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In developed economies, larger cities are skill-abundant and specialize in skill-
intensive activities. This paper characterizes the spatial distributions of skills and
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1 Introduction

This paper studies the distribution of skills across cities of different sizes in three large
developing economies: Brazil, China, and India. These three countries jointly account for
approximately 40 percent of world population and are diverse in their levels of income. The
process of urbanization in developing economies is important due to both the number of
people involved and the opportunity to shape outcomes. The World Bank projects that 2.7
billion additional people will live in developing economies’ cities by 2050. While urbanization
does not imply growth, the two are nonetheless strongly linked (Henderson, 2014).

In developed economies, larger cities are skill-abundant and specialize in skill-intensive
activities. The positive relationship between the fraction of college graduates and metropoli-
tan population has long been documented. In recent work, Davis and Dingel (2014) introduce
a theoretical framework characterizing the distribution of heterogeneous skills and sectors
across cities of different sizes for more than two skill groups. In their model, the comparative
advantage of cities is jointly governed by the comparative advantage of individuals and their
locational choices. The key testable predictions are that larger cities are skill-abundant and
specialize in skill-intensive activities, which means that more skilled demographic groups and
more skill-intensive sectors have higher population elasticities. These are clear features of
the data for the United States in 2000.

Do the urban systems of developing economies also exhibit these spatial patterns? This
paper is a first step in characterizing the spatial distributions of skills and sectors in Brazil,
China, and India. Cities in developing economies will not of necessity mirror corresponding
characteristics of developed economies. The existence of cities still requires agglomeration
and dispersion forces. But the technologies and conditions of production and consumption in
cities can diverge sharply. It is an empirical question whether developing economies’ larger
cities are skill-abundant and specialize in skill-intensive activities. We begin to tackle this
question by examining these three large developing economies.

Studying the distribution of skills and sectors across metropolitan areas in Brazil, China,
and India necessitates constructing metropolitan areas, which are not readily available in
these countries. Economic theory treats a city as a highly — if imperfectly — integrated labor
market. For this and other reasons, statistical agencies in developed economies overwhelm-
ingly define metropolitan areas on the basis of commuting flows (Duranton, 2015). Un-
fortunately such commuting flow measures are not always available to define metropolitan
areas in developing economies. This is the case in China and India. In practice, researchers
studying cities in developing economies have employed a variety of measures of the relevant
geographies, often using off-the-shelf administrative definitions of cities. These spatial units
often do not correspond to the metropolitan areas employed in research describing cities in
developed economies. Administrative or political boundaries often fragment economically
integrated areas into distinct cities or circumscribe places, including rural areas, that are
not integrated metropolises. To evaluate whether developing economies exhibit an urban
hierarchy of skills and sectors similar to that of developed economies requires an appropriate
geography defining cities’ sizes and economic characteristics.

In this paper, we develop a methodology to define metropolitan areas in the absence
of commuting data by using satellite images. Our approach aggregates spatial units into
metropolitan areas on the basis of lights at night. When municipalities or towns are part



of a sufficiently bright, contiguous area of light, they belong to that metropolitan area.
We demonstrate the feasibility and value of such an approach in a few steps. First, we
show that, with appropriately selected light-intensity cutoffs, our nightlights-based method
produces metropolitan areas that match commuting-defined US metropolitan areas very well.
Second, we show that this is also true in a developing-economy setting, Brazil, where data
on both commuting flows and nightlights are available. Third, we show that the application
of our nightlights-based approach to China and India eliminates anomalies in their city-size
distribution. While spatial units defined by administrative boundaries in these countries
seem to deviate from a power-law distribution (Chauvin et al., 2016), our nightlight-based
definitions of cities accord much better with this empirical regularity, suggesting an advantage
of the geographic units we define.

Using these definitions of metropolitan areas, we aggregate census data to characterize
the spatial distributions of skills and sectors following the theoretical lens of Davis and Dingel
(2014). That theory, in short, predicts that a linear regression of log skill-group population
on log total metropolitan population will yield a larger slope coefficient for a more skilled
group. Similarly, more skill-intensive sectors should have higher population elasticities. With
further assumptions, the model also predicts that all these elasticities are positive, contrary
to models of completely specialized cities such as Henderson (1974).

In all three developing economies, larger cities are skill-abundant. We use four educa-
tional categories for each economy and find that population elasticities are monotonically
increasing in years of schooling. This result is robust to our choice of the light-intensity
threshold employed in our algorithm defining metropolitan areas. However, we obtain sub-
stantially different population elasticities in some cases when estimating using the adminis-
trative definitions of spatial units that have been commonly used in previous research. In
this preliminary and incomplete draft, we find that larger cities specialize in skill-intensive
economic activity in Brazil.

Our paper belongs to a growing literature on urbanization in developing economies.
Perhaps most closely related are Henderson (1991) and Chauvin et al. (2016), who also
focus on urban development in Brazil, China, and India, and Hu et al. (2014). In particular,
Chauvin et al. (2016) examine whether stylized facts about metropolitan areas in the United
States also hold true in Brazil, China, and India using administrative spatial units commonly
available in government data releases. Hu et al. (2014) examine the predictions of Davis and
Dingel (2014) for China using administrative spatial units. Our investigation complements
these studies by focusing on the spatial distribution of skills and sectors and developing
definitions of metropolitan areas that are more comparable to the economically integrated
entities studied in research on US cities.

Our nightlights-based approach to defining metropolitan areas is distinct from the ad-
ministrative units defined by government statistical agencies, a commuting-based algorithm
introduced by Duranton (2015), and a distance-based clustering algorithm introduced by
Rozenfeld et al. (2011). The administrative units defined by government agencies often do not
correspond to the integrated metropolitan areas of interest to economists. The commuting-
based approach is ideal, but its application is constrained by the absence of economy-wide
commuting data in many countries. The city-clustering algorithm of Rozenfeld et al. (2011)
aggregates adjacent spatial units on the basis of proximity without exploiting information
about the contiguity of economic activity. We use nightlights, which are available at very



fine spatial resolution, to inform the aggregation of spatial units for which socioeconomic
data are available.

Our employment of satellite imagery to define metropolitan areas is one part of a rapidly
expanding economics literature exploiting satellite data, recently surveyed by Donaldson and
Storeygard (2016). Most prior research, such as Bleakley and Lin (2012) and Henderson et
al. (2012), has utilized nightlights as a proxy for local economic activity at a finer resolution
than typically documented in administrative data. Our innovation is to use nightlights as a
basis for identifying contiguous areas of economic activity that define metropolitan areas and
then characterizing those metropolitan areas’ socioeconomic characteristics by aggregating
spatial units available in more traditional data sources.

2 Defining metropolitan areas

In order to characterize the spatial distribution of skills and sectors, we construct metropoli-
tan areas from finer geographic units for Brazil, China, and India. Research describing cities
in the United States and other developed economies typically uses spatial units defined by
economic integration rather than legal jurisdictions or administrative boundaries. Agglomer-
ation forces, commuting flows, and other economic linkages do not stop at municipal, county,
or state borders, so using these boundaries to define the unit of analysis would fragment eco-
nomically integrated metropolitan areas. In Brazil, China, and India, however, prior research
describing urbanization has used spatial units defined by administrative boundaries due to
the absence of spatial units analogous to US metropolitan statistical areas in these countries.

We propose a method for constructing metropolitan areas from smaller geographic units
based on night lights data. First, we validate our method by showing that applying it to the
United States yields spatial units very similar to those defined by the government statistical
agency based on commuting flows. Second, we apply both our nightlights-based method
and a commuting-flow method to Brazil, for which both types of data are available, and
find that they yield similar outcomes. Third, we construct metropolitan areas for China and
India using satellite night lights data, since commuting data are not available in these two
countries.

