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1 Introduction

Shipping policies are an important component of pricing in electronic commerce. Many
online retailers offer a variety of shipment options in terms of the time of delivery, and
the rates are often steeply increasing for earlier deliveries. It is common also to offer
consumers free shipping over a given threshold value of purchases. In some cases, free
delivery is embodied in a two-part-tariff construction. Amazon, for example, offers
its customers free two-day shipping via its Prime program in exchange for a flat an-
nual membership fee. Allegations concerning promotional offers that include earlier or
more affordable shipping have stirred controversy about the role delivery policies play
in sellers’ revenue-management strategies. Recently, two plaintiffs separately claimed
that Amazon had been actually tending to charge Prime customers the same amount
as non-members by including regular shipping costs in the price offered for members,
advertising the inflated price as involving “free” shipping.1 The prevalence of such
business practices suggests that shipping policies may, in fact, represent a subtle form
of price discrimination—those consumers who exhibit higher valuations of a good can
be enticed into paying a higher charge for it in exchange for earlier delivery.

In this paper, I argue that delayed deliveries constitute an extremely effective way
of surplus extraction, indeed. I revisit the classic adverse-selection model of Mussa
and Rosen (1978), in which a monopolist seeks to maximize her profits by offering a
non-linear pricing schedule to a buyer whose valuation is private information, and
I add a third component to the schedule beyond price and quantity: the seller can
determine the time at which the good is delivered to the buyer. Under the assumption
that the buyer discounts future payoffs but the seller does not, I demonstrate that the
monopolist can extract almost all of the surplus from trade, while offering the same
menu of efficient allocations as though she had complete information about the buyer’s
valuation.2

The key to almost-full surplus extraction lies in the monopolist’s ability to offer
such a schedule that the time of shipment is decreasing in the buyer’s valuation: lower
types obtain less of the good and they obtain it later. Delayed deliveries thus discour-
age higher-type buyers from purchasing menus designed for lower types. Since the
seller is perfectly patient, she is not affected adversely by late delivery and the corre-
sponding delay in payments. To the contrary: this additional dimension of price dis-
crimination provides her with so much effective market power as to be an almost-
perfect substitute for complete information about the buyer’s valuation.

This sharp conclusion partially generalizes to the case in which the seller, too, dis-
counts delayed payoffs. I show that if the monopolist is substantially more patient
than the buyer, then the former can still exploit the difference between time prefer-

1Burke v. Amazon Services LLC and Ekin v. Amazon Services LLC. The court dockets corresponding
to these lawsuits are available at https://dockets.justia.com/docket/washington/wawdce/
2:2014cv00335/199396 and https://dockets.justia.com/docket/washington/wawdce/
2:2014cv00244/198873, respectively. Date of access: December 12, 2016.

2Formally, if π∗ denotes the optimal level of the seller’s expected profits under complete in-
formation, then she can obtain at least π∗ − ε for any ε > 0 by designing a suitable delivery
schedule, even if she is unaware of the buyer’s valuation.
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ences and improve upon the benchmark standard mechanism derived by Mussa and
Rosen (1978), even if she is not perfectly patient. However, if the monopolist is less
patient than or as patient as the buyer (as measured by the relative magnitude of their
discount factors), then she cannot do better than the standard mechanism. Manufactur-
ers of durable goods, such as electronics, appliances, and furniture, plausibly exhibit
a greater degree of patience relative to the buyers of these goods than do retailers of
non-durable goods such as perishable foodstuffs. Correspondingly, the optimal design
of shipping policies bears more relevance to enhancing price discrimination in the sale
of durables.

My paper fits into two main strands of literature. First, a variety of studies on mech-
anism design have exhibited distinct channels through which a revenue-maximizing
principal can partially or fully enhance the extraction of surplus from trade, includ-
ing valuations correlated among multiple buyers (Crémer and McLean, 1985, 1988;
McAfee and Reny, 1992),3 the seller’s control over the private information the buyer
possesses (Lewis and Sappington, 1994; Bergemann and Pesendorfer, 2007; Eső and
Szentes, 2007; Bergemann and Wambach, 2015), refund contracts (Courty and Li, 2000;
Akan et al., 2015), and segmenting the market via third-degree price discrimination
(Bergemann et al., 2015).4 The current paper highlights temporal delays in the shipment
of allocations as not only another powerful channel of surplus extraction, but also one
that does not presuppose any additional capability on the seller’s part—such as pos-
sessing supplementary information or controlling that of the buyer—beyond simply
being able to select and commit to the time at which the allocation is delivered.5

Second, a recurrent and robust prediction of the literature on bilateral bargaining
is that relative patience represents a strategic advantage. Under the unique subgame-
perfect Nash equilibrium outcome in the bargaining situation presented by Rubinstein
(1982), both the buyer’s and the seller’s payoffs are increasing in their own discount
factors and decreasing in their respective counterparties’. Chatterjee and Samuelson
(1987) extend this result to a two-sided incomplete-information setting and show that
the buyer is likelier to benefit from trade the more patient he is or the less patient the
seller is. My results reinforce this key intuition about the strategic power of patience in
an environment in which the monopolist makes unilateral offers to the buyer and no
bargaining is involved: Perfect indifference between current payoffs and future ones
endows the seller with an almost-perfect ability to extract the full surplus, whereas she
cannot benefit at all from the opportunity to delay shipments if she is at most as patient
as the buyer.

The paper proceeds as follows. Section 2 describes the model and defines the no-
tion of an optimal mechanism. In Section 3, I show that the seller is able to expropriate
almost all of the surplus from trade provided that she is perfectly patient. Section 4 an-
alyzes the case in which the monopolist is impatient. The nature of the optimal mecha-

3However, Neeman (2004) and Heifetz and Neeman (2006) raise caveats concerning how much
the principal can really profit from correlation between the agents’ types.

4For a comprehensive literature review on price discrimination, see Stole (2007).
5Hörner and Samuelson (2011) study a related problem in which it is the buyers who strategi-
cally choose the time of purchase.
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nism then depends on whether she is less or more patient than the buyer. In the former
case, the optimal mechanism involves no delays and coincides with the standard mech-
anism derived by Mussa and Rosen (1978). However, if the seller is sufficiently more
patient than the buyer (yet not perfectly so), then the standard mechanism ceases to
be optimal: she can achieve greater profits by introducing delays in the delivery of the
allocation at the lower end of the type distribution. Section 5 proposes an alternative
to posting non-linear pricing schemes in a setting that resembles Dutch auctions and
circumvents the direct screening of the buyer for his valuation of the good. In addi-
tion, it is here that I discuss the problem of time inconsistency associated with such a
dynamic auction-like procedure. Section 6 concludes. A number of the formal proofs
are relegated to the Appendix, while others appear in the main text.

2 Model

2.1 Setup

Consider a mechanism-design problem in which a principal (she) seeks to supply the
agent (he) with a consumption good in order to maximize her revenues net of produc-
tion costs (cf. Mussa and Rosen, 1978).6 The extent to which the buyer values the good
is subject to uncertainty from the principal’s point of view. Specifically, the space of
the agent’s possible types is Θ ≡ [θ,θ], where θ > θ > 0. The agent’s type is private
information and its prior distribution is given by the density function f : Θ → R+. I
assume that f is continuous and f (θ) > 0 for all θ ∈ Θ. Let F : Θ → [0, 1] denote the
corresponding cumulative distribution function.

The agent values the good according to the twice-continuously-differentiable util-
ity function u : R+ × Θ → R+. Pecuniary transfers affect the consumer’s utility in a
quasi-linear way. Therefore, if the agent is of type θ ∈ Θ, consumes q ∈ R+ units, and
is required to pay an overall charge p ∈ R, then his net utility is given as u(q,θ)− p.
For the sake of tractability, I assume that u(q,θ) ≡ θv(q) for each (q,θ) ∈ R+×Θ, where
v : R+ → R+ is a twice-continuously-differentiable function satisfying v′ > 0, v′′ < 0,
v(0) = 0, and limq→∞ v(q) = ∞.7

The good is supplied by the principal, who acts as a monopolist. The cost of pro-
ducing q ∈ R+ units is given as c(q), where c : R+ → R+ is a twice-continuously-
differentiable function satisfying c′(q) > 0 for q > 0, c′′ > 0, and c(0) = c′(0) = 0. If the
principal charges the agent a total of p ∈ R in exchange for q ∈ R+ units of the good,
then her net payoff is p− c(q).

The principal has discretion over deciding when the agent receives the allocation.
The agent prefers obtaining the allocation sooner rather than later and discounts future

6The nouns “principal,” “monopolist,” and “seller,” as well as the nouns “agent,” “consumer,”
and “buyer,” will be used synonymously throughout the paper.

7This utility specification satisfies the usual single-crossing condition:

∂2u(q,θ)
∂q∂θ

= v′(q) > 0 ∀(q,θ) ∈ R+ ×Θ.
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payoffs at a rate δ ∈ (0, 1]. Likewise, the principal discounts future payoffs at a rate
β ∈ (0, 1]. The set of admissible dates at which the good can be delivered is given as
T ≡ [0, t], where t > 0 .8 Consequently, if an agent of type θ ∈ Θ receives q ∈ R+ units
of the good at time t ∈ T in exchange for a transfer payment of p ∈ R units of money,
then his discounted utility is given as δt[θv(q) − p], and the principal’s discounted
payoff is βt[p− c(q)].9

2.2 Mechanisms with Delayed Allocations

Taking account of the fact that the principal and the agent discount future payoffs, I
consider a concept of mechanism according to which the principal seeks to implement
not only a collection of transfer–allocation menus (p(θ), q(θ))θ∈Θ, but also a schedule
(t(θ))θ∈Θ determining when different types of the agent receive the prescribed alloca-
tion.

