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1 Introduction

Estimating the effect of weather on crop output has long been a concern in agricultural and

applied economics (Wallace, 1920; Stallings, 1961; Shaw, 1964; Oury, 1965). Given the non-

separability of household production and consumption in developing economies, the role of

weather in crop production has also been of long standing interest in international develop-

ment (Rosenzweig and Binswanger, 1993; Rosenzweig and Wolpin, 1993; Townsend, 1994).

More recently, the popularity of weather index insurance as a micro-development interven-

tion has refocused interest on weather and crop yields (Barnett and Mahul, 2007; Giné et al.,

2007, 2008, 2012; Cole et al., 2013, 2014). Despite nearly a century of research, very few

quantitative measures exist regarding the size or significance on weather and agricultural

production. The lack of concrete measures is even more acute in developing countries, such

as India. As a case in point, the frequently cited “fact” that rainfall variability accounts

for 50 percent or more of variability in crop yields on the subcontinent comes from a 1976

report by the National Commission on Agriculture (NCA) for India.1 The NCA arrived at

this estimate via a linear regression “with yield as the dependent variable and total rainfall

during the five crop growth phases as the independent variable” (National Commission on

Agriculture, 1976). Apparently, no more recent or reliable estimates exist. With increased

weather variability an ever more pressing concern, especially for those without adequate

risk management tools, such as smallholders in the semi-arid tropics, new methods and new

estimates are need for measuring weather’s affect on agricultural production.

This paper poses a simple question: how large of a role does the weather play in deter-

mining variability of agricultural production in India? Finding an answer to this question

is complicated by the role of technological change. Over short time horizons, technological

change can safely be assumed to be constant. Once inputs, plot characteristics, and farmer

ability have been controlled for, the remaining variation in yields across years will be due

to weather (Michler et al., 2015). Over long time horizons, technology is not constant and

must be accurately accounted for if the causal effects of weather on yield is to be identified.

To tie our results as closely as possible to the issue of weather risk in agricultural produc-

tion, we use the ICRISAT household survey data from the same Indian villages studied by

Townsend (1994) and Rosenzweig and Binswanger (1993). However, as a further extension,

we use an expanded panel that covers 44 cropping seasons from 1976 through 2011. We fo-

cus our analysis on the ten most common crops: castor, chickpea, cotton, groundnut, maize,

1Parchure (2002), Barnett and Mahul (2007), and Giné et al. (2012) all cite this figure as motivation for
the need for rainfall index insurance in South Asia.
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paddy rice, pigeon pea, sorghum, soybean, and wheat. This gives us a total of 14, 619 parcel-

level observations come from 10, 578 unique parcels operated by 766 distinct households in

six villages.

We begin our analysis by examining descriptive evidence which generates several stylized

facts about how agricultural production in the subcontinent has changed over the last 40

years. Most importantly, mean yields have increased and the variance in crop production,

measured relative to the mean, has decreased. We find that much of the increase in yields

is due to increases in yields for rice, maize, and wheat. Without the largest yield gains in

these three crops, much of agricultural production in India has been static. Finally, we find

that the increase in purchased inputs has exceeded the increase in yields. This stylized fact

implies that farmers may be faced with a profit squeeze as prices for chemical inputs were

rising at a more rapid clip than output prices over this 40 year period.

To examine the different sources of yield variability we use a multilevel/hierarchical re-

gression framework. This approach more fully accounts for the covariance structure of the

data than a standard regression framework and allows us to control for inputs and time

trends at the parcel-level and also to isolate the amount of yield variance due to parcel-level

effects, household-level effects, and seasonal effects, the latter of which we use as a proxy for

weather events. Considering all sources of yield variance, we find that seasonal variation in

weather makes up only a small fraction of overall variability in yield, accounting for only 3

percent of total variance in crop yields.

2 Agricultural Production in the VDSA

2.1 Data Source

To conduct our empirical analysis, we use household data from six villages in India, two

from Andhra Pradesh and four from Maharashtra. These data were collected as part of the

Village Level Studies/Village Dynamics Study of South Asia conducted by the ICRISAT

(VDSA, 2015). Villages were surveyed starting in 1975 with half the villages being surveyed

up until 1979 while the remaining half continued to be surveyed until 1984. At that point

there was a gap until enumerators returned in 1989. A second, longer gap ensued after 1989

and the panel was not picked up again until 2001. From 2001 until 2008 semi-annual surveys

were conducted in the villages. Starting in 2009 data collection was high frequency, with

data collected every month. While numerous studies have made use of the low frequency

data (1975-2008), we combine this older data with the newly available high frequency data
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covering the years 2009 through 2011. These data include monthly household observations on

input purchases and labor expenditure for on-farm activities, and crop yields. We aggregate

all data to the seasonal level. This results in 22 years of observations (44 seasons) for half

the villages and 18 years (36 seasons) for the other half (See Table 1).

The VDSA has production data on over 100 different crops, much of it household fruit

and vegetable production. We focus on the ten most common crops, which in aggregate

account for 57 percent of the 25, 567 parcel level observations of crop output. These crops

are: castor, chickpea, cotton, groundnut, maize, paddy rice, pigeon pea, sorghum, soybean,

and wheat. This provides us with 14, 619 parcel-level observations. Among the ten crops,

sorghum is the most common, accounting for 31 percent of observations. Next most common

are rice and cotton, accounting for 16 and 15 percent of observations, respectively. Wheat

is the fourth most commonly cultivated crop, making up 9 percent of observations. Castor,

chickpea, groundnut, maize, pigeon pea, and soybean make up the remaining shares with

between 4− 6 percent each.