In a number of cases, these metropolitan areas differ from agglomerations defined by
political boundaries. These differences are sufficiently large that they affect conclusions
about the distribution of population and economic activity across space. For example, we
show that the city-size distribution in China conforms reasonably well to Zipf’s law when we
use nightlights-based metropolitan areas, while Chauvin et al. (2016) have shown substantial
deviations from Zipf’s law when using administrative units that incorporate substantial rural
territories.

2.1 Building metropolitan areas from satellite data

We propose a method for aggregating spatial units into a “metropolitan area” defined by
a contiguous area of lights at night. Figure 1 illustrates the procedure for a portion of the
eastern coast of China along the East China Sea.



Figure 1: Building metropolitan areas by aggregating smaller units based on lights at night
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The starting point is a satellite image of the country at night. Each pixel has a brightness
that is reported as an integer between 0 (no light) and 63 (top-coded value). In the upper
left panel, we invert the image colors, so that darker pixels correspond to brighter lights at
night. Upon selecting a brightness threshold, we identify contiguous areas of light brighter
than the selected threshold. This yields polygons, as in the lower left of Figure 1, which uses
a brightness threshold of 30. Note that the polygons themselves are formed without reference
to administrative boundaries. The largest polygon, corresponds to the city of Shanghai. Our
assumption is that contiguity of lights at night is informative about contiguity of economic
activity.

The second crucial data source is a shapefile describing the spatial units for which so-
cioeconomic data are available. For China, these are the townships depicted in the upper
right panel of Figure 1.

We use the intersection of the nightlights-based polygons and the spatial units to con-
struct metropolitan areas. A township that intersects one nightlight polygon is assigned to
that polygon. In the case of multiple intersections, a township is assigned to the nightlight
polygon containing the greatest area of the township. The union of the spatial units assigned
to a nightlight polygon constitutes a metropolitan area. The lower right of Figure 1 depicts
the metropolitan areas that result from applying our procedure to Chinese townships.

Finally, we impose a minimum population size to include a metropolitan area in our eco-
nomic analysis. Following the literature (e.g. Chauvin et al. 2016), we focus on metropolitan
areas with populations greater than 100,000. A metropolitan area’s population is the sum
of the constituent spatial units’ populations.



2.2 US metropolitan areas

While this paper is about the spatial distribution of economic activity in developing economies,
we use the United States as a testing ground to validate the nightlights-based methodology
we develop to construct metropolitan areas in the absence of commuting data. In the United
States, metropolitan statistical areas (MSAs) are defined by the Office of Management and
Budget (OMB). In its most recent (2010) standard the OMB aggregates US counties that
meet certain requirements into a set of core-based statistical areas (CBSAs), which are de-
signed metropolitan and micropolitan statistical areas depending on their size. The core is
an urban population area of sufficiently large size. Outlying counties are adjoined to the
central counties constituting this urban core on the basis of commuting ties. Counties that
don’t meet these requirements are not included in any CBSA.!

Recently, Duranton (2015) proposed an algorithm for defining metropolitan areas by the
iterative aggregation of spatial units on the basis of commuting ties without requiring the
initial designation of an urban core. Duranton applied this methodology to Colombia; here
we apply it to US data to construct an alternative geography of US metropolitan areas.
Our purpose is to establish that the Duranton (2015) methodology, which we will apply to
Brazil, produces metropolitan areas similar to those defined by the OMB. We aggregate US
counties into metropolitan areas on the basis of county-to-county commuting flows reported
in the 2009-2013 American Community Survey.’

Our nightlights-based methodology is a departure from these commuting-based meth-
ods. When we apply our nightlights-based method to the US, aggregating counties to build
metropolitan areas, we obtain definitions of US metropolitan areas that are very similar to
OMB-defined metropolitan statistical areas. We take the 377 OMB-defined CBSAs with
a population above 100,000 as our baseline and match each one of them to the best cor-
responding urban agglomerations defined by the alternative methods based on commuting
flows and night lights.® We then compare log population and log land area across agglomer-
ation schemes, a comparison made by Rozenfeld et al. (2011) to validate their methodology.

Figure 2 shows that the correlation of log population between CBSAs and their nightlights-
based counterparts is about 0.98 and relatively insensitive to the choice of nightlight intensity
threshold. Similarly, the correlation of log population between CBSAs and their commuting-
flow-based counterparts exceeds 0.96 and varies little with the minimum commuting thresh-
old used in the Duranton (2015) algorithm. There are larger discrepancies in terms of land

LAn outlying county is aggregated into a CBSA if either of the following criteria is met: (i) at least
25 percent of the workers living in the outlying county work in the CBSA core; (ii) at least 25 percent
of the employment in the county is accounted for by workers who reside in the CBSA core. See Office of
Management and Budget (2010) for a complete explanation.

2The iterative algorithm requires the choices of a minimum commuting threshold to combine counties
that are sufficiently connected by commuting ties. As discussed in Duranton (2015), the choice of a threshold
depends on the size of the units to be aggregated as well as the level of economic development and quality of
transportation systems. While a threshold of 10 percent was deemed appropriate for Colombian municipios
(median land area 288 square km), these criteria suggest that higher thresholds seem appropriate for the
United States despite the much larger size of its counties (median land area 1,594 square km). We report
the results of constructing metropolitan areas using a range of commuting thresholds.

3This matching is not one-to-one in all cases. For example, two CBSAs may be merged into a single
polygon based on nightlights. In these cases, we follow Rozenfeld et al. (2011) and select the corresponding
CBSA with the largest population.



Figure 2: Comparing population and land area across US metropolitan area definitions
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area, where the correlations average about 0.8. Given our focus on the pattern of economic
activity in terms of skills and sectoral employment, the alignment of population levels is
more important for our purposes than the alignment of land area.

Our summary of these outcomes is that the US metropolitan-area population distribu-
tion can be well approximated by either of the alternative geographies and the quality of
this approximation is not particularly sensitive to the threshold employed to define the ag-
glomerations. This is our first finding validating our nightlights-based method, albeit in a
developed-economy context. The fact that these methods are not particularly sensitive to
their threshold parameters is encouraging for their application to settings where we cannot
tune those parameters to replicate some (non-existent) official definition.

2.3 Brazilian metropolitan areas

Among the three developing economies that we study, only Brazil makes both commuting
data and nightlight data available, such that we can implement more than one approach
to defining metropolitan areas. We will use this setting to compare our nightlights-based
approach to the results of the approach based on commuting flows in a developing-economy
context. Validating our nightlights-based approach in this setting is important because
commuting-flow data is not available in the Chinese and Indian contexts.

Brazil is partitioned by a hierarchy of increasingly fine geographic units: states (26),
mesoregions (137), microregions (558), and municipios (5565). The states and municipios
are political entities. The mesoregions and microregions are areas defined by the Brazilian
Institute of Geography and Statistics for statistical purposes and do not constitute au-



tonomous political or administrative entities. The IBGE defines microregions according
to shared forms of economic activity but not explicitly on the basis of commuting.? Our
commuting-based and nightlights-based methods will be applied to municipios, the finest
geographic unit available, in order to define metropolitan areas.

Prior research on local labor markets in Brazil has used three different geographic units.
First, a number of papers have used microregions as the unit of analysis.” We will compare
and contrast microregions with our commuting- and nightlights-based metropolitan areas
below in Section 2.6. Second, a few researchers (e.g. Bustos et al. 2016; Cavalcanti et
al. 2016) have used municipios as their spatial unit. This is appropriate for some research
questions, but raises potential problems if the outcomes of interest depend on economic
interactions at a supra-municipio level (e.g. local labor markets linked by commuting).
Third, a less frequent approach has employed definitions of metropolitan areas that the
states themselves have developed.® These are known as Regides metropolitanas. This has
three problems. The first, again, is that agglomerations may cross states border and the
definitions of metropolitan areas do not include these cross-boundary areas. This problem
was officially recognized by federal authorities in 1998 and solved with the introduction of a
new type of metropolitan area that may cross state boundaries. The latter are called Regioes
integradas de desenvolvimento economico or RIDE. The second problem is that the criteria
for inclusion are state-specific. As the following example illustrates, these legal definitions are
subject to the vagaries of the legislative process, so they are not consistent across states nor
time: the southern state of Santa Caterina suppressed five of its six Regioes metropolitanas
in 2007, only to re-create all of them and a few more in 2010. The third problem is that by
definition each Regiao metropolitana and RIDFE must contain at least two municipios. This
results in the exclusion of large agglomerations contained within one municipio. Finally,
most states have used a high population cutoff for inclusion as a metropolitan area, with
the consequence that many agglomerations, including those with populations of nearly half
a million people, are excluded from these data.