Definition 1 A mechanism with delayed allocations (or simply a mechanism) is a Borel-
measurable function (p, q, t) : Θ→ R×R+ × T, where p is a transfer policy, q is an alloca-
tion policy, and t is a schedule policy.

Let M denote the space of all mechanisms with delayed allocations. In order to
implement a mechanism with delayed allocations, the principal must ensure that the
incentive-compatibility and voluntary-participation constraints are satisfied. That is, if
the agent is of type θ ∈ Θ, then he must not have an incentive to choose the transfer–
allocation–schedule triple (p(θ̂), q(θ̂), t(θ̂)) designed for a different type θ̂ ∈ Θ \ {θ}
over the one (p(θ), q(θ), t(θ)) designed for him. Moreover, each type’s net payoff must
be at least as large as the agent’s outside option (which is normalized to 0, relying on
the implicit assumption that the agent can always refuse to purchase anything).10

Definition 2 A mechanism with delayed allocations (p, q, t) ∈ M is implementable if the
following incentive-compatibility and participation constraints are satisfied:

δt(θ)[θv(q(θ))− p(θ)] ≥ δt(θ̂)[θv(q(θ̂))− p(θ̂)] ∀θ, θ̂ ∈ Θ, (1)

δt(θ)[θv(q(θ))− p(θ)] ≥ 0 ∀θ ∈ Θ. (2)

From now on, let I ⊆ M denote the space of those mechanisms with delayed al-
locations that are implementable. The following lemma characterizes implementabil-
ity in terms an envelope condition, a monotonicity condition, and participation of the
lowest-type agent:

8The exogenous upper bound on the set of admissible delivery times—meaning that the princi-
pal is not allowed to postpone shipment indefinitely—is imposed chiefly for technical reasons.
The only requirement is that the cap t be finite; apart from that, it can be set as large as desired.

9I assume that the agent has to pay for the allocation at the same he receives it and the principal
has to pay for the inputs used in production at the time the product is delivered. Relaxing this
assumption might give rise to opportunistic waiting for prices to drop on the agent’s part, a
complication well-known in online mechanism design (Friedman and Parkes, 2003).

10By the revelation principle, there is no loss of generality in restricting attention to direct-
revelation mechanisms.
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Lemma 1 Consider a mechanism with delayed allocations (p, q, t) ∈M and let

U(θ) ≡ δt(θ)[θv(q(θ))− p(θ)] ∀θ ∈ Θ (3)

denote the agent’s utility when he reports his type truthfully. Then, (p, q, t) is implementable if
and only if the following conditions hold:

(i) (Envelope condition) The function U satisfies

U(θ) = U(θ) +
∫ θ

θ

δt(s)v(q(s)) ds ∀θ ∈ Θ. (4)

(ii) (Monotonicity) The function θ 7→ δt(θ)v(q(θ)) is non-decreasing.

(iii) (Participation of the lowest-type agent) U(θ) ≥ 0.

Proof See the Appendix. �

If δ = 1 (that is, the agent is perfectly patient), then the requirement that the func-
tion θ 7→ δt(θ)v(q(θ)) be non-decreasing is equivalent to the usual monotonicity con-
dition imposed on the allocation policy q, given that the utility function v is strictly
increasing. However, if δ < 1 (that is, the agent is impatient), then the monotonicity of
the allocation policy q is no longer guaranteed a priori: what matters in this case is that
the discounted utility of consuming the good (normalized by the type parameter) must
be monotone.11

It is worth emphasizing that the principal must be able to commit to the mech-
anism she seeks to implement. This is because once the principal learns the agent’s
type, waiting to deliver the allocation is inefficient ex post. Consider an implementable
mechanism (p, q, t) ∈ I and suppose that t(θ) > 0 for some θ ∈ Θ. If the principal
and the agent are impatient (β < 1 and δ < 1), then they would both benefit from
having the transfer–allocation pair (p(θ), q(θ)) delivered at an earlier date τ ∈ [0, t(θ)),
provided that both the principal’s profits p(θ)− c(q(θ)) and the agent’s net utility from
the good θv(q(θ))− p(θ) are positive. If ex-post renegotiation of the particular outcome
(p(θ), q(θ), t(θ)) of the mechanism between the principal and the agent is permitted,
then the concept of implementability becomes precarious.12 For this reason, I assume
that the principal has the power to commit to delivering the allocation precisely at the
date specified by the mechanism and not sooner.

With this assumption on commitment in mind, the timeline of the model can be
described as follows:

11Indeed, there exist incentive-compatible mechanisms such that θ > θ̂, but q(θ) < q(θ̂), so that
some agent of a higher type receives less than another agent of a lower type—although the
higher type must necessarily obtain the good sooner in order to conform to the monotonicity
of normalized discounted utility: t(θ) < t(θ̂). Likewise, it is possible in principle for an agent
of higher type to be offered consumption at a later date: t(θ) > t(θ̂), but he must then be
offered more: q(θ) > q(θ̂).

12This problem is reminiscent of the conjecture of Coase (1972), the connection to which I will
revisit infra in Subsection 4.3.
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(1) Nature draws a type θ ∈ Θ according to the density f and reveals it privately to
the agent.

(2) The principal offers the agent a mechanism (p, q, t) ∈M.

(3) The agent reports a type θ̂ ∈ Θ to the principal.

(4) At time t(θ̂), the principal delivers the agent q(θ̂) units of the good and the agent
pays the principal p(θ̂) units of money. Discounted payoffs are realized.

2.3 Optimal Mechanisms

In order to find the mechanism that yields the greatest ex-ante expected discounted
profits among all implementable mechanisms with delayed allocations, the principal
seeks to solve the following problem:

sup
(p,q,t)∈I

{∫ θ

θ

βt(θ)[p(θ)− c(q(θ))] dF(θ)

}
(5)

Definition 3 An implementable mechanism (p◦, q◦, t◦) ∈ I is said to be optimal if it solves
the problem (5) and the supremum of the objective is attained.

3 Patient Principal

In this section, I show that if the principal is perfectly patient (β = 1), but the agent is
not (δ < 1), then the principal can implement the same allocation as though she exactly
knew the agent’s type and, at the same time, she can expropriate almost all of the sur-
plus from trade. Intuitively, the principal can delay allocations designed to lower types,
so that the desirability of higher types’ endogenous alternative options decreases and
almost all of their information rents are “inflated away.” This stark result reveals the
extreme power with which consumers’ impatience can endow the monopolist, who
can exploit this impatience by introducing dynamic shipping policies.

3.1 Efficiency

For each given type, an efficient level of the provision of the good is characterized by
the property that it maximizes the surplus from trade between the principal and the
agent. This surplus stems from overall social welfare brought about by consumption
and production: the agent’s utility from enjoying the good net of the principal’s costs
of producing it.

Definition 4 A Borel-measurable function q∗ : Θ→ R+ is said to be an efficient allocation
if

q∗(θ) ∈ arg max
q∈R+

{θv(q)− c(q)} ∀θ ∈ Θ.

In order to ensure the existence and interiority of efficient allocations, I impose the
following assumption:
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Assumption 1 The functions v and c are such that

lim
q→∞

{
c′(q)
v′(q)

}
= ∞.

Under this assumption, one can establish the following:

Proposition 1 There exists a unique efficient allocation q∗. Moreover, q∗(θ) > 0 for allθ ∈ Θ

and q∗ is strictly increasing.

Proof Fix θ ∈ Θ. Take q > 0 so large that

c′(q)
v′(q)

> θ

for all q ≥ q, which is possible by Assumption 1. Since

θv′(q)− c′(q) < 0 ∀q ≥ q, (6)

one has thatθv(q)− c(q) < θv(q)− c(q) for all q > q. Since q 7→ θv(q)− c(q) is continuous
on the compact interval [0, q], it has a maximum on this interval, which thus must
be a maximum on R+ as well. By (6), no maximum can occur at q = q. Similarly,
θv′(0)− c′(0) = θv′(0) > 0 implies that no maximum occurs at q = 0. Therefore, the
search for maxima can be restricted to the open interval (0, q), on which the function
is strictly concave. Hence, the maximum is unique and characterized by the first-order
condition

θv′(q∗(θ))− c′(q∗(θ)) = 0.

To see that q∗ is strictly increasing, use the implicit-function theorem:

v′(q∗(θ)) +
[
θv′′(q∗(θ))− c′′(q∗(θ))

]dq∗(θ)
dθ

= 0,

from which it follows that

dq∗(θ)
dθ

= − v′(q∗(θ))
θv′′(q∗(θ))− c′′(q∗(θ))

> 0,

given that v′ > 0, v′′ < 0, and c′′ > 0. �

3.2 Full Surplus Extraction with Complete Information

Suppose for a moment that both the principal and the agent are perfectly patient (β =
δ = 1) and that the principal is able to directly observe the agent’s type. Because of
perfect patience, the timing of the allocation no longer plays a role. Moreover, given the
principal’s complete information about the agent’s type, the incentive-compatibility
constraints are no longer relevant and can be omitted—only voluntary participation
must be ensured. Formally, the principal seeks to solve the following problem:

sup
(p,q):Θ→R×R+

{∫ θ

θ

[p(θ)− c(q(θ))] dF(θ)

}
(7)
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s.t. θv(q(θ))− p(θ) ≥ 0 ∀θ ∈ Θ,
(p, q) : Θ→ R×R+ is Borel measurable.