Our 14, 619 parcel-level observations come from 10, 578 unique parcels operated by 766

distinct households, farming across 44 seasons, in 6 villages. We exploit this nested data

structure in our empirical analysis.

2.2 Descriptive Evidence

We begin with a descriptive analysis of agricultural production in India in order to draw out

several stylized facts regarding how technical change has affected the sensitivity of yield to

variability in weather.

There is a high degree of seasonality in the data (see Table 2). Castor, cotton, pigeon

pea, and soybean are all grown in Kharif , with planting at the start of the monsoon in

June or July and ends with post-monsoon harvesting in November. Chickpea and wheat are

cultivated during Rabi , with planting in December or January and harvest in April or May,

prior to the start of the monsoon. Groundnut, maize, rice, and sorghum are all grown in both

Kharif and Rabi . Statistics describing these data, by season, are presented in Table 3. Using

the Mann-Whitney-Wilcoxon statistic we test if inputs usage in each season are drawn from

the same population.2 In pairwise comparisons we reject the null that inputs in each season

2In our case the Mann-Whitney-Wilcoxon is preferred to a standard t-test. This is due to the highly
skewed, non-normal distribution of both input and output data. Unlike the t-test, the Mann-Whitney-
Wilcoxon test does not require the assumption of a normal distribution and is nearly as efficient as a t-test
when the underlying distribution is in fact normal. We also test for differences in the distribution of inputs
across season using the Kolmogorov-Smirnov test, an alternative to the Mann-Whitney-Wilcoxon test. The
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come from the same distributions. It is interesting to note, though, that most but not all

input use is higher in Kharif compared to Rabi . Use of labor, fertilizer, and pesticide are all

higher in Kharif . Pesticide use in Kharif is particularly high, mainly due to the cultivation

of cotton and soybean in that season. The only input that is used more in Rabi then in

Kharif is mechanization. This is due to the need for irrigation in the dry Rabi season. The

need for irrigation also mean that parcel areas tend to be smaller in Rabi when compared to

Kharif .

Table 4 presents summary statistics by crop. Without accounting for grain density, rice,

wheat, and maize have the largest yields per hectare. Pigeon pea, chickpea, and castor

have the lowest yields. Rice, groundnut, and cotton are the most labor intensive crops while

pigeon pea, sorghum, and soybean used the least labor. Fertilizer usage is highest for rice and

wheat by a large margin while legume and seed crops tend the need much less fertilizer. The

one exception is soybean, which in general used more purchased inputs then other legumes.

As with fertilizer, use of mechanization is much higher with rice, reflecting the need for

intensive irrigation of Rabi paddy rice. Pesticide use is largest for cotton and soybean while

almost no pesticide is used in the cultivation of maize and sorghum. Finally, soybean, cotton,

castor, and sorghum have the largest average parcel size, with parcel area all over 2 hectares.

Chickpea and maize parcels both tend to be under a hectare with paddy rice having the

next smallest parcel size, again reflective of the need for more intensive cultivation of rice.

This leads us to our first stylized fact

Stylized Fact 1 Over time and on average, production in Kharif utilizes more labor, fer-

tilizer, and pesticide while Rabi utilizes more mechanization. Cultivation in Rabi is more

intensive in terms of land use then cultivation in Kharif .

Figure 1 graphs mean seasonal yield by pooling crops and calculating the arithmetic

mean of yields in each season. There is a pronounced nonlinear time trend in yields. The

trend has a flattened S-curve shape long associated with the diffusion of technology and

commented on in the context of agricultural production as early as Shaw (1964). While the

increase in yields over time is interesting, and provides descriptive support for the impact

of Green Revolution technologies, are primary focus is on how yield variability has changed

over time. Figure 2 charts how variability in yield has changed over time.3 Given that mean

K-S test results are equivalent to those obtained from the Mann-Whitney-Wilcoxon.
3Note that we graph the standard deviation of yield instead of the variance of yield. While our primary

interest is on variance (the second moment) and not standard deviations, graphing the standard deviation
allows us to present the results on the same scale as the mean.
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yield increases over time it is unsurprising that variability in yield, in absolute terms, also

increases. Similar to the nonlinear trend observed in mean yield, the standard deviation of

yield has a flattened S-curve trend.

A naive reading of Figures 1 and 2 might lead one to conclude that the Green Revolution

had little impact on crop resilience to weather variability. However, much of the increase

in yield variability might simply be due to the overall increase in yields. To check this, we

calculate the coefficient of variation, which is simply the ratio of the standard deviation to

the mean. This allows us to measure variability in crop yields in each season relative to

mean yields in that season (See Figure 3). When measured relative to mean yields, seasonal

variation in yield displays a strong decreasing trend. From a maximum in Kharif 1976 of

a standard deviation nearly double the mean, the coefficient of variation decreases to less

then 1 (a standard deviation less than the mean). The rate of decrease in the coefficient of

variation is decreasing over time, with the largest gains made in the early years of the panel

(1976-1984). Together Figures 1 - 3 provide evidence for our second stylized fact:

Stylized Fact 2 On average, yields in India are increasing while the variability of yields is

decreasing.

