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Abstract

Researchers use difference-in-differences models to evaluate the causal effects of pol-
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ased. We suggest an approximate permutation test using simulated interventions to
reveal the empirical error distribution of estimated policy effects. In contrast to ex-
isting econometric corrections, such as single- or double-clustering, our approach does
not impose any parametric form on the data. In comparison to alternative parametric
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Simultaneously, it improves power.
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1. Introduction
“Political economy is the science which prescribes rules and regulations for such a production,
distribution, and consumption of wealth as to render the citizens good and happy.”

Ely (1886, p. 531)

Difference-in-differences (DID) models are currently among the most popular methods
in economic research: In a textual analysis, The Economist (2016) found “difference-in-
differences” to be one of the most frequently used key word in the abstracts of all National
Bureau of Economic Research (NBER) working papers since 2010. In the same period, more
than 130 studies—roughly 5% of the total output—published in the top three finance and
financial economics journals1 apply a DID model. For empirical research, such as policy
evaluation, DID models are supposed to correctly discriminate ineffective from effective
interventions, i.e. combine correct size with high power.2

Bertrand et al. (2004) are among the surprisingly few who scrutinize the discriminatory
abilities of DID models. Imposing effective and ineffective simulated interventions (laws) on
Current Population Survey (CPS) data from 1979 to 1999, they find reliable inferences in
terms of size, provided they collapse the data, block bootstrap the data or use appropriately
clustered standard error (SE) estimates. Petersen (2009) and Thompson (2011) suggest to
cluster SE by multiple dimensions simultaneously, such as by firm and time, which allows
to keep the panel structure of the data unaltered.3 Using the same dataset as Bertrand
et al. (2004), Cameron et al. (2011) find that SE double-clustered by state and year provide
a correct size using data of individuals. The latter is a mandatory condition in empirical
research.4

A review of all 137 DID articles published in the top journals in finance since 2010
(Table 1) shows a wide heterogeneity with respect to SE estimation in the literature. While
cross-sectionally single-clustered SE are most frequently used, it is arguable if this estimator
is truly dominant from a statistical point of view. What is more, it is unlikely that a “gold
standard” SE estimator will ever evolve, since an unbiased SE estimation would require to
correctly identify the residual correlation structure.

[Insert Table 1 near here]
1The Journal of Finance, the Journal of Financial Economics, and the Review of Financial Studies.
2As common, we define size as the ability to not reject the null hypothesis of ineffectiveness for ineffective

policies and power as the ability to reject the null hypothesis of ineffectiveness for effective policies
3This does not apply to bootstrapped data, such as the bootstrap-t procedure or the wild bootstrap

suggested by Cameron et al. (2008).
4In financial economics, Siegel and Choudhury (2012), for instance, criticize the SE estimator used by

Bertrand et al. (2002), because it ignores serial correlation and overestimates statistical significance. Gow
et al. (2010) find a similar issue in their review of empirical studies in accounting.
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However, a high power may be just as important: Richard T. Ely (1886, Science)—
a founding father of the American Economic Association—defines economics as an active
force in society. Economists should assume an active role, e.g. by suggesting and evaluating
interventions to achieve welfare-enhancing equilibria.5 Evaluating truly effective interven-
tions to be ineffective may likewise destroy welfare. Previous results on power, though, are
mostly disappointing: Given that size was correctly estimated, on average only one in three
effective laws could be correctly identified in Bertrand et al. (2004).

We suggest a simple approximate permutation test for DID settings. As key contribution,
this test avoids imposing any parametric form on the data, and thereby eliminates the
danger of inconsistent SE estimates. Our testing procedure extracts the error distributions
of estimated law effects by imposing permuted placebo laws on the dependent variable.6 We
find that our test exhibits dominant discriminatory abilities between simulated ineffective
and effective laws when compared to parametric procedures based on White (1980), single-
clustered SE, and double-clustered SE. We finally replicate an analysis on the impact of U.S.
Securities and Exchange Commission (SEC) regulation SHO on stock returns by Diether
et al. (2009) and verify that our test yields consistent results.

We also complement the findings of Bertrand et al. (2004) and Cameron et al. (2011)
using a financial markets dataset. Our sample are monthly total returns of all stocks between
January 1970 and December 2014 from the Center for Research in Security Prices (CRSP)
US Stock Database. The advantage of using financial data over CPS data, for example,
is that we observe monthly data over a long term per stock, and a clearly identified panel
structure. We find that size and power strongly depend on the parametric form placed on the
data. Cross-sectional aggregation of data yields conservative—often even overcritical—size
estimates, but with disappointing results on power. This implies that parametric testing
procedures in DID settings have a limited ability to correctly identify effective interventions.

Finally, we demonstrate how factor models of stock returns can be integrated in DID
settings. This is a particular issue in financial economics: The computational effort may
easily become huge, as it grows with the number of factors in the market model and cross-
sectional units in the dataset. As such, simultaneously estimating a DID-model and factor
loadings for each unit may become computationally infeasible. We two alternative two-
stage settings that require drastically less computing time and that improve the efficiency

5Two examples emphasize the importance of these tasks: The European Commission institutionalized the
“better regulation initiative”, see http://ec.europa.eu/smart-regulation/index_en.htm, and the Securities
and Exchange Commission ran a controlled trial before eliminating all short sale price tests, see Diether
et al. (2009) and Fang et al. (2016).

6This procedure shares some conceptual ideas with procedures financial economists have lately applied to
separate skill from luck in the performance measurement of mutual fund managers, see Kosowski et al. (2006)
and Fama and French (2010).
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of estimated law effects. We find that using factor model estimations as control variables
increases power while maintaining a correct size in our approximate permutation test. In
total, our study provides guidance on how to systematically improve inference statistics and
hypothesis testing in DID settings while maintaining a correct size.

The remainder of this paper is organized as follows: in section 2, we describe our ap-
proximate permutation test; in section 3, we use simulated placebo laws to identify efficient
DID specifications and compare our test with various parametric tests using different SE
estimators; in section 4, we derive two alternative ways to integrate factor models into DID
settings, and empirically analyze these improvements in terms of size and power; in section 5,
we present the application of our test to SEC regulation SHO and section 6 concludes.