The allocation implemented by the principal is then the efficient allocation and the
transfer payments are such that no surplus is left for the agent of any type.

Proposition 2 The efficient allocation q∗, together with the transfer policy

p∗(θ) ≡ θv(q∗(θ)) ∀θ ∈ Θ

that leads to the expropriation of all of the surplus from trade by the principal, is a solution to
(7).

Proof In optimum, the participation constraint must bind for (almost) all θ ∈ Θ.
Plugging the binding participation constraint into the objective leads to∫ θ

θ

[θv(θ)− c(q(θ))] dF(θ).

Pointwise maximization of the integrand leads to the desired conclusion. �

Now suppose that the principal offers the efficient allocation q∗ but, instead of ex-
propriating all of the surplus, she leaves the agent with a small net utility of ε ≥ 0
uniformly across all types. I call such transfer–allocation policies ε-optimal:

Definition 5 Let ε ≥ 0 and q∗ be the efficient allocation, and define

p∗ε (θ) = θv(q∗(θ))−ε.

Then, the transfer–allocation policy (p∗ε , q∗) : Θ→ R×R+ is said to be εεε-optimal.

3.3 Approximate Surplus Extraction with Incomplete Information

If the principal had complete information about the agent’s type, then—as Proposition
2 has shown—she could provide the efficient allocation q∗ while expropriating all of
the surplus. To wit, she would be able to implement a 0-optimal policy according to
the terminology introduced in Definition 5. The next result reveals that consumers’
impatience endows a fully patient monopolist with almost as much effective power as
complete information: even if the agent’s type is private information, the principal can
get arbitrarily close to expropriating all of the surplus from all agent types by relying
on the agent’s intertemporal preferences.

Proposition 3 Suppose that β = 1 and δ < 1. For a given ε > 0, let (p∗ε , q∗) be an ε-optimal
policy. Then, there exists a Borel-measurable schedule policy t∗ε : Θ → T such that (p∗ε , q∗, t∗ε )
is an implementable mechanism with delayed allocations. Such a schedule policy is given as
follows:13

t∗ε (θ) ≡
∫ θ

θ

v(q∗(s))
(− log δ)ε

ds ∀θ ∈ Θ. (8)

13In order to ensure that t∗ε takes values in T ≡ [0, t], one would potentially need to increase
the exogenous cap t for smaller values of ε.

8



Proof Fix ε > 0 and a ε-optimal transfer–allocation policy (p∗ε , q∗). By the definition
of ε-optimality, one has that

θv(q∗(θ))− p∗ε (θ) = ε > 0,

so that the participation constraint (2) is satisfied.
Now fix θ, θ̂ ∈ Θ and consider the right-hand side of the incentive-compatibility

constraint (1) for (p∗ε , q∗, t∗ε ):

δt∗ε (θ̂)[θv(q∗(θ̂))− p∗ε (θ̂)] = exp

[
−1
ε

∫ θ

θ̂

v(q∗(s)) ds

][
(θ− θ̂)v(q∗(θ̂)) +ε

]
.

Differentiating this quantity with respect to θ̂ yields, after some rearrangements, the
following:

exp

[
−1
ε

∫ θ

θ̂

v(q∗(s)) ds

]
(θ− θ̂)

[
1
ε

v(q∗(θ̂))2 + v′(q∗(θ̂))
dq∗(θ̂)

dθ̂

]
.

Given that v′ > 0 and that the derivative of q∗ is strictly positive (see Proposition 1),
this expression is positive if θ̂ < θ, is negative if θ̂ > θ, and vanishes if θ̂ = θ. This
implies that the right-hand side of (1),

δt∗ε (θ̂)[θv(q∗(θ̂))− p∗ε (θ̂)]

is maximized at θ̂ = θ, so that incentive compatibility is satisfied. �

From (8), it is evident that t∗ε (θ) = 0, so that the highest type receives the allocation
immediately. Observe also that t∗ε is non-increasing, so that lower types obtain the allo-
cation later. Delaying the provision of the efficient allocation q∗ for lower types is a con-
venient way for the principal to make downward misreports unprofitable, thereby “in-
flating away” almost all of higher types’ information rents and increasing the amount
of virtual surplus she can extract from them.14

The economic intuition behind the formula (8) can be understood as follows. Sup-
pose for a moment that the ε-optimal transfer–allocation policy (p∗ε , q∗) is subject to no
delay. Then, by construction, an agent of type θ ∈ Θ gains a net utility level of ε. If he
misreports his type to be θ̂ ∈ Θ, then his net utility is

θv(q∗(θ̂))− p∗ε (θ̂) = (θ− θ̂)v(q∗(θ̂)) + θ̂v(q∗(θ̂))− p∗ε (θ̂) = (θ− θ̂)v(q∗(θ̂)) +ε,

14A caveat ought to be mentioned at this point. If the principal and the agent discount future
payoffs differently because the former is patient and the latter is not, then the implicit as-
sumption of transferable utility underlying in the notion of total social surplus is precarious—
a payment made at a given future date affects the two parties’ discounted utilities differently.
For this reason, it is worth emphasizing that what the notion of “efficiency” of the allocation
q∗ represents in this context is that this is the profit-maximizing allocation that the principal
would implement if she had complete information about the agent’s type. It is not meant to
imply that this allocation is welfare-maximizing, all the more so because the principal’s wel-
fare and the agent’s welfare are no longer directly comparable due to the differences between
their intertemporal preferences.
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which is strictly greater than ε provided that θ̂ < θ. Hence, the ε-optimal transfer–
allocation policy (p∗ε , q∗) is not implementable without delays, as all types (except
for the lowest one) have an incentive to distort their type reports downwards. Sup-
pose now that the principal tries implementing theε-optimal transfer–allocation policy
(p∗ε , q∗) using a schedule policy t∗ε : Θ → T. Letting X∗ε (θ) ≡ δt∗ε (θ), the utility of type θ
is X∗ε (θ)ε if he tells the truth, whereas it is

X∗ε (θ̂)[(θ− θ̂)v(q∗(θ̂)) +ε]

if he reports θ̂ < θ instead. Letting ∆(θ̂,θ) denote the gain from distorting the report
downward, the benefit of misreport normalized by the size of the misreport is given as

∆(θ̂,θ)

θ− θ̂
=

X∗ε (θ̂)[(θ− θ̂)v(q∗(θ̂)) +ε]− X∗ε (θ)ε

θ− θ̂
= X∗ε (θ̂)v(q∗(θ̂))− X∗ε (θ)− X∗ε (θ̂)

θ− θ̂
ε.

Now, “local” incentive compatibility requires that this “per-unit” benefit of misreport
be of “second order” and vanish as θ̂ draws close to θ.15 Assuming that X∗ε is differen-
tiable, this requirement can be expressed as

lim
θ̂↑θ

∆(θ̂,θ)

θ− θ̂
= X∗ε (θ)v(q∗(θ))− dX∗ε (θ)

dθ
ε = 0.

This differential equation has the solution

X∗ε (θ) = X∗ε (θ) exp

[
−1
ε

∫ θ

θ

v(q∗(s)) ds

]
.

Since there is no reason to distort the highest type’s date of delivery (this would only
result in a uniform upward shift in the schedule policy without affecting reporting
incentives), one can set t∗ε (θ) = 0, so that X∗ε (θ) = 1. Taking logarithms and recalling
that X∗ε (θ) = δt∗ε (θ) yield (8).

4 Impatient Principal

Now I relax the assumption imposed on the patience of the principal and consider
again the general case in which β ∈ (0, 1] and δ ∈ (0, 1]. In order to represent the prob-
lem of finding the optimal mechanism (according to Definition 3) in a more tractable
form, I first define an auxiliary problem that provides an alternative characterization
of optimality.

4.1 Auxiliary Problem

I begin by defining a function J : R+ → R+ as J(x) ≡ c ◦ v−1(x) for all x ≥ 0.16 For later
reference, it is useful to record several properties of this function:

15Using Landau’s order notation, it must be the case that ∆(θ̂,θ) = o(θ− θ̂).
16Since v is strictly increasing, v(0) = 0, and limq→∞ v(q) = ∞, it follows that v is bijective and

hence invertible.
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Lemma 2 The function J ≡ c ◦ v−1 satisfies the following conditions:

(i) It is twice-continuously-differentiable, J(0) = J′(0) = 0, J′(x) > 0 for x > 0, and J′′ > 0.

(ii) For any w ≥ 0, the function

y 7→ y× J
(

w
y

)
is non-increasing on the interval (0, ∞). In fact, it is constant if w = 0 and it is strictly
decreasing if w > 0.

(iii) If w > 0, then

lim
y↓0

{
y× J

(
w
y

)}
= ∞. (9)

Proof See the Appendix. �

I now introduce an alternative space of decision variables for the principal. Let17

W ≡ {(W, t) |W : Θ→ R+ is non-decreasing,
t : Θ→ T is Borel measurable}.

The main idea behind this alternative space is that for an implementable mechanism
(p, q, t) ∈ I, W substitutes for the agent’s normalized discounted utility from the good:

W(θ) ≡ δt(θ)v(q(θ)) ∀θ ∈ Θ,

which must be non-decreasing by Lemma 1. With this alternative space of decision
variables, I define an auxiliary problem as follows:

Definition 6 The auxiliary problem is defined as the following maximization program:

sup
(W,t)∈W

{∫ θ

θ

(
β

δ

)t(θ)

f (θ)

[
θW(θ)−

∫ θ

θ

W(s) ds− δt(θ) J
(

W(θ)
δt(θ)

)]
dθ

}
.

