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The relations between unobserved events and observed outcomes
in partially identified models can be characterized by a bipartite
graph. We propose an algorithm that explores the structure of the
graph to construct the “exact Core Determining Class”, i.e., the set of
irredudant inequalities. We prove that if the measure on the observed
outcomes are non-degenerate, the Core Determining Class does not
depend on the probability measure of the outcomes but only on the
structure of the graph. For more general linear inequalities selection
problem with noisy outcome observations, we investigate a sparse as-
sumption on the entire set of inequalities, i.e., only a few inequalities
are truly binding. We show that the sparse assumption is equivalent
to certain sparse conditions on the dual problems. We propose a sta-
tistical procedure similar to the Dantzig Selector to select the truly
informative constraints. We analyze the properties of the procedure
and show that the feasible set defined by the selected inequalities is
a nearly sharp estimator of the true feasible set. Under our sparse as-
sumption, we prove that such a procedure can significantly reduce the
number of inequalities without losing too much information. We ap-
ply the procedure to the Core Determining Class problem and obtain
stronger results by taking advantage of the structure of the bipartite
graph.

We design Monte-Carlo experiments to demonstrate the good per-
formance of our selection procedure, while the traditional CHT in-
ference is difficult to apply in practice.
Keywords: Core Determining Class, Sparse Model, Linear Pro-
gramming, Inequality Selection
∗

1. Introduction. Suppose we observe the outcomes but not the events
that might imply the outcomes. In many situations the relations between
events and outcomes are indeterministic, i.e., a single event may lead to
different outcomes, and an outcome may have several events that may lead
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to it. Such relations can be characterized by a bipartite graph G = (U ,Y, ϕ),
where U is a set of unobservable events, Y is a set of observed outcomes, and
ϕ is a correspondence mapping from U to Y such that ϕ(u) ⊂ Y is the set
of all possible outcomes that could be led by event u ∈ U . One application
is, in game theory, to infer individual player’s private information given
the observations of players’ strategies when there exist multiple equilibria;
another application is to infer demand/customer characteristics given the
purchase histories and sales data.

Given such a bipartetite graph and an observed measure on Y, the key
interest of our paper is to estimate bounds on the probability measure on
U , as the feasible set of probability measure on U is defined by a set of lin-
ear inequality constraints. In practice, the number of inequality constraints
could grow with |U|, even exponentially. Such many inequalities may lead to
two problems for performing inference on the measure on U : (1) asymptotics
in inference procedures such as those described in Chernozhukov, Hong and
Tamer (2007) (later CHT) may fail; (2) those inference procedures are com-
putationally intractable when |U| is large.

An inequality selection procedure may dramatically reduce the number
of inequalities defining the feasible set of probability measure on U . Such a
procedure allows us to perform valid inference with much less computational
cost.

(1) We propose a method to select the set of irredundant inequalities for
the bipartite graph when data noise is not taken into consideration. Such
set is referred as a Core Determining Class described in Galichon and Henry
(2011). More specificially, we show that our selected inequalities form the
”smallest” Core Determining Class. We prove that the inequalities selected
are only dependent on the structure of the graph but independent from the
probability measure observed on Y under certain mild conditions.

(2) For a general linear inequalities selection problem under noise, we
propose a selection procedure similar to the Dantzig-selector described in
Candes and Tao (2007). We prove that the selection procedure has good
statistical properties under some sparse assumptions.

(3) We apply the selection procedure to construct the set of irredundant
inequalities for the bipartite graph with data noise. We prove that the se-
lection procedure has better statistical properties compared to that applied
to the general problem due to the structure of the graph.

(4) We demonstrate the good performance of our selection procedure
through several sets of Monte-Carlo experiments: first, the inference based
on the selection procedure has desired size; second, it has strong power
against local alternatives; third, it is relatively computationally efficient.
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The closest researches to our topic are Galichon and Henry (2006, 2011)
and Chesher and Rosen (2012). Galichon and Henry (2011) proposes the
Core Determining Class problem, i.e., finding the minimum set of inequali-
ties to describe the feasible region of probability measure on U . Chesher and
Rosen (2012) provides an inequality selection algorithm, but may still con-
tain some redundant inequalities in the selected set. Andrews and Soares(2013)
proposes moment inequality selection procedure using criterions such as BIC.

There are many studies on performing inference of sets. CHT (2007) pro-
poses a general inference procedure with moment inequality constraints. Ro-
mano and Shaikh (2010) provides improvements for CHT (2007). Beresteanu,
Molchanov and Molinari (2011) uses random set theory to perform infer-
ence with convex inequality restrictions. Andrews and Shi (2013) construct
inference based on conditional moment inequalities. For related empirical
studies, see Tamer and Manski (2002), Bajari, Benkard and Levin (2004),
Bajari, Hong and Ryan (2010) and etc..

There is also a wide literature on detection and elimination of redundant
constraints when data noise is not taken into consideration. For example,
Telgen (1983) develops two methods to identify redundant constraints and
implicit equalities. Caron, McDonald and Ponic (1989) presents a degenerate
extreme point strategy which classifies linear constraints as either redundant
or necessary. Paulraj, Chellappan and Natesan (2010) proposes a heuristic
approach using an intercept matrix to identify redundant constraints.

We organize the paper as follows: Section 2 introduces the model and
basic assumptions through out the entire paper. Section 3 studies the Core
Determining Class from the structure of the bipartite graph and provides a
method to construct the exact Core Determining Class when data noise is
not taken into consideration. Section 4 proposes a general linear inequalities
selection procedure under noisy data with the definition of sparse assump-
tions. Section 5 discusses the additional technical assumptions and states
main theorems of the statistical properties of the selection procedure, with
application to the Core Determining Class. Section 6 implements our selec-
tion procedure in a large bipartite graph through Monte-Carlo experiments
and illustrates its good performance. Section 7 concludes the paper.

2. Core Determining Class. Given a bipartite graph G = (U ,Y, ϕ),
suppose U is a set of vertices representing events, and Y is a set of vertices
representing outcomes. Suppose an event u ∈ U leads to a set of possible
outcomes ϕ(u), where ϕ(u) is a subset of Y. For any set A ⊂ U , define
ϕ(A) := ∪u∈Aϕ(u). Therefore, ϕ : 2U 7→ 2Y is a correspondence mapping
between U and Y. The inverse of ϕ, denoted as ϕ−1 is defined as ϕ−1 : 2Y 7→
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2U , ϕ−1(B) = {u ∈ U|ϕ(u) ∩B 6= ∅}, ∀B ⊂ Y.
Let v be the probability measure on U . Let µn,0 be the true measure on

Y which could change with the model. Let µ̂n be the measure observed in a
sample set of outcomes Y. Denote du = |U| and dy = |Y|. For a graph G =
(U ,Y, ϕ), say G is connected if ∀A1, A2 ⊂ U , A1 ∩A2 = ∅ and A1 ∪A2 = U ,
it holds that ϕ(A1) ∩ ϕ(A2) 6= ∅.

Assumption: C.1 (Non-Degeneracy of G, µn,0 and µ̂n). (1) Assume G
is connected. We say G is non-degenerate if G is connected.

(2) For the probability measure µ = µn,0 or µ̂n, assume that for any y ∈ Y,
µ(y) > 0. We say that µ is non-degenerate if µ(y) > 0 for any y ∈ Y.

We assume that Assumption C.1 holds through out the paper.
The parameter of interest in this paper is the d1 × 1 vector v, which is

the probability measure which generates the events u ∈ U . In general we
are unable to obtain a point estimation of v unless additional information is
provided. Instead, we can obtain inequality bounds on v given the bipartite
graph G = (U ,Y, ϕ) and the measure µ on Y. More specifically, for any
set of events A ⊂ U , the outcome should fall into the set ϕ(A). Thus, for
any A ⊂ U , we can obtain the inequality v(A) :=

∑
u∈A v(u) 6 µ(ϕ(A)) :=∑

y∈ϕ(A) µ(y).
The Artstein’s theorem stated in Artstein (1983) presents that all infor-

mation of v in the biparte graph model G = (U ,Y, ϕ) is characterized by
the set of constraints described below:

Lemma 1 (Artstein’s Theorem). The following set of inequalities/equalities
contains sharp information on v:

1. For any A ⊂ U ,

v(A) :=
∑
u∈A

v(u) 6 µ(ϕ(A)),

where µ(ϕ(A)) :=
∑

y∈ϕ(A) µ(y);
2.

∑
u∈U v(u) = 1.

