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Abstract

I develop a model of an open-end mutual fund that invests in illiquid assets and show that

shareholder runs can occur even with a fully flexible fund NAV. The key is the fund’s dynamic

management of its cash buffer. Holding more cash at time t helps the fund avoid fire sales of its

illiquid assets if it experiences a significant net outflow. However, the need to rebuild the cash buffer

at time t + 1 after outflows at t implies predictable sales of illiquid assets and hence a predictable

decline in NAV. This generates a first-mover advantage at t, leading to shareholder runs. This

mechanism differs from that underlying bank runs, which relies on fixed-NAV claims. I then study

the fund’s optimal dynamic cash policy in the presence of run concerns, which gives rise to the

following tension. Rebuilding the cash buffer more rapidly at t + 1 can trigger runs at t. However,

lack of cash re-building makes the fund more likely to suffer another round of fire sales in the future.

This tension is aggravated by a time-inconsistency problem: the fund may want to pre-commit to a

less rapid cash re-building policy to avoid runs but cannot credibly convince the shareholders absent a

commitment device. Therefore, despite optimal liquidity management, mutual funds are not run-free

and runs can lead to higher ex-ante fire sale losses. Appropriate design of policies aiming at reducing

financial stability risks of mutual funds requires taking into account the dynamic interdependence of

runs and liquidity management.
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1 Introduction

There are rising concerns about the financial stability risks posed by open-end mutual funds, which

promise daily liquidity to shareholders but have been increasingly holding illiquid assets such as corpo-

rate bonds.1 Many regulators are worried about the potential for a bank-run-like scenario on mutual

funds investing in illiquid assets,2 and a number of funds, the Focused Credit Fund of Third Avenue as

the most notable example, shut down redemptions in the middle of severe shareholder runs at the end

of 2015.3 However, despite the prominence of this issue, the theoretical mechanism of mutual fund runs

is not well understood and the existence of runs is still in dispute. First, conventional wisdom suggests

that mutual funds with a flexible end-of-day net asset value (NAV) should be immune to bank-run-like

crises, which occur only with fixed-NAV claims. Second, observers also argue that careful fund liquidity

management can mitigate first-mover advantages and hence prevent runs. With these two points in

mind, can there really be runs on mutual funds?

In this paper, I develop a model of an open-end mutual fund that invests in illiquid assets and show

that shareholder runs can occur in equilibrium even with a fully flexible NAV. My main insight is that

the combination of a flexible NAV and active fund liquidity management, both of which are viewed as

means to mitigate financial stability risks, can make the fund prone to shareholder runs even without

any fundamental shocks to the underlying assets.

The mechanism works as follows. Holding more cash at time t helps the fund avoid fire sales of its

illiquid assets if it experiences a significant net outflow. However, the need to rebuild the cash buffer

at time t + 1 after outflows at t implies predictable sales of illiquid assets and hence a predictable

decline in NAV at t+ 1. This generates a first-mover advantage at t, which leads to shareholder runs in

equilibrium. This logic illustrates the key trade-off in the model: cash buffers mitigate fire sales today,

but the need to rebuild cash buffers tomorrow triggers runs today.

The potential for shareholder runs further gives rise to a tension regarding the fund’s optimal

dynamic cash management. On the one hand, rebuilding the cash buffer more rapidly at t + 1 by

aggressively selling illiquid assets can trigger runs at t for the reasons outlined above. On the other

hand, rebuilding the cash buffer less rapidly makes the fund more likely to suffer another round of fire

sales in the future. This tension is aggravated by a time-inconsistency problem: the fund may want

to pre-commit to a less rapid cash rebuilding policy to avoid runs but cannot credibly convince the

shareholders absent a commitment device. Thus, despite optimal liquidity management, mutual funds

are not run-free and runs can lead to considerably higher ex-ante fire sale losses.

1These patterns of liquidity mismatch are significant in corporate bond mutual funds and are also pervasive in funds
investing in other illiquid assets. See Appendix A.1 for facts and institutional details.

2The U.S. SEC voted 5-0 on Sept 22, 2015 to approve a new proposal requiring mutual funds to manage liquidity risks.
Also see “Potential Emerging Threats and Vulnerabilities,” Ch. 7 in the Annual Report, the U.S. FSOC, May 2015, “Asset
Management Industry and Financial Stability,” Ch. 3 in the Global Financial Stability Report, the IMF, April 2015, and
“Old and New Risks in the Financial Landscape”, Ch. 6 in the Annual Report, the BIS, June 2015.

3The Third Avenue shutdown on Dec 10, 2015 was the first case since the 1940 Act that a U.S. mutual fund shut down
redemptions without getting approval from the U.S. SEC. In particular, the Focus Credit Fund was the single largest holder
of many high-yield corporate bonds, the fundamental of which were still good. This suggests that the liquidity mismatch
and the resulting strategic considerations among shareholders must have played an important role in the run-up to its
crisis. A number of the so-called “liquid-alternative” mutual funds, operated by hedge fund managers such as Whitebox
Advisors, J.P. Morgan, and Guggenheim Partners also experienced shareholder runs and were forced to close in 2015.
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My theoretical predictions are consistent with new micro-level evidence. Chen, Goldstein and Jiang

(2010), Feroli, Kashyap, Schoenholtz and Shin (2014), Goldstein, Jiang and Ng (2015), Shek, Shim and

Shin (2015) and Wang (2015) document that current fund outflows predict a future decline in fund

NAV, and the magnitude of the predictable decline in NAV is larger if the fund invests in more illiquid

assets or has less cash.4 My model provides a concrete mechanism to explain these documented patterns

of run incentives and shows that they can indeed lead to runs in equilibrium. Moreover, I show that the

potential for runs can in turn distort fund liquidity management, generating new testable predictions.

I formulate the ideas sketched above in a stochastic dynamic model of an open-end mutual fund

with many shareholders, who may redeem their shares daily at the end-of-day flexible NAV. Section 2

lays out the model, which is built based on four realistic assumptions. First, the fund invests in both

cash and many illiquid assets. Second, selling illiquid assets generates fire sale losses (Williamson, 1988,

Shleifer and Vishny, 1992, 1997). Third, the fund minimizes total expected fire sale losses by managing

its cash buffer over time. Finally, the fire sale prices are time-varying. Specifically, outflow-induced fire

sales can create temporary price overshooting at t and subsequent reversal at t+ 1, as documented by

Coval and Stafford (2007) and Duffie (2010).5 This price pattern gives rise to a motive for fund liquidity

management. After a significant outflow at t, the fund may voluntarily sell some assets to rebuild its

cash buffer at t+ 1 when the selling price partially rebounds, in order to avoid potentially more severe

fire sales in the future (i.e., at t+ 2) should another outflow shock comes. Other than this time-varying

fire sale cost, my model does not feature other shocks or frictions at the asset market level.

I first show in Section 3 that the fund’s desire to rebuild its cash buffer can induce shareholder runs,

and more rapid cash rebuilding leads to more severe runs. This result is general: runs can occur in

equilibrium regardless of whether the fund starts with a high cash position or a low one. However, the

cost of runs, that is, the impact of runs on the risk of fire sales, is different in these two cases. The

nature of strategic interactions among shareholders is also different in these two cases. Therefore, it is

helpful to discuss them separately to clarify the run mechanism.

On the one hand, when the fund starts with a high cash-to-assets ratio, shareholder runs induced

by fund cash rebuilding lead to higher risk of future fire sales. When a redemption shock occurs at t,

the fund starting with a high cash position can satisfy the projected redemptions at both t and t + 1

without incurring fire sales. This implies that, even if the shareholders who initially plan to redeem

at t + 1 ran at t, the fund would still have enough cash at t, and thus time-t NAV would not adjust.

But since some cash is paid out at t, the fund may want to rebuild its cash buffer by voluntarily selling

some illiquid assets at t + 1. Thus, the shareholders who initially plan to redeem at t + 1 would get a

lower NAV if they waited until t + 1, and hence may decide to run at t. Fundamentally, this occurs

4These papers differ in focus, but they all suggest a single point: the existence of run incentives among mutual fund
shareholders. See the literature review for more detailed discussions of these papers.

5This assumption is consistent with many other empirical studies including Campbell, Grossman and Wang (1993),
Pastor and Stambaugh (2003), Hendershott and Seasholes (2007), Mitchell, Pedersen and Pulvino (2007), Comerton-Forde,
Hendershott, Jones, Moulton and Seasholes (2010), Greenwood and Thesmar (2011), Edmans, Goldstein and Jiang (2012),
Jotikasthira, Lundblad, and Ramadorai (2012), Lou (2012), Nagel (2012) and Hendershott and Menkveld (2014). Duffie
(2010) ascribes this pervasive pattern to the idea of “slow-moving capital,” which is in turn linked to the classic work of
Grossman and Miller (1988). In Appendix A.3 I provide a micro-foundation where the price pattern emerges endogenously
but in the main text I assume it to highlight the run mechanism in the paper.
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because cash rebuilding endogenously gives rise to strategic complementarity among shareholders. In

this scenario, shareholder runs force the fund to pay more redeeming shareholders at the endogenously

unchanged NAV at t, and thus the fund loses more cash.6 Therefore, shareholder runs partially offset

the fund’s cash rebuilding efforts at t+ 1 and thus lead to higher risk of future fire sales at t+ 2.

On the other hand, if the fund starts with a low cash-to-assets ratio such that it cannot satisfy

the projected redemptions at both t and t + 1 without selling illiquid assets, shareholder runs further

lead to higher current (i.e., time-t) fire sale losses in addition to higher risk of future (i.e., t + 2) fire

sales. Interestingly, in this scenario, a shareholder is less likely to run if more of other shareholders

decide to run. This is because runs may force the fund to fire sell more of its illiquid assets at an

extremely low price at t, and any shareholder who runs at t has to share that cost, that is, to get a

lower NAV. This means that shareholders’ run decisions can exhibit strategic substitutability. However,

since the fund is already running out of cash and may voluntarily sell more assets at t + 1 to rebuild

its cash buffer, waiting may only give the shareholders an even lower NAV. Therefore, the fund’s desire

to rebuild its cash buffer reinforces a strong incentive for shareholders to redeem earlier despite the

strategic substitutability. In this scenario, shareholder runs introduce a more severe cost by directly

forcing the fund to fire sell more assets at t, a time when the fire sale price is extremely low. In addition,

runs still offset the fund’s cash rebuilding efforts and thus lead to higher risk of future fire sales.

Having analyzed the implications of cash rebuilding on shareholder runs for an arbitrary starting

level of cash, I endogenize the dynamic cash rebuilding policy of the fund. I show in Section 4 that

introducing the potential for runs gives rise to a tension absent in existing liquidity management theories.

On the one hand, rebuilding the cash buffer more rapidly at t+ 1 can trigger shareholder runs at t. As

described above, shareholder runs lead to higher risk of fire sales. This run concern makes a more rapid

cash rebuilding policy less appealing. On the other hand, adopting a less rapid cash rebuilding policy at

t+ 1 makes the fund more likely to suffer another round of future fire sales at t+ 2. Moreover, carrying

less cash to t+ 2 also implies that the fund may ultimately have to rebuild its cash buffer more rapidly

at time t + 3, which can trigger future runs at t + 2. With this tension, the fund’s optimal dynamic

cash rebuilding policy is significantly different from the benchmark case where there are no runs.

Moreover, I show that the potential for shareholder runs introduces a time-inconsistency problem

for the fund, which aggravates the tension in choosing between a rapid or a slow cash rebuilding policy.

When the cost of runs at t is relatively large, ex-ante, the fund may wish to commit itself to rebuilding

its cash buffer less rapidly at t + 1 to reduce run risks at t. However, ex-post, the fund may instead

be tempted to adopt a more rapid cash rebuilding policy at t + 1, because the time-t cost is sunk.

Anticipating this, shareholders will always have strong incentives to run at t. In other words, in the

absence of a commitment device, the fund cannot make credible announcement to convince shareholders

not to run. I further show that, in certain circumstances, introducing a commitment device can help

temper the run incentives at t and thus reduce total expected fire sale losses.

Overall, my paper provides theoretical underpinnings for understanding why open-end mutual funds

may not be run-free, in contrast to what the conventional wisdom suggests. The potential for shareholder

6In other words, if the shareholders who initially plan to redeem at t + 1 do not run, the fund can pay them a lower
NAV when rebuilding its cash buffer and hence effectively carry more cash into t+2 under the same cash rebuilding policy.
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runs can considerably increase fire sale losses in expectation despite optimal cash management by the

fund. The dynamic interdependence of shareholder runs and fund liquidity management uncovered in

this paper plays a critical role in shaping these outcomes.

Fundamentally, shareholder runs in my model are driven by a key contractual property of mutual

fund NAVs: they are flexible but not forward-looking. In other words, the NAV at time t does not take

into account the predictable asset sales and price impact at t+ 1. With this contractual property, fund

cash rebuilding gives rise to predictable declines in NAV and thus the potential for runs.

Although they are reminiscent of bank runs in some ways, fund shareholder runs differ from classic

bank runs (Diamond and Dybvig, 1983) in terms of the underlying mechanism. In my model, the first-

mover advantage does not come from an exogenous fixed-NAV claim at t (like the deposit at a bank).

Because NAVs in my model flexibly and endogenously adjust, a shareholder redeeming at t realizes

that more early withdrawals will potentially induce more fire sales at t and thus lower the proceeds she

receives. Hence, if the fund did not rebuild its cash buffer at t+1, the net benefit of running over waiting

could be decreasing as more shareholders run. Rather, it is the fund’s desire to rebuild its cash buffer

at t+ 1 and the resulting predictable decline in NAV that lead to a strong first-mover advantage. This

mechanism highlights a dynamic interaction between the fund and its shareholders. Such an interaction

is absent in bank run models, which focus on coordination failures among depositors themselves.

The mechanism in my model is also different from that underlying market runs. Bernardo and

Welch (2004) and Morris and Shin (2004) argue that if an asset market features an downward-sloping

demand, investors fearing future liquidity shocks will have an incentive to front-run, fire selling the asset

earlier to get a higher price. One might imagine that introducing an intermediary that helps manage

liquidity shocks can alleviate such problems. Indeed, in my model, fund cash management is beneficial

to shareholders because it reduces fire sale losses. However, the key tension that I document is that

the fund’s cash rebuilding also endogenously gives rise to predictable declines in NAV and thus run

incentives. In contrast, there is no role for liquidity management in market run models. In this sense,

market run models focus on asset markets themselves while my theory focuses on the role of financial

intermediaries. This allows me to distinguish between risks that come from active management of

financial intermediaries and those that are only a reflection of market-level frictions and would occur in

the absence of intermediaries.

My model generates new policy implications, which I explore in Section 5. First, the model suggests

that to introduce a flexible NAV is not a fix to money market mutual fund (MMF) runs, as also argued in

Hanson, Scharfstein and Sunderam (2015). I also consider many fund-level policies, including liquidity

requirements, in-kind redemptions, redemption fees and restrictions, credit lines, and swing pricing, all

of which aim at mitigating financial stability risks of mutual funds. Perhaps surprisingly, these policies

do not necessarily improve shareholder welfare in equilibrium because they may distort fund liquidity

management, and thus lead to more fire sales. Overall, my model suggests that policies should be

designed taking into account the dynamic interdependence of runs and fund liquidity management.

Section 6 explores various extensions to the baseline model, including the flow-to-performance rela-

tionship, asset price correlations, and persistent price impacts. Section 7 concludes.
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Related Literature. This paper first contributes to the burgeoning literature on financial stability

risks posed by open-end mutual funds.7 Empirically, Feroli, Kashyap, Schoenholtz and Shin (2014)

find that fund outflows predict future declines in NAV, suggesting the existence of run incentives for

shareholders. At a more micro level, Chen, Goldstein and Jiang (2010) find that the flow-to-performance

relationship is stronger for funds investing in less liquid stocks. Goldstein, Jiang and Ng (2015) echo the

message by showing that corporate bond funds even exhibit a concave flow-to-performance relationship.

Shek, Shim and Shin (2015) explores the underlying channel by showing that outflows are associated

with future discretionary bond sales and liquidity rebuilding in an emerging market bond fund context.

Wang (2015) further finds that outflows predict a stronger decline in future NAVs when the fund has

less cash or invests in more illiquid bonds. My model predictions are consistent with all of these facts.

Chen, Goldstein and Jiang (2010) and Morris and Shin (2014) have addressed the potential for mutual

fund runs from theoretical perspectives, but their focuses and approaches are different from this paper,

and they do not consider fully flexible NAV adjustment or fund liquidity management.8

There is a broader literature on the costs of outflows to non-trading shareholders and to future fund

performance.9 Edelen (1999), Dickson, Shoven and Sialm (2000), Alexander, Cici and Gibson (2007)

and Christoffersen, Keim, and Musto (2007) find that flow-induced trades hurt fund performance, and

redeeming shareholders impose externalities on non-trading shareholders through trading-related costs

(including commissions, bid-ask spreads, and taxes) that are not reflected in current NAVs. Coval and

Stafford (2007), Ellul, Jotikasthira and Lundblad (2011) and Manconi, Massa and Yasuda (2012) further

show this by highlighting the channel of flow-induced fire sales. In addition, Chernenko and Sunderam

(2015) find that even careful liquidity management of mutual funds cannot alleviate those costs. These

papers do not examine the potential for shareholder runs. Especially, since runs are induced by active

fund liquidity management in my model, I am able to identify a new externality that even including all

the current trading-related costs in NAVs (as suggested by swing pricing) cannot internalize.

My paper also contributes to the literature of mutual fund liquidity management.10 This literature

suggests that holding cash is costly because funds have to give up other higher-yielding investment

opportunities (Wermers, 2000), but cash can help them withstand redemption shocks and reduce fire

7The notion of open-end mutual funds does not include MMFs, insurance companies, or pension funds. Recent literature
has also documented run-like dynamics associated with those financial intermediaries. For example, Schmidt, Timmermann
and Wermers (2014) provide a throughout investigation of shareholder runs on MMFs, and Strahan and Tanyeri (2014) find
that MMFs experiencing more outflows also reallocate their portfolio more, consistent with my prediction in a mutual fund
context. More recently, Foley-Fisher, Narajabad and Verani (2015) and Da, Larrain, Sialm and Tessada (2015) provide
new evidence suggesting that runs can even happen to insurance companies and pension funds, respectively.

8In the appendix of Chen, Goldstein and Jiang (2010), the authors build a static global game model for the purpose of
hypothesis development. In that model, fund NAV is not fully flexible: shareholders are assumed to get a fixed-value claim
if they run (in the spirit of Diamond and Dybvig, 1983). Their model does not consider fund liquidity management. Morris
and Shin (2014) build a model of runs by funds on the asset markets, focusing on fund managers’ relative performance
concerns. Their model does not distinguish between open- and closed-end funds and does not consider shareholder runs.

9See Christoffersen, Musto and Wermers (2014) for a comprehensive review of this literature.
10There is also a large dynamic corporate finance literature on general liquidity management for non-financial institutions.

With the premise of costly external liquidity under agency problems, this literature focuses on the role of holding internal
liquidity in making investments rather than meeting redemptions. I refer readers to Bates, Kahle and Stulz (2009) for
empirical evidence and Bolton, Chen and Wang (2011) for a typical modern theoretical treatment. Hugonnier and Morellec
(2014), Sundaresan and Wang (2014) and Della Seta, Morellec and Zucchi (2015), among others, further push this research
agenda to the bank context with a focus on the relationship between liquidity management and bank default risks. In this
literature, the bank can only accumulate internal liquidity by retaining its proceeds; partial liquidation (like in my model)
is not allowed. The bank in question defaults abruptly when it chooses to liquidate assets.
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sales (Edelen, 1999, Christoffersen, Keim, and Musto, 2007, Coval and Stafford, 2007). Recently, Simutin

(2013), Ben-Rephael (2014) and Huang (2015) investigate the determinants of cash management and

the implications on fund performance for equity funds, and Chernenko and Sunderam (2015) provide

more comprehensive evidence on fund cash management covering both bond and equity funds. The

most relevant theory is Chordia (1996) who shows in a static model that funds hold more cash when

there is uncertainty about redemptions, but funds with load and redemption fees hold less cash. My

paper document a novel aspect of fund liquidity management: rebuilding cash buffers by selling illiquid

assets can induce shareholder runs, which can in turn distort fund liquidity management.

Dated back to Bryant (1980) and Diamond and Dybvig (1983), there is a vast bank run literature.11

Beyond the discussion in the introduction, I review three branches of theories that are closely related.

First, pioneered by Cooper and Ross (1998), a literature looks at how banks manage their liquidity

buffers to mitigate runs.12 By combining liquidity management and fully flexible NAV adjustment, I

uncover a cost of cash rebuilding in the mutual fund context: unintended shareholder runs. In contrast,

when a comparable bank rebuilds its cash buffer by selling assets, the underlying deposit value will not

be affected, and thus cash rebuilding by itself would not directly trigger depositor runs.

Second, there is a growing literature about runs on non-bank but leveraged financial institutions, for

instance, Liu and Mello (2011) on leveraged hedge fund runs, Martin, Skeie and von Thadden (2014)

on repo runs, and Parlatore (2015) on MMF runs. These theories resemble classic bank run models in

that investors still get a fixed-value claim if they run.

Third, a burgeoning literature models bank runs in dynamic contexts. Some models imbed a

Diamond-Dybvig type bank run model into a dynamic growth or economic fluctuation model (Ennis

and Keister, 2003, Gertler and Kiyotaki, 2014). Others model investors’ dynamic run decisions directly

(He and Xiong, 2012, He and Manela, 2014).13 These dynamic models make bank run theory appealing

to more contexts like debt rollovers and rumor-based runs. For tractability reasons, those models do not

feature liquidity management. By developing a new framework, I can model the interaction between

mutual fund shareholder runs and fund liquidity management in a tractable manner.

Finally, it is also important to distinguish my mechanism from that in the market run literature

(Bernardo and Welch, 2004, Morris and Shin, 2004), as aforementioned in the introduction. The idea

of market run is also present in the “cash-in-the-market” theory in Allen and Gale (1994, 2005) and the

predatory treading theory in Brunnermeier and Pedersen (2005) and Carlin, Lobo and Viswanathan

(2007). Based on the search model of Lagos, Rocheteau and Weill (2011), Di Maggio (2015) investigates

the implications of market runs in over-the-counter (OTC) markets. My run mechanism differs from

theirs by focusing on the role of financial intermediaries rather than market-level frictions themselves.

11See Gorton and Winton (2003) for a comprehensive review.
12This literature has been growing recently (Vives, 2014, Diamond and Kashyap, 2015) given the emphasis of bank

liquidity requirement in Basel III.
13This literature has been growing rapidly. See Cheng and Milbradt (2012) and Schroth, Suarez and Taylor (2014) for

recent developments built upon He and Xiong (2012). Morris (2014) gives a theoretical treatment about how such dynamic
bank run models can be reconciled with static, global-game-based bank run models (Goldstein and Pauzner, 2005) and
synchronization games (Abreu and Brunnermeier, 2003).
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2 The Model

I first introduce the baseline model of an open-end mutual fund investing in both cash and illiquid

assets. The model features the key institutional setting of open-end mutual funds, that is, possible

daily shareholder redemptions at a flexible end-of-day NAV. The mechanism of this baseline model is

fairly general and can be readily extended to other settings.

2.1 Setup

Time is discrete and infinite. Discount rate is normalized to 1. There is a single open-end mutual fund

with many existing shareholders, who may redeem their shares on ex-ante unknown dates. The fund

invests in two types of assets: 1) cash, denoted by x, which is liquid and the only consumption good,

and 2) a continuum of many illiquid assets, denoted by a. These illiquid assets are assumed to have a

fundamental value R > 1, but they are all different, which means they can have different market prices

in equilibrium. The illiquid assets pay off at the end of the game (specified later) and do not generate

any interim cash flows.

2t 2t+ 1 2t+ 2 2t+ 3

π

1− π

Early
Shareholders

Late
Shareholders

Run

Lower Higher
Fire Sale Fire Sale

Price Price

π

1− π

(Recursive)

Early
Shareholders

Late
Shareholders

Run

Figure 1: Timeline

Timeline. Each stage consists of two dates, an even date and an odd date.14 I use 2t to denote an

even date and 2t + 1 to denote an odd date. I still use t to denote a stage or a general date when the

difference between even and odd dates is not important. At the beginning of any date t, the fund has

xt cash and at unit of the basket of illiquid assets. The fund also has nt existing shareholders, some of

whom may exit the fund by redeeming their shares in future. Redemption needs must be met in cash,

so the fund may be forced to sell its illiquid assets if running short of cash, but doing this will generate

fire sale losses because of the underlying illiquidity problem. Specifically, the unit fire sale price for any

illiquid assets on date t is pt, which is lower than R. To focus on redemptions, I assume that the fund

has no inflows or credit lines.15

14To make distinctions between even and odd dates is a common modeling tool in the theoretical literature to capture
time-varying or alternating market conditions. See Woodford (1990) and Lagos and Wright (2005) for examples.

15I will relax this assumption in Section 5.6. As shown then, having credit lines cannot reduce potential financial stability
risks of mutual funds but may instead aggravate them in some cases.
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At the beginning of each stage (i.e., right before an even date), a shock hits the economy. Specifically,

with probability π the game ends; otherwise the game continues. Only if the game continues, will there

be projected redemptions on the following two dates within the given stage. The random end-of-game

event can be thought of as an upside event in which all the illiquid assets mature at their fundamental

value, shareholders get paid off, and there will be no future redemption needs. Therefore, the shock

structure parsimoniously captures the randomness of redemptions in reality, with a lower π implying

that redemptions are more persistent. For these reasons, I call the shock redemption shock in what

follows. Figure 1 shows the timeline with some elements to be explained shortly. In Section 2.2, I will

give an intuitive interpretation of this setup and map it to real-world scenarios.

