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Abstract: This work introduces a theoretical foundation for a procedure
called ‘testing-based forward model selection’ in regression problems. For-
ward selection is a general term referring to a model selection procedure
which inductively selects covariates that add predictive power into a work-
ing statistical model. This paper considers the use of testing procedures,
derived from traditional statistical hypothesis testing, as a criterion for
deciding which covariate to include next and when to stop including co-
variates. Probabilistic bounds for prediction error and number of selected
covariates are proved for the proposed procedure. The general result is
illustrated by an example with heteroskedastic data where Huber-Eicker-
White standard errors are used to construct tests. The performance of the
testing-based forward model selection is compared to Lasso and Post-Lasso
in simulation studies. Finally, the use of testing-based forward selection
is illustrated with an application to estimating the effects of institution
quality on aggregate economic output.

MSC 2010 subject classifications: 62J05, 62J07, 62L12.
Keywords and phrases: model selection, forward regression, sparsity,
hypothesis testing.

1. Introduction

This paper considers model selection using an algorithm called Testing-Based
Forward Selection. In general, forward selection algorithms are model selection
procedures that inductively select covariates which substantially increase predic-
tive accuracy into a working statistical model until a stopping criterion is met.
A leading example is in the linear regression model, where forward selection
steps choose the variable that gives the highest increase of in-sample R-squared
above the previous working model.

In practice, deciding which covariate gives the best additional predictive
power is complicated by the fact that outcomes are observed with noise or
are partly idiosyncratic. For example, in linear regression, a variable associated
to a positive increment of in-sample R-squared upon inclusion may not add
any predictive power out-of-sample. Statistical hypothesis tests offer one way
to determine whether a variable of interest is likely to improve out-of-sample
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nar für Statistik Research Seminar, Attendants at the Center for Law and Economics Internal
Seminar, as well as financial support of the ETH Fellowship program

1

mailto:damian.kozbur@gess.ethz.ch.


Damian Kozbur/Testing-Based Forward Model Selection 2

predictions. Furthermore, in many econometric and statistical applications, the
classical assumption of independent and identically distributed data is not al-
ways appropriate. One example of this is the presence of heteroskedastic dis-
turbances. In such settings, higher R-squared resulting from inclusion of one
variable relative to another need not be a signal that the first variable is a bet-
ter choice. More generally, model selection procedures tailored to the classical
assumptions may have inferior performance when applied to more realistic data
generating processes. The availability of hypothesis tests for diverse classes of
problems and settings motivates us to introduce a testing-based model selection
strategy.

We are particularly interested in the application of model selection involving
high-dimensional data. High-dimensional data is characterized as data with a
large number of covariates relative to the sample size. High-dimensional data
arise through a combination of two ways. The data may be intrinsically high
dimensional in that many different characteristics per observation are available.
Alternatively, even when the number of available variables is relatively small,
researchers rarely know the exact functional form with which the variables enter
the model of interest and are thus faced with a large set of potential variables
formed by different ways of interacting and transforming the underlying vari-
ables.

Dealing with a high-dimensional dataset necessarily involves dimension re-
duction or regularization. A principal goal of research in high-dimensional statis-
tics and econometrics is to generate predictive power that guards against false
discovery and overfitting, does not erroneously equate in-sample fit to out-of-
sample predictive ability, and accurately accounts for using the same data to
examine many different hypotheses or models. Without dimension reduction
or regularization, however, any statistical model will overfit a high dimensional
dataset. In this light, we are interested in understanding the behavior of testing-
based forward selection since it potentially offers a completely data-driven way
to regularize high dimensional models.

There are several earlier analyses of forward selection. Previous papers pro-
viding analysis of statistical properties of forward regression do not attempt
to make use of testing as a criteria for stopping. [47] gives an bounds on the
performance and number of selected covariates under a β-min condition which
restricts the minimum magnitude of nonzero coefficients. [50] and [43] prove
performance bounds greedy algorithms under a strong irrepresentability con-
dition, which restricts the empirical covariance matrix of the predictors. [17]
prove bounds on the relative performance in population R-squared of the a for-
ward selection based model (relative to infeasible R-squared) when the number
of variables allowed for selection is fixed. In this paper, we prove probabilistic
bounds on the predictive performance and number of selected covariates. We use
conditions which are much weaker that those used in [50] and [43], and impose
no β-min restrictions. Another related method is forward-backward selection
which procedes similarly to forward selection but allows previously selected co-
variates to be discarded from the working model at certain steps. In terms of
the convergence results in this paper, ours are likely most similar to the analysis
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of a forward-backword model selection procedure by Tong Zhang (see [51]) who
find similar bounds. The forward-backward procedure is similar to the forward-
selection outlined above, except the algorithm has chances to kick variables out
of the working selected set. The analysis required for a strictly forward-based
model selection seems to require different techniques, since there is no chance
to correct “model selection mistakes.” As a part of the analysis in this paper,
we prove that mistakes, suitably defined, cannot happen too often.

There is also an emerging literature on sequential testing (see [20], [30], [42],
[18]). In each case, these papers consider hypothesis testing in stages, where
tests in later stages can depend on testing outcomes in earlier stages. In various
settings, properties like family-wise error rates of proposed testing procedures
can be controlled sequences of hypothesis tests. In all cases, the authors note
that the testing procedures are complentary to forward model selection problems
as they guide which variables should be selected and offer principled stopping
rules. In this paper, we will be mainly interested in the statistical properties and
performance bounds of estimates and fits based on a selected model from a for-
ward selection procedure. The key difficulty in deriving statistical performance
bounds after sequential testing, is that at each stage of the testing procedure,
a variable selection which can be desirable for inclusion into a model at that
moment, may no longer be desirable at the end. In other words, over-selection
of covariates can occur without any false positives during the testing proce-
dure. The analysis given below addresses this problem and gives an argument
which rules out severe over-selection of variables. Additionally, in the course of
developing an illustrative example, we will also give a new sequential testing
procedure appropriate for heteroskedastic regression data, which is a setting of
large interest in the econometrics community.

There are many other sensible approaches to high dimensional estimation
and regularization. An important and common approach to generic high dimen-
sional estimation problems are the Lasso and Post-Lasso estimations. The Lasso
minimizes a least squares criteria augmented with a penalty proportional to the
`1 norm of the coefficient vector. This approach favors a model with good in
sample prediction while still placing high value on parsimony (the structure of
the objective sets many coefficients are set identically to zero). The Post-Lasso
refits based on a least squares objective function on the selected model. For
theoretical and simulation results about the performance of these two methods,
see [19] [41], [24] [15] [3], [4], [10], [13], [12] [14], [15], [25], [27], [28], [31], [32],
[34], [37], [41], [44], [46], [49], [6], [11], [6], among many more. We are interested
in the relative performance of testing based forward selection relative to Lasso
and Post-Lasso.

We derive statistical performance bounds for forward selection which are
qualitatively similar to those given by Lasso. The proofs of these bounds are
original and require a different analysis than the common logic for Lasso, partly
because there is no single objective function guiding the model selection pro-
cess. The argument requires us to keep track of the relative sizes of the signals
individual covariates carry about the outcome. We characterize the geometric
relations of the covariates carrying weak signals about the outcome relative to
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the covariates which are strong predictors. We accomplish this without β-min
conditions. A general result about testing-based forward selection is illustrated
by an example to heteroskedastic data where Huber-Eicker-White standard er-
rors are used to construct t-tests and explicit rates of convergence are calculated.
We provide simulation results to show relative performance to Lasso and Post-
Lasso regression. We find that there are data generating processes under which
forward selection outperforms Lasso regression in terms of prediction.

In economic applications, models learned using formal model selection are
often used in subsequent estimation steps. A prime application of model selec-
tion is for structural estimation. One example is the selection of instrumental
variables for later use in a first stage regression (see [5], [23]). Another example
is the selection of a conditioning set, to properly control for omitted variables
bias when there are many control variables (see [9], [45], [7], [29]). In both cases,
bounds about the quality of the selected model are used to derive results about
the quality of post-model selection estimation and guide subsequent inference.
Such applications require a model selection procedure with a hybrid objective:
(1) produce a good fit, and (2) return a sparse set of variables. Addressing both
these objectives, this paper provides adequately tight bounds using strictly for-
ward selection for application in causal post-estimation analysis.

