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Abstract

This paper characterizes the optimal level of deposit insurance (DI) when bank runs are

possible. In a wide variety of environments, the optimal level of DI only depends on three

sufficient statistics: the sensitivity of the likelihood of bank failure with respect to the level

of DI, the utility loss caused by bank failure (which is a function of the drop in depositors’

consumption) and the direct social costs of intervention in the case of bank failure, which

directly depend on the unconditional probability of bank failure, the marginal cost of public

funds, and the illiquidity/insolvency status of banks. Because banks do not internalize the

fiscal implications of their actions, changes in the behavior of competitive banks induced by

varying the level of DI (often referred to as moral hazard) only affect the level of optimal

DI directly through a fiscal externality, but not independently. We characterize the wedges

that determine the optimal ex-ante regulation (which can be mapped to deposit insurance

premia) and discuss the practical implications of our framework in the context of US data.
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1 Introduction

Bank failures have been a recurrent phenomenon in the United States and in many other

countries throughout modern history. A sharp change in the United States banking system

occurs with the introduction of federal deposit insurance in 1934, which dramatically reduced

the number of bank failures. For reference, more than 13,000 banks failed between 1921 and

1933, and 4,000 banks failed only in 1933. In contrast, a total of 4,057 banks have failed in the

United States between 1934 and 2014.1 As of today, deposit insurance remains a crucial pillar of

financial regulation and represents the most salient form of explicit government guarantees to

the financial sector.

Despite its success reducing bank failures, deposit insurance entails fiscal costs when it has

to be paid and affects the ex-ante behavior of market participants (these behavioral responses

are often referred to as moral hazard). Hence, in practice, deposit insurance only guarantees

a fixed level of deposits. As we show in figure 6 in the appendix, this level of coverage has

changed over time. Starting from the original $2,500 per account in 1934, the insured limit in the

US is $250,000 dollars since 2008. A natural question to ask is how the level of this guarantee

should be determined to maximize social welfare. In particular, what is the optimal level of

deposit insurance? Are $250,000, the current value in the US, or €100,000, the current value in

most European countries, the optimal levels of deposit insurance for these economies? Which

variables ought to be measured to optimally determine the level of deposit insurance coverage

in a given economy?

This paper provides an analytical characterization, written as a function of observable or

potentially recoverable variables, which directly addresses those questions. Although there

has been progress in understanding theoretical tradeoffs related to deposit insurance, a general

framework that incorporates the most relevant tradeoffs which can be used to provide explicit

quantitative guidance to answer these questions has been missing. With this paper, we provide

a first step in that direction.

We initially derive the main results of the paper in a version of the canonical model of bank

runs of Diamond and Dybvig (1983). In our basic framework, competitive banks set the interest

rate on a deposit contract to share risks between early and late depositors in an environment

with aggregate uncertainty about the profitability of banks investments. Due to the demandable

nature of the deposit contract, depending on the aggregate state, both fundamental-based and

panic-based bank failures are possible. Mimicking actual deposit insurance arrangements, we

assume that deposits are guaranteed by the government up to a deposit insurance limit of

1All these figures come from the FDIC Historical Statistics on Banking and FDIC (1998). Weighting bank failures

by the level of banks assets or correcting by the total number of banks still generates a significant discontinuity on

the level of bank failures after the introduction of deposit insurance. See Demirgüç-Kunt, Kane and Laeven (2014)

for a recent description of deposit insurance systems around the world.
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δ dollars and then focus on the implications for social welfare of varying δ.2 Our positive

analysis shows that increasing δ, holding the deposit rate offered by banks constant, reduces the

likelihood of bank failure, which is an important input for our normative analysis. We assume

throughout that any transfer of resources associated with deposit insurance payments entails a

fiscal cost, given by the marginal value of public funds.

After studying how varying δ affects equilibrium outcomes, we focus on the welfare

implications of such policy. The best way to present our results is by describing the determinants

of the optimal level of deposit insurance δ∗. The optimal deposit insurance level can be written

as a function of a few sufficient statistics in the following way:

δ∗ =
Sensitivity of bank failure probability to a proportional change in δ×Drop in depositors consumption

Probability of bank failure× Expected marginal social cost of intervention in case of bank failure
(1)

Equation (1) embeds the key tradeoffs regarding the optimal determination of deposit

insurance. On the one hand, when a marginal change in δ greatly reduces the likelihood of

bank failure, at the same time that the drop in depositors consumption caused by a bank failure

is large, it is optimal to set a high level of deposit insurance. On the other hand, when bank

failures are frequent and when the social cost of ex-post intervention associated with them —

for instance, because it is very costly to raise resources through distortionary taxation — is large,

it is optimal to set a low level of deposit insurance. In addition to characterizing the optimal level

of deposit insurance, we also provide a directional test that determines whether it is optimal to

increase or decrease the level of coverage starting from its current level. Given our sufficient

statistic approach, this is our most general and robust result.

The upshot of our precise formulation — introduced in propositions 1 and 2 in the text — is

that we can directly observe or recover the different variables that determine δ∗. This implies

that our formula can be calibrated and directly used in practice, providing direct guidance to

policymakers on which variables ought to be measured to determine the optimal level of deposit

insurance. Once the variables in equation (1) are known, the policymaker does not need any

other information to set the optimal level of deposit insurance.

Our characterization allows us to derive a number of theoretical results. First, we show that

banks behavioral responses to the policy (often referred to as moral hazard) only affect directly

our optimal policy formulas through a fiscal externality that increases the social marginal cost

of the intervention in case of bank failure.3 This result seems to go against current mainstream

2We do not explicitly model the possibility that a given depositor may have multiple accounts in different

banks by taking the initial level of deposits in a given bank as given. However, as long as there exists a cost of

switching/opening deposit accounts to make deposit choices not infinitely inelastic — which is consistent with the

evidence by Egan, Hortaçsu and Matvos (2014) — our main results remain valid. See Shy, Stenbacka and Yankov

(2015) for a model in which depositors can open multiple deposit accounts.
3As in the public finance literature, see e.g. Hendren (2013), we use term fiscal externality to refer to the social
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thinking, which emphasizes the role of moral hazard as the main welfare loss created by having

a deposit insurance system. Our results do not contradict that view. We simply argue that

the behavioral responses induced by varying the level of deposit insurance are subsumed into

the sufficient statistics we identify. In other words, high insurance levels can induce banks to

make decisions that will increase the likelihood and severity of bank failures, but only its effects

through the fiscal externality that we identify have a first-order effect on welfare. Our analysis

contributes to understand which precise components of banks behavioral responses have a first-

order effect on social welfare.

Second, we show how in an environment in which banks never fail and government

intervention is never required in equilibrium, it is optimal to fully guarantee deposits. This

result, which revisits the classic finding by Diamond and Dybvig (1983), follows directly from

equation (1) when the probability of bank failure — in the denominator — tends towards zero.

Third, we show that providing deposit insurance in states in which banks are illiquid but

profitable reduces the expected marginal social cost of intervention. Intuitively, higher deposit

insurance coverage increases banks’ deposit levels and reduces the positive net present value

investments that must be liquidated, which generates a first-order welfare gain in those states.

Finally, we show that social welfare is decreasing in the level of deposit insurance for low

levels of coverage. Intuitively, low levels of deposit insurance do not have the benefit of

eliminating bank runs, but still generate the fiscal cost of having to pay for deposit insurance in

case of bank failure.

Our framework also allows us to explore the optimal determination of ex-ante regulation,

which in practice corresponds to optimally setting deposit insurance premia or deposit rate

regulations. In particular, we show that the optimal ex-ante regulation forces banks to

internalize the fiscal externalities induced by their behavioral responses. We show that, in

general, the optimal ex-ante regulation involves restricting the behavior of banks regarding both

their asset and liability choices. We further contribute by characterizing the wedges that banks

must face when the optimal ex-ante regulation is implemented also in the form of sufficient

statistics. We also make a sharp distinction between the corrective and revenue raising roles of

ex-ante regulations.

The results of our basic model extend to more general environments. First, we allow

depositors to have a consumption-savings decision and portfolio decisions. We show that our

optimal policy formulas remain unchanged: any behavioral responses to policy along these

dimensions are captured by the identified sufficient statistics. Second, we allow banks to have

an arbitrary number of investment opportunities, with different liquidity and return properties.

This possibility modifies the social cost of intervention in case of bank failure, introducing

a new fiscal externality term. Third, we show that our sufficient statistics remain invariant

resource cost caused by the need to distortionarily raise public funds.
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to introducing alternative equilibrium selection mechanisms, like global games. Fourth, we

introduce general equilibrium effects and show that the optimal deposit insurance level features

a macro-prudential correction when ex-ante regulation is not perfect. Finally, we show that our

results extend to the case in which depositors have different levels of deposit holdings.

To show the applicability of our results in practice, we conduct an exercise using our

optimal deposit insurance formula with US data. We rationalize the 2008 policy change while

recovering the implied bank failure sensitivities to changes in the level of deposit insurance.

Our quantitative results illustrate how to apply our framework, but only further work on

measurement can provide direct guidance to policymakers.

Related Literature

This paper is directly related to the literature on banking and bank runs that follows Diamond

and Dybvig (1983), as Cooper and Ross (1998), Rochet and Vives (2004), Goldstein and Pauzner

(2005), Allen and Gale (2007), Uhlig (2010) or Keister (2012). As originally pointed out by

Diamond and Dybvig (1983), bank runs can be prevented by modifying the trading structure, in

particular by suspending convertibility, or by introducing deposit insurance. A sizable literature

on mechanism design, like Peck and Shell (2003), Green and Lin (2003) or Ennis and Keister

(2009), among others, has focused on the optimal design of contracts to prevent runs. Taking

the contracts used as given, we focus instead on the optimal determination of the deposit

insurance limit, which happens to be a policy measure that has been implemented in most

modern economies.

The papers by Merton (1977), Kareken and Wallace (1978), Calomiris (1990), Chan,

Greenbaum and Thakor (1992), Matutes and Vives (1996), Freixas and Rochet (1998), Freixas and

Gabillon (1999), Cooper and Ross (2002), Duffie et al. (2003), Allen, Carletti and Leonello (2011)

and Allen et al. (2014) have explored different dimensions of the deposit insurance institution,

in particular the possibility of moral hazard and the determination of appropriately priced

deposit insurance for an imperfectly informed policymaker. However, most of the literature that

studies deposit insurance arrangements has been essentially theoretical and unable to provide

practical guidelines to policymakers. In this paper, we provide a unified framework which

embeds the main tradeoffs that determine the optimal deposit insurance policy, while providing

practical guidance on which variables ought to be measured to set the level of deposit insurance

optimally. Our approach crucially relies on characterizing optimal policies as a function of

observables.

Our emphasis on measurement is related to a growing quantitative literature on the

implications of bank runs and deposit insurance. Demirgüç-Kunt and Detragiache (2002),

Ioannidou and Penas (2010), Iyer and Puri (2012) have studied from a reduced form empirical

approach the effects of deposit insurance policies. Egan, Hortaçsu and Matvos (2014) have
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explored quantitatively different regulations in the context of a rich empirical structural model

of deposit choice. Using a macroeconomic perspective, Gertler and Kiyotaki (2013) and

Kashyap, Tsomocos and Vardoulakis (2014) have quantitatively assessed, by simulation, the

convenience of guaranteeing banks deposits, but they have not characterized optimal policies.

Methodologically, our normative approach and its sufficient statistic implementation relates

to the classic normative work in public finance. Diamond (1998), Saez (2001), Chetty (2009)

or Hendren (2013) are a few relevant examples. Matvos (2013) follows a similar approach to

measure the benefits of contractual completeness. In a macro-finance context, Davila (2015) uses

a related approach to optimally determine the level of bankruptcy exemptions. More broadly,

our contribution to the theory of measurement belongs to the nascent literature that seeks to

inform financial regulation by designing adequate measurement systems for financial markets,

recently synthesized in Brunnermeier and Krishnamurthy (2014) and Haubrich and Lo (2013).

The remainder of this paper is organized as follows. Section 2 lays out the basic framework

and characterizes the behavior of the economy for a given level of deposit insurance. Section 3

presents the normative analysis, first characterizing the optimal level of deposit insurance when

the policymaker cannot regulate the banks’ ex-ante decisions and then when it has instruments

to regulate them. Section 4 extends the results in several dimensions and section 5 illustrate how

to relate the theoretical results to US data. Section 6 concludes. All proofs, detailed derivations

and illustrations, as well as a numerical example, are in the appendix.

2 Basic framework

This paper develops a framework to determine the optimal level of deposit insurance coverage.

First, we present our main results in a stylized model of bank runs. Section 4 shows that our

insights extend naturally to richer environments.

2.1 Environment

Our model builds on Diamond and Dybvig (1983). Time is discrete, there are three dates

t = 0, 1, 2 and a single type of consumption good (dollar), which serves as numeraire. There

is a continuum of aggregate states at date 1, denoted by s ∈ [s, s], which become common

knowledge to all agents in the economy, but not to the policymaker.

Depositors’ preferences There is a unit measure of ex-ante identical depositors, indexed by

i. At date 1, depositors privately learn whether they are of the early or the late type. Early

types only derive utility from consuming at date 1, while late types only derive utility from

consuming at date 2. The fraction of early types is λ and the fraction of late types is 1− λ (we
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Deposit Insurance
δ determined

Banks choose
return R1(δ)

Depositors choose
deposits D1i(R1, δ)

t = 0 t = 1 t = 2

Figure 1: Timeline of choices

assume that a law of large number holds).4

Hence, depositors ex-ante utility is given by

Es [λU (C1i (s)) + (1− λ)U (C2i (s))] ,

where C1i (s) and C2i (s) respectively denote the expected consumption of depositor i at dates

1 and 2 for a given realization of the aggregate state s.5 Depositors’ flow utility U (·) satisfies

standard regularity conditions: U′ (·) > 0, U′′ (·) < 0 and limC→0 U′ (C) = ∞.6 Figure 1

illustrates the timeline of choices.

Depositors’ endowments/technology Depositors have an initial endowment D0 > 0 of the

consumption good, which they deposit in banks. At date 1, early depositors receive an

exogenous endowment Y1 > 0, which, for simplicity, does not depend on the aggregate state.

At date 2, late depositors receive an exogenous stochastic endowment Y2 (s) > 0 and pay taxes

T2 (s) as described below. These exogenous endowments at dates 1 and 2 capture the payoffs

on the rest of the portfolios held by depositors — we explicitly model alternative investment

opportunities for depositors in section 4.

At date 1, after learning their type, depositors can change their balance of demand deposits

by choosing D1i (s): this is the only choice variable for depositors. We also assume that there

is an iid sunspot at date 1 for every realization s of the aggregate state — this becomes relevant

later on when dealing with multiple equilibria.

We assume that depositors have access to a storage technology between dates 1 and 2 that

earns a gross return of η ≤ 1. For all purposes, we always take the limit η → 1. As it will

become clear, this assumption, which captures the convenience of using bank deposits, makes

optimal for late depositors to leave in the bank at date 1 an amount of deposits greater or equal

to the level of deposit insurance.