2. An approximate permutation test for DID models

Whenever researchers apply DID models, they usually only observe a dependent variable
that is—at least potentially—affected by a law to be tested. In our notation, we use the
superscript + to denote this quality, such as in Y +

it . Any DID model on Y +
it contains at least

three variables: a cross sectional dummy Dlaw
i , which is 1 in all periods for those firms that

are affected by the law and 0 otherwise; a time dummy Dlaw
t , which is 1 for all firms in those

periods in which the law is in effect and 0 otherwise; and the law variable Dlaw
i ×Dlaw

t , which
is the interaction of the first two variables:

Y +
it = a+Dlaw

i +Dlaw
t + λDlaw

i ×Dlaw
t + εit (1)

We further use the excess return er+
it of stock i in month t as dependent variable Y +

it .
Accordingly, constant a captures the mean excess return over all firms that are not affected
by the law, in all months before the law is introduced. The dummy Dlaw

i (Dlaw
t ) controls

for unobserved heterogeneity between firms (months) affected by the law and those that are
not. The coefficient λ of the interaction term Dlaw

i ×Dlaw
t measures the impact of the law

on the dependent variable, and its statistical significance determines if we consider a law to
be effective or not.

Let Y c
it denote an ideal counterfactual of Y +

it . Such a conterfactual contains the real-
izations of the dependent variable if the law to be tested had never been discussed nor
introduced. Usually, researchers are unable to observe Y c

it. Therefore, we estimate it as

Ŷ c
it = Y +

it − λ̂Dlaw
i ×Dlaw

t (2)

Ŷ c
it is obtained by subtracting an estimated law impact λ̂ from those observations of Y +

it
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that are subject to the law to be tested. Any estimation error in λ̂ will also affect Ŷ c
it.7 Yet,

the in-sample effect of the law to be tested on Ŷ c
it is zero by definition. Our further procedure

relies on this particular quality.
The SE estimators of White (1980) and Newey and West (1987) as well as any clustered

SE estimator impose a particular correlation structure onto the residuals of Equation 1.
However, the true correlation structure in εit is typically unknown. Therefore, researchers do
not know which SE estimator best represents the empirical correlation structure and provides
unbiased SE estimates. The choice of any SE estimator therefore entails placing a particular
parametric form on the data, and statistical significance of the estimated law effect λ may
highly vary with the clustering strategy, requiring researchers to interpret oppositional test
outcomes.

We propose a non-parametric approach for inferential tests of law effects that imposes
no specific restriction on the data while fully maintaining its structure.8 Our approach is
an approximate permutation test as suggested by Dwass (1957). Kosowski et al. (2006) and
Fama and French (2010) use a similar approach for inferences on the measured skill of mutual
fund managers. A related technique has been applied by Huang (2008) in an out-of-sample
context. In contrast to these studies, we permute over the law dummies Dlaw

i and Dlaw
t and

estimate their effects on Y c
it.

Let the sample used to estimate Equation 1 contain observations of Y +
it from a set of

cross-sectional units f , e.g. firms, over a set of periods p. We define these sets and their
cardinalities to be

F = {f1, f2, . . . , fi, . . . , fN} P = {p1, p2, . . . , pt, . . . , pT}

|F | = N |P | = T

Any law to be tested is represented by the interaction of two dummies Dlaw
i and Dlaw

t . Both
dummies equal one for each a subset of the N cross-sectional units and the T time periods.
We define these two subsets as follows:

F law = {fi|Dlaw
i = 1} ⊂ F P law = {pt|Dlaw

t = 1} ⊂ P

|F law| = M |P law| = S

For our testing procedure, we generate subsets F sim
k and P sim

k from the sets F and P and
7In Section 3, we suggest a statistical approach to identify efficient specifications based on Equation 1

that include FE on a more granular level, such as firm or month FE.
8Another commonly used non-parametric approach to estimate SE is to bootstrap the model. However,

this only allows maintaining one dimension of the data, either the cross-section or the time.
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define the dummy variables Dsim
i(k) and Dsim

t(k) as

F sim
k ⊂ F ∀ k = 1, 2, . . . , K P sim

k ⊂ P ∀ k = 1, 2, . . . , K

Dsim
i(k) = 1 ∀ fi ∈ F sim

k Dsim
t(k) = 1 ∀ pt ∈ P sim

k

So far, we have not specified how to generate the subsets F sim
k and P sim

k . Basically,
researches face only weak restrictions in answering this question, and our approach allows
for answers that are specific for the research question at hand and that depend on the nature
of the law to be tested. However, some advice can be given: For F sim

k and randomized
trials, it should usually suffice to randomly draw M firms out of F without replacement
for each k. If researchers can identify any structure in the formation of the treatment and
control group, however, it may be appropriate to adjust the permutation procedure for F sim

k

accordingly. For P sim
k , one may either assume that simulated laws are always in effect during

the same periods as the law to be tested, which implies Dsim
t(k) = Dlaw

t ∀ k, t. Alternatively,
the kth simulated law may be assigned a randomly drawn start date s(k) ∈ P and we
have Dsim

t(k) = 1 ∀ t ≥ s(k).9

Finally, we estimate the following model to quantify the impact of the kth simulated law:

Ŷ c
it = a(k) +Dsim

i(k) +Dsim
t(k) + κ(k)D

sim
i(k) ×Dsim

t(k) + ηit(k) (3)

Ideally, one could sample all possible permutations of the subsets F sim
k and P sim

k , which
would allow for an exact significance test. However, this procedure frequently requires an
impossible effort: For 100 firms of which 50 are affected by a law to be tested, there already
exist more than 1029 permutations.