Our model, denoted as PG, is presented below:

Definition 2.1 (Problem PG). Find the set of all feasible probability
measure v on U such that:

(1) For any A ⊂ U , v(A) 6 µ(ϕ(A));
(2)

∑
u∈U v(u) = 1.
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Comment 2.1. The non-degeneracy assumption prevents the problem
PG from decomposition, i.e., we can not decompose graph G into G1 and
G2 and proceed with problem PG1 and PG2. Otherwise the problem can be
simplified by looking at G1 and G2 separately.

In general, the set of inequality constraints stated in Definition 2.1 may
contain redundant inequalities. Define the minimum model T0 of PG as the
set of linear constraints stated in (1) such that T0 together with the equality
(2) has the minimum number of constraints which generate the same set of
feasible measure as PG. In other words, T0 consists of all irredundant con-
straints in PG. If the number of irredundant constraints in T0 is much less
than 2d1 − 1 stated in Definition 2.1, then it is more accurate and computa-
tional efficient to conduct inference on the Core Determining Class using T0.
Galichon and Henry (2011) proposes the concept “Core Determining Class”
as follows.

Definition 2.2 (Core Determining Class problem). The Core Deter-
mining Class problem is the problem of finding all binding constraints in
model PG. The Core Determining Class is any collection of subsets of U
that contains the sharp information. The exact Core Determining Class is
defined as the set of subsets of U which corresponds to the irredundant in-
equalities in T0.1

Comment 2.2. In many cases there may exist a parametric model for v,
denoted as vi = Fi(θ). The function Fi can be non-linear. The inference on θ
can be generally difficult if the number of inequalities about v is large. There-
fore, we can find the truly binding inequalities about v, we would perform
estimation and inference on θ much faster.

We provide an example on the model PG.

Example 1 (Two players entry game). Suppose there are two firms in a
market. The cost for firm 1 and firm 2 is c+r1 and c+r2 respectively, where
c is a constant, r1 and r2 are random shocks which are observable only by
the corresponding firm.

The two firms face a total demand D = a1 − a2p. If they are both in
the market, they will play a Cournot Nash equilibrium. If there is only one

1The definition of Core-Determining Class in Galichon and Henry (2006) is slightly
different from ours. Galichon and Henry (2006) defines Core-Determining Class as any set
that contains all the binding inequalities. In this paper, we refer ”exact Core-Determining
Class” as the set of binding inequalities, i.e., the smallest set (in cardinality) which char-
acterizes the identified set of parameter of interest.
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player, then this player will reach a monopolist’s equilibrium. If the costs are
too large for both players that even a monopolist is unprofitable, then there
will be no player in the market. Therefore, there are 4 possible equilibria:
(0, 0), (1, 0), (0, 1), and (1, 1):

(1) if a1
a2
− c > 2/3r1 − 1/3r2 and a1

a2
− c > 2/3r2 − 1/3r1, then the

equilibrium is (1, 1);
(2) if a1

a2
− c < 2/3r1 − 1/3r2 and a1

a2
− c > 2/3r2 − 1/3r1, then the

equilibrium is (0, 1);
(3) if a1

a2
− c > 2/3r1 − 1/3r2 and a1

a2
− c < 2/3r2 − 1/3r1, then the

equilibrium is (1, 0);
else if a1

a2
− c < 2/3r1 − 1/3r2 and a1

a2
− c < 2/3r2 − 1/3r1:

(4) if c+ r1 6 a1
a2

and c+ r2 6 a1
a2

, then there are two equilibria:(1, 0) and
(0, 1);

(5) if c+ r1 6 a1
a2

and c+ r2 >
a1
a2

, then the equilibrium is: (1, 0);
(6) if c+ r1 >

a1
a2

and c+ r2 6 a1
a2

, then the equilibrium is: (0, 1);
(7) if c+ r1 >

a1
a2

and c+ r2 >
a1
a2

, then the equilibrium is: (0, 0).
Let U = {u1, u2, u3, u4, u7}, where ui is the event representing case (i),

with the exceptions that u2 represents (2) and (6), and u3 represents (3) and
(5). Let Y := {y1, y2, y3, y4}, where y1 = (1, 1), y2 = (0, 1), y3 = (1, 0), and
y4 = (0, 0). So d1 = |U| = 5 and d2 = |Y| = 4. The correspondence mapping
ϕ between U and Y is:
ϕ(u1) = {y1}, ϕ(u2) = {y2}, ϕ(u3) = {y3}, ϕ(u4) = {y2, y3}, and ϕ(u7) =

{y4}.
The correspondence mapping for Example 1 is illustrated in Figure 1.

Fig 1. Correspondence Mapping for Example 1

Given the probability measure µ on Y, the bounds of the probability mea-
sure v on U is given by the inequalities stated in the Artstein’s theorem.
According to the Artstein’s theorem statement (1), there are 25 − 2 = 30
inequalities. In fact, it is obvious that the Core-Determining Class in this
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example consist of only 5 sets (inequalities): {u1}, {u2}, {u3}, {u2, u3, u4}
and {u5}.

We observe µ̂n on Y instead of the true measure µn,0. Due to uncertainty
of the data, we would like to solve a relaxed problem P ′G, whose solution set
covers the solution set of the true model PG with probability approaching
1 as the data sample size n approaching infinity. This relaxed problem P ′G
provides conservative inference for model PG.

Definition 2.3 (Problem P ′G). For a small λ, find the set of all feasible
probability measure v on U such that:

(1) For any A ⊂ U , v(A) :=
∑

u∈A v(u) 6 µ̂n(ϕ(A)) + λ;
(2)

∑
u∈U v(u) = 1.

Ideally λ should converge to 0 when n → ∞. The dimensionality of the
problem, |U|, and the number of inequalities in P ′G, should affect the tuning
parameter λ. In fact, λ should be chosen properly such that: (1) the feasible
set of v found in model P ′G covers the feasible set of v found in model PG
with probability approaching 1, so P ′G provides inference on PG; and (2) λ
is not be too large to exaggerate the feasible set of v found in model P ′G.
We will discuss the choice of λ in Section 5.

According to the Artstein’s theorem, model PG contains 2d1 − 2 inequali-
ties. It is a very large number when d1 is large and even grows with n in some
contexts. The numerous inequalities lead to both computational difficulties
and undesirable statistical properties. In fact, some or even most of the in-
equalities stated in the Artstein’s theorem may be redundant. Galichon and
Henry (2011) analyzes the monotonic structure of the graph G and claims
that there are at most 2d1 − 2 sets in the Core Determining Class under a
special structure. Chesher and Rosen (2012) provides an algorithm which
could get rid of some, but not necessarily all redundant inequalities. In Sec-
tion 3, we fully characterize the Core Determining Class by the exploring the
combinatorial structure of the bipartite graph G. We prove that the Core
Determining Class only rely on the structure of G under the non-degeneracy
assumption of µ. The results are novel compared to existing studies. We also
propose a fast algorithm in Section 3 to compute the exact Core Determining
Class when data noise is not taken into consideration.

In addition, besides those redundant inequalities, many of the binding
inequalities could be “nearly” redundant, meaning that although they are
informative in PG under the empirical measure µ̂, they could be “implied”
by other inequalities in P ′G with a small relaxation of λ. Therefore, it may
be possible to use a smaller number of inequalities, i.e., a “small” model, to
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approximate the full one, with the approximation error controlled by λ. Such
a small model may enjoy better statistical properties compared to the full
model, i.e., it will be less sensitive to modeling errors. We propose an general
inequality selection procedure similar to the Dantzig Selector in Section 4.

3. Exact Core Determining Class. In this section, we present our
discovery of the combinatorial structure of the Core Determining Class,
along with a fast algorithm to generate the Core Determining Class. In
Galichon and Henry (2011), whether an inequality v(A) 6 µ(ϕ(A)) is in the
Core Determining Class is examined by numerical computation using the
probability measure µ.

Given the correspondence mapping ϕ of the bipartite graphG = (U ,Y, ϕ),
we can identify the redundant inequalities without any observations of the
outcomes in Y. For example, for A1 ∈ U and A2 ∈ U , if A1 ∩ A2 = ∅
and ϕ(A1) ∩ ϕ(A2) = ∅, then the two inequalities, v(A1) 6 µ(ϕ(A1)) and
v(A2) 6 µ(ϕ(A2)) can generate the inequality v(A1∪A2) = v(A1)+v(A2) 6
µ(ϕ(A1)) +µ(ϕ(A2)) = µ(ϕ(A1)∪ϕ(A2)) = µ(ϕ(A1∪A2)), which is exactly
the inequality corresponding to A = A1∪A2. In another word, the inequality
v(A) 6 µ(A) is redundant given v(A1) 6 µ(ϕ(A1)) and v(A2) 6 µ(ϕ(A2)).
Also, if u /∈ A satisfies ϕ({u}) ⊂ ϕ(A), then the inequality v({u} ∪ A) 6
µ(ϕ({u} ∪A)) will imply a redundant inequality v(A) 6 µ(ϕ(A)).