Our first approach to building metropolitan areas in Brazil applies the Duranton (2015)
methodology to 2010 Brazilian Census data on commuting flows between municipios.” We
aggregate municipios into endogenously defined metropolitan areas using an iterative process
that depends on our choice of a minimum commuting threshold. In our preferred specifi-
cation, we use a threshold of 10 percent of the local working population.® We work with

4See the criteria employed at http://www.ngb.ibge.gov.br/Default.aspx?pagina=divisao.

5See for instance Kovak (2013); Dix-Carneiro and Kovak (2015); Costa et al. (2016); Chauvin et al. (2016).

6See, for instance, Hoffmann (2003). More generally, any study that relies on data from the Brazilian
statistical agency (IBGE) aggregated by metropolitan area has indirectly used this definition, including
commonly used data such as the National Sample Survey of Households (PNAD) and the Urban Labor
Force Survey (PME).

"These commuting-flow data are not available for earlier years.

8As argued in Duranton (2015), the choice of the minimum commuting threshold depends on the size of
the underlying units to be aggregated as well as the level of development and the quality of transportation
systems. In Colombia, where the median municipio is 288 square km and nominal GDP per capita was
$6,000 in 2015, Duranton’s preferred threshold to aggregate municipios is 10 percent. In Brazil, the larger
size of the median municipio (422 square km) should lead us to choose a lower threshold. However, Brazil’s
higher GDP per capita ($8,600 in 2015) is a factor pushing us in the opposite direction. Hence, we chose to
maintain Duranton’s preferred threshold of 10 percent for Brazil.


http://www.ngb.ibge.gov.br/Default.aspx?pagina=divisao

Figure 3: Comparing population and land area across Brazilian metropolitan area definitions
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metropolitan areas with a minimum population of 100,000.”

Our second approach to building metropolitan areas in Brazil is based on satellite data
characterizing lights at night, as described in Section 2.1. We construct encompassing poly-
gons that depend on the choice of a light intensity threshold. We then assign municipios to
these polygons in order to define metropolitan areas. If a municipio intersects with a single
polygon, it is assigned to the corresponding metropolitan area. If a municipio intersects
multiple polygons, it is assigned to the polygon with which it has the largest overlap.

Our commuting-based and nightlights-based methods produce quite similar metropoli-
tan areas. Taking the 10% commuting threshold as our preferred specification, we compare
metropolitan areas defined by nightlights and alternative commuting thresholds in terms of
the correlation of log population and log land area. As Figure 3 shows, the correlations
for population are very high, exceeding 97%, across all the reported thresholds. That is,
in terms of population, the commuting-based and nightlights-based metropolitan areas with
populations above 100,000 are quite robust to the choice of agglomeration-method parame-
ters. As in the US case, the correlations for land area are weaker but still quite informative,
exceeding 80% for all light-intensity thresholds and 90% for all commuting thresholds. This
is quite sensible, since the municipios included or excluded are those at the boundary of
the metropolitan areas, which typically have lower population densities and larger physical
areas.

The key result of our comparison of Brazilian metropolitan areas constructed on the
basis of commuting and satellite data is their similarity. There is a close correspondence

9With the 10-percent threshold, we obtain 4,807 metropolitan areas with populations ranging from 805
residents to 19 million. 192 of these metropolitan areas have populations greater than 100,000, and they
contain 60% of Brazil’s total population and 68% of its urban population.



between the preferred approach based on commuting data, which we will use as our baseline
definition in our work on Brazil, and the nightlights-based approach that can be applied to all
countries. This correspondence is relatively insensitive to the light-intensity threshold used.
This should give us confidence that when we use satellite data in China and India, where
we do not have commuting data, we will obtain sensible definitions of metropolitan areas.
The weaker relation with physical area is of little consequence for the research questions we
address here, as they do not depend on densities in an important way.

2.4 Chinese metropolitan areas

The basic geographical units in mainland China are provinces (31), prefectures (333, as
of 2013), counties (2853), and townships (40,497). The first three represent geographic
partitions of the country. Townships, roughly speaking, partition the populated geography
of the country, since the only areas excluded from townships have very small populations.
In addition to these geographic units, there are administrative definitions of “cities” that
are used in some distributions of data and thus have been relied upon by researchers. First
is a set of four very large “provincial cities” — Beijing, Shanghai, Chongqing, and Tianjin
— that may spread across multiple counties. Second is a set of “prefecture-level cities,”
which are the administrative capital of the prefecture, typically the largest city there, and
which may include one or more counties. Sometimes these prefecture-level cities will be
listed as a single county in a list of counties; other times, the constituent counties will be
disaggregated. Unfortunately one doesn’t always know which is at work. Additionally, a
distinction is sometimes drawn between urban and rural counties, where the former are
labeled “districts” and only the rural are termed “counties.”

The spatial unit corresponding to “cities” most commonly used in prior research on
Chinese urbanization has been the collection of provincial-level cities and prefecture-level
cities. These offer one huge advantage — namely, administrative cities are often the most
conveniently available data (and in early periods may be the only form available). Yet there
are large downsides. The first is that, because prefectures differ dramatically in population,
the set of provincial- and prefecture-level cities will include some very small prefecture-
level cities and exclude some very large cities that lack the prefecture-level designation.
Second, since counties are a partition of the country, many prefecture-level cities will have
substantial rural areas included, as well as distinct urban areas not necessarily economically
integrated with the prefecture-level city. Third, the prefecture-level cities are necessarily
bounded by the prefecture, whereas economically integrated metropolitan areas need not
be. A particularly problematic example is the pair of prefecture-level cities of Guangzhou
and Foshan. While administratively separate, they are geographically proximate; downtown
Guangzhou to downtown Foshan is only about 18 miles. The two cities share connected
subway lines, and it is not uncommon for people to live in Foshan and work in Guangzhou.

We use nightlights to build Chinese metropolitan areas. While the preferred approach
to defining an economically integrated labor market in economies such as the United States
relies on commuting data, this method cannot be applied to China due to Chinese commuting
data only being available for a quite limited set of areas. Based on our Brazilian results
that showed similar results when applying commuting-based and nightlights-based methods
to a developing economy, we apply the nightlights-based approach to China. We build
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Table 1: Comparing Chinese township- and county-based metropolitan areas, 2000

Correlation with township-nightlight-based
Intensity: 10 Intensity: 30 Intensity: 50

MSA scheme Pop'n Land Pop’n Land Pop'n Land

County-based nightlights intensity 10 0.74 039 062 030 060 0.22
County-based nightlights intensity 20 0.62 022 062 025 068 0.29
County-based nightlights intensity 30 0.58 017 0.65 021 074 0.26
County-based nightlights intensity 40 0.60 006 066 016 074 0.24
County-based nightlights intensity 50 0.64 007 074 011 072 0.21
County-based nightlights intensity 60 0.79 0.12 085 027 078 0.22

Township-based nightlights intensity 10 0.80 059 0.72  0.50
Township-based nightlights intensity 20 0.87  0.75 091 081 082 0.67
Township-based nightlights intensity 30  0.80  0.63 0.92 0.79

Township-based nightlights intensity 40 0.78  0.51  0.95 0.82 097 0.86
Township-based nightlights intensity 50  0.76 ~ 0.50  0.93  0.77
Township-based nightlights intensity 60 0.86 0.66 0.96 0.63 0.96 0.68
NoTES: Each cell reports the correlation coefficient for log population or log land area between the
MSA scheme identified in the row and the MSA scheme identified in the column pairs for China in
2000.

metropolitan areas by aggregating counties or townships. The latter is preferable, because it
addresses the problems of erroneously including economically disconnected areas and rural
areas in the defined metropolitan areas. Unfortunately, township-level data for 2010 are not
yet available for many socioeconomic characteristics of interest.