Flexible Fund NAV. The first important pillar of this model is a flexible fund NAV. The end-of-

day flexible NAV will reflect all the asset sale losses during the given day. Specifically, if the fund does

not sell any illiquid assets on date t, the end-of-day NAV will be

NAVt =
atR+ xt

nt
.

However, if the fund sells some assets on date t at the fire sale price pt, the NAV will reflect that

loss and hence become lower:

NAVt =
xt + (at − at+1)pt + at+1R

nt
. (2.1)

I explain the three terms in the numerator of (2.1) in order. The first term xt is the amount of cash

that the fund has initially at the beginning of date t. The second term represents the amount of cash

the fund raises by selling at − at+1 unit of assets at the fire sale price pt. The third term represents the

value of the non-traded illiquid assets remained on the fund’s balance sheet. In (2.1), the market prices

of those different and non-traded assets will not change. This is true for illiquid assets that are different

in nature, especially for those traded in OTC markets like corporate bonds. This is also consistent with

the empirical evidence in Coval and Stafford (2007) that flow-induced fire sales only have temporary

and local price impacts within the assets being sold. In practice, asset prices may be correlated, and

mutual funds may also use matrix pricing for these non-traded assets based on the fire sale price pt

of the assets that are sold. But as I will show in Section 6.2 as an extension, asset price correlations

or different accounting rules such as matrix pricing are not crucial for my model mechanism and will

not change my results qualitatively. What is crucial in (2.1) is that the end-of-day NAV is flexible

in the sense that it takes into account all the same-day price impact and asset sale losses, while that

NAV is not forward-looking in the sense that it will not reflect any possible future price impacts and

asset reallocation costs. These contractual features of fund NAV are robust regardless of the nature of

different asset markets and accounting rules.

Fund Manager. The second important pillar of this model is active fund liquidity management.

The fund has one fund manager. On any date t, the fund manager’s objective is to minimize total

expected fire sales from date t to the end of the game. The formal objective function will become clear

shortly after I describe the asset market.
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Since all the shareholders are ex-ante identical, having a fund manager who minimizes total expected

fire sale losses implies that there is no agency friction between the fund manager and the shareholders

as a whole. In this sense, the fund manager’s objective parsimoniously captures the outcome of optimal

contract design between investors and the asset manager (see Bhattacharya and Pfleiderer, 1985 for a

classic treatment). Minimizing total fire sale losses also suggests that the fund manager’s compensation

is tied to the size or equivalently the assets under management (AUM) of the fund, which is common

in practice.

Shareholders. Fund shareholders may redeem their shares when they have consumption needs. I

define three groups of shareholders within each stage: early shareholders, late shareholders, and sleepy

shareholders. Specifically, if the game continues on an even date 2t (with probability 1−π), µEn2t early

shareholders and µLn2t late shareholders are hit by unanticipated consumption shocks and thus must

consume, where 0 < µE , µL < 1 and 0 < µE + µL < 1. Since consumption shocks are unanticipated,

the remaining (1 − µE − µL)n2t sleepy shareholders do nothing but wait until the next stage; they do

not plan ahead for future stages although they may randomly become early or late shareholders in the

future.16 Both early and late shareholders do not have any cash in advance, so they have to redeem

their shares and get the endogenous and flexible end-of-day NAV.

Early shareholders must consume on date 2t, so they always redeem their shares at the endogenous

end-of-day NAV on 2t. Late shareholders prefer to consume on date 2t + 1, but can also choose to

consume on date 2t. Formally, late shareholders’ utility function is:

uL(c2t, c2t+1) = θc2t + c2t+1 , (2.2)

where 0 6 θ 6 1. As late shareholders are risk neutral,17 their consumption choice boils down to a

binary problem: to redeem on date 2t or date 2t + 1. There is no outside storage technology, so if a

late shareholder redeems on date 2t, she gets the endogenous end-of-day NAV on 2t and must consume

immediately; otherwise she gets the endogenous end-of-day NAV on 2t+ 1 and consume then. If a late

shareholder chooses to redeem and consume on date 2t, I say that the late shareholder runs the fund. I

allow late shareholders to choose mixed strategies: the run probability of late shareholder i is denoted

by λi2t ∈ [0, 1]. As one can expect, a late shareholder’s run decision will depend on the difference of

NAV between the two dates, which will in turn depend on other late shareholders’ run decisions and

the fund manager’s asset allocation decision in the given stage.

The preference parameter θ in (2.2) parsimoniously captures different types of shareholders with

16This is consistent with the observation that many mutual fund shareholders are mom-and-pop investors: they do not
actively review their portfolios but only do so when subject to unanticipated liquidity shocks (for empirical evidence,
see Agnew, Balduzzi and Sunden, 2003, Ameriks and Zeldes, 2004, Mitchell, Mottola, Utkus and Yamaguchi, 2006,
Brunnermeier and Nagel, 2008, and Grinblatt and Keloharju, 2009). Institutional investors like insurance companies
and pension funds also review and update their mutual fund asset portfolio infrequently. From a theoretical point of view,
this helps construct a standard stochastic dynamic game with a long-run player (the fund manager) and many generations
of short-run players (the shareholders). It also allows me to highlight the conflict of interests between different generations
of shareholders from a dynamic perspective.

17In Diamond-Dybvig type bank run models, depositors are usually assumed to be risk averse, and demandable deposit
emerges as the optimal contract for risk-sharing between early and late depositors. Instead, I focus on the commonly
observed contractual features of open-end mutual funds rather than optimal contract design, so I assume risk-neutrality
to help better document the impact of flexible NAVs on shareholders’ consumption choices.
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different propensities to run.18 Intuitively, when θ is lower, late shareholders prefer late consumption

more and they are less likely to run even if the NAV is lower on date 2t+ 1. This setting implies that

late shareholders’ realized marginal utilities can be different on the two dates, a setting also commonly

seen in the bank run literature (for example, Peck and Shell, 2003). My model mechanism works for

any θ ∈ [0, 1].

The presence of different types of shareholders, that is, the early, the late, and the sleepy ones,

captures an important friction in my model: the conflict of interests among shareholders with different

investment horizons. This conflict of interests is natural and well-documented in the empirical literature:

short-term investors can impose negative impacts on a fund’s long-term performance through the

transaction and fire-sale costs they incur to the fund, and the fund has to manage its portfolio and

liquidity carefully to mitigate such costs (for example, Edelen, 1999, Dickson, Shoven and Sialm, 2000,

Alexander, Cici and Gibson, 2007, Christoffersen, Keim, and Musto, 2007, Coval and Stafford, 2007).

This realistic friction plays an important role in driving the interaction between shareholder runs and

fund liquidity management in my model.

Asset Market and Fire Sales. On any date, the fund manager can sell the illiquid assets to an

outside investor at fire sale prices. Flow-induced fire sales are natural and pervasive (Williamson, 1988,

Shleifer and Vishny, 1992, 1997), and they can create temporary price impacts (Coval and Stafford,

2007). Based on these evidence, I assume that the selling price of any unit of illiquid assets is pE = δER

on date 2t and pL = δLR on date 2t + 1, where 0 < δE , δL < 1. Moreover, I assume that selling

right after the shock (i.e., on date 2t) incurs a higher price discount (and thus a lower selling price).

Figure 2 illustrates a sample selling price path before the end of the game (assumed to be date 4 in this

example).19,20 Specifically, the following parameter assumption holds throughout the paper:

Assumption 1. The selling prices satisfy δL > δE + (1− δE)(µE + µL) .21

This selling price pattern can be micro-founded by the idea of slow-moving capital in illiquid asset

markets (Duffie, 2010). When a redemption shock just hits the economy on date 2t, because there

are only a few liquidity providers available, it is very hard for the fund manager to find a good selling

price. But if she can wait until the next date 2t + 1, since more liquidity providers step in, it would

be easier to find a higher selling price. If the game continues on date 2t + 2, that is, when another

round of redemption shock hits the economy, the selling price drops again. These transitory price

impacts induced by outflows and the associated price over-shooting and reversal have been empirically

18There are many plausible explanations for different types of shareholders to have different values of θ. For example,
Chen, Goldstein and Jiang (2010) suggest that institutional investors may have a lower θ because they often have stricter
investment targets and are more likely to internalize the market impact posed by own trading activities. Alternatively,
Gennaioli, Shleifer and Vishny (2015) argue that mutual funds provide trust to their shareholders. For those shareholders
who value such trust, if they choose to leave the fund early, they have to give up the trust premium so can also be viewed
as having a lower θ.

19Although my model features discrete time, the price path is intentionally depicted as a cádlág function that is
everywhere right-continuous and has left limits everywhere to better reflect the perfectly elastic intra-day asset demand
and daily price update.

20I also consider more persistent price impacts in Section 6.3 as an extension and show that they will only strengthen
my results.

21Besides the fact that the fire sale cost on even dates is larger, the specific form in Assumption 1 is not crucial to my
results.
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documented in various asset markets (for example, Campbell, Grossman and Wang, 1993, Pastor and

Stambaugh, 2003, Coval and Stafford, 2007, Hendershott and Seasholes, 2007, Mitchell, Pedersen and

Pulvino, 2007, Comerton-Forde, Hendershott, Jones, Moulton and Seasholes, 2010, Greenwood and

Thesmar, 2011, Edmans, Goldstein and Jiang, 2012, Jotikasthira, Lundblad, and Ramadorai, 2012,

Lou, 2012, Nagel, 2012, Hendershott and Menkveld, 2014, among others). They are also consistent with

the timeline and in particular with the nature of shocks in my economy. This price pattern will be

formally micro-founded in Appendix A.3, based on the idea of slow-moving capital outlined above. To

focus on redemption shocks and their price impacts, my model is intentionally abstracted away from

any fundamental shocks of the underlying assets.

Fund Liquidity Management. The open-end mutual fund has to meet redemption needs in cash

on a daily basis.22 Hence, the fund manager needs to manage its liquidity carefully to keep an adequate

cash position. Specifically, she manages the cash position of the fund both passively and actively.

On the one hand, on any date t, if the fund does not have enough cash to meet date-t projected

redemptions at the beginning-of-day NAV (i.e., NAVt−1), the fund will be forced to raise cash until

all redemption needs can be met. Since there are no inflows and the illiquid assets do not pay interim

cash flows, the fund manager can only raise cash by selling illiquid assets passively23 at the fire sale

price pt. However, redeeming shareholders will only get the end-of-day NAV, which will reflect asset

sale losses within the given date, so that the fund manager only has to sell assets to a point at which

the redemptions can be met at the end-of-day NAV. Denote the amount of illiquid assets that the fund

has to sell passively by qt, which will be endogenously determined in equilibrium.

On the other hand, in addition to selling assets passively for meeting redemptions, the fund can also

manage its cash buffer actively. Specifically, the fund manager is able to voluntarily sell illiquid assets

more than actual redemption needs to rebuild the cash buffer, also at the fire sale price pt. Denote the

amount of assets that the fund voluntarily sells on date t by st. As will become clear later, it is the

time-varying fire sale price that gives rise to the motive for active cash rebuilding: the fund manager

22In Section 5 I discuss how this model can be extended to analyze emergency rules such as redemption restrictions and
in-kind redemptions.

23In Section 5.6, an extension to the baseline model, I also allow the fund to have credit lines to raise cash.
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may optimally choose to rebuild the fund’s cash buffer on odd dates when the fire sale price is high

(and thus the fire sale loss is low), in order to avoid more severe fire sales in future. In what follows,

I will call st the fund’s cash rebuilding policy on date t. Intuitively, a larger st means that the fund is

rebuilding its cash buffer more rapidly.

Now it is natural to specify the fund manager’s objective function formally. Denote by T the random

date on which the game ends.24 The fund manager chooses a sequence {sτ} date by date to maximize:

− Et
T−1∑
τ=t

(qτ + sτ )(R− pτ ) , (2.3)

where the expectation is taken over the random variable T . In particular, selling illiquid assets (either

passively or actively) at fire sale prices will always hurt the fund NAV that redeeming shareholders are

able to get. This implies that late shareholders’ redemption decisions will be directly affected by the

fund’s cash rebuilding policies. Specifically, the late shareholders in stage t rely on the difference of NAV

between date 2t and date 2t + 1 to make redemption decisions, so they rationally form beliefs about

the fund’s cash rebuilding policies {s2t, s2t+1} within that stage.25 As one can expect, the fund’s cash

rebuilding policies will affect shareholders’ run decisions, which will in turn affect the fund’s optimal

cash rebuilding policies in the dynamics. This interaction is only at play when fund NAV is flexible,

the key institutional setting I highlight throughout this paper.

It is important to note that, although feasible, the fund manager will never rebuild the fund’s cash

buffer on even dates in any generic equilibrium, that is, s2t = 0 for any t.26 This is intuitive because

all the purpose for the fund to manage its cash buffer is to avoid extremely costly fire sales on even

dates, and hence it never makes sense for the fund manager to voluntarily sell assets on even dates. As

a result, the fund’s cash rebuilding policy in stage t is solely determined by s2t+1, the amount of illiquid

assets the fund manager voluntarily sells on the odd date 2t + 1. In what follows, I consider s2t+1 the

only choice variable of the fund manager in any stage t.

Finally, it is worth noting that my model is admittedly not intended to be a general theory of mutual

fund management. In general, a fund manager may engage in other management activities (see Wermers,

2000 for a comprehensive evaluation of fund management activities such as asset-picking, style-investing,

and fee-setting). Also, in addition to meeting redemption needs, a fund keeps cash for other purposes,

such as making timely investments in illiquid and high-yield assets without waiting for inflows (Chordia,

1996). To focus on the interaction between fund liquidity management and shareholder runs, I assume

that the purchasing price of the illiquid assets (from outside dealers) is always the fundamental value

R. This is consistent with the existence of large bid-ask spreads in illiquid asset markets, and it implies

that the fund will never repurchase the illiquid assets in my economy with net outflows only.

24By construction, T must be an even number.
25In the U.S., mutual funds are required to disclose their asset positions quarterly, under the scrutiny of the SEC

according to 17 CFR Parts 230, 232, 239, and 274. See “Enhanced Disclosure and New Prospectus Delivery Option for
Registered Open-End Management Investment Companies, Investment Company Act Release No. 28584,” The SEC, Jan
13, 2009. From a theoretical point of view these requirements allow shareholders to form consistent beliefs about a fund’s
cash rebuilding policies.

26This statement will be formally proved in Appendix A.4.
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2.2 Interpretation of the Setup

The settings described above represent a mutual fund crisis management scenario, during which the

fund experiences persistent redemption shocks before a random recovery time. In the setup, π measures

how persistent the redemptions shocks are, or in other words how likely the economy is going to recover

from a bad market condition. When π is lower, the game is more likely to continue, and thus the fund

is more likely to experience redemptions and potential fire sales in the next stage. As the fund manager

never knows when the game will end, liquidity management indeed helps the fund minimize its total

expected fire sale losses, and it matters more when π is lower. Also, I use the end-of-game event to

parsimoniously capture what can possibly happen in a normal-time scenario such as inflows to the fund

and dividend payouts to shareholders. In a normal-time scenario, asset prices are also more likely to be

high and correctly reflecting their fundamentals, as I postulate in the setting. In this sense, my model

is not intended as a general boom-bust cycle model of mutual fund management but one focusing on

crisis management and the economic forces involved. From a theoretical standpoint, many dynamic

crisis management theories in other contexts employ similar structures of persistent shocks followed

by a random recovery time, for example, Lagos, Rocheteau and Weill (2011) on crises in OTC asset

markets, He and Xiong (2012) on corporate debt runs, and He and Milbradt (2015) on maturity choices

in a debt rollover crisis, among others.27

More importantly, the crisis management scenarios of open-end mutual funds are pervasive in reality.

They can occur at both long and short time horizons, and for both fundamental and non-fundamental

reasons. Since the May of 2013, the flagship Total Return fund of the Pacific Investment Management

Company (PIMCO), one of the largest fund in the U.S., has experienced net outflows for more than

28 consecutive months.28 The Prudential M&G’s flagship Optimal Income fund, one of the largest

bond fund in the Europe, has experienced more than 50 consecutive trading days of net outflows in

mid 2015.29 Another example features Aberdeen Asset Management, the largest listed fund manager

in Europe, has experienced net outflows for 15 consecutive months as of the end of 2015.30 This is also

true at the aggregate level: between Aug 20, 2015 and Aug 26, 2015, aggregate outflows from the entire

equity fund sector happened for five consecutive trading days at the total amount of 29.5 billion U.S.

dollars, the largest weekly outflow on record since fund flow data began being calculated in 2002.31 Not

surprisingly, these scenarios happen to smaller funds as well. My model is designed to capture such

scenarios and to explore the potential risks of shareholder runs and fire sales. Given the pervasiveness of

the fund crisis management scenarios, my model is likely to have first-order implications on the potential

financial stability risks of open-end mutual funds.

27These models all have quite distinct approaches and focuses from mine, but they share the similar structure of negative
shocks followed by a random recovery time.

28“PIMCO Total Return Assets Drop Below 100 Billion,” The Reuters, Sept 2, 2015.
29“Investors Pull 2.7 Billion from Giant M&G Bond Fund,” The Financial Times, July 29, 2015.
30“Aberdeen Hit by Investor Outflows,” The Wall Street Journal, December 1, 2015.
31“Running Scared: Tuesdays Stock Fund Redemptions Were Biggest Since 2007,” The Wall Street Journal, Aug 28,

2015.
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2.3 Roadmap and Solution Approach

Formally, the setup above defines an infinite-horizon stochastic game with a long-run player (the fund

manager) and a sequence of short-run players (the late shareholders). I take a two-step approach to

solve this game. First, in Section 3, I solve the stage game among the late shareholders who are hit by

consumption shocks in stage t, given any generic cash policy of the fund within that stage. The late

shareholders’ equilibrium run decisions in that stage game will help determine how the asset and cash

positions of the fund evolve over time. Then I turn to the fully stochastic dynamic game in Section 4,

solving for the fund manager’s optimal dynamic cash policies. I will offer formal equilibrium definitions

accordingly in these two sections.

Both of the two steps provide new insights to the literature. The first step shows that when fund

NAVs flexibly adjust, cash rebuilding by the fund can directly push shareholders to run, a point absent

in classic bank run models. The second step further shows how the potential for shareholder runs

distorts fund liquidity management, a point new to the mutual fund management literature.

3 Shareholder Runs

In this section, I focus on the two-date stage game, showing that the fund’s desire to rebuild its cash

buffer can trigger shareholder runs, and more rapid cash rebuilding leads to more severe runs. This

result is very general: runs can occur in equilibrium regardless of the fund’s initial cash position.

3.1 Stage-Game Equilibrium Definition and Preliminary Analysis

The two-date stage-game equilibrium is a mixed-strategy Nash equilibrium: in any stage t (consisting

of dates 2t and 2t + 1), given the fund’s initial portfolio position (a2t, x2t) and the late shareholders’

common beliefs on the fund’s cash rebuilding policy s2t+1, a late shareholder’s run strategy maximizes

her utility given other late shareholders’ strategies. Since all the late shareholders are identical, there

is no loss of generality to consider symmetric equilibria when mixed strategies are allowed (Khan and

Sun, 2002). Formally:

Definition 1. Given µE, µL, δE, δL, R, a2t, x2t, and s2t+1, a symmetric run equilibrium of the stage-t

game is defined as a run probability λ2t(a2t, x2t, s2t+1) ∈ [0, 1] such that

i) given other late shareholders’ run probability λ2t, late investor i’s optimal run probability λi2t = λ2t

maximizes her utility function (2.2), and

ii) all of the late shareholders have a common belief about the fund’s cash rebuilding policy s2t+1.32

By the Law of Large Numbers, in a symmetric run equilibrium, the total population of shareholders

who redeem on date 2t is (µE + λ2tµL)n2t. Intuitively, this means when some late shareholders are

going to run, there will be effectively more early shareholders and fewer late shareholders.

Before solving for the stage-game equilibrium, I first describe three cases of the stage game according

to the fund’s starting cash position, x2t. As will become clear shortly, the consequences of runs on the risk

32For simplicity, when analyzing the stage game, I slightly abuse the notation s2t+1 to denote both the shareholders’
common belief about the fund’s cash rebuilding policy and the actual cash rebuilding policy itself.
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of fire sales are different when the initial cash position varies. Different x2t also implies different nature

of strategic interactions among late shareholders. Hence, it is useful to discuss these cases separately

to clarify the mechanism. These cases can be characterized by the following three cash-to-assets ratio

regions.

3.1.1 Cash-to-Assets Ratio Regions

Formally, assuming no cash rebuilding and no shareholder runs as the status quo, I characterize three

different cash-to-assets ratio regions of the portfolio position space {(a2t, x2t)} ⊆ R2
+ . In these different

regions, the amounts of illiquid assets that the fund is forced to sell on the two adjacent even and odd

dates, that is, q2t and q2t+1, vary. I define the cash-to-assets ratio

ηt ≡
xt
ax

for any date t.

Lemma 1. Suppose the fund does not rebuild its cash buffer and no late shareholder is going to run,

that is, s2t+1 = 0 and λ2t = 0. Then there are three regions of the cash-to-assets ratio η2t in the stage-t

game. In these three regions, the amounts of illiquid assets that the fund has to sell passively on dates

2t and 2t+ 1 are characterized by:

High Region Gh: q2t = 0, q2t+1 = 0, iff η2t >
(µE + µL)R

1− µE − µL
,

Intermediate Region Gm: q2t = 0, q2t+1 > 0, iff
µER

1− µE
6 η2t <

(µE + µL)R

1− µE − µL
,

Low Region Gl: q2t > 0, q2t+1 > 0, iff η2t <
µER

1− µE
.

The exact values of q2t and q2t+1 in the intermediate and low regions will be solved in Section 3.3 and

Section 3.4.

The three regions of η2t are intuitive. When η2t ∈ Gh, the fund has enough cash to meet all projected

redemptions on both date 2t and 2t+ 1, and thus no forced fire sales occurs. When η2t ∈ Gm, the fund

only has enough cash to meet redemptions on date 2t but not on date 2t+ 1, so it has to passively fire

sell its illiquid asset on 2t+ 1. Finally, when η2t ∈ Gl, the fund does not even have enough cash to meet

redemption needs on date 2t, and thus has to incur forced fire sales on both dates.

Lemma 1 also implies that the stage game is scale-invariant. Neither the absolute value of (a2t, x2t)

nor the initial population of shareholders n2t plays a role in determining the three regions. This allows

me to use the single variable, the cash-to-assets ratio, to characterize shareholder runs in the stage

game. This property of the stage game plays an important role in making the model transparent and

tractable.33 Without loss of generality, I assume n2t = 1 throughout this section.

33Existing dynamic bank run models are usually assumed to be cashless, because adding variable cash positions would
introduce a second state variable that makes a dynamic model intractable. See He and Xiong (2012) and Cheng and
Milbradt (2012) for discussions about this point.
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Although cash rebuilding by the fund unambiguously leads to shareholder runs, Lemma 1 suggests

that the detailed reasons for runs can be different in these three regions because of the different initial

amounts of fire sales. In what follows, I analyze equilibrium shareholder runs and their impact on the

risk of fire sales in the three regions one by one.

3.2 High Cash-to-Assets Ratio Region Gh

When the stage game is in the high cash-to-assets ratio region Gh, Lemma 1 implies that the fund is

not forced to sell any illiquid assets, that is, q2t = q2t+1 = 0, if no shareholder decides to run. But what

would happen if some shareholders decided to run, that is, when λ2t > 0? The next lemma answers

this question. It shows that even if all shareholders decide to run, there will be still no forced fire sales.

Lemma 2. When η2t ∈ Gh, q2t(λ2t) = q2t+1(λ2t) = 0 for any given λ2t ∈ [0, 1] .

The intuition of Lemma 2 is clear. When some late shareholders decide to run, there will be

effectively more early shareholders and fewer late shareholders, but the total population of redeeming

shareholders in the given stage is not changed. Since the fund always has sufficient cash to meet all

early and late redemption needs at the initial NAV, it indeed has enough cash on date 2t even if all of

the late shareholders are going to run.

Lemma 2 has an important implication: NAV2t will never change regardless of whether late share-

holders run or not. In other words, in the high region, shareholders can effectively get a fixed-value

claim on date 2t even though the NAV is flexible by nature. As long as the fund does not rebuild its

cash buffer on date 2t+1, Lemma 2 further implies that NAV2t+1 = NAV2t regardless of λ2t, suggesting

that there is no strategic interaction among late shareholders absent fund cash rebuilding. As a result,

late shareholders will never run if the fund does not rebuild its cash buffer.

However, given the endogenously fixed NAV2t, late shareholders may decide to run if the fund

rebuilds its cash buffer on date 2t+1 (i.e., s2t+1 > 0), which results in a predictable decline in NAV2t+1.

The following lemma characterizes late shareholders’ strategic interaction when s2t+1 is positive.

Lemma 3. When η2t ∈ Gh, late shareholders’ run decision λ2t exhibits strategic complementarity if

and only if s2t+1 > 0. Moreover, the strategic complementarity becomes stronger as s2t+1 increases.