Without loss of generality, we can assume that the graph G is connected.
Otherwise we can split the graphs into connected branches and our theory
applies for every connected branch.

In this section, we propose a combinatorial method to generate the exact
Core Determining Class. We prove that, in theory, if the probability measure
µ is non-degenerate, our method excludes all redundant inequalities in the
model PG regardless the values of µ. That is to say, the Core Determining
Class can be exactly constructed with the method and the Core Determining
Class is independent from µ.

Definition 3.1 (Set Su). Su ⊂ 2U is the collection of all non-empty
subsets A ⊂ U and A 6= U , such that

vM (A) > µ(ϕ(A)),

where vM (A) := max{v(A)|v(A′) 6 µ(ϕ(A′)),∀A′ ⊂ U , A′ 6= A}.

Set Su is defined with probability measure µ. The inequality generated by
any A ∈ Su is informative: it is irredundant given other inequalities described
in statement (1) of the Artstein’s theorem. Essentially, Su identifies the
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irreducible inequalities for Model PG when the critical equality
∑

u∈U v(u) =
1 is not taken into consideration.

Definition 3.2 (Set S ′u). S ′u ⊂ 2U is the collection of all non-empty
subsets A ⊂ U and A 6= U , such that:

(1)A is self-connected, i.e., ∀A1, A2 ⊂ A such that A1, A2 6= ∅ and A1 ∪
A2 = A, it holds that ϕ(A1) ∩ ϕ(A2) 6= ∅;

(2)There exists no u ∈ U , such that u 6∈ A and ϕ(u) ⊂ ϕ(A).

Lemma 2. If µ is non-degenerate, the collection of subsets defined in
Definition 3.1 and Definition 3.2 are identical. Su = S ′u.

By definition Su describes the irredundant inequalities in PG if the equal-
ity

∑
u∈U v(u) = 1 is not taken into consideration. Lemma 2 shows that

the irredundant inequalities can be described via rules (1) and (2) stated in
Definition 3.2. Theorem 5 of Chesher and Rosen (2012) selects a subset of
inequalities which is equivalent to those corresponded to S′u, which is a Core
Determining class, but not neccessarily the smallest. Lemma 2 shows that
with an additional property (2) in Definition 3.2, we can find all binding
inequalities without considering the equality:

∑
u∈U v(u) = 1.

To find the minimum set of irredudant inequalities, i.e., the exact Core-
Determining Class, we consider the same bipartite graph G, but correspon-
dence ϕ−1 mapping from 2Y 7→ 2U . For any non-degenerate probability
measure ṽ on U , we define Sy and S ′y as the following:

Definition 3.3 (Set Sy). Given a non-degenerate probability measure ṽ
on U , Sy ⊂ 2Y is the collection of all subsets B ⊂ Y and B 6= Y, such that

µM (B) > ṽ(ϕ−1(B)),

where µM (B) := max{µ̃(B)|µ̃(B′) 6 ṽ(ϕ−1(B′)),∀B′ ⊂ Y, B′ 6= B}, where
µ̃ is a probability measure on Y.

Definition 3.4 (Set S ′y). S ′y ⊂ 2Y is the collection of all subsets B ⊂ Y
and B 6= Y, such that:

(1) B is self-connected, i.e., ∀B1, B2 ⊂ B, such that B1, B2 6= ∅ and
B1 ∪B2 = B, it holds that ϕ−1(B1) ∩ ϕ−1(B2) 6= ∅;

(2) There exists no y ∈ Y, such that y 6∈ B and ϕ−1(y) ⊂ ϕ−1(B).

The Lemma below presents result similar to Lemma 2.

Lemma 3. The collection of subsets defined in Definition 3.3 and 3.4
are identical, i.e., Sy = S ′y.
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Definition 3.5 (Set S−1
y ). Set S−1

y is the collection of A ⊂ U and A 6= U
such that there exists B ⊂ S ′y that A = ϕ−1(B)c.

Below we give a numerical definition of the exact Core Determining Class
using linear programming:

Definition 3.6 (Set S∗). The Exact Core Determining Class S∗ is the
collection of all subsets A ⊂ U and A 6= U , such that

vM
∗
(A) > µ(ϕ(A)),

where vM
∗
(A) := max{v(A)|v(A′) 6 µ(ϕ(A′)), ∀A′ ⊂ U , A′ 6= A; v(U) = 1}.

The theorem below characterizes the exact Core Determining Class S∗:

Theorem 1. The exact Core Determining Class is characterized by the
following equation:

S∗ = Su ∩ S−1
y

Notice that both Su and S−1
y are defined via combinatorial rules, the Core

Determining Class is independent from µ if µ is non-degenerate.
In Example 2, we show that Su or S−1

y may not able to substantially
reduce the number of inequalities, while Su ∩S−1

y can be a very small set in
cardinality.

Example 2. Consider set U = {u1, ..., u5} and set Y = {y1, ..., y4}. ϕ is
the correspondence mapping between U and Y such that: ϕ(uj) = {yj} for
all 1 6 j 6 4 and ϕ(u5) = {y1, y2, y3, y4}.

Fig 2. Correspondence Mapping of Example 2

In this example, S−1
y = {U1|U1 ⊂ {u1, u2, u3, u4},U1 6=}, which consists

of 24 − 2 subsets, while Su = {uj |1 6 j 6 4}. The Core Determining Class
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S∗ constructed in our approach is {uj |1 6 j 6 4}. It is obvious that this is
the minimum class of subsets that is carrying the full information for PG.

We utilize the combinatorial structure revealed in Definition 3.2 and Def-
inition 3.4 to construct S ′u and S ′y: algorithm 1 computes S ′u and a similar
algorithm computes S ′y and S−1

y . Then we obtain the Core Determining
Class S∗ = Su ∩ S−1

y .

The complexity of the algorithm is o(2max(du,dy) · d2
u · d2

y), where
du is defined as

du := max
A
|A|

s.t.A ⊂ U

ϕ(A) = Y

ϕ(A/u)  Y, ∀u ∈ A

dy is defined as
dy := max

B
|B|

s.t.B ⊂ Y

ϕ−1(B) = U

ϕ−1(B/y)  U ,∀y ∈ B

Under the assumption of non-degenerate G and µ, in a bipartite graph
with practical application, du and dy is much smaller than du and dy respec-
tively, so the algorithm is fast in practice.
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input : Bipartite graph G = (U ,Y, ϕ)
output: Set S ′u
Initiation: S ′u = {∅}
for i← 0 to |U| − 1 do

Identify additional A′ ∈ S ′u as union of u ∈ U and A ∈ S ′u with |A| = i,
foreach A ∈ S ′u with |A| = i do

foreach u 6∈ A that ϕ(u) ∩ ϕ(A) 6= ∅ do
A′ ← A ∪ {u},
if ϕ(A′) < 1 then

foreach u′ 6∈ A′ do
if ϕ(u′) ⊂ ϕ(A′) then A′ ← A′ ∪ u′;

end
if A′ 6∈ S ′u then S ′u ← S ′u ∪ {A′};

end

end

end

end
Termination: S ′u ← S ′u − {∅}

Algorithm 1: Generate set S ′u

4. A general selection procedure and sparse assumption. PG de-
fines a feasible set of v given observation µ̂, i.e., Q̂ := {v|v(A) 6 µ̂n(ϕ(A)), ∀A ⊂
U ;

∑
u∈U v(u) = 1, v > 0}. In Section 3 we explore the structure of the bi-

partite graph G to obtain the set of irredundant inequalities that defines
Q̂. In this section, we propose a general procedure for selecting linear in-
equalities under noise. This procedure chooses a subset of linear inequalities
which defines a region approximating Q̂ as n → ∞. It can possibly delete
some inequalities which are indeed binding but “close” to redundant, so to
further reduce the number of inequalities selected. The procedure can be
applied to linear inequality selection, including the Core Determining Class
problem allowing mixed strategy as defined in Galichon and Henry (2011).