There are substantial difference between metropolitan areas obtained by aggregating
townships and those obtained by aggregating counties. Table 1 illustrates these difference
in one dimension, reporting the correlations of log population and log land areas across
comparable locations under different metropolitan-area definitions. The metropolitan areas
obtained by aggregating townships are relatively consistent across different choices of the
light intensity threshold. The level of correlation typically exceeds 0.8 for population and
0.6 for land area. In contrast, the correlation between county-based and township-based
metropolitan areas are typically below 0.8 for population and 0.4 for land area. This is
unsurprising, as there are an order of magnitude more townships than counties in China,
and townships cover only populated areas while counties partition the entire landmass. This
strongly favors using township- over county-based metropolitan areas when possible. The
results in Table 1 suggest that metropolitan characteristics should not be strongly sensitive
to the choice of nightlight intensity threshold.
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2.5 Indian metropolitan areas

India is partitioned by a hierarchy of increasingly fine geographic units: states (35), districts
(640), and sub-districts (5564).'° The Census of India designates two types of towns, “statu-
tory towns” defined by their political character and places that are sufficiently populous,
non-agricultural, and dense to be declared “census towns”.!! An “urban agglomeration”
(UA) is one or more physically contiguous towns with at least 20,000 residents. There were
384 UAs in 2001 and 475 UAs in 2011. Urban agglomerations are contiguous areas that may
span district borders, but by definition they do not cross state borders. This results in major
metropolitan areas composed of multiple urban agglomerations. For example, Chandigarh
is a city and union territory that is the capital of the states of Haryana and Punjab that
is part of the “tricity” Chandigarh Capital Region, which has a regional planning board to
coordinate an economically integrated area that spans three states.

Most prior research on urbanization in India has used (the urban population of) districts
as the geographic units of interest. This has two immediate shortcomings. The first is
that the towns within a district need not themselves be contiguous or have strong economic
connections. This is non-trivial since an Indian district is roughly twice the size of a US
county. The second is that there may be strong connections between contiguous urban areas
in different districts that are ignored in this approach. Each of these problems finds a partial
solution in the Indian statistical agencies” definition of “urban agglomerations”.

In this preliminary draft, we consider two different methodologies for defining Indian
metropolitan areas, each imperfect in some respects. The first is to apply our nightlights-
based methodology to the urban populations of subdistricts, the finest spatial unit for which
both a geographic shapefile and socioeconomic characteristics are publicly available. Un-
fortunately, only a limited set of socioeconomic characteristics are reported for subdistricts.
The second is to use administratively defined urban agglomerations and cities, agglomerated
across state borders on the basis of nightlights.!? Socioeconomic characteristics are avail-
able for urban agglomerations’ component census towns of population greater than 100,000.
Going forward, we hope to obtain a shapefile for all census towns and villages, which would
allow us to apply our nightlights-based approach to a geographically fine administrative unit
for which population counts are available.

10Here we use “states” to refer to “states and union territories”. There were 35 states prior to 2014, when
a new state, Telangana, was created, constituted by ten districts formerly in northwestern Andhra Pradesh.
Sub-districts are known by names that vary across states, including mandal, tahsil, taluk, and block. See
“Statement showing the Nomenclature and Number of Sub-Districts in States/UTs”.

Tn 2011, a “census town” was a place with population greater than 5,000 persons, at least 75% of male
laborers working outside agriculture, and population density greater than 400 persons per square kilometer.
See Census of India 2011, Provisional Population Totals, Urban Agglomerations and Cities.

12Ty aggregate UAs and towns across state borders, we visually inspect the polygons of each to detect
whether it belongs to contiguous urban areas spanning state boundaries. This procedure led us to merge
the following UA and towns: the National Capital Territory of Delhi, seven UAs and towns in Haryana,
and 8 towns in Uttar Pradesh were merged to form Greater Delhi; the towns of Chandigarh (Chandigarh),
Mohali (Punjab), Panchkula (Haryana) were merged to form Chandigarh Tricity. Our approach to merge
the constituent UA and Towns of Greater Delhi into a single spatial unit is consistent with the method in
http://www.prb.org/Publications/Articles/2007 /delhi.aspx. As mentioned in the text, Chandigarh Tricity
is a single urban area that spans three states.

12


http://www.censusindia.gov.in/Tables_Published/Admin_Units/Admin_links/subdistrict_nomeclature.html
http://censusindia.gov.in/2011-prov-results/paper2/data_files/India2/1.%20Data%20Highlight.pdf
http://www.prb.org/Publications/Articles/2007/delhi.aspx

Figure 4: Brazilian microregions and commuting-based metropolitan areas

3 — -
i

) S .
N 2&/)
P A
v 4
"\
) by

o
/,\:
R

NoTES: This figure depicts northeastern Brazil, including the states of Rio Grande de
Notre and Pernambuco. Commuting-based metropolitan areas (population >
100,000) are color-coded. Microregion boundaries are represented by dashed lines.
Metropolitan areas defined by commuting ties between municipios, using Duranton
(2015) algorithm with 10% threshold.

2.6 Comparison with administrative units

Prior work on urbanization in Brazil, China, and India has typically relied upon admin-
istrative units, such as microregions in Brazil and prefecture-level cities in China, that do
not necessarily coincide with economically integrated metropolitan areas. In this section, we
compare our definitions of metropolitan areas to the geographic units employed in previous
research.

For Brazil, comparing our commuting-based metropolitan areas to the microregions used
in prior research reveals substantial discrepancies. As it turns out, microregions may be
defined too narrowly or too broadly for such purposes. The former occurs frequently when
agglomerations cross state boundaries, since microregions are defined to be strict subsets
within a single state. The latter occurs when there are multiple small agglomerations of sim-
ilar economic activity grouped into a single microregion even though these components are
not significantly integrated by commuting. For example, Figure 4 shows all the commuting-
based metropolitan areas (color-coded) with a population above 100,000 in northeastern
Brazil and microregion boundaries (dashed). We can spot several metropolitan areas that
cross microregion boundaries, as well as one microregion that contains two distinct metropoli-
tan areas. Moreover, we can see that most microregions containing an metropolitan area
also encompass large areas that are not integrated to the metropolitan area by commuting
ties. This mismatch between microregion boundaries and commuting-based metropolitan
areas occurs in other areas of Brazil as well. 44 of the 192 metropolitan areas with popula-
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Figure 5: City-size distributions with administrative units, 2010 (Chauvin et al 2016)
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NoOTES: These two panels are the lower half of Figure 2 in Chauvin et al. (2016).

tion greater than 100,000, containing 59% of the population of such locations, span multiple
microregions. 34 of the 208 microregions containing municipios that are part of a metropoli-
tan area with population greater than 100,000 contain municipios assigned more than one
metropolitan area. Insofar as we think the economic integration implied by commuting
should inform definitions of metropolitan areas, this casts doubt on interpreting microre-
gions as metropolitan areas or local labor markets.

Given the close correspondence between our commuting-based and nightlights-based
metropolitan areas for Brazil, the contrasts between our nightlights-based metropolitan areas
and microregions are similar.

Prior work on China has used prefecture-level cities, the administrative capitals described
in Section 2.4. Notably, Chauvin et al. (2016) find that the Chinese city-size distribution is
poorly described by Zipf’s law when using prefecture-level cities. The left panel of Figure
5, taken from their work, shows a rank-size relationship that is more log-quadratic than
log-linear. They describe this results as finding that “China has fewer ultra-large cities than
the U.S. city size distribution would predict” and suggest a number of possible explanations.
These include that China’s city-size distribution may be far from steady state, may be sig-
nificantly distorted by urban planning, may be shaped by disamenities unique to extreme
population sizes over 20 million, or that “China and India may be better seen as continents
rather than standard countries”. Another potential explanation is that the finding is sim-
ply a statistical artifact of the geographic units used to characterize the Chinese city-size
distribution.