We therefore suggest to sample only a part of the possible permutations. Precisely,
we reveal the distribution of the estimation error of λ in Equation 1 through K = 5, 000
different simulated laws and estimations of their effect κ(k). Under the assumption that
E(κ(k)) = 0 ∀ k, the estimation of Equation 3 exclusively reflects estimation errors. We can
then conduct a hypothesis test by comparing the estimated effect of a law to tested with
the distribution obtained from the simulated laws. If the coefficient of a law to be tested is
outside the 126th smallest and 126th highest value of these 5,000 coefficients, we consider
the tested law to be statistically significant at the 5%-level.

9For example, one could draw s from a discrete uniform distribution U{a, b} with a = 1 + ∆, b = T −∆,
and ∆ < 0.5 · T such that the simulated laws start during a window centered within the sample and at least
∆ periods away from the beginning and the end of the sample.

5



3. Discriminatory abilities of DID models with simu-
lated placebo laws

3.1. The dataset

Our dataset is obtained from the CRSP US Stock Database. We include monthly total
returns of all stocks between January 1970 and December 2014 in our sample, and exclude
all stocks with negative prices, stocks with a minimal price equal or below USD 5 as penny
stocks, stocks whose returns are defined to be the 100 most extreme return observations in
absolute value, and stocks with less than 60 return observations. Finally, we map each stock
to one of 49 industry sectors, as defined by French (2016), and exclude all stocks that belong
to the sector “other” as this sector contains very heterogeneous businesses. The final sample
consists of 575,621 monthly stock returns from 3,230 companies. Our market portfolio is
the CRSP value weighted portfolio of all NYSE, AMEX, and NASDAQ stocks. This data
and that on additional market factors (SMB, HML, and MOM) are from French (2016), who
follows Fama and French (1993) and Carhart (1997). We also use the monthly returns of
49 value-weighted industry portfolios from the same source to analyze how data aggregation
impacts estimated law effects and their inferences.

3.2. Simulating placebo and effective laws

To simulate laws, we assign each stock to one of 49 industry sectors as defined by French
(2016) according to the stock’s SIC code, excluding the sector “other” and all stocks therein.
Subsequently, we sample 24 of the 48 remaining industries without replacement, which are
affected by the law, while the remaining industries are not. The start date of the law is
randomly drawn from a uniform distribution between January 1985 and December 1999 for
every industry (random start). Finally, the law may have no effect on the returns (placebo
law), or an additive effect (effective law): for each return observation that is affected by
the law, we draw the effect from a normal distribution with mean 2% p.a. and standard
deviation of 0.5% p.a.

er+
it = erit +

[
(1 + ξit)

1
12 − 1

]
Dlaw

i ×Dlaw
t , (4)

where erit = rit−rft is the return r of stock i in month t in excess of the contemporaneous
risk-free rate rft, and er+

it is the excess return from including the impact of simulated (placebo
or effective) laws. The interaction term Dlaw

i × Dlaw
t is 1 if stock i is affected by the law

in month t and 0 otherwise. Variable ξit captures the random impact of the simulated law
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on firm i in month t: 0 for placebo laws and an i.i.d. draw from a normal distribution
N(0.02, 0.0052) for effective laws. Therefore, for a placebo law, we have er+

it = erit ∀ i, t. As
we simulate interventions, we are able to observe both the depend variable including the law
effect, er+

it , and its ideal counterfactual, erc
it = erit. We stress that this is usually not the

case in empirical research.

3.3. Efficient model specification from a statistical perspective

The specification in Equation 1 can be altered in several ways. As an alternative control for
unobserved cross-sectional heterogeneity, one might substitute constant a and the dummy
variable Dlaw

i with industry FE.10 In the time dimension, Dlaw
t can be substituted with

year dummies as an alternative control for unobserved heterogeneity over time. Finally, a
control variable for market climate can be included, such as the excess return of the market,
ermt = rmt−rft.11 These different options result in eight potential specifications for the DID
model.

We choose the baseline model for our further analyses these specifications by the efficiency,
as indicated by the dispersion of estimated law impacts. For this purpose, we simulate 500
placebo laws and estimate all eight DID specifications for each of them. As suggested by
Bertrand et al. (2004), we apply this procedure to stock excess returns as well as to the
excess returns of 48 value-weighted industry portfolios as per French (2016). Table 2 reports
descriptive statistics of the estimated law coefficients using firm level data in Panel A and
industry level data in Panel B. We provide details on the respective specifications in the
three bottom rows of Table 2.

[Insert Table 2 near here]

All specifications reported in Table 2 are unbiased, as the mean and the median of
the estimated coefficients are close to 0. At firm level, the specifications strongly differ with
respect to the shape of the error distribution: industry FEs are crucial to obtaining normally
distributed estimates. For industry level data, this does not apply. Otherwise, we find the
distributions to be mostly symmetrical and with limited excess kurtosis.

Aggregating the data to industry level does not necessarily improve efficiency of the
estimated law coefficients. We observe the smallest dispersion of estimated law effects for a

10We refrain from adding firm and/or month FE, because they would drastically increase the computational
effort to estimate Equation 1. One could absorb firm and/or month FE by demeaning the model before the
estimation. However, the according estimates are less efficient than those we present here. We gladly provide
results upon request.

11Adding the factors of Fama and French (1993) and Carhart (1997) in addition to ermt decreases the
efficiency of the estimated law effects due to all these factors being multiple controls for time FE.
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DID model using industry, and year FE on the level of stocks. In this setting, the dispersion
of the effects is 25 bp less than the lowest dispersion found at industry level in Panel B.

Overall, including industry FE and year FE in the DID specification supports correct
inferences by reducing the estimation error of the law coefficient. Adding erm as a control
variable, however, seems to be of minor importance. In summary, we find that a DID model
including industry and year FEs performs best on the firm and industry levels simultaneously.
While this conclusion stems from a strictly econometric perspective and not from economic
reasoning, we still require a baseline specification for all further tests. Using the most efficient
one here seems sensible.