4In previous versions of this paper, we allowed for the fraction of early depositors λ (s) to vary with the

aggregate state, introducing a second source of aggregate risk, without affecting our results.
5By assuming that depositors only care about their expected consumption at date 2, we purposefully focus

on aggregate efficiency, without having to take care of distributional/risk-sharing concerns among ex-post

heterogeneous depositors. It can be shown that our optimal policy results are identical to those in the more general

case up to a first-order.
6Unlike many bank run models, our model remains well-behaved even when depositors’ utility satisfies an

Inada condition, because depositors have external sources of income.
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Banks’ investment technology At date 0, banks have access to a productive technology with

the following properties. Every unit invested at date 0, if liquidated at date 1, yields one unit

of consumption good for any realization of s. Every unit of investment not liquidated at date

1, yields ρ2 (s) ≥ 0 units of consumption good at date 2, depending on the realization of s. For

simplicity, we assume that banks do not have access to a storage technology at date 1.7

We further assume that ρ2 (s) is continuous and increasing in s. High realizations of s
correspond to states in which banks are more profitable and vice versa.

Deposit contract The only contract available to depositors is a deposit contract, which takes

the following form. A depositor who deposits his endowment at date 0 is promised a

noncontingent gross return R1 = 1 + r1, which can be withdrawn on demand at date 1. Hence,

a depositor that deposits D0 at date 0 is entitled to withdraw up to R1D0 deposits at date 1. For

simplicity, no interest accrues between dates 1 and 2.

The rate R1 is set at date 0 by a unit measure of perfectly competitive banks, which make zero

profits in equilibrium due to free entry. The actual payoff received by a given depositor at either

date 1 or date 2 depends on the returns to bank investments, the behavior of all depositors, and

the level of deposit insurance — as described below. As it is assumed in models that follow

Diamond and Dybvig (1983), depositors receive all remaining proceeds of bank investments at

date 2.

It is useful to introduce the variable ∆i (s), which represents the amount of deposits

withdrawn by depositor i, formally defined as

∆i (s) ≡ R1D0 − D1i (s)

We assume that banks must follow a sequential service constraint: banks pay the amount

withdrawn ∆i (s) to every depositor until they run out of funds. For simplicity, we also assume

that early depositors are always repaid first.8

Depositors can withdraw funds at date 1 or leave them in the bank, but they cannot add new

funds. This restricts depositors’ choices to D1i (s) ∈ [0, R1D0] or, equivalently, ∆i (s) ∈ [0, R1D0].

When ∆i (s) > 0, depositors withdraw a strictly positive fraction of deposits at date 1. When

∆i (s) = 0, depositors leave their deposit balance untouched. Aggregate net withdrawals are

7Any storage technology available to banks at date 1 puts a lower bound on the effective return of investments

between date 1 and date 2. Alternatively, we can assume that the return on the storage technology available to

banks equals ρ2 (s).
8This restriction requires that banks always have enough funds to repay early depositors, that is, R1 < 1

λ . We

must verify that this condition is satisfied in equilibrium for any parameter configuration. Extending the results

to the case in which this condition does not hold is tedious but straightforward. Ensuring that early depositors

always get paid further allows us to focus on aggregate efficiency without having to take care of distributional

concerns among ex-post heterogeneous depositors. In this regard, we depart from the original model of Diamond

and Dybvig (1983).
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therefore given by

∆ (s) =
ˆ

∆i (s) di = R1D0 −
ˆ

D1i (s) di

Deposit insurance The level of deposit insurance δ, measured in dollars (units of the

consumption good), is the single instrument available to the planner. It is modeled to mimic

actual deposit insurance policies: in any event, depositors are guaranteed the promised return

on their deposits up to an amount δ, for any realization of the aggregate state s. The level of

deposit insurance, which can take any value δ ≥ 0 and can be paid either at date 1 or at date 2,

is chosen under commitment at date 0 through a planning problem.

For now, no other ex-ante regulation is allowed. Therefore, any funds disbursed to pay for

deposit insurance must be raised through taxes at date 2. We denote the fiscal shortfall generated

by the deposit insurance system at date 2 in state s by T2 (s). We assume that, for any dollar that

needs to be raised through taxes, there is a resource loss of κ ≥ 0 dollars, which represents

the marginal cost of public funds.9 We also assume that, whenever deposit insurance has to

actually be paid, the deposit insurance authority is only able to recover a fraction χ ∈ [0, 1) of

any resources held by the banks. This captures the costs of managing and liquidating banks by

the deposit insurance authority.

Budget constraints Therefore, given our assumptions, the consumption of a given early

depositor at date 1 must satisfy

C1i (s) = ∆i (s) + Y1, i = early,

where ∆i (s) is a choice variable for early depositors.

Analogously, taking as given the actions of other depositors, the expected consumption of a

given late depositor at date 2 in state s can be expressed as

C2i (s) =





α1 (s) (η (R1D0 − D1i (s)) + min {D1i (s) , δ}) + (1− α1 (s))min {R1D0, δ}+ Y2 (s)− T2 (s) , Failure at date 1

η (R1D0 − D1i (s)) + min {D1i (s) , δ}+ α2R (s)max {D1i (s)− δ, 0}+ Y2 (s)− T2 (s) , Failure at date 2

η (R1D0 − D1i (s)) + α2N (s) D1i (s) + Y2 (s)− T2 (s) , No Bank Failure

where the scalars α1 (s) ∈ [0, 1), α2R (s) ∈ [0, 1), and α2N (s) ≥ 1 represent equilibrium

objects that depend on the actions of other depositors through the total level of available funds

ρ2 (s) (D0 − ∆ (s)) at date 2, defining three regions, as follows

if





ρ2 (s) (D0 − ∆ (s)) < 0, Failure at date 1

0 ≤ ρ2 (s) (D0 − ∆ (s)) <
´

D1i (s) di, Failure at date 2

ρ2 (s) (D0 − ∆ (s)) ≥
´

D1i (s) di, No Bank Failure

(2)

9The net marginal cost of public funds, κ, measures the loss incurred in raising additional government revenues

— see Dahlby (2008) for an extensive discussion.
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From the perspective of an individual depositor, there are three different scenarios. First,

when D0− ∆ (s) < 0, banks are not able to satisfy their withdrawals at date 1, what forces them

to liquidate all their investments. Hence, depositors who decide to withdraw early, find that

they can only effectively do so with probability α1 (s) < 1, determined in equilibrium. With

probability 1− α1 (s), depositors do not manage to withdraw any funds at date 1 and only have

access to the proceeds from deposit insurance, which correspond to the minimum between their

initial deposits R1D0 (since they where unable to withdraw any funds) and the level of deposit

insurance δ. In this situation, banks fails at date 1.

Second, when the level of date 1 withdrawals does not force banks to fully liquidate their

investments, but is such that banks do not have enough resources to pay back their obligations

at date 2, late depositors consumption is analogous to the previous case, but as if α1 (s) = 1 and

correcting for the amount of deposits withdrawn at date 1. Depositors can withdraw as much as

they wish at date 1, but they only have access to the minimum between their remaining balance

D1i and the level of deposit insurance δ, although they may receive additional resources at a rate

α2R if they have claims above δ and banks have sufficient funds. In this situation, banks fail at

date 2.

Third, when banks have enough resources to pay depositors more than the level of deposit

insurance at date 2, depositors receive a positive net return on their deposits. In this situation,

there is no bank failure and no intervention is required.

Equilibrium A symmetric equilibrium, for a given level of deposit insurance δ, is defined as

consumption allocations C1i (s) and C2i (s), deposit choices D1i (s), and a return on deposits

R1, such that depositors maximize their utility, given that other depositors behave optimally

and banks competitively set R1 by maximizing depositors utility while making zero profit. We

restrict our attention to symmetric equilibria.

Remarks about the environment Before characterizing the equilibrium, we would like to

emphasize the two key features of our environment.

First, following most of the literature on bank runs, we take the noncontingent nature of

deposits and its demandability as primitives. With this, we depart from the approach that sees

deposit contracts as the choice of a mechanism. The upside of our approach is that we can

map banks’ choices to observable variables, like deposit rates, as opposed to focusing on more

abstract assignment procedures.

Second, with respect to the policy instrument, we restrict our attention to a single policy

instrument: the amount of deposit insurance coverage. Therefore, we are solving a second-best

problem, in the Ramsey tradition. More general policy responses, either explicit or implicit and

potentially state contingent, for instance, lender-of-last-resort policies, can bring social welfare

closer to the first-best. Even when those policies are available, independently of whether they
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are chosen optimally, our main characterization in this paper and all the insights associated

with it remain valid as long as they are not able to restore the first-best. We work under the

assumption of full commitment throughout.

The two main departures from Diamond and Dybvig (1983) are the presence of aggregate

risk regarding bank profitability, which is crucial for our results, and the slightly different timing

assumptions regarding the consumption patterns of early and late types, which allow us to

simplify the model.

2.2 Equilibrium characterization

For a given level of deposit insurance δ, we characterize the equilibrium of the economy

backwards. We first characterize the optimal choice by depositors at date 1 and then study

the date 0 choices made by banks. Finally, we solve the planning problem that determines δ∗.

Early depositors Given our assumptions, it is optimal for early depositors to withdraw all

their deposits at date 1 and set D1i (s) = 0, ∀s. Hence early depositors always consume in

equilibrium

C1i (s) = R1D0 + Y1, ∀s, i = early

Late depositors Late depositors, who only consume at date 2 and have an imperfect storage

technology, would in principle prefer to keep their deposits within the banks until date 2.

However, they may not receive the total promised amount R1D0 if the bank doesn’t have enough

funds.

We show that only two deposit choices can be optimal for late depositors: a) leave enough

deposits so as to receive the full amount of deposit insurance, or b) keep all their deposits in

the bank. Formally, we show that C2i (s) is either increasing or decreasing in D1i (s) in all three

possible scenarios. Formally, dC2i(s)
dD1i(s)

is given by

dC2i (s)
dD1i (s)

=





α1 (s) (I [D1i ≤ δ]− η) , Failure at date 1

I [D1i ≤ δ] + α2RI [D1i > δ]− η, Failure at date 2

α2N (s)− η, No Bank Failure

where we use I [·] to denote an indicator function.

When banks fail at date 1 and D1i (s) ≤ δ, dC2i(s)
dD1i(s)

= α1 (s) (1− η) > 0, which is strictly

positive. In that case, it is optimal for an individual depositor to increase the level of deposits

in the bank at date 1. When banks fail at date 1 but D1i (s) > δ, dC2i(s)
dD1i(s)

= −α1 (s) η < 0, which

is strictly negative. In that case, it is optimal for an individual depositor to decrease the level of

deposits in the bank at date 1. Both observations imply that it is optimal to precisely choose δ

as the level of deposits. The exact same logic applies to the case in which banks fail at date 2.
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When there is no bank failure, dC2i(s)
dD1i(s)

= 1− η > 0, which is strictly positive. In that case, it is

optimal for an individual depositor to keep all deposits in the bank at date 1.

Given this result, denoting by D1 (s) the deposit choice of late depositors, there are two

candidates for symmetric equilibria

D1 (s) =





min {δ, R1D0} , Failure equilibrium

R1D0, No Failure equilibrium

To formally establish that these two deposit choices are equilibria, we must guarantee that

the optimal behavior of depositors is consistent with the determination of the three possible

scenarios in equation (2). In a symmetric equilibrium in which all late depositors choose D1 (s),
the level of resources available per individual late depositor at date 2 is given by

ρ2 (s) (D0 − ∆ (s))
1− λ

= ρ2 (s)
(

D1 (s)−
r1D0

1− λ

)
(3)

Figure 7 in the appendix illustrates this relation, for given values of D1 (s). Using this

expression, we can determine the threshold level of deposits such that banks fail at date 1, given

by
r1D0

1− λ

If D1 (s) <
r1D0
1−λ , banks do not have enough funds at date 1 to meet depositors demands. When

D1 (s) ≥ r1D0
1−λ , banks have enough funds at date 1 to satisfy their withdrawals. Intuitively, to

avoid failure at date 1, the total level of deposits held by the fraction 1− λ of late depositors at

date 1 must be sufficiently large to cover the amount promised to early depositors that cannot

be covered by liquidating the investment made by banks r1D0.

Figure 2, which represents the individual best response of a given late depositor i given other

late depositors’ choices, is helpful to characterize the equilibria. By varying the level of δ, figure

2 graphically illustrates how different equilibria configurations may arise.

The return on deposits between dates 1 and 2 depends on whether banks have enough

resources available to pay all promised funds to depositors. Hence, bank failure is avoided only

when ρ2 (s)
(

D1 (s)− r1D0
1−λ

)
≥ D1 (s). The level of deposits that defines the threshold between

the failure and no failure regions is given by

1
1− 1

ρ2(s)

r1D0

1− λ
, when ρ2 (s) > 1,

Hence, if r1D0
1−λ ≤ D1 (s) < 1

1− 1
ρ2(s)

r1D0
1−λ , banks fail at date 2, while if D1 (s) ≥ 1

1− 1
ρ2(s)

r1D0
1−λ ,

there is no bank failure. Intuitively, when the level of deposit insurance coverage is less than
1

1− 1
ρ2(s)

r1D0
1−λ , both the failure equilibrium and the no failure equilibrium are possible. In the

failure equilibrium, it is optimal for depositors to leave in the bank an amount of deposits

12



D1i(s)
Individual Best

Response

δ

D1(s)
Other Late
Depositors

0
45◦

r1D0

1−λ
R1D01

1− 1
ρ2(s)

r1D0

1−λ

Failure
Equilibrium

No Failure
Equilibrium

Bank Failure
at date 1

Bank Failure
at date 2

No Bank Failure

Figure 2: Best response and equilibrium characterization at date 1 for a given realization s

exactly identical to the level of deposit insurance. For instance, the classic run equilibrium

of Diamond and Dybvig (1983) corresponds to the case δ = 0. However, a level of deposit

insurance higher than 1
1− 1

ρ2(s)

r1D0
1−λ guarantees that D1 (s) = δ is not an equilibrium, so only the

no failure equilibrium is possible. Intuitively, when the level of deposit insurance δ is low, the

level of deposits withdrawn from depositors is large enough that banks are not able to satisfy

their commitments. However, once the level of deposit insurance is sufficiently high, the mass

of funds that remains in the bank is large enough so that it is optimal for all depositors not to

withdraw their deposits.

We have thus establish that high enough levels of deposit insurance eliminate the failure

equilibrium. However, for this logic to be valid, banks cannot completely insolvent, that is, it

must be that 1
1− 1

ρ2(s)

r1D0
1−λ < R1D0. Otherwise, only the failure equilibrium exists, independently

of the level of deposit insurance coverage. We could describe the situation in which only the

failure equilibrium exists as that of a fundamental run. In that case, even if we do not observe

a run at date 1, banks will necessarily require government assistance at date 2. Therefore,

even when deposit insurance coverage guarantees all deposits, i.e., when δ ≥ D0R1, which

makes it optimal for depositors to choose D1 (s) = D0R1, the depositors’ consumption naturally

13
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Unique
(No Failure)
Equilibrium

Multiple
Equilibria

Unique
(Failure)

Equilibrium

Fundamental
Failure

Panic
Failure

0
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Multiple
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Fundam.
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Panic
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↑ δ ⇒ ↓ Multiplicity Region

δ′

s∗(δ′, R1)

Figure 3: Determination of equilibrium regions and comparative statics on δ

corresponds to the one in the failure equilibrium.