4.1. General Selection Procedure. Problem P can be characterized as
computing the feasible region of a collection of linear inequality constraints.
In general, we consider the following setting:

Q := {v|Mv 6 b, v > 0},

where M is a m× du matrix, v is du× 1 vector, and b is a m× 1 vector. For
each j = 1, 2, ...,m, we can define Mk as the jth row of matrix M . Then,
Mv 6 b includes m inequalities: Mjv 6 bj , j = 1, 2, ...,m. Our key interest
is to estimate Q and select the irredudant inequalities.

In some applications the number of inequalities, m, is too large to effec-
tively conduct any known estimation and inference procedure, both theoret-
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ically and computationally. For example, there are m = 2du inequalities in
the Core Determining Class problem without any inequalities selection pro-
cedures.2 There are two reasons to not to use the entire set of inequalities:
first, there could be many redundant inequalities which are not informative;
second, the compuational cost of using all inequalities can be large.

Notice that the random noise of b, which comes from µ̂n − µn,0, does not
affect the exact Core-Determing Class as proved in Section 3. Such a result
is due to the bipartite graph structure that is forming all the inequalities.
This is no longer true for arbitrary set of linear inequalities.

For any subset I of {1, 2, ...,m}, denote MI as the matrix comprised of
the rows indexed by I in matrix M . Similarly, denote bI as the subvector of
b indexed by I.

By the Farkas Lemma, for a general matrix M and a vector b, if the
set of constraints indexed by I can imply all other constraints, i.e., the set
QI := {v|MIv 6 bI , v > 0} equals Q := {v|Mv 6 b, v > 0}, then there must
exist a non-negative m×m matrix Π such that:

(1) ΠM >M,

(2) Πb 6 b,

(3) Πjk = 0,

for any 1 6 j 6 m and k /∈ I.
For any j, k ∈ {1, 2, ...,m}, denote Πj∗ as the jth row of Π, Π∗k as the kth

column of Π, and denote Πjk as the (j, k)th entry of the matrix Π.
The coefficient matrix Π described above can serve as a signal of the im-

portance of each inequality: Πjk indicated the contribution of kth inequality
in reconstructing jth inequality.

Instead of observing (M, b), in practice we assume that we observe (M, b̂)
where b̂ is an estimator of b, e.g., the frequency of outcome observed from
data. We define Q̂ := {v|Mv 6 b̂} and Q̂I := {v|MIv 6 b̂I}, where I is any
subset of {1, 2, ...,m}.

If all the coefficients associated with the kth inequality, i.e., all entries in
the m × 1 vector Πk are zeros, then this inequality is redundant given the
rest of the inequalities. We propose the following Dantzig-Selector type of
selection procedure based on Farkas Lemma:

Procedure R̂0 :

min
Π

m∑
k=1

g(Π∗k)

2We could view v(U) = 1 as two inequalities: v(U) 6 1 and v(U) > 1.
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subject to:
(1)ΠM >M,Π > 0,

(2)Π(̂b− Λn) + 2diag(Π)Λn 6 b̂+ Λn,

where the observed b̂ is a m× 1 vector, Λn = (λn,1, λn,2, ..., λn,m)′ in which
λn,i is a relaxing parameter measuring the maximum violation allowed for
the ith inequality, and diag(Π) is the diagonal matrix diag(Π11,Π22, ...,Πmm).3

Comment 4.1. The Dantzig Selector allows us to identify the parame-
ter pointwisely. In our case, since the bounds are inequalities, therefore an
estimated set is produced by the procedure.

We choose the objective function g(·) such that it measures the overall
importance of the ith inequality. One choice is g0(Π∗k) = sign(Σ16j6mΠjk).

With the function g0(·), the selection procedure R̂ is a binary integer pro-
gramming problem. Define ÎL0 := {k : g0(Π∗k) > 0, k = 1, 2, ...,m} as the
set of inequalities selected. We call ÎL0 as the “L− 0 selector”, and R̂ with
g = g0 as “L− 0” selection procedure.

The L − 0 selector is difficult to compute when m is large. Below we
propose a computational tractable function for the choice of the objective
function g(·):

(4.1) g∞(Π∗k) := max
16j6m

Πjk,

where Πjk is the (j, k)th entry of Π.

With g(·) = g∞(·), we define the procedure R̂L1 as the following:
Procedure R̂L1 :

min
Π

m∑
k=1

max
16j6m

Πjk

subject to:
(1) ΠM >M,Π > 0,

(2)Π(̂b− Λn) + 2diag(Π)Λn 6 b̂+ Λn.
4

3For the jth inequality which is believed to be important, we could set the corresponding
λn,j to 0.

4 The formulation of the problem R̂ is similar to the Dantzig Selector described in
Candes and Tao (2005). The main difference is that the Dantzig Selector has two-sided
constraints, which shrink the feasible solution to a point, while our problem has one-
sided constraints, which consign the feasible solution to a convex set. The benefit of this
formulation is that it turns an integer programming problem (minimize L− 0 norm) into
a linear programming problem (minimize L− 1 norm).
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Denote the solution of the Procedure R̂L1 as Π̂L1. Define ÎL1 := {k :
g∞(Π̂L1

∗k ) > 0} as the set of inequalities being selected. For simplicity, we

denote Î := ÎL1 . In next subsection, we study the property of Î under
certain sparsity assumptions.

4.2. Selection Property of R̂L1 and Inference on Q. Sparse assumptions
play the essential role in the analysis of some L−1 penalization procedures,
such as LASSO and the Dantzig Selector.

By Farkas Lemma, there exists a m× d matrix, denoted as Π̃, such that:

(a)Π̃M >M, Π̃ > 0,

(b)Π̃b 6 b,

(c)Π̃∗k = 0 if k /∈ I0,

(d)Π̃jj 6 1, for any j ∈ {1, 2, ...,m}.

For anym×mmatrix Π and a function g(·), denote g(Π) := (g(Π∗1), ..., g(Π∗m))′,
which is a m×1 vector. Denote s0 := |I0| as the number of truly informative
inequalities.

We consider the following sparsity assumption.
For any 1 6 j 6 m, define separation of inequality j as:

cj := max
v∈Qj

Mjv − bj ,

where
Qj := {v|Miv 6 bi,∀i 6= j; v > 0}

cj measure the maximal separation of the jth inequality for all points in
Qj . If cj > 0, the jth inequality is irredundant, otherwise the jth inequality
is redundant. Let T0 be the set of indices j with cj > 0 to denote the set of
irredundant inequalities. Since cj characterizes the information carried by
the jth inequality, we define a sparse assumption using cj .

Assumption: C.2 (Exact Sparse). Recall that T0 is the subset of {1, 2, ...,m}
denoting all irredundant inequalities. Let Π̃ be a solution of the following
problem:

Problem R :
min

Π

∑
k∈T0

g∞(Π∗k)

subject to:
(a)ΠM >M,Π > 0,
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(b)Πb 6 b,

(c)Π∗k = 0 if k /∈ I0.

The exact sparse assumption is defined below:
There exists absolute positive constants KL and K∞, and a constant cg,n

which may depend on n, such that:
(1) s0 := |I0| = o(n ∧m), which may increase with n.
(2) The sum of coefficients needed to construct each inequality is bounded:

max16j6m ||Π̃j∗||L1 6 KL;

(3) max16j6m g∞(Π̃∗j) 6 K∞ where K∞ is a constant;
(4) minj∈I0 cj > cg,n.

Comment 4.2. Assumption 2 (1) restricts the number of informative
inequalities to be small. Assumption 2 (2) allows us to reconstruct any in-
equalities using the inequalities in I0 with bounded coefficients.

Under exact sparse condition, we are able to derive the following Lemma
that describes the relationship between the L− 1 selector compared to the
set I0 when there is no noise.

Assumption: C.3 (Dominance of λ). Suppose we have data b1, b2, ..., bn

with dimension being m × 1 such that b = E[bi], 1 6 i 6 n. In practice we
observe b̂ := En[bi] as an estimator of b. Suppose that with probability at
least 1− α,

(1) (1+η)|̂bj−bj | 6 λn,j, for any j ∈ {1, 2, ...,m} and some small constant
η > 0;

(2) λn,j 6 C
√

log(m)/n for some constant C > 0, j = 1, 2, ...,m.

In the Assumption C.3, we require that the choice of relaxation parameter
λn,j should dominate the maximal discrepancy between b̂j and bj for all
j ∈ {1, 2, ...,m}. In additional, max16j6m λn,j should be converging to 0 as
sample size increases to guarantee consistency. Below we discuss how to pick
the relaxation parameter Λn in practice.