A pair (W◦, t◦) ∈W is said to solve the auxiliary problem if it attains the supremum.

The following proposition establishes that solving the auxiliary problem and find-
ing the optimal implementable mechanism are one and the same.

Proposition 4 The optimal mechanism according to Definition 3 and the auxiliary problem
according to Definition 6 are related as follows:

17Note that the measurability of the function W need not be stipulated separately, as a mono-
tone function is always Borel measurable (Folland, 1999, p. 48).
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(i) Suppose that (W◦, t◦) ∈W solves the auxiliary problem and define

q◦(θ) ≡ v−1
(

W◦(θ)
δt◦(θ)

)
∀θ ∈ Θ,

p◦(θ) ≡ 1
δt◦(θ)

[
θW◦(θ)−

∫ θ

θ

W◦(s) ds

]
∀θ ∈ Θ.

Then, (p◦, q◦, t◦) ∈ I and (p◦, q◦, t◦) is an optimal mechanism.

(ii) Conversely, suppose that (p◦, q◦, t◦) ∈ I is an optimal mechanism and define

W◦(θ) ≡ δt◦(θ)v(q◦(θ)) ∀θ ∈ Θ.

Then, (W◦, t◦) ∈W and (W◦, t◦) solves the auxiliary problem.

Proof See the Appendix. �

Before proceeding, it is useful to rewrite the maximand corresponding to the aux-
iliary problem into a slightly different form that will prove useful later.

Lemma 3 For any (W, t) ∈ W, the objective of the auxiliary problem can be rewritten as
follows:∫ θ

θ

(
β

δ

)t(θ)

f (θ)

[
θW(θ)−

∫ θ

θ

W(s) ds− δt(θ) J
(

W(θ)
δt(θ)

)]
dθ.

=

∫ θ

θ

{(
β

δ

)t(θ)

f (θ)
[
θW(θ)− δt(θ) J

(
W(θ)
δt(θ)

)]
−
[∫ θ

θ

(
β

δ

)t(s)

f (s) ds

]
W(θ)

}
dθ. (10)

Proof Lebesgue – Stieltjes integration by parts for absolutely continuous functions
(see Folland, 1999, p. 108)18 yields that∫ θ

θ

[∫ θ

θ

(
β

δ

)t(s)

f (s) ds

]
W(θ) dθ =

=

[∫ θ

θ

(
β

δ

)t(s)

f (s) ds

][∫ θ

θ

W(s) ds

]∣∣∣∣∣
θ=θ

θ=θ

=0

+

∫ θ

θ

(
β

δ

)t(θ)

f (θ)

[∫ θ

θ

W(s) ds

]
dθ,

18Note that both of the functions

θ 7→
∫ θ

θ

(
β

δ

)t(s)
f (s) ds and θ 7→

∫ θ

θ
W(s) ds

are absolutely continuous on Θ by Proposition 3.35 in Folland (1999). This is because the
integrand s 7→W(s) is measurable and bounded (given that it is non-decreasing on a compact
interval), whereas the integrand s 7→ (β/δ)t(s) f (s) is measurable and integrable, given the
upper bound on the delay t.
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which completes the proof. �

It is intuitively clear that the optimal mechanism cannot involve cross-subsidization,
with or without delay. That is, it is not optimal for the principal to offer such allocations
that she runs losses on some types in order to extract greater profits from other types.
After all, the principal would prefer shutting down unprofitable transfer–allocation
pairs rather than running losses on them. Technically speaking, this condition amounts
to requiring that the maximand of the auxiliary problem in Definition 6 be pointwise
non-negative, which is equivalent to the lack of cross-subsidization given the duality
result embodied in Proposition 4. The following claim formalizes this intuition:

Proposition 5 Suppose that the pair (W◦, t◦) ∈ W solves the auxiliary problem. Then, the
pointwise profit function

θ 7→
(
β

δ

)t◦(θ)
[
θW◦(θ)−

∫ θ

θ

W◦(s) ds− δt◦(θ) J
(

W◦(θ)
δt◦(θ)

)]

is non-negative for every θ ∈ (θ,θ].

Proof See the Appendix. �

4.2 Standard Mechanism

If one assumes that β = δ = 1 (that is, both the principal and the agent are perfectly
patient), then the timing of the transfer–allocation pair loses importance, and the prob-
lem of finding the optimal allocation becomes the classical model of Mussa and Rosen
(1978), which I call the standard mechanism. Given the equivalence result of Proposi-
tion 4, the function in the auxiliary problem W can be identified with v ◦ q, and the
monotonicity condition on W becomes equivalent to the usual monotonicity condition
on the allocation policy q. The particular choice of the schedule policy is irrelevant, so
that it is without loss of generality to assume that delivery occurs immediately. Keep-
ing these simplifications in mind and using the alternative formula for the maximand
of the auxiliary problem in Lemma 3, the standard mechanism can be characterized as
follows:

Definition 7 The standard mechanism (pst, qst, tst) is the optimal mechanism in the case in
which β = δ = 1. It satisfies

qst ∈ arg max
q

{∫ θ

θ

f (θ)
[
θv(q(θ))− c(q(θ))− 1− F(θ)

f (θ)
v(q(θ))

]
dθ

}
(11)

s.t. q : Θ→ R+ is non-decreasing,

with

pst(θ) = θv(qst(θ))−
∫ θ

θ

v(qst(s)) ds ∀θ ∈ Θ,

and tst(θ) = 0 for all θ ∈ Θ.
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As usual, if the agent’s “virtual type” θ 7→ θ − [1 − F(θ)]/ f (θ) is non-decreasing,
then the monotonicity constraint on qst can be omitted and the optimal allocation can
be found through pointwise maximization of the integrand in (11). Otherwise, the opti-
mal allocation policy involves bunching (that is, multiple types being offered the same
allocation) and the monotonicity constraint must be explicitly incorporated via ironing
techniques (Baron and Myerson, 1982; Myerson, 1981; Mussa and Rosen, 1978; Toikka,
2011).

4.3 Very Impatient Principal

In this subsection, I characterize the optimal mechanism in the case in which the prin-
cipal is no more patient than the agent, that is β ≤ δ ≤ 1. Intuition suggests that
since the principal discounts future payoffs to a greater extent than does the agent, the
former cannot benefit from delaying the allocation. This turns out to be precisely the
case:

Proposition 6 If β ≤ δ ≤ 1, then the standard mechanism of Definition 7 is an optimal
mechanism.

Proof Assume first that β = δ and consider any pair (W, t) ∈ W for the auxiliary
problem. Using Lemma 3, the payoff to (W, t) is given as∫ θ

θ

{
f (θ)

[
θW(θ)− δt(θ) J

(
W(θ)
δt(θ)

)]
−
(∫ θ

θ

f (s) ds

)
W(θ)

}
dθ. (12)

This expression is maximized pointwise by setting δt(θ) J(W(θ)/δt(θ)) as low as possible,
and, for a given W(θ) ≥ 0, this is achieved by setting t(θ) = 0 by Lemma 2. Identifying
W with v ◦ q (see Proposition 4) and using the definition of J = c ◦ v−1, the expression
in (12) becomes ∫ θ

θ

f (θ)
[
θv(q(θ))− c(q(θ))− 1− F(θ)

f (θ)
v(q(θ))

]
dθ.

Maximizing this expression with respect to q subject to the restriction that W and thus
q must be non-decreasing gives precisely the standard mechanism.

Now suppose thatβ < δ and let (W◦, t◦) ∈W be a solution to the auxiliary problem.
One then has that the maximum value of the auxiliary problem satisfies∫ θ

θ

(
β

δ

)t◦(θ)

f (θ)

[
θW◦(θ)−

∫ θ

θ

W◦(s) ds− δt◦(θ) J
(

W◦(θ)
δt◦(θ)

)]
dθ

≤
∫ θ

θ

f (θ)

[
θW◦(θ)−

∫ θ

θ

W◦(s) ds− δt◦(θ) J
(

W◦(θ)
δt◦(θ)

)]
dθ

≤
∫ θ

θ

f (θ)

[
θW◦(θ)−

∫ θ

θ

W◦(s) ds− J(W◦(θ))

]
dθ

≤
∫ θ

θ

f (θ)

[
θWst(θ)−

∫ θ

θ

Wst(s) ds− J(Wst(θ))

]
dθ,
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where Wst ≡ v ◦ qst corresponds to the agent’s type-normalized utility from consum-
ing the good in the standard mechanism. The first inequality stems from the facts that
(i) β/δ < 1; and (ii) a solution to the auxiliary problem must involve non-negative
profits pointwise (except possibly at θ) by Proposition 5. The second inequality is due
to Lemma 2. The third inequality follows from the definition of the standard mecha-
nism. Hence, the pair (Wst, 0) corresponding to the standard mechanism in the aux-
iliary problem does at least as well as (W◦, t◦). Clearly, (Wst, 0) is feasible. Therefore,
it must be a solution to the auxiliary problem and thus the standard mechanism is
optimal. �

The intuition behind this proposition is fairly clear. The only reason the principal
would want to delay the delivery of an allocation is to induce high-type agents not to
choose allocations designed for low-type agents. Delayed allocations relax incentive
constraints and inflate high-type agents’ information rents away. However, if the prin-
cipal is less patient than the agent, then she would inflate away her own monopoly
profits even more quickly by delaying the allocation. Hence, the best a very impatient
principal can do is stick with the standard mechanism and immediate delivery.

