and inequality (A-12) is satisfied. As a result, the first three lines of (A-7) are positive,
which means that det(G) > 0.

Derivation of Equation (10)

Equation (A-1) implicitly defines sjt as a function of Rjt/Rkt and Aj(t−1)/Ak(t−1) (for interior
sjt). To a first-order approximation, the total change in sjt is

sj(t+1) − sjt =
dsjt

d[Rjt/Rkt]

[
Rj(t+1)

Rk(t+1)

− Rjt

Rkt

]
+

dsjt
d[Aj(t−1)/Ak(t−1)]

[
Ajt
Akt
−
Aj(t−1)

Ak(t−1)

]

=−
∂[Πjt/Πkt]

∂[Rjt/Rkt]

∂[Πjt/Πkt]

∂sjt

[
Rj(t+1)

Rk(t+1)

− Rjt

Rkt

]
−

∂[Πjt/Πkt]

∂[Aj(t−1)/Ak(t−1)]

∂[Πjt/Πkt]

∂sjt

[
Ajt
Akt
−
Aj(t−1)

Ak(t−1)

]
∝1 + σ/ψ

Rjt/Rkt

[
Rj(t+1)

Rk(t+1)

− Rjt

Rkt

]
− (1− σ)(1− α)

Aj(t−1)/Ak(t−1)

[
Ajt
Akt
−
Aj(t−1)

Ak(t−1)

]
=

1 + σ/ψ

Rjt/Rkt

[
Rj(t+1)

Rk(t+1)

− Rjt

Rkt

]
− 2(1− σ)(1− α)

ηγ

1 + ηγskt

(
sjt −

1

2

)
,

where the second line uses the implicit function theorem and the third line factors−{∂[Πjt/Πkt]/∂sjt}−1,
factors [σ + α(1− σ)]−1, and uses Πjt = Πkt at an interior equilibrium.

From this we have the following lemma, which will be useful in proving Proposition 2:

Lemma A-6. If sjt ≥ 0.5, Rjt/Rkt ≤ Rj(t+1)/Rk(t+1), and (1 − σ)(1 − α) ≤ 0.5, then
sj(t+1) ≥ 0.5.

Proof. Note that

−∂[Πjt/Πkt]

∂sjt
=

1

σ + α(1− σ)

Πjt

Πkt

(
1 + ηγsjt
1 + ηγskt

)−1(
ηγ

1 + ηγskt
+
ηγ(1 + ηγsjt)

(1 + ηγskt)2

)
=

ηγ

σ + α(1− σ)

Πjt

Πkt

2 + ηγ

(1 + ηγsjt)(1 + ηγskt)
.

Restoring the factored terms in equation (10) and using Rjt/Rkt ≤ Rj(t+1)/Rk(t+1), we have

sj(t+1) − sjt ≥− 2(1− σ)(1− α)
1 + ηγsjt
2 + ηγ

(
sjt −

1

2

)
≥ −2(1− σ)(1− α)

(
sjt −

1

2

)
.
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Using the assumption that (1− σ)(1− α) ≤ 0.5, we have:

sj(t+1) − sjt ≥−
(
sjt −

1

2

)
,

which implies sj(t+1) ≥ 0.5.

Proof of Proposition 1

The change in Rjt/Rkt from time t to t+ 1 is

Rj(t+1)

Rk(t+1)

− Rjt

Rkt

=
(Rj(t+1) −Rjt)Rkt − (Rk(t+1) −Rkt)Rjt

Rk(t+1)Rkt

∝
Rj(t+1) −Rjt

Rjt

−
Rk(t+1) −Rkt

Rkt

,

where the first equality adds and subtracts RjtRkt in the numerator and the second line
factors Rjt/Rk(t+1). To a first-order approximation, this is

1

Rjt

(
dRjt

dAjt

[
Aj(t+1) − Ajt

]
+

dRjt

dAkt

[
Ak(t+1) − Akt

])
− 1

Rkt

(
dRkt

dAjt

[
Aj(t+1) − Ajt

]
+

dRkt

dAkt

[
Ak(t+1) − Akt

])
.