Denote σ̂2
j := En[(bij)

2]− [Enbij ]2 for j = 1, 2, ...,m. Define

rn := max
16j6m

|̂bj − bj |/σ̂j .

Ideally, for any pre-specified small α > 0, we would like to pick λn,j :=
rn(1− α)σ̂j , where rn(1− α) is the 1− α quantile of random variable rn.

Chernozhukov, Chetverikov and Kato (2013) (CCK later) shows that the
distribution of

√
nrn can be well approximated by the distribution of the
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maxima of a Gaussian vector when (logm)7

n → 0 along with other mild regu-
larity conditions. The calculation can be performed via Gaussian Multiplier
bootstrap. A weaker bound (but still relatively sharp in many cases) of the
(1 − α) quantile of rn could be obtained using modest deviation theory of
self-normalized vectors described in De La Puna (2009), which in theory

requires (logm)(2+δ)

n → 0 where δ > 0 is a constant.

Assumption: C.4 (Regularity Conditions). (1) The data bi is i.i.d..5

(2) There exists an absolute constant C > 0 such that

max
16i6n,16j6m

|bij | 6 C.

(3) There exists absolute positive constant c1 such that

min
16j6m

E[(bij)
2] > c1.

Given Assumption C.4, we are able to obtain two practical ways of chosing
Λn whose validity is supported by results in CCK (2013) and De La Puna
(2009).

Lemma 4 (Choosing Λ using Multiplier Bootstrap (Theorem 3.1 of CCK(2013))).

Let rGn := max16j6m

∑
16i6n b

i
jeij

n , where eij are independent standard normal

random variables. Suppose Assumption C.3 holds and log(m∨n)7

n → 0, then
the 1−α quantile of

√
nrGn is a consistent estimator of the 1−α quantile of√

nrn. The λn,j := σ̂jrn.

Lemma 5 (Choosing Λ using Modest Deviation Theory of Self-Normalized
Vectors). Denote σ̂2

j := En[(bij)
2] − [Enbij ]2 for j = 1, 2, ...,m. Let λn,m :=

Cσ̂jΦ
−1(1− α

2m
)√

n
-

√
log(m)/n for some constant C > 1. Suppose Assumption

C.4 holds and (logm)2+δ

n → 0 for some δ > 0, then as n→∞, with probability
at least 1− α, for all j = 1, 2, ...,m,

|̂bj − bj | 6 λn,j .

For any m × m matrix M and m × 1 vector b, and Q := {v|Mv 6 b},
define M ⊕ Λ := {v|Mv 6 b+ Λ} for any m× 1 vector Λ.

5The i.i.d. assumption can be extended to the i.n.i.d. assumption as Lemma 5 and
Lemma 6 both allow i.n.i.d data with small modifications in the statement.
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Lemma 6. If Assumption C.3-C.4 hold. Assume that
s20 log(m)

n → 0, then

with probability at least 1 − α, the solution to the problem R̂L1, Π̂L1 must
exist. In addition, the corresponding Q̂Î satisfies:

(1) Q ⊂ Q̂Î ⊕ Λn.

(2) Q̂Î ⊂ Q⊕ (K∞max16j6m λn,j + 2Λn),

Results of Lemma 6 does not require any sparsity assumptions. With the
sparsity assumption C.2, we prove the following main theorem.

Theorem 2 (Recovery of Informative Inequalities under Exact Sparse As-
sumption). Suppose Assumptions C.2-C.4 hold. Recall that cj is the maxi-
mal separation of the jth inequality and cg,n 6 cj for all j ∈ T0. Let 0 < η < 1
be an absolute constant. Assume that n, s0 and cg,n obeys the following con-
dition:

KLs0 max16j6m λn,j
cg,n

→ 0.

Then, with probability > 1 − α, the set Îη := {j|g(Π̂∗j) > η} has the
following properties:

(1) There exists an absolute constant CT such that ||Îη||0 6 CT s0
η ;

(2) Îη ⊃ I0;

(3) Q̂Îη ⊂ Q⊕ Λn;

(4) Q ⊂ Q̂Îη ⊕ Λn.

When the data is i.i.d., under weak conditions such as those in Lemma
5, max16j6m λn,j -p

√
log(m)n. So the growth condition in Theorem 2 can

be rewritten as
K2
Ls

2
0 log(m)
ncg,n

→ 0.

5. Properties of the Selection procedure R̂ with Application in
the Core Determining Class Problem.

5.1. Application in Core Determining Class problem. To find the Core
Determining Class given a bipartite graph G = (U ,Y, ϕ), we can use the
method proposed in Section 3 to eliminate all the redundant inequalities
and find exact solution when data noise is not taken into consideration. We
can also use the L1 selector proposed in Section 5.1 to find an approximate
solution to the Core Determining Class problem. In addition, we may con-
sider a hybrid method: first, we find the exact solution according to the
method described in Section 3, and then apply the selection procedure pre-
sented in Section 5.1 using the inequalities selected from the previous step
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to further reduce the number of inequalities. The hybrid method may speed
up the selection procedure significantly. In this subsection, we discuss the
general selection procedure first, and then briefly discuss the hybrid method.

In the Core Determining Class problem, the equality v(U) = 1 is never re-
dundant when the graph G is non-degenerate. Therefore, we let the (m−1)th

and mth inequalities be v(U) > 1 and v(U) 6 1 among the total m inequal-
ities. Since there is no reason to drop the last two inequalities, we define
problems RC and R̂C as special modifications of the procedures introduced
in the previous subsection:

Problem RC :

min
Π

m−2∑
k=1

max
16j6m−2

Πjk,

subject to:
(1)ΠM >M,Π > 0,

(2)Πb 6 b,

and Problem R̂C :

min
Π

m−2∑
k=1

max
16j6m

Πjk,

subject to:
(1)ΠM >M,Π > 0,

(2)Π(̂b− Λn) + 2diag(Π)Λn 6 b̂+ Λn,

where Λn := (λn,1, ..., λn,m−2, 0, 0) with λn,m left to be chosen according
to procedures proposed by Lemmas 4 or 5.

Let Π0 be the solution to RC and Π̂ be the solution to R̂C . First, we
prove a result specific to the Core Determining Class.

Lemma 7 (Perfect Recovery of the Minimum Model T0). If µ̂n is non-
degenerate and λn,j = 0, j = 1, 2, ...,m− 2, then:

(1) The L0 norm of ĝ, ||ĝ||0, satisfies ||ĝ||0 = s0;
(2) max16j6m−2 ||Π̂j∗||1 6 du;

(3) max16j6m−2 ĝ(Π̂∗j) 6 1;

(4) The set of non-zero entries of ĝ := (g∞(Π̂∗1), ..., g∞(Π̂∗(m−2))) satis-
fies:

Î := {k|ĝk 6= 0} = I0.
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For the Core-Determining Class problem, we can combine the methods
proposed in Section 3 and Section 4: we can use the method in Section 3 to
select the binding inequalities first, then followed by the method proposed
in Section 4 to further reduce the number of inequalities. We can such a
procedure as the “hybrid method”.

(1) When s0 is small, the hybrid method performs similarly to the com-
binatorial method only.

(2) When s0 is large, there may be significant gains from the hybrid
method in terms of computational speed compared to the selection procedure
only, and significant inequality reduction compared to the combinatorial
method only.

We illustrate these points in the Monte-Carlo experiments in the next
section.

6. Monte-Carlo Experiments. Consider a simple setting in which
many marginal firms are facing a volatile market. Let u be a random variable
representing the cost of a firm. Let θ ∈ {H,L} be the private information of
the firm which we do not observe. Let y be the action of the firm based on
the information θ and cost u. Assuming the objective of firm is to maximize
profit π(y, u, θ), they might adopt different actions when facing θ = H or
θ = L.

Suppose action y is the price set by the firm. We consider a simple case of
decision making problem by the firms. Given observations of a sequence of
decisions, we are interested in learning the distribution of the costs of these
firms.

Assume that the profit function is

π(y, u,H) = (y − u)(C − y),

π(y, u, L) = (y − u)(C/2− y),

where C is a constant.
If the firm consider any price y∗ ∈ {y|π(y, u, θ) > maxy π(y, u, θ)−w, a1 6

y 6 a2}, where w is a constant for robust price control and a1, a2 are bounds
on y, then ϕ(u) := {y|π(y, u, θ) > maxy π(y, u, θ)− w, θ ∈ {H,L}, a1 6 y 6
a2} is the correspondence mapping from the set of cost (event) U to the set
of price (outcome) Y.