Summing up, for a given realization of s, there are three different configurations of equilibria.

Defining δ∗ (s, R1) as

δ∗ (s, R1) =
1

1− 1
ρ2(s)

r1D0

1− λ
,

which is positive as long as ρ2 (s) > 1, the possible equilibria configurations for a given

realization of s are given by10

if





δ∗ (s, R1) ≥ D0R1 or ρ2 (s) ≤ 1, Unique (Failure) equilibrium, D1 = min {δ, D0R1}
δ∗ (s, R1) < D0R1, ρ2 (s) > 1, and δ ≤ δ∗ (s, R1) , Multiple equilibria

δ∗ (s, R1) < D0R1, ρ2 (s) > 1, and δ∗ (s, R1) < δ, Unique (No Failure) equilibrium, D1 = D0R1

Therefore, at date 1, for a given realization of s, there is a unique equilibrium or multiple

equilibria depending on whether δ∗ (s, R1) is higher or lower than the actual level of deposit

insurance δ, as long as it is also less than D0R1. When ρ2 (s) is low enough or λ is large enough,

no level of deposit insurance is sufficient to eliminate the failure equilibrium. As we show in

the appendix, ∂δ∗
∂s ≤ 0 and ∂δ∗

∂R1
> 0. Intuitively, in good states and when promised deposit rates

are lower, a low deposit insurance limit is sufficient to prevent bank failures. Figure 3 illustrates

the different regions graphically and shows how they change when δ increases to δ′.

To understand the ex-ante behavior of banks, it is useful to characterize for which realizations

of the aggregate state s, the different type of equilibria at date 1 may arise. To do that, we first

10Interestingly, the expression for δ∗ features a “multiplier” 1
1− 1

ρ2(s)
> 1. Intuitively, every marginal dollar left

inside the banks not only reduces the amount of investments that have to be liquidated, but also earns the extra

marginal net return on bank investments. This mechanism amplifies the effect of a given level of coverage. It

crucially relies on formulating deposit choices as a continuous variable, which is different from most bank run

models with binary (withdraw/not withdraw) deposit decisions.
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define two thresholds ŝ (R1) and s∗ (δ, R1) in the following way:

ŝ (R1) : s|D0R1 =
1

1− 1
ρ2(s)

r1D0

1− λ
, such that ŝ (R1) ∈ [s, s] (4)

s∗ (δ, R1) : s|min {δ, D0R1} =
1

1− 1
ρ2(s)

r1D0

1− λ
, such that s∗ (δ, R1) ∈ [s, s] (5)

Formally, whenever the solutions for s in equations (4) and (5) lie outside of the interval [s, s],
we force ŝ and s∗ to take the value of the closest boundary, either s or s. These thresholds allow

us to delimit three regions for the type of equilibrium that arises given the realization of the

aggregate state:

if





s ≤ s < ŝ (R1) , Unique (Failure) equilibrium

ŝ (R1) ≤ s < s∗ (δ, R1) , Multiple equilibria

s∗ (δ, R1) < s ≤ s, Unique (No Failure) equilibrium

Figure 4 illustrates the three regions graphically. We show in the appendix that the region of

multiplicity decreases with the level of deposit insurance ∂s∗
∂δ ≤ 0. This shows that increasing

the level of deposit insurance decreases the region of multiplicity. Both the region of multiplicity

and the region with a unique failure equilibrium are increasing in the deposit rate offered by

banks, that is, ∂s∗
∂R1
≥ 0 and ∂ŝ

∂R1
≥ 0. Note that our formulation accommodates both panic-based

failures and fundamental-based failures — see Goldstein (2012) for a recent discussion.

0 δ

s

∂s∗

∂δ = 0 ∂s∗

∂δ < 0 ∂s∗

∂δ = 0
s

s

D0R11
1− 1

ρ2(s)

r1D0

1−λ

s∗ (δ,R1)

ŝ (R1)

Unique
(No Failure)
EquilibriumMultiple

Equilibria

Unique (Failure) Equilibrium

Figure 4: Regions defined by s∗ (δ, R1) and ŝ (R1)

To determine the deposit rate offered by banks at an ex-ante stage, we must take a stand

on which equilibrium is actually played for every realization of s. For now, we assume that,

given the realization of an aggregate shock in which multiple equilibria are possible, a sunspot

coordinates depositors behavior. Hence, for a given realization of s, with probability π ∈ [0, 1]
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the failure equilibrium occurs and with probability 1− π the no failure equilibrium occurs.11

Alternatively, we could have introduced imperfect common knowledge of fundamentals, as in

Goldstein and Pauzner (2005), which would allow us to endogenize the probability of bank

failure. We show in section 4 that the main insights of this paper extend naturally to that case.

Therefore we can write the unconditional probability of bank failure in this economy, which

we denote by q (δ, R1), as

q (δ, R1) = F (ŝ (R1)) + π [F (s∗ (δ, R1))− F (ŝ (R1))] (6)

The unconditional probability of bank failure q (·) inherits the properties of s∗ (·) and ŝ (·).
We show in the appendix that ∂q

∂δ ≤ 0 and ∂q
∂R1
≥ 0. Intuitively, holding the deposit rate

constant, higher levels of deposit insurance reduce the likelihood of bank failure in equilibrium,

by decreasing the multiple equilibria region. Similarly, holding the level of deposit insurance

constant, higher deposit rates offered by banks increase the likelihood of bank failure by

reducing the region with a unique no failure equilibrium and by enlarging the region with

a unique failure equilibrium. From figure 4, it is easy to establish that ∂q
∂δ , which plays an

important role in our characterization of the optimal policy, is zero for very low and very large

values of δ.

Finally, before analyzing banks’ choices at date 0, it is helpful to characterize the

consumption of late depositors in the different equilibria. In the no failure equilibrium, late

depositors consumption at date 2 is given by

C2N (s, δ, R1) =
ρ2 (s) D0 (1− λR1)

1− λ
+ Y2 (s) (7)

No taxes need to be raised when banks do not fail. In the failure equilibrium, we decompose the

equilibrium consumption of late depositors into two components. Late depositors consumption

at date 2 is given by

C2R (s, δ, R1) = C̃2R (s, δ, R1)− T2 (s, δ, R1) , (8)

where we use the index R for the bank failure cases, standing for “run equilibrium”. The

consumption of a late depositor at date 2 in a failure equilibrium before taxes, denoted by

C̃2R (s, δ, R1), is given, as we show in the appendix, by

C̃2R (s, δ, R1) =

[
δ +

D0 (1− λR1)

1− λ

]
(1− I1) + D0R1I1 + Y2 (s) ,

where we use I1 to denote an indicator that corresponds to the region in which banks are able

to satisfy all date 1 withdrawals, formally:12

I1 ≡ I

[
δ ≥ r1D0

1− λ

]

11We can easily allow for a value of π contingent on the aggregate state s, π (s).
12We use an indicator instead of defining thresholds for this region to simplify the exposition. This approach is

valid because the consumption of late depositors is continuous when δ = r1D0
1−λ .
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We denote the by T2 (s, δ, R1) the funds that need to be raised to pay for deposit insurance. In

the failure equilibrium, the deposit insurance authority must raise the minimum between δ or

the total level of deposits from each late depositor since, as we have shown, it is optimal for all

late depositors to keep δ deposits in the bank at date 1. Hence, under our assumption that the

deposit insurance authority can only recover a fraction χ of funds from banks in case of bank

failure and that the net marginal cost of public funds is κ, whenever the failure equilibrium

occurs, the level of funds to be raised from a given late depositor is determined by

T2 (s, δ, R1) = (1 + κ)

[
min {δ, D0R1} − χρ2 (s)

(
min {δ, D0R1} −

r1D0

1− λ

)
I1

]

It is easy to show that T2 (s, δ, R1) ≥ 0.13 We also show that the amount of funds that must

be raised to pay for deposit insurance in a failure equilibrium increases with R1 but, more

surprisingly, it can increase or decrease with δ. Formally, we show that ∂T2
∂R1

> 0 but ∂T2
∂δ R 0.

It can be the case that increasing the level of coverage becomes self financing, since the returns

on the banks investments yields ρ2 (s) > 1 units of output. Note that ∂T2(s,δ,R1)
∂s < 0, since less

public funds are needed when banks returns are higher.

Consolidating both terms, the total consumption for a late depositor at date 1, in the relevant

interior case δ < R1D0, can be thus written as

C2R (s, δ, R1) =
D0 (1− λR1)

1− λ
− κδ + ((1 + κ) χρ2 (s)− 1)

(
δ− r1D0

1− λ

)
I1 + Y2 (s)

In the appendix, we prove that, for a given realization of the aggregate state, the expected

consumption of late depositors is higher in the no failure equilibrium, that is, C2N − C2R > 0.

From now on, to ease the notation, we omit the arguments of many different functions,

unless we want to make a special emphasis on the dependence of some variables.

Banks Since we have assumed that banks are perfectly competitive, they offer at date 0 a rate

of return on deposits R1 which maximizes the ex-ante welfare of depositors. Banks are aware

of the possibility of bank failure and internalize how the choice of R1 affects the likelihood and

severity of bank failure. On the contrary, because they are small, banks fail to internalize how

their actions affect the level of taxes T2 that must be raised in case of bank failure.

For a given level of deposit insurance δ, depositors indirect utility from an ex-ante viewpoint

13An alternative timing assumption in which funds have to be raised first and then the unwinding of banks

assets occurs corresponds to T2 (s, δ, R1) = (1 + κ) δ − χρ2 (s)
(

δ− r1D0
1−λ

)
(1− I1). The differences between both

formulations are minimal. See FDIC (1998) for how both procedures have been used in practice over time.
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can be written, as a function of R1, as follows

J (R1; δ) = λU (R1D0 + Y1)

+ (1− λ)



´ ŝ(R1)

s U (C2R (s)) dF (s) +
´ s∗(δ,R1)

ŝ(R1)
(πU (C2R (s)) + (1− π)U (C2N (s))) dF (s)

+
´ s

s∗(δ,R1)
U (C2N (s)) dF (s)


 ,

(9)

where C2N (s) and C2R (s) are respectively defined in equations (7) and (8).

Hence, banks choose R1 to solve

R∗1 (δ) = arg max
R1

J (δ, R1)|T2
,

where J (δ, R1)|T2
corresponds to equation (9), taking T2 as given. For a given level of deposit

insurance δ, under appropriate regularity conditions, R∗1 (δ) is given by the solution to ∂J
∂R1

∣∣∣
T2

=

0, where

∂J
∂R1

∣∣∣∣
T2

= λU′ (D0R1 + Y1) D0 + (1− λ)

ˆ ŝ

s
U′ (C2R (s))

∂C̃2R (s)
∂R1

dF (s) (10)

+ (1− λ)

[ˆ s∗

ŝ

(
πU′ (C2R (s)) ∂C̃2R(s)

∂R1

+ (1− π)U′ (C2N (s)) dC2N(s)
dR1

)
dF (s) +

ˆ s

s∗
U′ (C2N (s))

dC2N (s)
dR1

dF (s)

]

+ (1− λ) (1− π) [U (C2R (ŝ))−U (C2N (ŝ))]
∂ŝ

∂R1
f (ŝ)

+ (1− λ)π [U (C2R (s∗))−U (C2N (s∗))]
∂s∗

∂R1
f (s∗)

The date 2 derivatives of late depositors’ consumption are given by

dC2N

dR1
= −ρ2 (s)

λ

1− λ
D0 < 0 and

∂C̃2R

∂R1
=

[
− λ

1− λ
(1− I1) + I1

]
D0,

and, as shown above, both ∂ŝ(R1)
∂R1

and ∂s∗(δ,R1)
∂R1

are positive.

The choice of R1 determines the optimal degree of risk sharing between early and late

types, accounting for the level of aggregate uncertainty and incorporating the costs associated

with bank failure. Overall, banks internalize that varying R1 changes the consumption of

depositors for given failure and no failure states (intensive margin terms) and the likelihood

of experiencing a bank failure (extensive margin terms). Importantly, banks do not take into

account how their choice of R1 affects the need to raise resources through taxation to pay for

deposit insurance.

An increase in R1 always increases the consumption of early depositors and, in general,

reduces the consumption of late depositors: this is captured by the negative signs of dC2N
dR1

and
∂C̃2R
∂R1

. Only when I1 = 1, banks perceive that increasing R1 benefits both early and late depositors
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at the margin. Banks take into account that offering a high deposit rate makes bank failures

more likely. This is captured by the positive sign of ∂ŝ
∂R1

and ∂s∗
∂R1

, which combined with the sign

of U (C2R)−U (C2N), which we know to be negative, makes increasing R1 less desirable. When

π → 0, and ŝ = s, equation (8) corresponds exactly to the optimal arrangement that equalizes

marginal rates of substitution across types with the expected marginal rate of transformation

shaped by ρ2 (s). In that case, banks set R1 exclusively to provide insurance between early and

late types.

Although, theoretically, the sign of dR∗1
dδ is unclear, due to conflicting income effects and direct

effects on the size of the failure/non-failure regions, R1 increases with δ in most situations,

that is, dR∗1
dδ > 0 — we find this behavior in the numerical example described in the appendix.

Intuitively, since the consumption of late depositors increases with the level of coverage and the

likelihood of failure is smaller, we expect that banks optimally decide to offer higher deposit

rates when deposit insurance coverage is more generous. This result is a form of moral hazard

by banks. In section 4, banks also choose the composition of their investment, which makes the

effect of banks behavioral responses on welfare more salient.

Finally, it is clear that J (R1; δ) is continuous in R1, although it may be non-differentiable at

a finite number of points. For the characterization of equation (10) to be valid, we work under

the assumption that R∗1 is found at an interior optimum. Since by adding some observable noise

we can make J (R1; δ) everywhere differentiable, this assumption does not entail great loss of

generality.

3 Normative analysis

After characterizing the behavior of this economy for a given level of deposit insurance δ, we

now study how social welfare varies with δ and characterize the socially optimal level of deposit

insurance δ∗. We first analyze the case in which no ex-ante policies are available and then extend

our analysis to the more realistic case in which ex-ante corrective policies can be used.

3.1 Optimal deposit insurance δ∗

First, we study how welfare changes with the level of deposit insurance. Social welfare in this

economy is given by the ex-ante expected utility of depositors. We denote social welfare, written
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as a function of the level of deposit insurance, by W (δ). Formally, W (δ) is given by

W (δ) = λU (R∗1 (δ) D0 + Y1) + (11)

+ (1− λ)


+

´ ŝ(R∗1(δ))
s U (C2R (s, δ, R∗1 (δ))) dF (s)´ s∗(δ,R∗1(δ))

ŝ(R∗1(δ))
(πU (C2R (s, δ, R∗1 (δ))) + (1− π)U (C2N (s, R∗1 (δ)))) dF (s)

+
´ s

s∗(δ,R∗1(δ))
U (C2N (s, R∗1 (δ))) dF (s)


 ,

where C2N (s, δ, R∗1 (δ)) and C2R (s, δ, R∗1 (δ)) are respectively defined in equations (7) and (8) and

R∗1 (δ) is given by the solution to equation (10). The first term of W (δ) is the expected utility

of early depositors. The second term, in brackets, is the expected utility of late depositors. It

accounts for the equilibria that will occur for the different realizations of the aggregate state.