The derivatives follow from applying the implicit function theorem to the system of equations
defining Gj(Rjt, Rkt) and Gk(Rjt, Rkt). Doing this yields:

1

Rjt

(
− ∂Gj
∂Ajt

∂Gk
∂Rkt

+
∂Gj
∂Rkt

∂Gk
∂Ajt

det(G)

[
Aj(t+1) − Ajt

]
+
− ∂Gj
∂Akt

∂Gk
∂Rkt

+
∂Gj
∂Rkt

∂Gk
∂Akt

det(G)

[
Ak(t+1) − Akt

])

− 1

Rkt

(
− ∂Gk
∂Ajt

∂Gj
∂Rjt

+ ∂Gk
∂Rjt

∂Gj
∂Ajt

det(G)

[
Aj(t+1) − Ajt

]
+
− ∂Gk
∂Akt

∂Gj
∂Rjt

+ ∂Gk
∂Rjt

∂Gj
∂Akt

det(G)

[
Ak(t+1) − Akt

])

∝
[
− ∂Gj

∂Ajt
sj(t+1)Ajt −

∂Gj

∂Akt
sk(t+1)Akt

] [
1

Rjt

∂Gk

∂Rkt

+
1

Rkt

∂Gk

∂Rjt

]
+

[
∂Gk

∂Ajt
sj(t+1)Ajt +

∂Gk

∂Akt
sk(t+1)Akt

] [
1

Rjt

∂Gj

∂Rkt

+
1

Rkt

∂Gj

∂Rjt

]
, (A-15)

where the first expression factors Rjt/Rkt and the second expression factors ηγ/det(G), which
is positive by Lemma A-5. Differentiation and algebraic manipulations (including applying
relationships from Lemma A-3) yield:

− ∂Gj

∂Ajt
sj(t+1)Ajt −

∂Gj

∂Akt
sk(t+1)Akt =−Gj

{
1

σ
− 1

ε
ΣYt,Ykt

}
ΣYjt,XjtΣXjt,Ajtsj(t+1)

−Gj
1

ε
ΣYt,YktΣYkt,XktΣXkt,Akt(1− sj(t+1)),
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∂Gk

∂Ajt
sj(t+1)Ajt +

∂Gk

∂Akt
sk(t+1)Akt =Gk

{
1

σ
− 1

ε
ΣYt,Yjt

}
ΣYkt,XktΣXkt,Akt(1− sj(t+1))

+Gk
1

ε
ΣYt,YjtΣYjt,XjtΣXjt,Ajtsj(t+1),

1

Rjt

∂Gk

∂Rkt

+
1

Rkt

∂Gk

∂Rjt

=
Gk

RjtRkt

{
− 1

ψ
− 1

σ

[
1− ΣYkt,Rkt|Xkt − ΣYkt,XktΣXkt,Rkt

]
+

1

ε
ΣYt,Yjt

[
ΣX,R − 1

][
ΣYjt,Xjt − ΣYkt,Xkt

]}
,

1

Rjt

∂Gj

∂Rkt

+
1

Rkt

∂Gj

∂Rjt

=
Gj

RjtRkt

{
− 1

ψ
− 1

σ

(
1− ΣYjt,Rjt|Xjt − ΣYjt,XjtΣXjt,Rjt

)
+

1

ε
ΣYt,Ykt

[
ΣX,R − 1

][
ΣYkt,Xkt − ΣYjt,Xjt

]}
.
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Using these in (A-15) and factoring ΣX,AGjGk/[RjtRkt] yields:{
− sj(t+1)

{
1

σ
− 1

ε
ΣYt,Ykt

}
ΣYjt,Xjt − (1− sj(t+1))

1

ε
ΣYt,YktΣYkt,Xkt

}
{
− 1

ψ
− 1

σ
ΣYkt,Xkt

[
1− ΣX,R

]}
+

{
(1− sj(t+1))

{
1

σ
− 1

ε
ΣYt,Yjt

}
ΣYkt,Xkt + sj(t+1)

1

ε
ΣYt,YjtΣYjt,Xjt

}
{
− 1

ψ
− 1

σ
ΣYjt,Xjt

(
1− ΣX,R

)}
+

1

ε

[
1− ΣX,R

][
ΣYkt,Xkt − ΣYjt,Xjt

]
{
− sj(t+1)

[
1

σ
− 1

ε
ΣYt,Ykt

]
ΣYt,YjtΣYjt,Xjt − (1− sj(t+1))