The result that the optimal allocation involves no delay bears a passing resem-
blance to the result by Stokey (1981); however, the underlying intuition is quite dif-
ferent. Stokey (1981) corroborates the conjecture of Coase (1972): A monopolist loses
her market power if she cannot commit to refraining from selling additional units of
a durable good once she has already supplied the profit-maximizing quantity. As a
result, the only equilibrium that involves buyers having perfectly rational expecta-
tions (in the sense that the monopolist maximizes profits by fulfilling buyers’ expecta-
tions even off the equilibrium trajectory) that satisfy a continuity requirement is one in
which the monopolist saturates the market immediately.19 The conclusions of Stokey
(1981) are driven by lack of commitment: the monopolist effectively plays a game not
only against the buyers but also against her future selves, who would find it optimal
to keep selling the good beyond the profit-maximizing level. The buyers foresee this
pattern, and refuse to buy the good above the price that would prevail in a competi-
tive market. By contrast, the monopolist has perfect commitment by assumption in the
current model. If she is at most as patient as the agent, then the benefits of enhancing
price discrimination by devaluing the endogenous alternative options of higher-type
agents and depreciating their information rents are more than offset by the costs of
delaying the allocation in terms of postponed profits. It is simply because of the un-
profitability of delays—and not the lack of commitment—that an impatient principal
cannot improve upon the standard mechanism and chooses to deliver the allocation
immediately for all types instead.20

19Gul et al. (1986) reach essentially the same conclusion in a model in which the monopolist
posts prices as opposed to determining quantities.

20Also related is the work of Gul and Sonnenschein (1988), who consider a bilateral alternating-
offers bargaining problem, in which the buyer’s valuation is private information and the
seller and the buyer exhibit the same intertemporal preferences. They show that no significant
delays in reaching an agreement occur as long as the time elapsed between offers is short.
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4.4 Moderately Impatient Principal

The construction presented in Subsection 3.3 has shown that a perfectly patient mo-
nopolist selling to an impatient buyer can achieve almost-full expropriation of the sur-
plus from trade by suitably delaying the allocation for lower types, whereas Subsection
4.3 has revealed that she cannot benefit from postponing the allocation if she is no more
patient than the buyer. An interesting intermediate case is one in which the principal is
more patient than the agent, but not perfectly patient; that is, δ < β < 1. The purpose
of this subsection is to provide a characterization of the optimal mechanism in this in-
termediate case and to show that a sufficiently, but not perfectly, patient principal can
still benefit from delaying the allocation.

Observe that the equation (10) presented in Lemma 3 provides two equivalent for-
mulae for the expected profits of the principal in the auxiliary problem. These two
formulae can be used in tandem to characterize the optimal mechanism (invoking the
equivalence result of Proposition 4). If (W◦, t◦) ∈W solves the auxiliary problem, then,
having t◦ fixed, the function W◦ must maximize the integral on the right-hand side
of (10) among all non-decreasing functions W : Θ → R+. Also, having W◦ fixed, the
function t◦ must maximize the integral on the left-hand side of (10) among all Borel-
measurable functions t : Θ → R+. Still, pointwise maximization of the integrand on
the right-hand side with respect to W(θ) with having t◦(θ) fixed is preposterous, be-
cause this procedure ignores the monotonicity constraint. However, since no mono-
tonicity constraint is imposed on the schedule policy, the optimal policy t◦ can be found
by maximizing the integrand on the left-hand side of (10) pointwise with respect to t(θ),
having W◦(θ) fixed. The following proposition summarizes this conclusion.

Proposition 7 Suppose that δ < β < 1. If (W◦, t◦) ∈ W solves the auxiliary problem, then
the following must hold:

βt◦(θ)(− log δ)
1

δt◦(θ)

[
θW◦(θ)−

∫ θ

θ

W◦(s) ds

]

Q βt◦(θ)(− log δ)J′
(

W◦(θ)
δt◦(θ)

)
W◦(θ)
δt◦(θ)

+βt◦(θ)(− logβ)

{
1

δt◦(θ)

[
θW◦(θ)−

∫ θ

θ

W◦(s) ds

]
− J
(

W◦(θ)
δt◦(θ)

)}
(13)

according as t◦(θ) = 0, t◦(θ) ∈ (0, t), or t◦(θ) = t, respectively, for almost every θ ∈ Θ.

Proof Since no monotonicity restriction is imposed on the schedule policy, the inte-
gral on the left-hand side of (10) is maximized if and only if t(θ) maximizes the inte-
grand for almost every θ ∈ Θ given W◦(θ). Hence, the task is to maximize the function

t 7→
(
β

δ

)t
[
θW◦(θ)−

∫ θ

θ

W◦(s) ds− δt J
(

W◦(θ)
δt

)]
(14)

on the compact interval t ∈ [0, t], for almost every θ ∈ Θ. Clearly, a maximum exists,
given that the function in (14) is continuous. Since it is also differentiable, the necessary
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first-order condition must hold for the optimal value t◦(θ). This first-order condition
can be computed to be (13) after some algebraic manipulations. �

Intuitively, the first-order condition (13) expresses the unprofitability of a particular
type of deviation from the optimal mechanism. In order to understand the underlying
economic forces at play, it is useful to recall the equivalence results of Proposition 4,
the definition of J ≡ c ◦ v−1, and the formula (24) for J′ to rewrite (13) as follows:

βt◦(θ)(− log δ)p◦(θ)

≤ βt◦(θ)(− log δ)
c′(q◦(θ))
v′(q◦(θ))

v(q◦(θ)) +βt◦(θ)(− logβ)[p◦(θ)− c(q◦(θ))] (15)

assuming that t◦(θ) ∈ [0, t), so that the exogenous upper bound t is locally irrelevant.
Recall from Proposition 4 that W◦(θ) = δt◦(θ)v(q◦(θ)) is the agent’s normalized dis-
counted utility from consuming the good in the optimal mechanism. Now consider
increasing t◦(θ) slightly while keeping the normalized discounted utility level W◦(θ)
constant. Then, q◦(θ) must increase accordingly: to keep the normalized discounted
utility level constant, a delayed delivery must be accompanied by an increased quan-
tity of the good (cf. n. 11). This increased quantity makes it possible for the principal to
charge a higher price, the marginal benefit of which is reflected by the left-hand side
of (15).21

The marginal cost of introducing a slight delay is twofold. First, the principal’s
profits decrease directly due to discounting, which is reflected by the second term on
the right-hand side of (15). Moreover, as argued above, a delay must be accompanied
by an increased quantity of the good, producing which is costly: this is reflected in
the first term on the right-hand side of (15).22 In optimum, such a deviation from the

21Indeed, note that the agent’s overall utility in the optimal mechanism is given as

U◦(θ) = δt◦(θ)[θv(q◦(θ))− p◦(θ)].

If this overall utility were to be unchanged by a small deviation from t◦(θ) to t◦(θ)+∆t, then,
since W◦(θ) = δt◦(θ)v(q◦(θ)) is unaffected, it must be the case that δt◦(θ) p◦(θ) is unchanged as
well. A differential argument reveals that this requirement amounts to the following:

δt◦(θ)(log δ)p◦(θ)∆t + δt◦(θ)∆p ≈ 0,

or ∆p/∆t ≈ (− log δ)p◦(θ). This shows that the marginal benefit from increasing sales and
introducing further delays at the same time while keeping W◦(θ) constant is approximately
(− log δ)p◦(θ), whose discounted value for the principal is precisely the left-hand side of (15).

22If W◦(θ) = δt◦(θ)v(q◦(θ)) were to be kept constant, then the infinitesimal changes ∆t and ∆q
ought to be related as follows:

∆q
∆t
≈ (− log δ)

v(q◦(θ))
v′(q◦(θ))

. (16)

Moreover, the corresponding change in the cost, originally at the level of c(q◦(θ)), is approxi-
mately

c′(q◦(θ))∆q. (17)

17



schedule policy must be unprofitable, which implies that (15) must hold. In addition,
it must hold with equality if t◦(θ) > 0, because an analogous decrease in delays must
be unprofitable as well.

The first-order condition given in Proposition 7 can be used to establish that the
principal can benefit from introducing delays into the optimal mechanism if she is suf-
ficiently patient, even if she is not perfectly patient. More specifically, the next result
yields that if the standard mechanism satisfies some regularity conditions, then it can-
not be optimal for a principal who is patient enough.

Proposition 8 Suppose that the standard mechanism introduced in Definition 7 is such that
the agent’s “virtual type”

θ 7→ θ− 1− F(θ)
f (θ)

is non-decreasing and the principal obtains positive profits from every type. Then, there exists
some β0 ∈ [δ, 1) such that the standard mechanism is not optimal for a principal with any
discount factor β ∈ (β0, 1).

Proof Define the virtual-type function g : Θ→ R as

g(θ) ≡ θ− 1− F(θ)
f (θ)

∀θ ∈ Θ,

and assume it is non-decreasing. Then, the monotonicity constraint corresponding to
the standard mechanism can be omitted and the integrand of (11) can be maximized
pointwise. Since the principal obtains positive profits from each type by assumption,
it must be the case that qst(θ) > 0 for each θ ∈ Θ, so that the first-order condition
corresponding to pointwise maximization yields

g(θ)v′(qst(θ)) = c′(qst(θ)) ∀θ ∈ Θ.

Defining Wst(θ) ≡ v(qst(θ)) and using the formula (24) for J′, this first-order condition
can be expressed as

g(θ) = J′(Wst(θ)) ∀θ ∈ Θ. (18)

Since g is non-decreasing and J′ is strictly increasing, this confirms that Wst is non-
decreasing as well, so that the monotonicity constraint is redundant, indeed.