There are considerable differences between Chinese administrative cities and the metropoli-
tan areas we define based on nights at light. While there are a few hundred administrative
cities, our aggregations of townships yield twice as many or more metropolitan areas with
population greater than 100,000. In addition, the metropolitan areas that correspond to
locations for which prefecture-level cities are defined differ meaningfully in terms of their
populations and land coverage. Figure 6 reports the correlation of log population and log
land area between metropolitan areas defined at various nightlight-intensity threshold and
their prefecture-level-city counterparts. The correlation for log population never exceeds
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Figure 6: Comparing nightlights-based metropolitan areas to prefecture-level cities, 2000
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Figure 7: China’s city-size distribution with nightlights-based units, 2000 and 2010
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NoTES: Sample is Chinese metropolitan areas with population greater than
100,000. Metropolitan areas defined by aggregating townships in areas of
contiguous nightlights with intensity greater than 30. Left panel depicts
2000; right panel 2010.

0.8, and the correlation for log land area is always below 0.4. Given these contrasts, using
different geographic units may yield very different conclusions about the spatial distribution
of economic activity in China.

When measured using nightlights-based metropolitan areas, China’s city-size distribution
is well described by a power law, and this fit is not very sensitive to the light intensity thresh-
old used to construct the metropolitan areas. Figure 7 depicts China’s city-size distribution
for a light intensity threshold of 30. While the slope coefficient is statistically distinct from
the value of -1.0 that defines Zipf’s law, the rank-size relationship fits a log-linear power-law
specification quite well, with an R? of more than 99%. Table 2 shows that this result is
relatively invariant to the choice of light intensity threshold. For threshold values from 10 to
50, the log-linear specification yields an R? of 98% of higher. The log-quadratic shape found
by Chauvin et al. (2016) seems primarily due to their choice of geographic unit.
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Table 2: China’s city-size distribution with nightlights-based units, 2000 and 2010
2000 2010

MSA scheme Zipf 3 Zipft R? N  Zipf 3 Zipf R®* N

Nightlight intensity 60 -.856 .93 132 -978 .98 418
Nightlight intensity 50 -1.082  .988 380 -1.079  .994 852
Nightlight intensity 40 -1.15  .994 591 -1.162  .997 1135
Nightlight intensity 30 -1.205 997 800 -1.184  .998 1273
Nightlight intensity 20 -1.21 996 959 -1.159  .998 1334
Nightlight intensity 10 -1.183 997 1151 -1.048  .995 1166

Table 3: India’s city-size distribution, subdistrict-nightlights-based metropolitan areas
2001 2011

MSA scheme Zipf B Zipf R* N Zipf 8 Zipf R®*> N

Nightlight intensity 60 -.985 938 143 -1.025 961 250
Nightlight intensity 50 -1.081 984 309 -1.099 987 441
Nightlight intensity 40 -1.135 993 378 -1.121 991 491
Nightlight intensity 30 -1.155 994 419 -1.125 992 506
Nightlight intensity 20 -1.154 994 436 -1.063 992 472
Nightlight intensity 10 -1.045 992 365 -.947 996 315

Chauvin et al. (2016) suggest that China has a shortage of “ultra-large cities” relative
to a power-law distribution, but their use of administrative units plays an important role
in this result. The largest metropolitan area produced by our nightlights-based procedure
corresponds to the Pearl River Delta, the largest urban area in the world (World Bank
Group, 2015, p.21). The Pearl River Delta is an administratively fragmented urban area
spanning Dongguan, Foshan, Guangzhou, and Shenzhen that has no dominant central city
but rather “several original centers that over time merge across boundaries” (World Bank
Group, 2015, p.36). This multi-jursidictional urban area, which by its nature does not appear
in prefecture-level city data, had about 42 million residents in 2010, and “is a unique kind
of settlement in its immense scale as well as its form” (World Bank Group, 2015, p.75).

As in China, the Indian city-size distribution looks different when we use metropolitan
areas rather than administrative units. The distribution in Figure 5 depicting the urban
populations of Indian districts exhibits curvature, suggesting a log-quadratic rather than
log-linear relationship between population size and population rank. Figure 8 depicts this
relationship using urban agglomerations as the geographic units. This distribution is much
closer to the expected power-law relationship, with the log-linear specification yielding an
R? greater than 99% in both 2001 and 2011. Aggregating subdistricts’ urban populations
to define metropolitan areas based on nightlights yields similar results, in the sense that the
city-size distribution is well characterized by a power-law relationship with a very high R2.
As shown in Table 3, this result is quite stable across a broad range of nightlight intensity
thresholds used to define the metropolitan areas.
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Figure 8: India’s city-size distribution, urban agglomerations, 2001 and 2011
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In all three developing economics we examine, there are substantial differences between
the administrative units typically employed in prior research and the metropolitan areas
that we construct on the basis of contiguous lights at night. In Brazil, we find that our
nightlights-based method produces metropolitan areas quite similar to those produced by
a commuting-flow-based algorithm. For both China and India, the power-law relationship
that characterizes developed economies’ city-size distribution fits considerably better when
we use our nightlights-based methodology to build metropolitan areas. Having built these
metropolitan areas, we now turn to examining the distribution of skills and sectors across
these metropolitan areas.

3 Empirical approach

Davis and Dingel (2014) introduce a general-equilibrium, spatial-equilibrium theory in which
the comparative advantage of cities is jointly governed by the comparative advantage of
individuals and their locational choices. The model has a few key ingredients. First, locations
within cities exhibit heterogeneity in their desirability. Agglomeration causes larger cities to
have higher TFP, which makes a location within a larger city more attractive than a location
of the same innate desirability within a smaller city. Second, there is a complementarity
between individual income and locational attractiveness, so more skilled individuals are more
willing to pay for more attractive locations and occupy these locations in equilibrium. Third,
comparative advantage causes more skilled individuals to work in more skill-intensive sectors.
Under modest assumptions about the primitive distribution of locational desirability within
each city, Davis and Dingel (2014) obtain the prediction that larger cities are skill-abundant
and specialize in skill-intensive economic activities, in that the skill and sectoral employment
distributions exhibit monotone likelihood ratio dominance when ordered by city size. Under
slightly stronger assumptions, larger cities will be absolutely larger in all sectors. These
predictions distinguish the theory from prior theories in which cities are either completely
specialized “industry towns” or perfectly diversified hosts of all economic activities.

Davis and Dingel (2014) introduce two means of taking these predictions to the data.
First, linear regressions of each skill or sector’s log employment in a city on that city’s log
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population yields “population elasticities”. The theory predicts the order of these population
elasticities, and its absolute-size prediction says that all these elasticities are positive. Second,
non-parametric pairwise comparisons of relative employment levels of any two skills and any
two cities are predicted by the theory: the more skilled group (or more skill-intensive sector)
should be relatively larger in the more populous city. Both of these methods shows that the
theory is an apt description of the pattern of specialization across US metropolitan areas in
2000.

Our aim in this section is twofold. First, we summarize the empirical methods that will
be used to assess these predictions for Brazil, China, and India. Second, we describe the data
on skills and sectoral employment for each country that employ to implement the empirical
approach.