{
1

σ
− 1

ε
ΣYt,Yjt

}
ΣYt,YktΣYkt,Xkt

}
− 1

ε2
ΣYt,YjtΣYt,Ykt

[
1− ΣX,R

][
ΣYkt,Xkt − ΣYjt,Xjt

]{
(1− sj(t+1))ΣYkt,Xkt + sj(t+1)ΣYjt,Xjt

}
=sj(t+1)ΣYjt,Xjt

{
1

ψ

[
1

σ
− 1

ε
ΣYt,Ykt −

1

ε
ΣYt,Yjt

]
+

1

σ

(
1− ΣX,R

)[
1

σ
ΣYkt,Xkt −

1

ε
ΣYt,YktΣYkt,Xkt −

1

ε
ΣYt,YjtΣYjt,Xjt

]}
− (1− sj(t+1))ΣYkt,Xkt

{
1

ψ

[
1

σ
− 1

ε
ΣYt,Yjt −

1

ε
ΣYt,Ykt

]
+

1

σ

(
1− ΣX,R

)[
1

σ
ΣYjt,Xjt −

1

ε
ΣYt,YjtΣYjt,Xjt −

1

ε
ΣYt,YktΣYkt,Xkt

]}
+

1

ε

[
1− ΣX,R

][
ΣYkt,Xkt − ΣYjt,Xjt

]
{
− sj(t+1)

[
1

σ
− 1

ε
ΣYt,Ykt

]
ΣYt,YjtΣYjt,Xjt − (1− sj(t+1))

{
1

σ
− 1

ε
ΣYt,Yjt

}
ΣYt,YktΣYkt,Xkt

− 1

ε
ΣYt,YjtΣYt,Ykt

[
(1− sj(t+1))ΣYkt,Xkt + sj(t+1)ΣYjt,Xjt

]}
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=sj(t+1)ΣYjt,Xjt

{
1

ψ

[
1

σ
− 1

ε

]
+

1

σ

(
1− ΣX,R

)[
1

σ
− 1

ε
ΣYt,Ykt

]
ΣYkt,Xkt

}
− (1− sj(t+1))ΣYkt,Xkt

{
1

ψ

[
1

σ
− 1

ε

]
+

1

σ

(
1− ΣX,R

)[
1

σ
− 1

ε
ΣYt,Yjt

]
ΣYjt,Xjt

}
− sj(t+1)

1

σ

1

ε

[
1− ΣX,R

]
ΣYt,YjtΣYjt,XjtΣYkt,Xkt + (1− sj(t+1))

1

σ

1

ε

[
1− ΣX,R

]
ΣYt,YktΣYkt,XktΣYjt,Xjt

=
1

ψ

[
1

σ
− 1

ε

][
sj(t+1)ΣYjt,Xjt − (1− sj(t+1))ΣYkt,Xkt

]
+

1

σ2

(
1− ΣX,R

)
ΣYkt,XktΣYjt,Xjt

(
2sj(t+1) − 1

)
− 1

σ

1

ε

(
1− ΣX,R

)
ΣYjt,XjtΣYkt,Xkt

(
2sj(t+1) − 1

)
=

1

ψ

[
1

σ
− 1

ε

][
sj(t+1)ΣYjt,Xjt − (1− sj(t+1))ΣYkt,Xkt

]
+

1

σ

(
1

σ
− 1

ε

)(
1− ΣX,R

)
ΣYkt,XktΣYjt,Xjt

(
2sj(t+1) − 1

)
.

Substituting for ΣX,R and rearranging, we obtain

1

ψ

(
1

σ
− 1

ε

)[
sj(t+1)ΣYjt,Xjt

(
1 +

ψ[1− α]− α
σ(1− α) + α

ΣYkt,Xkt

)
− (1− sj(t+1))ΣYkt,Xkt

(
1 +

ψ[1− α]− α
σ(1− α) + α

ΣYjt,Xjt

)]
. (A-16)

This expression is positive if and only if the term in brackets is positive. Define ŝt+1 as the
sj(t+1) such that Rjt/Rkt = Rj(t+1)/Rk(t+1). Then ŝt+1 is the root of the term in brackets.
Solving for that root yields equation (15).

We now consider how ŝt+1 changes in σ. Holding the time t allocation of resource extrac-
tion and research fixed, the derivative of the right-hand side of equation (15) with respect
to σ is proportional to

−
∂ΣYjt,Xjt

∂σ

∣∣∣∣
Rjt,sjt fixed

ΣYkt,Xkt

[
1 +

ψ[1− α]− α
σ(1− α) + α

ΣYkt,Xkt

]
+
∂ΣYkt,Xkt

∂σ

∣∣∣∣
Rkt,sjt fixed

ΣYjt,Xjt

[
1 +

ψ[1− α]− α
σ(1− α) + α

ΣYjt,Xjt

]
.