Mathematically, there are:
∂∆uL(λ2t)

∂λ2t
> 0 and

∂2∆uL(λ2t)

∂λ2t∂s2t+1
> 0 ,

if and only if s2t+1 > 0, where ∆uL(λ2t) = uL(λ2t,i = 1;λ2t,−i = λ2t)− uL(λ2t,i = 0;λ2t,−i = λ2t), while

∂∆uL(λ2t)

∂λ2t
= 0 ,

when s2t+1 = 0.34

Lemma 3 suggests the existence of run incentives, which comes from the predictable decline in NAV

when the fund rebuilds its cash buffer. Suppose the fund manager voluntarily sells s2t+1 > 0 unit of

34For simplicity, in what follows when I state results about strategic complementarity and substitutability I omit the
mathematical definitions because they are standard.
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illiquid assets on date 2t+ 1 and λ2t of the late shareholders decide to run. Lemma 2 first suggests that

no matter what λ2t is, q2t is always zero and thus we have

NAV2t = Ra2t + x2t︸ ︷︷ ︸
NAV2t−1

. (3.1)

However, NAV2t+1 becomes lower due to the fire sales of illiquid assets on date 2t+ 1:

NAV2t+1 =
R

illiquid assets remained︷ ︸︸ ︷
(a2t − s2t+1) +

cash remained︷ ︸︸ ︷
x2t − (µE + λ2tµL)(Ra2t + x2t) +

cash rebuilt︷ ︸︸ ︷
δLRs2t+1

1− (µE + λ2tµL)︸ ︷︷ ︸
shareholders remained on date 2t+ 1

(3.2)

= NAV2t −
(1− δL)Rs2t+1

1− µE − λ2tµL
. (3.3)

The calculation in (3.2) reflects the fund manager’s voluntary asset sales and the associated price

impact on date 2t + 1 before the end-of-day NAV is determined. Consequently, a wedge, as shown in

(3.3), emerges between the NAV of the two dates. It suggests a predictable decline in the NAV on date

2t+ 1.

The predictable decline in NAV implies that the fund manager rebuilds its cash buffer at the expense

of the late shareholders who initially plan to wait until date 2t+ 1, giving rise to run incentives among

these late shareholders. Specifically, the wedge in (3.3) is increasing in 1 − δL and s2t+1, suggesting

that the late shareholders who wait are hurt more if the price impact is larger or if the fund sells more.

The wedge is also increasing in µE and λ2t, suggesting that the late shareholders who wait are hurt

more if more of others are running, and thus they have to bear a higher fire sale cost per share on

date 2t + 1. Moreover, for given s2t+1 and λ2t, the utility gain ∆uL(λ2t) of running over waiting is

θNAV2t−NAV2t+1, which is strictly increasing in λ2t by (3.3). This illustrates the underlying strategic

complementarity among late shareholders.

Lemma 3 suggests that both cash rebuilding and flexible NAV adjustment play crucial roles in

generating the run incentives for late shareholders. If s2t+1 = 0, the stage game features no strategic

interaction at all in the high region. If NAV2t+1 was fixed, which is the case for MMFs, rebuilding

the cash buffer by selling illiquid assets would not generate a wedge of value between early and late

shareholders.

I further show that the run incentives can indeed lead to shareholder runs in equilibrium. When the

fund rebuilds its cash buffer rapidly enough, that is, when s2t+1 is large enough, late shareholders are

going to run.

Proposition 1. When η2t ∈ Gh, late shareholders’ equilibrium run behaviors are given by the following

three cases:

i) none of the late shareholders runs, that is, λ2t = 0, if

s2t+1 < sh ≡
(1− θ)(1− µE − µL)(Ra2t + x2t)

(1− δL)R
,
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ii) all of the late shareholders run, that is, λ2t = 1, if

s2t+1 > sh ≡
(1− θ)(1− µE)(Ra2t + x2t)

(1− δL)R
,

iii) λ2t ∈ {0, λ̃2t, 1}, if

sh 6 s2t+1 6 sh ,

where λ̃2t is the solution to

s2t+1 =
(1− θ)(1− µE − λ̃2tµL)(Ra2t + x2t)

(1− δL)R
.

Moreover, there are 0 6 sh 6 sh.

Proposition 1 suggests that the fund’s cash rebuilding indeeds leads to shareholder runs in equilib-

rium, and more rapid cash rebuilding can trigger more shareholders to run. The intuitions for the three

cases are as follows. In Case i), when the fund sells only a few illiquid assets, NAV2t+1 is still high

enough, the utility gain of running over waiting would be negative even if all of the late shareholders

decided to run, so it turns out no one runs. In Case ii), when the fund manager voluntarily sells so many

illiquid assets to a point where NAV2t+1 is so low and the utility gain of running would be positive even

if others did not run, all of the late shareholders will run. Both Case i) and Case ii) feature a unique

equilibrium. In Case iii), the utility gain of running is negative when no one runs but becomes positive

when all of the late shareholders are going to run. Strategic complementarity implies that the utility

gain of running is increasing when more late shareholders decide to run, so multiple equilibria emerge.

Among the three possible equilibria, the partial run equilibrium λ̃2t features a point where the utility

gain of running is zero so that any late shareholder is indifferent between running or waiting.

One natural question is, would cash rebuilding (i.e., a positive s2t+1) ever make sense from the fund

manager’s perspective? This question is sensible given that shareholder runs happen in equilibrium

only if s2t+1 > 0. As I will show in Section 4, there can indeed be scenarios in which the fund manager

optimally chooses to rebuild its cash buffer rapidly and bear some costs of shareholder runs, which

supports the existence of run equilibria in the stage game.

The next question is: what kind of costs do shareholder runs impose on the fund? In other words,

how do shareholder runs affect the fund’s total risk of fire sales, given the fund manager’s objective

function as in (2.3)? I formally answer this question by looking at the law of motions of the fund’s

portfolio position (a2t, x2t). The law of motions is also important for the fully dynamic analysis in

Section 4.

Corollary 1. When η2t ∈ Gh, the law of motions of (a2t, x2t) is given by

a2t+2 = a2t − s2t+1 , and ,

x2t+2 = x2t − (µE + µL)(Ra2t + x2t)︸ ︷︷ ︸
cash remained if no cash rebuilding

+ δLRs2t+1︸ ︷︷ ︸
cash rebuilt

+
(1− λ2t)µL(1− δL)Rs2t+1

1− µE − λ2tµL︸ ︷︷ ︸
cash saved due to NAV adjustment

, (3.4)

18



where λ2t is the equilibrium run probability induced by (a2t, x2t) and s2t+1, as characterized in Proposition

1.

I illustrate the implications of runs on the total risk of fire sales by interpreting the two laws of

motions in Corollary 1. The law of motions of a2t is straightforward by Lemma 2 because q2t = q2t+1 = 0

regardless of λ2t. This suggests that even though cash rebuilding can trigger shareholder runs, it will

not induce any forced fire sales in the current stage when η2t ∈ Gh.

However, shareholder runs can offset the fund’s cash rebuilding efforts and lead to higher risk of

future fire sales. This can be seen from the law of motions of x2t in (3.4). To make this clear, I organize

the terms in the right hand side of (3.4) in a way to better reflect the cost of shareholder runs. The

first term denotes the amount of cash remained if the fund did not rebuild its cash buffer so that the

fund paid the initial NAV to all of the early and late shareholders. The second term denotes the actual

amount of cash the fund can get by selling s2t+1 illiquid assets. Neither of these two terms depends on

λ2t. The third term is more interesting. It reflects the fact that the fund can give the late shareholders

less cash when it rebuilds its cash buffer on date 2t + 1. Specifically, when s2t+1 is positive, NAV2t+1

becomes lower as shown in (3.3). Thus, more cash remains on the fund’s balance sheet than that

indicated by the first term in (3.4). But the third term is strictly decreasing in λ2t, suggesting that this

benefit of cash saving to the fund becomes smaller when more late shareholders are running.35 As a

result, when more shareholders run in equilibrium, the fund loses more cash in the given stage, carries

less cash to future stages under the same cash rebuilding policy s2t+1, and thus faces higher risk of

future fire sales.

With the intuition outlined above, it is convenient to combine the last two terms in (3.4) and define

p̂L(λ2t) ≡
[
δL +

(1− λ2t)µL(1− δL)

1− µE − λ2tµL

]
R (3.5)

as the effective selling price on the odd dates 2t+ 1. It is decreasing in λ2t, meaning that the effective

selling price on odd dates is lower when more shareholders are going to run. Intuitively, the fund prefers

a higher effective selling price on odd dates because that helps reduce future risk of fire sales. I will

frequently refer to this definition in the dynamic analysis in Section 4.

3.3 Low Cash-to-Assets Ratio Region Gl

Now I turn to the low cash-to-assets ratio region Gl. In this region, the fund’s starting cash position is

so low that it cannot even meet the redemption needs of the early shareholders. Thus, it is forced to

fire sell its illiquid assets on both dates 2t and 2t+ 1. If late shareholders decide to run, the fund has to

35There are two effects captured by the numerator and denominator of the third term in (3.4), respectively. On the one
hand, as more late shareholders run on date 2t, the fund has to pay the (endogenously) fixed NAV2t to more shareholders.
This is reflected in the numerator in the sense that only 1− λ2tµL late shareholders are left to bear the asset sale cost on
date 2t + 1, so that the benefit of cash saving due to flexible NAV adjustment becomes lower to the fund. On the other
hand, as reflected by the denominator as well as the wedge term in (3.3), NAV2t+1 becomes lower as more shareholders
are going to run, suggesting that the fund can give less to each of those late shareholders who wait. In equilibrium, the
former effect dominates, suggesting that shareholder runs impose an unambiguous negative effect on the net amount of
cash the fund can get by selling s2t+1 illiquid assets.
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passively sell even more. The following lemma formally characterizes how late shareholder runs affect

the fund’s forced fire sales on the two dates.

Lemma 4. When η2t ∈ Gl, there are

q2t(λ2t) =

cash gap︷ ︸︸ ︷
(µE + λ2tµL)(Ra2t + x2t)− x2t
[δE + (1− δE)(µE + λ2tµL)]R︸ ︷︷ ︸

effective selling price with NAV adjustment

, and , (3.6)

q2t+1(λ2t) =

cash gap︷ ︸︸ ︷
(1− λ2t)µL ·

R(a2t − q2t)
1− µE − λ2tµL[

δL +
(1− λ2t)µL(1− δL)

1− µE − λ2tµL

]
R︸ ︷︷ ︸

effective selling price with NAV adjustment

, (3.7)

where q2t is increasing in λ2t, q2t+1 is decreasing in λ2t, and q2t + q2t+1 is increasing in λ2t.

I first interpret the intuition behind the expressions of q2t(λ2t) and q2t+1(λ2t). In determining the

amounts of forced fire sales, one needs to know 1) the amount of cash that the fund is forced to raise

(i.e., the “cash gap”), and 2) the price at which the fund can sell its assets. Specifically, at the beginning

of each date, the cash gap is defined as the difference between the fund’s initial cash position and the

amount of cash needed to meet projected redemptions at the beginning-of-day NAV, as shown in the

numerators of (3.6) and (3.7). However, the fund does not really have to raise that much cash in

equilibrium, because the NAV goes down as the fund sells its assets, and redeeming shareholders are

only entitled to the end-of-day NAV, which reflects those asset sale costs. Effectively, this is equivalent

to a counterfactual in which the fund still sells assets to close the initial cash gap but at a higher effective

selling price as the denominators of (3.6) and (3.7) indicate.

Thus, like (3.5), I also formally define the notion of effective selling price on the even dates 2t:

p̂E(λ2t) ≡ [δE + (1− δE)(µE + λ2tµL)]R . (3.8)

Lemma 4 shows how shareholder runs affect the amounts of forced fire sales on the two dates,

respectively. When more late shareholders decide to run, the fund has to meet more redemptions on

date 2t while fewer redemptions on date 2t + 1. Hence, it is forced to fire sell more assets on date 2t

while fewer assets on date 2t+ 1.36

More importantly, Lemma 4 also illustrates that runs unambiguously lead to higher total amounts

of forced fire sales in the given stage, as shown in the monotonicity of q2t + q2t+1 in λ2t. This is because

36Formally, for q2t, there are two effects: the cash gap is larger when λ2t is larger, but the effective selling price is also
higher. The cash gap effect dominates so that q2t is increasing in λ2t. For q2t+1, there are three effects. When λ2t gets
larger, fewer late shareholders choose to wait, and fewer illiquid assets remain as well (since q2t becomes larger). Both lead
to a smaller cash gap. However, the effective selling price is lower as well. Again the cash gap effect dominates so that q2t
is increasing in λ2t.
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the effective selling price on date 2t is always lower than that on date 2t+ 1,37 which means that more

early redemptions have to be met by selling assets at a lower effective selling price while fewer late

redemptions will be met by selling assets at a higher effective selling price. Hence, the increase of q2t

will dominate the decrease of q2t+1 when more shareholders are going to run. As a result, shareholder

runs, if occurring in equilibrium, lead to unambiguously more severe current-stage fire sales.

Lemma 4 implies that both NAV2t and NAV2t+1 will be lower when shareholder runs occur. There

are

NAV2t(λ2t) = R

illiquid assets remained︷ ︸︸ ︷
(a2t − q2t(λ2t)) +

cash existed︷︸︸︷
x2t +

cash raised︷ ︸︸ ︷
δERq2t(λ2t)

= Ra2t + x2t︸ ︷︷ ︸
NAV2t−1

−(1− δE)Rq2t(λ2t) , (3.9)

and

NAV2t+1(λ2t) =
R

illiquid assets remained︷ ︸︸ ︷
(a2t − q2t(λ2t)− q2t+1(λ2t)− s2t+1) +

cash raised and rebuilt︷ ︸︸ ︷
δLR (q2t+1(λ2t) + s2t+1)

1− µE − λ2tµL︸ ︷︷ ︸
shareholders remained on date 2t+ 1

, (3.10)

where q2t(λ2t) and q2t+1(λ2t) are given in (3.6) and (3.7).

Like in the high region, a predictable decline in NAV2t+1 emerges because of the fund’s forced fire

sales and active cash rebuilding on date 2t + 1, as shown in (3.10). However, different from the high

region, NAV2t(λ2t) is no longer fixed but decreasing in λ2t, as shown in (3.9). Intuitively, because the

fund NAV flexibly adjusts, shareholders who choose to run have to bear all the fire sale costs incurred

on date 2t. This feature changes the nature of the stage game.

Lemma 5. When η2t ∈ Gl, late shareholders’ run decision λ2t exhibits strategic substitutability for any

λ2t satisfying θNAV2t(λ2t) > NAV2t+1(λ2t) and any feasible s2t+1.38 However, when s2t+1 increases,

the strategic substitutability becomes weaker and θNAV2t(λ2t)−NAV2t+1(λ2t) becomes larger, reinforcing

a stronger incentive to redeem earlier.

The intuition behind Lemma 5 is as follows. On the one hand, the predictable decline in NAV2t+1 can

give rise to an incentive to redeem earlier (i.e., to run on date 2t). On the other hand, a late shareholder

who decides to run has to accept a lower NAV2t when more of other late shareholders decide to run. In

particular, as more shareholders are going to run, the difference between NAV2t(λ2t) and NAV2t+1(λ2t)

becomes smaller, implying strategic substitutability among late shareholders. Intuitively, a shareholder

redeeming at t realizes that more early withdrawals will potentially induce more fire sales at t and thus

37More formally, by the monotonicity of the effective selling prices p̂L(λ2t) and p̂E(λ2t), there is

p̂E(λ2t) 6 p̂E(1) < p̂L(1) 6 p̂L(λ2t)

for any λ2t ∈ [0, 1]. In other words, the potential for runs may change the effective selling prices on the two adjacent dates
in the given stage, but the effective selling price on 2t is still lower than that on 2t+ 1 regardless of shareholder runs.

38In equilibrium λ2t will be an endogenous function of s2t+1. But in showing the strategic interaction among late
shareholders of the stage game, λ2t should be treated as an independent variable. This also applies to the analysis of the
intermediate region.
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lower the proceeds she receives, and thus the expected utility gain of running over waiting would be

decreasing as more shareholders run.

However, when the fund rebuilds its cash buffer, the strategic substitutability may not reduce the

run incentive (when θ is large enough). Concretely, when the fund voluntarily sells a sufficiently large

amount of assets to rebuild its cash buffer, the resulting large predictable decline in NAV2t+1 reinforces

a sufficiently strong run incentive. As a result, a late shareholder may still decide to run even if all of

the other late shareholders have already run, despite the strategic substitutability.

Consequently, the next proposition fully characterizes late shareholders’ equilibrium run behaviors

in the low region.

Proposition 2. When η2t ∈ Gl, late shareholders’ equilibrium run behaviors are given by the following

three cases:

i) none of the late shareholders runs, that is, λ2t = 0, if

s2t+1 < sl ≡
Ra2t − θ(1− µE)(Ra2t + x2t)− (1− θ(1− δE)(1− µE))Rq2t(0)

(1− δL)R
− q2t+1(0) ,

ii) all of the late shareholders run, that is, λ2t = 1, if

s2t+1 > sl ≡
Ra2t − θ(1− µE − µL)(Ra2t + x2t)− (1− θ(1− δE)(1− µE − µL))Rq2t(1)

(1− δL)R
,

iii) some of the late shareholders run, that is, λ2t = λ̃2t, if

sl 6 s2t+1 6 sl ,

where λ̃2t is the solution to

s2t+1 =
Ra2t − θ(1− µE − λ̃2tµl)(Ra2t + x2t)− (1− θ(1− δE)(1− µE − λ̃2tµl))Rq2t(λ̃2t)

(1− δL)R
− q2t+1(λ̃2t) .

All of the q2t(λ2t) and q2t+1(λ2t) are given in Lemma 4. Moreover, there are sl > 0 and sl > sl.

Like Proposition 1, Proposition 2 also suggests that the fund’s cash rebuilding leads to shareholder

runs in equilibrium, and more rapid cash rebuilding can trigger more shareholders to run, despite the

strategic substitutability. In Case i), when the fund does not rebuild its cash buffer or only sells a few

illiquid assets, NAV2t+1 can be still higher regardless of shareholders’ redemption decisions, so that late

shareholders will not run. In Case ii), when the fund voluntarily sells so many illiquid assets, NAV2t+1

is so low that the utility gain of running over waiting is positive even if all of the late shareholders

have already run. In other words, fund cash rebuilding can reinforce a strong run incentive despite the

strategic substitutability. In addition, all of the late shareholders do not run unless the fund rebuilds its

cash buffer (since sl > 0), suggesting that only cash rebuilding by the fund can push all the shareholders

to run in this mutual fund context.39 In Case iii), the utility gain of running over waiting is positive

when no shareholder runs but becomes negative when all of the late shareholders are going to run. In

39This is not true for a comparable bank with fixed-value deposits, in which all shareholders can run in equilibrium even
if the bank does not do anything by itself.
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this case, there exists some run equilibrium in which the utility gain of running over waiting is zero, so

that late shareholders are indifferent between running or waiting.

Again, I show how shareholder runs affect the risk of forced fire sales, by looking at the law of

motions of the fund portfolio position (a2t, x2t).

Corollary 2. When η2t ∈ Gl, the law of motions of (a2t, x2t) is given by

a2t+2 = a2t −
forced fire sales︷ ︸︸ ︷

(q2t(λ2t) + q2t+1(λ2t))−s2t+1 , and , (3.11)

x2t+2 = δLRs2t+1︸ ︷︷ ︸
cash rebuilt

+
(1− λ2t)µL(1− δL)Rs2t+1

1− µE − λ2tµL︸ ︷︷ ︸
cash saved due to NAV adjustment

= p̂L(λ2t)s2t+1 , (3.12)

where λ2t is the equilibrium run probability induced by (a2t, x2t) and s2t+1, as characterized in Proposition

2.

The two laws of motions here are different from those in Corollary 1, but can be unified under the

same intuition. The law of motions of a2t in (3.11) is different because of the newly introduced forced

fire sales terms: shareholder runs result in more forced fire sales in the given stage. The law of motions

of x2t in (3.12) loses the first term in (3.4). This is natural because by construction no cash would

remain in the low region if the fund did not rebuild its cash buffer. Perhaps surprisingly, the two terms

in (3.12) are exactly the same as the last two terms in (3.4) despite the more complicated forced asset

sales and NAV updating in the low region. But this is still intuitive: all the proceeds from forced fire

sales accrue to the redeeming shareholders, and thus they will not affect the amount of cash that the

fund can carry into future stages. This suggests that, in rebuilding its cash buffer the fund is still selling

at the effective selling price p̂L(λ2t).

Importantly, Corollary 2 implies two different costs of shareholder runs. First, shareholder runs force

the fund to fire sell more illiquid assets in the current stage (remember Lemma 4 shows that q2t + q2t+1

is increasing in λ2t). Second, like that in the high region, shareholder runs lead to a lower effective

selling price on date 2t+ 1 when the fund rebuilds its cash buffer. This means that runs partially offset

the fund’s efforts of cash rebuilding and thus lead to higher risk of future fire sales. The second cost is

also present in the high region as shown in (3.4).

Compared to the analysis for the high region in Section 3.2, Proposition 2 and Corollary 2 suggest

that starting with a low cash position makes a fund financially more fragile. Being in the low cash-

to-assets ratio region makes the fund more prone to forced fire sales initially. Even worse, because the

fund is running out of cash, it is likely to rebuild its cash more rapidly (as formally shown in Section

4), leading to more severe runs. In particular, runs in the low region are more detrimental to the fund:

they not only increase current-stage forced fire sales but also lead to higher risk of future fire sales.

3.4 Intermediate Cash-to-Assets Ratio Region Gm

I then analyze the intermediate cash-to-assets ratio region Gm. In this region, the fund’s starting cash

position is moderate in the sense that it can meet all of the early shareholders’ redemption needs but
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then falls short for late shareholders’ redemption requests.

In the intermediate region, we still have the universal results of shareholder runs as those in the

high and low regions. Specifically, the fund’s cash rebuilding can lead to runs in equilibrium, and more

rapid cash rebuilding implies more severe runs. Also, there are two costs of runs as those in the low

region: more current-stage forced fire sales and higher risk of future fire sales.

However, the underlying strategic interaction among shareholders becomes more involved in the

intermediate region. When only a few late shareholders decide to run, the fund will not be forced to fire

sell its illiquid assets on date 2t, and thus NAV2t will be endogenously fixed. However, when many late

shareholders decide to run, the fund will be forced to sell its assets on date 2t, and thus both NAV2t

and NAV2t+1 vary. In this sense, the stage game in the intermediate region can be viewed as a hybrid

of one game in the high region and another one in the low region, which can switch from strategic

complementarity to substitutability as more shareholders decide to run. However, it is still the fund’s

cash rebuilding and the resulting predictable decline in NAV2t+1 that reinforce a strong run incentive.

Given the results in Sections 3.2 and 3.3, I defer the full investigation of the intermediate region to

Appendix A.2. The formal results are stated there as Lemma 10, Proposition 13, and Corollary 4.

3.5 The Differences from Bank Runs and Market Runs

Before analyzing the fully dynamic model of fund cash management, it is useful to contrast the share-

holder run mechanism to those underlying classic bank runs (Diamond and Dybvig, 1983) and market

runs (Bernardo and Welch, 2004, Morris and Shin, 2004). This helps highlight the contribution of this

paper to the existing run literature.

First, fund shareholder runs differ from classic bank runs in terms of the underlying mechanism.

In my model, the first-mover advantage does not come from an exogenous fixed-NAV claim on date 2t

like the deposit at a bank. Instead, it is the fund’s desire to rebuild its cash buffer on date 2t+ 1 and

the resulting predictable decline in NAV2t+1 that lead to a strong first-mover advantage and thus the

potential for shareholder runs. In contrast, when a comparable bank rebuilds its cash buffer by selling

assets, the underlying deposit value will not change,40 and thus bank cash rebuilding by itself cannot

directly generate depositor runs.

To illustrate the differences between fund shareholder runs and classic bank runs more in depth, it

is again helpful to separate the cases with a high and a low starting cash position.

When the fund starts with a high cash position, late shareholders are going to run only if the fund

voluntarily sells a sufficient amount of assets to rebuild its cash buffer, which generates a large enough

predictable decline in NAV. On the one hand, although the late shareholders who run are expecting to

get a fixed NAV on date 2t, NAV2t is fully endogenous and flexible by nature. This is in contrast to

bank run models in which a fixed-value claim is either exogenously assumed or derived as the optimal

contract in an outer risk-sharing problem. On the other hand, in a typical two-date bank run model,

strategic complementarity arises because run-induced asset liquidation on the early date hurts what a

40To be precise, banks are always financed by some equity, so that the asset sale costs go to the equity holders. This is
consistent with the reality in the sense that deposit banks are always subject to some capital requirements.
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waiting shareholder can get on the late date; no asset liquidation happens on the late date. But in my

model, no fire sales ever occur on date 2t when the fund is in the high cash-to-assets region. Instead,

runs hurt shareholders who wait because fewer of them are left on date 2t+ 1 and thus each has to bear

a higher asset sale cost per share when the fund rebuilds its cash buffer. As will be clear in the dynamic

analysis, when more shareholders run, the fund loses more cash on date 2t and thus may want to rebuild

it cash buffer more rapidly, creating an negative externality on the late shareholders who wait.

In contrast, when the fund starts with a low cash position, the stage game can even feature strategic

substitutability, but the fund’s cash rebuilding reinforces a strong run incentive. In classic two-date bank

run models, the game exhibits strategic substitutability only if the bank goes bankruptcy on the early

date and an equal sharing rule is applied among depositors. In other words, strategic substitutability

emerges only because more depositors are going to share the fixed liquidation value on the early date,

and thus everyone gets less. Such strategic substitutability is absent as long as the bank is still solvent.