We can only observe ŷ, the empirical measures on price Y. The objective is
to find an approximate feasible set of probability measure on cost U . Assume
that u is i.i.d. across observations.

Example 3 (Monte-Carlo Experiment 1). Set U , Y, C and w as follows:
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C = 4, U = [0, 3], Y = [1, 3.5], w = 0.01.
So ϕ(u) = [(1.9 + u/2), (2.1 + u/2) ∧ 3.5] ∪ [(0.9 + u/2 ∨ 1), (1.1 + u/2)].
To estimate the probability measure on cost U , we discretize the continuous

set of cost (event) U and price (outcome) Y. Let du = 15 and dy = 25
be the number of discretized segments of cost and price, respectively. Then
ui = ((i − 1)/5, i/5) and yj = ((j − 1)/10 + 1, j/10 + 1) for i = 1, 2, ..., du
and j = 1, 2, ..., d2. The correspondence mapping ϕd from the discretized set
Ud = {ui|i = 1, 2, ..., 15} to the discretized set Yd = {yj |j = 1, 2, ..., 25} is
generated by:

ϕd(ui) = {yj |yj ∩ ϕ(ui) 6= ∅}

Therefore, ϕ(u1) = {y1, y2, y10, y11, y12}, ϕ(u15) = {y14, y15, y16, y24, y25}.
For any 2 6 i 6 14, ϕ(ui) = {yi−1, yi, yi+1, yi+9, yi+10, yi+11}. Figure 3
illustrates the correspondence mapping for Example 3.

Suppose µ, the true probability measure on Y, follows the formula µ(j) ∝
max(1, |j− 13|1.5) for 1 6 j 6 25. Suppose the sample size n (the number of
observed y) is 2000 and 500 and the sample y is randomly drawn according
to measure µ. Let µ̂n be the empirical measure (observed frequency) of y.
The penality Λn is chosen according to Lemma 4.

Problem R̂ is implemented to further select the inequalities. The results of
a set of Monte-Carlo experiments with 100 repetitions are presented in Table
1. For each instance, we apply a cut-off value η to the optimal L1 coefficient
g(Π∗j): select an inequality if the corresponding g(Π∗j) > η and discard
it otherwise. We present the average, maximum and minimum number of
selected inequalities with cut-off value η = 0, 0.1 and 0.2.

A critical concept concerning the selection performance is “coverage”: in
one instance, the feasible set (of the probability measure) on U correspond-
ing to the true µ is subset of the feasible set (of the probability measure)
on U defined by the selected inequalities with empirical measure µ̂n. We
present the “frequency of coverage” corresponding to different cut-off value
η. As η increases, the procedure selects fewer inequalities, so the approxi-
mate feasible set will become larger, which is more likely to “cover” the true
feasible set and produce a larger “frequency of coverage”. In the numeri-
cal experiments, the “frequency of coverage” is greater than 95% when the
cut-off value η = 0 (essentially the case of no cut-off). It agrees with the
parameter selection α = 0.05 (type 1 error) in the formula of the penalty
term λ described in Lemma 6.

We compare the inequalities selection of the integer programming L0 pro-
cedure with the linear programming L1 procedure. Figure 4 illustrates the
comparisons with respect to the magnitude of the L1 selector coefficient
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Number of experiments (M) 100

Number of events × number of outcomes (d1 × d2) 15× 25

Number of inequalities in true model (m, after the selection algorithm in Section 3) 471

Conservative bound of acceptance rate (1− α) 0.95

Sample size (n) 500 2000

Average λ 0.0710 0.0355

Frequency of Coverage (η = 0) 97% 99%

Avg. number of inequalities selected (η = 0) 184.66 187.42

Max. number of inequalities selected (η = 0) 241 234

Min. number of inequalities selected (η = 0) 145 92

Frequency of Coverage (η = 0.1) 99% 100%

Avg. number of inequalities selected (η = 0.1) 32.59 86.02

Max. number of inequalities selected (η = 0.1) 43 145

Min. number of inequalities selected (η = 0.1) 27 27

Frequency of Coverage (η = 0.2) 99% 100%

Avg. number of inequalities selected (η = 0.2) 26.73 56.69

Max. number of inequalities selected (η = 0.2) 28 108

Min. number of inequalities selected (η = 0.2) 24 27

Running time (sec/instance) 87 146

Table 1
Results of Monte-Carlo Experiments on Example 3

g(Π∗j) in the optimal solution of problem R̂. Figure 5 illustrates the com-
parisons with respect to the separation of each inequality, which is

c(A) := max{v(A)− µ(ϕ(A))|v(A′) 6 µ(ϕ(A′)), ∀A′ ⊂ S∗u, A′ 6= A}

Table 2 presents the detailed selection results. It can be seen that the L0

selector (the model to select minimum number of inequalities) is recovered by
the L1 selector to a large extent, while the L1 selector enjoys extremely high
computational advantage. Generally, inequalities selected by the L0 selector
have comparatively large L1 coefficients g(Π∗j), which makes it easy to be
selected by the L1 selector under a reasonable cut-off value η. In addition,
the L1 selector is able to successfully differentiate inequalities with close
separation values but opposite L0 coefficients.

We project our L1 estimator compared to L0 and the true feasible set onto
v1, v2, v3, a three-dimension subspace. Figure 6 compares the performance of
L0 and L1 selectors: the L1 selector with η = 0.1 is slightly more conservative
than the L0 selector. Figure 7 shows that the L1 selector covers the true
feasible set by a small margin.

We also demonstrate through a smaller example the sharpness of the re-
laxing parameter λ. If (1) the empirical measure µ̂n is largely mis-specified
from the true measure µ, and (2) the true feasible set (of the probability
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Number of inequalities selected in L0 79

Number of inequalities selected in L1 211

Number of inequalities that L0 model selected in L1, η = 0 79

Number of inequalities that L0 model selected in L1, η = 0.05 78

Number of inequalities that L0 model selected in L1, η = 0.10 78

Number of inequalities that L0 model selected in L1, η = 0.15 77

Number of inequalities that L0 model selected in L1, η = 0.20 72

Running time of L0 model (min) 2195

Running time of L1 model (min) 1.45

Table 2
Comparisons of L0 and L1

M = 10000, n = 200 γ = 1 γ = 2 γ = 3 γ = 4 γ = 5

Type 1 error, η = 0 3.64% 3.73% 3.84% 3.85% 4.21%

Type 1 error, η = 0.1 3.56% 3.55% 3.71% 3.77% 4.07%

Type 2 error, η = 0 29.65% 11.18% 6.98% 5.86% 4.58%

Type 2 error, η = 0.1 29.88% 11.35% 7.08% 6.04% 4.73%

Table 3
Type 1 and Type 2 Errors

measure) on U is still a subset of the approximate feasible set (of the proba-
bility measure) on U obtained in the selection procedure, then a type 2 error
occurs. The λ implied by α limits the magnitude of the type 1 error, and a
sharp λ will also limit the occurrences of type 2 errors at the same time. In
another set of Monte-Carlo experiments below, we examine the type 2 error
in the case that the empirical measure µ̂n is locally mis-specified.

Example 4 (Monte-Carlo Experiment 2). Figure 8 is the correspon-
dence mapping for an example with size of 7× 7.

Assuming the true probability measure µ on Y is (0.1, 0.25, 0.2, 0.1, 0.1, 0.2, 0.05),
we perturb µn,0 with γ(a1, a2, ..., a7)/

√
n, where ai is randomly and uni-

formly drawn from {−1, 1}, 1 6 i 6 7. So the empirical measure µ̂ ∝
µ+ γ(a1, a2, ..., a7)/

√
n in the case of mis-specified perturbation.

We run 10000 instances for each setting of perturbation γ and cut-off
value η. Table 3 presents the type 1 and type 2 error for each setting. The
results show that, while the type 1 error is less than 0.05 as designed, the
type 2 error is also relatively small, which means the approximate feasible
set of probability measure on U does not over exaggerate the true feasible
set.

7. Conclusion. In this paper we consider estimating the probability
measure on the unobservable events given observations on the outcomes.
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We try to select the set of minimum number of inequalities, which is called
the Core Determining Class, to describe the feasible set of target probability
measure. We propose a procedure to construct the exact Core Determining
Class when data noise are not taken into consideration. We prove that, if
there is no degeneracy, the Core Determining Class only depends on the
structure of the bipartite Graph, not the probability measure µ on the out-
comes.