3.4. Comparing inferential tests of estimated law effects

In this section we compare how our approximate permutation tests performs in terms of size
and power compared to single and double clustered SE. Our baseline model follows directly
from our previous results: the LHS-variable is er+

it , the excess return of stock i in month t
including the effect of simulated laws. We control for industry fixed effects by including
industry dummies, Dind

i , and for time fixed-effects by including year fixed-effects, Dyr
t , and

include the law variable Dlaw
i ×Dlaw

t :

er+
it = Dind

i +Dyr
t + λDlaw

i ×Dlaw
t + εit (5)

The coefficients in Equation 5 are estimated by OLS.12 The feasible SE estimator depends
on the cross- and autocorrelation in erit. We conduct significance tests using heteroskedas-
ticity robust SEs, according to White (1980), single clustered SEs clustered by firm, by
industry, by month, and by industry-month cell, as well as double clustered standard errors
clustered by firm and month, and by industry and month.13 Again, we use 500 simulated
placebo and effective laws, and to each we apply all of these procedures and compare their
power and size in Table 3. We also compute implicit effect levels for a correct power in
one-sided tests at the 5% level, that is, the required additive effect in percent p.a. to reject
the H0 of λ0 ≤ 0 in 95% of the cases. Finally, we also run approximate permutation test
and compute the implicit effect level for this test as well.

[Insert Table 3 near here]

At firm level, the rejection rates for placebo laws confirm the issue on size documented
12In certain applications, other estimators such as maximum likelihood may be more adequate. We focus

on OLS because it is the most common choice and it is analytical.
13For an excellent review of the size of various bootstrap procedures, see Cameron et al. (2008).
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in Bertrand et al. (2004): SEs single clustered by firm or industry or double clustered by
industry and month too often reject the null hypothesis for placebo laws, though these laws
are truly ineffective. However, and in contrast to Bertrand et al. (2004), SEs clustered by
month, industry-month-cell, and double-clustered SEs by firm and month perform well in
terms of size and may even be overly critical.

Table 3 also shows that the power of all procedures is not as good at firm level: those
SE estimators that have a high power (i.e., close to 90%) are unreliable in terms of size, and
those that provide a correct size identify only one in four truly effective laws as statistically
significant. The required additive effect to achieve a power of 95% is more than 4% p.a. in
these cases.

Similar to Bertrand et al. (2004), size improves if we aggregate the data, and is mostly
not an issue at industry level. Although power does improve, it is still at less than 50%. The
implicit effect remains 4% p.a. at least; a magnitude that may even not require sophisticated
econometric techniques to be detected. Falsely rejecting effective policies may result in
welfare losses comparable to those of falsely accepting an ineffective one.

Our approximate permutation test provides a superior ability to discriminate between
placebo and effective laws compared against all SE estimators we apply. The size is 5%
at firm and industry level, making the testing procedure adequately critical. At firm level,
power more than doubles with an implicit effect level that is 1.6% p.a. lower, against the
next best SE estimator that is at least correct on size. At industry level, power slightly
decreases, while the implicit effect level is still reduced by 0.3% p.a.

4. Application 1: DID regressions and factor models

4.1. Estimating factor models in DID settings

To further improve the efficiency and, thereby, the power of our DID setting, we exploit
knowledge on the return generating process of the dependent variable. A multivariate factor
model, as proposed by Fama and French (1993) and Carhart (1997), is commonly used to
explain the variation of stock returns. For the unaltered excess returns, erit, this model is:

erit = αi + β1iermt + β2ismbt + β3ihmlt + β4imomt + uit (6)

Empirical researchers typically use Equation 6 for individual stocks, to estimate their
exposure to non-diversifiable market risk (ermt), as well as to other market factors that
explain the cross-section of stock returns (smbt, hmlt, and momt).

To correctly exploit the structure of such a factor model for a DID regression, one would
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have to jointly estimate firm-specific coefficients αi, β1i, . . . , β4i and law effect λ by adding
the respective interactions to the DID model. If dummy variable Di identify single firms,
the following model simultaneously produces these estimates:

er+
it = Di +Di × ermt +Di × smbt +Di × hmlt +Di ×momt

+Dlaw
t + λDlaw

i ×Dlaw
t + εit (7)

However, this approach may quickly cause an unfeasible computational effort:14 it re-
quires 5 ·N + 2 coefficients to be estimated, where N is the number of entities in the sample.
For our dataset, we would have to estimate more than 16,000 coefficients for each DID-
regression at firm level. This also induces the risk of overfitting and, thus, unstable results.

Therefore, we suggest a two-step procedure by first estimating the factor model for each
firm separately and then employing this information in the DID model. However, if we desire
to test if a given law is truly effective, the model in Equation 6 cannot be directly estimated
for single stocks: an effective law constitutes a structural break for all firms affected by the
law, which, in turn, biases the estimates of αi. To correctly estimate the factor model for
single firms, we refer to Equation 2 and eliminate any law effect in the returns er+

it .

êrc
it = er+

it − λ̂Dlaw
i ×Dlaw

t (8)

êrc
it is the estimated excess return of stock i in month t, excluding the estimated effect

of the law to be tested. λ̂ is an OLS estimate of this effect from a DID model that includes
year FE and industry FE as in Equation 5. A cleaned variable such as êrc

it contains no effect
from the particular law used for “cleaning”, and may, therefore, be used to estimate factor
models. Next, we estimate Equation 6 using êrc

it as LHS variable:

erc
it = αc

i + βc
1iermt + βc

2ismbt + βc
3ihmlt + βc

4imomt + uc
it (9)

We suggest two different approaches to incorporate the estimates of Equation 9 in the
DID model. In the first approach, we use the factor model to filter the excess returns er+

it .
We then estimate the DID model with filtered returns, ηit, as dependent variable:

ηc
it = er+

it − (β̂c
1iermt + β̂c

2ismbt + β̂c
3ihmlt + β̂c

4imomt)

= a+Dlaw
i +Dlaw

t + λDlaw
i ×Dlaw

t + εit (10)
14The computational effort further increases if one allows the factor loadings to change with the law. For

the market excess return ermt, this results in the interaction terms Di × ermt + Di ×Dlaw
t × ermt.

10



β̂c
1i, . . . , β̂

c
4i are OLS-estimates of the according variables in Equation 9, fitted for each

firm separately. The filtered returns ηit contain the variation in er+
it that cannot be explained

by static loadings against the market factors and include any level shift from the pre-law to
the post-law period.