However, in my mutual fund model with a fully flexible NAV, the fund never goes bankruptcy. Strategic

substitutability instead emerges from the fact that the fund may be forced to fire sell more illiquid

assets on date 2t and thus NAV2t becomes lower. Indeed, some fund managers refer to this strategic

substitutability to deny the existence of fund shareholder runs. But as I have already showed, the fund’s

cash rebuilding and the resulting predictable decline in NAV can lead to shareholder runs in equilibrium

despite the strategic substitutability.

Regardless of the starting cash position, the shareholder run mechanism further highlights a dynamic

interaction between the fund and its shareholders, which is absent in bank run models that focus on

coordination failures among depositors themselves. Specifically, a shareholder’s run decision not only

depends on her belief about other shareholders’ run decisions, but also depends on her belief about the

fund’s cash rebuilding policy,41 which in turn depends on all the future generations of shareholders’ run

decisions in the fully dynamic model.

Observationally, fund shareholder runs also tend to be “slow-moving,” in the sense that their costs

are reflected in higher fire sale losses over time rather than an abrupt bankruptcy as that in bank run

models.42 This nature suggests that the negative impacts of shareholder runs on fund performance can

be gradual but long-lasting.

The run mechanism in my model is also different from that underlying market runs. The notion of

market runs is formally proposed by Bernardo and Welch (2004) and Morris and Shin (2004), which

independently argue that if an asset market features an exogenous downward-sloping demand curve,

investors fearing future liquidity shocks will have an incentive to front-run, selling the asset earlier to

get a higher selling price. This run mechanism leads to massive fire sales in equilibrium. In my model,

shareholders get access to the underlying assets only through the fund, and fund cash management is

indeed beneficial to shareholders because it helps reduce total expected fire sale losses. However, the

key tension that I document is that the fund’s dynamic cash rebuilding also endogenously gives rise to

41In this sense, the shareholder run mechanism within the stage game more closely resemble the idea of fundamental
runs as argued by Chari and Jagannathan (1988), Jacklin and Bhattacharya (1988) and Allen and Gale (1998).

42In my model, as long as the entire population of shareholders are not going to run (i.e., µE + µL < 1), the fund will
stay solvent. This is not true for a bank, which can be forced to go bankruptcy even if only a fraction of depositors run.
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a predictable decline in NAV and thus a new kind of run incentives. No cash management implies no

runs in my model. In contrast, there is no role for cash management in market run models. In this

sense, market run models focus on the asset market itself while my theory focuses on the role of financial

intermediaries. This allows me to distinguish between risks that come from the active management of

financial intermediaries and those that are only a reflection of the underlying asset market frictions.

4 Fund Liquidity Management in the Presence of Runs

In this section, I turn to the fully dynamic game and endogenize the fund’s optimal dynamic cash

rebuilding policy. I show that the potential for runs gives rise to a new tension: rebuilding the cash

buffer more rapidly can trigger runs, while rebuilding it less rapidly puts the fund at higher risk of future

fire sales as well as future runs. I then show that a time-inconsistency problem further complicates this

tension, leading to severe fire sales in expectation despite optimal cash management by the fund.

4.1 Dynamic Equilibrium Definition and Preliminary Analysis

The dynamic equilibrium is a Markov perfect equilibrium43: in any stage t (consisting of dates 2t and

2t + 1), as long as the game continues, both the fund manager and the late shareholders’ strategies

are functions of the state variables a2t and x2t, the fund’s starting portfolio position, and the strategy

profile is subgame perfect. Formally, I have:

Definition 2. Given µE, µL, δE, δL, and R, a Markov perfect equilibrium is defined as a combination

of the fund manager’s optimal cash rebuilding policy function s∗2t+1(a2t, x2t) and the late shareholders’

run decision λ2t(a2t, x2t, s2t+1) such that

i) given any state (a2t, x2t) and any generic common belief of the cash rebuilding policy s2t+1(a2t, x2t),

the late investors’ run decision λ2t(a2t, x2t, s2t+1) ∈ [0, 1] constructs a symmetric run equilibrium as

defined in Definition 1, which also determines q2t and q2t+1 in any stage,

ii) the fund manager’s optimal cash rebuilding policy function s∗2t+1(a2t, x2t, λ2t) solves the following

Bellman equation:

V (a2t, x2t) = −(1− δE)Rq2t − (1− δL)Rq2t+1 + max
s∗2t+1

[−(1− δL)Rs2t+1 + (1− π)V (a2t+2, x2t+2)] , (4.1)

iii) the state variables (a2t, x2t) are govern by the endogenous laws of motions as described in

Corollaries 1, 2 and 4, according to the respective cash-to-assets ratio regions.

I use a guess-and-verify approach to solve for the equilibrium.44 Specifically, I will first characterize

some important properties of the value function V (a2t, x2t). With the help of these properties, I solve

43As shown in Bhaskar, Morris and Mailath (2013), an equilibrium is purifiable if some close-by behavior is consistent
with equilibrium when agents’ payoffs in each stage are perturbed additively and independently, and for infinite stochastic
games with at most one long-run player all purifiable equilibria are Markov. My model can be viewed as a special case
of the general class of games described in Bhaskar, Morris and Mailath (2013). As the fund manager is the only long-run
player in my model, to restrict attention to Markov equilibria involves no loss of generality in the sense of finding all
purifiable equilibria.

44Formally, the usual first-order approach does not apply here, because the value function is only piecewise-differentiable.
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for the equilibrium for different parameter values of θ, which governs the late shareholders’ propensity

to run.

The stage game may admit multiple equilibria in some circumstances, and thus an equilibrium

selection mechanism is needed. Since equilibrium selection is not crucial to my main point about the

dynamic interdependence between shareholder runs and fund liquidity management, I assume that

late shareholders will coordinate to the worst equilibrium whenever multiple equilibria occur.45 This

equilibrium selection mechanism can be motivated by that the fund manager may be ambiguity averse

to the potential for shareholder runs, so that she wants to find the most conservative cash rebuilding

policies. Alternative equilibrium selection mechanisms such as selecting the best equilibrium or the

static global game approach (Goldstein and Pauzner, 2005) will not qualitatively change my results.

The following proposition establishes the existence and some important analytical properties of the

value function.

Proposition 3. A value function V (a2t, x2t) exists under the Markov strategies proposed in Definition

2. In particular, V (a2t, x2t) is homogeneous of degree one (HD1) in (a2t, x2t).

The fact that V (a2t, x2t) is HD1 in (a2t, x2t) is important. It implies that the dynamic game is

also scale-invariant, and thus the cash-to-assets ratio η2t becomes the single effective state variable of

the fully dynamic model. This property will make the analysis of the fund’s dynamic cash rebuilding

policies more transparent.

Finally, before analyzing the fully dynamic equilibrium in general, I analyze how different values of

π, the probability at which the game ends, shape the fund’s optimal cash rebuilding policy. Intuitively,

when the shock is less persistent (i.e., π is large), the future risk of fire sales is small, and thus cash

buffers become less valuable. Therefore, when π is sufficiently large, it makes little sense for the fund

to rebuild its cash buffer ex-ante, because doing do only induces current sales of assets for sure but

generates little future benefit. As a result, the model admits a type of equilibria in which the fund

finds it optimal not to rebuild its cash buffer at all. In these equilibria, ex-post, the fund may be forced

to fire sell many illiquid assets in future, because it may not have enough cash buffer when the game

continues. This is consistent with the view that if agents underestimate the probability of bad shocks

they are likely to suffer huge losses ex-post (Gennaioli, Shleifer and Vishny, 2012, 2013).

Lemma 6. When π is sufficiently large, the equilibrium features s∗2t+1(a2t, x2t) = 0 for any starting

portfolio position (a2t, x2t).

To better illustrate the key trade-off involved in the dynamic model, in the following analysis, I will

consider an arbitrarily small (but still positive) π. Intuitively, this means that the redemption shocks

are sufficiently persistent, consistent with the crisis management scenarios discussed in Section 2.2. This

will introduce significant future risk of fire sales and thus give rise to a significant trade-off between

current runs and future fire sales.46

45See Postlewaite and Vives (1987), Allen and Gale (1998), Cooper and Ross (1998), among other more recent papers,
for a similar treatment; some of those papers assume shareholders to coordinate to the best equilibrium to justify the
existence of banks.

46It should be noted that those equilibria characterized by Lemma 6 are still intuitive and consistent with the model
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4.2 The No-Run and Extreme-Run Scenarios: θ = 0 and θ = 1

First, I consider two extreme scenarios, which are sufficient to illustrate the key trade-off underlying

the fund’s optimal cash management. One is the scenario of θ = 0, in which there are completely no

runs. The other is the scenario of θ = 1, in which late shareholders are indifferent between early and

late consumptions so that they have the strongest propensity to run.

I show that, in both scenarios, the fund optimally rebuilds its cash buffer when its cash position

falls below some threshold. But the threshold and the optimal amount of cash rebuilding are different

in these cases, reflecting different trade-offs between current runs and future fire sales.

I start by defining some new notations to streamline the presentation. First, the dynamic game is

scale-invariant according to Proposition 3, so it is convenient to define

σ2t+1 ≡
s2t+1

a2t
,

the fraction of illiquid assets that the fund voluntarily sell on odd dates 2t+1 (relative to the beginning-

of-stage asset position a2t), to denote the cash rebuilding policy. Moreover, Corollaries 1, 2, and 4 suggest

that η2t+2 is uniquely determined by (a2t, x2t) and σ2t+1.
47 Given (a2t, x2t) as the state variables and η2t

as the only effective state variable, it is also convenient to use η2t+2 to denote the fund’s cash rebuilding

policy.

I also recap the definitions of different cash-to-assets ratio regions. In particular, I further divide the

high region Gh into three different sub-regions: the high-low region Ghl, the high-intermediate region

Ghm, and the high-high region Ghh:

Region Cash-to-Assets Ratio

Gl η2t <
µER

1− µE

Gm
µER

1− µE
6 η2t <

(µE + µL)R

1− µE − µL

Ghl η2t >
(µE + µL)R

1− µE − µL
and η2t+2 <

µER

1− µE
if σ2t+1 = 0

Ghm η2t >
(µE + µL)R

1− µE − µL
and

µER

1− µE
6 η2t+2 <

(µE + µL)R

1− µE − µL
if σ2t+1 = 0

Ghh η2t >
(µE + µL)R

1− µE − µL
and η2t+2 >

(µE + µL)R

1− µE − µL
if σ2t+1 = 0

The three sub-regions of the high region Gh are defined from a dynamic perspective, and they will

be useful in describing the optimal dynamic cash rebuilding policy. When the fund starts from Gh and

does not rebuild its cash buffer, by definition, after meeting redemptions in the given stage the fund

still has a non-negative cash position in the next stage. If the fund ends up into the low region Gl in the

next stage, I say that the fund starts from the high-low region Ghl. If instead the fund ends up into the

settings. They are just less relevant to the main point of this paper: the dynamic interdependence of shareholder runs and
fund liquidity management in a crisis management scenario.

47Keep in mind that the fixed stage-game equilibrium selection mechanism is used when needed.
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intermediate region Gm in the next stage, I say that the fund starts from the high-intermediate region

Ghm. The high-high region Ghh is defined in the same manner. Clearly, there is

Gh = Ghl ∪Ghm ∪Ghh .

Now I characterize the fully dynamic equilibria when θ = 0 and θ = 1. First, I analyze the behavior

of shareholder runs in these two scenarios, given any generic and feasible cash rebuilding policy of the

fund. These results are useful not only because they illustrate whether and when shareholders will run

in equilibrium, but also because they can help pin down all the possible off-equilibrium paths.

Lemma 7. When θ = 0, none of the late shareholders run in stage t, that is, λ2t(a2t, x2t) = 0 for any

(a2t, x2t) and any cash rebuilding policy σ2t+1.

Lemma 7 is straightforward. If a shareholder gets nothing when running, they will never run. In

other words, there will be completely no runs in this scenario.

Lemma 8. When θ = 1, all of the late shareholders run in stage t, that is, λ2t(a2t, x2t) = 1 for any

(a2t, x2t) and any positive and feasible cash rebuilding policy σ2t+1 > 0.

Lemma 8 shows that when the shareholders’ propensity to run is the highest (i.e., θ = 1), all of

the late shareholders decide to run even if the fund only sells a small amount of assets to rebuild its

cash buffer, regardless of the fund’s initial cash position. In intuitive terms, in this case shareholders

are extremely sensitive to the fund’s cash rebuilding. This is because when θ = 1 the late shareholders

simply compare between NAV2t and NAV2t+1 to decide whether to run. As long as the fund rebuilds

its cash buffer, there will be a predictable decline in NAV2t+1 regardless of either the fund’s initial cash

position or other shareholders’ run behavior, and thus all of the late shareholders are going to run.

Now I turn to the fund’s equilibrium cash rebuilding policy. With the help of Lemma 7, the following

proposition first characterizes the optimal cash rebuilding policy when θ = 0.

Proposition 4. When θ = 0, the equilibrium cash rebuilding policy of the fund is characterized by:48

i) if η2t ∈ Gl ∪Gm ∪Ghl, the fund chooses σ∗2t+1 > 0 such that

η∗2t+2 =
µER

1− µE
, and ,

ii) if η2t ∈ Ghm ∪Ghh, the fund does not rebuild its cash buffer, that is, σ∗2t+1 = 0.

The fund’s optimal dynamic cash rebuilding policy when θ = 0, as characterized in Proposition 4,

is illustrated in Figure 3. In this figure, the horizontal axis denotes date, while the vertical axis denotes

the cash-to-assets ratio. The blue dotted line depicts the evolution of the cash-to-assets ratio if the

fund does not rebuild its cash buffer at all. The red line depicts the evolution of the cash-to-assets

ratio when the fund follows the optimal dynamic cash rebuilding policy in equilibrium. Because of the

48Keep in mind that the dynamic equilibrium requires sequential optimality. In other words, the fund’s cash rebuilding
policy is optimal in a stage only when in the next stage the fund also follows its optimal cash rebuilding policy, which is
again conditional on the fund’s optimal cash rebuilding policy in the following stage, and so on.
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2t 2t+ 2 2t+ 4

η2t η2t+2 η2t+4

Gl

Gm

Ghl

Ghm

Ghh

p̂E(0)

p̂L(0)p̂L(0)

The horizontal axis denotes date. The vertical axis denotes the cash-to-assets ratio (the effective state variable)

by different regions. The blue dotted line depicts the evolution of the cash-to-assets ratio if the fund does not

rebuild its cash buffer at all. The red line depicts the equilibrium evolution of the cash-to-assets ratio when the

fund follows the optimal dynamic cash rebuilding policy. From the perspective of any stage t (including dates 2t

and 2t+ 1), the effective selling price p̂L(·) on the left side is that at which the fund can rebuilds its cash buffer

in the current stage, while the effective selling prices p̂E(·) and p̂L(·) on the right side are those at which the fund

can raise cash in the next stage in different cash-to-assets regions. See the main text for more explanations.

Figure 3: Equilibrium Cash Rebuilding Policy When θ = 0

scale-invariance and the resulting stationarity of the dynamic game, the equilibrium cash rebuilding

policy (conditional on the effective state variable, the cash-to-assets ratio η2t) always follows the same

pattern in different stages as long as the game continues.

Proposition 4 says that as long as its initial cash position falls below the high-intermediate region

Ghm, the fund optimally rebuilds its cash buffer until the next-stage cash-to-assets ratio η2t+2 reaches

the cutoff between the low region Gl and the intermediate region Gm. But if the fund starts with a

higher initial cash position, it will not rebuild its cash buffer. In either case, the fund has a strictly

positive cash target for the next stage.

Since there are no runs in equilibrium (by Lemma 7), the main insight behind Proposition 4 is a

trade-off between current-stage active asset sales (under a policy of more rapid cash rebuilding) and

future-stage forced fire sales (under a policy of no or less rapid cash rebuilding). Intuitively, because

the fund manager cares about total expected fire sale losses, it is worthwhile for her to voluntarily sell

more assets at the current stage (on date 2t+ 1), if the cash buffer rebuilt can help avoid more severe

fire sales in the next stage (on dates 2t+ 2).

Importantly, due to flexible NAV adjustment, what matter for the dynamic trade-off of current and

future amounts of fire sales are not the physical but the effective selling prices as defined in (3.5) and

(3.8). To see this, on the one hand, suppose there is a cash gap ∆x2t+2 > 0 on date 2t + 2. In other

words, the difference between the fund’s initial cash position x2t+2 and the amount of cash needed to
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meet projected redemptions on date 2t+ 2 at the beginning-of-day NAV (i.e., NAV2t+1) is ∆x2t+2. As

a result, there will be forced fire sales on date 2t+ 2. But since redeeming shareholders on date 2t+ 2

will only get a lower end-of-day NAV, the fund manager can effectively sell at the effective selling price

on date 2t + 2 to meet the initial cash gap ∆x2t+2. On the other hand, the fund manager can choose

to actively sell more assets on date 2t + 1, also at the corresponding effective selling price, to rebuild

∆x2t+2 unit of cash buffer in advance on date 2t+ 1, carry it to date 2t+ 2, and thus avoid forced fire

sales on date 2t + 2. Moreover, the physical selling price on date 2t + 1 is always higher than that on

date 2t+ 2. Hence, when the effective selling price on date 2t+ 1 is higher than that on date 2t+ 2, the

fund can sell a smaller amount of assets at a higher physical price on date 2t+1 in order to avoid higher

fire sale losses on date 2t + 2. Hence, a more rapid cash rebuilding policy is better for the purpose of

minimizing total fire sale losses, and thus it is optimal for the fund to do so.

I discuss different cash-to-asset ratio regions to illustrate this trade-off in more depth.

First, the fund always rebuilds its cash buffer when starting from the low, the intermediate, or the

high-low cash-to-assets ratio region (i.e., η2t ∈ Gl ∪Gm ∪Ghl). The reason is the following. If the fund

did not rebuild its cash buffer, it would end up in the low region in the next stage (i.e., η2t+2 ∈ Gl).
Since the fund will be forced to fire sell its assets then (as the game continues with a high probability

1−π), the fund manager may want to rebuild its cash buffer on date 2t+ 1 to avoid fire sales on 2t+ 2.

Specifically, because late shareholders never run (by Lemma 7), the effective selling price to rebuild cash

buffers actively on date 2t + 1 is p̂L(0), while the effective selling price to raise cash passively on date

2t + 2 is p̂E(0). As p̂L(0) > p̂E(0), the fund manager always finds it optimal to rebuild its cash buffer

on date 2t+ 1.

Given that the fund rebuilds its cash buffer, what is the optimal amount of active asset sales? In

equilibrium, the fund manager will rebuild the cash buffer up to a point where η2t+2 just hits the cut-off

between the low and the intermediate region. This is because, on the one hand, a lower cash target still

implies forced fire sales on date 2t + 2 at a lower effective selling price p̂E(0) and thus is not optimal.

On the other hand, any more cash rebuilding on date 2t + 1 means the fund will still have a strictly

positive cash buffer on date 2t+ 3 after outflows on date 2t+ 2. This is also not optimal because that

cash buffer is excessive from the perspective of date 2t+ 1. In other words, even if asset sales occur on

date 2t+ 3, the fund manager will be able to sell at the higher effective selling price p̂L(0) then. Since

the game only has a less than one probability to continue, selling at the same effective price p̂L(0) on

date 2t+ 1 to build that excessive cash buffer is not profitable.

Then, it is straightforward to understand the equilibrium cash rebuilding policy in the high-

intermediate and the high-high regions (i.e., η2t ∈ Ghm ∪ Ghh) with the intuition outlined above.

Here, even if the fund does not rebuild its cash buffer, it will end up at least in the intermediate region,

where the fund can raise cash at the effective selling price p̂L(0) when needed. As a result, any cash

buffer rebuilt on date 2t+ 1 (by selling assets also at the effective selling price p̂L(0)) is excessive, and

thus the fund finds σ∗2t+1 = 0 to be optimal.

Next, I characterize the optimal cash rebuilding policy when θ = 1 and contrast it to that in

the scenario of θ = 0. This illustrates how the potential for runs distorts a fund’s dynamic liquidity
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management.

Proposition 5. When θ = 1, the equilibrium cash rebuilding policy of the fund is characterized by:

i) if η2t ∈ Gl ∪Gm ∪Ghl ∪Ghm, the fund chooses σ∗2t+1 > 0 such that

η∗2t+2 =
(µE + µL)R

1− µE − µL
, and ,

ii) if η2t ∈ Ghh, the fund does not rebuild its cash buffer, that is, σ∗2t+1 = 0.

2t 2t+ 2 2t+ 4 2t 2t+ 2 2t+ 4

η2t η2t+2 η2t+4 η2t η2t+2 η2t+4

Gl

Gm

Ghl

Ghm

Ghh

Gl

Gm

Ghl

Ghm

Ghh

Run

p̂E(1)

p̂L(1)

p̂L(1)

Figure 4: Equilibrium Cash Rebuilding Policies When θ = 0 (Left) and θ = 1 (Right)

The right panel of Figure 4 illustrates the equilibrium cash rebuilding policy when θ = 1. To recap

and better show the difference, I illustrate the equilibrium cash rebuilding policy when θ = 0 on the

left. As one can see, the equilibrium when θ = 1 differs significantly from that when θ = 0 because of

the interdependence between shareholder runs and fund liquidity management.

Proposition 5 says that the fund starts to rebuild its cash buffer at a higher starting cash position,

and it also rebuilds the cash buffer more rapidly, compared to the scenario without runs. Specifically,

as long as the fund’s initial cash position falls below the high-high region Ghh, it rebuilds its cash buffer

until the next-stage cash-to-assets ratio η2t+2 reaches the cutoff between the intermediate region Gm

and the high region Gh.

Although Proposition 5 still features the trade-off between current- and future-stage fire sales, this

trade-off becomes more subtle in the presence of runs. By Corollaries 1, 2 and 4, runs in equilibrium

result in less effective cash rebuilding (i.e., a lower effective selling price) on odd dates and more forced

fire sales on even dates. Thus, when current-stage run risks are relatively high, the fund wants to choose

a less rapid cash rebuilding policy. In contrast, when future-stage risk of fire sales is relatively high, in

particular, when future-stage runs lead to more severe future-stage fire sales, the fund prefers a more

rapid cash rebuilding policy.
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Again, I discuss different cash-to-asset ratio regions to illustrate how shareholder runs interact with

fund cash rebuilding in equilibrium.

First, suppose the fund starts from the low or the intermediate region (i.e., η2t ∈ Gl ∪ Gm). By

Lemma 8, all of the late shareholders are going to run on date 2t (because NAV2t > NAV2t+1) in this

case, which implies a lower effective selling price (for cash rebuilding) p̂L(1) on date 2t+ 1. However, if

the fund did not rebuild its cash buffer, it would end up in the low region in the next stage, where the

fund would have to fire sell at an effective price p̂E(1). Because p̂L(1) > p̂E(1), the risk of future fire

sales is relatively larger. Hence, the fund still finds it optimal to rebuild its cash buffer on date 2t + 1

to avoid more costly fire sales on date 2t+ 2, despite the runs on date 2t.

However, different from the scenario when θ = 0, when θ = 1 the fund does not stop rebuilding its

cash buffer even if the next-stage cash-to-assets ratio hits the cutoff between the low and the intermediate

region. The reason is as follows. If the fund ended up in the intermediate region in the next stage (i.e.,

η2t+2 ∈ Gm), again by Lemma 8, all of the late shareholders in the next stage will run on date 2t + 2

too. Thus, the fund would be forced to fire sell its assets on date 2t + 2 at the effective selling price

p̂E(1) even if starting in the intermediate region then. Fundamentally, future-stage runs lead to higher

risk of future fire sales. As a result, the fund will keep rebuilding its cash buffer even when η2t+2 ∈ Gm.

In equilibrium, the fund manager will rebuild the cash buffer up to a point where η2t+2 hits the

cutoff between the intermediate and the high region, which is higher than the counterpart when θ = 0

(as shown in Proposition 5). As analyzed above, a lower cash target implies forced fire sales on date

2t+2 at a lower effective selling price p̂E(1) and thus is not optimal. Also, a higher cash target becomes

excessive despite runs in the next stage. Specifically, a higher cash target implies that the fund would

end up in the high region in the next stage (i.e., η2t+2 ∈ Gh), where runs only lead to a lower effective

selling price p̂L(1) on date 2t+3. Since the game only has a less than one probability to continue, selling

at the same effective price p̂L(1) on date 2t+ 1 to build that excessive cash buffer is not profitable.

Second, suppose the fund starts from the high-low or the high-intermediate region (i.e., η2t ∈ Ghl ∪
Ghm). If the fund did not rebuild its cash buffer, it would end up in the low or the intermediate region

(i.e., η2t+2 ∈ Gl ∪Gm), where there would be expected forced fire sales in the next stage. Since the risk

of next-stage fire sales is still relatively higher, the fund still finds it optimal to suffer current-stage runs

(i.e., to incur a lower effective selling price) and choose a more rapid cash rebuilding policy. For the

same reason as discussed above, the fund still optimally rebuilds its cash buffer to the cutoff between

the intermediate and the high region, and any more cash buffer would be excessive.