Finally, we illustrate the use of testing-based forward selection in an economic
application. We revisit the question studied by Acemoglu, Johnson and Robin-
son (see [1]) of learning the effect of institution quality on aggregate economic
output in a cross section of 64 countries. [1] propose an instrumental variables
strategy, using early European settler mortality rates as an instrument for cur-
rent quality of institutions as measured the extent of protection from expro-
priation. They provide an argument concluding that the effect of institutions
on output can be identified using early settler mortality as an instrument, pro-
vided that geography is properly controlled for. In their baseline specification,
[1] address this by including a variable equal to latitude. However, geography
is a broad notion and can potentially mean many different things; for example,
temperature, yearly rainfall, terrain. As a compliment to their analysis, we con-
sider 16 different possible controls for geography. We use testing-based forward
selection to choose the most relevant geographic controls. To be robust to model
selection mistakes and not suffer classical problems known to be associated with
pretesting, we require three model selection steps (see [8], [9]), each taking a sep-
arate application of testing-based model selection. These are: (1) We select those
geographic variables predictive of output; (2) We select those geographic con-
trols predictive of quality of institution; (3) We select those geographic controls
predictive of European settler mortality. Finally, we perform standard IV esti-
mation using the union of selected controls. Our findings about the effects of
institutions on output are largely consistent with theirs when model selection is
used to determine the way to control for geography. Interestingly, this provides
further evidence supporting the robustness of the conclusions made in [1].
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2. Framework

Consider random variables {yi}ni=1 ∈ Yn ⊂ Rn and a set of covariates {xi}ni=1 ∈
Xn which are jointly distributed according to a distribution P. We are interested
in constructing a function

f̂ : X→ Y

such {f̂(xi)}ni=1 gives good predictions about {yi}ni=1 according to an appropri-
ate measure of loss. Consider a family of loss functions indexed by f ∈ F which
in this paper will always be quadratic:

`f : Xn × Yn → R

`f ({xi}ni=1, {yi}ni=1) =
1

n

n∑
i=1

(yi − f(xi))
2.

We will consider the following set of approximating functions to F,

F =

{
fθ(·) =

p∑
k=1

θkψk(·), θ ∈ Θ

}
,

and we assume that F ⊂ F. Common choices for F include orthogonal polyno-
mials, b-splines, or simply the components of xi themselves when X = Rp. We
are interested in finding a value θ which minimizes

E(θ) := E`fθ − inf
f∈F

E`f

where E is expectation with respect to P . We procede by first searching for a
sparse subset Ŝ ⊂ {1, ..., p} that assumes a small value of

E(S) := inf
supp(θ)⊂S

E`fθ − inf
f∈F

E`f ,

estimating θ with

θ̂ ∈ arg min
supp(θ)⊂Ŝ

`fθ ({xi}ni=1, {yi}ni=1)

and finally constructing

f̂(·) = fθ̂(·).

The goal is to select Ŝ by a forward selection procedure which involves the
use of statistical hypothesis tests. For any S define the incremental loss from
the jth covariate by

∆jE(S) = E(S ∪ {j})− E(S).

We consider a greedy algorithm which inductively selects the jth covariate to
enter a working model if ∆jE(S) is large and ∆jE(S) > ∆kE(S) for each k 6= j.
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However, ∆jE(S) cannot be directly observed from any single realization of
the data. Therefore, we make use of statistical tests to gauge the magnitude of
∆jE(S).

Consider a set of tests which will guide the forward selection process:

TjSα ∈ {0, 1} associated to H0 : ∆jE(S) = 0 and level α > 0.

We assume that the tests take a value of TjSα = 1 for large values of a test
statistic WjS . Therefore, large values of the random variables WjS ∆jE(S) are
tied to large values of ∆jE(S) in a way made precise below.

The model selection procedure is as follows. Start with an empty model (con-

sisting of no covariates). At each step, if the current model is Ŝ, select one

covariate such that TjŜα = 1, append it to Ŝ, and continue to the next step;
if no covariates have TjŜα = 1, then terminate the model selection procedure

and return the current model. If at any juncture, there are two indices j, k (or
more) such that TjSα = TkSα = 1, the selection is made according to the larger
value of WjS ,WkS . Alternatively, we could have devised additional tests TjkSα
associated to H0 : ∆jE(S) > ∆kE(S) to break ties. We adopt the test statistic
approach since this seems more natural for breaking potential multi-way ties.

Throughout this discussion, we assume that such a feasible set of hypothesis
tests exists and satisfies certain properties outlined below. We then provide
an example giving primitive conditions on a linear model with heteroskedastic
disturbances for which the general forward testing results apply.

We will then define a model selection procedure which yields a subset
Ŝ ⊂ {1, ..., p}. Following model selection, we turn our attention to studying

the properties of the post-forward-selection-estimator, θ̂, defined in the earlier
discussion.

To summarize, the algorithm for forward selection given the set of hypothesis
tests {TjSα,WjS} is given formally by:

Algorithm 1: Testing-Based Forward Selection

Initialize. Set Ŝ = {}.
For 1 6 k 6 p:

If: TjŜα = 1 for some j ∈ {1, ..., p} \ Ŝ, then for

ĵ ∈ arg max
{
WjŜ : TjŜα = 1

}
,

Update: Ŝ = Ŝ ∪ {ĵ}.
Else: Break.
Set: θ̂ ∈ arg minθ:supp(θ)⊂Ŝ `fθ ({xi}

n
i=1, {yi}ni=1)

Set: f̂(·) = fθ̂(·)
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3. Formal Conditions

This section formally states conditions on the hypothesis tests conditions on the
data before analyzing properties of Algorithm 1. These conditions are measures
of the quality of the given testing procedure and the regularity of the data.
These measures defined in the below conditions are sufficient for proving useful
performance bounds on the post-forward-selection estimator.

Condition 1 [Data and Sparsity ]. Fix n. ({xi}ni=1, {yi}ni=1) ∈ Xn × Yn are
distributed according to P . There is a set S∗ ⊂ {1, ..., p} with |S∗| = s and a
constant csprs such that

E(S∗) 6 csprs.

Condition 2 [Hypothesis Tests]. There are tests TjSα ∈ {0, 1}, test statis-
tics WjS determined by the data ({xi}ni=1, {yi}ni=1). There are constants
ctest, c

′
test, c

′′
test and for each N 6 p there is δtest = δtest(N) such that each

of the following conditions hold:
(I) The tests have power in the sense that with probability 1− δtest(N),

TjSα = 1 for every j, |S| 6 N, such that −∆jE(S) > ctest.

(II) The tests control size in the sense that probability of the event

TjSα = 1 for some j, |S| 6 N such that −∆jE(S) 6 c′test

is no more than α+ δtest(N).

(III) With probability 1− δtest(N),

WjS >WkS if and only if−∆jE(S) > −c′′test∆kE(S)

for each j, k, |S| 6 N , provided TjSα = TkSα = 1.

Condition 3 [Sparse Eigenvalues]. The components of ψk(·) are normalized so
that E 1

n

∑n
i=1 ψ

2
k(xi) = 1 for every 1 6 k 6 p. Denote by ψS(xi) the vector with

components ψk(xi), k ∈ S. For each N 6 p there are constants ceig = ceig(N)
and δeig = δeig(N) such that with probability 1− δeig(N),

λmin

(
1

n

n∑
i=1

EψS(xi)ψS(xi)
′

)−1
, λmin

(
1

n

n∑
i=1

ψS(xi)ψS(xi)
′

)−1
6 ceig(N)

for any S with |S| 6 N .

Condition 4 [Estimation Quality ]. The infinum inff∈F E`f is attained at f∗

and the infinum infsupp(θ)⊂S∗ E`fθ is attained at θ∗. Define εi := yi − f∗(xi)
and ai = f∗(xi) − fθ∗(xi). For S ⊂ {1, ..., p}, the infinum infsupp(θ)⊂S E`fθ is
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attained at θ∗S and εiS : yi − fθ∗S (xi). The variables {yi}ni=1 are normalized so

that E 1
n

∑n
i=1y

2
i = 1. There is a constant creg, for which with probability 1−δreg

the following bounds all hold:

max
16j6p

| 1
n

n∑
i=1

ψj(xi)εi|, |
1

n

n∑
i=1

f∗(xi)εi|, |
1

n

n∑
i=1

fθ∗(xi)εi| 6 creg

max
j6p

∣∣∣∣∣ 1n
n∑
i=1

aiψj(xi)− Eaiψj(xi)

∣∣∣∣∣ 6 creg

max
j,l6p

∣∣∣∣∣ 1n
n∑
i=1

ψj(xi)ψl(xi)− Eψj(xi)ψl(xi)

∣∣∣∣∣ 6 creg.