While it is clear that overall agricultural yield has increased over time, this result comes

from the pooling of yields from all crop types. To gain a deeper understanding of crop

production in India we can disaggregate production by crop type. Figure 4 displays average

seasonal yields by crop type over time. By charting mean yields on the same scale for all

crops we can quickly see which crops benefited most from technical change. By far the largest

beneficiary was paddy rice, which was mean yields triple. Nearly as impressive were the gains

made in maize and wheat, which saw yields double over the 40 year period. Cotton and

groundnuts also saw significant yield increases while the remaining crops saw only marginal

increases in yields over the nearly half century study period. Given the percentage increase

in the yields of rice, maize, and wheat, and given that these three crops make up a third of

crop observations, we can state our third stylized fact.

Stylized Fact 3 The overall increase in total agricultural yield has been primarily driven

by increases in paddy rice yields, with with improvements in maze and wheat yields playing

secondary roles.

We can dig in further to how technical change has impacted yields for each crop by

graphing the distribution of yields for each crop in the first and final survey years. In

6



Figure 5 we overlay two kernel densities (1975 and 2011) for yields of some of the crops to

compare the distributions over time.4 These are unconditional, of course, and dont account

for any inputs, seasonal effects or district effects. However, clear trends emerge even in this

univariate analysis. Changes in yield distributions take one of two forms: a discrete shift

in the distribution to the right and a complete change in the distribution. Crops in the

first category (discrete shift) include castor, cotton, rice, pigeon pea, sorghum, and soybean.

Distributions of yields for these crops in 1975 looks remarkably similar to distributions of

yields in 2011, except that the mean and variance in 2011 are significantly larger than in 1975.

For these crops, it appears that the production possibility frontier has shifted outward with

little change to the variability in yields. In the second category (change in the distribution)

are included chickpea, groundnut, maize, and wheat. For these crops, while mean yields

have significantly increase, the variance in yields has decreased. Thus, gains in yields have

been accompanied by a decline in the uncertainty in yields.

Stylized Fact 4 The effect of technical change on crops has been of two types. For some

crops, technical changes has increased both the mean and variance of yields. For other crops,

technical change has resulted in an increase in mean and a decrease in variance of yields.

Shifting from an investigation of crop-specific changes, we now focus on changes to the

production relationship over time. Figures 6 charts the change in yields and input use over

time. In each graph we plot yields and a specific input (labor, fertilizer, mechanization, or

pesticide). We then fit the data to our time trend with a linear regression line. Examining

the graph in the northwest quadrant, we see that, over the 44 season, yields have outpaced

labor usage in crop production. Thus, in 2011 household in India, on average, get higher

yields for less hours of work than they did in 1975. This signifies a significant increase

in labor productivity in agricultural production over the last 40 years. For the remaining

inputs, productivity has been decreasing. When comparing fertilizer (northeast quadrant),

mechanization (southwest quadrant), and pesticide (southeast quadrant) use to yields, in all

cases input use has increased at a greater rate then yields. The most striking example is

the increase in fertilizer and pesticide use compared to yield. From 1975 to 2011 yields have

more than doubled while fertilizer and pesticide use have increased by a factor of nine. In

comparison, use of mechanization has tripled over the same time frame. This leads us to our

final stylized fact.

4Note that soybean was not cultivated in any of the six study villages until 2002. Thus, the comparison
for soybean is between yields in 2002 and 2011.
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Stylized Fact 5 On average, the increase in yields has exceeded the increase in labor usage.

However, the increase in purchased inputs has exceeded the increase in yields.

With these five stylized facts in mind, we now turn to outline the econometric framework

which we utilize in our multivariate analysis.

3 Econometric Framework

3.1 Ordinary Least Squares

We begin by estimating a simple linear regression for yield. Let yit denote the log of yield

for parcel i at time t. We estimate

yit = Xitβ + δ1Dt + δ2D
2
t + st + εit (1)

where Xit is a matrix of data, β is a vector of regression coefficients associated with various

crops, Dt and D2
t are time trends with associated coefficients δ, and st is a seasonal fixed

effect. We assume the error term is εit ∼ N (0, σ2) so that yit ∼ N (Xitβ+δ1Dt+δ2D
2
t +st, σ

2),

where β and σ2 are regression and variance parameters which are time independent. The

inclusion of a linear and quadratic time trend are used to control, in a simple way, for

technical change over time.

We note two drawbacks associated with this linear estimation of the production function.