Lastly, I consider the high-high region (i.e., η2t ∈ Ghh). Without cash rebuilding, the fund would

end up in the high-low or high-intermediate region in the next stage (i.e., η2t ∈ Ghl∪Ghm) as long as the

starting cash position is not sufficiently high.49 As discussed above, all the next-stage late shareholders

would decide to run on date 2t+ 2 in those two regions, because the fund would rebuild its cash buffer

on date 2t + 3 . Would it make sense for the fund to rebuild its cash buffer on date 2t + 1 to prevent

these runs on date 2t + 2? The answer is no in this case. This is because in the future stage the fund

will be at least in the high region, where runs will not result in forced fire sales on date 2t+2. Although

49If η2t is sufficiently high, there can be η2t+2 ∈ Ghh with σ2t+1 = 0. I can further divide region Ghh into three separate
regions to make the argument more precise. But doing this adds little to provide new insights.
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future-stage runs on date 2t+ 2 still lead to a lower effective selling price p̂L(1) for cash rebuilding on

date 2t + 3, the effective selling price on date 2t + 1 would also be p̂L(1) if the fund chose to rebuild

the cash buffer and triggered runs on date 2t. Since the game only has a less than one probability to

continue, the risk of future-stage fire sales becomes relatively smaller while current-stage costs of runs

become relatively larger. As a result, the fund optimally chooses not to rebuild its cash buffer in the

high-high region.

Overall, compared to the scenario without runs (i.e., θ = 0), Proposition 5 and the intuition above

suggest that the trade-off in fund cash rebuilding becomes more complicated in the presence of runs.

When the starting cash position is lower, future risk of fire sales (in particular, future-stage forced fire

sales induced by future runs) is relatively higher, and thus the fund optimally chooses a more rapid

cash rebuilding policy. On the contrary, when the starting cash position is higher, current-stage costs

of runs are relatively higher, and thus the fund optimally chooses a less rapid cash rebuilding policy or

does not rebuild the cash buffer at all.

Finally, it is helpful to contrast the equilibrium cash rebuilding policies here to those in the classic

(s, S)-type inventory problem.50 In the (s, S)-type inventory problems, a firm holds inventory because

it helps the firm to meet future demand more easily. However, to accumulate inventory is also costly.

It may incur additional adjustment costs, which are often assumed to be exogenous or following a

quadratic form. When there are no runs, my fund liquidity management framework resembles a (s, S)-

type inventory problem with a zero fixed cost and different variable costs on different dates. However,

when the potential for runs is introduced, it features a novel cash inventory problem in which the cost

structure is endogenously determined by shareholders’ run decisions, which are in turn endogenously

determined by the fund’s cash rebuilding policy itself.

4.3 The General Scenarios

I proceed to characterize the fully dynamic equilibria in the general scenarios when θ ∈ (0, 1). In these

general scenarios, the equilibrium cash policies and the resulting run behaviors become more involved.

This is because when the shareholders have a moderate propensity to run, they become less sensitive

to the fund’s cash rebuilding than they would in the θ = 1 scenario, while a sufficiently rapid cash

rebuilding policy can still push them to run. This in turn shapes the fund’s optimal cash rebuilding

policy in equilibrium.

However, despite the complexity of the general scenarios, all the equilibrium results can be still

unified under the same trade-off between current-stage runs and future-stage fire sales as discussed in

Section 4.2. The formal result is stated in Proposition 6.

Proposition 6. When θ ∈ (0, 1), there exist two endogenously determined thresholds 0 < θ < θ < 1,

such that

i) if θ ∈ (0, θ], the equilibrium cash rebuilding policy is characterized by Proposition 4, that is, the

50See Stokey and Lucas (1989) for a textbook treatment of the classic (s, S)-type inventory problems and Strebulaev and
Whited (2012) for a review on the modern applications of (s, S)-type problems to dynamic corporate liquidity management.
None of the existing (s, S)-type problems considers a mutual fund context as I do.
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cash rebuilding policy follows that in the scenario of θ = 0,

ii) if θ ∈ (θ, θ), the equilibrium cash policies are characterized by

a) if η2t ∈ Gl ∪Gm ∪Ghl ∪Ghm, the fund chooses σ∗2t+1 > 0 such that

η∗2t+2 = η(λ̌) ≡ (µE + λ̌µL)R

1− µE − λ̌µL
,

where λ̌ is given by {
λ∗2t > 0 iff η2t < η(λ̌) ,

λ∗2t = 0 iff η2t > η(λ̌) ,

in which λ∗2t denotes the equilibrium run behaviors under the optimal cash rebuilding policy σ∗2t+1,

and

Ghm ≡
{
η2t|η2t >

(µE + µL)R

1− µE − µL
and

µER

1− µE
6 η2t+2 <

(µE + λ̌µL)R

1− µE − λ̌µL
for σ2t+1 = 0

}
,

b) if η2t ∈ Ghm ∪Ghh, then σ∗2t+1 = 0, where Ghm = Ghm/Ghm,

iii) if θ ∈ [θ, 1), the equilibrium cash rebuilding policy is characterized by Proposition 5, that is, the

cash rebuilding policy follows that in the scenario of θ = 1.

Figure 5 illustrates the optimal cash rebuilding policies when θ varies. As suggested by Proposition

6, when θ is close to 0, the equilibrium is the same as that when θ = 0, while when θ approaches

1 the equilibrium is the same as that when θ = 1. As θ increases, shareholder runs spread to more

cash-to-assets regions, and the fund also chooses a more rapid cash rebuilding policy in equilibrium to

better avoid future-stage fire sales induced by future-stage runs. Figure 5 illustrates the scenarios with

a moderate value of θ, in which the equilibrium is different from the two extreme scenarios when θ = 0

and θ = 1.

4.4 The Time-Inconsistency Problem

I illustrate the time-inconsistency problem associated with fund cash rebuilding by asking the following

question. From Propositions 4, 5, and 6, it can be seen that for any θ and in any equilibrium path,

the fund never allows its target of next-stage cash-to-assets ratio below the intermediate region Gm

regardless of the starting cash position. Why? In other words, can there be any circumstances in which

the fund finds it optimal to adopt a less rapid cash rebuilding policy such that the next stage game falls

into the low region (i.e., η∗2t+2 ∈ Gl)?
This question is very valid in views of the trade-off between current runs and future fire sales.

Especially, as suggested by Corollaries 2 and 4, more shareholder runs result in more severe current-

stage forced fire sales when the fund starts from the low or the intermediate region. Why does not

the fund choose a less rapid cash rebuilding policy to prevent current-stage runs and thus reduce those

forced fire sale losses?

Proposition 7 gives an answer. It suggests that, in the absence of a commitment device, such a less

rapid cash rebuilding policy as mentioned above will never appear in any equilibrium path. But it may
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Figure 5: Equilibrium Cash Rebuilding Policy When θ ∈ (θ, θ)

indeed be optimal if the fund can credibly announce and commit to such a policy on date 2t. Figure 6

illustrates this problem.

Proposition 7. A cash rebuilding policy involving

η∗2t+2 <
µER

1− µE

cannot happen in any equilibrium path unless the fund is able to credibly commit to such a policy.

The intuition behind Proposition 7 is a time-inconsistency problem, which aggravates the tension

in choosing between a rapid or a slow cash rebuilding policy. Starting from the low region or the

intermediate region, the fund indeed has a relatively large current-stage cost of shareholder runs because

they lead to severe current-stage forced fire sales. Thus, on date 2t, the fund may wish to commit itself

to rebuilding its cash buffer less rapidly on date 2t + 1 to reduce such run risks on date 2t. However,

on date 2t + 1, because all the date-2t costs of runs are sunk, the fund may instead be tempted to

adopt a more rapid cash rebuilding policy on date 2t+ 1. Importantly, what matters for shareholders’

run decisions on date 2t are their beliefs about the fund’s cash rebuilding policy on date 2t + 1. In

equilibrium, they can always anticipate the fund manager’s date-2t+ 1 temptation to rebuild the cash

buffer more rapidly, and thus will always have strong incentives to run on date 2t. Mathematically, the

intuition outlined above can be also seen from the dynamic equilibrium definition (Definition 2) and in

particular from the Bellman equation (4.1) in the non-commitment benchmark.

Proposition 7 suggests a fundamental difficulty in reducing fund shareholder runs in practice, in

which a commitment device can be hard to implement. In the mutual fund context, shareholders decide

to run not only because they expect other shareholders to run at the same time, but more importantly

because they expect the fund to rebuild its cash buffer in the future, which gives rise to the predictable
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Figure 6: The Time-Inconsistency Problem

NAV and thus the run incentives. As will be shown in Section 5, policies that are effective in preventing

bank runs may fail in preventing fund shareholder runs, because they are not designed taking into

account the dynamic interdependence of shareholder runs and fund liquidity management.

4.5 Expected Total Fire Sale Losses

Finally, I show in Proposition 8 that the potential for shareholder runs can lead to unambiguously higher

total fire sale losses ex-ante, regardless of the fund’s initial portfolio position. This occurs in a world

where both the fund manager and the shareholders are rational, and the fund’s cash rebuilding policy

is optimal. It suggests that the potential financial stability risks induced by mutual fund shareholder

runs can be significant and thus should not be overlooked.

Proposition 8. When θ increases, the ex-ante total fire sale losses become higher for any positive

starting portfolio position (a2t, x2t).

As suggested by Proposition 7, the lack of a commitment device contributes to the occurrence of run

problems despite optimal liquidity management by the fund. I show in Proposition 9 that introducing a

commitment device can indeed help reduce total fire sale losses in expectation by tempering shareholders’

run incentives.

Proposition 9. When the fund can pre-commit to a cash policy s2t+1 on date 2t, the ex-ante total fire

sale losses become lower for any positive (a2t, x2t) and any θ > 0.

Intuitively, introducing a commitment device helps reduce total fire sales through two ways. On

the one hand, as suggested by Proposition 7, since the fund is able to pre-commit to a less rapid cash

rebuilding policy, it can directly reduce current-stage forced fire sales by reducing shareholder runs.
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On the other hand, from a dynamic perspective, the risk of future-stage fire sales also becomes lower

thanks to less severe future runs, and thus the fund is also more comfortable in choosing a less rapid

cash rebuilding policy by selling assets less aggressively in the current stage.

5 Policy Implications

Many regulators and practitioners have proposed fund-level policies, aiming at mitigating potential

financial stability risks of open-end mutual funds. By documenting the dynamic interdependence

between shareholder runs and fund liquidity management, my model delivers new policy implications.

Rather than making definitive policy prescriptions, I emphasize how the mechanism in this model adds

new dimensions to the current policy debates.

5.1 MMF Reforms

First of all, my model contributes to the recent debate about MMF reforms. A major proposal of

reforming the MMFs is to adopt floating NAV accounting, which will effectively make MMFs like regular

open-end mutual funds.51 However, as discussed by Hanson, Scharfstein and Sunderam (2015), flexible

NAV adjustment may not be a fix to run problems on MMFs. My formal model also suggests the same

view. In particular, MMFs adopting a flexible NAV are no longer prone to an abrupt “breaking-the-

buck,” but will be prone to a new type of shareholder runs as I have shown. This is in particular relevant

in bad times when funds’ cash positions are low while redemption shocks are large and persistent.

In the following, I turn to several other fund-level policies that are specific to regular open-end

mutual funds. I show that, perhaps surprisingly, some of them are less effective than commonly thought

in mitigating potential financial stability risks of mutual funds. The key insight is again the dynamic

dependence between runs and liquidity management.

5.2 Liquidity Requirements

I first discuss the proposal of imposing liquidity requirements on open-end mutual funds. Although

no formal liquidity requirements have been proposed to mutual funds, many have been imposed on

banks and MMFs by the U.S. SEC52 and the International Regulatory Framework for Banks (Basel

III)53 since the past financial crisis. Recently, the U.S. SEC voted 5-0 on Sept 22, 2015 to approve

a new proposal requiring mutual funds to better manage their liquidity risks. Also, the IMF and the

BIS have both proposed potential stress tests for mutual funds in 2015,54 which resemble fund liquidity

51This proposal has been introduced by the SEC in 2013 in amendments to its 2a-7 rules and then formally adopted
in 2014. It applies to institutional prime money market funds. See Hanson, Scharfstein and Sunderam (2015) for a
comprehensive discussion.

52In 2010, the U.S. SEC changed the 2a-7 rules to institute overnight and weekly liquidity thresholds for MMFs.
Specifically, the U.S. SEC mandated that any MMF holds at least 10% of their assets in securities maturing within one
business day and at least 30% of assets in securities maturing within one week.

53The Basel III accord of 2010 and 2011 require banks to hold a certain amount of high-quality liquid assets to meet
expected outflows. Given typical projections of outflows, the threshold for retail banks is set to be 3% of stable retail
deposits.

54“IMF Seeks Stress Tests for Asset Managers,” The Financial Times, April 8, 2015, and “Asset Managers’ Push into
Bonds Prompts Regulatory Scrutiny,” The Financial Times, June 2, 2015.
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requirements. These developments suggest that formal liquidity requirements for mutual funds are likely

to be introduced in the future, given the increasing concerns about potential financial stability risks.

My model offers a new building block to help assess the effectiveness of liquidity requirements for

mutual funds. From a bank run perspective, Vives (2014) and Diamond and Kashyap (2015) are among

the first attempts to evaluate the effectiveness of these new liquidity requirements in mitigating bank

runs. Interestingly, as I have already shown, in a bank context, selling illiquid assets to meet liquidity

requirements would not induce runs per se as long as the bank is solvent, but doing so can indeed lead

to shareholder runs in a mutual fund context. This suggests that designing any appropriate mutual

fund liquidity requirements needs to take account of the dynamic interdependence of shareholder runs

and fund liquidity management.

Specifically, the results in Proposition 6 suggest state-contingent and fund-specific optimal cash

targets for mutual funds. On the one hand, when persistent redemption shocks are likely to occur in

the future, mutual fund managers should be warned about the possibility of future shareholder runs.

Hence, a more stringent liquidity requirement is preferred. This ensures that when future redemption

shocks realize, mutual funds will have higher cash-to-assets ratios and thus can better avoid severe fire

sales and runs.

On the other hand, when persistent redemption shocks have already hit the economy as my model

describes, the optimal liquidity requirement design should be more fund-specific. For funds whose

shareholders have a lower propensity to run (i.e., θ is lower), a more stringent liquidity requirement is

likely to help the fund better avoid future fire sales. However, for funds whose shareholders have a higher

propensity to run (i.e., θ is higher), a less stringent liquidity requirement as suggested by Proposition

7 is likely to be appropriate, which can better mitigate the fund’s time-inconsistency problem and thus

reduce shareholder runs.

Of course, the design of any implementable fund liquidity requirements calls for a more comprehen-

sive assessment of other relevant factors. At the bottom line, the results of my model suggest that the

one-size-fits-all liquidity requirements as those currently designed for banks and MMFs are unlikely to

be appropriate for mutual funds.55 Instead, the dynamic interdependence of shareholder runs and fund

liquidity management should be better taken into account.

5.3 Redemption Fees

The second policy proposal is to increase or eliminate the cap on redemption fees. Open-end mutual

funds can charge their shareholders redemption fees when they redeem their shares. Currently, the SEC

requires mutual fund redemption fees to be lower than 2%.56 Therefore, some observers argue that to

increase or eliminate the cap, at least in crisis times, is likely to mitigate potential financial stability

risks of mutual funds.

My model suggests that higher redemption fees may help reduce shareholder runs. Suppose 1 − κ
of the redemption proceeds are collected as redemption fees, where κ ∈ (0, 1). Thus, any shareholder

55The recent work of Diamond and Kashyap (2015) suggests that those one-size-fits-all liquidity requirement rules may
not be optimal for banks as well, but for different reasons.

56This is according to Rule 22c-2 of the Investment Company Act of 1940.
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who redeems on date t only gets κNAVt.
57 Also, redemption fees are paid back directly to the fund,

implying that the fund can save (1−κ)NAVt cash per share redeemed. To better contrast to the baseline

model without redemption fees, I consider θ = 1, that is, when the shareholders’ propensity to run is

the highest. The following proposition shows that the introduction of redemption fees can lead to less

shareholder runs in equilibrium.

Proposition 10. For any given starting portfolio position (a2t, x2t), any feasible cash rebuilding policy

s2t+1, and any proportional redemption fee 1 − κ > 0, there is λκ2t 6 λ2t, where λκ2t is the equilibrium

run probability in the game with the redemption fee while λ2t is that in the game without redemption

fees, all other things being equal.

When the stage game starts from the high cash-to-assets region, redemption fees have a stronger

effect. In contrast to the baseline model where any cash rebuilding (i.e., any s2t+1 > 0) leads to

shareholder runs when θ = 1, with the redemption fee there can be completely no runs in equilibrium

when s2t+1 is small, that is, when the fund only sells a few assets to rebuild its cash buffer.

Corollary 3. For any given starting portfolio position (a2t, x2t) satisfying η2t ∈ Gh and any propor-

tional redemption fee 1 − κ > 0, there exists a strictly positive s > 0 such that λκ2t = 0 constructs the

unique equilibrium when s2t+1 6 s.

Proposition 10 and Corollary 3 suggest that redemption fees can directly reduce shareholders’ run

incentives. Intuitively, with redemption fees, redeeming shareholders effectively get a value lower than

the prevailing NAV, implying a wealth transfer from redeeming shareholders to staying ones. Moreover,

in any stage, redemption fees allow the fund to save more cash proportionally, making it easier to meet

redemption needs without incurring fire sales.

However, as suggested by Proposition 10, redemption fees do not directly alter the dynamic inter-

dependence between runs and fund liquidity management. They cannot solve the time-inconsistency

problem associated with the fund’s dynamic cash rebuilding policy either. Only when the fund imposes

a 100% redemption fee, or equivalently, chooses to be closed-ending, can shareholder runs be completely

prevented. But closed-end mutual funds cannot provide liquidity service to their shareholders (Stein,

2005), and thus it will be obviously not optimal to push all the mutual funds to be closed-ending just

for preventing runs.

Redemption fees may also be less effective in practice for the following reasons. First, in my model,

redemption fees are introduced ex-ante. However, if redemption fees are first introduced on an odd date

2t+ 1 but are expected on the previous date 2t, the late shareholders will have higher incentives to run

to avoid the fees. This represents a real-world concern that imposing higher redemption fees by itself

can lead to one-time market turmoil. Other unmodeled but plausible reasons include negative effects

on future fund share sales and on the reputation of fund managers. In practice, many funds still stick

to zero or lower than 2% redemption fees even when market volatility or outflows are high (Nanda,

57According to Rule 22c-2, the U.S. SEC prohibits discriminative redemption fees solely conditional on shareholder
identities as those would effectively create classes of shareholder seniority. This implies that, in my model, the fund cannot
intentionally impose different redemption fees on early and late shareholders.
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Narayanan and Warther, 2000), suggesting that to increase or eliminate the 2% cap on redemption fees

may only have limited effects.

5.4 In-Kind Redemptions

By nature, open-end mutual funds can satisfy redemption requests by delivering a portion of the

underlying basket of assets invested, including cash, which is known as “in-kind redemptions.” Many

practitioners argue that the option to elect to in-kind redemptions can largely mitigate any financial

stability risks of mutual funds, at least during crisis times. Are in-kind redemptions really a relief?

My model suggests that in-kind redemptions can be very effective in preventing fund shareholder

runs within a fund, but perhaps surprisingly, they do not necessarily help reduce total fire sale losses or

improve total shareholder welfare. The following proposition offers a sufficient condition for the episodes

in which the negative effects of in-kind redemptions dominate.

Proposition 11. Electing to in-kind redemptions completely prevents shareholder runs, that is,

λ(a2t, x2t) = 0 for any (a2t, x2t). However, when θ, µL are sufficiently small and δL is sufficiently

larger than δE, in-kind redemptions lead to higher total fire sale loss ex-ante than a counterfactual in

which the fund sticks to cash redemptions, all other things being equal.

The intuition behind Proposition 11 relies on three progressive reasons. First, adopting in-kind

redemptions completely eliminates any run incentives. This is because late shareholders always get

the same basket of assets regardless of the time they redeem, and they would have to sell the illiquid

assets at a lower price pE for consumptions if they ran, so they prefer not to run. Second, since the

fund manager only cares about total fire sale losses at the fund level, liquidity management becomes

irrelevant. In other words, the fund will never rebuild its cash buffer, and the initial cash-to-assets

ratio η0 will never change. Third, early shareholders have to fire sell the illiquid assets they get at

the extremely low price pE for consumptions. These fire sale losses could have been avoided if the

fund manager actively managed its cash buffer. If these fire sale losses are significant, shareholders will

become worse-off than the counterfactual with cash redemptions.

At a fundamental level, Proposition 11 suggests that in-kind redemptions are not a free lunch even

during crisis times, because shareholders who ask their fund to elect to in-kind redemptions effectively

give up any benefit they could get from active liquidity management by the fund. This point again

highlights the dynamic interdependence between shareholder runs and fund liquidity management. In

addition, given that in-kind redemptions are obviously costly during normal times since they discourage

the sales of shares, the overall benefit of adopting in-kind redemptions can be even more ambiguous.

Moreover, in reality, in-kind redemptions can be hard to implement; they are seldom used for both legal

and practical reasons.58

Furthermore, the analysis about in-kind redemptions here sheds new light on the potential financial

stability risks of exchange-traded funds (ETFs). Observers may argue that ETFs should be immune

58Rule 18f-1 of the Investment Company Act of 1940 only enables mutual funds to limit in-kind redemptions, which
implies that in-kind redemptions will not be effected unless specific approval is first obtained from the SEC. This rule is
intended to facilitate mutual fund share sales in jurisdictions where in-cash redemptions are required.
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to shareholder runs because they are not directly subject to outflows from shareholders. Specifically,

unlike open-end mutual funds, ETF sponsors can issue and redeem shares only with market-making

firms known as authorized participants (APs). In other words, APs are the only market player who

can directly redeem ETF shares by trading with fund sponsors. In particular, transactions between an

ETF sponsor and an AP are typically settled in-kind, where the AP delivers or receives a basket of

assets almost identical to the ETF’s holdings,59 known as the creation/redemption basket. Therefore,

by the logic underlying Proposition 11, there will be no direct shareholder or AP runs on ETFs, and

ETFs hold less cash buffer than their mutual-fund counterparts do.60 However, when APs redeem the

shares they have bought (presumably at a discount to fund NAV) and get the underlying assets, they

are less likely to hold them on their balance sheets for a long time. Rather, they typically sell the

underlying assets immediately, trying to lock in the arbitrage profits. This mechanism, known as the

AP arbitrage mechanism of ETFs, plays an important role to keep ETF prices as close as possible to

fund NAVs. But as suggested by Proposition 11, this may potentially lead to more fire sales (by APs)

of the underlying illiquid assets and potentially larger price impacts in the underlying markets. Overall,

this analysis suggests that ETFs may also generate previously overlooked financial stability risks, the

mechanism of which can be unified under the dynamic interaction between shareholder runs and fund

liquidity management.61

5.5 Redemption Restrictions

A similar emergency rule is redemption restrictions, which give a fund the right to suspend redemptions

in given periods as permitted by regulators, for example, the U.S. SEC.62 Can redemption restrictions

prevent shareholder runs?

In my framework, I model redemption restrictions by assuming that the fund is able to deny any

individual shareholder’s redemption request on any date with probability 1 − ζ, ζ ∈ (0, 1). To better

contrast to the baseline model without redemption fees, I also consider θ = 1 when the shareholders’

propensity to run is the highest. The following proposition characterizes the nature of this game with

redemption restrictions.

Proposition 12. For any given starting portfolio position (a2t, x2t) and any redemption restriction

1−ζ > 0, there is λζ2t 6 λ2t, where λζ2t is the equilibrium run probability in the game with the redemption

restriction while λ2t is that in the game without redemption restrictions, all other things being equal.

Proposition 12 suggests that redemption restrictions can help reduce shareholder runs. Interestingly,

introducing redemption restrictions closely resembles the introduction of redemptions fees as analyzed

59There are a few exceptions where cash transactions may be required. This is because some ETF holdings, such as
some specific emerging market assets, are subject to legal restrictions that prevent in-kind transactions.

60The fact that ETFs on average hold less liquidity buffer than open-end mutual funds do is documented by new empirical
evidence (Ben-David, Franzoni and Moussawi, 2014). This allows ETFs to better track the underlying benchmark while
keeping a minimal tracking error.

61In a complementary paper, Pan and Zeng (2015) explores this AP arbitrage mechanism of ETFs in greater detail and
documents the financial stability risks that arise from this mechanism.

62According to Rule 22e of the Investment Company Act, an open-end mutual fund is generally prohibited from sus-
pending the right or redemption or postponing the payment of redemption proceeds for more than seven days. However,
the SEC has the right to deem emergency periods during which a fund is able to suspend redemptions.
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in Proposition 10 and Corollary 3. The intuition for Proposition 12 is clear, because by the Law of

Large Numbers, only ζ of the redeeming shareholders can get cash out of the fund. Therefore, there

will be effectively fewer redemptions. But like the introduction of redemption fees, the introduction of

redemption restrictions cannot fully prevent shareholder runs or solve the time-inconsistency problem

associated with fund liquidity management.

In addition, my model suggests that redemption restrictions can be indeed hard to implement in

reality, given that they have to be introduced at the discretion of regulators. Due to the “slow-moving”

nature of shareholder runs, no abrupt bankruptcy or events like “breaking-the-buck” by MMFs can

be observed. Even in scenarios where run-induced fire sales are extremely severe, as suggested by

Proposition 6, the fund can still keep a positive cash-to-assets ratio in each stage, making it hard for

the regulatory authority to deem such periods emergent. In practice, unsurprisingly, the U.S. SEC

has seldom deemed a period to be an emergency to allow open-end mutual funds to use redemption

restrictions. One and the only recent example for the SEC to permit redemption restrictions happened

in 2008 for the Reserve Primary Fund,63 which was an MMF.