In addition, for eachN 6 p there are constants c′reg = c′reg(N) and δ′reg = δ′reg(N)
such that with probability at least 1− δ′reg(N), the following bounds hold:

max
S:|S|6N, E(S)−E(S∗)62sctestceig(N)

max
j∈S

∣∣∣∣∣ 1n
n∑
i=1

ψj(xi)(εiS − εi)

∣∣∣∣∣ 6 c′reg(N).

Condition 1 is asserts that there is a sparse set |S∗| with E(S∗) less than
csprs. This set need not be unique. A common assumption in high dimensional
modelling is the existence of a sparse set of useful predictors. This formulation
measures simultaneously the number of covariates needed (s) to get within a
target level (csprs) of population loss.

Condition 2 defines parameters that measure the quality of a given set of hy-
pothesis tests. The constants measure quantities related to the size and power
of the tests and provide a convenient language for subsequent discussion. We
emphasise here that the hypothesis tests considered should not necessarily be
thought of as providing a measure of statistical significance, but more precisely,
they are simply a tool for model selection which coincidentally have many prop-
erties in common with traditional hypothesis tests.

Condition 3 is a sparse eigenvalue condition useful for proving results about
high dimensional techniques like Lasso. In standard regression analysis where
the number of covariates is small relative to the sample size, a conventional
assumption used in establishing desirable properties of conventional estimators
of θ is that 1

n

∑n
i=1 ψ(xi)ψ(xi)

′ has full rank. In the high dimensional setting,
will be singular if p > n and may have an ill-behaved inverse even when p 6 n.
However, good performance of the Lasso estimator only requires good behav-
ior of certain moduli of continuity of 1

n

∑n
i=1 ψ(xi)ψ(xi)

′ . There are multiple
formalizations and moduli of continuity that can be considered here; see [10].
We focus our analysis on a simple eigenvalue condition that is suitable for most
econometric applications which was used in [5]. Condition 3 could be shown to
hold under more primitive conditions by adapting arguments found in [6] which
build upon results in [49] and [39]; see also [38].
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Finally, Condition 4 is needed to measure the quality of the post-model se-
lection estimation step. The normalization E 1

n

∑n
i=1 y

2
i = 1 is imposed for con-

venience; but implicitly assumes certain second moments on {yi}ni=1. The εi
should be considered as idiosyncratic disturbances and the constant creg is used
to bound empirical correlations with the covariates. creg should be considered
as a constant measuring the extent to which a law of large numbers holds. The
constants c′reg measure a similar quantity as creg but uniformly over a much
larger set of averages. This would in principal drive c′reg to be much larger than
creg, however, the constraint on E(S)− E(S∗) ensures that the variances of the
terms εi − εiS are much smaller than the variances of εi.

Given csprs, ctest, c
′
test, c

′′
test, ceig, creg, c

′
reg, δtest, δeig, δreg, δ

′
reg, α, define δ,C1,C2

given by:

δ = δtest((C2 + 1)s) + δeig((C2 + 1)s) + δreg + δ′reg((C2 + 1)s)

C1 = csprs + 2creg + sctestceig(s) + 2ŝceig(ŝ)creg(creg + c′reg(ŝ))

+ 2(s+ ŝ) max{csprs, ctest}ceig(s+ ŝ)creg

+ [2(s+ ŝ) max{csprs, ctest}ceig(s+ ŝ)]2creg

C2 is defined by maxm∈Z1
C(m) where

C(m) =
(
KR
G

)2
C1(m)−2

(
1 + C2(m)1/2 + C2(m)

)2
ceig(m+ s),

where Z1 is the first set of contiguous integers m ∈ [1, n] which all satisfy
m 6 C(m)s, where KR

G < 1.783 is Grothendieck’s constant, and where

C1(m) = min

{[
ceig(m+ s)−1/2c′test

1/2 − c1/2sprs(1 + ceig(m+ s))1/2
]
+

ceig(m+ s)
(
c
1/2
test + c

1/2
sprs

) ,

c′′test
1/2

c−1eig −
(
csprs
c′test

)1/2
(1 + c′′test

−1/2
(1 + ceig)1/2)(

c
−1/2
eig − (csprs/c′test)

1/2
)
+


+

}

and C2(m) := ceig(m+ s)−1/2C1(m).
The constants defined above are referenced in the statement of the theorem.

C1 and C2 are usefully defined to control the ratio ∆jE(S)/∆kE(S). In partic-
ular, C1 enters as a bound when j is selected before k for j /∈ S∗, k ∈ S∗, and
C2 enters for j ∈ S∗, k ∈ S∗ . With probability at least δ, C1 and C2 control the
estimation error and the number of covariates selected into the final model. We
have the following theorem.
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Theorem 1. Fix n. Suppose that the assumptions on ({xi}ni=1, {yi}ni=1) listed
above in Conditions 1,3,4 hold. Suppose that the assumptions in Condition 2
hold for a set of tests TjSα,WjS. Then the bounds

1

n

n∑
i=1

(f∗(xi)− fθ̂(xi))
2 6 C1

ŝ 6 (C2 + 1)s

hold with probability at least 1− α− δ.

Proof. The proof of Theorem 1 is given its own section (Section 7) and is pre-
sented after an example and some additional discussion of practical implemen-
tation.

Comment 3.1. The theorem provides a basis for understanding the prediction
made by a model selected and fit by the Forward Selection Algorithm 1 described
above. Below we give an example to a linear model with heteroskedastic data.
We note that the theorem can be applied, at each n within a sequence P = Pn of
data generating processes. Under certain regularity conditions, we derive rates
of type OP (s log p/n) on the prediction norm and show that the constant in
ŝ 6 (C2 + 1)s can be taken as to be C2 = O(1). This gives convergence rates
typical of those seen for Lasso and Post-Lasso. We give an example where this
is the case in Section 4.

Comment 3.2. The tests are assumed to a notion of family-wise error rate. A
similar result is expected to hold under an analogous false discovery proportion
assumption since this should in principal preserve the statement ŝ 6 (C2 + 1)s
up to a multiplicative constant.

Comment 3.3. Again, the results of the theorem aim to control the hybrid
objective, described in the introduction, of producing a good fit and returning
a sparse set of variables. Because the theorem provides bounds controlling both
ŝ and 1

n

∑n
i=1(f∗(xi) − fθ̂(xi))

2, it can potentially be applied to post-model
selection estimation exercises (see Section 6).

Comment 3.4. Note that if the ratio csprs/c
′
test becomes to large, then the

bounds are vacuous. This puts a limit on the amount of allowable sparse ap-
proximation error.

4. Example: Heteroskedastic Disturbances

In this section we give an example of the use of Theorem 1 by illustrating an
application of model selection in the presence of heteroskedasticity. We verify the
primitive testing conditions set forth in Theorem 1 for a set of tests which are
constructed based on the Heteroskedasticity-Consistent standard errors those
described in [48]. We consider a sequence of data generating processes P = Pn.
We will often omit dependence on n. We begin by outlining assumption on the



Damian Kozbur/Testing-Based Forward Model Selection 11

data, and then provide exact details of the testing procedure. We focus on the
linear model with fixed covariates.

Condition Ex1.1 [Model ]. For each n the following model holds:

yi = ψ(xi)
′θ∗ + εi

with xi ∈ X = Xn deterministic and ψ(·) : X→ Rp, with p = p(n). Furthermore,
εi are independent across i, not necessarily identically distributed, and have
mean zero. Finally, s = s(n) := |supp(θ∗)|.

The fact that the disturbances are not identically distributed and possibly
heteroskedastic implies that classical iid standard errors may be inconsistent.
Therefore, we adopt Huber-Eicker-White standard errors. In what follows, we
describe in detail the testing procedure, before giving remaining formal regular-
ity conditions, and finally proving a theorem about forward model selection in
this setting.

Comment 4.1. Operating under the framework of fixed covariates is both
convenient theoretically, and requires less stringent conditions on the data gen-
erating process. We give additional discussion of this issue after outlining the
formal conditions.

We now describe the testing procedure. Still in the paradigm of quadratic
loss, note that for any subset S and any j /∈ S, the following two conditions are
easily seen to be equivalent: (1) [θ∗jS ]j 6= 0 and (2) ∆jE(S) 6= 0 where θ∗jS
is defined the as optimal coefficient given the model j∪S. We find it convenient
to work with the formulation in condition (1). Consider the null hypothesis

H0 : [θ∗jS ]j = 0.