Note that

∂ΣYjt,Xjt

∂σ

∣∣∣∣
Rjt,sjt fixed

∝ 1

σ2
κ(1− κ)X

σ−1
σ

jt R
σ−1
σ

jt [lnXjt − lnRjt]

>0 iff Xjt > Rjt.
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The results for sector k are analogous. Xjt > Rjt when Ajt is sufficiently large. We have
that the right-hand side of equation (15) (and thus also ŝt+1) decreases in σ if Xjt > Rjt and
Xkt < Rkt.

Consider what happens to the right-hand side of equation (15) as σ → 0. The elasticity

ΣYjt,Xjt becomes (Xjt/min{Rjt, Xjt})
σ−1
σ , and analogously for sector k. Thus, under the

assumption that Xjt > Rjt and Xkt < Rkt, ΣYjt,Xjt → 0 as σ → 0 and ΣYkt,Xkt → 1 as σ → 0.
These imply that the right-hand side of equation (15) goes to 1 as σ → 0.

As σ → 1, the right-hand side of equation (15) goes to 1/2.
Finally, as σ →∞, the elasticities ΣYjt,Xjt and ΣYkt,Xkt each go to either 1 or 0. Under the

assumption that Xjt > Rjt and Xkt < Rkt, ΣYjt,Xjt → 1 while ΣYkt,Xkt → 0. The right-hand
side of equation (15) thus goes to 0 as σ →∞.

Proof of Proposition 2

The following lemma relates ŝt+1 and 0.5.

Lemma A-7. If σ < 1, then ŝt+1 ≥ 0.5 if and only if Aj(t−1)/Ak(t−1) ≥ [Ψj/Ψk]
θ, for θ > 0.

If σ > 1, then ŝt+1 ≥ 0.5 if and only if Aj(t−1)/Ak(t−1) ≤ [Ψj/Ψk]
θ, for θ > 0.

Proof. From equation (15),{
ŝt+1 ≥

1

2

}
⇔
{

ΣYkt,Xkt ≥ ΣYjt,Xjt

}
,

where the right-hand side is evaluated at ŝt+1. Using the explicit expressions for the elas-
ticities, for intermediate-good production, and for Xjt and Xkt from equation (A-3), we
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have:

ΣYkt,Xkt ≥ΣYjt,Xjt

⇔ 0 ≤
(1− κ)X

σ−1
σ

kt Y
σ−1
σ

jt − (1− κ)X
σ−1
σ

jt Y
σ−1
σ

kt

Y
σ−1
σ

kt Y
σ−1
σ

jt

⇔ 0 ≤X
σ−1
σ

kt Y
σ−1
σ

jt −X
σ−1
σ

jt Y
σ−1
σ

kt

⇔ 0 ≤κR
σ−1
σ

jt X
σ−1
σ

kt + (1− κ)X
σ−1
σ

jt X
σ−1
σ

kt − κR
σ−1
σ

kt X
σ−1
σ

jt − (1− κ)X
σ−1
σ

kt X
σ−1
σ

jt

⇔ 1 ≤


Rjt

[
1−κ
κ

(
Rkt
Ψk

)1/ψ
] ασ
σ(1−α)+α [

Rkt
Akt

] α
σ(1−α)+α

Akt

Rkt

[
1−κ
κ

(
Rjt
Ψj

)1/ψ
] ασ
σ(1−α)+α [

Rjt
Ajt

] α
σ(1−α)+α

Ajt


σ−1
σ

⇔ 1 ≤

[(
Ψj

Ψk

) ασ/ψ
σ(1−α)+α

(
Rjt

Rkt

)σ(1−α−α/ψ)
σ(1−α)+α

(
Akt
Ajt

) σ(1−α)
σ(1−α)+α

]σ−1
σ

⇔ 1 ≤
(

Ψj

Ψk

)χ 1
ψ

[α+σ(1−α)](
1 + ηγsjt
1 + ηγskt

)−χ 1
ψ

[α+σ(1−α)](Aj(t−1)

Ak(t−1)

)χ(1−α)[(1−σ)(1−α−α/ψ)−(1+σ/ψ)]

,

(A-17)

where the final line substitutes for Rjt/Rkt from equation (A-1) (which must hold for ŝt+1

interior) and where

χ ,
σ − 1

[σ(1− α) + α][1 + σ/ψ]
< 0 iff σ < 1.