First is that we are unable to discern the role weather plays in yield variability. Equation (1)

allows us to estimate the impact of parcel-level inputs on yield at each point in time, control

for time trends, and the impact of a seasonal weather dummy on yield. But these variables

impact mean yield; the specification does not allow us to determine the share of seasonal

variability in weather on the variance of yield (σ2). A second drawback is that OLS limits

our ability to control for additional clustered effects, such as parcel- or household-level ef-

fects. While changes in season clearly impact the effectiveness of parcel-level inputs, equally

relevant effects may exist at the parcel- or household-level. Some households may be more

efficient in their application of labor compared to others, while some parcels may be of

better quality, resulting in less need for fertilizer. Even if it were computationally feasible

to estimate season-specific, household-specific, and parcel-specific parameters using OLS,

such grouped data would violate the assumption of independence for all data (Corrado and

Fingleton, 2012).
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3.2 The Multilevel Model

A multilevel or hierarchical modeling strategy addresses the first two drawbacks associated

with the standard linear approach to estimation.5 First, multilevel models offer a natural

way to assess the role of seasonal changes in weather on variation in yields by explicitly

modeling the variance, not just the mean of the data. This allows us to estimate the share

of total variance attributed to variability in each group. In our case, a multilevel approach

also allows us to disaggregate total variance in yields into its multiple sources, so as to

measure the relative contribution of seasonality and weather risk in production. Second, a

multilevel approach allows us to incorporate in our regressions intercepts for each grouping

of the data without adding to the computational burden and without violating independence

assumptions.

For expository purposes we start with an illustrative example of a simple two-level model

in which realizations of yields are grouped within seasons. Let ynt denote the log of an

observed yield, n, realized in season t. We estimate

ynt = Xnβ + δ1Dt + δ2D
2
t + αt + εnt (2a)

αt = µ+ νt (2b)

where Xn β, D, and δ are as previously defined, and αt is a seasonal effect that is a function

of an overall mean, µ, and a random disturbance term, νt. We assume that εnt ∼ N (0, σ2
ε ),

νt ∼ N (0, σ2
ν), and εnt is independent of νt.

In order to make our parameter of interest explicit, we can rewrite equations (2a) and

(2b) in terms of probability distribution so that

ynt ∼ N (Xntβ + δ1Dt + δ2D
2
t + µ, un) (3)

with un ≡ σ2
ν + σ2

ε . The above distribution is obtained by substituting (2b) into (2a) and

using the independence of εnt and νt. Defining the regression equation in this way highlights

the very specific dispersion structure of the residual, which is where our interest lies. It also

allows us to easily define the intraclass correlation coefficient (ICC)

ρ =
σ2
ν

σ2
ν + σ2

ε

, (4)

5Gelman and Hill (2007) provide an introduction to multilevel analysis.
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which is similar to the proportion of explained variance in an OLS regression.

The value of a multilevel model becomes obvious as we add additional levels. In our

analysis we can view each observation on yield, yn, as coming from a parcel group i; each

parcel group as being nested within a household, h; and each household as observed within

a season group, t.6 We can write the multilevel model as:

Level 1 (yields, n = 14, 619) : yn = Xnβ + δ1Dt + δ2D
2
t + αiht + εn (5a)

Level 2 (parcels, i = 10, 578) : αiht = αht + νiht (5b)

Level 3 (households, h = 766) : αht = αt + νht (5c)

Level 4 (seasons, t = 44) : αt = µ+ νt (5d)

where again Xn is a matrix of input data and β is a vector of regression coefficients associated

with the various crops.

Level 1 of the model estimates the log of yield as a function of inputs, applied by household

h to that specific parcel i in the given season t and an idiosyncratic error term εn ∼ N (0, σ2
1),

where σ2
1 is a constant variance parameter which we assume does not depend on i, h, or t.

Each n observation comes from a parcel cluster i which we assign a unique intercept, αiht.

This parcel-level intercept allows the relationship between inputs and yield to differ across

parcels depending on parcel-level characteristics. While many parcel-level characteristics,

such as soil color, may be observable, many others are difficult to measure or costly to

observe and thus remain unobserved to the econometrician. Such characteristics include soil

micro-nutrients, grade, and aeration or composition. By including a unique intercept term

for each parcel we can control for these parcel-level characteristics.

Level 2 of the model groups yields within parcels. Here parcel intercepts, αiht, are a

function of household characteristics, αht, and a random disturbance term, νiht ∼ N (0, σ2
2),

where σ2
2 is a constant variance parameter. We assume that the νiht terms are independent

of each other and that the vectors εn and νiht are independent. The household-level intercept

allows variation in parcel-level production to be dependent on household characteristics. In

most production regressions there is an attempt to control for unobserved household ability

through proxy variables such as age or education. The multilevel approach allows us to

control for any unobserved household-level characteristics by assigning each household a

6Note that i, h, and t can be understood as functions of n so that each unique data point corresponds
to the index n, each data point can be identified with a unique parcel i, each parcel can be identified with a
unique household h, and each household exists at unique time t.
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unique intercept term without the need to rely on proxies. The use of a single disturbance

term for all data points n corresponding to a given parcel group (iht) further enhances this

control by imposing a covariance structure which is consistent with variation at the parcel

group level.

Level 3 of the model groups parcels within households. Here household-level intercepts,

αht, are a function of season, αt, and a random disturbance term, νht ∼ N (0, σ2
3), where σ2

3

is a constant variance parameter.7 The season-level intercept allows variation in household-

level efficiency to depend on seasonal weather events. While household ability is often viewed

as time invariant, in fact it can be viewed as time dependent since household ability may

improve, for example through education or experience. Additionally, household ability may

be diminished or enhanced by changes in weather. Households with experience in dealing

with drought conditions may find their ability diminished by flooding or cyclones. A priori,

there is no reason to assume that seasonality or changes in weather have a constant or

stationary effect on household characteristics. By allowing household-level intercepts to

vary across season, we are relaxing the assumption that household characteristics are either

time invariant or affected by weather in the same way each season.