To construct the tests, we begin with least squares estimate of θ∗jS :

θ̂jS =

[
1

n

n∑
i=1

ψjS(xi)ψjS(xi)
′

]−1 [
1

n

n∑
i=1

ψjS(xi)
′yi

]

Define ε̂ijS = yi − ψjS(xi)
′θ̂jS . We next apply results on partial regression. Let

βjS be the coefficient vector from the least squares regression of {ψj(xi)}ni=1 on
{ψk(xi)}ni=1,k∈S . Consider the residuals from the previous regression, given by

ψ̆jS(xi) = ψj(xi) − ψS(xi)
′βjS . Note that the jth component of the estimate

[θ̂jS ]j can equivalently be written

[θ̂jS ]j =

[
1

n

n∑
i=1

ψ̆jS(xi)ψ̆jS(xi)

]−1 [
1

n

n∑
i=1

ψ̆jS(xi)yi

]
.

The heteroskedasiticty robust estimate of the variance is given by
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V̂j = (ψ̆′jSψ̆jS)−1

[
n∑
i=1

ψ̆jS(xi)
2ε̂2ijS

]
(ψ̆′jSψ̆jS)−1

Finally, define the test statistics:

WjS = V̂
−1/2
jS

∣∣∣[θ̂jS ]j

∣∣∣ .
We reject the null H0 for large values of WjS defined relative to an appropri-
ately chosen threshold. To define the threshold first let ηjS := (1 ,−β′jS)′ be

the coefficient vector for writing the residual ψ̆j(xi) in terms of ψj(xi), ψS(xi).
Without loss of generality, assume that the components of ηjS are nonnegative.
Next, let Ψε̂ be defined by [Ψε̂

jS ]k,l =
∑n
i=1 ε̂

2
ijSψk(xi)ψl(xi) for k, l ∈ jS. Then

define

τ̂jS =
η′jSdiag(Ψε̂

jS)√
η′jSΨε̂

jSηjS
.

The term τ̂jS will be helpful in addressing the fact that many different model
selection paths are possible under different realizations of the data under P . Not
taking this fact into account can potentially lead to false discoveries. We are in
a position to state precisely the hypothesis tests TjSα.

Condition Ex1.2 [Hypothesis Tests]. Fix a tuning parameter cτ > 1 which is
independent of n and a sequence of thresholds α = α(n)→ 0 sufficiently slowly.
The test statistics WjS take the form described in the immediately preceding
text. Furthermore, using the definition of τ̂jS we assign:

TjSα = 1 ⇐⇒ Wjs > cτ τ̂jSΦ−1(1− α/p).

Comment 4.2. The term Φ−1(1 − α/p) can be informally thought of as a
Bonferonni correction term which takes into account of the fact that there are p
potential covariates. The term cτ τ̂jS can be informally thought of as a correction
term which can account for the fact that the set S is random and can have many
potential realizations. In the main simulations, we set cτ = 1.1 and we use
α = .05. We report simulations which use other, less conservative thresholds for
significance, and find in fact these slightly improve performance. The theoretical
results presented in this section address only the threshold stated above, which
are simple and will provably provide convergence rates which match those of
Lasso and Post-Lasso (like those found in e.g. [5] ).

Condition Ex1.3 [Sparse Eigenvalues and Irrepresentability ]. Let Nn be a
sequence such that Nn/s→∞. For each S such that |S| 6 Nn,

λmin

(
1

n

n∑
i=1

ψS(xi)ψS(xi)
′

)−1
= O(1)
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λmin

(
1

n

n∑
i=1

ε2iψS(xi)ψS(xi)
′

)−1
= O(1) with probability 1− o(1).

In addition, for ηjS defined as above, let cirr = maxj,|S|6Nn ‖ηjS‖1. Then cirr =
O(1).

Condition Ex1.4 [Regularity ]. (ψ(xi)
′θ∗)2 = O(1) uniformly for each i =

1, ..., n and for each n. The disturbances εi satisfy

max
i6n

Eε2i = O(1), max
j6p

(∑n
i=1 E|ψj(xi)3ε3i |

)1/3
(
∑n
i=1 Eψj(xi)2ε2i )

1/2
= O(n−1/6)

For each subset |S| 6 Nn, let εiS be defined as earler. Decompose εiS = εi+ ξiS .
Then with probability 1− o(1), the following large deviation result holds:

∣∣∣∣∣ 1n
n∑
i=1

ψ̆jS(xi)
2εiξiS

∣∣∣∣∣ 6 1

n

n∑
i=1

ψ̆jS(xi)
2ξ2iS for each j 6 p, |S| 6 Nn.

Finally, we have the rate conditions:
N2
n log2 p
n → 0, log3 p

n → 0.

Condition 1 describes the model and Condition 2 describes the testing proce-
dure. The terms in the threshold are Φ−1(1−α/p), which should be thought of
as a Bonferroni multiple testing correction; and cτ τ̂jŜ are needed as a correction

for the fact that the sets Ŝ are random.
Condition 3 gives conditions on the sparse eigenvalues and assumes an ir-

representability condition which may be strong in some cases. [43], [50] assume
that cirr < 1. In addition, [33] use an analogous assumption to cirr = O(1) in
the context of learning high dimensional graphs.

Condition 4 states regularity conditions on εi, which come in useful for
proving central limit theorems and laws of large numbers. The condition that

maxj6p
(
∑n
i=1 E|ψj(xi)3ε3i |)

1/3

(
∑n
i=1 Eψj(xi)2ε2i )

1/2 = O(n−1/6) allows the use of moderate deviation

bounds for self-normalized sums (see [26]). Note that ξijS defined in Condition
4 are functions only of ψ(xi). Finally, the two rate conditions provide bounds
on the relative sizes of s, p, n since s < Nn.

Theorem 2. Uniformly over sequences P = Pn and tests TjSα,WjS which
satisfy the Conditions Ex1.1, Ex1.2, Ex1.3, Ex1.4 (with the same set of implied
constants), Algorithm 1 produces fits such that

1

n

n∑
i=1

(fθ∗(xi)− fθ̂(xi))
2 = OP (s log p/n)

and ŝ = O(s) with probability 1− o(1).
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Proof. Proved in Supplimental Appendix.

Comment 4.3. We suspect that an analogous result holds for dependent data
and HAC-type estimation (see [35], [2].) The required central limit results are
beyond the scope of this work, though we mention that using the moderate
deviation results of [16] we can already construct a feasible testing-based forward
model selection procedure. Cluster-type standard errors for large-T -large-n and
fixed-T -large-n panels can be used by adapting arguments from [7].

Comment 4.4. The condition cirr = O(1) is potentially restrictive (see dis-
cussion above). If instead the unrestrictive condition cirr = O(

√
s) holds,

then the following similar result can be shown: 1
n

∑n
i=1(fθ∗(xi) − fθ̂(xi))

2 =
OP (s2 log p/n) and ŝ = O(1)s.

5. Simulation

The results in the previous sections suggest that estimation with Forward Re-
gression should produce good results in large sample sizes. In this section we
simulate several different data generating processes to evaluate the performance
of the Forward selection estimator. We compare the estimates to that of Lasso
and Post-Lasso since these are popular and important generic high dimensional
estimation strategies.

We consider the following data generating process:

yi = x′iθ + εi, i = 1, ..., n

p = dim(xi) = cpn, θj = bj−1

xij ∼ N(0, 1), with corr(xij , xik) = .5|j−k|

εi ∼ σiN(0, 1), σi = exp(ρ
∑p
j=1 .75(p−j)xij).

We replicate all simulations with parameter choices b ∈ {.75, .5,−.5,−.75},
ρ ∈ {0, .5} , cp = 2, n = 200. In the supplimentary appendix, we offer a
more complete simulation study, using more parameter values given by b ∈
{.75, .5,−.5,−.75}, ρ ∈ {0, .5}, cp ∈ {.5, 2}, n ∈ {100, 200}. The parameter b
controls the sparseness of the problem; for instance, when b = .75 the problem
is more dense than when b = .5. The parameter ρ controls the amount of
heteroskedasticity in the data, so that ρ = 0 means iid observations and ρ = .5
means heteroskedastic. Finally, we consider simulations where the number of
explanatory variables is twice sample size (cp = 2).

In order to construct the test statistics, we use a both classical IID standard
errors as well Huber-Eicker-White standard errors and compare the performance
of the resulting estimators. We assess the size θ∗j by comparing [θ̂jS ]j/s.e.([θ̂jS ]j)
to each of three thresholds τjS . First, we use the threshold described the paper
given by cτ τ̂jSΦ−1(1 − α/p) with cτ = 1.1, α = .05. The resulting estimator
is called Forward I. Second, we use simply a Bonferroni correction threshold
given by Φ−1(1− .α/p) with α = .05. The resulting estimator is called Forward
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II. Finally, we use a step down threshold where, at any juncture with working
model S, we use the threshold Φ−1(1 − α/(p − |S|)). This estimator is called
Forward III.

