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Abstract. Public health insurance and public annuity programs account for about half of federal
spending and large bodies of economic research. However, they have so far been viewed as
unconnected. We generalize the widely used economic theory of life-extension to explore the close
connections between these two sets of policies. Our framework, which introduces incomplete
annuitization and stochastic mortality into the conventional economic theory of life-extension,
generates several novel findings. First, greater annuitization alters the willingness to pay for life-
extension, commonly called the value of a statistical life (VSL). Second, shocks to mortality risk increase
VSL for a consumer who is incompletely annuitized. Finally, we employ our framework to introduce a
more general concept, the value of a statistical illness (VSI), which quantifies an individual’s willingness
to pay to avoid an increase in the risk of acquiring an illness that affects her mortality rate.
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I. INTRODUCTION

The economic analysis of risks to life and health has made enormous contributions to both academic
discussions and public policy. Economists have used the standard tools of life-cycle consumption theory
to propose a transparent framework that measures the value of mortality risk-reduction, the value of
quality of life improvements, and the value of a statistical life-year (Arthur 1981; Rosen 1988; Murphy
and Topel 2006). All these concepts and quantities now play central roles in public policy discussions
surrounding investments in medical care, public safety, workplace safety, environmental hazards, and
countless other arenas.

For analytical convenience, the standard framework has typically assumed complete annuitization and
deterministic mortality risk. These assumptions sacrificed little generality in the analysis of public
policies that save lives in the aggregate. However, they hamper the model’s predictive power in several
ways when studying individual behavior and the relationships between alternative mechanisms for risk-
reduction. In addition, they gloss over policy-relevant relationships between the demand for life-
extension and the structure of the annuity market, and cannot meaningfully distinguish between
preventive care and therapeutic care.

Complete annuity markets better shield an individual against mortality risk. By the same logic, an
incompletely annuitized consumer will have greater incentive to avoid or mitigate a sudden shock to
mortality risk. A very simple example illustrates the intuition. Imagine a retiree with $120,000 in wealth,
no bequest motive, and a flat optimal consumption profile. Suppose further that her ex ante life
expectancy is 4 years, and that she is equally likely to live 3, 4, or 5 years. If she is fully annuitized, her
consumption remains flat at $30,000 annually, regardless of what she later learns about her mortality
risk. Now suppose she cannot annuitize any of her wealth. If she suddenly learns that she will live for
only 3 years, she will accelerate her spending to $40,000 annually and thus increase the value of each
life-year. This example demonstrates that mortality shocks can increase the value of life-extension when
annuity markets are incomplete.! It also demonstrates that annuitization can decrease the demand for
life-extension. We show that this basic intuition generalizes to models with stochastic mortality and
incomplete annuity markets of various kinds.

In contrast to the complete annuitization model, the value of life-extension is predicted to vary with the
size of mortality shocks when consumers are incompletely annuitized. Thus, the value of a statistical life-
year may be higher for an individual diagnosed with a more fatal iliness, and vice-versa. This insight,
which is consistent with data on how consumers view the value of life-extension (Nord et al. 1995;
Green and Gerard 2009; Linley and Hughes 2013), implies that the value of life-extension varies
systematically across diseases. It also implies that the value of treatment technologies, which are used
after an illness occurs, will be higher than the value of preventive technologies, even when both
increase life expectancy by identical amounts. These insights ought to change the way health insurers
assess the value of various medical technologies.

Finally, our framework takes the more realistic perspective that an individual faces uncertainty over his
future mortality risk. This stochastic mortality assumption produces additional insights. The standard
model quantifies the value of statistical lives, but it has little to say about the continuum of health

! Conceptually, this argument is most closely related to Philipson et al (2010), who implicitly assume that
incompletely annuitized individuals will need to spend down their resources at the end of life.



events that precede death. Our framework lends itself naturally to a more general concept, the value of
a statistical illness (VSI), which quantifies an individual’s willingness to pay to avoid an increase in the
risk of acquiring an illness that affects her mortality rate.

Our study connects the vast literature on the value of life (Arthur 1981; Murphy and Topel 2006; Rosen
1988; Hall and Jones 2007) with the literature on life-cycle consumption models that goes back to Yaari
(1965). It is well known that annuitization provides substantial value by insulating individuals from
consumption risk. We show that it also greatly increases the value of statistical life at older ages.? Our
results suggest that more attention should be paid to the public finance interactions between pension
and healthcare systems.

Section Il reviews the predictions of the conventional model for the returns to life-extension and
demonstrates how relaxing the perfect annuity assumption implies diminishing returns to life-extension.
It also develops additional subsidiary implications of this framework. Section Il presents empirical
analysis that: (1) quantifies how health shocks change the value of statistical life when annuity markets
are incomplete; (2) computes the effect of annuitization on the value of longevity; and (3) demonstrates
why and to what extent treatment is more valuable than prevention. Section IV concludes.

Il. THE VALUE OF LIFE WHEN MORTALITY IS DETERMINISTIC

Consider an individual who faces a mortality risk. We are interested in analyzing the value of a marginal
reduction in this risk.> We first quantify the value of mortality risk-reduction for an individual who is fully
annuitized. We then repeat the exercise for an individual who lacks access to annuity markets, and
compare our findings. We assume initially that mortality is deterministic, which allows us to illustrate
the basic insights of the paper in a setting familiar to the literature on the value of life. Section llI
extends the model to accommodate stochastic mortality and show that our conclusions are enriched but
qualitatively unchanged.

IlLA. The fully annuitized value of life

Let c(t) be consumption at time t, W, be baseline wealth, m(t) be exogenously determined income, p
be the rate of time preference, and r be the rate of interest. Finally, define q(t) as health-related quality
of life at time t. Since it sacrifices little generality in our application, we take the life-cycle quality of life
profile q(t) as exogenous. As needed, one can consider any relevant quality of life profile in concert
with a given profile of mortality. The maximum lifespan of a consumer is T, and her mortality rate at
any point in time is given by u(t), where 0 < t < T. The probability that a consumer will be alive at time
tis:

t
S(t) = exp [—f u(s)ds]
0

2 Reichling and Smetters (2015) show that stochastic mortality and correlated medical costs can explain the
puzzling observation that many households do not sufficiently annuitize their wealth. They take the positive
correlation between health shocks and medical spending as a given. Our study sheds light on why these two
phenomena are positively correlated.