In the second alternative, we use the factor model in Equation 9 to estimate control
variables for our DID setting (henceforth “factor-model controls approach”).

r̂pc
it = β̂c

1iermt + β̂c
2ismbt + β̂c

3ihmlt + β̂c
4imomt

er+
it = α̂c

i + r̂pc
it +Dlaw

i +Dlaw
t + λDlaw

i ×Dlaw
t + εit (11)

The coefficients α̂i, β̂
c
1i, . . . , β̂

c
4i are OLS estimates of the respective coefficients in Equa-

tion 9. This second alternative induces an errors-in-variables problem on the RHS of Equa-
tion 11. However, given that conditional mean independence holds in Equation 9, this
measurement error will only affect the variance of λ, i.e., the efficiency of our estimation,
while the OLS-estimator λ̂ converges in probability towards λ and is therefore, unbiased.
The dominance of this model in empirical studies in finance and our results both indicate
that this is indeed the case.15

In both alternatives, we want to compare the efficiency for different levels of FE. Our
analysis starts with the simplest DID setting: for filtered returns, the baseline model con-
siders cross-sectional FE for affected and unaffected stocks, Dlaw

i , and time FE before and
after introduction of the law Dlaw

t . Both dummies can then be substituted by the more gran-
ular industry and year FE, separately or jointly. For the factor model controls approach,
α̂i and r̂pit together capture cross-sectional heterogeneity, and we drop Dlaw

i and disregard
industry FE in this case. We still include Dlaw

t and allow it to be substituted with year FE.
This results in six specifications to be tested. Table 4 presents descriptive statistics of the
estimated coefficients of 500 placebo laws in each of these settings, estimated at firm level
(Panel A) and at industry level (Panel B).

[Insert Table 4 near here]

As in Table 2, all DID settings estimate the effect of placebo laws, in an unbiased manner,
with mean and median estimates close to 0. Furthermore, all settings are fairly normally
distributed, as indicated by skewness and kurtosis. These findings apply to firm as well as
to industry level.

Using filtered returns, ηit instead of excess returns, er+
it , as dependent variable visibly

15Filtering the dependent variable as for Equation 10 also induces an error in variable bias. Here, this bias
occurs in the dependent variable and has the same effect on the estimated law coefficients.
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improves the efficiency of the DID estimations at firm level in three out of four specifications.
As such, the standard deviation of the estimated coefficients decreases by at least 50 bp in
columns (1) to (3) in comparison to Table 2. However, the DID model with industry and
year FEs in column (4) performs equally well with excess returns as with filtered returns.
At firm level, all the specifications in columns (1) to (4) provide a slightly better efficiency,
although the differences are less pronounced.

Using alphas and factor risk premiums as control variables further improves efficiency at
firm level: Here, the dispersion of the estimated placebo effects decreases once more to a
level below that of all previous specifications. At industry level, these controls still provide
a benefit over using er+

it as dependent variable, with standard deviations decreasing by at
least 8 bp. Compared to filtered returns, however, the latter provide a higher efficiency at
industry level.

For filtered returns, we use the specification in column (4), which includes industry and
year FEs. Not only does this model provide the highest efficiency in both panels, it is also
fully consistent with the model used in Table 3. For factor model estimates, we proceed
with column (6). While the year FE slightly reduces efficiency at firm level – although by
an insignificant margin –, this specification is closer to the others than the one according to
column (5).

4.2. Size and power of DID procedures integrating factor models

We now study how integrating factor models in the DID setting affects rejection rates of
placebo and effective laws. We start with using filtered returns, ηit, instead of excess re-
turns, er+

it , as dependent variable. In the previous section, we have shown that filtering the
dependent variable with a four factor model according to Carhart (1997) reduces the disper-
sion of the estimated coefficients of placebo laws. Accordingly, this should have a positive
effect on the discriminatory ability of t-tests. In Table 5, we repeat the analysis on size
and power of parametric and non-parametric inferences using the filtered returns as LHS
variable.

[Insert Table 5 near here]

At firm level, filtering has little effect on size. While the other SE estimators reject the H0

of ineffectiveness too often for placebo laws and, therefore, fail to meet scientific standards,
SEs single clustered by month, industry-month cell, and SEs double clustered by firm and
month provide an even overcritical size. However, the non-parametric test based on placebo
laws provides a correct size.
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Power increases by 8% to 28% for the overcritical SE estimators; however, it hardly
exceeds 30%. The implicit effect level decreases by at least 60 bp for these SE estimators, and
falls to 4% p.a. Inferences based on estimated placebo laws now perform slightly weaker in
comparison to excess returns as dependent variable: power decreases by 14% and the implicit
effect level increases by 18 bp. This drop in power results from inducing an estimation error
in the dependent variable by filtering returns.

At industry level, size is hardly affected by filtering returns, as all SE estimators are at
least close the correct size of 5%, if not overcritical. With respect to power, filtering increases
the proportion of rejected ineffectiveness by at least 5% for all estimators. Implicit effect
levels decrease by at least 40 bp, which brings them down to 3.5% p.a. for industry clustered
SE. Hypothesis tests using the distribution of placebo law effect perform similarly well.

Finally, in Table 6 we study size and power of DID specifications with factor model
estimates as controls, by including the alpha and the risk premium on the RHS.

[Insert Table 6 near here]

Using factor model estimates as controls has ambivalent consequences on our results:
for some SE estimators, size decreases dramatically, such as for single clustered SE by firm
at firm level, or single clustered SE by industry at industry level. At firm level, however,
those SE estimators which were able to produce a correct size in the previous analyses still
do so with factor model controls, namely single clustered SEs by month or industry-month-
cell, as well as double clustered SE by firm and month. It is also worth noting that these
estimators double in power, bringing implicit effect levels down to around 3% p.a. On the
firm level, inferences based on the placebo laws show again a high ability to discriminate
between truly ineffective and truly effective laws, with a power of 61% and an implicit effect
level of 2.8% p.a.