Proposition 1 presents the first main result of this paper.

Proposition 1. (Marginal effect on welfare of varying the level of deposit insurance δ) The
change in welfare induced by a marginal change in the level of deposit insurance dW

dδ is given by

dW
dδ

1− λ
= (U (C2R (s∗))−U (C2N (s∗)))

∂q
∂δ

(12)

+ qER

[
U′ (C2R (s))

(
κ + (1− (1 + κ) χρ2 (s)) I1 +

∂T2

∂R1

dR1

dδ

)]
,

where ER [·] stands for a conditional expectation over bank failure states and, as defined above, q denotes
the unconditional probability of bank failure, ∂q(δ)

∂δ = π f (s∗ (δ)) ∂s∗(δ)
∂δ and I1 = I

(
δ ≥ r1D0

1−λ

)
.

Proposition 1 characterizes the effect on welfare of a marginal change in the level of deposit

insurance. The first line of equation (12) captures the marginal benefit of increasing deposit

insurance by a dollar, while its second line captures the marginal cost of doing so. On the one

hand, a higher level of deposit insurance decreases the likelihood of bank failure by ∂q
∂δ < 0. This

reduction creates a welfare gain given by the wedge in depositors’ utility between the failure

and no failure states U (C2R (s∗))−U (C2N (s∗)), which we show must be negative. Hence, we

can express the benefit of increasing the deposit insurance limit as

(U (C2R (s∗))−U (C2N (s∗)))︸ ︷︷ ︸
Utility Drop

∂q (δ)
∂δ︸ ︷︷ ︸

Change in Failure Probability︸ ︷︷ ︸
Benefit of DI

On the other hand, a higher level of deposit insurance changes the consumption of late

depositors in case of bank failure by

∂C2R

∂δ
− ∂T2

∂R1

dR1

dδ
= −κ︸︷︷︸

Cost of Public Funds

− (1− (1 + κ) χρ2 (s)) I1︸ ︷︷ ︸
Illiquidity/Insolvency

− ∂T2

∂R1

dR1

dδ︸ ︷︷ ︸
Fiscal Externality︸ ︷︷ ︸

Cost of DI

(13)
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The first term of ∂C2R
∂δ is the net marginal cost of public funds associated with a unit increase in

the level of deposit insurance coverage. Intuitively, a higher δ increases the transfers towards

depositors, which have a net fiscal unit cost of κ.

The second term of ∂C2R
∂δ is the net social value of leaving one more dollar of deposits inside

the banks and it captures whether banks are simply illiquid or insolvent. This term is nonzero

whenever banks do not fully liquidate their investments at date 1, that is, when I1 = 1, and

it captures whether deposit insurance keeps unprofitable banks (inefficiently) functioning or

(efficiently) supports insolvent but profitable investments. The illiquidity/insolvency term

corresponds to the difference between the (unit) gain from liquidating a unit of investment

at date 1 and the social returns obtained by leaving that extra unit inside the banks, which

corresponds to ρ2 (s), corrected by the liquidation loss χ and marginal fiscal saving κ.

The first two terms combined can take the value −κ when I1 = 0 or − (1 + κ) (1− χρ2 (s))
when I1 = 1. Hence, for this term to be negative at a given state, it must be that deposit

insurance is preventing inefficient investments to be liquidated, which occurs when 1 > χρ2 (s).
Note that, even when κ = 0 and it is free to raise public funds ∂C2R

∂δ is non-zero and equals

1 − χρ2 (s).14 All these effects are smoothed out, since the relevant variable is the ex-ante

expectation of the marginal effects.

The third and final term corresponds to the impact of the distortions on banks’ behavior

induced by the change in level of deposit insurance. We have shown that ∂T2
∂R1

is always positive

and argued that dR1
dδ is also positive, so this third term in equation (13) increases the marginal

cost of increasing the deposit insurance limit. Because it affects directly the funds that need to

be raised by the government, we refer to it as a fiscal externality. Depositors value any change in

consumption at their marginal utility U′ (C2R). We further discuss this term in our first remark

of this section.

The derivation of equation (12) repeatedly exploits the fact that banks choose the value of

R1 to provide insurance across types optimally, while taking into account how that may change

the likelihood of bank failure. Moreover, it provides a simple test for whether to increase or

decrease the level of deposit insurance.

Under appropriate regularity conditions, the optimal level of deposit insurance must be

a solution to the equation dW
dδ = 0. Proposition 2 characterizes the optimal level of deposit

insurance at an interior optimum.

Proposition 2. (Optimal deposit insurance) The optimal level of deposit insurance δ∗ is characterized
by

δ∗ =
ε

q
δ (U (C2R (s∗))−U (C2N (s∗)))

qER

[
U′ (C2R (s))

(
κ + (1− (1 + κ) χρ2 (s)) I1 +

∂T2
∂R1

dR1
dδ

)] , (14)

14When 1 > χρ2 (s), competitive bank managers could find optimal to liquidate all investments and return all

proceeds to depositors. This possibility is ruled out because contracts are non-contingent.
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where ER [·] stands for a conditional expectation over bank failure states and, as defined above, q denotes
the unconditional probability of bank failure, ε

q
δ = ∂q(δ)

∂ log(δ) denotes the change in the likelihood of bank

failure induced by a percent change in the level of deposit insurance and I1 = I
(

δ ≥ r1D0
1−λ

)
.

The optimal level of deposit insurance trades off the welfare gains from reducing the

likelihood of bank failure (numerator) with the fiscal cost associated with deposit insurance

(denominator). At an interior optimum, we expect both numerator and denominator to be

strictly positive, so that δ∗ > 0. Intuitively, a high value for δ∗ is optimal when ε
q
δ and

U (C2R (s∗))−U (C2N (s∗)) are large in magnitude. If the reduction in the probability of bank

failure is large at the same time that the welfare loss caused at the margin by a bank failure

is also large, it is optimal to have a large level of deposit insurance. A low value for δ∗ is

optimal when the probability of actually paying for deposit insurance is high, at the same time

that the net marginal cost of public funds κ is high, the recovery rate for the government out

banks investments is low and the sensitivity of the deposit rate offered banks with respect to the

coverage level is high.

Equation (14) encapsulates all the relevant tradeoffs that optimally determine the deposit

insurance limit. Importantly, it characterizes δ∗ as a function of a few sufficient statistics, which

can be potentially be recovered from actual data, a fact that we exploit in section 5. However, as

it is common in optimal policy exercises, δ∗ cannot be written as a function of primitives, since

all right hand side variables in equation (14) are endogenous.15

We would like to emphasize four implications of our optimal policy formulas in propositions

1 and 2.

Remark 1. Banks behavioral responses (often referred to as moral hazard) only affect social

welfare directly through the fiscal externality term. It is true that we expect banks to quote

higher deposit rates when the level of deposit insurance is higher, since they know that

depositors consumption is partially shielded by the existence of deposit insurance. However,

because banks are competitive and maximize depositors welfare, only the fiscal consequences

of their change in behavior, which materializes when the fiscal authority actually has to pay for

deposit insurance, matters. This result remains valid even when banks have an endogenous

choice of investment — see section 4. This is an important takeaway of this paper and crucially

relies on the fact that banks are perfectly competitive.

Moral hazard on the banks side only affects directly the optimal deposit insurance limit

through its fiscal cost, although it can indirectly affect the level of gains from reducing bank

failures (in the numerator of (14)), the region in which deposit insurance is paid (in the

denominator of (14)) and the value attached to a dollar in the different states (captured in

15This logic is similar to classic characterizations of optimal taxes. For instance, the demand elasticities in optimal

Ramsey commodity taxes are a function of demand elasticities, which are endogenous to the level of taxes — see

Atkinson and Stiglitz (1980).
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depositors marginal utility). An interesting benchmark is χ = 0. In that case, because ∂T2
∂R1

= 0,

the term associated with fiscal externality goes away, so any change in banks’ behavior caused

by varying the level of δ exclusively affect caused by the change in behavior of banks goes away.

Remark 2. (Diamond and Dybvig (1983) revisited) When deposit insurance involves no

payments in equilibrium, the optimal policy fully insures deposits. In an environment

without aggregate risk, Diamond and Dybvig (1983) show that it is optimal to provide unlimited

deposit insurance to avoid the bank failure equilibrium.16 In their model, unlimited deposit

insurance eliminates bank failures altogether but, more importantly, deposit insurance never has

to be paid in equilibrium. We can intuitively understand their results by looking at proposition

1: because public funds are never raised to pay for deposit insurance in equilibrium, the second

line in equation (12) is zero, since q = 0, but the first line will be positive at some value, which

implies that the optimal level of insurance is the highest possible one.

Remark 3. Deposit insurance may become self financing even when it has to be paid in some

states. This occurs when (1 + κ) χρ2 (s) > 1. The left hand side of this expression captures

the benefit of leaving an extra dollar of deposits inside a bank in a bank failure situation. It

involves the fiscal savings 1 + κ, the cost of liquidation χ and, crucially, the return on assets

ρ2 (s). When ρ2 (s) is sufficiently large, we capture the possibility that keeping a dollar inside the

bank and not liquidating its projects turns out to generate positive returns for the government.

This term captures the extra gain from avoiding bank failures in situations in which banks are

illiquid but are able to yield positive returns if their investments are not liquidated. When

(1 + κ) χρ2 (s) < 1, this term corresponds to the extra resource cost caused by deposit insurance

by increasing the level of deposits in insolvent banks which ought to be liquidated.

Remark 4. Small levels of deposit insurance decrease welfare. Formally, we show that

dW
dδ

∣∣∣∣
δ=0

< 0

Intuitively, low levels of deposit insurance are ineffective to prevent bank failures at all.

However, when a bank fails, the government incurs the fiscal cost associated with paying for

deposit insurance. Only when the deposit insurance limit is sufficiently large, the benefits from

insuring deposits materialize. This result shows that the planning problem — illustrated in

figure 5, and described in more detail in the numerical example in the appendix — suffers from

a very specific form of non-convexity.

Figure 5 illustrates how social welfare varies with the level of deposit insurance. The value

that maximizes W (δ) is δ∗, which we have characterized in equation (14). See the appendix for

16More precisely, Diamond and Dybvig (1983) propose two solutions to avoid costly bank runs: suspension of

convertibility and deposit insurance. We are exclusively focusing on the role of deposit insurance.
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a numerical example.17

0

W (δ)

δδ∗ D0R11
1− 1

ρ2(s)

r1D0

1−λ

Figure 5: Social welfare W (δ)

Finally, although we emphasize the formula for δ∗ because of its simplicity, our

characterization of dW
dδ might be more relevant in practical terms. Taking into account the

possible non-convexity in social welfare that we have just discussed, equation (12) provides

in general a simple test for whether it is optimal to increase or decrease the level of deposit

insurance. Although it is derived for marginal changes, it is easy to evaluate the change in

welfare caused by any discrete jump in the level of deposit insurance by integrating over the

values of dW
dδ , using the fundamental theorem of calculus. Formally, when δ moves from δ0 to δ1,

we can write the welfare change as

W (δ1)−W (δ0) =

ˆ δ1

δ0

dW
dδ

(
δ̃
)

dδ̃,

where dW
dδ (·) is determined in proposition 1.

3.2 Ex-ante corrective policies

Up to now, we have assumed that banks can freely choose the deposit rate that they offer to their

depositors. However, it is natural to allow the policymaker to jointly determine the optimal

level of deposit insurance along with a set of ex-ante policies that modify the behavior of banks

at date 0. It should be obvious that allowing the deposit insurance authority to affect the ex-

ante behavior of depositors must improve welfare. We first characterize the set of constrained

17It is not easy to compare the values of W (0) and W (∞), so it is not possible in general to easily rank systems

with full coverage of deposits versus those without deposit insurance.
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efficient policies and then discuss possible decentralizations, for instance, imposing deposit rate

ceilings or setting a deposit insurance premium.

The planner now chooses jointly the level of δ∗ and the deposit rate offered to households.

The optimal choice of R1 is again characterized by the solution to ∂J
∂R1

= 0, with the caveat

that now the planner fully internalizes the effect of changing R1 on the required level of fiscal

revenues T2R, that is, dC2R
dR1

substitutes ∂C̃2R
∂R1

in equation (10). This policy is akin to regulating the

deposit rate offered by banks covered by deposit insurance guarantees. Deposit rate regulation

has been commonly used in practice, in particular before the financial deregulation wave that

starts in the 1980’s.

We can then characterize the level of δ∗ as follows.

Proposition 3. (Optimal deposit insurance with ex-ante corrective policies) a) When the planner
can control the deposit rate offered by banks, the optimal level of deposit insurance δ∗ is characterized by

δ∗ =
ε

q
δ (U (C2R (s∗))−U (C2N (s∗)))

qER [U′ (C2R (s)) (κ + (1− (1 + κ) χρ2 (s)) I1)]
, (15)

b) The optimal corrective policy modifies the optimal choice of deposit rates by banks introducing a wedge
in their deposit rate decision given by

τR1 ≡ qER

[
(1− λ)U′ (C2R)

∂T2

∂R1

]
(16)

When compared to proposition 2, the optimal deposit insurance formula does not contain

the fiscal externality term. By introducing a second instrument, only the marginal cost of

public funds, corrected by the liquidation wedge, matter to determine δ∗. The optimal ex-ante

policy forces banks to internalize how the choice of deposit rates affects the level of available

resources in case of bank failure. To provide further intuition, we show in the appendix that

(1− λ) ∂T2
∂R1

= (1 + κ) χρ2 (s) D0I1 ≥ 0. Hence, we can write the wedge on the choice of deposit

rates as

τR1 ≡ (1 + κ) χqER
[
U′ (C2R) ρ2 (s) D0I1

]

Intuitively, banks should internalize that a higher deposit rate entails the need to liquidate a

higher number of investments to pay for the deposits of early types, which means that fewer

resources are available in bank failure states. The marginal loss of resources is precisely given

by ρ2 (s) D0, valued at the marginal utility of late depositors U′ (C2R). Naturally, this marginal

loss only materializes in those states in which there are some funds left.

It is worth emphasizing that when the recovery rate banks investments is zero, that is

when χ = 0, the private choice of R1 and the one chosen by the planner fully coincide: in

that case, ∂T2
∂R1

= 0. Having access to ex-ante corrective instruments is irrelevant in that case.

Intuitively, the only component of social welfare non-internalized by banks depends on the
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level of funds available in bank failure states, which happen to be zero when all proceeds from

banks’ investment are lost.