Table 1
Forward Model Selection Simulation Results:

Sample Size : n = 200, Dimensionality : p = 2n
Disturbances : Homoskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 0.70 3.69 0.71 3.65
Forward II 0.44 5.59 0.45 5.56
Forward III 0.44 5.59 0.45 5.57
Lasso 3.89 3.77 3.80 4.05
Post-Lasso 0.71 3.77 0.66 4.05
Oracle 0.25 10.00 0.25 10.00

B. θj = .5j−1

Forward I 0.37 2.02 0.37 2.01
Forward II 0.29 2.58 0.29 2.62
Forward III 0.29 2.58 0.29 2.62
Lasso 1.07 1.07 1.56 1.59
Post-Lasso 0.69 1.07 0.47 1.59
Oracle 0.16 4.00 0.16 4.00

C. θj = (−.5)j−1

Forward I 0.40 1.06 0.40 1.08
Forward II 0.26 1.86 0.26 1.91
Forward III 0.26 1.86 0.26 1.91
Lasso 0.89 0.00 0.89 0.02
Post-Lasso 0.89 0.00 0.89 0.02
Oracle 0.14 4.00 0.14 4.00

D. θj = (−.75)j−1

Forward I 0.67 1.24 0.67 1.24
Forward II 0.44 2.96 0.44 2.96
Forward III 0.44 2.96 0.44 2.97
Lasso 1.02 0.00 1.02 0.01
Post-Lasso 1.02 0.00 1.02 0.01
Oracle 0.22 10.00 0.23 10.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set (MSSS)
for several estimators described in the text.

To construct a Lasso and Post-Lasso estimate, we use the implementation
found in [5]. Their implementation chooses penalty loadings for each covariate
based on an in sample measure of the variability of the covariate-specific score.
They require two tuning parameters which are directly analogous to cτ and α, so
we again use cτ = 1.1 and α = .05. Finally, we consider an infeasible estimator,
which selects a model consisting of {j : |θ∗j | > 1/

√
n}.
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Table 2
Forward Model Selection Simulation Results:

Sample Size : n = 200, Dimensionality : p = 2n
Disturbances : Heteroskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 1.47 1.29 1.41 1.40
Forward II 1.33 1.76 1.26 1.90
Forward III 1.33 1.76 1.26 1.90
Lasso 4.37 18.07 4.14 21.89
Post-Lasso 1.93 18.07 2.21 21.89
Oracle 0.79 10.00 0.83 10.00

B. θj = .5j−1

Forward I 0.89 0.92 0.85 0.92
Forward II 0.88 0.99 0.83 1.01
Forward III 0.88 0.99 0.83 1.01
Lasso 3.01 14.04 2.95 17.73
Post-Lasso 1.76 14.04 2.02 17.73
Oracle 0.49 4.00 0.49 4.00

C. θj = (−.5)j−1

Forward I 0.81 0.33 0.72 0.40
Forward II 0.81 0.34 0.72 0.42
Forward III 0.81 0.34 0.72 0.42
Lasso 2.00 11.97 2.11 14.80
Post-Lasso 1.76 11.97 1.96 14.80
Oracle 0.48 4.00 0.49 4.00

D. θj = (−.75)j−1

Forward I 1.01 0.22 0.95 0.27
Forward II 1.01 0.23 0.95 0.30
Forward III 1.01 0.23 0.95 0.30
Lasso 2.21 13.33 2.34 16.90
Post-Lasso 2.00 13.33 2.20 16.90
Oracle 0.79 10.00 0.81 10.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set (MSSS)
for several estimators described in the text.

The results are presented in Tables 1-2 in the appendix. We print mean
prediction error norm (MPEN), defined by [ 1n

∑n
i=1(f∗(xi) − f̂(xi))

2]1/2, and
mean size of selected set (MSSS). Though neither Forward Selection, nor Lasso
dominate the other in all simulations, there are important instances when the
forward selection estimators consistently outperform the Lasso-based estima-
tors. Forward selection estimates tend to do better relative to Post-Lasso in
the presence of heteroskedasticity. The general pattern is that in the presence
of heteroskedasticity, the use of Huber-Eicker-White standard errors substan-
tially improves performance. In addition, Lasso and Post-Lasso give very poor
estimates when b = −.5 and b = −.75, while the forward selection estimators
perform well (relative to Oracle). This suggests that the performance of these
estimators depends on the configuration of the signal, not just the relative size
of the signal to the noise. Finally, the Forward II and Forward III estimators
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seem to perform better than the Forward I estimator in general, suggesting that
the proposed thresholds are possibly too conservative.

6. Empirical Illustration: Estimating the effects of Institutions on
Economic Output

To illistrate the use of testing-based forward model selection to help answer an
empirical question, we revisit the problem of estimating the effect of institution
quality on aggregate economic output considered by Acemoglu, Johnson, and
Robinson in [1]. A similar exercise on this data using Lasso-based methods was
performed in [8].

To estimate the effect of institutions on output, it is necessary to address
the fact that both (1) better institutions can lead to higher output; and (2)
higher output can also lead to the development of better institutions. Because
institutions and output levels both potentially affect each other, a simple corre-
lation or regression analysis will not recover the causal quantity of interest. [1]
introduce an instrumental variable strategy, using early European settler mor-
tality as an instrument for institution quality. The validity of this instrument
requires first a relevance assumption that early settler mortality is predictive of
quality of current institutions. [1] argue that settlers set up lasting institutions
in places where they were more likely to establish long term settlements. They
cite several references documenting the fact that Europeans were acutely aware
of mortality rates in their colonies. They also note that the institutions set up
by early European settlers tend to be highly persistent. These arguments make
the relevance assumption likely to hold. The exclusion restriction assumption
is justified in [1] by the argument that GDP, while persistent, is unlikely to be
strongly influenced by mortality rates centuries ago, except through institutions.

In their paper, [1] note that their IV strategy will be invalid if there are other
factors that are highly persistent and related to the development of institutions
within a country and to the countrys GDP. The primary candidate for such a
factor discussed in [1] is geography. In this exercise, we take as given the fact that
after controlling adequately for geography, it is possible to use their instrument
strategy to correctly identify the effect of institutions on output. The outstand-
ing problem then becomes the question of how, exactly, to adequately control
for geography. [1] controlled for the distance from the equator in their baseline
specification. They also considered specifications with continent dummies; see
Table 4 in [1] .

In principal, there are many ways to construct control variables related to
a broad notion such as geography. These may include variables based on tem-
perature, yearly rain fall, or terrain. In this exercise, we construct a large set
of different geographic variables. We then use testing based-forward model se-
lection to choose from among the many variables and perform a subsequent IV
analysis. Let xi be a country level variable with components consisting of the
dummy variables for Africa, Asia, North America, and South America plus the
variables lat, lat2, lat3, (lat − .08)+, (lat − .16)+, (lat − .24)+, ((lat − .08)+)2,



Damian Kozbur/Testing-Based Forward Model Selection 18

((lat−.16)+)2, ((lat−.24)+)2, ((latitude−.08)+)3, ((lat−.16)+)3, ((lat−.24)+)3

where “lat” denotes the distance of a country from the equator normalized to
be between 0 and 1 which is the same set of controls as in [8]. Consider the
model:

log(GDP per capitai) = Protection from Expropriationiθ + x′iβ + εi

Here, “Protection from Expropriation” is the same as was used in [1]: a measure
of the strength of individual property rights that is used as a proxy for the
strength of institutions. We use the same set of 64 country-level observations as
[1]. When the set of control variables for geography, xi, is flexible enough, it is
guaranteed that nothing can be learned about the effect of interest, θ, because
of lack of statistical precision. [1] do not encounter such a problem because they
assume the effect of geography is adequately captured by one variable. Using
forward selection, we present a complimentary analysis which chooses controls
from among our constructed set of geographic variables.

We now describe the model selection procedure, which proceeds in several
steps in order to ensure robustness against possible model selection mistakes.
Consider the fully expanded set of structural equations. This gives the following
three relations:

log(GDP per capita)i = Protection from Expropriationiθ + x′iβ + εi

Protection from Expropriationi = Settler Mortalityiπ1 + x′iΠ2 + vi

Settler Mortalityi = x′iγ + ui

giving reduced form equations relating structural variables to the controls:

log(GDP per capita)i = x′iβ + ε̃i

Protection from Expropriationi = x′iΠ̃2 + ṽi

Settler Mortalityi = x′iγ + ui.