Level 4 of the model defines season-level intercepts as a function of an overall mean, µ,

and a random disturbance term, νt ∼ N (0, σ2
4), where σ2

4 is a constant variance parameter.8

Having controlled for all other potentially relevant sources of yield variability we interpret

seasonal variation as coming solely from weather events.

The model represented above by equations (5a)-(5d) and its dependence/independence

structures can be summarized as a single model in terms of probability distribution with

a special error structure which is a sum of independent disturbance terms with a nested

dependence on indexes:

yn ∼ N (Xnβ + δ1Dt + δ2D
2
t + µ, un), (6)

where un is a specific covariance matrix which is the sum of four covariance matrices cor-

responding to the disturbance vectors εn, νiht, νht and νt from each level. Equation (6)

makes clear that our parameters of interest are not the additive non-interacting scale terms

(the α’s) but the components of the error term (σ2
1, σ2

2, σ2
3, σ2

4). In particular, our model,

whether represented by equations (5a)-(5d) or by equation (6), shows that the main goal in

7As in the case of the level-2 disturbance terms, the terms νht are assumed to be independent of each
other. The corresponding vector νht is assumed to be independent of εn and νiht.

8The same group-level independence assumptions about νt holds as for those at levels 1, 2 and 3.
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uncertainty quantification is to estimate the random disturbance terms. Indeed, this is the

key to evaluating the share of variance in yield corresponding to each level in the hierarchy.

The ICC for the four-level model is the percentage of the total variance that is explained

by the variance within clusters of groups. So, the correlation between realizations of yield

within the same parcel is

ρ(parcel) =
σ2
2

σ2
4 + σ2

3 + σ2
2 + σ2

1

. (7)

The correlation between realizations of yield within the same household is

ρ(household) =
σ2
3 + σ2

2

σ2
4 + σ2

3 + σ2
2 + σ2

1

. (8)

And, the correlation between realizations of yield within the same season is

ρ(season) =
σ2
4 + σ2

3 + σ2
2

σ2
4 + σ2

3 + σ2
2 + σ2

1

. (9)

By construction the ICC increases as we move to higher levels of aggregation. Thus, we also

calculate each level’s contribution to total variance in the model. This is simply the variance

at each level divided by un, the total variance in yields.

4 Econometric Results

We focus on a two estimations of the production function and compare point estimates across

the OLS and MLM specifications. These regressions rely on the same sample and contain

the same set of inputs. To account for heterogeneous input response across crops, we allow

all slope and intercept estimates to vary by crop. Table 5 presents regression result from

the classical OLS regression as represented by equation (1). This regression model contains

fixed effects for seasons but does not account for the multilevel structure of the data. Table 6

presents regression results from the MLE estimation of the multilevel model that explicitly

account for the clustering of observations at the parcel, household and season levels. The

OLS estimation of the production function generates point estimates that are broadly similar

in sign, magnitude, and significance to those of the MLE multilevel regressions. Results from

these two regressions point to a fairly robust set of basic patterns that are repeated with few

exceptions. These include (i) positive and significant production relationships between yields

and measured inputs (labor, fertilizer, mechanization and pesticides), (ii) generally increasing
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returns to labor, (iii) diminishing returns to purchased input use, and (iv) diminishing returns

to technological change. We observe only one instance in which the point estimate for an

input is negative and significant (for fertilizer in the case of chickpea). There are increasing

returns to labor for all crops except groundnut, soybean, and wheat. Overall returns to

scale appear to vary across crops and we can reject the hypotheses of equality of coefficients

for each input across crops. For most crops, the coefficient on the time trend is positive

and significant while the coefficient on the squared term is negative and significant. This

provides evidence in support of the S-curve in Figure 1. There are some notable exceptions:

neither time trends are significant in the case of chickpea and cotton and in the case of

groundnut and wheat the linear trend is not significant while the nonlinear trend is positive

and significant.

Table 7 reports estimated variance parameters (Panel A), ICCs (Panel B) and variance

shares (Panel C) for the multilevel MLE regression. These statistics establish the key findings

that inform our insights into the role of weather variability in agricultural production. We

focus attention on Panel C of Table 7, which compactly summarizes the data expressed in

the upper panels of the table. Similar to Townsend (1994) and Rosenzweig and Binswanger

(1993) we find that idiosyncratic risk plays a larger role in determining observed yields then

covariate risk. Unlike Townsend (1994) and Rosenzweig and Binswanger (1993), we are

able to quantify these differences. Reading down the rows of the table allows us to assess

the decomposition of variance and, by extension, the relative importance of each level in

explaining overall variance in yields. We find that 10 percent of the total variance in yields

comes from between-parcel differences, 5 percent comes from between-households differences,

and 3 percent is attributed to between-season differences; 82 percent of the total residual

is idiosyncratic noise. As a robustness check, we estimate the same model but with an

additional level - village - to account for the observation that weather occurs at the village

level. The addition of a village level does not change our results in a substantial way. An

intuitive interpretation of these results is that much of the differences observed in yields

reflects idiosyncratic shocks uncorrelated with any of our explanatory variables or our level

effects. While 82 percent may make it seem like there is a large amount of unexplained

variance in our model, the reference for this value is the residual and not the total variance.