In general, the implementation of the optimal ex-ante corrective policy is not unique,

although in this particular case a single instrument affecting the choice of deposit rate is

sufficient. Because the funds used to pay for deposit insurance are raised through distortionary

taxation, any Pigovian corrective policy in which the deposit insurance authority raises revenue

may generate a “double-dividend”.18 That is, a policy that corrects the ex-ante behavior of banks

at the same time that reduces the need for raising fiscal revenue when required can improve

welfare in two different margins. This argument provides support for an implementation of the

optimal corrective policy through a deposit insurance fund financed with a deposit insurance

premia, provided that the returns of those funds are comparable to return of banks. In general,

our analysis highlights the distinction between the corrective role of ex-ante policies versus its

revenue raising role. This is an argument often blurred in previous discussions of these issues.

In the next section, we show how our framework has sharp predictions for the optimal deposit

insurance premium in a more general model.

Finally, note that we have characterized two extreme situations. In one, there is no ex-ante

regulation, so banks choose freely their deposit rate. In another one, there is perfectly targeted

regulation. Any restriction on the set of feasible instruments available to the policymaker

— which may arise from informational frictions about banks characteristics, from which we

abstract in this paper — should deliver an intermediate outcome.

4 Extensions

The basic framework in which we derive the main insights of the paper contains a number

of restrictions. The goal of this section is to show that our results are robust to multiple natural

generalizations. To ease the exposition, we study every extension separately, omitting regularity

conditions. We focus on the characterization of the optimal level of deposit insurance, relegating

the characterization of marginal changes in the level of deposit insurance to the appendix.

4.1 General portfolio and investment decisions

In our basic framework, neither depositors nor banks had portfolio decisions. We now relax

that assumption and show that the main characterization and the insights from the basic model

remain robust.

On the one hand, depositors continue to be ex-ante identical and deposit a fixed amount D0

18See Goulder (1995) for a discussion of classic double-dividend arguments in the context of environmental

regulation.
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of resources. However, now they have a consumption-savings decision at date 0 and a portfolio

decision among K securities. Depositors have access to k = 1, 2, . . . , K assets, with returns ρ1k (s)
at date 1 in state s for early depositors and returns ρ2k (s) at date 2 in state s for late depositors.

Hence, the resources of early and late depositors are respectively given by Y1 (s) = ∑k ρ1k (s) yk

and Y2 (s) = ∑k ρ2k (s) yk. The budget constraint of depositors at date 0 is given by

∑
k

yk + D0 + C0 = Y0, (17)

where Y0, which denotes the initial wealth of depositors, and D0 are primitives of the model.

Subject to equation (17), the ex-ante utility of depositors now corresponds to

max
yk,D1i(s)

U (C0) + Es [λU (C1i (s)) + (1− λ)U (C2i (s))]

On the other hand, banks have access to j = 1, 2, . . . , J investment opportunities, which offer

a return ρ2j (s) at date 2 and can be liquidated at date 1 receiving a one-for-one return. Hence, at

date 0, banks must choose weights ψj for every investment opportunity such that ∑j ψj = 1. We

assume that banks liquidate an equal fraction ϕ of every type of investment at date 1. This is a

particularly tractable formulation to introduce multiple investment opportunities. Our results

naturally extend to the case in which different investments have different liquidation rates at

date 1 and banks have the choice of liquidating different investments in different proportions.

Given our assumptions, we show that the level of available funds at date 2 — the counterpart

to equation (3) in our basic framework — is given by

∑
j

ρ2j (s)ψj

(
D1 (s)−

r1D0

1− λ

)
, (18)

where the derivation of (18) used the fact that ϕ = ∆(s)
∑ ψjD0

= ∆(s)
D0

. Given date 0 choices, the

characterization of the equilibrium remains identical, with δ∗ now given by δ∗ = 1
1− 1

∑j ρ2j(s)ψj

r1D0
1−λ .

The level of funds to be raised in a bank failure equilibrium, which is relevant for the

determination of the optimal policy, is now given by

T2
(
s, δ, R1, D0, ψj

)
= (1 + κ)

[
min {δ, D0R1} −∑

j
ρ2j (s)ψj

(
min {δ, D0R1} −

r1D0

1− λ

)]

We characterize in the appendix the optimal choices of yk and ψj by depositors and banks and

focus directly on the optimal policy results.

Proposition 4. (Optimal DI with general portfolio and investment decisions) a) The optimal
level of deposit insurance δ∗, without ex-ante regulation, is characterized by

δ∗ =
ε

q
δ (U (C2R (s∗))−U (C2N (s∗)))

qER

[
U′ (C2R (s))

(
κ + (1− (1 + κ) χρ2 (s)) I1 +

∂T2
∂R1

dR1
dδ + ∑j

∂T2
∂ψj

dψj
dδ

)] ,
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where ER [·] stands for a conditional expectation over bank failure states and ε
q
δ = ∂q(δ)

∂ log δ denotes the
change in the likelihood of bank failure induced by a one percent change in the level of deposit insurance.

b) The optimal level of deposit insurance δ∗, when the policymaker has access to ex-ante regulation, is
characterized by

δ∗ =
ε

q
δ (U (C2R (s∗))−U (C2N (s∗)))

qER [U′ (C2R (s)) (κ + (1− (1 + κ) χρ2 (s)) I1)]
(19)

This expression is identical to the one in proposition 4.

Proposition 4 is a natural extension to our results in the more stylized model. Importantly, it

shows that introducing a consumption-savings and portfolio choices for depositors does not

modify the set of sufficient statistics already identified. However, allowing banks to make

investment choices introduces a new term into the optimal policy formula. The new fiscal

externality term, which captures the direct effects of banks behavioral responses, is now given

by
∂T2

∂R1

dR1

dδ︸ ︷︷ ︸
Liability-side regulation

+ ∑
j

∂T2

∂ψj

dψj

dδ
︸ ︷︷ ︸

Asset-side regulation

As above, we expect ∂T2
∂R1

dR1
dδ > 0, making more desirable a low level of deposit insurance.

However, at this level of generality it is impossible to individually sign the terms corresponding

to ∂T2
∂ψj

dψj
dδ . We could expect the sum all these terms to be negative, since banks have an incentive

to take more risks in those assets which pay more in no failure states. However, previous

research has shown that the risk taking behavior of banks is sensitive to the details of the market

environment; see, for instance, Boyd and De Nicolo (2005) and Martinez-Miera and Repullo

(2010) on the importance of bank’s franchise value. A full analysis of banks risk taking behavior

is tangential to our main question and outside the scope of this paper.

In this more general environment, both liability side regulation, controlling the deposit rate

offered by banks, and asset side regulations, controlling the investment portfolio of banks are

in general needed to maximize social welfare when ex-ante policies are feasible. The optimal

corrective policy introduces wedges on banks choices given by

τR1 ≡ qER

[
(1− λ)U′ (C2R)

∂T2

∂R1

]
and τψj ≡ qER

[
(1− λ)U′ (C2R)

∂T2

∂ψj

]

As discussed above, restrictions on the set of ex-ante instruments available to the planner

deliver intermediate outcomes between the two extremes analyzed here. These formulas

provide direct guidance to how to set ex-ante policies to correct the ex-ante behavioral

distortions caused by deposit insurance.

Finally, note that it is never optimal for banks to allocate resources to projects with negative

net present values, because they act on behalf of depositors. Any distortion along this margin
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would also require ex-ante regulation. Therefore, more generally, as long as any other ex-ante

welfare relevant friction exists, but it can be addressed through ex-ante corrective regulation, an

equation like (19) will characterize δ∗.

4.2 Alternative equilibrium selection mechanisms

In the basic framework, we assume that depositors coordinate following an exogenous sunspot.

We now show that varying the information structure and the equilibrium selection procedure

does not change the sufficient statistics we identify. We adopt a global game structure in which

late depositors observe at date 1 an arbitrarily precise private signal about the return of the

investment by banks ρ2 (s) before deciding D1i (s). With that information structure, Goldstein

and Pauzner (2005) show, in a model which essentially corresponds to the ours when δ = 0,

that there exists a unique equilibrium in threshold strategies in which depositors withdraw

their deposits when they receive a sufficiently low signal but leave their deposits in the bank

otherwise.

Since our goal in this paper is to show the robustness of our optimal policy characterization

and to directly use the set of sufficient statistics that we identify, we take the outcome of a global

game as a primitive. In particular, we take as a prediction of the global game that there exists a

threshold sG (δ, R1) such that when s ≤ sG (δ, R1) there is a bank failure with certainty but when

s > sG (δ, R1), no failure occurs. The threshold has the following properties

∂sG

∂R1
≥ 0 and

∂sG

∂δ
≤ 0

Goldstein and Pauzner (2005) formally show that ∂sG

∂R1
≥ 0 and we work under the assumption

that ∂sG

∂δ ≤ 0.19 In fact, any model of behavior which generates a threshold with these properties,

not necessarily a global game, makes our result valid.

Therefore, given the behavior of depositors at date 1, the deposit rate offered by banks at

date 0 is the outcome of the maximization of

J (R1; δ) = λU (R1D0 + Y1) + (1− λ)

[ ´ sG(δ,R1)
s U (C2R (s, δ, R1)) dF (s)

+
´ s

sG(δ,R1)
U (C2N (s, R1)) dF (s)

]

In this model, the probability of a bank failure happening is given by F
(
sG) and C2R (s, δ, R1)

denotes the average per capita consumption when a bank failure occurs. Under these

assumptions, we show that all our insights regarding the optimal policy formulas go through.

Proposition 5. (Optimal DI with an alternative equilibrium selection) a) The optimal level of

19Allen et al. (2014) derive this exact comparative static in a model with general government guarantees.
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deposit insurance δ∗ is characterized by

δ∗ =
ε

q
δ

(
U
(
C2R

(
sG))−U

(
C2N

(
sG)))

qER

[
U′ (C2R (s))

(
κ + (1− (1 + κ) χρ2 (s)) I1 +

∂T2
∂R1

dR1
dδ

)] , (20)

where ER [·] stands for a conditional expectation over bank failure states and, as defined above, q denotes
the unconditional probability of a bank failure happening, ε

q
δ =

∂q(δ)
∂ log(δ) denotes the change in the likelihood

of bank failure induced by a percent change in the level of deposit insurance and I1 = I
(

δ ≥ r1D0
1−λ

)
.

b) The optimal level of deposit insurance δ∗, when the policymaker has access to ex-ante regulation, is
characterized by

δ∗ =
ε

q
δ

(
U
(
C2R

(
sG))−U

(
C2N

(
sG)))

qER [U′ (C2R (s)) (κ + (1− (1 + κ) χρ2 (s)) I1)]

This expression is identical to the one in proposition 4.

The particular information structure assumed and how it affects the equilibrium selection

only affects the level of δ∗ through the sufficient statistics we identify in this paper. In particular,

the change in likelihood of a bank failure ε
q
δ will be directly affected by the assumptions on the

informational structure of the economy and, to make positive predictions, it is desirable to have

a model in which the probability of a bank failure is fully endogenous, as Allen et al. (2014).

However, the main takeaway of this extension and an important result of our paper is that

the optimal formulas we characterize are general and independent of the specific details of the

information structure of the economy.20

4.3 Aggregate spillovers

So far, because bank decisions have not affected aggregate variables, our analysis, as in Diamond

and Dybvig (1983), can be defined as a microprudential. When the decisions made by banks

affect aggregate variables, for instance asset prices, further exacerbating the possibility of a bank

failure, the optimal deposit insurance formula may incorporate a macroprudential correction.

These general equilibrium effects arise in models in which the aggregate consequences of

decentralized choices directly exacerbate coordination failures. See, for instance, Ramcharan

and Rajan (2014) for an empirical analysis or Parlatore (2014) for a theoretical application of

similar forces in a model of money market funds.

We now assume that, given a level of aggregate withdrawals ∆, banks must liquidate a

proportion θ
(
∆
)
> 1 of their investments. We assume that θ (·) is always greater than unity and

well-behaved and it captures the possibility of illiquidity in financial markets when unwinding

banks’ investment opportunities. We model aggregate linkages in the simplest way, but there

20Given that we will argue that ε
q
δ is hard to measure directly, using some of the structure imposed by a particular

model may be a fruitful approach.
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is scope for richer modeling of interbank markets as in, for instance, Freixas, Martin and Skeie

(2011).

Hence, the level of resources available to the depositors of a given bank with individual

withdrawals ∆ (s), when the level of aggregate withdrawals is ∆ (s), is given by

ρ2
(

D0 − θ
(
∆ (s)

)
∆ (s)

)

1− λ
= ρ2

(
θ
(
∆ (s)

)
D1 (s) +

((
1− θ

(
∆ (s)

))
R1 − r1

)
D0

1− λ

)
(21)

Equation (21) is a generalization of equation (3), when θ (·) > 1, capturing that the unit price of

liquidating investments is increasing in the aggregate level of withdrawals. Following the same

logic used to solve the basic model, we can define thresholds ŝ and s∗, which now have ∆ as a

new argument. Each individual bank chooses R1 optimally and the equilibrium value of R1 is

determined by the solution to ∂J
∂R1

∣∣∣
T2,∆

= 0, imposing that ∆ = ∆.

When the regulator sets δ optimally, he takes into account the effects of banks individual

banks choices on the aggregate level of withdrawals ∆. We assume that the θ (·)− 1 additional

units lost by banks is merely a transfer to a set of unmodeled agents that purchase those assets.

Under these assumptions, we show that the optimal level of δ∗ incorporates a macroprudential

correction when ex-ante policy is not available. As it should be clear by now, an equation like

(15) characterizes the optimal level of deposit insurance when ex-ante corrective policies are

available.

Proposition 6. (Optimal DI with aggregate spillovers) a) The optimal level of deposit insurance δ∗,
without ex-ante regulation, is characterized by

δ∗ =
ε

q
δ (U (C2R (s∗))−U (C2N (s∗))) + (ς1 + ς2)

dR1
dδ

qER

[
U′ (C2R (s))

(
κ + (1− (1 + κ) χρ2 (s)) I1 +

∂T2
∂R1

dR1
dδ

)] , (22)

where ς1 and ς2 are defined as ς1 ≡ (1− π) [U (C2R (ŝ1))−U (C2N (ŝ1))]
(

∂ŝ1
∂R1
− ∂ŝ0

∂R1

)
f (ŝ1) and

ς2 ≡ π [U (C2R (s∗1))−U (C2N (s∗1))]
(

∂s∗1
∂R1
− ∂s∗0

∂R1

)
f (s∗1), ER [·] stands for a conditional expectation

over bank failure states and ε
q
δ =

∂q(δ)
∂ log δ denotes the change in the likelihood of a bank failure induced by a

one percent change in the level of deposit insurance.
b) The optimal level of deposit insurance δ∗, when the policymaker has access to ex-ante regulation, is

characterized by

δ∗ =
ε

q
δ (U (C2R (s∗))−U (C2N (s∗)))

qER [U′ (C2R (s)) (κ + (1− (1 + κ) χρ2 (s)) I1)]

This expression is identical to the one in proposition 6.