The results are similar at industry level. Again, size decreases, while power often improves
visibly. Inferences using placebo laws perform better than all other SE estimators, and
provide a correct size with implicit effect levels of 3.5% p.a. In total, adding factor model
variables that explain the dynamics of single stocks or industries over time greatly improves
the ability of DID models to detect law effects at firm level.

5. Application 2: SEC Regulation SHO

In 2004, the Securities and Exchange Commission (SEC) announced a trial of a new reg-
ulatory framework concerning short-selling on US stock markets:16 The SEC temporarily

16Securities Exchange Act Release No. 50104 (July 28, 2004), 69 FR 48032 (August 6, 2004).
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suspended price tests for short sales of a randomly selected subset of the Russell 3000 com-
panies. This real-life experiment has been studied in several studies, such as Diether et
al. (2009) and Fang et al. (2016). Amongst other issues, Diether et al. (2009) investigate if
the average returns of pilot and control stocks differ significantly during the announcement
and the beginning of the trial using a DID model with SE clustered by firm and day. They
find no significant differences on either the NYSE nor the NASDAQ.

We replicate this particular analysis to demonstrate how our approximate permutation
tests performs in comparison to parametric tests using various SE estimators. For this
purpose, we follow the sampling procedure of Diether et al. (2009) and select all stocks con-
stituting the Russell 3000 index in 2004 and 2005 that are primarily traded either on the
NYSE or on the NASDAQ. Among these, we identify the pilot stocks using the aforemen-
tioned SEC release. We sample daily returns from July 26, 2004 to May 4, 2005 for these
stocks from CRSP and exclude stocks with incomplete return histories, penny stocks (i.e.
stocks with a minimum price of less than 1 USD in that period) and large stocks (i.e. stocks
with an average price of more than 100 USD in that period). Our final sample consists of
2,500 stocks and closely matches that of Diether et al. (2009) in proportions.17

Next, we further follow Diether et al. (2009) and define two dummy variables Dann
t and

Devent
t that capture the five trading day period around the announcement of the pilot program

on July 28, 2004 and its effective start on May 02, 2005. A third dummy variable, Dpilot
i ,

captures if a stock is a pilot stock or not. To analyze the impact of the pilot program on the
average stock returns during the announcement and event window, we estimate the following
DID model by exchange:

rit = a+ b1 ·Dann
t + b2 ·Dann

t ×Dpilot
i + b3 ·Devent

t + b4 ·Dann
t ×Dpilot

i (12)

We apply our approximate permutation test to this setting by initially estimating stock
returns that are free from any effect of the pilot program as proposed in Equation 2: We
estimate Equation 12 and compute “clean” returns r̂c

it as

r̂c
it = rit − b̂2 ·Dann

t ×Dpilot
i − b̂4D

ann
t ×Dpilot

i

The coefficients b̂2 and b̂4 are OLS estimates of the according coefficients in Equation 12
using our original sample. We then randomly draw 833 out of the 2,500 stocks in our sample
and consider these as pilot stocks. Next, we estimate Equation 12 using r̂c

it as LHS variable
and the randomly drawn pilot stocks, keeping the days of the announcement and the event
unchanged. We repeat this process 5,000 times and use the resulting data to reveal the

17We gladly provide additional information on the sample composition upon request.
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distribution of the estimation error in the relevant coefficients b2 and b4 and to conduct
hypothesis tests.

In Table 7, we compare the estimates on average returns of pilot and control stocks
during the announcement and event window, the differences between pilot and control stocks,
and the p-values of these differences. The p-values have been estimated with various SE
estimators as indicated in the first column and our approximate permutation test. We also
include the numerical results in Table IV of Diether et al. (2009) to document that our
sample closely resembles theirs.

[Insert Table 7 near here]

The average returns of pilot and control stocks in our sample are extremely similar to
those of Diether et al. (2009). This indicates that our sample only little differs from theirs.
On both exchanges, there are no significant differences between average returns of pilot and
control stocks for the announcement windows as well as for the event window. This finding
is robust with respect to the SE estimator used and accords with the analysis of Diether
et al. (2009). Our approximate permutation test also confirms that the average returns of
pilot stocks do not significantly differ from those of the control stocks.

We stress that the choice of clustered SE used here is subjective. Researchers may find
arguments for other clustering dimensions, such as clustering by industry to consider spillover
effects as discussed by Boehmer et al. (2015), clustering by week to consider volatility clusters
in the date, or any combination of these dimension in multi-way clustered SE. It is even
possible that some of these clustering options result in significant differences, which would
imply a serious dilemma in the interpretation of the results. Our approximate permutation
test overcomes such issues by allowing to conduct hypothesis tests that are free from any
potential bias due to misspecification of the correlation structure in the date. The application
to the regulation SHO pilot program documents that it performs at least as well as any
parametric test.

6. Conclusion

Difference-in-differences models are among the standard tools to empirically evaluate the
effectiveness of policies or regulations. In this context, correctly estimating SE is crucial for
unbiased inferences, but non-trivial. To account for serial correlation in the cross-section
and/or over time, the existing literature recommends either to aggregate data (Bertrand
et al. 2004) or to cluster standard errors (Petersen 2009; Cameron et al. 2011; Thompson
2011). However, these procedures may be overcritical or exhibit a low power, which both
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are undesirable features in policy evaluation: Statistically rejecting a truly effective policy
can destroy or prevent gains in economic welfare.

We suggest a simple approximate permutation test that does not impose any restrictions
on the residual correlation. The test is based on permuting the variable of interest—the
intervention—and estimating a counterfactual dependent variable. We evaluate our proce-
dure by imposing simulated placebo and effective laws (Bertrand et al. 2004) on monthly
excess returns of all stocks between January 1970 and December 2014 from the CRSP Stocks
Database, and find this test dominates clustered SE in terms of size and power. Clustered
SE tend to be biased: White and cross-sectionally single-clustered SE are undercritical in
size, while the remaining estimators are overcritical and require effect levels between 4.6%
and 6% p.a. for a correct power. In contrast, the approximate permutation test accepts
the null of ineffectiveness for placebo laws at the given significance level—i.e. is correct in
size—and identifies simulated laws with effects of 3% p.a. We also replicate an analysis of the
impact of SEC regulation SHO on stock returns (Diether et al. 2009) with the approximate
permutation test and find consistent results when compared to double clustered SE, with
the important add-on that this inference is robust to any correlation in the residuals.