The right-hand side of inequality (A-17) is increasing in sjt if and only if σ < 1. Therefore,
if σ < 1, then ŝt+1 ≥ 0.5 if and only if the strict version of the inequality does not hold at
sjt = 0.5, and if σ > 1, then ŝt+1 ≥ 0.5 if and only if the inequality holds at sjt = 0.5. If
σ < 1, then ŝt+1 ≥ 0.5 if and only if

Aj(t−1)

Ak(t−1)

≥
[

Ψj

Ψk

]θ
,

and if σ > 1, then ŝt+1 ≥ 0.5 if and only if

Aj(t−1)

Ak(t−1)

≤
[

Ψj

Ψk

]θ
,

where

θ ,
− 1
ψ

[α + σ(1− α)]

(1− α)[(1− σ)(1− α− α/ψ)− (1 + σ/ψ)]
=

1

(1− α)(1 + ψ)
> 0.
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Thus ŝt+1 ≥ 0.5 under the condition of the proposition.
First, consider the possibility of a transition after time t.
Assume that σ < 1, sjt ≥ 0.5, and (1 − σ)(1 − α) ≤ 0.5. And assume that Rjt/Rkt <

Rj(t+1)/Rk(t+1) and sjt/skt < sj(t+1)/sk(t+1) so that it makes sense to speak of potentially
transitioning from sector j to sector k. At the time w where sector k’s share of extraction
begins increasing, sj(w+1) ≤ ŝw+1 and sjw > ŝw. Imagine that a transition occurs over an
interval for which Assumption 1 does not hold. Then ŝw, ŝw+1 < 0.5 from Lemma A-7.

Assume that sjw ≤ 0.5. By Lemma A-6 and Rj(w−1)/Rk(w−1) < Rjw/Rkw, it cannot
be true that sj(w−1) ≥ 0.5 when (1 − σ)(1 − α) ≤ 0.5. Therefore sj(w−1) < 0.5. From
equation (10), sjw > sj(w−1). Using that resource extraction was increasing in every period
from time t to w and proceeding backwards to time t by induction, we see that sjw ∈ (ŝw, 0.5]
implies sjt < sjw, contrary to the assumption that sjt ≥ 0.5. A transition cannot occur if
sjw ≤ 0.5.

So assume that sjw > 0.5. A transition requires that sj(w+1) ≤ ŝw+1 < 0.5. If sj(w+1) =
ŝw+1, then Lemma A-6 implies that sj(w+1) ≥ 0.5, which would be a contradiction. So a
transition requires that sj(w+1) < ŝw+1. Assume this to be the case. The right-hand side

of equation (A-1) defines Πjt/Πkt as a function f(sjt, Rjt/Rkt). Define x , Rjt/Rkt. Then
sj(w+1) < ŝw+1 implies that f(ŝw+1, x) > 1. And because Rj(t+1)(ŝw+1)/Rk(w+1)(ŝw+1) = x
by the definition of ŝw+1, we also know that the (time w + 1 version of the) right-hand
side of equation (A-2) is > 1 when evaluated at sj(w+1) = ŝw+1. From Corollary A-2, the
equilibrium sj(w+1) must be strictly greater than ŝw+1. But this contradicts the assumption
that sj(w+1) < ŝw+1.

Combining the results of the last two paragraphs, we have seen that a transition cannot
occur unless Assumption 1 holds.

Now consider whether the share of innovation or extraction begins decreasing first. At
the time w where sector k’s share of extraction begins increasing, sjw > ŝw which means
that sjw > 0.5. From equation (10), sjw > 0.5 with Rjw/Rkw ≥ Rj(w+1)/Rk(w+1) implies that
sj(w+1) < sjw. Innovation transitions no later than does extraction.

Because ŝw+1 > 0.5 at the time w that sector k begins increasing its share of extraction,
it must be true that sjw > 0.5 at the last time w at which sector j’s share of extraction has
been increasing continuously since time t.

Now consider a case in which σ > 1 with sjt ≥ 0.5 and in which Assumption 1 holds
at time t. By Lemma A-7, ŝt+1 < 0.5 at time t. Assume that Rjt/Rkt < Rj(t+1)/Rk(t+1)

and sjt/skt < sj(t+1)/sk(t+1) so that it makes sense to speak of potentially transitioning from
sector j to sector k. Because sjt ≥ 0.5, average technology in j (weakly) improves relative
to that in k, so Assumption 1 will still hold at time t+ 1. Therefore ŝt+2 ≤ 0.5.