3 We focus on improvements in longevity but allow for improvements in quality of life as well.



At time period t = 0, the consumer fully annuitizes. We assume that annuitization is actuarially fair.

The consumer’s maximization problem is:

T
1‘51(%(—[0 e PtS()ulc(t), q(t))dt

T T
s. t.f e "tS(t)c(t)dt < W, +f e "tS(H)m(t)dt
0 0

The consumer’s utility function, u(c(t), q(t)), depends on both consumption and health-related quality
of life. We assume u(+) is strictly increasing, concave, and twice continuously differentiable. Let u.(-)
denote the marginal utility of consumption. Associating the multiplier 8 with the wealth constraint,
optimal consumption is characterized by the first-order condition:

e P (c(t),q(t) = 6

To analyze the value of life, let §(t) be a perturbation on the mortality intensity with fOT é(tdt =1,
and consider

t
SE(t) = exp [—f (u(s) — sS(s))ds],where e>0
0

Let c#(t) represent the equilibrium variation in c(t) caused by this perturbation. As shown in Rosen
(1988), the marginal utility of this life-extension is given by
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a T
2 -2 f e=PtsE(u(ce (), g())dt
0

£=0 £=0

T t
= j [e=Ptulc(t), q(0) + e "to(m(t) — c(D)] U 5(s)ds] S(t)dt
0 0

A canonical choice for §(+) is the Delta-Dirac function, so that the mortality rate is perturbed att = 0
and remains unaffected otherwise. Dividing the result by the marginal utility of wealth, 6, then yields
the marginal value of life-extension that is commonly called the value of a statistical life (VSL):

(" u(c(t), q(®) (1)
VSL = J; e tS(t) (m +m(t) — C(f)) dt

VSL corresponds to the value that the individual places on a marginal reduction in risk of death in the
current period. For example, it is the amount that 1,000 people would be collectively willing to pay to
eliminate a current risk that is expected to kill one of them. It is equal to the present discounted value of
lifetime consumption, plus the change in net savings.

Alternatively, one might be interested in valuing a treatment that reduces mortality evenly across all
ages. In this case §(+) is more appropriately modeled with a uniform distribution function, yielding

fTe‘” (u(C(t),Q(t))
0

t
w(e,q@) T O~ cG));S(t)dt



This puts greater weight on later years of life.

It is also useful to characterize the value of a statistical life-year, which is the value of a one-period
change in survival from the perspective of current time:

_ ule®,q®) _
N O PTG R

The value of statistical life depends on consumption and the quality of life. Define the elasticity of
intertemporal substitution as:

UcC

1
o U

In addition, define the elasticity of quality of life with respect to the marginal utility of consumption as:

Ueqq
Uc

Y]

When this term is positive, the marginal utility of consumption is higher in healthier states, and vice-
versa.

Taking logarithms of the first-order condition for consumption and differentiating with respect to time
yields the rate of change for consumption over the life cycle:

gza(r—p)+ang (2)

If one assumes that r > p, and that the marginal utility of consumption is higher when health status is
better, then life-cycle consumption will have the inverted U-shape observed in real-world data.*

Note the crucial feature of the conventional model that consumption growth over the life-cycle is
independent of mortality risk, because the individual is fully insured against that risk. This feature in turn
implies that the rate of change in the value of a life-year is also not a function of mortality risk:

(L (D Dyl

v u.ov vl/c v uw’/q v

Although changes in mortality do not affect the rate of change in the value of a statistical life-year,
inspection of equation (1) reveals that an increase in mortality lowers the value of a statistical life by
reducing the expected net present value of lifetime utility. The only effect of mortality risk on VSL
operates by changing the probability that the individual will live to enjoy consumption in a particular
year.

4 Consumption climbs early in life as the benefits to savings diminish. It declines later in life when quality of life
deteriorates. This inverted U-shape for the age profile of consumption has been widely documented across
different countries and goods (Carroll and Summers 1991; Banks, Blundell et al. 1998; Fernandez-Villaverde and
Krueger 2007).



II.B. The uninsured value of life

To illustrate the effects of annuitization, we consider a model without any annuitization possibilities. In
our calibration exercises later, we will consider various partial annuitization schemes. To characterize
the model without annuitization, we employ the Yaari (1965) model of consumption behavior under
mortality risk. The consumer’s maximization problem is now:

T
max fo e PtS()ulc(t), q(t))dt

s.t.W(0) = W,,
w((t)=0,W(T) =0,

W =rW(t) + m(t) — c(t)
If the non-negative wealth constraint binds, then the solution to the consumer’s problem is simply to set
c(t) = m(t). Otherwise, the solution is to maximize subject to the constraint on the law of motion for
wealth. We focus here on the latter, nontrivial case.

The consumer’s first-order condition for consumption is:

e PIES()uc(c(t),q(t) = 6

Unlike in the case of perfect markets, the survival function enters the consumer’s first-order condition
for optimal consumption. Instead of setting the discounted marginal utility of consumption equal to the
marginal utility of wealth, the consumer sets the expected discounted marginal utility of consumption at
time t equal to the marginal utility of wealth. This effectively shifts consumption to earlier ages in the
life-cycle. This is rational because consumption allocated to later time periods will not be enjoyed in the
event of an early death.