In our OLS model, the R2 = 0.959. Thus, the value of the residual or the fraction of

unexplained variance is only 0.041. It is this unexplained variance that the MLM allows us

to decompose into shares of variance from each level. Of the total unexplained variance (not

the total variance), 82 percent is random noise. Of the remaining 18 percent of unexplained
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variance, most is due to differences between parcels, such as soil quality. Household or farmer

capability is relatively unimportant in explaining differences in yields. In other words, good

farmers cannot make up for bad soil but bad farmers can still prosper if they have good soil.

Only 3 percent of the variability in crop yield is due to seasonal weather variation. This

basic pattern highlights the relatively small importance of between-season yield variance

compared with between-parcel yield variance.

5 Conclusion

Despite long standing interest in the effect of weather on crop output few reliable estimates

exist of the impact of weather variability on agricultural production. This deficit of knowl-

edge is especially pressing in the developing world, where increased weather variability and a

lack of adequate risk management tools is likely to affect millions of smallholders. We address

this research gap using agricultural production data covering 14, 619 parcel level observa-

tions from India over nearly a forty year period. From a descriptive analysis we establish

several stylized facts on the role technical change has played in agricultural production in

India. Encouragingly, yields have increased substantially over time and this increase in

yields has been accompanied by a decrease in the coefficient of variation. Using a multi-

level/hierarchical regression framework, we estimate the different sources of yield variance.

This approach controls for crop specific inputs and time trends and also isolate the amount

of yield variability attributed to parcel-level effects, household-level effects, and seasonal

weather effects. Having controlled for parcel level inputs and a time trend to account for

technical change, we find that the remaining variance is mostly idiosyncratic. Only a small

portion of the remaining variance (3 percent) is due to variability in weather. We conclude

that technical change has reduced the amount of weather related risk faced by farmers, even

when we account for greater amounts of variation in weather due to climate change.
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Table 1: Villages and Years of Data Collection

State Villages Years Time Obs.

Andhra Pradesh
Aurepalle 1975-1984, 1989, 2001-2011 44
Dokur 1975-1979, 1983, 1989, 2001-2011 36

Maharashtra

Kalman 1975-1979, 1983, 1989, 2001-2011 36
Kinkhed 1975-1979, 1983, 1989, 2001-2011 36
Shirapur 1975-1984, 1989, 2001-2011 44
Kanzara 1975-1984, 1989, 2001-2011 44

Note: All villages were surveyed from 1975-1979, in 1989, and from 2001-2011. Up until 2009
surveys were conducted semi-annually. Starting in 2009 surveys were conducted monthly.

Table 2: Frequency of Crop Cultivation by Season

Total Kharif Rabi

castor 918 918 0
chickpea 601 0 601
cotton 2,201 2,201 0
groundnut 617 403 214
maize 504 373 131
rice 2,371 1,521 850
pigeon pea 883 883 0
sorghum 4,492 974 3,518
soybean 681 681 0
wheat 1,351 0 1,351

total 14,619 7,954 6,665

Note: Table displays the frequency of ob-
servations of crops for each season. Cells
with zero values signify that no observa-
tions for that specific crop come from the
season in question.
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Table 3: Descriptive Statistics by Season

Total Kharif Rabi MWW-test

labor (hrs/ha) 322.7 364.2 273.2 ***
(326.5) (320.3) (327.1)

fertilizer (kg/ha) 56.05 59.39 52.06 ***
(79.18) (74.86) (83.86)

mechanization (Rs/ha) 46.30 44.07 48.95 ***
(107.7) (109.1) (105.9)

pesticide (Rs/ha) 99.45 165.2 20.91 ***
(331.0) (430.7) (87.40)

parcel area (ha) 2.006 2.062 1.938 ***
(1.845) (1.738) (1.965)

number of observations 14,619 7,954 6,665
number of parcels 10,578 6,411 5,513
number of households 766 702 567
number of seasons 44 22 22

Note: Table displays means of data for entire data set as well as by sea-
son with standard deviations in parenthesis. The final column presents the
results of Mann-Whitney-Wilcoxon two-sample tests for differences in dis-
tribution. The test rejects the null that each of the inputs come from the
same distribution. Results are similar if a t-test or a KolmogorovSmirnov
test is used. Significance of MW-tests are reported in parentheses (∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01).
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Table 4: Descriptive Statistics by Crop

Castor Chickpea Cotton Groundnut Maize rice Pigeon Pea Sorghum Soybean Wheat

yield (kg/ha) 147.4 197.8 303.6 411.4 564.7 1,505 139.0 240.7 500.6 722.9
(111.6) (203.8) (356.3) (401.6) (609.1) (750.7) (169.1) (278.0) (248.93) (468.7)

labor (hrs/ha) 216.2 191.2 375.6 524.7 289.0 752.6 127.4 159.0 175.0 280.2
(99.92) (219.1) (172.7) (444.2) (204.5) (432.2) (107.0) (147.4) (78.60) (266.2)

fertilizer (kg/ha) 18.84 11.16 66.56 33.37 46.90 152.5 7.776 14.27 51.94 101.1
(22.29) (30.28) (59.09) (64.13) (63.84) (107.5) (20.96) (34.45) (21.64) (72.46)