Define the profit function of the standard mechanism πst : Θ→ R as

πst(θ) ≡ pst(θ)− c(qst(θ)) = θWst(θ)−
∫ θ

θ

Wst(s) ds− J(Wst(θ)) ∀θ ∈ Θ. (19)

By assumption, πst(θ) > 0 for all θ ∈ Θ. Fix δ < 1 and let

β0 ≡ max
{
δ, exp

[
Wst(θ)(log δ)

f (θ)πst(θ)

]}
.

Combining (16) and (17) and discounting the resulting change in costs according to the prin-
cipal’s time preferences yield the first term on the right-hand side of (15).
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Note that β0 < 1, given that log δ < 0. I claim that if β > β0, then the standard
mechanism is not optimal.

To see this, suppose, for the sake of contradiction, that it is optimal. Then, by Propo-
sition 4, (Wst, 0) solves the auxiliary problem. Applying Proposition 7 to W◦ = Wst,
t◦ ≡ 0, and θ = θ, and using (18) and (19), one can see that the following inequality
must hold:

(− log δ)θWst(θ) ≤ (− log δ)g(θ)Wst(θ) + (− logβ)πst(θ).

Given that g(θ) = θ− 1/ f (θ), one can further conclude that

(− log δ)
f (θ)

Wst(θ) ≤ (− logβ)πst(θ) < (− logβ0)πst(θ) <
(− log δ)

f (θ)
Wst(θ),

which is a contradiction.
That is, the inequality (13) is violated for (W◦, t◦) = (Wst, 0) at θ = θ. By the conti-

nuity of Wst, J, and J′, this inequality will also be violated in some small open interval
around θ. Hence, setting t(θ) = 0 is not optimal for any θ ∈ Θ in this interval, yielding
that pointwise profits can be raised on a set of positive measure by introducing delays.
This means that the standard mechanism cannot be optimal. �

This result reveals that if the principal is sufficiently, but not necessarily perfectly,
patient, then she can improve upon the standard mechanism, provided that the distri-
bution of the agent’s type is such that his virtual type is non-decreasing (so that ironing
is not required) and the standard mechanism serves every type, yielding positive prof-
its to the principal pointwise. The intuition for this result is as follows. In order for
higher types not to choose cheaper allocations designed for lower types, the principal
must keep quantity inefficiently scanty at the lower end of the type distribution in the
standard mechanism. With the possibility of delayed deliveries, however, the princi-
pal can do better: she can increase quantity at the lower end of the distribution and
postpone delivery at the same time in such a way that the overall utility from enjoying
the good is unchanged for each type and incentive compatibility is preserved. Since
payments are made at delivery, the price of such an increased allocation can be raised,
too. If the principal is patient enough, then the additional charges she can extract from
low-type consumers dominate the losses both due to the overall delay in profits she
must endure and due to increased costs of production.

5 Implementation without Screening

Recall from Subsection 2.2 that the timeline of the model is such that the principal
first announces a mechanism with delayed allocations, then she next screens the agent
for his type, and finally the good is delivered at the time prescribed by the particu-
lar mechanism that the principal has chosen and to which she has committed herself.
In the present section, I demonstrate an alternative way of implementation, in which
screening is replaced with the principal offering a flow of transfer–allocation pairs over
time, and the agent is free to accept the prevailing offer at any given time without re-
vealing his type directly. In other words, the principal designs what is reminiscent of a
Dutch auction of transfer–allocation pairs (cf. Hörner and Samuelson, 2011).
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More concretely, consider any implementable mechanism (p, q, t) ∈ I (in the sense
of Definition 2). For any instant of time τ ∈ T ≡ [0, t], let

Θτ ≡ {θ ∈ Θ | t(θ) = τ}

be the set of those types for whom the schedule policy t stipulates that the good be
shipped at time τ (maintaining the possibility that Θτ is empty). Define

Mτ ≡ {(p(θ), q(θ)) |θ ∈ Θτ} ⊆ R×R+,

with the convention that Mτ ≡ ∅ if Θτ = ∅. That is, at each instant of time τ ∈ T,
Mτ is the collection of those transfer–allocation menus that are chosen by types for
which the good is to be delivered at time τ according to the schedule policy t. The
agent is free to choose any transfer–allocation menu from the set Mτ (if this set is non-
empty), provided that he has not made a choice yet at an earlier time τ ′ ∈ [0, τ), or
choose nothing and let time pass further. According to this Dutch-auction-like setting
of implementing the mechanism (p, q, t), the principal’s problem reduces to designing
a correspondence M : T → 2R×R+ , according to which she makes it possible for the
agent to choose any given menu from Mτ , or no menu at all, at any time τ ∈ T. Given
that the mechanism (p, q, t) is implementable, it is straightforward to see that an agent
of type θ ∈ Θ optimally picks the menu (p(θ), q(θ)) from Mt(θ) at time t(θ).

It continues to be crucial for the principal to have the power to commit herself to the
Dutch-auction correspondence M from the outset in this modified setting, too. Indeed,
as time passes, the principal can potentially learn more and more about the agent’s
type due to the sheer observation that he has not claimed the good yet. For example, if
the agent has not bought the good up until time τ ∈ T, then the principal can rule out
types in the set

⋃
τ ′∈[0,τ) Θτ ′ (as those types would have optimally claimed the good

before) and update her prior. If the principal lacked commitment, then she would po-
tentially have incentives to redesign the mechanism based on the posterior distribution
of types in each instant of time, and implementation would unravel. In other words,
the Dutch-auction correspondence associated with a given implementable mechanism
may fail to be time-consistent, so that the principal’s prior commitment is indispensable
for implementation.

In certain cases, nonetheless, the principal is unable to derive substantial profits
from redesigning the mechanism ex post and Dutch-auction-like implementation goes
through even without commitment. One such case is the one in which the principal is
perfectly patient. To show this, I first provide an operationalization of time consistency.

Let (p∗, q∗, t∗) ∈ I be an implementable, though not necessarily optimal, mecha-
nism. For each τ ∈ T, let

Θ
∗
τ ≡ {θ ∈ Θ | t∗(θ) ≥ τ}

be the set of those types of the agent that have not claimed the good before time τ .23

23Note that Θ
∗
τ is a Borel-measurable subset of Θ, as it is the pre-image of the interval [τ , t]

under t∗.
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For any τ ∈ T for which the set Θ∗τ has positive Lebesgue measure, let

f ∗τ (θ) ≡ f (θ)∫
θ̂∈Θ∗τ

f (θ̂) dθ̂
∀θ ∈ Θ

∗
τ

denote the posterior distribution of types from the point of view of the principal who
knows that the agent has not claimed the good before τ . Furthermore, let I∗τ denote
the set of those Borel-measurable functions (p, q, t) : Θ∗τ → R×R+ × [τ , t] that satisfy
incentive compatibility and voluntary participation when the type set is restricted to
Θ
∗
τ ;24 that is,

δt(θ)[θv(q(θ))− p(θ)] ≥ δt(θ̂)[θv(q(θ̂))− p(θ̂)] ∀θ, θ̂ ∈ Θ
∗
τ ,

δt(θ)[θv(q(θ))− p(θ)] ≥ 0 ∀θ ∈ Θ
∗
τ .

Definition 8 For any ε ≥ 0, an implementable mechanism (p∗, q∗, t∗) ∈ I is said to beεεε-con-
sistent if for each τ ∈ T for which Θ

∗
τ has positive Lebesgue measure, one has that∫

θ∈Θ∗τ
βt(θ)[p(θ)− c(q(θ))] f ∗τ (θ) dθ ≤

∫
θ∈Θ∗τ

βt∗(θ)[p∗(θ)− c(q∗(θ))] f ∗τ (θ) dθ+ε

for all (p, q, t) ∈ I∗τ .

In words, the notion of ε-consistency captures the requirement that even if the prin-
cipal learned additional information about the agent’s type through the Dutch-auction-
like construction outlined at the beginning of this section, she must not be able to earn
more than ε on average upon redesigning the mechanism in an incentive-compatible
way.

A particular case of ε-consistency arises when the principal is perfectly patient but
the agent is not.

Proposition 9 Suppose that β = 1 and δ < 1. For a given ε > 0, let (p∗ε , q∗) be an ε-optimal
policy (in the sense of Definition 5). Moreover, let t∗ε be the schedule policy as in Proposition 3.
Then, the mechanism (p∗ε , q∗, t∗ε ) is ε-consistent.

Proof From (8), the schedule policy t∗ε is a non-increasing and continuous function
of type. Therefore, for each τ ∈ T,

Θ
∗
τ ≡ {θ ∈ Θ | t∗ε (θ) ≥ τ} = [θ,θ∗τ ]

is a closed interval whenever it is not empty, where

θ∗τ ≡ sup{θ ∈ Θ | t∗ε (θ) ≥ τ}.

It is easy to check also that t∗ε (θ∗τ ) = τ .