5.6 Credit Lines

Although my baseline model focuses on a crisis management scenario during which there are no net

inflows, mutual funds may turn to pre-established credit lines to raise cash. For example, in 2015

BlackRock increased the amount that its mutual funds can collectively borrow to meet redemptions to

$2.1 billion, a historically high level.64 Can fund credit lines prevent shareholder runs?

My model suggests that using credit lines may temporarily mitigate the negative effects of current-

stage shareholder runs, but can induce more severe fire sales and runs in the future. Specifically, in

stage t, suppose the fund uses pre-established credit lines (rather than selling assets) when it is in the

low or the intermediate cash-to-assets region. Thus, the fund does not have to fire sell any illiquid assets

in meeting redemptions on dates 2t and 2t + 1. As a result, the NAV will not change within stage t,

that is, NAV2t+1 = NAV2t = NAV2t−1, and thus (λE + λL)n2t shareholders leave the fund with such

an intact NAV. However, in the next stage (if the game continues) the fund will have no cash to start

(i.e., η2t+2 = 0). If the credit lines have a sufficiently long maturity, the fund does not have to pay

back the debts immediately, but have to face more severe fire sales unless it can borrow more. What is

worse, if the fund is required to pay back its debts first on date 2t+ 2, it will have to fire sell even more

illiquid assets or simply default. Intuitively, using credit lines makes a fund’ life easier temporarily, but

the fund also forgoes the option value of cash rebuilding, which is higher when the redemption shocks

are more persistent (i.e., π is smaller). This idea resembles that outlined for in-kind redemptions in

Section 5.4, suggesting that it will be naive to shut down a fund’s active liquidity management when

attempting to prevent runs.

Moreover, credit lines may expose a fund back to the risk of debt runs as suggested by He and Xiong

(2012) and by other bank run models. This is in particular relevant when the redemption shocks are

63See Investment Company Act Release No. 28,487.
64“BlackRock Leads Funds Raising Credit Lines Amid Review,” The Bloomberg Business, January 21, 2015.
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persistent so that the fund has to repeatedly turn to credit lines established with multiple creditors

or to rollover existing debts. In a crisis management scenario, creditor banks may also be subject to

aggregate risks, making credit lines riskier and less reliable than cash buffers (Acharya, Almeida and

Campello, 2013). Thus, having credit lines is hardly a relief for open-end mutual funds.

5.7 Swing Pricing

Some observers argue that swing pricing, which allows current NAVs to reflect commissions to asset

brokers and dealers, bid-ask spreads, taxes, and other trading-related charges, can reduce the negative

externalities imposed by redeeming shareholders on non-trading ones. A growing number of open-end

mutual funds has been adopting swing pricing, while as of September 2015 the use of swing pricing is

still voluntary and not required by the U.S. SEC.65 Will full swing pricing prevent shareholder runs?

My model suggests that the answer is no. In fact, swing pricing, in its currently observed form, has

already been incorporated into my baseline model, This is because flow-induced fire sales are the only

type of trading-related costs in the model, and current NAVs have already taken them into account.

However, my model suggests that, since they still do not incorporate future asset sale costs, they are

not able to mitigate the risk of runs induced by active fund liquidity management. In this sense, my

theory identifies a form of negative externality that even introducing swing pricing cannot internalize.

Rather than swing pricing in its current form, my model suggests that forward-looking NAVs may

help reduce shareholder runs. This is equivalent to requiring shareholders to contract on future NAVs

directly. However, from the perspective of market incompleteness, shareholders cannot fully contract

on future NAVs because mutual funds promise to provide daily liquidity service to their shareholders.

In other words, if shareholders instead contracted on future NAVs and they had common and rational

beliefs on future NAVs, they would effectively go back to “separate accounts,” or equivalently direct

holdings of the underlying assets by the shareholders, and there will be no liquidity service provided

by the funds. In this sense, there is no point to have a mutual fund in the first place. As a result,

forward-looking NAV rules may be hard to implement in reality, and runs can be viewed as a cost that

shareholders have to bear to have mutual funds engage in liquidity transformation.66 To investigate

optimal mechanism design for liquidity provision in a mutual fund context (like Green and Lin, 2003

and Peck and Shell, 2003 in a bank context) is beyond the scope of this paper, and thus I leave it for

future research.

65“Fund Investors May Pay Fees for Withdrawals Amid Turmoil,” The Bloomberg Business, September 11, 2015.
66One can go further along this line to ask why mutual funds provide liquidity. Gorton and Pennacchi (1990) argue

that banks and bank-like financial intermediaries are the best candidate to provide liquidity because debt value is the least
sensitive to asset-side value fluctuations. But as suggested by Stein (2005), in competing for funding, mutual funds are
also eager to provide liquidity (i.e., to adopt open-ending) to shareholders through the means of equity. To make such
liquidity appealing to shareholders, mutual funds invest in higher-yielding but illiquid assets with the help of deliberate
cash management, effectively engaging themselves in liquidity transformation. On the one hand, this logic suggests that
mutual funds are not a simple pass-through; they are not as “plain-vanilla” as practitioners usually argue. On the other
hand, more importantly, as fund shareholders get the promised liquidity at the flexible NAV, their liquidity is more sensitive
to asset-side fluctuations. This nature makes mutual funds immune to the usual notion of debt runs that stem from fixed
claims, but prone to a new notion of equity runs that result from asset-side value adjustment.
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6 Extensions

My baseline model parsimoniously captures the novel interdependence between shareholder runs and

fund liquidity management. The underlying mechanism is fairly general and robust to other aspects

which may either aggravate or mitigate mutual fund financial stability risks. Here I explore several

extensions, one at a time, with a focus on their interactions with the main mechanism of the baseline

model.

6.1 Flow-to-Performance Relationship

The baseline model assumes random redemption shocks, but the realized population of redeeming

shareholders in each stage is taken as exogenous. One may argue that future fund flows are likely to be

positively correlated with past returns, known as the flow-to-performance relationship. Earlier research

finds that future flows mostly respond to past good performance (Ippolito, 1992, Sirri and Tufano,

1998), but recent evidence suggests that they also respond to bad performance in particular when the

underlying assets are illiquid (for example, Spiegel and Zhang, 2013, Goldstein, Jiang and Ng, 2015).

Does such flow-to-performance relationship interact with fund shareholder runs?

My model suggests that, in the presence of shareholder runs, introducing the flow-to-performance

relationship implies higher total expected fire sale losses despite optimal cash management by the fund.

To see this, I can incorporate the flow-to-performance relationship into my baseline model. For any

stage, I define the fund return as

r2t+1 =
NAV2t+1

NAV2t
,

which is positive but no greater than one in my baseline model.67 I then assume that in any stage t

the populations of early and late shareholders are γ2tλEn2t and γ2tλLn2t for the even date 2t and the

odd date 2t+ 1, respectively, where γ2t(r2t−1) > 1 for t > 1 is a decreasing function of r2t−1 satisfying

γ2t(1) = 1, and γ0 = 1. This implies that, if current fund return is lower, there will be more shareholders

redeeming in the next stage if the game continues, capturing the flow-to-performance relationship.

In this extended setting, the flow-to-performance relationship does not directly alter shareholders’

run incentives in any stage game, but will complicate the tension in choosing between a rapid or slow

cash rebuilding policy by the fund manager. This can be seen from Proposition 5. Suppose the fund

starts from the joint region Gl ∪ Gm ∪ Ghl ∪ Ghm where it is optimal to sell some illiquid assets to

rebuild the cash buffer (i.e., σ∗2t+1 > 0). When the flow-to-performance relationship is introduced, σ∗2t+1

suggested by Proposition 5 is no longer optimal. To see this, notice that σ∗2t+1 > 0 implies r2t+1 < 1

and then γ2t+2 > 1. As a result, the fund either has to increase σ2t+1 to prevent more severe future

fire sales due to a larger population of redeeming shareholders in the next stage, or to decrease σ2t+1

to sustain a higher current fund return but suffer higher risk of future fire sales. Either way, the fund

incurs higher risk of shareholder runs and higher total expected fire sale losses as well.

At a fundamental level, the extended setting suggests a new amplification mechanism to explain

fund performance persistence in bad times. The flow-to-performance relationship first implies that

67But it can be larger than one in the model with redemption fees or redemption restrictions.
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it is harder for the fund to manage its cash buffer. Due to the interdependence of shareholder runs

and fund liquidity management, this further suggests more severe runs and fire sales, leading to worse

performance. Only those funds with a sufficiently high cash-to-assets ratio are likely to withstand these

hard times without incurring shareholder runs and fire sales.

6.2 Asset Price Correlations

In the baseline model, flow-induced fire sales will not impact the market prices of the non-traded assets

that still remain on the fund’s balance sheet. This is realistic given that mutual funds invest in many

different illiquid assets, and flow-induced fire sales only have local and temporary price impacts (Coval

and Stafford, 2007). One may argue that asset prices can be correlated with each other, and the fund

manager may want to use alternative accounting rules such as matrix pricing for these non-traded assets.

Will those differences have any qualitative effects on shareholder runs?

My model suggests no. To see why, I assume that asset prices are perfectly correlated (while still

keeping the realistic assumption that the price impacts induced by fire sales are temporary; they only

last for one stage). This can be effectively viewed as a world with only a single illiquid asset. In this

alternative setting, if the fund sells some assets on date t at the fire sale price pt, the end-of-day flexible

NAV will be:

NAVt =
xt + (at − at+1)pt + at+1pt

nt
.68 (6.1)

Clearly, the only difference between (6.1) and the baseline model NAV (2.1) is the last term in the

numerator, which reflects the fact that the market prices of non-traded assets are also updated to pt,

the temporary fire-sale price, in this extended setting. In both (2.1) and (6.1), the NAV is flexible

in the sense that it takes into account all the same-day price impact and asset sale losses, while it is

not forward-looking in the sense that it will not reflect any possible future price impacts and asset

reallocation costs. By similar analysis as that in Section 3, as long as these contractual features of fund

NAV are present, fund cash rebuilding still gives rise to a predictable decline in NAV and thus the run

incentives. As a result, introducing asset price correlations or alternative accounting rules at the fund

level would not change my results qualitatively.69

6.3 Persistent Price Impacts

Although the price impacts induced by fire sales tend to be temporary, in some asset classes there can

be more persistent or even long-term price impacts. For example, in illiquid asset markets where dealers

actively manage their inventory, a higher inventory level implies a higher price concession to compensate

for their inventory risks. Would persistent price impacts change shareholders’ run behaviors?

To answer this question, I can incorporate persistent price impacts into the baseline model. I

illustrate that there can be more severe shareholder runs and fire sales in equilibrium in this extended

68To be more precise, in this case the fire sale price pt will be assumed to be a decreasing function of the amount of
fire sales within the given date, and the slope of this intra-day downward-sloping demand curve is steeper on an even date
than that on an odd date.

69Depending on how correlated asset prices are, the run incentives can be quantitatively different in equilibrium. This
quantitative difference is not crucial for the key mechanism of this model.
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Figure 7: Price Path with Persistent Price Impacts

setting, despite optimal cash management by the fund.

Specifically, I assume that in stage t, the fire sale price on the even date 2t is βtδER, while that

on the odd date 2t + 1 is βtδLR, where β ∈ (0, 1]. When β = 1, this goes back to the baseline

model. Figure 7 illustrates a sample path of selling prices with persistent price impacts. There are

two important ingredients of this price pattern. First, in the short run (i.e., within each stage), it still

features temporary price overshooting and subsequent reversal. This is consistent with the baseline

model.70 Second, in the long run (i.e., across different stages) but before the game ends, the selling

prices for the illiquid assets become lower over time.

Like the analysis in Section 6.1, persistent price impacts do not directly change shareholders’ run

incentives, but will significantly change the fund’s dynamic optimal cash rebuilding policy, which in

turn alters shareholders’ equilibrium run behaviors. Again, this can be seen from Proposition 6. In the

baseline model, the fund rebuilds its cash buffer on the odd date 2t + 1 to prevent forced fire sales on

the next even date 2t + 2. The fund is not worried about potential asset sales on the next odd date

2t + 3 because of the same asset selling price there. However, in the extended setting with persistent

price impacts, the asset selling price on the next odd date 2t+ 3 will become lower, which gives rise to

an incentive for the fund to sell more assets on date 2t+ 1. Therefore, by the results in Propositions 1,

2 and 13, more rapid cash rebuilding unambiguously leads to more severe run problems and potentially

higher total fire sale losses in expectation.

This extension has two implications. On the one hand, it suggests that shareholder runs and the

dynamic interdependence between runs and fund liquidity management do not rely on the existence of

persistent price impacts described here. In other words, there can be shareholder runs in equilibrium

without persistent price impacts. On the other hand, the existence of persistent price impacts can make

the run problems more severe. Given that persistence price impacts can indeed exist in some illiquid

asset markets, this extension suggests that the concerns about shareholder runs can be indeed very

relevant.

70Note that, this extended setting still keeps the structure of one shock per two dates, and thus the micro-foundation in
Appendix A.3 is still valid.
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7 Conclusion

In this paper, I build a model of an open-end mutual fund with a flexible NAV, and show that shareholder

runs can occur in equilibrium despite optimal liquidity management by the fund. With a flexible NAV,

fund cash rebuilding by selling illiquid assets implies a predictable decline in NAV and thus a first-mover

advantage, leading to runs. The presence of shareholder runs further complicates the fund’s efforts in

liquidity management, leading to higher total fire sale losses in expectation. Hence, appropriate design

of policies aiming for mitigating financial stability risks of mutual funds should take into account the

dynamic interdependence of shareholder runs and fund liquidity management.

At a fundamental level, shareholder runs are driven by a key contractual property of mutual fund

NAVs: they are flexible but not forward-looking. Specifically, the NAV at t does not take into account

the predictable asset sales and price impact at t + 1. This contractual property comes from a form of

market incompleteness that shareholders cannot fully contract on future NAVs. This property implies

that cash rebuilding can give rise to predictable declines in NAV and thus the potential for runs.

Finally, my model sheds new light on potential systemic risks posed by mutual funds. As mutual

fund runs can lead to more fire sales, the underlying asset markets may become even more illiquid.

As suggested by Stein (2014) and formally shown in He and Milbradt (2014), this effect can cause

more corporate bond defaults and impose considerate risks on real economic activities. This channel

becomes increasingly relevant given the bank-bond substitution after the crisis (Becker and Ivashina,

2014, Crouzet, 2015) as well as the increasing “reaching-for-yield” behavior in corporate bond markets

(Becker and Ivashina, 2015). To be clear, I do not claim that mutual fund runs cause more systemic

risks. The systemic implications of mutual fund runs depend not only on the contagion from secondary-

market fire sales to primary-market investment losses, but also on how non-bank financial intermediaries

interact with other bank-like financial institutions. A thorough investigation covering all these issues is

beyond the scope of this paper, but the results here can naturally serve as a building block for future

research on these issues.
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A Appendix

A.1 Institutional Background

In this appendix, I depict the current trends of U.S. corporate bond mutual funds. These trends show

that these funds are growing rapidly in size, investing in more illiquid assets, and holding less cash

relative to their assets. The settings in my model are consistent with these trends.
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Figure 8: Trends in Corporate Bond Mutual Funds

It is worth noting that, although the trends illustrated here suggest increasing financial stability

risks of mutual funds and potentially large fire sale losses when runs occur, the mechanism of this paper

is general and does not rely on the trends.

A.2 The Analysis of the Intermediate Cash-to-Assets Ratio Region Gm

In this appendix, I provide a complete equilibrium analysis of the stage game when the fund starts at

the intermediate cash-to-assets ratio region Gm.

Again, I first characterize how shareholder runs affect the fund’s forced fire sales on dates 2t and

2t+ 1, respectively. For convenience, I define

λ̂2t ≡
x2t − µE(Ra2t + x2t)

µL(Ra2t + x2t)
.

By construction, within the intermediate region, there is always λ̂2t ∈ [0, 1) . The economic meaning of

λ̂2t will become clear shortly.

Lemma 9. When η2t ∈ Gm, there are:
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i) if λ2t ∈ [0, λ̂2t], then

q2t(λ2t) = 0 ,

q2t+1(λ2t) =
(µE + µL)(Ra2t + x2t)− x2t

p̂L(λ2t)
, (A.1)

where q2t+1 is increasing in λ2t, and,

ii) if λ2t ∈ (λ̂2t, 1], then

q2t(λ2t) =
(µE + λ2tµL)(Ra2t + x2t)− x2t

p̂E(λ2t)
, (A.2)

q2t+1(λ2t) =

(1− λ2t)µL ·
R(a2t − q2t)

1− µE − λ2tµL
p̂L(λ2t)

, (A.3)

where q2t is increasing in λ2t but q2t+1 is decreasing in λ2t.

Moreover, q2t + q2t+1 is increasing in λ2t for all λ2t ∈ [0, 1].

I first discuss the intuition behind the results when λ2t 6 λ̂2t. In this case, the fund has enough cash

to satisfy all the µE + λ2tµL redeeming shareholders on date 2t at the initial NAV. Thus, no illiquid

assets are forced to sell on date 2t, that is, q2t(λ2t) = 0. However, in the intermediate region the fund

does not have enough cash to satisfy all the late shareholders on the odd date. Specifically, the cash gap

at the beginning of date 2t+ 1 is indicated by the numerator of (A.1). Following the same intuition of

Lemma 4, the fund manager will close the gap by selling at the effective price p̂L(λ2t). As λ2t increases,

the effective selling price p̂L(λ2t) becomes lower, suggesting that the fund will be forced to sell more on

date 2t+ 1, that is, q2t+1 becomes larger.

The situation becomes different when λ2t > λ̂2t. Compared to Lemma 4, the two conditions (A.2)

and (A.3) are exactly the same as conditions (3.6) and (3.7) there. This is because when λ2t > λ̂2t the

cash position x2t becomes inadequate to satisfy the µE + λ2tµL redeeming shareholders on date 2t at

the initial NAV, so that the stage game effectively jumps into the low cash-to-assets ratio region. The

monotonicity of q2t, q2t+1, and (q2t + q2t+1) all follows the same intuition there.

It is worth noting that, regardless of whether λ2t 6 λ̂2t or λ2t > λ̂2t, more late shareholder runs

always lead to unambiguously higher forced fire sales within the entire stage (including both date 2t

and 2t+ 1).

Similarly, I can characterize the NAVs in the intermediate region. When λ2t ∈ [0, λ̂2t], by Lemma 9

there is

NAV2t(λ2t) = Ra2t + x2t , (A.4)
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and

NAV2t+1(λ2t) =
R

illiquid assets remained︷ ︸︸ ︷
(a2t − q2t+1(λ2t)− s2t+1) +

cash remained︷ ︸︸ ︷
x2t − (µE + λ2tµL)(Ra2t + x2t) +

cash raised and rebuilt︷ ︸︸ ︷
δLR(q2t+1(λ2t) + s2t+1)

1− (µE + λ2tµL)︸ ︷︷ ︸
shareholders remained on date 2t + 1

= NAV2t −
(1− δL)R (q2t+1(λ2t) + s2t+1)

1− µE − λ2tµL
. (A.5)

where q2t+1(λ2t) is given in (A.1). Clearly, the NAV on date 2t as in (A.4) is also constant and the

same as (3.1) in the high region. The NAV on date 2t+ 1 as in (A.5) also features the same expression

as (3.3) in the high region. These suggest that shareholders’ strategic interaction in this sub-region is

the same as that in the high region.

When λ2t ∈ (λ̂2t, 1], by Lemma 9 there are

NAV2t(λ2t) = Ra2t + x2t − (1− δE)Rq2t(λ2t) , (A.6)

and

NAV2t+1(λ2t) =
R (a2t − q2t(λ2t)− q2t+1(λ2t)− s2t+1) + δLR (q2t+1(λ2t) + s2t+1)

1− µE − λ2tµL
, (A.7)

where q2t(λ2t) and q2t+1(λ2t) are given in (A.2) and (A.3). Note that, the NAVs as in (A.6) and (A.7) are

exactly the same as (3.9) and (3.10) in the low region, suggesting that shareholders’ strategic interaction

in this sub-region is the same as that in the low region.

Formally, the following lemma tells us that the stage game in the intermediate region indeed features

a switch from strategic complementarity to substitutability.

Lemma 10. When η2t ∈ Gm, there are:

i) if λ2t ∈ [0, λ̂2t], late shareholders’ run decision λ2t exhibits strategic complementarity for any fea-

sible s2t+1 ∈ [0, a2t− q2t+1(λ2t)], and the strategic complementarity becomes stronger as s2t+1 increases,

and,

ii) if λ2t ∈ (λ̂2t, 1], late shareholders’ run decision λ2t exhibits strategic substitutability for any λ2t

satisfying θNAV2t(λ2t) > NAV2t+1(λ2t) and any feasible s2t+1 ∈ [0, a2t − q2t(λ2t)− q2t+1(λ2t)], and the

strategic substitutability becomes weaker as s2t+1 increases.

Not surprisingly, Lemma 10 can be understood in view of Lemma 3 (in the analysis for the high

region) and Lemma 5 (in the analysis for the low region). In the first sub-region [0, λ̂2t], shareholders

who run can get the endogenously fixed NAV on date 2t at the expense of shareholders who wait. More

running shareholders or a more rapid cash rebuilding policy implies a larger magnitude of predictable

decline in the NAV on date 2t+ 1, leading to a stronger strategic complementarity. In the second sub-

region, however, running shareholders have to accept an endogenously lower NAV themselves because

the fund is forced to sell its illiquid assets on date 2t, when the fire sale price is extremely low. The

resulting higher fire sale losses suggest that more shareholder runs make the other shareholders who plan
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to wait less likely to run. But again, more rapid cash rebuilding still gives rise to a larger magnitude of

predictable decline in the NAV on date 2t+ 1 and thus reinforces the run incentive.

Because of the switch of strategic interaction, shareholders’ equilibrium run behaviors exhibit a

richer pattern. Despite the complicated equilibrium construction in the intermediate region, it still

indicates that fund cash rebuilding leads to runs and more rapid cash rebuilding triggers more severe

runs in equilibrium.

Proposition 13. When η2t ∈ Gm, late shareholders’ equilibrium run behaviors are given by the follow-

ing five cases:

i) none of the late shareholders runs, that is, λ2t = 0, if

s2t+1 < sm ≡
Ra2t − θ(1− µE − λ̂2tµL)(Ra2t + x2t)

(1− δL)R
− q2t+1(λ̂2t) ,

ii) if

s2t+1 > sm ≡
Ra2t − θ(1− µE)(Ra2t + x2t)

(1− δL)R
− q2t+1(0) , then ,

a) all of the late shareholders run, that is, λ2t = 1, if

s2t+1 > sm ≡
Ra2t − θ(1− µE − µl)(Ra2t + x2t)− (1− θ(1− δE)(1− µE − µl))Rq2t(1)

(1− δL)R
,

b) some of the late shareholder runs, that is, λ2t =
˜̃
λ2t ∈ [λ̂2t, 1), if

s2t+1 6 sm ,

where
˜̃
λ2t is the solution to

s2t+1 =
Ra2t − θ(1− µE −

˜̃
λ2tµl)(Ra2t + x2t)− (1− θ(1− δE)(1− µE −

˜̃
λ2tµl))Rq2t(

˜̃
λ2t)

(1− δL)R
− q2t+1(

˜̃
λ2t) ,

iii) if sm 6 s2t+1 6 sm, then,

c) λ2t ∈ {0, λ̃2t, 1}, if

s2t+1 > sm ,

where λ̃2t is the solution to

s2t+1 =
(1− θ)(1− µE − λ̃2tµL)(Ra2t + x2t)

(1− δL)R
− q2t+1(λ̃2t) ,

d) λ2t ∈ {0, λ̃2t,
˜̃
λ2t}, if

s2t+1 6 sm ,

where λ̃2t is given in Case c) and
˜̃
λ2t is given in Case b).

All of the q2t(λ2t) and q2t+1(λ2t) are given in Lemma 9. Moreover, sm > 0 and sm > sm.

The intuition behind Proposition 13 is clear in view of Propositions 1 and 2. By Lemma 10, the
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stage game in the intermediate region starts with strategic complementarity when only a small fraction

of late shareholders decides to run. Hence, it is the strategic complementarity in the first sub-region

[0, λ̂2t] that determines whether any late shareholder will run at all. As in Case i), when λ̂2t of the late

shareholders decide to run, if the utility gain of running over waiting is still not positive, none of the late

shareholders will ever run. In Case ii), the utility gain of running over waiting is already positive even if

no one runs, so that at least λ̂2t of the late shareholders will run due to the strategic complementarity in

the sub-region [0, λ̂2t]. However, as the stage game switches to the second sub-region (λ̂2t, 1], there can

be strategic substitutability. In sub-case a), the fund uses a rapid cash rebuilding policy so that all of

the late shareholders run despite the strategic substitutability, while in sub-case b) the substitutability

is strong so that λ2t =
˜̃
λ2t ∈ [λ̂2t, 1) of the late shareholders are going to run. Finally, in Case iii), the

strategic complementarity in the first sub-region [0, λ̂2t] is moderate. When this happens, the worst

equilibrium will be determined by the magnitude of strategic substitutability in the sub-region (λ̂2t, 1],

as shown in Case c) and Case d).

Interestingly, Proposition 2 suggests that the risk of shareholder runs can be higher in the inter-

mediate region than that in the low region (with the same set of cash rebuilding policy s2t+1 and

other model parameters). This is because the run threshold sm in Proposition 13 can be smaller than

sl in Proposition 2. This predication may be surprising given that the fund has more cash in the

intermediate region. But it is intuitive in view of the strategic complementarity in the intermediate

region. Concretely, when the fund starts from either the low or the intermediate region, there are forced

fire sales on date 2t+ 1. But only when starting from the intermediate region, can some of the running

shareholders get an endogenously fixed NAV on date 2t. As a result, shareholders may be more willing

to run to get the higher NAV on date 2t when the fund starts from the intermediate region, compared

to the case when if the fund starts from the low region where they would always have to accept a lower

NAV on date 2t if they run.