mechanization (Rs/ha) 1.829 9.757 11.84 43.14 26.61 221.1 3.259 4.565 10.27 35.92
(5.577) (23.73) (22.17) (63.78) (38.09) (174.0) (9.778) (21.03) (7.689) (44.23)

pesticide (Rs/ha) 29.37 21.18 365.6 30.86 1.464 82.53 34.06 2.292 493.2 13.05
(74.55) (94.75) (670.6) (100.3) (32.73) (170.9) (155.4) (28.34) (490.9) (46.70)

area planted (ha) 2.552 0.965 2.742 1.369 0.969 1.229 1.962 2.331 2.747 1.513
(2.025) (1.219) (1.887) (1.303) (0.654) (0.885) (1.716) (2.175) (1.821) (1.377)

number of observations 918 601 2,201 617 504 2,371 883 4,492 681 1,351
number of parcels 748 567 1,856 565 467 1,570 854 3,614 643 1,274
number of households 180 176 301 209 160 250 263 514 170 288
number of seasons 22 22 22 43 39 44 22 44 10 22
number of villages 3 6 5 6 4 6 6 6 4 6

Note: While results are presented in two columns, all coefficients and standard errors come from a single regression. This regression is the OLS estimate of the
production function presented in Equation (1) and contains covariates and season dummies. Also included in the regression but not reported are ten crop specific
intercepts. Standard errors are reported in parentheses (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).
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Table 5: Results of OLS Production Function Regressions

Dependent variable: log yield

castor rice
log labor 1.708∗∗∗ log labor 1.399∗∗∗

(0.092) (0.056)
log fertilizer 0.084∗∗ log fertilizer 0.193∗∗∗

(0.035) (0.021)
log mechanization 0.225∗∗∗ log mechanization 0.058∗∗∗

(0.056) (0.016)
log pesticides −0.005 log pesticides 0.036∗∗∗

(0.024) (0.011)
time trend −42.68∗∗∗ time trend −42.63∗∗∗

(5.116) (5.139)
time trend2 2.134∗∗∗ time trend2 2.158∗∗∗

(0.258) (0.259)
chickpea pigeon pea

log labor 1.260∗∗∗ log labor 1.421∗∗∗

(0.067) (0.061)
log fertilizer −0.001 log fertilizer −0.201∗∗∗

(0.042) (0.031)
log mechanization 0.059 log mechanization 0.208∗∗∗

(0.040) (0.045)
log pesticides 0.065∗ log pesticides −0.020

(0.040) (0.028)
time trend −42.93∗∗∗ time trend −42.34∗∗∗

(5.140) (5.139)
time trend2 2.171∗∗∗ time trend2 2.142∗∗∗

(0.259) (0.259)
cotton sorghum

log labor 1.503∗∗∗ log labor 1.493∗∗∗

(0.068) (0.031)
log fertilizer 0.097∗∗∗ log fertilizer 0.058∗∗∗

(0.019) (0.012)
log mechanization −0.001 log mechanization 0.165∗∗∗

(0.030) (0.018)
log pesticides 0.117∗∗∗ log pesticides −0.025

(0.014) (0.026)
time trend −42.88∗∗∗ time trend −42.46∗∗∗

(5.139) (5.139)
time trend2 2.161∗∗∗ time trend2 2.150∗∗∗

(0.259) (0.259)
groundnut soybean

log labor 0.998∗∗∗ log labor 0.399∗∗∗

(0.093) (0.115)
log fertilizer 0.041 log fertilizer 0.054

(0.026) (0.047)
log mechanization 0.009 log mechanization 0.626∗∗∗

(0.030) (0.103)
log pesticides −0.008 log pesticides −0.001

(0.029) (0.026)
time trend −43.02∗∗∗ time trend −40.35∗∗∗

(5.139) (5.241)
time trend2 2.175∗∗∗ time trend2 2.092∗∗∗

(0.259) (0.260)
maize wheat

log labor 1.712∗∗∗ log labor 0.450∗∗∗

(0.101) (0.057)
log fertilizer 0.050∗ log fertilizer 0.277∗∗∗

(0.030) (0.021)
log mechanization −0.053 log mechanization 0.043∗

(0.037) (0.025)
log pesticides −0.012 log pesticides 0.087∗∗∗

(0.169) (0.022)
time trend −41.54∗∗∗ time trend −42.85∗∗∗

(5.140) (5.140)
time trend2 2.137∗∗∗ time trend2 2.170∗∗∗

(0.259) (0.259)

Observations 14,619
R2 0.959

Note: While results are presented in two columns, all coefficients and standard errors
come from a single regression. This regression is the maximum likelihood estimate
of the multilevel model and contains covariates and data clustered at the season,
household, and parcel. Also included in the regression but not reported are ten crop
specific intercepts. Standard errors are reported in parentheses (∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01).
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Table 6: Results of MLM Production Function Regressions