For a general problem of linear inequalities selection under noise, we pro-
pose a selection procedure similar to the Dantzig selector. A formulation
is proposed to identify the importance of each inequality in a feasible set
defined by many inequalities constraints. We describe the exact sparse as-
sumptions and approximate sparse assumptions, which are are similar to the
traditional sparse assumptions in a linear regression environment. We prove
that the selection procedure has good statistical properties under the sparse
assumptions.

We apply the selection procedure to the Core Determining Class problem
and develop a hybrid selection method combined with a combinatorial al-
gorithm. We prove that the hybrid selection procedure has better statistical
properties due to the structure of the graph.

We demonstrate the good performance of our selection procedure through
several set of Monte-Carlo experiments. First, the inference based on the
selection procedure has desired size; second, it has power against local al-
ternatives; third, it is relatively computationally efficient.
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9. Appendix A: Proofs in Section 3.

Proof of Lemma 2. For any A 6∈ S ′u, one of the following two state-
ments must be true:

(1) ∃A1, A2 ⊂ A,A1, A2 6= ∅, A1 ∪A2 = A, such that ϕ(A1) ∩ ϕ(A2) = ∅;
(2)∃u ∈ U , such that u 6∈ A, and ϕ(u) ⊂ ϕ(A).
[What is VM?] If (1) is true, then vM (A) = vM (A1 ∪ A2) = v(A1) +

v(A2) 6 µ(ϕ(A1)) + µ(ϕ(A2)) = µ(ϕ(A1) ∪ ϕ(A2)) = µ(ϕ(A1 ∪ A2)) =
µ(ϕ(A)), so A 6∈ Su.

If (2) is true, vM (A) 6 v(A∪{u}) 6 µ(ϕ(A∪{u})) = µ(ϕ(A)), so A 6∈ Su.
Therefore, by definition 3.2,

(9.1) Su ⊂ S ′u.

Consider an arbitrary set A ⊂ U such that A /∈ Su. It is suffice to prove
that A /∈ S′u to show S ′u ⊂ Su.

Denote Su := {Ai|1 6 i 6 r := |Su|}. For every set A ⊂ U , we can consider
a vector V := w(A) ∈ {0, 1}du such that Vi = 1 if and only if ui ∈ A. By
definition, there exists a 1× du vector π > 0, such that (1)

∑r
i=1 πiw(A)i >

w(A), (2)
∑r

i=1 πiµ(ϕ(Ai)) 6 µ(ϕ(A)), where r := |Su|. Without loss of
generality, assume πi > 0, i = 1, 2, ..., r, otherwise we would simply omit the
Ai which corresponds to πi = 0 in the statements above. Such an assumption
does not affect our analysis below.

Since
∑
πiw(A)i > w(A), so∑r

i=1 πi1(Ai ∩ ϕ−1(y) 6= ∅) > 1(A ∩ ϕ−1(y) 6= ∅), for any y ∈ Y.
By Galichon and Henry (2011), µ ◦ ϕ is sub-modular on 2U . Therefore,∑
πiµ(ϕ(Ai)) =

∑
y∈Y

∑r
i=1 πiµ(y)1(Ai∩ϕ−1(y) 6= ∅) >

∑
y∈Y µ(y)1(A∩

ϕ−1(y)) = µ(ϕ(A)).
But we know that

∑
πiµ(ϕ(Ai)) 6 µ(ϕ(A)), by assumption. Hence the

inequality above holds as an equality, i.e., for any y ∈ Y,
∑r

i=1 πi1(Ai ∩
ϕ−1(y) 6=) = 1(A ∩ ϕ−1(y)). Also, the inequality

∑r
i=1 πiw(A)i > w(A)

must hold as an equality, i.e.,

(9.2)

r∑
i=1

πiw(A)i = w(A).

Given the above results, we claim that for any y ∈ Y, either ϕ−1(y)∩A ⊂
Ai or ϕ−1(y)∩A∩Ai = ∅ for all i. We prove this argument by contradiction.

Assuming that there exists a y ∈ Y and 1 6 i 6 r such that ϕ−1(y) ∩
A ∩ Ai 6=, and ϕ−1(y) ∩ A ( Ai. Therefore, there exists u 6= u′ such that
u, u′ ∈ ϕ−1(y), u ∈ A ∩A′i, u′ ∈ A but u′ /∈ Ai. Thus,
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i=1 πiAi1(Ai ∩ ϕ−1(y) 6=) = πi +

∑
j 6=i πjAj1(Aj ∩ ϕ−1(y) > πi +∑

j 6=i πj1(u′ ∈ Aj) = πi +
∑r

j=1 πj1(u′ ∈ Aj) > πi + 1 > 1 = 1(A ∩ ϕ−1(y)),
contradiction!

Thus, for any y ∈ Y,

(9.3) either ϕ−1(y) ∩A ⊂ Ai or ϕ−1(y) ∩A ∩Ai = ∅,

for all i.
We divide our next step into two cases:
Case 1: If A is self-connected, by definition of Ai, for any i, either Ai∩A =

∅ or Ai ∩A = A.
By the equation (9.2), there exists no y ∈ ϕ(Ai) such that y /∈ ϕ(A) for

any i with πi > 0. By connectivity of A, ϕ(Ai) = ϕ(A) for any i such that
πi > 0.

Since Ai 6= A for any i = 1, 2..., r, but there exists i such that ϕ(Ai) =
ϕ(A). Since for any u ∈ U , ϕ(u) ⊂ ϕ(Ai) implies u ∈ Ai, there must exist
u0 ∈ U such that ϕ(u0) ⊂ ϕ(A), but u0 /∈ A, i.e., A /∈ S ′u.

Case 2: If A is not self-connected, by definition A /∈ S ′u.
Therefore, in both cases, A /∈ S ′u, which implies that Su ⊃ S ′u. Combining

with (9.1), Su = S ′u.

Proof of Theorem 1. Without loss of generality, we can assume that
the graph G is connected, because otherwise the problem can be decomposed
to each connected branch of G.

By definition, S∗ is the set of inequalities that are binding together with
v(U) = 1. Therefore, it is easy to see that S∗ ⊂ Su, S∗ ⊂ S−1

y , and S∗ ⊂
Su ∩ S−1

y .

Denote w(A) ∈ {0, 1}du as the indicator vector of A.
Suppose there exists a set A such that A ∈ Su ∩ S−1

y , but A /∈ S∗. By
definition of S∗, there exists πi > 0 and Ai ∈ S∗, 1 6 i 6 r, with r = |S∗|,
and π0 > 0, such that:

(1)
∑

16i πiw(Ai)− π0 > w(A).
(2)

∑
16i πiµ(ϕ(Ai))− π0 > µ(ϕ(A)).

Without loss of generality, we can assume that πi > 0 for all i = 1, 2, ..., r.
By the similar argument of Lemma 2, all inequalities in (1) and (2) must

hold as equalities. Again, for any y ∈ Y, either ϕ−1(y)∩A is a subset of Ai,
or its intersection with Ai is empty. Since A ∈ Su is connected, so for any
Ai,

(9.4) either Ai ⊃ A or Ai ∩A = ∅.
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Since A ∈ Su ∩S−1
y ,there exists B such that ϕ−1(B) = Ac. Then, it is easy

to see that ϕ−1(ϕ(A)c) = Ac. Denote B := ϕ(A)c. Since the graph G is
connected, so it must be that ϕ(u) ∩ ϕ(A) 6= ∅, for some u ∈ Ac.

If π0 = 0, then by similar arguments of Lemma 2, it is easy to see that A
equals to some Ai with Ai ∈ S∗, contradiction!

Else we assume that π0 > 0, then there must exist a set Ai0 such that
u ∈ Ai0 . Since ϕ(u) ∩ ϕ(A) 6= ∅, by statement (9.4), Ai0 ⊃ A.

By the same argument, for any y ∈ B, either ϕ−1(b) ⊂ Ai or ϕ−1(b)∩Ai =
∅, for any i. By definition, the set B is self-connected. Therefore for any Ai,
B ⊂ Ai or B ∩ Ai = ∅. This statement also holds for Ai0 . Since Ai0 ⊃ A
and Ai0 6= A, then Ai0 ∩B 6=. So Ai0 ⊃ B. Consequently, Ai0 ⊃ B ∪A = U ,
which contradicts to the definition of S∗.

Therefore, S∗ = Su ∩ S−1
y .