The only new term in equation (22) is (ς1 + ς2)
dR1
dδ in the numerator, which tilts the optimal

deposit insurance level to induce banks to internalize the aggregate spillovers they cause in

other banks when offering high deposit rates, which make bank failures more likely. However,
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an important takeaway of our analysis is that ex-ante regulation is able to target directly the

wedges caused by aggregate spillovers. In this case, the ex-ante regulation faced by banks partly

addresses both the fiscal externality that emerges from the presence of deposit insurance and

the externality induced by the aggregate spillovers caused by competitive deposit rate setting.

Similar formulas would apply when banks have general portfolio decisions, as in our analysis

earlier in this section.

4.4 Heterogeneous depositors

In the basic framework, we assume that all depositors are ex-ante identical. However, in

practice, the level of deposit holdings varies significantly in the cross section of depositors. We

now introduce heterogeneity on the level of deposit holdings by assuming that the initial level

of deposits D0i is cross-sectionally distributed according to a cdf G (·) and support
[
0, D

]
. We

allow for the possibility that depositors may have different preferences Ui (·). Now we use the

index i to denote a given type of depositor and restrict our attention to equilibria in which all

type i depositors adopt symmetric strategies. A fraction λ of depositors becomes an early type,

regardless of the initial level of deposits.

Hence, depositors’ ex-ante utility Vi is given by

Vi = Es [λUi (C1i (s)) + (1− λ)Ui (C2i (s))]

Banks set R1 competitively maximizing an average of depositors’ expected utilities — this is

the rate set by competitive banks under the veil of ignorance regarding the level of deposits

holdings. Formally, R1 is set as to solve

max
R1

ˆ
VidG (i)

As before, we define the amount of deposits withdrawn by type i depositors as

∆i (s) ≡ R1D0i − D1i (s) ,

and aggregate net withdrawals as

∆ (s) =
ˆ

∆i (s) di = R1

ˆ
D0idG (i)−

ˆ
D1idG (i) ,

The consumption of a given late depositor at date 2 in state s can be expressed as

C2i (s) =





α1 (s) (η∆1i (s) + min {D1i (s) , δ}) + (1− α1 (s))min {R1D0i, δ}+ Y2 (s)− T2 (s) , Failure at date 1

η∆1i (s) + min {D1i (s) , δ}+ α2R (s)max {D1i (s)− δ, 0}+ Y2 (s)− T2 (s) , Failure at date 2

η∆1i (s) + α2N (s) D1i (s) + Y2 (s)− T2 (s) , No Bank Failure
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Where the scalars α1 (s) ∈ [0, 1), α2R (s) ∈ [0, 1), and α2N (s) ≥ 1 represent equilibrium

objects that depend on the actions of other depositors through the level of available funds

ρ2 (s) (
´

D0idG (i)− ∆ (s)), defining three regions, as follows

if





ρ2 (s) (
´

D0idG (i)− ∆ (s)) < 0, Failure at date 1

0 ≤ ρ2 (s) (
´

D0idG (i)− ∆ (s)) <
´

D1i (s) dG (i) , Failure at date 2

ρ2 (s) (
´

D0idG (i)− ∆ (s)) ≥
´

D1i (s) dG (i) , No Bank Failure

As in the basic framework, it can be shown that there are two different types of candidates for

equilibrium. In one (no failure) equilibrium, depositors leave all their funds in the banks, so

D1i = R1D0i. In the other (failure) equilibrium, it is optimal for a given depositor to leave up to

the level of deposit insurance, that is, D1i (s) = min {δ, R1D0i}. In that case, we can denote the

aggregate level of deposits left in the bank by late depositors as Dδ
1

Dδ
1 ≡
ˆ

D1i (s) dG (i) = (1− λ)

(ˆ δ
R1

0
R1D0idG (i) + δ

ˆ D

δ
R1

dG (i)

)
(23)

As above, we can express the threshold between the failure and no failure regions as the

solution to ρ2 (s) (
´

D1i (s) dG (i)− r1
´

D0idG (i)) =
´

D1i (s) dG (i), given by

Dδ
1 =

1
1− 1

ρ2(s)

r1
´

D0idG (i)
1− λ

, (24)

where Dδ
1 is defined in equation (23). The solution to equation (24) in δ characterizes

δ∗ (s, R1), which shares the same properties as in the baseline model under natural regularity

conditions on G (·). The thresholds ŝ (R1) and s∗ (δ, R1) are characterized as before, which

leaves the expression for q (δ, R1) in equation (6) unchanged. The characterization of δ∗ is the

natural generalization of the baseline case, using cross sectional averages for depositor specific

variables.

Proposition 7. (Optimal DI with ex-ante heterogeneous depositors) a) The optimal level of
deposit insurance δ∗, without ex-ante regulation, is characterized by

δ∗ =
ε

q
δ

´ [
U
(
CR

2i (s
∗)
)
−U

(
CN

2i (s
∗)
)]

dG (i)

qER

[´
U′
(
CR

2i
) ( ∂CR

2i
∂δ −

∂T2i
∂R1

dR1
dδ

)
dG (i)

] ,

where ER [·] stands for a conditional expectation over bank failure states and ε
q
δ = ∂q(δ)

∂ log δ denotes the
change in the likelihood of bank failure induced by a one percent change in the level of deposit insurance.

The introduction of cross-sectional heterogeneity in the level of deposits changes by little the

characterization of the equilibrium and it simply extends the optimal DI formula to account for

the welfare of heterogeneous depositors.
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5 Combining theory and measurement

The approach developed in this paper allows us to link the theoretical tradeoffs that determine

the optimal deposit insurance policy to a small number of observables. To show the applicability

of our results in practice, we now study the quantitative implications of our results for the

optimal coverage level in practice. We use a yearly calibration.

A workable approximation As a benchmark, and partly because it requires a minimum

amount of information, we exclusively focus on understanding the implications of our model

for the optimal level of deposit insurance when the policymaker has access to ex-ante corrective

instruments. To further sharpen our analysis, we use the following approximation.

Proposition 8. (An approximation for δ∗) The optimal level of deposit insurance, can be approximated
by

δ∗ ≈ ε
q
δ (C2N (s∗)− C2R (s∗))

q (1 + κ)ER

[
U′(C2R(s))
U′(C2R(s∗))

(1− χρ2 (s))
] , (25)

where q is probability of bank failure, κ is the net marginal cost of public funds, ε
q
δ is the partial

semielasticity of the probability of bank failure with respect to the deposit insurance limit and C2R − C2N

is the drop in depositors consumption caused by a bank failure, and ER

[
U′(C2R(s))
U′(C2R(s∗))

(1− χρ2 (s))
]

denotes the appropriately discounted net marginal return of leaving a dollar of deposits inside a bank
whenever deposit insurance has to actually be paid.

This simple approximation, which allows us to write δ∗ as function of five terms, replaces

the marginal benefit in welfare terms of reducing bank failures, given by U (C2R (s∗)) −
U (C2N (s∗)), for its first-order approximation, which allows us to make comparisons in

marginal terms. It also assumes that δ is large enough at the optimum so that δ > r1D0
1−λ is

verified.

Calibration Three of the variables that appear in equation (25) have clear direct counterparts.

They are given in table 1. First, we use average yearly probability of bank failure from 1934

until 2014 using FDIC data, which is 0.436% per year. Second, there are a number of classic

estimates of the net marginal cost of public funds, which oscillate between 9% and 14% — see,

for instance, Hendren (2013) for a recent discussion of reasonable estimates of κ. We take an

average value of 11%. Third, we take as representative the average balance per deposit account

from the recent IndyMac failure as a representative bank — see Iyer and Puri (2012). According

to the Office of Thrift Supervision, their average balance per deposit account at closure was of

approximately of $70, 000. Using a recovery rate of 75%, consistent with FDIC data, we use a

value of C2R (s∗)− C2N (s∗) ≈ −$17, 500 for the average deposit loss at the marginal state s∗.21

21For reference, the aggregate level of deposits is 12 trillion, the number of commercial banks (with a steep

decreasing trend) is 5, 000 and US population older than 18 is approximately 234 million people. A back-of-the-
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Variable Description Value

q Probability of bank failure 0.436%

κ Net marginal cost of public funds 11%

C2R − C2N Consumption drop induced by bank failure −17, 500

ER

[
U′(C2R(s))
U′(C2R(s∗))

(1− χρ2 (s))
]

Priced social gain from keeping resources inside banks 1

Table 1: Calibrated variables

Finding a value for the two remaining variables, ER

[
U′(C2R(s))
U′(C2R(s∗))

(1− χρ2 (s))
]

and ε
q
δ, is less

straightforward. First, note that U′(C2R(s))
U′(C2R(s∗))

corresponds to the relative valuation of a dollar in

state s relative to state s∗, which is the marginal state in which bank failures cease to occur.

Using a CRRA utility assumption, we can write this term as
(

C2R(s)
C2R(s∗)

)−γ
, where we know that

C2R(s)
C2R(s∗)

< 1. Unsurprisingly, this term is sensitive to assumptions on the risk aversion coefficient

γ. Using the accepted value in finance of γ = 10 and assuming a consumption drop of 15%, we

find that depositors roughly value a 25% more having a dollar in bank failure states relative to

the marginal state s∗. The term 1− χρ2 (s) is a function of the average return on assets for banks,

of approximately ρ2 − 1 ≈ 1% (from FRED), and a recovery rate of χ = 75%, to be consistent

with our assumption above. Hence, combining both figures, it is reasonable to assume that the

term ER

[
U′(C2R(s))
U′(C2R(s∗))

(1− χρ2 (s))
]

takes approximately a unit value.

Finally, the main challenge of this calibration is to find appropriate values for ε
q
δ, the

sensitivity of the likelihood of having to actually use the deposit insurance guarantee with

respect to the coverage level. Conceptually, there are two ways of recovering this value. First, a

direct approach is to measure ε
q
δ directly. This can be done by running a regression of the type:22

Y = β0 log (δ) + β1X + u,

where Y is an indicator for actual FDIC assistance events and X are control variables. The

estimate of the marginal effect of δ, which exactly corresponds to β0 in this case, recovers

ε
q
δ. A second alternative approach is to run a similar regression using inferred values for the

likelihoods of bank failure as dependent variable, proxied by credit risk premia or CDS values.

It is challenging for both approaches to overcome endogeneity problems.

Recovering implied elasticities An alternative way of exploiting our results is to use equation

(25) to recover the implied bank failure sensitivity ε
q
δ using the observed values of deposit

insurance coverage. This approach assumes that deposit insurance limits are set following the

logic of our model. We carry out two simple policy experiments trying to rationalize the change

in deposit insurance coverage observed in 2008.

envelope calculation finds that the representative depositor should have $51, 000 dollars in deposits.
22We are using a linear probability model to ease the illustration of the results. More sophisticated binary

dependent variable models (e.g., Probit or Logit) can be more appropriate in practice.
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First, using the long run averages of table 1, we use equation (25) to recover the implied

values of ε
q
δ before and after the last policy change, that is δ = 100, 000 and δ = 250, 000. This

exercise yields

if δ = 100, 000, ε
q
δ ≈ 0.0277

if δ = 250, 000, ε
q
δ ≈ 0.0691

Therefore, a 10% increase in δ (equal to 10, 000 or 25, 000 respectively) is associated with a

reduction in the likelihood of failure q of 0.277% or 0.691% respectively. The values that we

recover are reasonable, given that the variable q has a mean of 0.4% with a maximum of 4.2%.

A second exercise can allow us to rationalize the policy change observed in 2008. Assuming

that q was at its historical mean before 2008, that there was a sudden exogenous change to the

probability of bank failure at 2008 and that after the change in policy, the likelihood of bank

failure remains at its historical mean, we can solve for the implied magnitude of the exogenous

jump in probability, which we denote by θ, by solving23

0.00436 = θ0.00436− 0.0484× 1.5⇒ θ ≈ 15

This value of θ implies that the expected likelihood of bank failure without intervention would

have increased fifteenfold up to 6.54%, a number that is approximately 50% higher than the

historical maximum. Several other exercises could help to rationalize the change in the level of

coverage, for instance, changes in the losses caused by a bank failure or changes in the fiscal

outlook. Looking forward, only precise measurement of the variables we identify in this paper

can provide a definite answer regarding the optimality of policy decisions.

Before concluding, we would like to qualify the validity of the quantitative conclusions of

this section. Even though our theoretical results, as in propositions 1 and 2 and in the extensions,

are exact and do not rely on approximations, when using them quantitatively we incur in two

types of approximation errors. First, when using the approximation developed in proposition

7, we might be distorting the curvature of preferences; this should not change much the results.

Second, and more importantly, when holding constant the variables used to calibrate δ∗, we

implicitly assume that they do not vary when δ changes; this can be a more important source

of error, mainly when we discuss large changes in δ. If we could recover flexible estimates of

all variables for all levels of δ, this would not be a concern but, as of today, that is unfeasible.

Otherwise, any practical use of an equation like (25) must take into consideration these errors.

23We use the average value of the elasticities before and after the policy change, that is, ε
q
δ =

0.0691+0.0277
2 = 0.0484.
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6 Conclusion

We have developed a theoretical characterization of the optimal level of deposit insurance that

applies to a wide variety of environments. Our model allows us to identify the set of variables

which have a first-order effect on welfare and that become sufficient statistics for assessing

policy changes. In that regard, we provide a step forward towards building a microfounded

theory of measurement for financial regulation.

Building on our framework, there are a number of avenues for further research. From

a theoretical perspective, allowing for a rich cross-section of depositors with different

characteristics or exploring alternative forms of competition among heterogeneous banks are

natural non-trivial extensions. Although perhaps the most promising implications of this paper

for future research come from the measurement perspective. Recovering robust, well-identified

and credible estimates in different contexts of the sufficient statistics we have identified in this

paper, in particular of ε
q
δ, has the potential to directly discipline future regulatory choices.
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Appendix
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Figure 6: Level of Deposit Insurance (1934-2014, measured in dollars of 2008)

Figure 6 plots the evolution level of deposit insurance measured in dollars of 2008 using a CPI

deflator.

Proofs: Section 2

Under the sustained convention that D1 (s) denotes the deposit level of late depositors, we can

write

D0 − ∆ (s) = D0 − R1D0 + (1− λ) D1 (s)

= −r1D0 + (1− λ) D1 (s) ,

which allows us to derive equation (3) in the text. We represent equation (3) in figure 7.