24Note that the adjusted space of schedule policies takes account of the fact that future deliver-
ies can occur no sooner than τ .
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Definitions 4 and 5 imply that neither p∗ε nor q∗ depends on the particular distri-
bution f of types. Hence, when the principal learns that the agent has not claimed the
good by time τ , she updates the space of potential types from [θ,θ] to [θ,θ∗τ ]. Assum-
ing that the latter interval is non-empty and non-degenerate (so that it has positive
Lebesgue measure), Proposition 3 implies that the ε-optimal policy (p∗ε , q∗) restricted
to the interval [θ,θ∗τ ] continues to be implementable by the (renormalized) schedule
policy

θ 7→ τ +
∫ θ∗τ

θ

v(q∗(s))
(− log δ)ε

ds = t∗ε (θ∗τ ) +
∫ θ∗τ

θ

v(q∗(s))
(− log δ)ε

ds

=

∫ θ

θ∗τ

v(q∗(s))
(− log δ)ε

ds +
∫ θ∗τ

θ

v(q∗(s))
(− log δ)ε

ds =
∫ θ

θ

v(q∗(s))
(− log δ)ε

ds = t∗ε (θ)

for all θ ∈ [θ,θ∗τ ]. This observation entails that the principal cannot gain more than ε
by redesigning the mechanism at any point of time. �

Proposition 9 highlights an additional powerful feature of the lack of time-dis-
counting on the principal’s part. Not only can a perfectly patient principal expropriate
almost all of the surplus from trade and destroy the agent’s information rents, but
she can also do so in a manner that is ε-consistent. Therefore, there is almost no need
for the principal to commit herself to an ε-optimal policy beforehand: both she and
the agent know that she will have negligible incentives to make adjustments to the
almost-optimal menu of transfer–allocation pairs as her information about the agent’s
type becomes more refined over time if that menu is to be implemented in a Dutch-
auction-like setting.

6 Conclusion

The fundamental trade-off in mechanism design consists in the fact that the principal
has to resort to setting allocations offered to lower-type agents inefficiently meager in
order to provide higher-type agents with improved incentives. This paper shows that
quantity distortion on the lower end of the type distribution can be partially or even
almost fully substituted for by time distortion. Lower-type agents are offered menus
with higher allocations as compared to the standard mechanism, but they obtain them
later. In this way, the principal is able to “inflate away” a part of higher-type agents’
information rents. If the principal is more patient than the agent, then a decrease in the
agent’s discounted rents exceeds the decrease in the principal’s discounted revenues,
so that she can increase optimal profits above the second-best level of the standard
mechanism with no delays. Moreover, if she is perfectly patient, then delaying the
allocation involves no loss in terms of her discounted revenues, so that the trade-off
between lowering the agent’s information rents and lowering revenues disappears;
accordingly, she is able to extract almost all of the surplus.25

25The only impediment to extracting all of the surplus is that allocations cannot be delayed
indefinitely.
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These insights suggest that shipping policies are not designed merely to price the
separate, standalone service of dispatching a good from the warehouse to the con-
sumer’s home. Instead, they constitute an integral part of the management of revenues
stemming from the good itself. Given that large corporations are likely to discount fu-
ture payoffs to a lesser extent than individual consumers due to an imminent need for
the good, credit or cash constraints, or mere psychological impatience, the optimal de-
sign of shipment policies provides firms with a subtle yet effective method of enhanc-
ing the differentiation between consumers in terms of the benefit they derive from the
good. Such opportunities for accessory price discrimination bear important implica-
tions for revenue management, consumer vigilance, and regulatory policies alike.
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Appendix

Proof of Lemma 1 Assume that (p, q, t) ∈ I is implementable and let U : Θ→ R be as
given in (3). Fix θ, θ̂ ∈ Θ and assume, without loss of generality, that θ > θ̂. Incentive
compatibility implies that

U(θ) = δt(θ)[θv(q(θ))− p(θ)] ≥ δt(θ̂)[θv(q(θ̂))− p(θ̂)] = U(θ̂) + δt(θ̂)(θ− θ̂)v(q(θ̂))
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and that

U(θ̂) = δt(θ̂)[θ̂v(q(θ̂))− p(θ̂)] ≥ δt(θ)[θ̂v(q(θ))− p(θ)] = U(θ) + δt(θ)(θ̂−θ)v(q(θ)).

In consequence,

0 ≤ δt(θ̂)v(q(θ̂)) ≤ U(θ)−U(θ̂)

θ− θ̂
≤ δt(θ)v(q(θ)). (20)

This chain of inequalities shows that both U and θ 7→ δt(θ)v(q(θ)) are non-decreasing.
Having θ̂ approach θ from below,

lim sup
θ̂↑θ

U(θ)−U(θ̂)

θ− θ̂
≤ δt(θ)v(q(θ)). (21)

A symmetric argument (in which θ < θ̂) reveals that

lim inf
θ̂↓θ

U(θ̂)−U(θ)

θ̂−θ
≥ δt(θ)v(q(θ)). (22)

Since U is non-decreasing, it is differentiable almost everywhere (in terms of the
Lebesgue measure on Θ) by Theorem 3.23(b) in Folland (1999). If θ ∈ Θ is a point of
differentiability of U, then (21) and (22) imply that

U′(θ) = δt(θ)v(q(θ)). (23)

The inequality (20) and the fact that θ 7→ δt(θ)v(q(θ)) is non-decreasing yield also that

sup
θ,θ̂∈Θ
θ 6=θ̂

∣∣∣∣∣U(θ)−U(θ̂)

θ− θ̂

∣∣∣∣∣ ≤ δt(θ)v(q(θ)),

so that U is, in fact, Lipschitz continuous. Moreover, (23) implies that

|U′(θ)| = δt(θ)v(q(θ)) ≤ δt(θ)v(q(θ))

for almost every θ ∈ Θ, so that U is absolutely continuous (Folland, 1999, p. 108).
The envelope condition (4) now follows from the fundamental theorem of calculus for
Lebesgue integrals (Proposition 3.35 in Folland, 1999). Finally, (2) obviously implies
that U(θ) ≥ 0, completing the proof of necessity.

As for sufficiency, suppose that (4) holds, the function θ 7→ δt(θ)v(q(θ)) is non-
decreasing, and that U(θ) ≥ 0. By (4), the agent’s utility under truth-telling is non-
decreasing, which readily implies (2). As for incentive compatibility, pick any θ, θ̂ ∈ Θ

and suppose, without loss of generality, that θ > θ̂. Then,

δt(θ)[θv(q(θ))− p(θ)]− δt(θ̂)[θv(q(θ̂))− p(θ̂)] = U(θ)−U(θ̂)− δt(θ̂)(θ− θ̂)v(q(θ̂))

=

∫ θ

θ̂

[δt(s)v(q(s))− δt(θ̂)v(q(θ̂))] ds ≥ 0,
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so that (1) holds. �

Proof of Lemma 2 Since c(0) = v(0) = 0, it is clear that J(0) = 0. Moreover, for any
x ≥ 0, it is not difficult to compute that

J′(x) =
c′(v−1(x))
v′(v−1(x))

≥ 0 (with equality if and only if x = 0), (24)

J′′(x) =
1

v′(v−1(x))2

[
c′′(v−1(x))− c′(v−1(x))v′′(v−1(x))

v′(v−1(x))

]
> 0.

Next, fix any w ≥ 0. Note that for any y > 0,

d
dy

[
y× J

(
w
y

)]
= J
(

w
y

)
− w

y
× J′

(
w
y

)
=

∫ w/y

0

[
J′(ω)− J′

(
w
y

)]
dω ≤ 0,

with equality if and only if w = 0 given that J′′ > 0.
Finally, suppose that w > 0. Then, L’Hôpital’s rule yields that

lim
y↓0

{
y× J

(
w
y

)}
= lim

y→∞
{

J(w× y)
y

}
= lim

y→∞{J′(w× y)× w} = ∞,

given that w > 0, (24), and Assumption 1. This proves (9). �

Proof of Proposition 4 Let (W◦, t◦) ∈ W solve the auxiliary problem. Consider any
implementable mechanism (p, q, t) ∈ I and define W : Θ→ R+ as follows:

W(θ) ≡ δt(θ)v(q(θ)).

Given that the mechanism is incentive-compatible, Lemma 1 implies that W is non-
decreasing. Therefore, (W, t) ∈W.

Next, the definition of U in (3) and the envelope condition (4) imply that the prin-
cipal’s payoff under (p, q, t) can be rewritten as∫ θ

θ

βt(θ) f (θ)[p(θ)− c(q(θ))] dθ =

∫ θ

θ

βt(θ) f (θ)
[
θv(q(θ))− δ−t(θ)U(θ)− c(q(θ))

]
dθ

=

∫ θ

θ

(
β

δ

)t(θ)

f (θ)

[
θδt(θ)v(q(θ))−U(θ)−

∫ θ

θ

δt(s)v(q(s)) ds− δt(θ)c(q(θ))

]
dθ

=

∫ θ

θ

(
β

δ

)t(θ)

f (θ)

[
θW(θ)−

∫ θ

θ

W(s) ds− δt(θ)c
(

v−1
(

W(θ)
δt(θ)

))]
dθ

−U(θ)
∫ θ

θ

(
β

δ

)t(θ)

f (θ) dθ

≡Ξ

=

∫ θ

θ

(
β

δ

)t(θ)

f (θ)

[
θW(θ)−

∫ θ

θ

W(s) ds− δt(θ) J
(

W(θ)
δt(θ)

)]
dθ− Ξ
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≤
∫ θ

θ

(
β

δ

)t◦(θ)

f (θ)

[
θW◦(θ)−

∫ θ

θ

W◦(s) ds− δt◦(θ) J
(

W◦(θ)
δt◦(θ)

)]
dθ, (25)

given that (W◦, t◦) solves the auxiliary problem and Ξ ≥ 0 because U(θ) ≥ 0.
Now, define

q◦(θ) ≡ v−1
(

W◦(θ)
δt◦(θ)

)
∀θ ∈ Θ, (26)

p◦(θ) ≡ 1
δt◦(θ)

[
θW◦(θ)−

∫ θ

θ

W◦(s) ds

]
∀θ ∈ Θ. (27)

Clearly, δt◦(θ)v(q◦(θ)) = W◦(θ), which is non-decreasing, so that the monotonicity con-
dition of Lemma 1 is satisfied. Moreover, letting U◦ denote the truth-telling agent’s
utility under (p◦, q◦, t◦), one has that

U◦(θ) = δt◦(θ)[θv(q◦(θ))− p◦(θ)] = θW◦(θ)−
[
θW◦(θ)−

∫ θ

θ

W◦(s) ds

]

=

∫ θ

θ

δt◦(s)v(q◦(s)) ds.