The expression for the marginal utility of life extension is the same as in the case of perfect markets:

T
9 f e PtsE(tyu(cE (1), q(1))dt
0

e=0 de

OEU
e

Tt T = L acé(t)
- j et ] 5(s)ds| S@OuC®), q(©)dt + f e S (Ou(e(®), 4(1) .
0 0 i 0

dt
£=0

= T‘pt:tS d_S d 96 T‘”S d
—J;) e J;) (s) s: ®ule(t),q())dt + &fge cé(t)dt

T [ L
:f e Pt fd(s)ds S®)ulc(t), q(t))dt
0 |V 0 |

where the last equality follows from application of the budget constraint.> Choosing again the Delta-
Dirac function for §(+) and dividing the result by the marginal utility of wealth, 6, yields an expression
for VSL that differs from the perfect markets case:

® The budget constraint W (T) = 0 implies fOT e TteE(D)dt = Wy + fOTe'”m(t)dt, which is equal to a constant.



VSL = f Te—pts(t) ule(©,9(0)) dt = f Te—”—”(c(t)'q“)) dt G
0 0

uc(¢(0),q(0)) u(c(®),q(1))

As before, the value of statistical life is proportional to the expected discounted (lifetime) utility of
consumption, and inversely proportional to the marginal utility of consumption. There is no effect of net
savings. It is well known that removing annuity markets lowers lifetime utility (Yaari 1965). We also
argued earlier, and will show more formally below, that removing these markets shifts consumption to
earlier ages, thereby lowering the marginal utility of consumption, at least at those ages. Thus, the
effect of annuity markets on VSL is in general ambiguous.

The expression for the value of a statistical life year, v, is the same under both perfect and imperfect
markets because it is calculated from the perspective of current time and thus is unaffected by
differential discounting. However, the actual values will in general differ because annuitization alters the
time profile of consumption.

In particular, the life-cycle consumption profile of the non-annuitized individual depends explicitly on
mortality risk. Taking logarithms of the first-order condition for consumption and differentiating with
respect to time yields:

2= =p) +onz—ou(® “@

Comparing this result to the standard case, given by equation (2), reveals both similarities and
differences. As in the standard, fully annuitized model, the non-annuitized consumption profile
described by equation (4) changes shape when the rate of time preference is above or below the rate of
interest and when the quality of life changes. Unlike in the standard model, however, the consumption
profile described by equation (4) depends explicitly on the mortality rate, u(t). Higher rates of mortality
depress the rate of consumption growth over the life-cycle. This rate of growth is always higher in the
fully annuitized case, in which the last term drops out of the consumption growth equation (4). Put
another way, removing the annuity market “pulls consumption earlier” in the life-cycle.

An appealing feature of the uninsured model is that it generates an inverted U-shape for the profile of
consumption under quite natural assumptions. In particular, low income early in life and high mortality
risk later in life are sufficient conditions for the inverted U-shape consumption profile. One need not
impose the ad hoc assumptions on the signs of r — p or n that are necessary in the fully annuitized
model (Murphy and Topel 2006).

Because it depends on consumption, the life-cycle profile of the value of a statistical life-year also
depends on mortality:

%=<l+£)£'+(&_n)i (5)

o vlc u q

An important implication of this model is that willingness to pay for longevity depends critically on the
life-cycle mortality profile (see equation 4). Holding quality of life constant, increases in the mortality

rate will raise v, the value of a statistical life-year. This is evident from the definition of v = 2 That is,

Uc

mortality will shift forward the value of life. As societies become richer and live longer, the fraction of
wealth spent on health will depend not just on the income elasticity of health, but also on the degree of



survival uncertainty they face. We return to this point in our empirical exercise. Furthermore, our results
imply that public programs such as Social Security that increase annuitization levels will affect society’s
willingness to pay for longevity, thereby creating a feedback loop that could dampen or increase
program expenditures.® As a general matter, the model demonstrates that the degree of annuitization
influences how people value gains in longevity.

In the next section, we allow mortality to be stochastic so that we can investigate the effect of health
shocks on the value of life. Before turning to that analysis, we pause to note that suffering a health
shock is similar to removing access to annuity markets, which exposes an individual to mortality risk. As
we have just demonstrated, this shifts the value of a life-year forward, thereby increasing the value of
early life-years and decreasing the value of later life-years. The net effect on VSL is ambiguous. As we
shall see, health shocks have a similar effect.

ITI. THE VALUE OF LIFE WHEN MORTALITY IS STOCHASTIC

The previous analysis demonstrates that mortality risk affects the value of a statistical life when annuity
markets are incomplete. Earlier analyses of the value of life have overlooked this relationship by
assuming complete annuitization. However, the conventional framework is ill-equipped to study the
influence of mortality risk for another reason as well. Prior analysis, just like our model above, treats the
mortality rate as a nonrandom parameter (cf, Murphy and Topel, 2006). Thus, shifts in mortality risk
reflect preordained and anticipated changes in mortality. In the real world, however, neither the timing
nor the size of shifts in mortality risk is known.

We now extend our analysis to include random mortality risk and show that our prior results continue to
hold. Specifically, we assume that the mortality rate now depends on the individual’s health state. Let Y;
be a continuous-time Markov chain with finite state space Y = {1,2,...n}, where states are strictly
ordered from most healthy (1) to least healthy (n).” Denote the transition intensities by:

1
A(t) = lLi_I}g)EP[Yt+h =jlY, =1i]

Ai(0) = — Z Aij(6)

Jj#i

The mortality rate at time t is defined as
n
w(®) = Y EO1 =}
j=1

where {ﬁj(t)} are exogenous and 1{Y; = j}is an indicator variable equal to 1 if the individual is in state

J at time t and 0 otherwise. The ordering of health states implies

6 Philipson and Becker (1998) make the important, but distinct, point that the moral hazard effects of public
annuity programs also increase an individual’s willingness to pay for longevity gains.

7 The finite state assumption is only a mild restriction because of the approximation property of Markov chains.



Y, =i| = E[S@)|Y, =i] > E[S@®)|Y; =] Vi,j >i

E [exp {— ftu(s)ds}
0

III.A. The fully annuitized value of life

Even when mortality is stochastic, annuitization breaks the link between consumption growth and
mortality risk. We assume a full menu of life annuities is available where consumers can choose
consumption streams, cy,(t), that depend on the current health state, Y;. As before, we assume that
annuities are actuarially fair.