As usual, I show how shareholder runs increase the risk of forced fire sales by exploring the laws of

motions in the intermediate region.

Corollary 4. When η2t ∈ Gm, the law of motions of (a2t, x2t) is given by

a2t+2 = a2t − (q2t(λ2t) + q2t+1(λ2t))− s2t+1 , and , (A.8)

x2t+2 = p̂L(λ2t)s2t+1 , (A.9)

where λ2t is the equilibrium run probability induced by (a2t, x2t) and s2t+1, as characterized in Proposition

13.

Similarly, Corollary 4 is easier to understand in view of Corollary 2; the two laws of motions (A.8)

and (A.9) share the same mathematical expressions with (3.11) and (3.12) in the low region.71 They

again suggest two different costs of shareholder runs: more forced fire sales in the current stage and

higher risk of future-stage fire sales.

71However, it is worth noting that the equilibrium determination and the endogenous functions of q2t(λ2t) and q2t+1(λ2t)
are still different between the two regions. So that the intermediate region still features a different law of motions of
(a2t, x2t).
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A.3 A Micro-foundation for the Pattern of Selling Prices

In this appendix, I show that the pattern of selling prices in the baseline model can emerge endogenously

by modeling the slow-moving of liquidity providers in the spirit of Grossman and Miller (1988) and Duffie

(2010). It shows that the reduced-form assumption can be rationalized as the outcome of a full-fledged

equilibrium model with both liquidity demanders and providers. To make the idea more transparent,

I set the micro-foundation in continuous time.72 I follow the building blocks in Duffie, Garleanu and

Pedersen (2005, 2007), Weill (2007) and Lagos, Rocheteau and Weill (2011) to model the gradual entry

of liquidity providers and focus on the equilibrium price implications.

Time is continuous and infinite. A probability space (Ω,F , P ) is fixed with an information filtration

{Ft, t > 0} satisfying the usual measurability conditions (Sun, 2006). There is a common discount rate

r > 0. There is a continuum of 1 of risk-neutral, infinitely lived, and competitive investors. There is a

centralized market with many different assets. The total supply of all assets is S ∈ [0, 1). Investors can

hold at most one unit of assets and cannot short sell the assets. There is also a riskfree saving account

with return r, which can be interpreted as cash equivalents. Under usual non-arbitrage conditions, this

implies that the fundamental value of the assets is 1/r.

There are two types of investors: liquidity providers and liquidity demanders. Liquidity providers

enjoy a high utility flow per time by holding one unit of assets, which is normalized to 1, while liquidity

demanders enjoy a low utility flow δ ∈ (0, 1).

At the beginning, the economy is hit by an unanticipated liquidity shock that makes all investors

liquidity demanders. However, as time goes by, they will randomly and pairwise independently switch

to liquidity providers.73 Specifically, the times at which investors switch to liquidity providers are i.i.d.

exponentially distributed with a parameter α. Denote the endogenous population of liquidity providers

by ρ(t). By the exact law of larger numbers (Sun, 2006, Theorem 2.16), there is

ρ(t) = 1− exp(−αt) . (A.10)

Intuitively, this implies that there is no liquidity provider available right at the shock time (i.e., t = 0),

while there will be more and more liquidity providers stepping into the market after the shock.

In this simple framework, the following proposition shows the pattern of asset selling price over time:

Proposition 14. The asset selling price at time t is characterized by

p(t) =
δ + (1− δ) exp(−r(tS − t))

r
,

where tS satisfies ρ(tS) = S and ρ(·) is given by (A.10).

Intuitively, the selling price drops discontinuously at t = 0 from the fundamental value, but rebounds

gradually over time (as more liquidity providers become available) until it gets back to the fundamental

72This baseline model is set in discrete time to highlight the discrete nature of daily redemptions and the end-of-day
NAV. But in the micro-foundation, the discrete nature is no longer important. As a result, setting a continuous-time model
incurs no loss of generality but makes the derivation mathematically more convenient.

73This dynamic process is in the spirit of Grossman and Miller (1988), in which liquidity providers only enter the market
one period after the initial liquidity shock.
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value at time tS . When the next shock comes, this process repeats itself, giving rise to the price pattern

in the baseline model.

It is instructive to provide the proof here to help build intuition. First of all, I show that there

is a time at which the selling positions can be completely absorbed by liquidity providers so that the

price goes back to the fundamental. Specifically, condition (A.10) shows that more liquidity providers

step into the market as time goes by after the shock. Denote the endogenous time by which liquidity

providers can absorb all the asset supply by tS , which implies that ρ(tS) = S. Since ρ(tS) is monotone,

this uniquely determines tS . This corresponds to the baseline model that if the game ends (i.e., there

are no future shocks), the asset selling price will ultimately reflect the fundamental value.

Then I show that, between the shock time 0 and the full recovery time tS (before the next possible

shock), the asset selling price first drops and then rebounds gradually, as that in the baseline model.

Note that, at any time t between 0 and tS , there are no enough liquidity providers in the market, so

that the marginal investor is a liquidity demander who has a low valuation of the assets. Since this

liquidity demander is infinitely lived, the Hamilton-Jacobi-Bellman equation leads to:

rp(t)dt = δdt+ p(t) (A.11)

This condition has an intuitive interpretation. At any time t between 0 and tS , the left hand side of

(A.11) denotes the return of selling the unit of assets at t and investing the proceeds in cash equivalents

in the time interval [t, t+ dt), while the right hand side denotes the valuation flow by holding one unit

of assets in the time interval [t, t + dt) plus the proceeds from selling it after that. In any equilibrium

path, the liquidity demander should be indifferent between these two options of selling earlier or later.

Therefore, solving the differential equation implied by (A.11) with the boundary conditions yields the

equilibrium selling price. This concludes the proof.

Fundamentally, this micro-foundation follows the spirit of Grossman and Miller (1988) and Duffie

(2010), but differs in an important way. Specifically, liquidity providers in their models share risks with

liquidity demanders, while in both my baseline model and the micro-foundation, all the investors are

risk neutral.74 However, similar selling price pattern emerges. This is because liquidity providers in

my model have higher valuation of the underlying assets, which more resembles the notion of natural

buyers in Shleifer and Vishny (1992, 1997) and thus is closer to the fire sale interpretation in the baseline

model. Like that in Grossman and Miller (1988) and Duffie (2010), liquidity providers step into the

market only gradually after the shock, implying that only a few liquidity providers are present in the

market right after the shock. Hence, investors who want to sell the assets right after the shock have to

incur an extremely low fire sale price. As time goes by (but before the next possible shock comes), more

liquidity providers with high valuation of the underlying assets step into the market, implying that it

becomes increasingly easier for the liquidity demanders to find a better selling price.

This micro-foundation has other nice properties, which are also consistent with other ingredients

of the baseline model. First, different from Grossman and Miller (1988), all investors in the micro-

74This assumption of risk neutrality also appears in other search-based models (see Duffie, Garleanu and Pedersen, 2005,
Weill, 2007, Lagos, Rocheteau and Weill, 2011, among many others).
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foundation are infinitely lived and perfectly forward-looking. This implies that the resulting selling price

pattern does not come from any myopia of the investors. Second, as suggested by Duffie, Garleanu and

Pedersen (2005, 2007) and many follow-up models, the setting of low and high valuations parsimoniously

captures many potential benefits and costs of holding the assets and the resulting trading motives, which

are consistent with the baseline model. When a mutual fund experiences a large redemption, holding

the illiquid assets would incur more costs and thus imply a lower valuation.

A.4 Proofs

In this appendix, I provide proofs for all the results in the main text.

Proof of Lemma 1. First, in the high cash-to-assets ratio region, the fund needs to sell no illiquid

assets on either date 2t or 2t + 1. Since no fire sale losses are incurred in this region, both early and

late shareholders are able to get the same NAV as that at the beginning of date 2t, that is,

NAV2t = NAV2t+1 =
Ra2t + x2t

n2t
.

Moreover, the initial cash position should be large enough to meet the redemption needs of all share-

holders on dates 2t and 2t+ 1 at such a constant NAV:

x2t > (µE + µL)n2t ·
Ra2t + x2t

n2t
,

yielding

η2t >
(µE + µL)R

1− µE − µL
, (A.12)

the criterion for the high region.

Then, in the intermediate region, as no fire sale is incurred on date 2t, the initial cash position is

high enough to meet the redemption needs of early shareholders at the initial NAV but insufficient to

meet late shareholders’ redemption needs:

µEn2t ·
Ra2t + x2t

n2t
6 x2t < (µE + µL)n2t ·

Ra2t + x2t
n2t

,

which leads to
µER

1− µE
6 η2t <

(µE + µL)R

1− µE − µL
, (A.13)

the criterion for the intermediate region.

Finally, in the low region, the cash position is even inadequate to meet early shareholders’ redemption

needs at the initial NAV. This means

x2t < µEn2t ·
Ra2t + x2t

n2t
,

which yields

η2t <
µER

1− µE
, (A.14)
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the criterion for the intermediate region.

It is straightforward to check that (A.12), (A.13), and (A.14) are also sufficient conditions. This

concludes the proof.

Proof of Lemma 2. Suppose λ2tµL late shareholders decide to run. This situation is equivalent to a

counterfactual in which there are initially µ′E = µE+λ2tµL early shareholders and µ′L = (1−λ2t)µL late

shareholders but no late shareholder runs. Since µ′E + µ′L = µE + µL, by Lemma 1, q2t = q2t+1 = 0 is

true in the counterfactual situation and so is true in the original situation with λ2tµL late shareholders

running. This concludes the proof.

Proof of Lemma 3. By Lemma 2 and the definition of ∆uL(λ2t):

∆uL(λ2t) = θNAV2t −NAV2t+1 = (θ − 1)(Ra2t + x2t) +
(1− δL)Rs2t+1

1− µE − λ2tµL
.

Taking derivatives yields:

∂∆uL(λ2t)

∂λ2t
=

(1− δL)µLRs2t+1

(1− µE − λ2tµL)2
> 0 ,

which takes value 0 when s2t+1 = 0, and

∂2∆uL(λ2t)

∂λ2t∂s2t+1
=

(1− δL)µLR

(1− µE − λ2tµL)2
> 0 .

This concludes the proof.

Proof of Proposition 1. By Lemma 3, the stage game exhibits strategic complementarity when

s2t+1 > 0. Also notice that any shareholder runs only if θNAV2t > NAV2t+1. Thus, in Case i), none of

the late shareholders runs if

θNAV2t < NAV2t+1(1) , (A.15)

in which NAV2t+1(λ2t) is a function of λ2t. Solving inequality (A.15) leads to

s2t+1 <
(1− θ)(1− µE − µL)(Ra2t + x2t)

(1− δL)R
≡ sh .

Alternatively, in Case ii), all of the late shareholders run if

θNAV2t > NAV2t+1(0) , (A.16)

the solution of which is

s2t+1 >
(1− θ)(1− µE)(Ra2t + x2t)

(1− δL)R
≡ sh .

Finally, in Case iii), if neither (A.15) nor (A.16) holds, there exists a λ̃2t ∈ [0, 1] that solves

θNAV2t = NAV2t+1(λ̃2t) .
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Note that, λ̃2t constructs an equilibrium because by definition ∆uL(λ̃2t) = 0 and thus no shareholder

would have an incentive to deviate from it. In addition, in this case, again by Lemma 3, there are

θNAV2t > NAV2t+1(1) and θNAV2t 6 NAV2t+1(0), which means λ2t = 1 and λ2t = 0 are also two

equilibria when (A.15) and (A.16) are both violated. This concludes the proof.

Proof of Corollary 1. By Lemma 2, q2t(λ2t) = q2t+1(λ2t) = 0 for any arbitrary λ2t ∈ [0, 1] . Thus,

the evolution of the asset position directly follows:

a2t+2 = a2t − q2t − q2t+1 − s2t+1 = a2t − s2t+1 .

For the evolution of the cash position, the fund pays all the redeeming shareholders by cash at the

respective end-of-day NAVs on date 2t and 2t+ 1, and rebuilds its cash buffer on date 2t+ 1. Note that

there will be no cash raised by forced fire sales. Thus:

x2t+2 = x2t − (µE + λ2tµL)NAV2t − (1− λ2t)µLNAV2t+1 + pLs2t+1

= x2t − (µE + µL)(Ra2t + x2t) + δLRs2t+1 +
(1− λ2t)µL(1− δL)Rs2t+1

1− µE − λ2tµL
.

This concludes the proof.

Proof of Lemma 4. Recall that, when forced fire sales occur, the fund sells up to a point at which it

can satisfy the redemptions at the end-of-day NAV, which will take into account the losses from forced

fire sales. On the one hand, on date 2t the fund starts with a cash position x2t. Hence, on date 2t, q2t

solves

x2t + pEq2t = (µE + λ2tµL)[(a2t − q2t)R+ x2t + pEq2t] ,

yielding

q2t(λ2t) =
(µE + λ2tµL)(Ra2t + x2t)− x2t
[δE + (1− δE)(µE + λ2tµL)]R

. (A.17)

On the other hand, on date 2t + 1, by construction, the fund has no cash at all at the beginning.

Hence, q2t+1 solves

pLq2t+1 = (1− λ2t)µL
(a2t − q2t − q2t+1)R+ pLq2t+1

1− µE − λ2tµL
,

yielding

q2t+1 =
(1− λ2t)µL(a2t − q2t)

(1− µE − λ2tµL)δL + (1− λ2t)µL(1− δL)
. (A.18)

Plugging (A.17) into (A.18) leads to

q2t+1(λ2t) =

(1− λ2t)µL ·
R(a2t − q2t)

1− µE − λ2tµL[
δL +

(1− λ2t)µL(1− δL)

1− µE − λ2tµL

]
R

. (A.19)
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For the monotonicity of q2t(λ2t), taking derivative of (A.17) leads to

∂q2t(λ2t)

λ2t
=

µL(δERa2t + x2t)

[µE(1− δE) + (1− λ2tµL)δE + λ2tµL]2
> 0 ,

implying that q2t(λ2t) is increasing in λ2t. Similar procedures based on (A.17) and (A.19) show that

q2t+1(λ2t) is decreasing in λ2t while q2t(λ2t)+q2t+1(λ2t) is increasing in λ2t. This concludes the proof.

Proof of Lemma 5. By Lemma 4 and the definition of ∆uL(λ2t):

∆uL(λ2t) = θNAV2t −NAV2t+1

= θ[(Ra2t + x2t)− (1− δE)Rq2t]−
(Ra2t + x2t)−Rq2t − (1− δL)R(q2t+1 + s2t+1)

1− µE − λ2tµL
, (A.20)

in which q2t and q2t+1 are functions of λ2t by Lemma 4. It is straightforward that ∆uL(λ2t) is larger

when s2t+1 increases. To focus on the value of λ2t that satisfies θNAV2t > NAV2t+1, there is no loss of

generality to consider θ = 1, and the analysis for a general θ naturally follows by considering subsets

of λ2t. Now plug (A.17) and (A.18) into (A.20) and then take derivative with respect to λ2t. After

rearrangement, this yields:

∂∆uL(λ2t)

∂λ2t
= −

(1− δL)µL

(
x2tC1 −

R
(
s2t+1C2 − a2tδE(1− µE − λ2tµL)2C1

)
(1− µE − λ2tµL)2

)
((1− λ2t)µL + δL(1− µE − µL))2(µE + λ2tµL + δE(1− µE − λ2tµL))2

, (A.21)

where

C1 = (1− δE)(1− λ2t)2µ2L + δL(1− µE − µL)(µE + µL) + δEδL(1− µE − µL)2 > 0 ,

C2 = ((1− λ2t)µL + δL(1− µE − µL))2 (µE + λ2tµL + δE(1− µE − λ2tµL))2 > 0 .

Consider

C = x2tC1 −
R
(
s2t+1C2 − a2tδE(1− µE − λ2tµL)2C1

)
(1− µE − λ2tµL)2

for any 0 6 x2t < µEn2t(Ra2t +x2t) and any 0 6 s2t+1 6 a2t− q2t(λ2t)− q2t+1(λ2t). Since C1 > 0, there

is x2tC1 > 0 and thus

C >
R
(
a2t
(
δE(1− µE − λ2tµL)2C1 − C2

))
(1− µE − λ2tµL)2

. (A.22)

Notice that C1 and C2 are only functions of λ2t, µE , µL, δE , δL, and are independent of a2t and x2t.

By construction,

δE(1− µE − λ2tµL)2C1 − C2 > 0

for any λ2t ∈ [0, 1].

As a result, since a2t > 0 and R > 0, inequality (A.22) implies that C > 0. Plugging back to (A.21)

finally yields
∂∆uL(λ2t)

∂λ2t
< 0 ,
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implying strategic substitutability.

It is straightforward that ∆uL(λ2t) is larger when s2t+1 increases. Also, by definition, C is decreasing

in s2t+1 when 0 6 s2t+1 6 a2t − q2t(λ2t)− q2t+1(λ2t). By (A.21) and the derivation above, the strategic

substitutability becomes weaker when s2t+1 increases. This concludes the proof.

Proof of Proposition 2. Notice that any shareholder runs only if θNAV2t > NAV2t+1. Also by

Lemma 5, the stage game exhibits strategic substitutability whenever an incentive to redeem earlier

exists. Thus, in Case i), none of the late shareholders runs if

θNAV2t(0) < NAV2t+1(0) , (A.23)

which implies that θNAV2t(λ2t) < NAV2t+1(λ2t) for any λ2t by using the expressions in Lemma 4.

Thus, solving inequality (A.23) leads to

s2t+1 <
Ra2t − θ(1− µE)(Ra2t + x2t)− (1− θ(1− δE)(1− µE))Rq2t(0)

(1− δL)R
− q2t+1(0) ≡ sl .

Alternatively, in Case ii), all of the late shareholders run if

θNAV2t(1) > NAV2t+1(1) , (A.24)

which implies that θNAV2t(λ2t) > NAV2t+1(λ2t) for any λ2t despite the underlying strategic substi-

tutability suggested by Lemma 5. Solving inequality (A.24) leads to

s2t+1 >
Ra2t − θ(1− µE − µL)(Ra2t + x2t)− (1− θ(1− δE)(1− µE − µL))Rq2t(1)

(1− δL)R
≡ sl .

Using the expressions in Lemma 4, plugging q2t(0), q2t+1(0) and q2t(1) into the definition of sl and

sl directly yields sl > 0 and sl > sl.

Finally, in Case iii), there exists some λ̃2t ∈ [0, 1] that solves

θNAV2t(λ̃2t) = NAV2t+1(λ̃2t) ,

where λ̃2t constructs an equilibrium because by definition ∆uL(λ̃2t) = 0 and thus no shareholder would

have an incentive to deviate from it. This leads to

s2t+1 =
Ra2t − θ(1− µE − λ̃2tµl)(Ra2t + x2t)− (1− θ(1− δE)(1− µE − λ̃2tµl))Rq2t(λ̃2t)

(1− δL)R
− q2t+1(λ̃2t) .

This concludes the proof.

Proof of Corollary 2. By Lemma 4, q2t(λ2t) > 0 for any arbitrary λ2t ∈ [0, 1] and q2t+1(λ2t) > 0

for any arbitrary λ2t ∈ [0, 1). Thus, the evolution of the asset position directly follows:

a2t+2 = a2t − q2t(λ2t)− q2t+1(λ2t)− s2t+1 .
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For the evolution of the cash position, notice that all the proceeds from forced fire sales q2t(λ2t) and

q2t(λ2t+1) go to the redeeming shareholders. Also, by definition of the low cash-to-assets region, the

fund starts with no cash on date 2t+ 1. Thus:

x2t+2 = pL(q2t+1(λ2t) + s2t+1)− (1− λ2t)µLNAV2t+1

= δLRs2t+1 +
(1− λ2t)µL(1− δL)Rs2t+1

1− µE − λ2tµL
.

This concludes the proof.

Proof of Proposition 3. The existence of a Markov equilibrium of the fully dynamic game follows

a special case of Theorem 2 and Corollary 6 in Khan and Sun (2002). The key is to find a measurable

selection of Nash equilibria in each stage game determined by the state variables (a2t, x2t). The Arsenin-

Kunugui Theorem (see Kechris, 1995 for a textbook treatment) guarantees that any usual equilibrium

selection mechanism such as selecting the best, the worst or the one based on the global game approach

is measurable.

Under any Markov strategy profile, by definition, the strategies of both the fund manager and all

the shareholders are functions of the two state variables (a2t, x2t), and their strategies are mutually best

responses as well. In other words, strategies played in the past stages influence current-stage strategies

only through the two state variables. For convenience, in what follows I call a stage game (a2t, x2t)

when the fund starts from the portfolio position (a2t, x2t) on date 2t.

Consider any arbitrary φ ∈ (0, 1). Define a′2t = φa2t, x
′
2t = φx2t, and s′2t+1 = φa2t+1. By Lemma

1, game (a2t, x2t) and game (a′2t, x
′
2t) start from the same cash-to-assets ratio region. By Propositions

1, 2, and 13, if λ2t constructs a run equilibrium in game (a2t, x2t) under the cash rebuilding policy

s2t+1, it must also construct a run equilibrium in game (a′2t, x
′
2t) under the cash rebuilding policy s′2t+1.

Hence, by Lemmas 2, 4, and 9, the equilibrium amounts of forced fire sales in game (a′2t, x
′
2t) must be

q′2t = φq2t, q
′
2t+1 = φq2t+1, where q2t and q2t+1 are the equilibrium amounts of forced fire sales in game

(a2t, x2t).

Then consider the dynamics. Fix a consistent equilibrium selection mechanism if multiple equilibria

occur. Let (a2t+2, x2t+2) be the next stage game when game (a2t, x2t) is played under the cash rebuilding

policy s2t+1. By Corollaries 1, 2 and 4, the next stage game must be (a′2t+2, x
′
2t+2), where a′2t+2 = φa2t+2

and x′2t+2 = φx2t+2, if the current stage game (a′2t, x
′
2t) is played under the cash rebuilding policy

s′2t+1. Therefore, if s2t+1(a2t, x2t) is the optimal cash rebuilding policy in stage t for game (a2t, x2t),

s′2t+1(a
′
2t, x

′
2t) = φs2t+1(a2t, x2t) must be the optimal cash rebuilding policy in stage t for game (a′2t, x

′
2t).

Hence, V (a′2t, x
′
2t) = φV (a2t, x2t) is indeed the value function for the dynamic game with a starting

position (a′2t, x
′
2t).

Finally, it is straightforward to see that V (0, 0) = 0. This concludes the proof.

Proof of Lemma 6. If a2t = 0, it is trivial that s∗2t+1(a2t, x2t) = 0. So it is only worth considering a

strictly positive a2t.

On the one hand, consider a perturbation ε > 0 of cash rebuilding around s∗2t+1(a2t, x2t) = 0. On
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date 2t+ 1 (in stage t), regardless of the starting portfolio position (a2t, x2t), the effective selling price

on 2t+ 1 is at most p̂L(0) > 0. Thus, the fire sale loss in stage t is at least

ε(1− δL)R

p̂L(0)
> 0 .

On other other hand, consider an initial cash gap ε on date 2t+ 2 (in stage t+ 1). Regardless of the

starting portfolio position (a2t+2, x2t+2), the effective selling price on 2t + 2 is at least p̂E(0) > 0, and

the physical selling price in stage t + 1 is at least δER. Thus, the expected fire sale loss in stage t + 1

due to this cash gap is at most
ε(1− δE)R

p̂E(0)
> 0 .

Therefore, for any π satisfying

π > 1− (1− δL)p̂E(0)

(1− δE)p̂L(0)
∈ (0, 1) ,

it is optimal to choose s∗2t+1(a2t, x2t) = 0. This concludes the proof.

Proof of Lemma 7. This directly follows late shareholders’ utility function.

Proof of Lemma 8. First consider the case of η2t ∈ Gh. By Proposition 1, θ = 1 implies that sh = 0.

Again by Proposition 1, there is λ2t = 1 for any s2t+1 > 0 regardless of (a2t, x2t).

Then consider the case of η2t ∈ Gl. Similarly, by Proposition 2, θ = 1 implies that sl = 0. Again by

Proposition 2, there is λ2t = 1 for any s2t+1 > 0 regardless of (a2t, x2t).

Finally, consider the case of η2t ∈ Gm. By Proposition 13, θ = 1 implies that sm = sm = 0. Again by

Proposition 13, there is λ2t = 1 for any s2t+1 > 0 regardless of (a2t, x2t). This concludes the proof.

Proof of Proposition 4. I consider two cases according to the starting cash-to-assets ratio on date

2t.

Case 1. η2t ∈ Gl∪Gm∪Ghl. First, consider a perturbation −ε < 0 of cash rebuilding around σ∗2t+1

that satisfies η∗2t+2 = µER/(1−µE). On date 2t+ 1 (in stage t), since there are no runs (by Lemma 7),

the effective selling price on 2t+ 1 is p̂L(0). Thus, the fire sale loss saved in stage t is

ε(1− δL)R

p̂L(0)
> 0 .

Now consider the same cash gap ε on date 2t + 2 (under the perturbed cash rebuilding policy

(σ∗2t+1,−ε). This implies that η2t+2 ∈ Gl. Since there are no runs, the fund has to fire sell its assets on

date 2t+ 2 at the effective selling price p̂E(0) > 0. Hence, the expected increase of fire sale loss in stage

t+ 1 due to this cash gap ε is
ε(1− δE)R

p̂E(0)
> 0 .