In total, our procedure allows researchers to conduct hypothesis tests of estimated DID
effects without imposing any parametric form on the data. Due to this feature, it is very
unlikely to produce biased inference that may result from erroneous assumptions in clustered
SE estimation. Additionally, this test shows higher discriminatory abilities between effective
and ineffective laws than the parametric tests.
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Table 1: Standard error estimation in DID studies

Frequency
Procedure Absolute Relative
OLS, White, Newey-West, undisclosed 32 22.1
Data aggregation, bootstrap 9 6.2
Single-clustered, cross-section 76 52.4
Single-clustered, time 13 9.0
Double-clustered, cross-section and time 15 10.3
Sum 145 100

Table 1 reports absolute and relative frequencies on standard error estimation 137 empiri-
cal studies that have been published in The Journal of Finance, the Journal of Financial
Economics, and the Review of Financial Studies since 2010. Some studies used several es-
timation procedures, so multiple mentions occurred. The column „relative frequency” is
reported in percent.
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Table 2: Estimated coefficients of placebo laws in basic DID specifications

Specification (1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Firm level

Mean 0.0001 0.0004 −0.0002 −0.0002 0.0001 0.0004 −0.0003 −0.0001
Median 0.0026 0.0027 −0.0011 −0.0003 0.0001 0.0028 0.0000 −0.0005
Std. dev. 0.0229 0.0171 0.0149 0.0090 0.0225 0.0174 0.0112 0.0091
Skewness −0.0117 −0.2482 0.0636 0.0779 0.0161 −0.2258 0.0574 0.1030
Kurtosis 1.6117 2.0326 2.6695 3.0569 1.6193 1.9721 2.7177 3.0152

Panel B: Industry level
Mean −0.0004 0.0001 −0.0005 0.0002 0.0000 0.0001 −0.0001 0.0002
Median −0.0003 0.0001 0.0002 0.0003 −0.0010 0.0001 −0.0009 0.0003
Std. dev. 0.0123 0.0115 0.0127 0.0120 0.0121 0.0115 0.0125 0.0120
Skewness 0.0389 0.0055 −0.0078 0.0417 0.0810 0.0055 0.0902 0.0417
Kurtosis 2.8049 2.7880 2.8636 2.7766 2.7864 2.7880 2.9229 2.7766

Includes erm? No No No No Yes Yes Yes Yes
Industry FE? No No Yes Yes No No Yes Yes
Year FE? No Yes No Yes No Yes No Yes

Table 2 presents the mean, the median, the standard deviation, the skewness, and the kurtosis of the estimated effects of
500 placebo laws for different specifications of the DID model as indicated by the last three rows. With the exceptions of
skewness and kurtosis, all values are reported in decimals p.a.
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Table 3: Size and power of parametric tests and our approximate permutation test

Rejection rate
Controls Law setting SE estimator Placebo Effective Implicit

Panel A: Firm level
Industry FE Random White 0.17 0.75 2.95
year FE random 1cl firm 0.33 0.86 2.54

1cl industry 0.12 0.63 3.28
1cl month 0.00 0.19 4.75

1cl ind-month 0.00 0.01 5.97
2cl firm & month 0.01 0.24 4.60
2cl ind & month 0.10 0.53 3.59
Non-parametric 0.05 0.61 3.00

Panel B: Industry level
Industry FE Random White 0.00 0.06 5.02
year FE random 1cl industry 0.05 0.45 4.04

1cl month 0.03 0.34 4.44
2cl ind & month 0.07 0.46 4.09
Non-parametric 0.05 0.42 3.73

Table 3 reports rejection rates at the 5%-level for simulated laws with a placebo-effect and
an additive effect of +2% p.a. for various parametric tests and the non-parametric test we
suggest. The implicit effect is the additive effect required for a correct power of a one-sided
hypothesis test, i.e., the additive effect required to reject the H0 of λ ≤ 0 at the 5%-level in
95% of the cases. The DID-regressions are estimated on the level of firms in Panel A and
on the level of industries in Panel B, using excess returns er+

it as LHS-variable and industry
dummies Dind

i as well as year dummies Dyr
t as control variables. SE estimators in bold font

indicate a correct size, i.e., we cannot reject the null hypothesis that the according rejection
rate r for placebo laws is r = 0.05 at the 1%-level. SE estimators in italic font indicates an
overcritical size, that is, we cannot reject the null hypothesis that the according rejection
rate r for placebo laws is r ≤ 0.05 at the 1%-level.
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Table 4: Estimated coefficients of placebo laws of DID regressions including market models

Specification (1) (2) (3) (4) (5) (6)
Panel A: Firm level

Mean 0.0006 0.0003 0.0002 −0.0002 0.0002 0.0002
Median 0.0007 0.0005 0.0005 −0.0001 0.0000 −0.0004
Std. dev. 0.0121 0.0100 0.0093 0.0073 0.0084 0.0087
Skewness −0.1051 0.0139 −0.1307 0.0403 0.1403 0.2374
Kurtosis 2.5112 2.7356 2.9096 2.7674 3.0226 2.9409

Panel B: Industry level
Mean 0.0003 −0.0002 −0.0006 −0.0006 0.0002 0.0004
Median 0.0002 −0.0002 −0.0001 0.0001 0.0000 0.0001
Std. dev. 0.0110 0.0104 0.0103 0.0097 0.0107 0.0107
Skewness −0.0830 0.1531 −0.1445 −0.1254 −0.0606 0.0195
Kurtosis 3.1639 2.9728 3.0474 2.5447 2.6138 2.6864

Filtered LHS? Yes Yes Yes Yes No No
Factor controls? No No No No Yes Yes
Industry FE? No No Yes Yes No No
Year FE? No Yes No Yes No Yes

Table 4 presents the mean, the median, the standard deviation, the skewness, and the kurtosis
of the estimated effects of 500 placebo laws for different specifications of the DID model as
indicated by the last four rows. With the exceptions of skewness and kurtosis, all values are
reported in decimals p.a.