The consumer’s maximization problem is:

T
maxIEU e‘PtS(t)u(cyt(t), th(t))dt YO] (6)
0

CYt(t)

T
Yo| < E (W, +f e TS (t)my, (t)dt
0

T
s.t.E [ j e "tS(t)cy, (t)dt YO] =Ww(0,Y,)
0

where current wealth at time t in state i is W(t, i). Define the objective function as

T—u t
J(w,i) =E U e Plexp {—f u(u + s)ds}u(cyu+t(u +0), qy,,,(u+ t))dt|Y, = i]
0 0

Define the optimal value function as
V(tl Yt) = V(tl Wtr Yt) = maX{](t, Yt)}
Cyt(t)

From standard arguments, we know that if I and its partial derivatives are continuous, then V satisfies
the following Hamilton-Jacobi-Bellman (HJB) equation:

(p+m®) V(L) 7
= maxJu(c,(6), q:(1)

= V(L i)

+ k:1m (T + ljl(t)) W(t, k) - Cyk(t)

+

s
D N O ) -]

£ M@ - W@ D] |+

l#k

J#i

We are interested in understanding how optimal consumption, and thus the value of life, changes over
the life-cycle in this problem. In order to derive analytic expressions, we follow Parpas and Webster
(2013), who demonstrate that it is possible to formulate a stochastic optimization problem as a
deterministic problem that takes V(t,j),j # i, along with the corresponding optimal policies, as
exogenous.

Claim 1:



Define S(i,t) = exp {— fot 1,(s) + X i A (s) ds} . The optimal value function, V,(W,,i) =

e PtS(i, t)Vt(Wt, i), for the following auxiliary deterministic optimization problem also satisfies the HJB
given by equation (7):

o T _ (8)
Vo(Wo,i) = max f e PES(i, t) | ulc;(t), q; (1)) +Z/1ij(t)v (t,W(t,j)) dt
t 0 Jj#i
oW (t,i — _ _
sir—g?2=(r+u@DW@J)—q@)+2§MKQWﬂLD—Mﬂaﬂ]

Jj#i
Proof: see appendix

As shown in Bertsekas (2005), the Hamiltonian for the maximization problem (8) is:

_ . _ (9)
H(W o ci(0),p) = e 56,0 | u(cu(®), ai (@) + ) 2g©V (67, )

J#i
n
k
+ >
k=1

(HﬂAmW@M—%@+§HMMW@M—W@MI

l#k

Claim 2:

The consumer’s first-order condition for the Hamiltonian (9) is
e(r_p)tuc(cyt(t), th(t)) =0

Proof of claim 2:

The adjoint equations for the Hamiltonian (9) are:

B0 = =p® | r+E© + D 450 |+ 2up and

JE =i

v (t,W(t,j
I RTARS I IS RO

(k) _ —pté&g;
P, = e PLS(i, ) (t) —
t l OW(t,]) 1k 1k

for k # i. Assume that pt(k) =0, k # i. (We will verify this at the end of the proof.) Then this implies:

p = 0T8I, 1)
where 6 is a constant. Note also that the first-order condition of the Hamiltonian with respect to c;(t) is
e TS (1, Du (i (0), q:(0) = p”
Setting these last two equations equal to each other then yields the desired result.

To verify that pt(k) = 0, k # i, note that the first-order condition implies dV (t, i) /W (t,i) = 8 e"~P)t,

so that the adjoint equation for k # i is

10
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QED

If we assume that g is independent of the health state, e.g., if full income insurance is available, then we
can obtain the life-cycle profile of consumption by differentiating the first-order condition with respect
to t. Doing so shows that the dynamics are the same as in the deterministic case:

¢y, ¢ q
—==-=0(r—p)+on-
o c (r—p) g

This result demonstrates that annuitization insulates the consumer from mortality risk even when
mortality is stochastic.

To analyze the value of life, we again let §(t) be a perturbation on the mortality intensity with
T

Jy s@®dt = 1.

Claim 3:

The marginal utility of life extension takes the same form as in the deterministic case:

0EU
e

|

T t
=E U [e‘ptu(cyt(t), qyt(t)) +e "0 (my,(t) - th(t))] (j 5(s)ds>5(t)dt
0 0

e=0
Proof of Claim 3:

The marginal utility of life extension is defined as

_ %E [ fOT et exp {_ fot“(S) _ gé‘(s)ds} (u (c5,(0), qyt(t))> dt YO] B

where cé(t) represent the equilibrium variation in c(t) caused by this perturbation. Then

T t t
= IEU e—ht <f 6(s)ds> exp {—f u(s)ds}u(cyt(t),qyt(t))dt YO]
= " T " t ’ dct (t)
— &£ Yt
+E U; e Pt exp {—fo ,u(s)ds} U, (th(t), qyt(t)) 9% L=O dt

|
|

a [(" ‘
» = E Uo e "t exp {—fo u(s) — 86(5)(15} (Cﬁ(t) - myt(t)) dat

OEU
ds

£=0

OEU
s

|

T t ¢
= [EUO e~ Pt (fo 6(S)ds> exp {—foM(s)ds}u(cyt(t),th(t))dt

T t €
+ 6E U; e "t exp {—fo,u(s)ds} acgtg(t)

Finally, the budget constraint implies

dt
£=0

O_GWO
~ d¢

|

£=0
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=F UOT o Tt (fot(S(s)ds> exp {— foty(s)ds} (Cyt(t) — myt(t)) dt

T t €
+E U e "t exp {— j ,u(s)ds} 6c;t€(t) YO]
0 0

then yields the desired result.
£=0

dt
£=0

. . . . OE
Plugging this last result into the expression for a_eU

QED

Choosing again the Delta-Dirac function for §(+) and dividing the result by the marginal utility of wealth,
6, shows that the value of statistical life also takes the same form as in the deterministic case:

VSL = E [fTe_” u(CYt(t)' qyt(t)) Yo] (10)
0

u’C (Cyt (t)’ th (t))
These results demonstrate that stochastic mortality, by itself, does not alter the basic insights offered by
(Murphy and Topel 2006; Rosen 1988) as long as the full annuitization assumption maintained in their
models is met. As we shall see in the next section, however, stochastic mortality matters in an
environment where annuities are absent.