Since δE < δL and p̂E(0) < p̂L(0), there is

ε(1− δL)R

p̂L(0)
< (1− π)

ε(1− δE)R

p̂E(0)
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for a sufficiently small but positive π, implying that the perturbation −ε is not profitable.

Next, consider another perturbation ε > 0 of cash rebuilding around σ∗2t+1 that satisfies η∗2t+2 =

µER/(1− µE). On date 2t+ 1 (in stage t), similarly, the fire sale loss increased in stage t is

ε(1− δL)R

p̂L(0)
> 0 .

Under the perturbed cash rebuilding policy (σ∗2t+1, ε) the fund gets ε more cash in stage t+ 1. This

implies that η2t+2 ∈ Gm. Since there are no runs, the fund does not have to fire sell its assets on date

2t+2. Rather, the marginal cash saves the fund’s active asset sales on date 2t+3 at the effective selling

price p̂L(0) > 0. Hence, the expected fire sale saved in stage t+ 1 due to this marginal cash ε is also

ε(1− δL)R

p̂L(0)
> 0 .

Since π ∈ (0, 1), this perturbation ε is also not profitable. This verifies the optimality of η∗2t+2 =

µER/(1− µE) when η2t ∈ Gl ∪Gm ∪Ghl.
Case 2. η2t ∈ Ghm ∪Ghh. Consider a perturbation ε > 0 of cash rebuilding around σ∗2t+1 = 0. On

date 2t+ 1 (in stage t), similarly, the fire sale loss increased in stage t is

ε(1− δL)R

p̂L(0)
> 0 .

Similarly, under the perturbed cash rebuilding policy (σ∗2t+1, ε) the fund gets ε more cash in stage

t+ 1. The expected fire sale loss saved in stage t+ 1 due to this marginal cash ε is also

ε(1− δL)R

p̂L(0)
> 0 .

Since π ∈ (0, 1), this perturbation ε is again not profitable. This verifies the optimality of σ∗2t+1 = 0

when η2t ∈ Ghm ∪Ghh. This finally concludes the proof.

Proof of Proposition 5. I consider two cases according to the starting cash-to-assets ratio on date

2t.

Case 1. η2t ∈ Gl∪Gm∪Ghl∪Ghm. First, consider a perturbation −ε < 0 of cash rebuilding around

σ∗2t+1 that satisfies η∗2t+2 = (µE + µL)R/(1 − µE − µL). On date 2t + 1 (in stage t), since λ2t = 1 (by

Lemma 8), the effective selling price on 2t+ 1 is p̂L(1). Thus, the fire sale loss saved in stage t is

ε(1− δL)R

p̂L(1)
> 0 .

Now consider the same cash gap ε on date 2t + 2 (under the perturbed cash rebuilding policy

(σ∗2t+1,−ε). This implies that η2t+2 ∈ Gl ∪Gm. Since λ2t+2 = 1, by Lemmas 4 and 9 the fund always

has to fire sell its assets on date 2t + 2 at the effective selling price p̂E(1) > 0, even if η2t+2 ∈ Gm.
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Hence, the expected increase of fire sale loss in stage t+ 1 due to this cash gap ε is

ε(1− δE)R

p̂E(1)
> 0 .

Since δE < δL and p̂E(1) < p̂L(1), there is

ε(1− δL)R

p̂L(1)
< (1− π)

ε(1− δE)R

p̂E(1)

for a sufficiently small but positive π. Hence, the perturbation −ε is not profitable.

Next, consider another perturbation ε > 0 of cash rebuilding around σ∗2t+1 that satisfies η∗2t+2 =

(µE +µL)R/(1−µE −µL). On date 2t+ 1 (in stage t), similarly, the fire sale loss increased in stage t is

ε(1− δL)R

p̂L(1)
> 0 .

Under the perturbed cash rebuilding policy (σ∗2t+1, ε) the fund gets ε more cash in stage t+ 1. This

implies that η2t+2 ∈ Gh. Hence, by Lemma 2, regardless of runs the fund does not have to fire sell its

assets on date 2t+ 2. Rather, the marginal cash saves the fund’s active asset sales on date 2t+ 3 at the

effective selling price p̂L(1) > 0. Hence, the expected fire sale saved in stage t+ 1 due to this marginal

cash ε is also
ε(1− δL)R

p̂L(1)
> 0 .

Since π ∈ (0, 1), this perturbation ε is also not profitable. This verifies the optimality of η∗2t+2 =

(µE + µL)R/(1− µE − µL) when η2t ∈ Gl ∪Gm ∪Ghl ∪Ghm.

Case 2. η2t ∈ Ghh. Consider a perturbation ε > 0 of cash rebuilding around σ∗2t+1 = 0. On date

2t+ 1 (in stage t), similarly, the fire sale loss increased in stage t is

ε(1− δL)R

p̂L(1)
> 0 .

Similarly, under the perturbed cash rebuilding policy (σ∗2t+1, ε) the fund gets ε more cash in stage

t+ 1. The expected fire sale loss saved in stage t+ 1 due to this marginal cash ε is also

ε(1− δL)R

p̂L(1)
> 0 .

Since π ∈ (0, 1), this perturbation ε is again not profitable. This verifies the optimality of σ∗2t+1 = 0

when η2t ∈ Ghh. This finally concludes the proof.

Proof of Proposition 6. This proof proceeds in three steps. First, I show that when θ is sufficiently

small, the equilibrium is the same as that characterized by Proposition 4. Second, I characterize the

equilibrium when θ takes an intermediate value. Lastly, I show that when θ is sufficiently large, the

equilibrium is the same as that characterized by Proposition 5.

Step 1. Recall that when θ = 0, the equilibrium cash rebuilding policy is characterized by

Proposition 4. By Propositions 1, 2, and 13, sh, sl, and sm are all continuous in θ. Hence, there
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exists a θ > 0 (explicit expression will be calculated in the next step) such that when θ ∈ (0, θ], none

of the late shareholders chooses to run in any region if the fund still follows the cash rebuilding policy

as described in Proposition 4. In addition, the proof of Proposition 4 only relies on the fact that there

are no shareholder runs. This confirms that the cash rebuilding policy as described in Proposition 4 is

still optimal when θ ∈ (0, θ], which in turn confirms the late shareholders’ run decision λ2t = 0.

Step 2. By the definition of θ, when θ > θ there exists a non-zero-measure set Grun in which at

least some of the late shareholders will run given the cash rebuilding policy described in Proposition 4.

I first show that Grun takes the form of

Grun = Gl ∪Gm , (A.25)

where Gm ⊆ Gm is connected and

inf Gm =
µER

1− µE
.

To see this, first recall the definition of sl:

sl =
Ra2t − θ(1− µE)(Ra2t + x2t)− (1− θ(1− δE)(1− µE))Rq2t(0)

(1− δL)R
− q2t+1(0) .

Note that, for every pair of (a2t, x2t) and η2t+2, there is an implied s2t+1. Using that as the threshold

sl and solving for θ backward yields that, under the cash rebuilding policy η2t+2 = µER/(1−µE), when

θ >
δL

µE + µL + δL(1− µE − µL)
≡ θ ∈ (0, 1)

there must be λ2t > 0 for η2t ∈ Gl.
Similarly, consider the definitions of sm and sh. Also under the cash rebuilding policy η2t+2 =

µER/(1− µE), solving for the threshold θ backward yields that, when

θ >
δL

µE + µL + δL(1− µE − µL)
= θ

there must be λ2t > λ̂2t for η2t ∈ Gm, while when

θ >
δL + µL − δLµL

µE + µL + δL(1− µE − µL)
≡ θ ∈ (0, 1)

there must be λ2t > 0 for η2t ∈ Gh.

Notice that

θ < θ .

Thus, under the cash rebuilding policy η2t+2 = µER/(1 − µE), when θ ∈ (θ, θ), there is λ2t = 0 when

η2t ∈ Gh. This confirms the claim in (A.25).

Now define

η(λ̌) ≡ (µE + λ̌µL)R

1− µE − λ̌µL
∈ Gm .
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For any λ̌ ∈ (0, 1), consider the following cash rebuilding policy:

η2t+2 = η(λ̌) .

Since
µER

1− µE
< η(λ̌) <

(µE + µL)R

1− µE − µL
,

there exists a θ̌ ∈ (θ, θ) such that when θ = θ̌, there is

{
λ2t > 0 iff η2t < η(λ̌) ,

λ2t = 0 iff η2t > η(λ̌) .

Thus, it is natural to define that

Gm ≡
{
η2t|

µER

1− µE
6 η2t < η(λ̌)

}
,

and

Ghm ≡
{
η2t|η2t >

(µE + µL)R

1− µE − µL
and

µER

1− µE
6 η2t+2 < η(λ̌) for σ2t+1 = 0

}
.

Now I confirm that η∗2t+2 = η(λ̌) is the optimal cash rebuilding policy when θ = θ̌ and η2t ∈ Gm.

First, consider a perturbation −ε < 0 of cash rebuilding around σ∗2t+1 that satisfies η∗2t+2 = η(λ̌). On

date 2t+ 1 (in stage t), since λ2t = 1 (by Lemma 8), the effective selling price on 2t+ 1 is p̂L(λ̌). Thus,

the fire sale loss saved in stage t is
ε(1− δL)R

p̂L(λ̌)
> 0 .

Now consider the same cash gap ε on date 2t + 2 (under the perturbed cash rebuilding policy

(σ∗2t+1,−ε). This implies that η2t+2 ∈ Ghm. Since λ2t+2 > λ̌, the fund always has to fire sell its assets

on date 2t+ 2 at most at the effective selling price p̂E(λ̌) > 0. Hence, the expected increase of fire sale

loss in stage t+ 1 due to this cash gap ε is at least

ε(1− δE)R

p̂E(λ̌)
> 0 .

Since p̂E(λ̌) < p̂L(λ̌), there is

ε(1− δL)R

p̂L(λ̌)
< (1− π)

ε(1− δE)R

p̂E(λ̌)

for a sufficiently small but positive π. Hence, the perturbation −ε is not profitable.

Next, consider another perturbation ε > 0 of cash rebuilding around σ∗2t+1 that satisfies η∗2t+2 = η(λ̌).

On date 2t+ 1 (in stage t), similarly, the fire sale loss increased in stage t is

ε(1− δL)R

p̂L(λ̌)
> 0 .
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Under the perturbed cash rebuilding policy (σ∗2t+1, ε) the fund gets ε more cash in stage t+ 1. This

implies that η2t+2 ∈ Gh. Since there will be no runs on date 2t+ 2, the marginal cash saves the fund’s

active asset sales on date 2t + 3 at the effective selling price p̂L(1) > 0. Hence, the expected fire sale

saved in stage t+ 1 due to this marginal cash ε is

ε(1− δL)R

p̂L(1)
> 0 .

Since p̂L(λ̌) < p̂L(1) (and also π ∈ (0, 1)), this perturbation ε is also not profitable. This verifies the

optimality of η∗2t+2 = (µE +µL)R/(1−µE −µL) when η2t ∈ Gm. This analysis can be readily extended

to other subset of Gl ∪Gm ∪Ghl ∪Ghm as well as Ghm ∪Ghh following the same argument.

Finally, define

θ ≡ θ̌(λ̌ = 1) ∈ (θ, θ) .

By construction, when θ = θ, there are λ2t > 0 for η2t ∈ Gl ∪Gm while λ2t = 0 for η2t ∈ Gh under

the corresponding optimal cash rebuilding policy η∗2t+2 = η(1).

Step 3. This step shows that when θ > θ there can not be equilibria other than that descried by

Proposition 5. In this step, I use Figure 9 to help illustrate the idea. I first show that, when θ > θ,

there must be Grun = Gl ∪Gm ∪Gh. Note that, by Step 2, there must be Gl ∪Gm ⊆ Grun when θ > θ,

and thus it suffices to show that it cannot be that

supGrun < supGh .

2t 2t+ 2 2t+ 4

η2t η2t+2 η2t+4

Gl

Gm

Ghl

Ghm

Ghh

Gh1

Gh2

Run

Figure 9: Hypothetical Equilibrium Cash Rebuilding Policy When θ ∈ [θ, 1)
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I prove this by contradiction. First suppose supGrun ∈ Ghl ∪Ghm. Define

Gh1 ≡ Grun/(Gl ∪Gm) .

By the argument in the proof of Proposition 5, when η2t ∈ Grun the equilibrium cash rebuilding

policy still features

η∗2t+2 =
(µE + µL)R

1− µE − µL
. (A.26)

However, because supGrun ∈ Ghl ∪Ghm, one can now find another non-zero-measure connected set

Gh2 ⊆ Ghl ∪Ghm that satisfies

inf Gh2 = supGh1 ,

in which shareholders will not run under the cash rebuilding policy (A.26).

By construction, the optimal cash rebuilding policy when η2t ∈ Gh2 should be

η∗2t+2 > supGh1 >
(µE + µL)R

1− µE − µL
. (A.27)

To see this, consider a perturbation −ε of cash rebuilding around this cash rebuilding policy. On date

2t+ 1 (in stage t), since there are no runs when η2t ∈ Gh2, the effective selling price on 2t+ 1 is p̂L(0).

Thus, the fire sale loss saved in stage t is

ε(1− δL)R

p̂L(0)
> 0 .

Now consider the same cash gap ε on date 2t + 2 (under the perturbed cash rebuilding policy

(σ∗2t+1,−ε). This implies that η2t+2 ∈ Gh1. Because of shareholder runs on date 2t + 2, the fund will

sell its assets at the effective selling price p̂L(1) > 0. Hence, the expected increase of fire sale loss in

stage t+ 1 due to this cash gap ε is
ε(1− δL)R

p̂L(1)
> 0 .

Since p̂L(1) < p̂L(0), there is

ε(1− δL)R

p̂L(0)
< (1− π)

ε(1− δL)R

p̂L(1)

for a sufficiently small but positive π, implying that the perturbation −ε is not profitable.

However, under the new, more rapid cash rebuilding policy (A.27), by the definition of sh, there

must be a subset of Gh2 in which late shareholders are going to run. This violates the definition of Gh2:

a contradiction.

Now instead suppose inf Ghh 6 supGrun < supGh. Again by the monotonicity and continuity of

sh in a2t and x2t, there is no loss of generality to assume that supGrun = inf Ghh + ε, where ε > 0 is

arbitrarily small. Similarly, the optimal cash rebuilding policy when η2t = inf Ghh + ε should be

η∗2t+2 = inf Ghh >
(µE + µL)R

1− µE − µL
. (A.28)
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However, when η2t = supGhm = inf Ghh, the optimal cash rebuilding policy already leads to runs.

By the definition of sh, there must be shareholder runs when η2t = inf Ghh+ε under the cash rebuilding

policy (A.28). This is again a contraction. As a result, there must be Grun = Gl ∪Gm ∪Gh.

Finally, by Proposition 5, the optimal cash rebuilding policy must be the same as described there

because the pattern of shareholder runs is the same as described by Lemma 8. This ultimately concludes

the proof.

Proof of Proposition 7. It directly follows Propositions 4, 5, and 6 that for any θ, the proposed

cash rebuilding policy

η∗2t+2 <
µER

1− µE
is not optimal when there is no commitment device. Here I provide a sufficient condition that it can be

optimal if a commitment device is introduced.

Consider θ as defined in Proposition 6. By definition, when θ = θ + ε, where ε > 0 is arbitrarily

small, and η2t+2 = µER/(1 − µE), there is λ2t > 1 for any η2t ∈ Gl. Consider a perturbation −ε < 0

of cash rebuilding around η2t+2 = µER/(1 − µE) when η2t = µER/(1 − µE), where the perturbation

is chosen such that there is λ2t = 0 for any η2t ∈ Gl. On the one hand, since λ2t+2 = 0, the cash gap

resulted from this perturbation on date 2t + 2 leads to the following expected increase of fire sale loss

in stage t+ 1:
ε(1− δE)R

p̂E(0)
.

On the other hand, when a commitment device is introduced, the determination of η2t+2 on 2t

directly affects q2t and q2t+1 through λ2t. Thus, under the proposed perturbation −ε < 0, there are no

runs on date 2t, and thus the fire sale loss saved in stage t is

∆q2t(1− δE)R+

(
ε

p̂L(λ2t)
+ ∆q2t+1

)
(1− δL)R ,

where λ2t solves

ε

p̂L(λ2t)
=
Ra2t − θ(1− µE − λ2tµl)(Ra2t + x2t)− (1− θ(1− δE)(1− µE − λ2tµl))Rq2t(λ2t)

(1− δL)R
− q2t+1(λ2t) ,

and ∆q2t = q2t(λ2t)− q2t(0) and ∆q2t+1 = q2t+1(0)− q2t+1(λ2t).

Note that ∆q2t(1− δE)R+ ∆q2t+1(1− δL)R > 0. Thus, if

∆q2t(1− δE) + ∆q2t+1(1− δL) > (1− π)
ε(1− δE)

p̂E(0)
− ε(1− δL)

p̂L(λ2t)

satisfies, it is optimal for the fund to choose a less rapid cash rebuilding policy η2t+2 < µER/(1− µE).

This concludes the proof.

Proof of Proposition 8. This directly follows Propositions 4, 5, and 6. Under a Markov strategy

profile, because the equilibrium is stationary, it suffices to show that a higher θ leads to higher total

fire sale losses within stage t for any given positive (a2t, x2t). I then consider two cases.
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Case 1. η2t ∈ Gl ∪ Gm. By Propositions 4, 5, and 6, the optimal cash rebuilding policy is always

η∗2t+2(θ) > 0 where η∗2t+2(θ) is increasing in θ. By definition, η2t+2 = 0 if s2t+1 = 0. Thus, the total fire

sale losses in stage t is given by

Lt(θ) = (1− δE)Rq2t + (1− δL)Rq2t+1 +
η∗2t+2

p̂L + η∗2t+2

(1− δL)R(a2t − q2t − q2t+1) ,

where q2t, q2t+1, and p̂ are both functions of λ0 and in turn functions of θ. Propositions 4, 5, and 6 also

imply that λ2t is increasing in θ for any given positive (a2t, x2t). Hence, it follows Lemmas 4 and 9 that

L(θ) is increasing in θ.

Case 2. η2t ∈ Gh. By Lemma 2, q2t = q2t+1 = 0 regardless of λ2t or θ. Thus, the total fire sale

losses in stage t is given by

Lt(θ) = (1− δL)Rs∗2t+1 .

Define η2t+2 as the target cash-to-assets ratio if s2t+1 = 0 and η2t ∈ Gh. By Propositions 4, 5, and 6,

the difference η∗2t+2(θ)− η2t+2 is increasing in θ. Moreover, p̂L is decreasing in λ2t and thus decreasing

in θ. This implies that s∗2t+1 is increasing in θ and so is L(θ) in this case. This finally concludes the

proof.

Proof of Proposition 9. Recall that, the Bellman equation for the non-commitment case is:

V (a2t, x2t) = −(1− δE)Rq2t − (1− δL)Rq2t+1 + max
s∗2t+1

[−(1− δL)Rs2t+1 + (1− π)V (a2t+2, x2t+2)] . (A.29)

When a commitment device is introduced, the Bellman equation instead becomes:

V (a2t, x2t) = max
s∗2t+1

[−(1− δE)Rq2t − (1− δL)R(q2t+1 + s2t+1) + (1− π)V (a2t+2, x2t+2)] . (A.30)

Also, the fund manager’s objective function, which is to minimize the total expected fire sale losses,

can be re-written as

max
{s∗2τ+1}∞τ=t

Et
T−1∑
τ=t

[−(1− δE)Rq2t − (1− δL)R(q2t+1 + s2t+1)] ,

where the expectation is taken over the random variable T ,75 which is in turn govern by probability π.

By the Principle of Optimality, the solution to (A.30) maximizes the fund manager’s objective function,

while the solution to (A.29) is feasible for the sequential problem associated with (A.30). This concludes

the proof.

Proof of Proposition 10 and Corollary 3. First, according to the starting cash-to-assets ratio

η2t, I still divide the stage game into three different regions. Without loss of generality, I consider n2t = 1

as in the baseline model. Suppose the fund does not rebuild its cash buffer and no late shareholder is

going to run, that is, s2t+1 = 0 and λ2t = 0. Then there are three regions of the cash-to-assets ratio

75To be precise, the random variable T here denotes the stage (rather than the date) before which the game ends.

70



η2t in the stage-t game. In these three regions, the amounts of illiquid assets that the fund has to sell

passively on dates t and t+ 1 are characterized by:

High Region Gκh: qκ2t = 0, qκ2t+1 = 0 ,

Intermediate Region Gκm: qκ2t = 0, qκ2t+1 > 0 ,

Low Region Gκl : qκ2t > 0, qκ2t+1 > 0 .

I use the superscript κ to indicate the existence of the redemption fees. Note that, if a starting

position (a2t, x2t) falls into a region Gj , j ∈ {h,m, l}, it does not necessarily falls into the same region

Gκj when redemption fees are introduced. But by construction, there is

Gκh ∪Gκm ∪Gκl = Gh ∪Gm ∪Gl ,

and

Gκj ∩Gκk = ∅, j 6= k .

Thus it suffices to consider the three regions Gκh, Gκm, and Gκl separately. Here I provide a complete

analysis of the high region Gκh and the derivation for the other two regions directly follows.

In the high region Gκh, when qκ2t = 0 and λ2t = 0, there is

NAV κ
2t = Ra2t + x2t ,

and

NAV κ
2t+1 =

1− κµE
1− µE

(Ra2t + x2t) .

Thus, qκ2t = 0 and qκ2t+1 = 0 imply

η2t >

(
κµE + κµL

1− κµE
1− µE

)
R

1− κµE − κµL
1− κµE
1− µE

.

This suggests that Gh ⊆ Gκh. This also suggests that Lemma 2 still holds. That means, for any λ2t:

NAV κ
2t(λ2t) = Ra2t + x2t .

Meanwhile, when shareholder runs and cash rebuilding are introduced, there is

NAV κ
2t+1(λ2t) =

R(a2t − s2t+1) + x2t − κ(µE + λ2tµL)(Ra2t + x2t) + δLRs2t+1

1− µE − λ2tµL
.
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Therefore, when θ = 1, late shareholders’ run incentives are governed by

∆NAV κ(λ2t) =
δLRs2t+1

1− µE − λ2tµL
− (1− κ)(µE + λ2tµL)(Ra2t + x2t)

1− µE − λ2tµL
. (A.31)

Clearly, when there are no redemption fees, that is, when κ = 1, this goes back to wedge (3.3) in the

baseline model. For any κ ∈ (0, 1) and any λ2t ∈ [0, 1], the second term in (A.31) is strictly positive.

This directly implies that for any feasible s2t+1, there is λκ2t 6 λ2t, where λκ2t is the equilibrium run

probability in the game with the redemption fee while λ2t is that in the game without redemption fees,

leading to the results in Proposition 10.

Also, for any (a2t, x2t) and any κ ∈ (0, 1), define

s = inf
λ2t∈[0,1]

inf
s2t+1

{s2t+1|∆NAV κ(s2t+1;λ2t) > 0} .

By construction, there is s > 0. Then the result follows because ∆NAV κ(λ2t) is strictly increasing

in s2t+1. This leads to the results in Corollary 3 and finally concludes the proof.

Proof of Proposition 11. Under in-kind redemptions, any shareholder who redeems on date t will

get at/nt unit of assets and xt/nt unit of cash. Since there will be no forced fire sales at the fund level,

the fund will no longer manage its cash buffer. This implies ηt = η0 for any date t, where η0 is the

initial cash-to-assets ratio.

Consider any late shareholder on any odd date 2t+1. If she redeems and consumes on date 2t+1, she

gets δLRa0/n0+x0/n0, while if she redeemed and consumed on date 2t, she would get δERa0/n0+x0/n0.

Since δL > δE , no late shareholder will ever run in an equilibrium.

Now I consider total fire sale losses when θ = 0. There is no loss of generality to consider η2t =

µER/(1 − µE), which is the steady-state cash-to-assets ratio in the baseline model. Again due to the

scale-invariance of the dynamic game, it suffices to consider an arbitrary state t. In the baseline model,

by Proposition 4, the fire sale losses in stage t under the optimal cash rebuilding policy are:

Lt = (1− δL)R(q2t+1 + s∗2t+1)

=

(1− δL)RµE

a2t − µL(Ra2t + x2t)(
δL + µL(1−δL)

1−µE

)


(1− µE)δL + µL(1− δL) + µE
+

(1− δL)RµL(Ra2t + x2t)(
δL + µL(1−δL)

1−µE

) , (A.32)

while the fire sale losses in stage t under in-kind redemptions are

Lin−kindt = (1− δE)RµEa2t + (1− δL)RµLa2t . (A.33)

Note that, when µL = 0, (A.32) reduces to

Lt =
(1− δL)RµEa2t
(1− µE)δL + µE

,
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while (A.33) reduces to

Lin−kindt = (1− δE)RµEa2t .

Clearly, when δL is sufficiently larger than δE such that

1− δE >
1− δL

(1− µE)δL + µE
,

there is Lin−kindt > Lt. Since fire sale losses are continuous in µL, and by Proposition 6 they are also

continuous in θ, this concludes the proof.

Proof of Proposition 12. This directly follows the proof of Proposition 10. The only difference is

that under redemption fees any individual redeeming shareholder gets κNAVt on date t while she gets

NAVt (if not being denied) under redemption restrictions. In expectation, any shareholder gets ζNAVt

when she redeems her shares under redemption restrictions. As such, this proof is identical to that of

Proposition 10.
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