Consider st+2. It is easy to see from equations (A-1) and (14) that Πjt/Πkt increases
in Aj(t−1)/Ak(t−1), both directly and through the resource market’s size. And we know that
Ajt/At < Aj(t+1)/Ak(t+1) because sj(t+1) > sjt and sjt > 0.5. From Corollary A-2, we have
sj(t+2) > sj(t+1). Therefore sj(t+2) > ŝt+2 and Rj(t+1)/Rk(t+1) < Rj(t+2)/Rk(t+2). Proceeding
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by induction, we see that sector j’s shares of research and extraction increase forever. A
transition cannot happen after time t.

Proof of Corollary 3

The case with σ < 1 follows directly from Proposition 2.
Consider the case with σ ∈ (1, ε) and assume that Aj(t−1) > Ak(t−1) and ν ≥ 0.5. Then

Assumption 1 holds. To satisfy equation (14) at sjt = 0.5, it must be true that Rjt > Rkt.
Using this in equation (A-1) with Aj(t−1) > Ak(t−1), we see that Πjt > Πkt at sjt = 0.5. From
Corollary A-2, we must have sjt > 0.5. Applying Proposition 2, the economy is locked-in to
sector j.

Proof of Proposition 4

Consider equation (14). The left-hand side is equal to unity when Rjt = Rkt, the right-hand
side increases in Ajt, and the right-hand side decreases in Akt.

If Ψj = Ψk and ν > 0.5, then the right-hand side of equation (14) can equal unity if
and only if Ajt < Akt. For σ < 1, Akt > Ajt with Rjt = Rkt and Ψj = Ψk implies from
equation (A-1) that Πjt > Πkt when evaluated at sjt = 0.5, so in equilibrium sjt > 0.5.

If ν = 0.5 and Ψj > Ψk, then the right-hand side of equation (14) can equal unity if
and only if Ajt < Akt. For σ < 1, Akt > Ajt with Rjt = Rkt and Ψj > Ψk implies from
equation (A-1) that Πjt > Πkt when evaluated at sjt = 0.5, so in equilibrium sjt > 0.5.

Proof of Proposition 5

Along a path with balanced growth in technology, Aj(t+1)/Ak(t+1) = Ajt/Akt. From equa-
tion (3), this holds if and only if sjt = 0.5. For equation (A-1) to hold at sjt = 0.5 along a
balanced growth path, it must be the case that Rjt/Rkt is constant along this path. This,
in turn, implies that sj(t+1) = ŝt+1, which means that ŝt+1 = 0.5.

Imposing equality in inequality (A-17) and using σ < 1 and ŝt+1 = 0.5, we see that
Ψj > Ψk if and only if Aj(t−1) > Ak(t−1) at all times along this path. Using Ψj > Ψk,
Aj(t−1) > Ak(t−1), and sjt = 0.5 in equation (A-1) with σ < 1, we have that Rjt > Rkt. By
similar logic, if Ψj = Ψk, then Aj(t−1) = Ak(t−1) along this path and Rjt = Rkt, and from
equation (14), ν = 0.5.
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Now consider the growth rate of Rjt and Rkt along the balanced growth path. Note that

Yjt =

(
κ [Rjt]

σ−1
σ + (1− κ)

{[
1− κ
κ

pjRt

] ασ
σ(1−α)+α

[
Rjt

Ajt

] α
σ(1−α)+α

Ajt

}σ−1
σ ) σ

σ−1

=Ajt

(
κ

[
Rjt

Ajt

]σ−1
σ

+ (1− κ)


[

1− κ
κ

(
Rjt

Ψj

)1/ψ
] ασ
σ(1−α)+α [

Rjt

Ajt

] α
σ(1−α)+α


σ−1
σ ) σ

σ−1

,AjtỸjt.

Substituting into equation (14), we have:

1 =
ν

1− ν

[
Ỹjt

Ỹkt

] 1
σ
− 1
ε [
Ajt
Akt

]− 1
ε
[
Rjt/Ajt
Rkt/Akt

]−1/σ [
pjRt
pkRt

]−1

.