+my, (t) — cyt(t)] S(t)dt

This stochastic setting also allows us to derive an expression for value of prevention, i.e., the value of a
reduction in the probability of transitioning to a different health state. This is not possible in a
deterministic environment, where there is effectively only one health state. For the purposes of this
exercise, we will assume that it is only possible to transition to worse health states, i.e., 4;; = 0 for j <
i

The model with deterministic mortality considers only the value of preventing death. The stochastic
mortality model expands the set of states to include varying levels of illness, not just death. Thus, we
can analyze the value of preventing the transition to a worse health state. For concreteness, suppose
that transition to a new health state corresponds to the onset of a new chronic illness like diabetes,
hypertension, lung disease, cancer, or the like. We can use this concept to study the value not just of a
life saved, but of an illness prevented. We call this the value of a statistical illness (VSI).

To analyze the VS, let 6;;(t) be a perturbation on 4;;(t), where ¥, fOT 8;;(t)dt = 1.
Claim 4:

The marginal utility of preventing an illness is given by

12
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0
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—| e=Pt Z /L'j(t) %4 (t,W(t,j)) -0 z ‘Sij(t) W(t,]) $G, t)dt

J#i J#i
PROOF: see appendix

The first term in the expression represents the marginal utility of a reduction in the probability of exiting

, . . AEU . .
state Y; =i, and is analogous to the expression forg for life-extension. The second term
£=0

represents the loss in marginal utility from the reduction in probability of transitioning to other possible
states.

As in the life-extension case, it is helpful to choose the Delta-Dirac function for §(:), so that the
probability is perturbed att = 0 and remains unaffected otherwise. It is also helpful to consider a
reduction in the probability for only one state, j;, so that 6L-j(t) = 0 Vj # j,. Dividing the resulting
expression by the marginal utility of wealth, 6, then yields what we term the value of statistical illness

(VSI):
VSI = E —rt
Uo N RCAGY X0))

0

u’C (Cyt (t)’ th (t))
Thus VSl is the difference in VSL between the two different health states. If state j, is death, then VSI
simplifies to VSL (see equation 10). It is straightforward to generalize equation (11) to include a
treatment that prevents multiple diseases: in that case, VS| is equal to VSL in the healthy state minus the
weighted average of the VSL’s across the multiple disease states.

(11)

+ m(t) — C(t)] S(t)dt

Yozl]

+m(t) — c(t)] S(t)dt

Yo =f0]

This result is consistent with the notion that, all things equal, it is more valuable to prevent serious
diseases than mild diseases, as measured by VSL. It also implies that, all things equal, it is more valuable
to prevent diseases that occur among young, healthy individuals (i.e., those with a high VSL) than among
old, sick individuals.

Interestingly, VSI is not a function of 4;;(¢). This implies that the (marginal) prevention of two distinct,
but equally lethal, diseases is equally valuable, even if one of the diseases is more prevalent than the
other. This is not true for diseases that affect quality of life (Lakdawalla, Malani, and Reif 2017).

IT1.B. The uninsured value of life

The consumer’s maximization problem is:

13



|

T
max [E |:j e‘PtS(t)u(CYt(t), th(t))dt
0

cy (V)
s.t. W(0) = W,,
W) =0,W() =0,
W =rWw() + my, (t) — ¢y, (1)

As before, we will focus on the case where the non-negative wealth constraint does not bind. The
optimal value function V satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

(p+m®) V(L) (12)

v (e, i) v (t, i)
WD [rW (@) +m() —c; (D] + R

= max u(cl(t) ql(t)) +

+ z A5 OV (6.)) = V(D]

Jj#i
Claim 5:

As in the deterministic case, one can find an auxiliary deterministic optimization problem whose value
function satisfies the HIB (12). The Hamiltonian for this deterministic problem is

HWs, ¢i(£),p0) = e 80,0 | u(a:(®), ¢:() + z i@V (&, W) |+ pe[rW (@) — ¢ (6) +my(0)]

j#i
PROOF: see appendix (to be done)

The first-order condition for the Hamiltonian is

uC(Cl(t) ql(t)) T(lt) (13)

Taking logs, differentiating with respect to t, and rearranging then shows that the life-cycle profile of
consumption, conditional on being in state Y; = i, is given by

o (14)

¢
C— =o(r—p)+ 077_ —op (1) - uc(cl(t) ql(t))

i
j#i

As in the deterministic case, the rate of change is a declining function of the individual’s current
mortality rate, u;(t): removing the annuity market “pulls consumption earlier” in the life-cycle. Unlike in
the deterministic case, there is now an additional source of mortality risk, captured by the fourth term in
equation (14).

What happens to consumption when the consumer transitions to a different health state? This question
cannot be posed in a deterministic setting, and it is here that the stochastic mortality model departs
significantly from the traditional, deterministic mortality model. Under stochastic mortality,
consumption can exhibit discrete jumps when transitioning to different states. Intuitively, transitioning
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to a state where the current mortality and future expected mortality are high will shift consumption
forward (see Figure 2), and vice versa.