3.1 Methods

Let f (v,c) denote the number of individuals in city ¢ of skill v or employed in sector v. If
we order v and c¢ such that v is increasing in skill level or skill intensity and c¢ is increasing
with city population size, the prediction of Davis and Dingel (2014) is that f(v,c) is a
log-supermodular function. If f (v, ¢) is log-supermodular, then

1. a linear regression In f(v,¢) = oy, + 5, In L(c) + €, in which o, are fixed effects and
L(c) is city population yields 5, > f,, <= v > 1/;

2. if C and C’ are distinct sets and C is greater than C’' (inf.cc L(c) > supyeer L(¢')) and
ne (ner) is the number of elements in C (C'),

n—chlnf(y,c) + nic/ Z Inf(v/,c) > n—chlnf(l/,c) + nicx Zlnf(l/,c') Vv > V.

ceC ceC’ ceC ceC’

Davis and Dingel (2014) refer to the first implication as a “population elasticity” comparison
and the second implication as a “pairwise comparison”. Standard econometric tests are
available to assess whether estimated population elasticities exhibit the property that v >
V' = B, > B,. To summarize the pairwise comparisons, Davis and Dingel (2014) report
the fraction of pairwise inequalities matching the predicted sign, weighted by the product
of the two cities’ difference in log population and two sectors’ difference in skill intensity,
and compare this observed success rate to the null hypothesis that skills and sectors are
uniformly distributed across cities.'® These two empirical tests are not independent, since
they are both implied by log-supermodularity. Success of one comparison implies success of
the other, to the extent that the first-order approximations of In f(v, ¢) fit the data well.

Implementing these empirical comparisons requires suitable observations of f (v, ¢). This
involves defining metropolitan areas {c} and skill groups and sectors {r}in such a manner
that publicly available data from Brazil, China, and India provide comprehensive coverage.
The next subsection describes the data we employ in each country.

3Davis and Dingel (2014) show that, in the presence of additive random errors to In f(v, ¢), the likelihood
of a successful pairwise comparison increases with the difference in population size, the difference in skill
(intensity), and the number of cities assigned to each bin.
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3.2 Data

For Brazil, we use 2010 Census microdata. These microdata describe anonymized individ-
uals in terms of many characteristics. In addition to the commuting information that we
use to construct metropolitan areas, we use the individual-level information on age, level of
education, industry, occupation, and municipio. We construct population counts for educa-
tional categories and employment counts for industries and occupations for the metropolitan
areas defined in Section 2.3 by aggregating individual observations (with appropriate sam-
pling weights). We construct industries’ and occupations’ skill intensities by computing the
average years of schooling of those individual employed in them.

For China, we use 2000 Census data, since China has not yet made 2010 Census data
available at the level of townships. There are township-level tabulations that enumerate a
townships’ population in terms of educational level, industrial employment, and occupational
employment. We construct these population counts for the metropolitan areas described in
Section 2.4 by summing over the constituent townships. To obtain industries’ and occupa-
tions’ skill intensities, we use 2000 Census microdata that describe anonymized individuals in
terms of many characteristics but only identify their geographic location at the level of pre-
fecture. We construct industries’ and occupations’ skill intensities by computing the average
years of schooling of those individual employed in them.

For India, we use 2001 Census data, since India has not yet released 2011 Census data
describing industrial and occupational employment in geographic detail. There are town-
level tabulations that describe a town’s main workers in terms of educational level, industrial
categories, and occupational classification. We construct these population counts for the
metropolitan areas described in Section 2.5 by summing over the constituent towns. To
obtain industries’ and occupations’ skill intensities, we compute the average years of schooling
of those individual employed in them, controlling for state fixed effects.

4 Skill distributions

In each country, we characterize the distribution of skill using four categories of educational
attainment of (very) roughly equal size. Where possible, we report population elasticities
for a variety of metropolitan-area definitions to assess the robustness of our results.

4.1 Brazil: Population elasticities

For Brazil, the four educational categories are “no schooling”, “high school dropout”, “college
dropout”, and “college graduate”. These four categories are unavoidably unequal in size due
to the very large fraction of the population that has no schooling. As reported in Table 4,
about half of Brazil’s population has no schooling. This number falls to 40% when we restrict
attention to metropolitan areas with at least 100,000 residents. The contrast between the
two columns in Table 4 already suggests that metropolitan areas are more skilled, as the
difference between the two columns is increasing in educational attainment. Our population
elasticity regressions will, effectively, examine variation in population shares within the latter
column across metropolitan areas of different sizes.

19



Table 4: Brazil: Population shares for educational categories, 2010

Brazil All  Metro
No schooling 49 .40
High School Dropout .15 .16
College Dropout 25 .29
College Graduate A1 15

Table 5: Brazil: Population elasticities for educational categories, 2010

Commuting Nightlights Microregions
Threshold 05 10 15 25 10 30 50 NA
No schooling 0.912 0.919 0.921 0914  0.929 0916 0.912 0.858
x log population  (0.00942) (0.00963) (0.00975) (0.0104) (0.0109) (0.0110) (0.0113) (0.00896)
High School Dropout  1.041 1.035 1.033 1.027  1.044 1.033 1.025 1.115
x log population (0.0104)  (0.0105)  (0.0105)  (0.0110) (0.0121) (0.0110) (0.0108) (0.0132)
College Dropout 1.102 1.086 1.087 1.086 1.091 1.096 1.095 1.217
x log population (0.0123)  (0.0118)  (0.0122)  (0.0129) (0.0136) (0.0133) (0.0134) (0.0159)
College Graduate 1.178 1.159 1.168 1.179 1.155 1.173 1.174 1.302
x log population (0.0236)  (0.0233)  (0.0247)  (0.0263) (0.0270) (0.0258) (0.0257) (0.0273)
Observations 816 768 768 880 620 676 724 1,672
Geographic units 204 192 192 220 155 169 181 418

NoTEs: Sample is geographic units with population greater than 100,000.

Table 5 reports population elasticities for these four skill groups for eight different defini-
tions of metropolitan areas. The first four columns use commuting-based metropolitan areas,
the next three use nightlights-based metropolitan areas, and the final column reports results
for microregions, the geographic unit commonly employed in prior studies of Brazil. A few
patterns are immediately evident. First, within any column, the order of the population
elasticities conforms to the prediction of the model in Davis and Dingel (2014): more skilled
groups exhibit higher population elasticities. Comparing across the commuting-based and
nightlights-based columns, the estimated elasticities are quite stable. As suggested by the
comparisons in Figure 3, the patterns of economic activity are not sensitive to the thresh-
old employed in defining the metropolitan areas and the two different methodologies yield
metropolitan areas that exhibit similar patterns. The results for microregions exhibit notable
contrast to the first seven columns. These population elasticities are also increasing in skill
level, but that variation is considerably larger in magnitude. These values suggest consid-
erably larger difference in skill composition across microregions of different population sizes
than across economically integrated metropolitan areas of different sizes. Thus, conclusions
about the spatial distribution of skills are sensitive to whether and how we aggregate spatial
units.

Figure 9 relaxes the first-order approximation employed in Table 5 by plotting a local
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Figure 9: Brazil: Non-parametric population elasticities for educational categories, 2010
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NoTESs: Each series plots a local mean smoother using an Epanechnikov kernel.
Metropolitan areas defined by commuting ties between municipios, using Duranton
(2015) algorithm with 10% threshold.

mean smoother. The population level for each skill group is demeaned, so as to facilitate
comparisons across metropolitan areas of different sizes. Plotting each series for commuting-
based metropolitan areas with a 10% commuting threshold amounts to a non-parametric
version of the log-linear regression slope coefficients reported in the second column of Table
5. The slope at each point of the series is the “local population elasticity”. For almost all
of the variation, the log-linear approximation fits the data very well. Only at the extreme
of the city-size distribution, where there are only two metropolitan areas with population
greater than 5 million and thus the local smoother amounts to little more than a data
point, does the local smoother deviate considerably from the log-liner approximation. Thus,
the first-order approximation appears to be an apt summary of the relationship between
metropolitan population size and skill composition in Brazil, as Davis and Dingel (2014)
found for US metropolitan areas.

In sum, we find that in Brazil larger cities are skill-abundant when employing a high-
dimensional notion of skill.

4.2 China: Population elasticities

We compute population elasticities for educational categories in China for the year 2000.
While year-2010 township-level population counts are available, year-2010 data describing
educational attainment and sectoral employment counts is only available at the county level.
As we show below, characterizations of the spatial distribution of skills are sensitive to
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Table 6: China: Population shares for educational categories, 2000

China All  Metro
Primary school or less .48 .30
Middle school 37 .38
High school 12 22

College or university .04 .10

whether we use metropolitan areas based on aggregating townships or counties.