The problem is represented pictorally in Figure 1. The left graph is a repre-
sentation of the equations listed above. The right graph demonstrates that our
desire to include a variable for geography can be done with many different “ge-
ography” control variables. The lack of an arrow between settler mortality and
GDP highlights our exclusion restriction assumption.

Figure 1.

By arguments similar to those given in [8], in conjuction with the types of
bounds reported in Section 5, robust inference for θ after model selection over
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the xi is possible. To accomplish this we can take the union of the set of variables
selected by running testing-based forward selection on each of the three reduced
form equations. We summarize this procedure below.

Algorithm 2: Estimating the effect of institution quality
on aggregate economic output

Step 1. Use testing-based forward model selection using a small tuning
parameter value (set here to α1 = .05) over the model:

log(GDP per capitai) = x′iβ + ε̃i

Set: Ŝ1 = {Selected Covariates}
Step 2. Use testing-based forward model selection using a small tuning
parameter value (set here to α2 = .05) over the model:

Protection from Expropriationi = x′iΠ̃2 + ṽi

Set: Ŝ2 = {Selected Covariates}
Step 3. Use testing-based forward model selection using a small tuning
parameter value (set here to α3 = .05) over the model:

Settler Mortalityi = x′iγ + ui

Set: Ŝ3 = {Selected Covariates}
Step 4. Set: Ŝ = Ŝ1 ∪ Ŝ2 ∪ Ŝ3. Run standard IV regression using Ŝ as the
set of controls.

Note importantly, that because three model selection steps will be used, the
final estimates are robust to classical concerns about pre-test biases.

In Table 3 we present our estimates. The first column of the table labeled
“Latitude” gives baseline results that control linearly for latitude which cor-
responds to the findings of [1] suggesting a strong positive effect of improved
institutions on output with a reasonably strong first-stage. The second columns
controls for all 16 of the constructed geography variables. This yields a visibly
imprecise estimate of the effect of interest. This is expected, since the num-
ber of control variables, 16, is large enough relative to the sample size, 64,
to prohibit precise estimation. The last column of Table 1 labeled “Forward
Selection” controls for the union of the set of variables selected by running
testing-based forward selection on each of the three reduced form equations, us-
ing heteroskedasticity-consistent standard errors and significance thresholds as
described in Section 5. The last column is simply the IV estimate of the struc-
tural equation with the Africa dummy and the selected latitude spline term as
the control variables. Interestingly, the results are qualitatively similar to the
baseline results though the first-stage is somewhat weaker and the estimated
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structural effect is slightly smaller.

Table 3

Latitude All Controls Forward Selection

First Stage -0.5372 -0.2182 -0.3802
(0.1545) (0.2011) (0.1686)

Structural Estimate 0.9692 0.9891 0.8349
(0.2128) (0.8005) (0.3351)

Selected variables: 1Africa, (latitude − .16)1latitude>.16

7. Proof of Theorem 1

Proof. The proof of this theorem has two main steps. First we bound the pre-
diction norm on the event that the number of selected covariates, ŝ is less than
N for N determined later. This part of the proof follows a similar outline to
the proof of performance bounds of Post-Lasso, like those given in [5]. The sec-
ond part of the proof requires a bound on the number of selected covariates ŝ
and requires different theoretical methods than those used previously to analyse
high dimensional problems; in particular, we must keep closer track of informa-
tion on the relative magnitudes of all coefficients of selected variables and the
dependence structures they have amongst each other. We now begin the proof.
In order to ease exposition, but still ensure completeness, we will defer routine
calculations to a supplimentary appendix.

Let θ∗
Ŝ

:= arg minsupp(θ)⊂Ŝ E`fθ . Let `(θ) = `fθ ({xi}ni=1, {yi}ni=1). Also, define

εi = yi − f∗(xi), ai := f∗(xi) − x′iθ∗. It will also in the course of the proof be
convenient to define the following symbol for functions X × Y → R provided
the expectation exists: 〈g, h〉 = E 1

n

∑n
i=1g(xi, yi)h(xi, yi). For vectors and ma-

trices of functions we use the same symbol and apply it element-wise so that
〈[gjk], [hjk]〉 = [〈gjk, hjk〉].

By definition of θ̂, it follows that `(θ̂) 6 `(θ∗
Ŝ

). Expanding the quadratics,

`(θ̂), `(θ∗
Ŝ

), and following Calculation 1 in the appendix, we have

1

n

n∑
i=1

(fθ∗(xi)− fθ̂(xi))
2 6 |E(Ŝ)− E(S∗)|+ |2 1

n

n∑
i=1

εiψ(xi)
′(θ̂ − θ∗

Ŝ
)|

+

∣∣∣∣∣ 1n
n∑
i=1

(aiψ(xi)− Eaiψ(xi))
′(θ∗

Ŝ
− θ∗)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

(ψ(xi)
′(θ∗

Ŝ
− θ∗))2 − E(ψ(xi)

′(θ∗
Ŝ
− θ∗))2

∣∣∣∣∣
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:= D1 +D2 +D3 +D4

We will make the convention that in the remainder of this proof, E(Ŝ) is always

calculated with Ŝ considered fixed. D1, D2, D3, D4 are terms defined by the
equation above which will be subsequently bounded.

Let N be a sufficiently large integer chosen later in the argument. In the
remainder of the argument, we will work on the event defined by the conditions
of Theorem 1 which occurs with probability

1− α−
[
δtest(N) + δeig(N) + δreg + δ′reg(N)

]
.

The terms on the right hand side are bound separately beginning with D1.
Either Algorithm 1 terminates at a step with

−∆jE(Ŝ) 6 ctest

for every j /∈ Ŝ before N steps, or continues for more than N steps. Because of
the structure of quadratic loss, the quantity ∆jE(Ŝ) is directly related to the
change in R2 (defined conventionally). This allows an application of the results
of [17], Lemma 3.3, which relate the increase in R2 from inclusion of a set of
regressors to the increase in R2 from inclusion of each regressor from the set
separately. Noting that |S∗ \ Ŝ| 6 s and applying [17] yields

1{ŝ6N}|E(S∗)− E(Ŝ)| 6 ceig(s+ ŝ)
∑

j∈S∗\Ŝ

−∆jE(S) 6 sctestceig(s+ ŝ).

Next, using standard arguments detailed in the supplimentary appendix,
bounds can be constructed for D2, D3, D4 from which we have

1{ŝ6N}|D2| 6 ceigŝceig(ŝ)(creg + c′reg(N))

1{ŝ6N}|D3| 6 2(s+ ŝ) max{csprs, ctest}ceig(s+ ŝ)creg

1{ŝ6N}|D4| 6 [2(s+ ŝ) max{csprs, ctest}ceig(s+ ŝ)]2creg.

The fact that 1
n

∑n
i=1(fθ∗(xi)−f∗(xi))2 6 csprs + 2creg, together with csprs +

2creg + D1 + D2 + D3 + D4 6 C1 and taking N = (C2 + 1)s yield that with
probability at least 1− α− δ,

1{ŝ6(C2+1)s} ·
1

n

n∑
i=1

(f∗(xi)− fθ̂(xi))
2 6 C1.

We next prove the probabilistic bound for the size of the selected set ŝ in terms
of s. In the course of this proof, it eases exposition to talk about “true and false
regressors” so we introduce a few conventions and notations. Let vk, k = 1, ..., s
denote “true regressors” which are defined as random variables realized as vec-
tors in Rn with components {ψk(xi)}ni=1 with k ∈ S∗, ordered according to
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the order they are selected into the model (any unselected regressors can be
ordered arbitrarily and placed at the end of the list). Let ṽ1, ..., ṽs be orthogo-
nalized regressors obtained from v1, ..., vs through the Gram-Schmidt process,
with respect to 〈·, ·〉 define above. We use the normalization that 〈ṽk, ṽk〉 = 1.

We define “false regressors” simply as those which do not belong to S∗.
Suppose there are m “falsely chosen” regressors w1, ..., wm, ie. regressors chosen
from the complement of S∗. Let w̃j denote orthogonalized versions of wj (we
define the corresponding normalization later), where the orthogonalization order
is defined with respect to the previously selected regressors, including the true
regressors.