Next, we turn to deriving expressions for the value of life.
Claim 6:
The marginal utility of life extension takes the same form as in the deterministic case:

|

J0EU

T t
— =E U [e‘Pt (f 6(5)ds> S(t)u(cyt(t), qyt(t))] dt
£=0 0 0

s

Proof:

The marginal utility of life extension is defined as

T ;g E UT e Pt exp {— j:,u(s) - eS(s)ds} (u (Cﬁ(t), CI}@(U)) dt

YO]
=E [J;)T e~ Pt (fot@(s)ds) S(t) (u (Cyt(t), qyt(t))) dt Yo]
+E [LT ePLS(t) (uc (cét(t), qyt(t))) chtg(t) YO]

where cé(t) represent the equilibrium variation in c(t) caused by this perturbation. We conclude the
proof by showing that the latter term is equal to O:
YO]

dey, ()
oe
Yt] (e (c5,0. 4,®)) ac;f;t)‘ dt
=0

:

OEU
s

£=0

dt
0

E [ fOTe_ptS(t) (uc (cg(t),qyt(t))) »
T t

=E Uo E [e‘pt exp {—fo u(s)ds}

:QIE[J;)Te—r ac}%(t)g ] QaiIE[J;T -rt g(t)dt

d
[ ”m(t)dt]

|

dt

£=0

=0

£=0

QED

Choosing once again the Delta-Dirac function for §(:) and dividing the result by the marginal utility of
wealth at time t = 0 shows that the value of statistical life also takes the same form as in the
deterministic case:

VSL =

E [ fy [e =S (0u(cy, (0, gy 0)]dt| Vo] _ f u(cyt(t) w®) |,
0

E[e=PS(t)uc(cy, (1), 4y, (D) |Yo] Uc CYt(t) th(t))

Claim 7:

The marginal utility of preventing an illness is given by:
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0EU
s

- fo ' e=PLS(i t) fo tz: 5,;(s) ds | u(cy, (6), qr.(O)) + Z 20V (6 W, )))

=0 TZi TZi

- z A (OV (t,W(t,j)) dt

j#i
Proof: See appendix

Choosing the Delta-Dirac function for disease j as done previously then yields the expression for the
value of statistical illness:

Uc (CY]- (0), Qy; (0)>
ue (er,(0),qy,(0))

If we assume that state j > i, and that consumption jumps when entering a worse health state, then

e (6,0, 5, (0)) < e (6,00, 47, (0)).

- e (cv,(0), 4v,(0))

= VSL(i) — VSL(j)

IV. ESTIMATES OF THE VALUE OF LIFE

IV.A. Calibration framework

We will work with the discrete time analogue of our model and abstract from the role of quality of life,
since aggregate, nationally representative data on quality-of-life trends are not generally available.
Health states are ordered from most healthy (Y;) to least healthy (Y,,). Denote the transition
probabilities by:

pij(t) = P[Y, = j|Y;y =]

As in the continuous time model, the mortality rate at time t depends on the individual’s health state:
n
—j .
qc = Z q.1{Y; = j}
j=1

where {Ei} are given and 1{Y; = j} is an indicator variable equal to 1 if the individual is in state j at time

t and 0 otherwise. The probability of surviving from period t to period s is denoted as S;(s), where
S¢(t) =1,
S¢(s) =Se(s = DA — gs-1),s >t

Let ¢; be consumption in period t, w; (non-annuitized) wealth, p the utility discount rate, and r the
interest rate. Assume that in each period the consumer receives an exogenously determined income,
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m,, and that the maximum lifespan of a consumer is T (i.e., gy = 1).2 Our baseline model assumes there
is no bequest motive, although we relax this assumption in a later exercise.

The consumer’s maximization problem is

T
max E, Z e PtS,(s)ulc,)
{ce} =

subject to

W, given
we =0

Wepr = (We + me — cp)e”
We assume that utility takes a CRRA form:

1=y _ 1~V
c C
u(c) = =

©=——;
We have normalized the utility of death at zero. The consumer receives positive utility if she consumes
an amount greater than ¢, which represents a subsistence level of consumption. Consuming an amount
less than c generates utility that is worse than death.

The parameter y is the inverse of the elasticity of intertemporal substitution, an important determinant
of the value of life and the value of annuitization. We sety = 0.95in our analyses. As points of
reference, Murphy and Topel (2006) argue that y is approximately equal to 1, but Brown (2001) uses
survey data to estimate a mean value of y = 3.95.

We employ dynamic programming techniques to solve for the optimal consumption path. The value
function is defined as:

T

Ve(we,0) = max E [z e P08, (s)u(cs)
Ce

s=t

Y, =i

We can use the value function to rewrite the optimization problem as a recursive Bellman equation:

N

. 1-q .

Vi(wy, D) = rgzj}x u(cy) + e—PtZ Dij O)Ves1 ((We + me — cpe™, j)
=

Once we have solved for the optimal consumption path, we can use the analytical formulas derived in
the previous section to calculate the value of life. The value of a statistical life-year from the perspective
of current time is equal to

8 Hubbard, Skinner, and Zeldes (1995) show that failing to include a “welfare floor” in the budget constraint causes
life-cycle models to overestimate savings for low-income households. Our calibration exercises model median-
income individuals, however, for whom this issue is less important.
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¢!V = Ct ¢/t
vy = Cty —

11—y T 1-y 11—y
Under complete annuitization, the value of a statistical life at time t is equal to

T

1

VSL; = —Z e TTE[S,v,]

St 4
=

Under incomplete annuitization, this expression becomes

T

1

VSL, = —Z e "TE[v,]

St 4
=

We assume throughout that r = p = 0.03 (Siegel 1992).

We also make the following simplifying assumptions, which allow us to compute an exact solution to
this problem: (1) Income, m,, is not survival contingent; (2) negative wealth is allowed; and (3) ¢ = 0.
Assumptions (1) and (2) imply an equivalence between income and wealth, so we ignore income in our
analyses and set initial wealth equal to $500,000 (at age 50). Assumption (3) allows for an exact solution
to the recursive problem, and also simplifies the calculations of VSL:

T

c
VSLy = —Z “TTE[S
t (1 _ V)St 4 e [ ‘L']
=
1 T
VSL, = —Z TR
t (1 _ y)St 4 e [CT]
T=

We plan to relax these three assumptions, and allow for bequest motives, in the next revision of this
paper.

We obtain mortality data from the Future Elderly Model (FEM), a widely published microsimulation
model that employs nationally representative data from the Health and Retirement Study (Michaud et
al. 2011; Goldman et al. 2005; Lakdawalla, Goldman, and Shang 2005; Goldman et al. 2009; Lakdawalla
et al. 2009; Goldman et al. 2013; Michaud et al. 2012; Goldman et al. 2010). The FEM uses real-world
risks of disease incidence, and mortality rates by disease state, in order to estimate longevity for people
over the age of 50 with different comorbid conditions.® This is quite useful for our current purposes,
because it provides us with an empirically relevant set of estimates for what mortality risk looks like
under different disease states.