Dependent variable: log yield

castor rice
log labor 1.704∗∗∗ log labor 1.449∗∗∗

(0.091) (0.057)
log fertilizer 0.078∗∗ log fertilizer 0.159∗∗∗

(0.035) (0.022)
log mechanization 0.244∗∗∗ log mechanization 0.069∗∗∗

(0.056) (0.018)
log pesticides −0.012 log pesticides 0.043∗∗∗

(0.024) (0.011)
time trend 2.069∗ time trend 3.186∗∗∗

(1.243) (0.879)
time trend2 −0.268∗∗∗ time trend2 −0.049

(0.067) (0.043)
chickpea pigeon pea

log labor 1.211∗∗∗ log labor 1.424∗∗∗

(0.066) (0.060)
log fertilizer −0.002 log fertilizer −0.185∗∗∗

(0.043) (0.032)
log mechanization 0.064 log mechanization 0.225∗∗∗

(0.040) (0.045)
log pesticides 0.084∗∗ log pesticides −0.023

(0.040) (0.028)
time trend −0.864 time trend 4.279∗∗∗

(1.229) (1.166)
time trend2 0.083 time trend2 −0.177∗∗∗

(0.068) (0.059)
cotton sorghum

log labor 1.548∗∗∗ log labor 1.457∗∗∗

(0.068) (0.031)
log fertilizer 0.076∗∗∗ log fertilizer 0.040∗∗∗

(0.020) (0.012)
log mechanization 0.001 log mechanization 0.174∗∗∗

(0.030) (0.018)
log pesticides 0.121∗∗∗ log pesticides −0.027

(0.014) (0.026)
time trend −0.040 time trend 4.077∗∗∗

(0.950) (0.750)
time trend2 0.012 time trend2 −0.122∗∗∗

(0.047) (0.039)
groundnut soybean

log labor 0.985∗∗∗ log labor 0.481∗∗∗

(0.091) (0.115)
log fertilizer 0.043 log fertilizer 0.050

(0.026) (0.047)
log mechanization 0.028 log mechanization 0.585∗∗∗

(0.030) (0.102)
log pesticides −0.005 log pesticides −0.004

(0.029) (0.026)
time trend −1.345 time trend 26.622∗∗∗

(1.188) (9.988)
time trend2 0.128∗∗ time trend2 −0.699∗∗∗

(0.064) (0.251)
maize wheat

log labor 1.690∗∗∗ log labor 0.491∗∗∗

(0.099) (0.057)
log fertilizer 0.040 log fertilizer 0.265∗∗∗

(0.030) (0.022)
log mechanization 0.004 log mechanization 0.036

(0.037) (0.025)
log pesticides −0.017 log pesticides 0.095∗∗∗

(0.168) (0.022)
time trend 13.102∗∗∗ time trend 0.507

(1.315) (1.046)
time trend2 −0.237∗∗∗ time trend2 0.082∗

(0.068) (0.049)

Observations 14,619
Log Likelihood -24,333
Akaike Inf. Crit. 48,814
Bayesian Inf. Crit. 49,376

Note: While results are presented in two columns, all coefficients and standard errors
come from a single regression. This regression is the maximum likelihood estimate
of the multilevel model and contains covariates and data clustered at the season,
household, and parcel. Also included in the regression but not reported are ten crop
specific intercepts. Standard errors are reported in parentheses (∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01).
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Table 7: Estimated Variance, ICCs, and Variance Shares from Multilevel Regressions

w/o village w/ village

Panel A: Variance Parameter Estimates

parcel (σ2
2) 0.161 0.161

household (σ2
3) 0.091 0.063

season (σ2
4) 0.042 0.040

village (σ2
5) 0.060

idiosyncratic (σ2
1) 1.385 1.383

Panel B: Intraclass Correlation Coefficients

parcel 0.096 0.094
household 0.150 0.131
season 0.175 0.155
village 0.189

Panel C: Shares of Variance From Each Level

parcel 10% 09%
household 05% 04%
season 03% 02%
village 03%
idiosyncratic 82% 81%

Note: In Panel A, estimates of the variance parame-
ters on each level’s residuals come from estimation of
the model reported in in Table 6. Variances at lev-
els 2, 3, and 4 (σ2

2 , σ
2
3 , σ

2
4) represent the variance in

crop yield that comes from the corresponding level.
The final variance parameter (σ2

1) corresponds to the
idiosyncratic or unexplained portion of the model. In-
traclass correlation coefficients in Panel B. Panel C
decomposes the ICC into percent of variance accorded
to each level.
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Figure 1: Mean of Seasonal Yield

Note: Mean seasonal yield in each season is calculated as the arithmetic mean of output per hectare for all
crops grown in that season.

23



Figure 2: Standard Deviation of Seasonal Yield

Note: Standard deviations of seasonal mean yield in each season is calculated as the standard deviation of
output per hectare for all crops grown in that season.
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Figure 3: Coefficient of Variation of Seasonal Yield

Note: Coefficient of variation of seasonal yield in each season is calculated as the ratio of the standard
deviation to the arithmetic mean of output per hectare for all crops grown in that season.
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Figure 4: Mean Seasonal Yield by Crop

Note: Mean seasonal yield in each season is calculated as the arithmetic mean of output per hectare for each
crop in that season. All graphs utilize the same scale.
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Figure 5: Kernel Density of Yields by Crop (1975 & 2011)

Note: Graphs are kernel density plots by crop of yields in first and last year of survey (1975 & 2011). The
exception is soybeans, which were not cultivated until 2002.
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Figure 6: Yield and Input Use

Note: Hollow blue circles represent parcel level log of yield while hollow red diamonds represent parcel level
log of labor, fertilizer, mechanization, and pesticide, respectively. The green line is the linear trend line of
yields over time. The orange line is the linear trend of the specific input over time.
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