Let Ṽ = [ṽ1, ..., ṽs]. Note then that there is θ̃ ∈ Rs such that Ṽ θ̃ =
[v1, ..., vs]θ

∗. In addition, each w̃j can be decomposed into components w̃j =

r̃j + ũj with r̃j ∈ span(Ṽ ) and ũj ∈ span(Ṽ )⊥. Importantly, we assume that
w̃j is normalized so that 〈ũj , ũj〉 = 1. Furthermore, r̃j can be expressed as a

linear combination Ṽ γ̃j with γ ∈ Rs, and we will often simply identify γ̃j with
wj . Finally, let ai := f∗(xi) − fθ∗(xi) and a the vector with components ai. A
simple derivation (see the calculation in the appendix) can be made to show
that the incremental decrease in empirical loss from the jth false selection is

−∆jE(Sj−1) =
(γ̃′j θ̃ + 〈w̃j , a〉)2

〈w̃j , w̃j〉

Therefore, the quantity γ̃′j θ̃ is closely related to the jth false selection.
The key point is that if there are C1 and C2 such that

γ̃′j θ̃/θ̃k > C1 > 0 and θ̃k/θ̃l > C2 > 0

for all j, k, l > k then a bound can be given on the number of false selections in
terms of C1, C2. We prove this fact first, then later derive values for C1 and C2

which hold with high probability.
We remark here that mention of C1 and C2 immediately above is a slight

abuse of notation, since, in the statement of Theorem 1, we had defined functions
C1(m) and C2(m). These objects are related but not identical. What we will
actually do now is for each m, derive constants C1, C2, C which depend (weakly)
on m (and C depends on C1,C2) such that m > Cs gives a contradiction.

The idea guiding the following argument is that if too many variables are
selected, then they must be correlated with each other. Informally, this is moti-
vated by transitivity, since by merit of being selected, they must be correlated
to f∗(xi). For a discussion of partial transitivity of correlation, see [40]. This
transitivity, once made formal, together with the sparse eigenvalue assumption
will lead to a contradiction. To make this logic precise, let W̃ = [w̃1, ..., w̃m],
and similarly decompose W̃ = R̃ + Ũ . Then 〈W̃ , W̃ 〉 = 〈R̃, R̃〉 + 〈Ũ , Ũ〉. Since
diag(〈Ũ ′Ũ〉) = I, it follows that the average correlation between the ũj , given
by ρ̄ := 1

m(m−1)
∑
j 6=l〈ũj , ũl〉, must be bounded below by

ρ̄ > − 1

m− 1
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due to the positive definiteness of 〈Ũ , Ũ〉. This implies an upper bound on the
average off-diagonal term in 〈R̃, R̃〉 since 〈W̃ , W̃ 〉 is a diagonal matrix. More
explicitly, since ṽk are orthonormal, we have that the sum of all the elements
of 〈R̃, R̃〉 is given by ‖

∑m
j=1 γ̃j‖22. Since ‖

∑m
j=1 γ̃j‖22 =

∑m
j=1 ‖γ̃′j‖22 +

∑
j 6=l γ̃

′
j γ̃l

and since 〈W̃ , W̃ 〉 is a diagonal matrix, it must be the case that
∑
j 6=l γ̃

′
j γ̃l = −ρ̄.

Therefore,

ρ̄ =
1

m(m− 1)

∥∥∥ m∑
j=1

γ̃j

∥∥∥2
2
−

m∑
j=1

‖γ̃j‖22

 6
1

m− 1

Note that ‖γ̃j‖2 6 ceig(m + s) − 1 since by Condition 3, 〈w̃j , w̃j〉/〈ũj , ũj〉 6
ceig(m+ s). This then implies that∥∥∥ m∑

j=1

γ̃j

∥∥∥2
2
6 mceig(m+ s)

We next calculate the constant C so that
∥∥∥∑m

j=1 γ̃j

∥∥∥2
2
> mceig(m+ s) when-

ever m > Cs. Intuitively, the idea is to apply a bound like the Cauchy-Schwarz

inequality in reverse to obtain
∥∥∥∑m

j=1 γ̃j

∥∥∥2
2
‖θ̃‖22 >

∑m
j=1 γ̃

′
j θ̃ and use what we

know about γ̃′j θ̃ (given selection for wj into the model) to derive a lower bound

for ‖
∑
γ̃j‖22.

The Cauchy-Schwartz inequality is useful for illustrating the main idea, how-
ever, it is not tight enough for the present purpose, unless a very restrictive
β-min condition is imposed. Instead, the argument relies on Grothendieck’s
inequality which is a theorem of functional analysis proven by Alexander
Grothendieck in 1953 ([21], see for a review, [36]) which bounds the ‖Γ‖∞→1 of
the matrix Γ (defined below) which can then be related to ‖

∑m
j=1 γ̃j‖22.

We define the following matrices. Let m1, ...,ms be sets with mk containing
those j such that wj is selected before vk, but not before any other true regressor.
Let

Γ =



∑
j∈m1

γ̃js
∑
j∈m1

γ̃j2 ...
∑
j∈m1

γ̃js

0
∑
j∈m2

γ̃j2 ...
∑
j∈m2

γ̃js

...
...

. . .
...

0 0 ...
∑
j∈ms

γ̃js


, B =



θ̃1
θ̃1

θ̃2
θ̃1

... θ̃s
θ̃1

θ̃2
θ̃1

θ̃2
θ̃2

... θ̃s
θ̃2

...
...

. . .
...

θ̃s
θ̃1

θ̃s
θ̃2

... θ̃s
θ̃s


note that the kth row of Γ is equal to

∑
j∈mk γ̃j since the orthogonalization

process had enforced γ̃jl = 0 for each l < k. Observe that the diagonal elements
of the product satisfy the equality
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[ΓB]k,k =
∑
j∈mk

γ̃′j θ̃/θ̃k.

by the condition of false selection, this implies that

[ΓB]k,k > C1|mk| and tr(ΓB) > C1m.

Further observe that whenever θ̃k > C2θ̃l for each k, l > k, assuming without
loss of generality that C2 6 1, we have B + C−12 I ∈ M+

G := {Z ∈ Rs×s :
Z > 0,diag(Z) 6 1} . This can be checked by constructing auxiliary random
variables who have covariance matrix B +C−12 I: inductively build a covariance
matrix where the (k + 1)th random variable has θ̃k/θ̃k−1 covariance with the
kth random variable. Then B + C−12 I has a positive definite symmetric matrix

square root so let D2 = B+C−12 I. Therefore, B = (D+C
−1/2
2 I)(D−C−1/22 I).

Note that the rows (and columns) of D each have norm 6 1+C−12 and therefore
B decomposes into a product B = E′F where the rows of E,F all have norm

bounded by 1 + C−12 + C
−1/2
2 =: C ′2.

Consider the set

MG = {Z ∈ Rs×s : Zij = X ′iYj for some Xi, Yj ∈ Rs, ‖Xi‖2, ‖Yj‖2 6 1}

and observe that
B̄ := C ′2

−1
B ∈MG.

Then this observation allows the use of Grothendieck’s inequality (for which we
use the exact form described in [22]) which gives

tr(ΓB̄) 6 max
Z∈MG

tr(ΓZ) 6 KR
G‖Γ′‖∞→1.

Here, KR
G is an absolute constant called Grothendieck’s constant. It is known

to be less than 1.783. Therefore, we have C1m 6 tr(ΓB) = C ′2tr(ΓB̄), which
implies (

KR
G

)−1
C ′2
−1
C1m 6 ‖Γ‖∞→1.

Therefore, there is ν ∈ {−1, 1}s such that ‖ν′Γ‖1 >
(
KR
G

)−1
C ′2
−1
C1m. For this

particular choice of ν, it follows that

‖ν′Γ‖2 > s−1/2
(
KR
G

)−1
C ′2
−1
C1m

Without loss of generality (due to the ambiguity of assigning signs to w̃j in
the orthogonalization process), we may assume that νj = 1 for each j 6 s.
Then ‖ν′Γ‖22 = ‖

∑
j γ̃j‖22. Since from before, we had noted that ‖

∑m
j=1 γ̃j‖22 6

mceig(m+ s), it follows that

s−1
(
KR
G

)−2
C ′2
−2
C2

1m
2 6 mceig(m+ s)
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which yields the conclusion

m 6 ceig(m+ s)C−21 C ′2
2 (
KR
G

)2
s.

This proves that if γ̃′j θ̃/θ̃k > C1 and θ̃k/θ̃l > C2 for all k, l > k then we have
a bound on the number of falsely chosen regressors in terms of C1 and C2. In
the appendix we show that the constants given in the statement of Theorem 1
are sufficient. This concludes the proof of Theorem 1.