Each health state in the FEM corresponds to the number (0-3) of impaired activities of daily living (ADL)
and the number of chronic conditions (0-4), for a total of 4 X 5 = 20 health states. For each health state
and age, the FEM estimates the probability of dying, and the probability of transitioning to each of the
other health states in the next year. The FEM model is estimated separately by sex (male or female) and
smoking status (smoker or nonsmoker).

9 A description of its methodology is available at healthpolicy.app.box.com/FEMTechdoc.
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IV.B. Results

We are interested in understanding how the value of life differs along two different dimensions: (1) fully
annuitized vs uninsured; and (2) deterministic vs stochastic mortality. As shown in the theory section,
full annuitization causes the rate of change in consumption and the (average) value of life to be the
same for both the deterministic and stochastic cases. Thus, we will show results for three cases: fully
annuitized; uninsured, deterministic mortality; and uninsured, stochastic mortality.

Figure 3 shows VSLY, by age, for these three cases. The red line, which corresponds to a fully annuitized
consumer, is flat, demonstrating that annuitization allows a consumer to perfectly smooth her
consumption (and thus her value of life) over the life cycle. Compared to this baseline, the value of life is
shifted forward when the consumer is exposed to mortality risk (green and blue lines). Interestingly, the
shift is more pronounced in the uninsured deterministic case (green line) than in the stochastic case
(blue line). Intuitively, consumption is shifted into the future in the stochastic case because this allows
consumers to take advantage of the ability to increase their consumption later in life, in the event that
they fall ill.

The values displayed in Figure 3 for the stochastic case have been averaged across the 20 different
health states, weighted by the respective probabilities. Unlike in the deterministic cases, the stochastic
case allows one to calculate VSLY by age for particular health states. Figure 4 provides an example
where a healthy individual (health state 1) suffers a health shock at 70 that transitions her to health
state 12. As expected, her value of life shifts forward significantly at that age, compared to an individual
who never suffers a health shock (dashed line).

V. CONCLUSION

The economic theory surrounding the value of life has been put to many important uses. Yet, like most
theories, it suffers from a few anomalies that appear at odds with intuition, common sense, or empirical
facts. We have demonstrated that several of these anomalies are easily explained without abandoning
the standard framework, simply by relaxing its strong assumptions around the completeness of annuity
markets. Moreover, relaxing this assumption generates a number of new predictions with implications
for health policy and behavior. In particular, we show diminishing returns to life-extension. A given gain
in longevity is more valuable to a consumer that has less life remaining, and vice-versa. In addition, we
demonstrate an interaction between annuity policy and health policy: Completing the annuity market
may significantly increase the value of life-extension, especially for the elderly.

Diminishing returns to life-extension yield a number of subsidiary predictions. First, the onset of fatality
risk creates a short-term spike in the value of statistical life, but the lucky ones that survive such risks
over the long-term value life-years by less. This explains the anecdotal perception of desperation among
the newly diagnosed cancer patient, along with complacency among long-term survivors who may feel
they are “playing with house money.” Second, the value of a statistical life-year will tend to vary across
types of risk, not just across types of people. It is more valuable to add one month of life for a patient
facing a highly fatal disease than for one facing a much milder ailment. Third, contrary to the old saying,
treatment might be more valuable than prevention, at least when the expected gain in longevity is held
fixed. Many healthcare researchers decry the unwillingness of policymakers and patients to invest in
preventive activities (Dranove 1998; Finkelstein and Brown 2006). Our findings suggest there may be an
economic basis for this unwillingness, other than market failures, time-discounting, or myopia. Finally,
public programs that expand the market for annuities might simultaneously boost the demand for life-
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extending technologies. Intuitively, annuities calm consumer fears about outliving their wealth and thus
enable more aggressive investments in life-extension. Viewed differently, our results also show that
market failures in annuities affect the value of statistical life, and thus the socially optimal level of health
care spending.

Our analysis raises a number of important questions for further research. First, how does the value of
longevity vary with endogenous demand for quality of life? Elsewhere, we have studied how incomplete
health insurance enhances the value of medical technology that improves quality of life, because such
technology acts as insurance by compressing the difference in utility between the sick and healthy states
(Lakdawalla, Malani, and Reif 2017). Less clear is how demands for the quantity and quality of life
interact with financial market incompleteness of various kinds. Second, what does the generalized value
of life model mean for the value of different kinds of medical technologies? For instance, the model
suggests that short-term survival gains for high-risk diseases are more valuable than previously believed,
but very long-term survival gains might actually be less valuable than previously believed. Finally, what
are the implications for the empirical literature on the value of statistical life? Empirical analysis has
typically proceeded under the assumption that different kinds of mortality risk are all valued the same
way, as long as they imply similar changes in the probability of dying (Viscusi and Aldy 2003; Hirth et al.
2000; Mrozek and Taylor 2002). Our framework casts doubt on this assumption and suggests the need
for a more nuanced empirical approach. This missing insight may be one reason for the widely disparate
estimates in the empirical literature on the value of a statistical life.
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VII. APPENDIX

VI.A. Mathematical appendix
Proof of Claim 1:

In a similar context, Parpas and Webster (2013) show that it is possible to formulate a stochastic
problem as a deterministic optimization problem that takes the J’s in other states as given. Proceeding
similarly, we can write the objective function as:

J(u, i) =L e Ptexp _-[o

+Z/’lij(u +t)J(u+t,j) |dt

Jj#i

T-u t

p;(u+s)+ Z Aij(u+s)ds | ulc;(u+t),q;(u+t))

J#i
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Similarly, current wealth at time u in state i, including the value of future labor income, pays for future
consumption such that:

L T-u t
Wu,i) = ]EU e " exp {—f ,u(u+s)ds}cyu+t(u+t)dt
0 0

Yu:i]