For China, the four educational categories are “primary school or less”, “middle school”,
“high school”, and “college or university”. These four categories are unavoidably unequal in
size due to the fact that, at the most granular level reported, the primary-school and middle-
school categories have the two largest population shares and jointly account for about two-
thirds of the metropolitan population, as shown in Table 6. More detail is available for the
“college or university” educational levels, but this skill group represents only 4% of China’s
total population.'*

Table 7 reports population elasticities for these four skill groups for four different defi-
nitions of metropolitan areas. The first three columns use metropolitan areas obtained by
aggregating townships on the basis of nightlights, while the fourth column aggregates coun-
ties. Using the township-based metropolitan areas, we find that more skilled groups exhibit
higher population elasticities. The estimated elasticities are not particularly sensitive to the
nightlight intensity threshold employed to define the metropolitan areas. The differences in
population elasticities across skill groups are comparable to those found for Brazil, though
this comparison should be tempered by the fact that the educational categories defining the
four skill groups are not necessarily comparable across countries.

The population elasticities estimated when employing county-based metropolitan areas
differ considerably. First, the elasticities vary much less, as the elasticities for the least-
and most-skilled groups are both closer to one. Second, the population elasticities are no
longer monotonically increasing in educational attainment: the junior middle school and
senior middle school are not statistically distinguishable (and the point estimates are in the
“wrong” order). By grouping together both urban and rural areas and possibly grouping
together distinct metropolitan areas of different sizes, the county-based metropolitan areas
would lead us to substantially understate spatial variation in skill distributions. Since at
the moment educational attainment data for 2010 is only available at the county level, we
cannot yet reliably characterize spatial variation in skill distributions using the 2010 Census
data.

In sum, we find that in China larger cities are skill-abundant when employing a high-
dimensional notion of skill. These results are sensitive to the precision of the spatial units
used to define metropolitan areas and their characteristics. We find larger differences in
population elasticities when building metropolitan areas from more precise geographic units.

14While average educational attainment is increasingly rapidly in China, the largest shift from 2000 to
2010 is from primary school to middle school, so the population shares are also quite unequal in size in the
2010 data.
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Table 7: China: Population elasticities for educational categories, 2000

Township-based County-based
Nightlight intensity threshold: 10 30 50 30
Primary school or less 0.911 0.900 0.907 0.968
x log population (0.00765)  (0.00880)  (0.0104) (0.0121)
Middle school 1.003 0.985 0.973 1.018
x log population (0.00469)  (0.00591)  (0.00889) (0.00696)
High school 1.129 1.092 1.069 0.995
x log population (0.0123)  (0.0123)  (0.0135) (0.0206)
College or university 1.361 1.320 1.308 1.093
x log population (0.0246)  (0.0266)  (0.0321) (0.0389)
Observations 4,604 3,200 1,520 4,572
Number of geographic units 1151 800 380 1143

NoTES: Sample is geographic units with population greater than 100,000. DATA
SOURCES: Census of Population

Table 8: India: Population shares for educational categories, 2001

India All  Metro
No education 43 22
Primary .26 22
Secondary 24 .36

College graduate .08 21

4.3 India: Population elasticities

For India, the four educational categories are “illiterate”, “primary”, “secondary”, and “col-
lege graduate”. These four populations are of roughly equal size, at least when we restrict
attention to urban agglomerations and towns with more than 100,000 residents, as shown in
Table 8.

In the present draft, we face some data limitations imposed by the Census of India data
describing educational attainment. Educational attainment data are not available at the sub-
district level, so we cannot use the metropolitan areas that were produced by aggregating
sub-districts on the basis of nightlights. We therefore use the definition of metropolitan
areas that is the union of urban agglomerations (aggregated across state borders on the
basis of nightlights) and census towns of sufficient population size. The data source that we
employ describes educational attainment for constituent components of these metropolitan
areas when they are of sufficient population size. We therefore report results for samples
that differ in the degree to which we require that the constituent components account for
the total population of the metropolitan area.
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Table 9: India: Population elasticities for educational categories, 2001

Inclusion threshold
None 0.8 0.95

No education 0.962 0983 0974
X log population (0.0264)  (0.0177)  (0.0267)
Primary 0.975 0.989 1.006
X log population (0.0218)  (0.0200)  (0.0286)
Secondary 1.017 1.037 1.052
X log population (0.0174)  (0.0149) (0.0217)
College graduate 1.029 1.064 1.070
X log population (0.0216)  (0.0178)  (0.0284)
Observations 1,320 1,160 820

Number of geographic units 330 290 205

NoTES: Sample is the union of urban agglomerations and census
towns with population greater than 100,000. Across columns,
there is variation in the inclusion threshold, which is the fraction
of the urban agglomerations’ population for which educational
attainment data on constituent components is available.

Table 9 reports population elasticities for the four skill groups for three different defini-
tions of metropolitan areas. The first column includes all metropolitan areas regardless of
the fraction of their population covered in the educational-attainment data, while the sec-
ond and third columns impose minima of 80% and 95%, respectively. In all three columns,
skill groups’ population elasticities are increasing in the level of educational attainment.
The range of variation between the least- and most-skilled groups’ population elasticities is
greater when we restrict the sample to observations with better coverage.

As in the cases of Brazil and China, India’s metropolitan areas that are more populous
are more skill-abundant. This finding is robust across various samples that we consider in
order to address limitations of the underlying data sources.

4.4 Pairwise comparisons

We now characterize the spatial distribution of skills in the three economies by means of the
pairwise comparisons procedure introduced in Section 3.1. In the interest of brevity, we only
report results for one definition of metropolitan areas for each economy. Table 10 reports the
success rates for these comparisons. In all three economies, the success rate is higher when we
use a smaller number of bins or weighted the comparisons by population differences. Thus,
the central tendency of the data are consistent with the patterns exhibited by the estimated
population elasticities. More populous metropolitan areas are more skill-abundant, in a
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Table 10: Pairwise comparisons for educational categories

Brazil (2010) China (2000) India (2001)

Bins Pairings Success rates Bins Pairings Success rates Bins Pairings Success rates
2 6 1.00 1.00 2 6 1.00 1.00 2 6 1.00 1.00
8 168 0.91 0.98 5 60 0.87 0.88 5 60 0.77 0.84
16 720 0.82  0.95 10 270 0.81 0.82 11 330 0.65 0.76
64 12096 0.72  0.88 50 7350 0.73  0.79 33 3168 0.8  0.63

96 27360 0.68 0.83 150 67050 0.67  0.69 110 35970 0.3 0.57
192 110016 0.63  0.77 800 1917600 0.59  0.60 330 323736 0.52 0.54

Weighted V V vV

NOTES: Samples are geographic units with population greater than 100,000: 192 Brazilian metropolitan
areas defined by commuting with 10% threshold, 800 Chinese metropolitan areas defined by nightlights
with 30 intensity threshold, and 330 Indian urban agglomerations and census towns for which edu-
cational attainment data are available. Weighted success rates are comparison outcomes weighted by
the product of the difference in log population sizes and product of educational category’s population
shares.

high-dimensional sense as captured by four educational-attainment categories.

If we are willing to assume that the comparison of any two educational categories is
equally informative across the three economies, we can also compare the success rates across
countries to gauge the degree to which larger cities are more skill abundant. While these
comparisons are also complicated by the fact that the number of metropolitan areas with
population greater than 100,000 differs significantly across Brazil, China, and India, the
general pattern is that Brazil's pairwise-comparison success rates are higher than China’s,
which are higher than India’s. Thus, broadly speaking, the distribution of skills that most
closely matches the theoretical predictions and US empirical patterns in Davis and Dingel
(2014) is that of Brazil, followed by China and then India. This is similar to the finding of
Chauvin et al. (2016), who conclude that, in terms of a variety of spatial patterns, Brazil
is more like the US than China, which is more like the US than India. In terms of the
spatial distribution of skills, however, we find that all three economies’ populations are well
described by the stylized fact that larger cities are skill-abundant.