22



Table 5: Size and power for filtered returns

Rejection rate
Controls Law setting SE estimator Placebo Effective Implicit

Panel A: Firm level
Industry FE Random White 0.23 0.81 2.71
year FE random 1cl firm 0.30 0.85 2.56

1cl industry 0.11 0.63 3.31
1cl month 0.02 0.30 4.03

1cl ind-month 0.01 0.29 3.96
2cl firm & month 0.02 0.32 3.98
2cl ind & month 0.11 0.59 3.37
Non-parametric 0.06 0.47 3.18

Panel B: Industry level
Industry FE Random White 0.01 0.36 4.05
year FE random 1cl industry 0.06 0.50 3.51

1cl month 0.02 0.38 4.04
2cl ind & month 0.08 0.52 3.50
Non-parametric 0.05 0.48 3.47

Table 5 reports rejection rates at the 5%-level for simulated laws with a placebo-effect and
an additive effect of +2% p.a. for various parametric tests and the non-parametric test we
suggest. The implicit effect is the additive effect required for a correct power of a one-sided
hypothesis test, i.e., the additive effect required to reject the H0 of λ ≤ 0 at the 5%-level in
95% of the cases. The DID-regressions are estimated on the level of firms in Panel A and
on the level of industries in Panel B, using filtered excess returns η+

it = as LHS-variable and
industry dummies Dind

i as well as year dummies Dyr
t as control variables. SE estimators in

bold font indicate a correct size, i.e., we cannot reject the null hypothesis that the according
rejection rate r for placebo laws is r = 0.05 at the 1%-level. SE estimators in italic font
indicates an overcritical size, that is, we cannot reject the null hypothesis that the according
rejection rate r for placebo laws is r ≤ 0.05 at the 1%-level.
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Table 6: Size and power using factor model estimates as control variables

Rejection rate
Controls Law setting SE estimator Placebo Effective Implicit

Panel A: Firm level
Carhart Random White 0.41 0.96 1.94
alpha & random 1cl firm 0.71 0.99 1.52

risk premium 1cl industry 0.53 0.97 1.87
year FE 1cl month 0.05 0.62 3.02

1cl ind-month 0.05 0.62 2.99
2cl firm & month 0.06 0.69 2.99
2cl ind & month 0.29 0.65 2.89
Non-parametric 0.05 0.61 2.79

Panel B: Industry level
Carhart Random White 0.10 0.58 3.51
alpha & random 1cl industry 0.37 0.37 2.68

risk premium 1cl month 0.12 0.12 3.46
year FE 2cl ind & month 0.41 0.78 2.58

Non-parametric 0.05 0.48 3.54

Table 6 reports rejection rates at the 5%-level for simulated laws with a placebo-effect and
an additive effect of +2% p.a. for various parametric tests and the non-parametric test we
suggest. The implicit effect is the additive effect required for a correct power of a one-sided
hypothesis test, i.e., the additive effect required to reject the H0 of λ ≤ 0 at the 5%-level
in 95% of the cases. The DID-regressions are estimated on the level of firms in Panel A
and on the level of industries in Panel B, using excess returns as LHS-variable and alpha
and risk premium according to a Carhart (1997) model based on estimated counterfactual
returns and industry dummies Dind

i as well as year dummies Dyr
t as control variables. SE

estimators in bold font indicate a correct size, i.e., we cannot reject the null hypothesis that
the according rejection rate r for placebo laws is r = 0.05 at the 1%-level. SE estimators
in italic font indicates an overcritical size, that is, we cannot reject the null hypothesis that
the according rejection rate r for placebo laws is r ≤ 0.05 at the 1%-level.
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Table 7: Average returns around the Reg SHO announcement and effective dates

Announcement date Event date
Pilot Control Diff. Pilot Control Diff.

NYSE in Diether et al. (2009)
Average daily return 0.332 0.281 0.051 0.273 0.286 −0.013
p-value 2cl firm & date 0.317 0.660

NYSE, our sample
Average daily return 0.331 0.276 0.056 0.252 0.254 −0.002

p-value White 0.326 0.970
p-value 1cl firm 0.256 0.965
p-value 1cl date 0.357 0.934

p-value 2cl firm & date 0.296 0.744
p-value permutation test 0.281 0.972

NASDAQ in Diether et al. (2009)
Average daily return 0.523 0.563 −0.040 0.357 0.383 −0.026
p-value 2cl firm & date 0.503 0.582

NASDAQ, our sample
Average daily return 0.496 0.567 −0.071 0.356 0.387 −0.031

p-value White 0.493 0.734
p-value 1cl firm 0.425 0.681
p-value 1cl date 0.423 0.643

p-value 2cl firm & date 0.317 0.469
p-value permutation test 0.426 0.711

Table 7 reports the average returns for pilot und control stocks, their differences and the
p-values of hypothesis tests of the differences during the announcment window and the event
window of SEC regulation SHO. We run DID regressions of daily returns by exchange using
the data from July 26, 2004 to May 4, 2005:

rit = a+ b1 ·Dann
t + b2 ·Dann

t ×Dpilot
i + b3 ·Devent

t + b4 ·Devent
t ×Dpilot

i

The dummy variable Dann
t (Devent

t ) equals one if the date is in between July 26, 2004 and
July 30, 2004 (April 28, 2005 and May 4, 2005), inclusive, and zero otherwise and Dpilot

i is
a dummy variable that equals one if a given stock is pilot stock, and zero otherwise. The
columns for the announcent date (event date) report average returns for pilot stocks during
the announcement (event) window, a + b1 + b2 (a + b3 + b4); the same measure for control
stocks, a+ b1 (a+ b3); and the difference between the two, b2 (b4). All returns are report in
percent per day.
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