10. Appendix B: Proofs in Section 5.

Proof of Lemma 6. It is obvious that Q ⊂ QÎ := {v|MÎv 6 bÎ , v > 0}.
By definition of Î and Π̂L1 , we know that for any j ∈ Î, Mjv 6 b̂j 6

bj + λn,j , for all j with probability > 1−α. Therefore, QÎ must be a subset

of Q̂Î ⊕ ΛnÎ , so Q ⊂ Q̂Î ⊕ ΛnÎ .

For any v ∈ Q̂Î , we know that MÎv 6 b̂Î .

For any j /∈ Î, Πjj = 0. by definition, Π̂L1
j∗M > Mj , and Π̂j∗(̂b − Λn) 6

b̂j + λn,j . So Mjv − bj 6 Π∗jMv − bj 6 Π∗j b̂− bj 6 Π̂j∗Λn + 2λn,j .

By optimality of Π̂L1 , since we know that Π̃ is a solution to R̂L1 , so∑
j∈Î g∞(Π̂L1

∗j ) 6
∑

j∈I g∞(Π̃∗j) := K∞. It follows that Π̂j∗Λn 6 K∞max16j6m λn,j .

Hence, Q̂Î ⊂ Q⊕ (K∞max16j6m λn,j + 2Λn).

Proof of Theorem 2. First, it is obvious that Π̃ is a feasible solution
to the problem R̂L1 with probability at least 1 − α. Now let’s assume that
Π̃ is a feasible solution of R̂L1 .

Let Π̂ be the solution to the problem R̂L1 . So

||g(Π̂)||1 6 ||g(Π∗)||1 6 K∞.

So Îη 6 K∞
η .

On the other hand, the exact sparsity assumption C.2 implies that K∞ 6
s0KL, therefore Îη 6 s0KL

η ..
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For any j ∈ I0, let vj be the point such that the maximal separation of
the jth inequality is reached while other inequalities hold.

Therefore, by construction of R̂L1

(10.1) Π̂(Mvj − b̂) >Mvj − b̂j − (Π̂Λn)j + 2Πjjλn,j − λn,j .

By assumption, we have Mjvj > bj + cg,n, and Mj′vj − bj′ 6 0 for all
j′ 6= j.

Plugging the above inequalities in (10.1), we get: (1− Π̂jj)(cg,n−2λn,j) 6
(Π̂Λn)j 6 λS := max16j6m λn,js0KL.

By the growth condition on s0 and n, we know that 1 − Π̂jj → 0 for all

j ∈ I0. Hence, j ∈ Îη for n large enough.

Now we know that I0 ⊂ Îη, so Q̂Îη ⊂ Q̂I0 ⊂ Q ⊕ ΛnI0 . Similarly, Q ⊂
Q̂⊕ Λn ⊂ Q̂Îη ⊕ ΛnÎη .

Proof of Lemma 7. Let Π be a feasible solution of the following prob-
lem:

min
Π

m∑
k=1

max
16j6j

(Πjk),

subject to:
(1)ΠM >M,Π > 0,

(2)Πb 6 b.

Πij = 0, if j /∈ T0.

Any feasible solution of this above problem is that Πii = 1, for all i ∈ T0,
and Πij = 0, for all i 6= j. Hence, the optimal value of the objective function
is s0.

In our case, except for the pth row of M , every row satisfies: Mi ∈ {0, 1}d.
Again, for the problem R, any optimal solution must satisfy Πii = 1, for
any i ∈ T0. Therefore the value of the objective function is at least s0.

Meanwhile, for any i /∈ T0, by definition, there exists αj > 0, for any
j 6= i, j ∈ T0

and αp > 0 such that:∑
j∈T0 αjMj − αp(1, 1, ..., 1) >Mi,

and
∑

j∈T0 αjbj − αp 6 bi.
Without loss of generality, we could assume that α1 > α2 > ... > αr >

0 = αr+1 = ... = αp−1. Next we prove that there must be a feasible vector
of αi such that α1 6 1. Then we could conclude that the minimum value
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of the objective function in problem R is s0, and the optimal solution ex-
actly recovers the true model. Denote the set A correspond to Mj , and Ai
correspond to Mi. Without loss of generality, assume that

By Galichon and Henry (2011), µ(ϕ(A)) is a sub-modular.
bj = µ(φ(A)), therefore

∑
16i6r αibj−αp =

∑
16i6r αiµ(ϕ(Ai))−αpµ(ϕ(U)) >

µ(ϕ(
∑

16i6r αiAi−αp)) > µ(A) = bj . Therefore the above equality holds as
an equality. If α1 > 1, then αp > 0. So for any u /∈ Ai, there must be j ∈ T0

such that u ∈Mj .
So for any y ∈ ϕ(A), either φ−1(y) ∩ Ai ∩ A = ∅ or (φ−1(y) ∩ A) ⊂ Ai.

Similarly, for any y /∈ ϕ(A), φ−1(y) ∩Ai = ∅ or φ−1(y) ⊂ Ai.
We continue the proof by discussing two exclusive cases:
(1) A is connected. Let A′ := {u|ϕ(u) ⊂ A}. We only need to prove that

A′ can be constructed via
∑

16i6r αiAi − αpU . For simplicity, we still call
A′ as A. By such an assumption, there is no u /∈ A such that ϕ(u) ⊂ ϕ(A).
Therefore, A ⊂ Su. Hence B := ϕ(A)c is not connected. Let B1, ..., Br as
all the disconnected branches of B. Let Ck = ϕ(Bk), for any 1 6 k 6 r. So
∪rk=1Ck = Ac, Ck1 ∩Ck2 = ∅, for any k1 6= k2. So each Ck is connected with
A.

Denote Ck = {u|u ∈ Ac, u /∈ Ck}.
So A ∪ C1, A ∪ C2,..., A ∪ Cr are sets in Su. It is also sets in S−1

y since

Ck = (A ∪ Ck)c is connected. Therefore, All these sets are in S∗. And Let
αi = 1, αp = r− 1, we could reconstruct the inequality indicated by A. And
since r > 2, so all the coefficients αk 6 1.

(2) A is not connected. Let A1, ..., Aw be the connected branches. Let
B = ϕ(Ac). Without loss of generality, similar to step (1), we could assume
that each Ai ∈ Su, 1 6 i 6 w. Assume B1, ..., Bk is the connected branches
of B. Let Ci = ϕ−1(Bi), 1 6 i 6 k. Therefore, Ci1 ∩ Ci2 = ∅, for any
i1 6= i2. Ci ∩ A 6= ∅, for any i. Therefore Ci, 1 6 i 6 k and Aj , 1 6
j 6 w form a bipartite-graph G0. For every Ai, let AC1, ..., ACir to be
the connect branches of G0 − {Ai}. Since the entire graph is connected, so
ACi is connected with Ai, 1 6 i 6 ir. Let ACi := {u|u /∈ ACi}. So ACi

is a set in Su ∩ S−1
y = S∗. Therefore, the set Ai could be constructed by∑ir

k=1ACk − (ir − 1)U .
If for some set ACk appears in the different i, let AC be such as set such

that it appears in 1 6 i 6 J , J > 2. Hence, A1, A2, ..., AJ ⊂ AC. Without
loss of generality, suppose C1, ..., Cq ⊂ AC, q > 1, and Cq+1, ..., Ck∩AC = ∅.
For any 1 6 i 6 J , AC −Ai is a connected branch in G0−Ai, which means
that C1, ..., Cq does not connected with A − AC,and Cq+1, ..., Ck does not
connect with AC−Ai. If J > 2, Cq+1, ..., Ck does not connect with AC−A1

and AC − A2. But AC − A1 ∪ AC − A2 = A. So Cq+1, ..., Ck does not
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connect with AC. And C1, ..., Cq does not connect with AC. So AC and A
are not connected! Hence, each ACk can near appear twice in constructing
Ai, 1 6 i 6 k. Therefore there exists one way to construct A from S∗ such
that all the coefficients πij 6 1, for 1 6 j 6 p− 2.

Hence, the optimal solution of the problem R is s0. And I0 = Î.
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Fig 3. Correspondence Mapping for Example 3
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Fig 4. L0 versus L1: with respect to L1 Coefficient



34

Fig 5. L0 versus L1: with respect to Inequality Separation

Fig 6. L0 versus L1: Projection onto v1, v2, v3.
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Fig 7. L1 versus True Feasible Set: Projection onto v1, v2, v3.

Fig 8. Correspondence Mapping for Example 4
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