In sum, using two different empirical methods to assess the degree to which the population
distribution is log-supermodular in skill and metropolitan population, we find broad evidence
that larger cities are skill-abundant in Brazil, China, and India. These findings are, in some
cases, sensitive to using metropolitan areas defined by contiguity of nightlights rather than
administrative or political boundaries. Relative to prior work characterizing the spatial
distribution of human capital in terms of two skill groups, we show that larger cities are
skill-abundant in a high-dimensional sense.

5 Sectoral distributions

In the theory of Davis and Dingel (2014), larger cities are relatively more skilled, cities’
equilibrium productivity differences are Hicks-neutral, and sectors can be ordered by their
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Figure 10: Brazil: Occupational employment population elasticities, 2010
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ment is estimated by linear regression. Skill intensity is the average years of schooling of
persons employed in that occupational category. Bubble sizes are proportionate to the oc-
cupational category’s share of employment. Metropolitan areas defined by commuting ties
between municipios, using Duranton (2015) algorithm with 10% threshold.

skill intensity, so larger cities employ relatively more labor in skill-intensive sectors. The
results of Section 4 show that larger cities are relatively more skilled in Brazil, China, and
India. We now examine whether larger cities are relatively specialized in skill-intensive
sectors, using employment levels in both occupations and industries.

In this preliminary draft, we restrict attention to Brazil.

5.1 Brazil: Population elasticities

To characterize the spatial distribution of occupational and industrial employment across
Brazilian metropolitan areas, we plot each sector’s estimated population elasticity against
its skill intensity, measured as the average years of schooling of individuals employed in that
sector. Each sector’s bubble size is proportionate to its employment share.

Figure 10 depicts the results of using 10 occupational categories to define sectors. In the
left panel, the very low population elasticity of agricultural employment masks the rest of
the variation depicted, so the right panel omits agriculture and depicts the line of best fit.
The model of Davis and Dingel (2014) predicts that the population elasticity of occupational
employment should rise with skill intensity and indeed we see a clear positive relationship
in Figure 10.

Figure 11 depicts the results of using 22 industrial categories to define sectors. Again,
we omit agriculture from the right panel in order to better depict the remaining variation
across industries. Industrial population elasticities are increasing with skill intensity in
general. The most notable outliers from the central tendency of the data are education
(high skilled, low elasticity) and administrative services (low skilled, high elasticity). The
fact that the population elasticity of education is quite close to one despite its employment
of highly educated individuals may reflect the fact that educational services are typically
non-traded. The low skill intensity associated with administrative services as an industry
contrasts with the higher average years of schooling associated with administrative services
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Figure 11: Brazil: Industrial employment population elasticities, 2010
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as an occupation.

For both occupations and industries, the estimated population elasticities reveal a broad
tendency for more populous metropolitan areas to employ relatively more individuals in
skill-intensive sectors.

6 Conclusion

[incomplete]
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A Defining metropolitan areas

A.1 Building metropolitan areas from satellite data

This section provides a few more details of the procedure described in Section 2.1 of the
main text.

We extract contour lines for selected light-intensity values from the nightlights raster
layer and convert those contour lines into polygons. Occasionally this procedure creates
polygons-within-polygons, which can lead to erroneous assignments in subsequent steps.
This happens, for instance, when the nightlights reveal a sufficiently large (dark) park or
lake entirely surrounded by a metropolitan area. We obtain contiguous areas by dissolving
these smaller polygons with the larger ones that entirely contain them.

To obtain the intersection of these contiguous area with spatial units for which socioeco-
nomic data is available, we perform a spatial merge. This yields a many-to-one assignment
of spatial units to metropolitan areas.

A.2 Building metropolitan areas from commuting data

This section briefly describes the iterative algorithm introduced by Duranton (2015) to define
metropolitan areas on the basis of commuting flows between smaller geographic units, call
them “microunits”, which are in the US case and municipios in the Brazilian case. Using the
algorithm requires the choice of a minimum commuting threshold. We initialize the algo-
rithm by aggregating the two microunits with the largest commuting tie. At each successive
iteration of the algorithm, we recompute the commuting flow between any microunit that is
not already assigned to a metropolitan area and each metropolitan area. We recursively ag-
gregate microunits to the metropolitan area with which they share the strongest commuting
tie that exceeds the minimum commuting threshold. The algorithm stops when there are no
more microunits to be aggregated.

B Data description

B.1 Satellite image data

Nightlights raster data is available from NOAA’s Earth Observation Group. We use obser-
vations from the Version 4 DMSP-OLS Nighttime Lights Time Series for the years 2000 and
2010, F152000 and F182010, from the “average visible, stable lights” series.!

B.2 Brazil
B.2.1 Geography

To construct metropolitan areas based on commuting flows, we use anonymized individual-
level microdata from the 2010 Census to construct a commuting flows matrix between origin

15Filenames of the form: F17YYYY v4b_stable lights.avg vis.tif
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https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html

municipio and destination municipio. We then select a commuting share threshold and
implement the Duranton (2015) algorithm to construct metropolitan areas.

To construct metropolitan areas based on nightlights, we use the nightlights raster data
described above and shapefiles for Brazilian municipios.

B.2.2 Skills and Sectors

Anonymized individual-level microdata from the 2010 Census is available from the Instituto
Brasileiro de Geografia e Estatistica (IBGE) website. ~ We aggregate these observations,
using the individual sampling weights, to produce municipio-level counts of the population
older than 25 by educational attainment, industry, and occupation. We use these same
observations to compute average years of schooling by industry and occupation.

B.3 China
B.3.1 Geography

We build both county-based and township-based metropolitan areas for the years 2000 and
2010. County- and township-level shapefiles are available via the China Data Center at
the University of Michigan. To implement our nightlights-based methodology, we use the
nightlights raster data for 2000 and 2010 described above and apply light-intensity thresholds
ranging from 10 to 60 in increments of 10.

B.3.2 Skills and Sectors

Data on township-level and county-level employment by educational level, industrial cat-
egorial, and occupational classification come from the 2000 and 2010 Population Census.
Townships are considerably smaller than counties and therefore preferable where available.
Population counts for both counties and townships are available for both 2000 and 2010.
However, for the 2010 Census data, many socioeconomic characteristics, such as educational
attainment, are thus far only available at the level of counties. Data on workers’ educational
attainment by industry and occupation comes from the 2000 Population Census and the
2010 China Family Panel Studies.

B.4 India
B.4.1 Geography

In this preliminary draft, we define India metropolitan areas using two imperfect methods,
due to the absence of a shapefile for India’s towns and villages, which we have yet to acquire.
First, we use subdistricts, for which a shapefile is available, and aggregate these subdistricts
using our nightlights-based methodology. Second, we use urban agglomerations defined by
the Census of India. The assignments of census towns to urban agglomerations is available
from the Census of India’s website.
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B.4.2 Skills and Sectors

Tables from the 2001 Census and 2011 Census are available via the Government of India’s
website. Data on town-level employment by educational level, industrial categorial, and
occupational classification come from Tables B-9, B-4, and B-24, respectively. These are
“Main Workers by Educational Level, Age and Sex”, “Main Workers Classified by Age,
Industrial Category and Sex”, and “Occupational Classification of Main Workers in Non-
Households Industry, Trade, Business, Profession or Service by Class of Worker and Sex”,
respectively. Data on workers’ educational attainment by industry and occupation comes
from Tables B-7 and B-27 of the 2001 Census, “Main Workers Classified By Industrial
Category, Educational Level and Sex” and “Occupational Classification of Main Workers and
Marginal Workers other than Cultivators and Agricultural Labourers by Sex and Educational
Level”. We restrict attention to individuals between the ages of 25 and 59.
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