T-u ¢
= -rt — Ai' d i Ai' W ¥ d
fo e "t exp fo.u(u+s)+; j(u+s)ds c(u+t)+; ju+ )W +t,j) |dt
This in turn implies
oW (¢, i N B _
# = (T' + .ul(t)) W(t, l) - Ci(t) + 2 )]-ij(t)[W(t, l) _ W(t,])]
J#i

Hence, for V(t, Wt, Yt) = mag(){](t, Y;)}, we obtain the Hamilton-Jacobi-Bellman (HJB) equation:
CYt
(p+m@)VED

= rcn(at))( u(Ci(t):Qi(t))

= AV (t, i) L N— _ _
+ HW (r + B O) Wt k) = ey, () + ; L@ () =W (&, D]
av(t, i) . .
+ oy Z 1OV () - V(e D]
j#i

As in Parpas and Webster (2013), the HJB corresponds to the deterministic auxiliary problem that takes
V(t,j) = V(t, W(t,j),j),j # i —and corresponding optimal policies—as exogenous inputs, which
themselves are solutions to a stochastic optimal control problem. The solution may depend on the state

vector (W(t, 1),.., W(t, n)), even though the exogenous V(t,j) = V(t, W(t,j), i) will depend solely
on the starting wealth in state W (¢, j).

More precisely, consider the deterministic optimization problem:

T
VO(WO,i)zm(at))( f e PtS(i, t) u(ci(t),qi(t))+Z)lij(t)v(t,W(t,j)) dt
Ci
0 Jj#i
subject to the law of motion of wealth derived above and where §(i,t)=exp{—f0tﬁi(s)+

2j#iAij(s) ds}. Denote the optimal value-to-go as

—_— T —_—
V(W 1) = max f e 13, 0) | (e, qie) + ) Ay @V (£ W) | de

J#i
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Setting V,(W,,, i) = e Pt5(i, )V, (W, i) then demonstrates that V satisfies the HJB.
QED
Proof of Claim 4:

Working from equation (8) in the text, the marginal utility of prevention is given by

0

£=0 68

JEU

il joT e Plexp{— jot 1 (s) + Z[AU (s) — e8;;(s)]ds | u (cﬁt(t), th(t))

J#i

+ E [ () —sai,-(t)]V(t,Wg(t, j)) dt
T#
£=0

where cé(t) and Ws(t,j) represent the equilibrium variations in c(t) and W(t,j) caused by this
perturbation. This yields

O;E_gU I fOTe—pt fo’*z 5i5(s) ds |50 | (e, (0, gy, (D) + Zzij(t) v (W)
- j#—'l' ].;tl'
- e_ptj(i: t) Z 6ij(t) vV (t, W(t,]))
J#i

+e775 (0| e (o4, (6), 4, () —

acﬁ(t)‘
€ =0

fe—(—-p)t
—c
+ Y 2OV (WD) =522t
j#i Ge-(r—p)t £=0

Next, we note that the budget constraint implies

0

_ aw, B
g=0 O¢€

T t
0=— jo et exp _-fo w;(s) + Z[AU(S) —e8;(s)]ds ¢ | ¢, (1) —my, (¢

J#i

+ Z[Aij(t) — £6;; ()] Wt |dt

Jj#i

£=0
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T t
= jo e Tt (fo z 8 (s) ds) 5@, t) (Cyt(t) —my, (t+ z Aij(t)W(t'j)> dt

j#i j#i
dt
£=0
Substituting in then yields

= fOT e Pt <Ltz 8i;(s) ds) 5@, ¢0) <u (Cyt(t), qyt(t)) + Z ;) V (t, W(’U)))

e 0 ) 8O W)

Jj#i
3 dcE (t oW (t,j
+e 7S, t) Yt( ) + Z 5ij(t) )
0 -~ oe
€=0  jzi

&

0EU
e
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e P860 Y sV (£ W)

Jj#i
t
— et (J; ; 8;;(s) ds> S@,t) (Cyt(t) —my,(t + ; Aij(t)W(tJ))
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JET

QED
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VIIl. TABLES AND FIGURES

Figure 1. Annual consumption for consumer with $120,000 in wealth and a life expectancy of 3, 4, or 5 years
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Notes: This illustrative example assumes there is no uncertainty in mortality and the consumer discount rate
is equal to the interest rate, so that the optimal consumption profile is flat. Increasing life expectancy from 3
to 4 years reduces annual consumption by $10,000. Increasing it from 4 to 5 years reduces annual
consumption by $6,000.

26



Figure 2. Effect of a negative health shock on life-cycle consumption when the consumer does not have an annuity
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Notes: The health shock increases annual mortality or, equivalently, reduces expected survival. This causes the
consumer to “spend down” her wealth.
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Figure 3. Value of statistical life-year (VSLY), by age.
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Note: The red line displays VSLY, by age, for a fully insured (annuitized) consumer. The green (blue) line
corresponds to an uninsured consumer in a deterministic (stochastic) setting. (For the stochastic case,
the figure reports VSLY that has been probability-weighted across the 20 different health states.) At age
50, VSL(insured) = VSL(uninsured, det) < VSL(uninsured, stoch). Comparing the insured case (red line) to
the uninsured cases (blue and green lines) demonstrates that the value of life (and consumption) shifts
forward when the consumer is exposed to mortality risk. Consumption shifts forward more in the
uninsured deterministic case than in the uninsured stochastic case.

28



Figure 4. VSLY by age, health shock at age 70

600000

500000

400000

300000

200000

100000

-—
0
O AN T O 0 O A T O 0 OAN T O 0 OoOA T OO AN T O 0 OA T O OO ANA T O 0O
0 0N 0 0 0 o O O O O~ I~~~ -0 o o ww ooy © © O O v o o~ —
P o

Notes: This red line displays VSLY for a healthy uninsured consumer who suffers a health shock (moving
from health state 1 to health state 12 out of 20) at age 70. The dashed line displays VSLY for a health
uninsured consumer who never suffers a health shock.
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