Equate to time t+ 1 variables:[
Ỹjt

Ỹkt

] 1
σ
− 1
ε [
Ajt
Akt

]− 1
ε
[
Rjt/Ajt
Rkt/Akt

]−1/σ (
pjRt
pkRt

)−1

=

[
Ỹj(t+1)

Ỹk(t+1)

] 1
σ
− 1
ε [
Aj(t+1)

Ak(t+1)

]− 1
ε
[
Rj(t+1)/Aj(t+1)

Rk(t+1)/Ak(t+1)

]−1/σ (pjR(t+1)

pkR(t+1)

)−1

.

Recognizing that relative technology and relative resource extraction are constant along a
balanced growth path, we have:

Ỹjt

Ỹkt
=
Ỹj(t+1)

Ỹk(t+1)

,

which implies

Ỹj(t+1)

Ỹjt
=
Ỹk(t+1)

Ỹkt
.

Because this must hold for all time intervals once we reach the balanced growth path, each
ratio must equal some constant, which we label χ. So we seek a constant χ such that
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Ỹj(t+1) = χỸjt. Analyze:

Ỹj(t+1) =

(
κ

[
Rj(t+1)

Aj(t+1)

]σ−1
σ

+ (1− κ)


[

1− κ
κ

(
Rj(t+1)

Ψj

)1/ψ
] ασ
σ(1−α)+α [

Rj(t+1)

Aj(t+1)

] α
σ(1−α)+α


σ−1
σ ) σ

σ−1

=

(
κ

[
Rjt

Ajt

Rj(t+1)/Rjt

Aj(t+1)/Ajt

]σ−1
σ

+ (1− κ)


[

1− κ
κ

(
Rjt

Ψj

)1/ψ (Rj(t+1)

Rjt

)1/ψ
] ασ
σ(1−α)+α [

Rjt

Ajt

Rj(t+1)/Rjt

Aj(t+1)/Ajt

] α
σ(1−α)+α


σ−1
σ ) σ

σ−1

.

(A-18)

There exists χ such that this equals χỸjt if and only if

Rj(t+1)/Rjt

Aj(t+1)/Ajt
=

(
Rj(t+1)

Rjt

) 1
ψ

ασ
σ(1−α)+α

(
Rj(t+1)/Rjt

Aj(t+1)/Ajt

) α
σ(1−α)+α

⇔
(

1

1 + ηsjtγ

) σ(1−α)
σ(1−α)+α

=

(
Rj(t+1)

Rjt

) 1
ψ
ασ−σ(1−α)
σ(1−α)+α

⇔
Rj(t+1)

Rjt

= (1 + 0.5ηγ)
ψ

ψ− α
1−α ,

where the last line recognizes that sjt = 0.5 along a balanced growth path. The same
condition must hold for Rk(t+1)/Rkt.

Proof of Proposition A-1

The tâtonnement adjustment process generates, to constants of proportionality, the following
system for finding the equilibrium within period t:

Ṙjt =Hj

(
Gj(Rjt, Rkt)− 1

)
,

Ṙkt =Hk

(
Gk(Rjt, Rkt)− 1

)
,

where dots indicate time derivatives (where the fictional time for finding an equilibrium here
flows within a period t), Hi(0) = 0, and H ′i(·) > 0, for i ∈ {j, k}. The system’s steady state
occurs at the equilibrium values, which I denote with stars. Linearizing around the steady
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state, we have[
Ṙjt

Ṙkt

]
≈

[
∂Gj(Rjt,Rkt)

∂Rjt
H ′j

∂Gj(Rjt,Rkt)

∂Rkt
H ′j

∂Gk(Rjt,Rkt)

∂Rjt
H ′k

∂Gk(Rjt,Rkt)

∂Rkt
H ′k

][
Rjt −R∗jt
Rkt −R∗kt

]
= G

[
Rjt −R∗jt
Rkt −R∗kt

]
, (A-19)

where G is the 2×2 matrix of derivatives, each evaluated at (R∗jt, R
∗
kt). The results of

Lemma A-4 imply that the trace of G is negative, in which case at least one of the two eigen-
values must be negative. Lemma A-5 shows that det(G) > 0, which means that both eigen-
values must be strictly negative. The linearized system is therefore globally asymptotically
stable, and, by Lyapunov’s Theorem of the First Approximation, the full nonlinear system
is locally asymptotically stable around the equilibrium. We have tâtonnement-stability if
det(G) > 0.