Whenever ρ2 (s) > 1, there exists a value of D1 (s) that defines a threshold between the failure

and no failure regions. It is given by the solution to ρ2(s)(D0−∆(s))
1−λ = D1 (s). When D1 (s) = δ,

the threshold characterizes δ∗ (s, R1).
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Date 2 funds

D1(s)

δ

0

ρ2(s) > 1

−ρ2(s)r1D0

1−λ

ρ2(s)(D0−∆(s))
1−λ = ρ2(s)

(
D1(s) − r1D0

1−λ

)

r1D0

1−λ
r1D0

1−λ + δ
ρ2(s)

D0 < ∆(s) 0 < ρ2(s)(D0−∆(s))
1−λ < δ ρ2(s)(D0−∆(s))

1−λ ≥ δ

R1D0

ρ2(s)D0(1−λR1)
1−λ

Figure 7: Date 2 funds for a given D1 (s) choice of late depositors in a symmetric equilibrium

Properties of δ∗ (s, R1)

We can define φ (s) ≡ 1
1− 1

ρ2(s)

1
1−λ , with ∂φ(s)

∂s < 0, given our assumptions on ρ2 (s) and λ. Hence

δ∗ (s, R1) = φ (s) r1D0

So
∂δ∗

∂s
=

∂φ (s)
∂s

r1D0 < 0 and
∂δ∗

∂R1
= φ (s) D0 > 0

Properties of ŝ (R1), s∗ (δ, R1) and q (δ, R1)

We can write min {δ, D0R1} = φ (s∗) r1D0 and R1 = φ (ŝ) r1. Hence

∂s∗

∂δ
=





1
∂φ
∂s r1D0

< 0, if δ < D0R1

0, if δ ≥ D0R1
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∂s∗

∂R1
=





−φ(s)
∂φ
∂s r1

> 0, if δ < D0R1

∂ŝ
∂R1

> 0, if δ ≥ D0R1

∂ŝ
∂R1

=
1− φ (s)

∂φ
∂s r1

> 0

Note that ds∗(δ,R1)
dδ = ∂s∗

∂δ + ∂s∗
∂R1

dR1
dδ .

We can write equation (6) as

q (δ, R1) = F (ŝ (R1)) + π [F (s∗ (δ, R1))− F (ŝ (R1))]

We can then show that

∂q
∂δ

= π f (s∗ (δ, R1))
∂s∗

∂δ
≤ 0

∂q
∂R1

= (1− π) f (ŝ (R1))
∂ŝ

∂R1
+ π f (s∗ (δ, R1))

∂s∗

∂R1
> 0,

using the results derived above that ∂s∗
∂R1

> 0 and ∂ŝ
∂R1

> 0.

Properties of C2R (s, δ, R1), C̃2R (s, δ, R1) and T2 (s, δ, R1)

In a failure equilibrium, in which D1i (s) = δ, we can write consumption before taxes as

C̃2R (s, δ, R1) = α1 (s, δ, R1) R1D0 +(1− α1 (s, δ, R1)) δ+Y2 (s) = δ+ α1 (s, δ, R1) (D0R1 − δ)+Y2 (s)

where α1 (s, δ, R1) = min
{

D0(1−λR1)
(1−λ)(R1D0−δ)

, 1
}

is the probability of being able to withdraw funds

given δ. Hence, we can write

C̃2R (s, δ, R1) =

[
δ +

D0 (1− λR1)

1− λ

]
(1− I1) + D0R1I1 + Y2 (s) ,

where I1 = I
[
δ ≥ r1D0

1−λ

]
. The amount of fiscal revenue needed is given by

T2 (s, δ, R1) = (1 + κ)

[
min {δ, D0R1} − χρ2 (s)

(
min {δ, D0R1} −

r1D0

1− λ

)
I1

]

It then follows, in the relevant interior case with δ < D0R1, after some algebra, that

C2R (s, δ, R1) =

[
δ +

D0 (1− λR1)

1− λ

]
(1− I1) +

[
D0R1 + (1 + κ) χρ2 (s)

(
δ− r1D0

1− λ

)]
I1 + Y2 (s)− (1 + κ) δ

=
D0 (1− λR1)

1− λ
+ ((1 + κ) χρ2 (s)− 1)

(
δ− r1D0

1− λ

)
I1 + Y2 (s)− κδ

We can thus derive the following comparative statics, which are important inputs for the

equilibrium characterizations

∂C̃2R

∂R1
=

[
− λ

1− λ
(1− I1) + I1

]
D0
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dC2N

dR1
= −ρ2 (s)

λ

1− λ
D0 < 0

∂T2

∂δ
= (1 + κ) [1− χρ2 (s) I1] I [δ < D0R1] R 0

∂T2

∂R1
= (1 + κ)

χρ2 (s) D0

1− λ
I1 ≥ 0

dC2R

dR1
=

[
− λ

1− λ
− (1 + κ) χρ2 (s)− 1

1− λ
I1

]
D0

∂C2R

∂δ
= −κ − (1− (1 + κ) χρ2 (s)) I1

Finally, note that we can write C2N (s)− C2R (s) as

C2N (s)− C2R (s) = (ρ2 (s)− 1)
D0 (1− λR1)

1− λ
− ((1 + κ) χρ2 (s)− 1)

(
min {δ, D0R1} −

r1D0

1− λ

)
I1 + κδ

C2N (s)− C2R (s) = (ρ2 (s)− 1)
[

D0 (1− λR1)

1− λ
−
(

δ− r1D0

1− λ

)
I1

]
− ((1 + κ) χ− 1) ρ2 (s)

(
δ− r1D0

1− λ

)
I1 + κδ

The first terms in the last equation is necessarily positive, since δ ≤ D0R1. Hence, a sufficient

condition for C2N (s) − C2R (s) > 0, ∀s is that χ < 1
1+κ , which necessarily holds, given our

assumptions.

Choice of R∗1 (δ) by banks

Zero profit competitive banks choose R1 to maximize, for a given level of deposit insurance
δ, equation (9) stated in the text, taking T2 as given. The first order condition for banks is

∂J
∂R1

∣∣∣
T2

= 0, given in equation (10) in the text, can be written as

∂J
∂R1

∣∣∣∣
T2

= λU′ (R1D0) D0 + (1− λ)

ˆ ŝ

s
U′ (C2R (s))

[
− λ

1− λ
(1− I1) + I1

]
D0dF (s) (26)

+ (1− λ)

ˆ s∗

ŝ


 πU′ (C2R (s))

[
− λ

1−λ (1− I1) + I1

]
D0

+ (1− π)U′ (C2N (s))
[
− λ

1−λ −
(1+κ)χρ2(s)−1

1−λ I1

]
D0


 dF (s)

+ (1− λ)

ˆ s

s∗
U′ (C2N (s))

[
− λ

1− λ
− (1 + κ) χρ2 (s)− 1

1− λ
I1

]
D0dF (s)

+ (1− λ) (1− π) [U (C2R (ŝ))−U (C2N (ŝ))]
∂ŝ

∂R1
f (ŝ)

+ (1− λ)π [U (C2R (s∗))−U (C2N (s∗))]
∂s∗

∂R1
f (s∗)

Intuitively, when the level of deposit D0 increases, the marginal terms are more important those

corresponding to the change of regime. It is clear that J (·) is differentiable almost everywhere,

so equation (26).

For the solution to ∂J
∂R1

∣∣∣
T2

= 0 to be an optimum, it must be that ∂J2(δ,R1)
∂R2

1
< 0 at that point.

As we can see in the numerical example in the appendix, the problem solved by banks is not
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globally convex. In general, there are no simple sufficient conditions for convexity. In practice,

the problem solved by banks is well-behaved for standard choices of utility and distributions.

The characterization of dR1
dδ is given by

dR1

dδ
=

∂2 J(δ,R1)
∂R1∂δ

− ∂J2(δ,R1)
∂R2

1

At an interior optimum, the denominator is necessarily negative, so the sign of dR1
dδ depends on

∂2 J(δ,R1)
∂R1∂δ , whose detailed derivation is available under request. From equation (26), it is easy to

see that there are no substitution effects associated with δ, only income effects, which operate

through C2R, and direct effects, which operate through s∗ and ∂s∗
∂R1

.

Proofs: Section 3

Proposition 1. (Marginal effect of varying δ on welfare)

We can write social welfare W (δ) in the following way

W (δ) = λU (R∗1 (δ) D0 + Y1) +

+ (1− λ)




´ ŝ(R∗1(δ))
s U (C2R (s, δ, R∗1 (δ))) dF (s)

+
´ s∗(δ,R∗1(δ))

ŝ(R∗1(δ))
(πU (C2R (s, δ, R∗1 (δ))) + (1− π)U (C2N (s, R∗1 (δ)))) dF (s)

+
´ s

s∗(δ,R∗1(δ))
U (C2N (s, R∗1 (δ))) dF (s)




Using the results just derived, we can write:

dW
dδ

= λU′ (R1 (δ) D0 + Y1) D0
dR1

dδ
+ (1− λ)

ˆ ŝ

s
U′ (C2R)

dC2R

dδ
dF (s)

+ (1− λ)

ˆ s∗

ŝ

(
πU′ (C2R)

dC2R

dδ
+ (1− π)U′ (C2N)

dC2N

dR1

dR1

dδ

)
dF (s)

+ (1− λ)

ˆ s

s∗
U′ (C2N)

dC2N

dR1

dR1

dδ
dF (s)

+ (1− λ)


 (1− π) [U (C2R (ŝ (R1)))−U (C2N (ŝ (R1)))]

∂ŝ(R1)
∂R1

dR1
dδ f (ŝ)

+π [U (C2R (s∗ (δ, R1)))−U (C2N (s∗ (δ, R1)))]
[

∂s∗(δ,R1)
∂R1

dR1
dδ + ∂s∗(δ,R1)

∂δ

]
f (s∗)




Using the fact that

dC2R

dδ
=

∂C2R

∂δ
+

∂C2R

∂R1

dR1

dδ
=

∂C2R

∂δ
+

(
∂C̃2R

∂R1
− ∂T2

∂R1

)
dR1

dδ
=

∂C̃2R

∂R1

dR1

dδ︸ ︷︷ ︸
Internalized

+
∂C2R

∂δ
− ∂T2

∂R1

dR1

dδ︸ ︷︷ ︸
Not internalized

combined with the optimality condition on the deposit rate offered by banks, we can write

dW
dδ

1− λ
=

´ ŝ
s U′ (C2R)

(
∂C2R

∂δ −
∂T2
∂R1

dR1
dδ

)
dF (s) + π

´ s∗
ŝ U′ (C2R)

(
∂C2R

∂δ −
∂T2
∂R1

dR1
dδ

)
dF (s)

+ [U (C2R (s∗ (δ, R1)))−U (C2N (s∗ (δ, R1)))]π
∂s∗(δ,R1)

∂δ f (s∗)
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To derive equation (12) in the text, we multiply and divide the first element of
dW
dδ

1−λ by the
probability of bank failure, defined in equation (6), to be able to define a condition expectation,
so we define ER [·] as

ER

[
U′ (C2R)

(
∂C2R

∂δ
− ∂T2

∂R1

dR1

dδ

)]
≡
´ ŝ

s U′ (C2R)
(

∂C2R
∂δ −

∂T2
∂R1

dR1
dδ

)
dF (s) +

´ s∗
ŝ U′ (C2R)

(
∂C2R

∂δ −
∂T2
∂R1

dR1
dδ

)
πdF (s)

q (δ, R1)

Using the fact that
∂q (δ)

∂δ
= π f (s∗ (δ, R1))

∂s∗ (δ, R1)

∂δ

As usual in normative exercises — see Atkinson and Stiglitz (1980) or Ljungqvist and Sargent

(2004) for detailed discussions in a number of different contexts, it is hard to guarantee the

convexity of the planning problem in general: there are no simple conditions on primitives that

guarantee the convexity of the planning problem. In practice, for natural parametrizations, as

the one presented in our in numerical section, W (δ) is well-behaved with an interior optimum,

after we account for the specific non-convexity discussed in our remarks.

For our remark, we need to argue that limδ→0+
dW
dδ < 0. Using the fact that limδ→0+

∂s∗(δ,R1)
∂δ =

0 and that limδ→0+ I1 = 0, we can write

lim
δ→0+

dW
dδ

= −qER
[
(1− λ)U′ (C2R (s))

]
κ < 0

Hence, as long as there is a fiscal cost of paying for deposit insurance, that is, κ > 0, social

welfare is decreasing when δ→ 0.

Proposition 2. (Optimal deposit insurance δ∗)

At an interior optimum, the optimal level of deposit insurance is given by dW
dδ = 0. Using

equation (12), we can write:

(U (C2R (s∗))−U (C2N (s∗)))
∂q (δ)

∂δ
δ

︸ ︷︷ ︸
≡ε

q
δ

1
δ
= qER

[
U′ (C2R (s))

(
κ + (1− (1 + κ) χρ2 (s)) I1 +

∂T2

∂R1

dR1

dδ

)]

And we can solve for δ∗ as

δ∗ =
ε

q
δ (U (C2R (s∗))−U (C2N (s∗)))

qER

[
U′ (C2R (s))

(
κ + (1− (1 + κ) χρ2 (s)) I1 +

∂T2
∂R1

dR1
dδ

)] ,

which corresponds to equation (14) in the text.
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Proposition 3. (Optimal deposit insurance with ex-ante corrective policies)

The planner’s optimality condition are given by ∂J
∂R1

= 0 and ∂J
∂δ = 0. Formally:

∂J
∂R1

= λU′ (R1D0) D0 + (1− λ)

ˆ ŝ

s
U′ (C2R (s))

∂C2R (s)
∂R1

dF (s) (27)

+ (1− λ)

[ˆ s∗

ŝ

(
πU′ (C2R (s)) ∂C2R(s)

∂R1

+ (1− π)U′ (C2N (s)) dC2N(s)
dR1

)
dF (s) +

ˆ s

s∗
U′ (C2N (s))

dC2N (s)
dR1

dF (s)

]

+ (1− λ) (1− π) [U (C2R (ŝ))−U (C2N (ŝ))]
∂ŝ

∂R1
f (ŝ)

+ (1− λ)π [U (C2R (s∗))−U (C2N (s∗))]
∂s∗

∂R1
f (s∗) ,

and
∂W
∂δ

1− λ
=

´ ŝ
s U′ (C2R)

∂C2R
∂δ dF (s) + π

´ s∗
ŝ U′ (C2R)

∂C2R
∂δ dF (s)

+ [U (C2R (s∗ (δ, R1)))−U (C2N (s∗ (δ, R1)))]π
∂s∗(δ,R1)

∂δ f (s∗)

Following identical steps to those proving proposition 2, we find equation (15). By comparing

equation (26) with (27) and taking the difference, we find the wedge τR1 in equation (16) in the

text

Proofs: Section 4

Proposition 4. (Optimal DI with general portfolio and investment decisions)

The resources at date 2 for a bank are given by ∑j ρ2j (s)
(
ψjD0 − ϕψjD0

)
. But the fraction of

assets to liquidate is given by the level of withdrawals ∆ (s). Hence, ∆ (s) = ϕ ∑ ψjD0 = ϕD0.

Hence, we can write

∑
j

ρ2j (s)
(
ψjD0 − ϕψjD0

)
= ∑

j
ρ2j (s)ψj (D0 − ∆ (s))

= ∑
j

ρ2j (s)ψj

(
D1 −

r1D0

1− λ

)

Where we use the fact that ϕ = ∆(s)
∑ ψjD0

= ∆(s)
D0

. The indifference point in this case is given by

δ = ∑j ρ2j (s)ψj

(
δ− r1D0

1−λ

)
, so we can write δ∗ as a function of R1 and ψj as

δ∗ =
1

1− 1
∑j ρ2j(s)ψj

r1D0

1− λ

We derive our results in the most general form. We define consumption for early and late

depositors as

C1 (s, R1, yk) = R1D0 + ∑
k

ρ1k (s) yk
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C2N
(
s, δ, R1, yk, ψj

)
=

∑j ρ2j (s)ψjD0 (1− λR1)

1− λ
+ ∑

k
ρ2k (s) yk

C2R
(
s, δ, R1, yk, ψj

)
= C̃2R (s, δ, R1, D0, yk)− T2

(
s, δ, R1, D0,

{
ψj
})

,

with C̃2R given by

C̃2R (s, δ, R1, yk) =

[
δ +

D0 (1− λR1)

1− λ

]
(1− I1) + D0R1I1 + ∑

k
ρ2k (s) yk,

and T2
(
s, δ, R1, ψj

)
defined in the text.