This yields that U◦(θ) = 0 and that the envelope condition (4) is satisfied as well.
Hence, the mechanism (p◦, q◦, t◦) is implementable. In addition, by (25), its value for
the principal achieves the supremum corresponding to the auxiliary problem, which is
an upper bound on the value for all implementable mechanisms. Therefore, (p◦, q◦, t◦)
is an optimal mechanism, as claimed.26

Conversely, suppose that (p◦, q◦, t◦) ∈ I is an optimal mechanism. Define

W◦(θ) ≡ δt◦(θ)v(q◦(θ)) ∀θ ∈ Θ.

By the monotonicity condition in Lemma 1, the function W◦ is non-decreasing, so that
(W◦, t◦) ∈W. Next, consider any (W, t) ∈W and define

q(θ) ≡ v−1
(

W(θ)
δt(θ)

)
∀θ ∈ Θ,

p(θ) ≡ 1
δt(θ)

[
θW(θ)−

∫ θ

θ

W(s) ds

]
∀θ ∈ Θ,

U(θ) ≡ δt(θ)[θv(q(θ))− p(θ)] ∀θ ∈ Θ.

Using precisely the same argument as after (26)–(27), one can easily show that (p, q, t) ∈
I and that U(θ) = 0. Moreover, using (25), the remark made in n. 26, and the fact that
(p◦, q◦, t◦) is optimal, one has that∫ θ

θ

(
β

δ

)t(θ)

f (θ)

[
θW(θ)−

∫ θ

θ

W(s) ds− δt(θ) J
(

W(θ)
δt(θ)

)]
dθ

26This argument and (25) imply also that the utility of the lowest-type agent must vanish in
any optimal mechanism.
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=

∫ θ

θ

βt(θ) f (θ)[p(θ)− c(q(θ))] dθ

≤
∫ θ

θ

βt◦(θ) f (θ)[p◦(θ)− c(q◦(θ))] dθ

=

∫ θ

θ

(
β

δ

)t◦(θ)

f (θ)

[
θW◦(θ)−

∫ θ

θ

W◦(s) ds− δt◦(θ) J
(

W◦(θ)
δt◦(θ)

)]
dθ.

This implies that (W◦, t◦) solves the auxiliary problem, as claimed. �

Proof of Proposition 5 Suppose that (W◦, t◦) ∈ W solves the auxiliary problem. For
any pair (W, t) ∈W, define the discounted profit function ρ(·|W, t) : Θ→ R as

ρ(θ|W, t) ≡
(
β

δ

)t(θ)
[
θW(θ)−

∫ θ

θ

W(s) ds− δt(θ) J
(

W(θ)
δt(θ)

)]
∀θ ∈ Θ (28)

and the “undiscounted” profit function (according to which the delivery of the alloca-
tion occurs immediately) π(·|W) : Θ→ R as

π(θ|W) ≡ ρ(θ|W, 0) = θW(θ)−
∫ θ

θ

W(s) ds− J(W(θ)) ∀θ ∈ Θ. (29)

If (W◦, t◦) were to be optimal, then π(θ|W◦) < 0 if and only if ρ(θ|W◦, t◦) < 0. To see
this, note that for any (W, t) ∈ W, one has π(θ|W) = ρ(θ|W, t) if t(θ) = 0. Since the
optimal value of t◦(θ) can be chosen pointwise in the auxiliary problem (given that
there are no monotonicity restrictions a priori on the function t beyond measurability),
it follows that ρ(θ|W◦, t◦) ≥ π(θ|W◦). Hence, if π(θ|W◦) ≥ 0, then ρ(θ|W◦, t◦) ≥ 0.
Conversely, if π(θ|W◦) < 0, then(

δ

β

)t◦(θ)

ρ(θ|W◦, t◦) =θW◦(θ)−
∫ θ

θ

W◦(s) ds− δt◦(θ) J
(

W◦(θ)
δt◦(θ)

)
≤θW◦(θ)−

∫ θ

θ

W◦(s) ds− J(W◦(θ)) = π(θ|W◦) < 0,

where the weak inequality follows from Lemma 2.
Next, I argue that there is no loss of generality in assuming that the function W◦ is

left-continuous—that is,

W◦(θ) = lim
θ̂↑θ

W◦(θ̂) ∀θ ∈ (θ,θ]. (30)

(Note that the left-hand limit always exists, given that W◦ is monotone.) This is because
the monotonicity of W◦ implies that W◦ is continuous except perhaps at a countable
set of points—see Theorem 3.23(a) in Folland (1999). Whenever W◦ is discontinuous,
one could redefine it according to (30). This does not affect monotonicity and given
that countable sets have measure zero, both the discounted profit function ρ in (28)
and the undiscounted profit function π in (29) are changed only at a set of points that
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has measure zero, leaving the objective function unaffected. From now on, assume that
W◦ is left-continuous. Once can easily check that the left-continuity of W◦ implies also
the left-continuity of the undiscounted profit function θ 7→ π(θ|W◦).

Let

Θ− ≡ {θ ∈ (θ,θ] |ρ(θ|W◦, t◦) < 0} = {θ ∈ (θ,θ] | π(θ|W◦) < 0}.

Suppose, for the sake of contradiction, that Θ− 6= ∅ and let θ0 ∈ Θ−. Since W◦ and
hence π(·|W◦) are left-continuous, it follows that there exists some ε > 0 such that

π(θ|W◦) < 0 ∀θ ∈ (θ0 −ε,θ0]. (31)

Suppose first that π(θ|W◦) < 0 for all θ ∈ (θ,θ0]. One can then replace W◦ with

W̃(θ) ≡
{

0 if θ ∈ [θ,θ0],

W◦(θ) if θ ∈ (θ0,θ].

Obviously, W̃ is monotonic and involves zero (discounted and undiscounted) profits
for θ ∈ (θ,θ0] (as opposed to negative ones). Moreover, switching from W◦ to W̃ does
not decrease undiscounted profits for θ ∈ (θ0,θ], since∫ θ

θ

W̃(s) ds =
∫ θ

θ0

W◦(s) ds ≤
∫ θ

θ

W◦(s) ds,

so that

π(θ|W̃) ≥ π(θ|W◦) ∀θ ∈ (θ0,θ].

This clearly implies that

ρ(θ|W̃, t◦) ≥ ρ(θ|W◦, t◦) ∀θ ∈ (θ0,θ].

The perturbation from (W◦, t◦) to (W̃, t◦) strictly increases the objective function (the ex-
pected value of discounted profits), given that negative (discounted and undiscounted)
profits have been made vanish on an interval θ ∈ (θ,θ0] of positive measure (and the
singleton set {θ} is of measure zero).

Suppose now that there exists some θ ∈ (θ,θ0) such that π(θ|W◦) ≥ 0. The argu-
ment is similar as before. Let

θ+ ≡ sup{θ ∈ (θ,θ0] | π(θ|W◦) ≥ 0}.

Clearly, the supremum is taken on a non-empty bounded set, so it is well-defined. Also,
(31) implies that

θ+ ≤ θ0 −ε

and one has, by the definition of the supremum, that

π(θ|W◦) < 0 ∀θ ∈ (θ+,θ0]. (32)
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By the left-continuity of π(·|W◦), one has also that π(θ+|W◦) ≥ 0. This implies that
W◦(θ) > W◦(θ+) for all θ ∈ (θ+,θ0], because if W◦(θ) = W◦(θ+) for some θ ∈ (θ+,θ0],
then, as it is easy to check, one would have π(θ|W◦) = π(θ+|W◦) ≥ 0, contradicting
(32). Now consider the following perturbation:

W̃(θ) ≡


W◦(θ) if θ ∈ [θ,θ+],
W◦(θ+) if θ ∈ (θ+,θ0],

W◦(θ) if θ ∈ (θ0,θ].

It is not difficult to verify that the new discounted profit levels satisfy:

π(θ|W̃) = π(θ+|W◦) ≥ 0 θ ∈ (θ+,θ0],

which ensures a non-negative discounted profit level ρ(θ|W̃, t̃) for a possibly different
choice of the schedule t̃(θ). Moreover, the interval (θ+,θ0] is of positive measure given
that it contains the interval (θ0 − ε,θ0]. Profits for θ ∈ [θ,θ+] are unaffected, whereas
profits (both undiscounted and discounted) on (θ0,θ] are weakly increased by the same
argument as before, given that W̃ ≤ W◦ pointwise. Clearly, monotonicity is satisfied,
so that (W̃, t̃) ∈ W and it strictly dominates (W◦, t◦) in terms of expected discounted
profits, contradicting the optimality of the latter, because strictly positive improve-
ments have been carried out on the set (θ+,θ0] of positive measure (and non-negative
improvements elsewhere). This completes the proof that a solution to the auxiliary
problem must involve non-negative profits pointwise, except possibly at θ. �
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