Proof of Corollary A-2

Now treat equations (12) and (13) as functions of Rjt, Rkt, and sjt (recognizing that skt =
1− sjt):

1 = κ ν

[
Yt(Rjt, Rkt, sjt)

Yjt(Rjt, sjt)

]1/ε [
Yjt(Rjt, sjt)

Rjt

]1/σ [
Rjt

Ψj

]−1/ψj

,Ĝj(Rjt, Rkt; sjt),

1 = κ (1− ν)

[
Yt(Rjt, Rkt, sjt)

Ykt(Rkt, sjt)

]1/ε [
Ykt(Rkt, sjt)

Rkt

]1/σ [
Rkt

Ψk

]−1/ψk

,Ĝk(Rjt, Rkt; sjt).

This system of equations implicitly defines Rjt and Rkt as functions of the parameter sjt.

Define the matrix Ĝ analogously to the matrix G. Using the implicit function theorem, we
have

∂Rjt

∂sjt
=
−∂Ĝj
∂sjt

∂Ĝk
∂Rkt

+
∂Ĝj
∂Rkt

∂Ĝk
∂sjt

det(Ĝ)
and

∂Rkt

∂sjt
=
−∂Ĝk
∂sjt

∂Ĝj
∂Rjt

+ ∂Ĝk
∂Rjt

∂Ĝj
∂sjt

det(Ĝ)
.

Interpreting equation (A-1) as implicitly defining sjt as a function of Rjt and Rkt, we have:

∂sjt
∂Rjt

= −
∂[Πjt/Πkt]

∂Rjt

∂[Πjt/Πkt]

∂sjt

and
∂sjt
∂Rkt

= −
∂[Πjt/Πkt]

∂Rkt
∂[Πjt/Πkt]

∂sjt

,

and thus

∂[Πjt/Πkt]

∂Rjt

= −∂[Πjt/Πkt]

∂sjt

∂sjt
∂Rjt

and
∂[Πjt/Πkt]

∂Rkt

= −∂[Πjt/Πkt]

∂sjt

∂sjt
∂Rkt

.
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Using these expressions, consider how the right-hand side of equation (A-2) changes in sjt:

d[Πjt/Πkt]

dsjt
=
∂[Πjt/Πkt]

∂sjt
+
∂[Πjt/Πkt]

∂Rjt

∂Rjt

∂sjt
+
∂[Πjt/Πkt]

∂Rkt

∂Rkt

∂sjt

=
∂[Πjt/Πkt]

∂sjt

− ∂[Πjt/Πkt]

∂sjt

∂sjt
∂Rjt

−∂Ĝj
∂sjt

∂Ĝk
∂Rkt

+
∂Ĝj
∂Rkt

∂Ĝk
∂sjt

det(Ĝ)
− ∂[Πjt/Πkt]

∂sjt

∂sjt
∂Rkt

−∂Ĝk
∂sjt

∂Ĝj
∂Rjt

+ ∂Ĝk
∂Rjt

∂Ĝj
∂sjt

det(Ĝ)

∝− ∂Ĝj

∂Rjt

∂Ĝk

∂Rkt

+
∂Ĝj

∂Rkt

∂Ĝk

∂Rjt

− ∂sjt
∂Rjt

∂Ĝj

∂sjt

∂Ĝk

∂Rkt

+
∂sjt
∂Rjt

∂Ĝj

∂Rkt

∂Ĝk

∂sjt
− ∂sjt
∂Rkt

∂Ĝk

∂sjt

∂Ĝj

∂Rjt

+
∂sjt
∂Rkt

∂Ĝk

∂Rjt

∂Ĝj

∂sjt

=−
(
∂Ĝj

∂Rjt

∂Ĝk

∂Rkt

+
∂Ĝj

∂sjt

∂sjt
∂Rjt

∂Ĝk

∂Rkt

+
∂Ĝj

∂Rjt

∂Ĝk

∂sjt

∂sjt
∂Rkt

)
+
∂Ĝj

∂Rkt

∂Ĝk

∂Rjt

+
∂Ĝj

∂sjt

∂sjt
∂Rkt

∂Ĝk

∂Rjt

+
∂Ĝj

∂Rkt

∂Ĝk

∂sjt

∂sjt
∂Rjt

=− det(G)/H ′.

The third expression factored det(Ĝ), which is positive by the proof of Proposition A-1
for a corner solution in sjt, and it also factored ∂[Πjt/Πkt]/∂sjt, which is negative. The
final equality recognizes that the only difference between the equations with a hat and the
equations without a hat are that the equations without a hat allow sjt to vary with Rjt

and Rkt. Lemma A-5 showed that det(G) > 0. Thus the right-hand side of equation (A-2)
strictly decreases in sjt.
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