Hence, at date 0 depositors ex-ante welfare, which determines the choices of R1, ψj and yk is

given by

J
(

R1, yk, ψj; δ
)
= U

(
Y0 − D0 −∑

k
yk

)
+ λ

ˆ s

s
U (C1 (s)) dF (s) + (1− λ)

ˆ ŝ

s
U (C2R (s)) dF (s)

+ (1− λ)

[ˆ s∗

ŝ
(πU (C2R (s)) + (1− π)U (C2N (s))) dF (s) +

ˆ s

s∗
U (C2N (s)) dF (s)

]

Although we do not make it explicit, note that ŝ
(

R1, ψj
)

now depends on D0 and ψj. The same

occurs with s∗
(
δ, R1, ψj

)
. The optimality condition that determines the choice of R1 is identical

to the one in our basic framework. We can thus characterize the new optimal date 0 choices by

∂J
∂yk

∣∣∣∣
T2

= 0, ∀k,
∂J
∂ψj

∣∣∣∣∣
T2

= ν, ∀j, and ∑
j

ψj = 1

where

∂J
∂yk

∣∣∣∣
T2

= −U′ (C0) + λ

ˆ s

s
U′ (C1 (s)) ρ1kdF (s) + (1− λ)

ˆ ŝ

s
U′ (C2R (s)) ρ2kdF (s)

+ (1− λ)

ˆ s∗

ŝ

(
πU′ (C2R (s)) ρ2k + (1− π)U′ (C2N (s)) ρ2k

)
dF (s)

+ (1− λ)

ˆ s

s∗
U′ (C2N (s)) ρ2kdF (s)

and

∂J
∂ψj

∣∣∣∣∣
T2

= D0 (1− λR1)

[
(1− π)

ˆ s∗

ŝ
U′ (C2N (s)) ρ2j (s) dF (s) +

ˆ s

s∗
U′ (C2N (s)) ρ2j (s) dF (s)

]

+ (1− π) [U (C2R (ŝ))−U (C2N (ŝ))]
∂ŝ (R1)

∂ψj
f (ŝ)

+ π [U (C2R (s∗))−U (C2N (s∗))]
∂s∗ (δ, R1)

∂ψj
f (s∗)

The first K conditions are standard consumption Euler equations for the different assets chosen

by depositors. The next J + 1 conditions are standard optimal portfolio conditions. Note that

banks do not internalize the effect of their decisions on the fiscal cost T2.
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Social welfare can thus be written as

W (δ) = U

(
Y0 − D0 −∑

k
yk

)
+ λ

ˆ s

s
U (C1 (s)) dF (s) + (1− λ)

ˆ ŝ

s
U (C2R (s)) dF (s)

+ (1− λ)

[ˆ s∗

ŝ
(πU (C2R (s)) + (1− π)U (C2N (s))) dF (s) +

ˆ s

s∗
U (C2N (s)) dF (s)

]
,

where R1, yk and ψj are chosen optimally as a function of δ. We use the fact that dC2R
dδ can be

written as

dC2R

dδ
=

∂C2R

∂δ
+

∂C2R

∂R1

dR1

dδ
+ ∑

j

∂C2R

∂ψj

dψj

dδ
+ ∑

k

∂C2R

∂yk

dyk
dδ

=
∂C̃2R

∂R1

dR1

dδ
+ ∑

j

∂C̃2R

∂ψj

dψj

dδ
+ ∑

k

∂C̃2R

∂yk

dyk
dδ

︸ ︷︷ ︸
Internalized

+
∂C2R

∂δ
− ∂T2

∂R1

dR1

dδ
−∑

j

∂T2

∂ψj

dψj

dδ
︸ ︷︷ ︸

Not internalized

combined with optimality conditions, to show that

dW
dδ

1− λ
=

ˆ ŝ

s
U′ (C2R)

(
∂C2R

∂δ
− ∂T2

∂R1

dR1

dδ
−∑

j

∂T2

∂ψj

dψj

dδ

)
dF (s)

+

ˆ s∗

ŝ
U′ (C2R)

(
∂C2R

∂δ
− ∂T2

∂R1

dR1

dδ
−∑

j

∂T2

∂ψj

dψj

dδ

)
πdF (s)

+ [U (C2R (s∗ (δ, R1)))−U (C2N (s∗ (δ, R1)))]π
∂s∗ (δ, R1)

∂δ
f (s∗)

Using the same normalization with respect to ∂q
∂δ as in the basic framework, we have that

dW
dδ

1− λ
= [U (C2R (s∗))−U (C2N (s∗))]

∂q
∂δ

+ qER

[
∂C2R

∂δ
− ∂T2

∂R1

dR1

dδ
−∑

j

∂T2

∂ψj

dψj

dδ

]

The result follows directly using the same logic as above.

Proposition 5. (Optimal DI with alternative equilibrium selection)

Banks choose R1 at date 0 maximizing

J (R1; δ) = λU (R1D0 + Y1)+ (1− λ)

[ˆ sG(δ,R1)

s
U (C2R (s, δ, R1)) dF (s) +

ˆ s

sG(δ,R1)
U (C2N (s, R1)) dF (s)

]
,

with R1 choosing optimally according to

∂J
∂R1

∣∣∣∣
T2

= λU′ (R1D0 + Y1) D0

+ (1− λ)

[ˆ sG(δ,R1)

s
U′ (C2R (s, δ, R1))

∂C̃2R

∂R1
dF (s) +

ˆ s

sG(δ,R1)
U′ (C2N (s, R1))

∂C2N

∂R1
dF (s)

]
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Defining W (δ) as in our basic model, we can thus write

dW
dδ

1− λ
=

´ sG(δ,R1)
s U′ (C2R)

(
∂C2R

∂δ −
∂T2
∂R1

dR1
dδ

)
dF (s)

+
[
U
(
C2R

(
sG (δ, R1)

))
−U

(
C2N

(
sG (δ, R1)

))] ∂sG(δ,R1)
∂δ f

(
sG)

Note that q = F
(
sG) =

´ sG(δ,R1)
s dF (s) and ∂q

∂δ = ∂sG(δ,R1)
∂δ f

(
sG). As in the proof of proposition

2, equation (20) follows directly.

Proposition 5. (Optimal DI with aggregate spillovers)

We define two types of thresholds. The thresholds used by banks ex-ante to choose R1

are denoted by ŝ0 (R1) and s∗0 (δ, R1). Those perceived by the deposit insurance authority,

incorporating the effects on aggregate withdrawals ∆, are denoted by ŝ1 (R1) and s∗1 (δ, R1).

However, in equilibrium, ŝ0 (R1) = ŝ1 (R1) and ŝ0 (δ, R1) = s∗1 (δ, R1). Hence, the actual

probability of bank failure is independent of which threshold we use.

Social welfare can be written as in equation (11), with the exception that the limits of

integration for the planner are now denoted by ŝ1 (R1) and s∗1 (δ, R1)Note that the planner uses

different thresholds than. Because we assume that θ (·)− 1 represents a transfer, there is no need

to modify C2R and C2N. Hence, we can write

dW
dδ

= λU′ (R1 (δ) D0 + Y1) D0
dR1

dδ
+ (1− λ)

ˆ ŝ1

s
U′ (C2R)

dC2R

dδ
dF (s)

+ (1− λ)

ˆ s∗

ŝ1

(
πU′ (C2R)

dC2R

dδ
+ (1− π)U′ (C2N)

dC2N

dR1

dR1

dδ

)
dF (s)

+ (1− λ)

ˆ s

s∗
U′ (C2N)

dC2N

dR1

dR1

dδ
dF (s)

+ (1− λ)


 (1− π) [U (C2R (ŝ1 (R1)))−U (C2N (ŝ1 (R1)))]

∂ŝ1(R1)
∂R1

dR1
dδ f (ŝ1)

+π [U (C2R (s∗1 (δ, R1)))−U (C2N (s∗1 (δ, R1)))]
[

∂s∗1(δ,R1)
∂R1

dR1
dδ +

∂s∗1(δ,R1)
∂δ

]
f (s∗1)




From now on, we do not distinguish with a subscript unless it is necessary. Decomposing dC2R
dδ ,

combined with the optimality condition on the deposit rate offered by banks, we can write

dW
dδ

1− λ
=

´ ŝ
s U′ (C2R)

(
∂C2R

∂δ −
∂T2
∂R1

dR1
dδ

)
dF (s) + π

´ s∗
ŝ U′ (C2R)

(
∂C2R

∂δ −
∂T2
∂R1

dR1
dδ

)
dF (s)

+ [U (C2R (s∗ (δ, R1)))−U (C2N (s∗ (δ, R1)))]π
∂s∗(δ,R1)

∂δ f (s∗)

+ (1− π) [U (C2R (ŝ1 (R1)))−U (C2N (ŝ1 (R1)))]
(

∂ŝ1(R1)
∂R1

− ∂ŝ0(R1)
∂R1

)
dR1
dδ f (ŝ1)

+π [U (C2R (s∗1 (δ, R1)))−U (C2N (s∗1 (δ, R1)))]
(

∂s∗1(δ,R1)
∂R1

− ∂s∗0(δ,R1)
∂R1

)
dR1
dδ f (s∗1)

Note that we have two additional terms which were not present in the basic framework. They

correspond to the spillovers effects which are not internalized by banks ex-ante when choosing

R1, but that the regulator takes into account.
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Proposition 4. (Optimal DI with ex-ante heterogeneous depositors)

(To be included)

Proofs: Section 5

Proposition 8. (An approximation for δ∗)

The expression for δ∗ involves the difference in utility between the consumption of depositors

between failure and no failure equilibria at the threshold s∗: U (C2R (s∗)) − U (C2N (s∗)). In

general, this term is hard to map to observables because it is not written in marginal terms.

However, we can bound it above and below by approximating that term around either C2N or

C2R. For instance, we can write

U (C2R (s∗))−U (C2N (s∗)) ≈ U′ (C2R (s∗)) (C2N (s∗)− C2R (s∗))

or

U (C2R (s∗))−U (C2N (s∗)) ≈ U′ (C2N (s∗)) (C2R (s∗)− C2N (s∗))

Starting from our result in proposition 3, and using the first approximation, we can write δ∗ as

δ∗ ≈ ε
q
δ (C2N (s∗)− C2R (s∗))

q (1 + κ)ER

[
U′(C2R(s))
U′(C2R(s∗))

(1− χρ2 (s))
] ,

where we assume that, in practice, at the optimum δ < r1D0
1−λ . Note that, when

ER

[
U′(C2R(s))
U′(C2R(s∗))

(1− χρ2 (s))
]
= 1, we can find the implied elasticity using ε

q
δ =

δ∗q(1+κ)
C2N−C2R

.
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Numerical example

As emphasized throughout the paper, especially in section 5, we exploit directly the sufficient

statistics identified in the paper to think about quantification. However, it is instructive to

illustrate the mechanics of the model with a numerical example. We solve our basic framework

using the parameters given in table 2. This is not a calibration exercise and merely an illustration

of the analytical results derived in the paper. In this example, we solve the problem with perfect

ex-ante instruments. The qualitative insights when ex-ante instruments are not available do not

change.

γ = 10 Y2 (s) = 65 Y1 = 50 D0 = 30 s = 0.95

κ = 0.16 λ = 0.23 π = 0.95 χ = 0.75 s = 1.8

Table 2: Parameters numerical example

In particular, we assume that depositors have CRRA utility with an elasticity of

intertemporal substitution given by 1
γ . We also assume that the aggregate state is uniformly

distributed following s ∼ U [s, s], and that the date 2 return on banks investments is given by

ρ2 (s) = s. Using equations (4) and (5) in the text, we can explicitly write thresholds ŝ (R1) and

s∗ (R1, δ) as

ŝ (R1) =
1

1− r1
R1

1
1−λ

=
(1− λ) R1

1− λR1
≥ 1

s∗ (R1, δ) =
1

1− 1
min{δ,D0R1}

r1D0
1−λ

=
1− λ

1− λ− r1

1 + r1︸ ︷︷ ︸
<1

D0R1

min {δ, D0R1}︸ ︷︷ ︸
<1

=
(1− λ) R1

1− λR1 + r1

(
1− D0R1

min{δ,D0R1}
)

It is easy to see that ŝ (R1) ≥ 1 when R1 ≥ 1, with equality when R1 = 1. In this economy, we

find that the optimal deposit rate chosen by banks is R∗1 (δ
∗) = 1.12 and the optimal level of

deposit insurance is δ∗ = 21.3.

The left plot in figure 8 shows the return on bank investments and the right plot shows the

level of consumption when there is a bank failure and where there is no bank failure for a given

realization of s. We use the values of δ = 21.3 and R1 = 1.12, which will be the optimal values

chosen in equilibrium.

The left plot in figure 9 is the analogous to figure 3 in the text and shows the different regions

of equilibria for different values of δ. We use the value of R1 = 1.12. The right plot in figure 9

shows the thresholds s∗ and ŝ as a function of the level of the deposit rate R1, for δ = 21.3.

Figure 10 shows the value of J (R1) used by the policymaker to determine the optimal level

of R1. We use again the value of δ = 21.3 for illustration. The optimal R∗1 is the arg max of J (R1).
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Figure 8: Returns on bank investments and consumption determinants given s

The upper left plot in figure 11 shows the value of early types utility in equation (9), while

the lower left plot shows the value of the expected utility of late types. The three right plots

show the value of the three components of late depositors’ utility, as defined inside the bracket

in equation (11).

The left plot in figure 12 shows social welfare for different levels of δ. The right plot in figure

12 shows the optimal level of R1 for different values of δ.

We numerically corroborate our analytical result that showed that limδ→0+
dW
dδ < 0.

Intuitively, when δ is too low, it has no impact preventing bank failures. However, when the

realization of s is sufficiently bad, the deposit insurance authority still has to tax depositors to

pay for deposit insurance. Hence, as long as κ > 0, welfare is decreasing for low values of δ. In

the region between the kinks in W (δ), the choice of R1 is interior, which makes valid the first

order approach used in the paper. Note that when δ is very low, banks offer very high deposit

rates, because their choice of R1 does not influence the likelihood of bank failure.

52



0 5 10 15 20 25 30 35 40 45 50

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

s∗(R1, δ)

DI δ

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
1

1.2

1.4

1.6

1.8

s∗(R1, δ)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
1

1.2

1.4

1.6

1.8
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Figure 9: Thresholds s∗ (δ, R1) and ŝ(R1)
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Figure 10: Value of J (R1)
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Figure 11: Decomposing J (R1)
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Figure 12: Social welfare W (δ) and optimal R∗1 (δ)
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