8. Conclusion

This paper developes theory for testing-based forward model selection in linear
regression problems. We prove bounds on the performance of greedy stepwise
regression which include probabilistic bound on prediction error and number of
selected covariates. We verify that the stated regularity conditions on the set
of hypothesis tests are attained for the linear model under fixed covariates and
heteroskedastic disturbances. We compare the performance of Lasso and Post-
Lasso to the performance of Forward Selection in Simulation studies and find
that in many instances, Forward Selection shows better performance.
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Appendix A: Additional Simulation

This section provides additional simulations to suppliment those in the main
body of the paper.

As before, we consider the following data generating process:

yi = x′iθ + εi, i = 1, ..., n

p = dim(xi) = cpn, θj = bj−1

xij ∼ N(0, 1), with corr(xij , xik) = .5|j−k|

εi ∼ σiN(0, 1), σi = exp(ρ
∑p
j=1 .75(p−j)xij).

We replicate all simulations with parameter choices

b ∈ {.75, .5,−.5,−.75},
ρ ∈ {0, .5},
cp ∈ {.5, 2},
n ∈ {100, 200}.

A.1. Description of Simulation

For completeness, we again describe the estimators here.
In order to construct the test statistics, we use a both classical IID standard

errors as well Huber-Eicker-White standard errors and compare the performance
of the resulting estimators. We assess the size θ∗j by comparing [θ̂jS ]j/s.e.([θ̂jS ]j)
to each of three thresholds τjS . First, we use the threshold described the paper
given by cτ τ̂jSΦ−1(1 − α/p) with cτ = 1.1, α = .05. The resulting estimator
is called Forward I. Second, we use simply a Bonferroni correction threshold
given by Φ−1(1− .α/p) with α = .05. The resulting estimator is called Forward
II. Finally, we use a step down threshold where, at any juncture with working
model S, we use the threshold Φ−1(1 − α/(p − |S|)). This estimator is called
Forward III.

To construct a Lasso and Post-Lasso estimate, we use the implementation
found in [5]. Their implementation chooses penalty loadings for each covariate
based on an in sample measure of the variability of the covariate-specific score.
They require two tuning parameters which are directly analogous to cτ and α, so
we again use cτ = 1.1 and α = .05. Finally, we consider an infeasible estimator,
which selects a model consisting of {j : |θ∗j | > 1/

√
n}.

The results are presented in Tables 4-11 in this appendix. Note: We print
mean prediction error norm (MPEN), defined by [ 1n

∑n
i=1(f∗(xi)− f̂(xi))

2]1/2,
and mean size of selected set (MSSS). The results are qualitatively similar to
those presented in the main text.
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Table 4
Forward Model Selection Simulation Results:

Sample Size : n = 100, Dimensionality : p = .5n
Disturbances : Homoskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 0.85 2.95 0.86 2.99
Forward II 0.55 4.87 0.55 4.90
Forward III 0.54 4.92 0.55 4.94
Lasso 3.10 4.05 2.78 4.25
Post-Lasso 0.66 4.05 0.63 4.25
Oracle 0.33 9.00 0.33 9.00

B. θj = .5j−1

Forward I 0.45 1.79 0.46 1.80
Forward II 0.36 2.28 0.36 2.38
Forward III 0.36 2.29 0.36 2.39
Lasso 1.17 1.35 1.40 1.75
Post-Lasso 0.57 1.35 0.44 1.75
Oracle 0.21 4.00 0.21 4.00

C. θj = (−.5)j−1

Forward I 0.41 1.04 0.41 1.06
Forward II 0.33 1.57 0.33 1.64
Forward III 0.33 1.58 0.33 1.64
Lasso 0.89 0.00 0.83 0.19
Post-Lasso 0.89 0.00 0.79 0.19
Oracle 0.19 4.00 0.19 4.00

D. θj = (−.75)j−1

Forward I 0.69 1.16 0.69 1.17
Forward II 0.54 2.25 0.54 2.29
Forward III 0.54 2.27 0.54 2.31
Lasso 1.02 0.01 0.99 0.10
Post-Lasso 1.01 0.01 0.98 0.10
Oracle 0.30 9.00 0.30 9.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set (MSSS)
for several estimators described in the text.
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Table 5
Forward Model Selection Simulation Results:

Sample Size : n = 100, Dimensionality : p = .5n
Disturbances : Heteroskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 1.59 1.22 1.47 1.34
Forward II 1.52 1.56 1.34 1.79
Forward III 1.52 1.56 1.34 1.80
Lasso 3.43 10.58 3.10 10.81
Post-Lasso 1.76 10.58 1.80 10.81
Oracle 1.04 9.00 1.03 9.00

B. θj = .5j−1

Forward I 1.06 0.82 0.95 0.83
Forward II 1.06 0.89 0.93 0.93
Forward III 1.06 0.90 0.93 0.93
Lasso 2.51 8.32 2.29 8.62
Post-Lasso 1.65 8.32 1.72 8.62
Oracle 0.66 4.00 0.68 4.00

C. θj = (−.5)j−1

Forward I 0.91 0.33 0.77 0.33
Forward II 0.92 0.35 0.78 0.35
Forward III 0.92 0.35 0.78 0.35
Lasso 1.98 7.25 1.77 7.12
Post-Lasso 1.73 7.25 1.69 7.12
Oracle 0.69 4.00 0.65 4.00

D. θj = (−.75)j−1

Forward I 1.07 0.31 0.97 0.25
Forward II 1.07 0.33 0.97 0.28
Forward III 1.07 0.33 0.97 0.28
Lasso 2.01 6.81 1.92 7.83
Post-Lasso 1.77 6.81 1.89 7.83
Oracle 1.03 9.00 1.06 9.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set (MSSS)
for several estimators described in the text.
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Table 6
Forward Model Selection Simulation Results:

Sample Size : n = 100, Dimensionality : p = 2n
Disturbances : Homoskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 0.96 2.51 0.94 2.61
Forward II 0.62 4.34 0.61 4.45
Forward III 0.61 4.35 0.61 4.46
Lasso 2.55 3.63 2.43 4.00
Post-Lasso 0.74 3.63 0.67 4.00
Oracle 0.33 9.00 0.33 9.00

B. θj = .5j−1

Forward I 0.52 1.56 0.52 1.57
Forward II 0.38 2.14 0.39 2.25
Forward III 0.38 2.15 0.39 2.25
Lasso 1.07 1.12 1.13 1.58
Post-Lasso 0.68 1.12 0.49 1.58
Oracle 0.21 4.00 0.21 4.00

C. θj = (−.5)j−1

Forward I 0.41 1.03 0.41 1.06
Forward II 0.35 1.41 0.36 1.50
Forward III 0.36 1.41 0.36 1.50
Lasso 0.90 0.00 0.87 0.07
Post-Lasso 0.90 0.00 0.85 0.07
Oracle 0.20 4.00 0.19 4.00

D. θj = (−.75)j−1

Forward I 0.72 1.02 0.72 1.06
Forward II 0.59 1.83 0.60 1.91
Forward III 0.59 1.83 0.60 1.91
Lasso 1.02 0.00 1.01 0.06
Post-Lasso 1.02 0.00 1.00 0.06
Oracle 0.30 9.00 0.30 9.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set (MSSS)
for several estimators described in the text.



Damian Kozbur/Testing-Based Forward Model Selection 33

Table 7
Forward Model Selection Simulation Results:

Sample Size : n = 100, Dimensionality : p = 2n
Disturbances : Heteroskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 1.65 1.01 1.55 1.12
Forward II 1.59 1.27 1.46 1.42
Forward III 1.59 1.28 1.46 1.42
Lasso 3.72 17.41 3.47 19.34
Post-Lasso 2.41 17.41 2.62 19.34
Oracle 1.04 9.00 1.06 9.00

B. θj = .5j−1

Forward I 1.12 0.70 1.00 0.74
Forward II 1.12 0.73 0.99 0.80
Forward III 1.12 0.73 0.99 0.80
Lasso 2.93 14.92 2.74 15.30
Post-Lasso 2.33 14.92 2.40 15.30
Oracle 0.67 4.00 0.68 4.00

C. θj = (−.5)j−1

Forward I 0.92 0.19 0.81 0.22
Forward II 0.93 0.20 0.82 0.23
Forward III 0.93 0.20 0.82 0.23
Lasso 2.39 12.66 2.34 13.77
Post-Lasso 2.30 12.66 2.38 13.77
Oracle 0.66 4.00 0.66 4.00

D. θj = (−.75)j−1

Forward I 1.10 0.17 0.99 0.16
Forward II 1.10 0.18 0.99 0.16
Forward III 1.10 0.18 0.99 0.16
Lasso 2.69 14.52 2.41 14.13
Post-Lasso 2.58 14.52 2.52 14.13
Oracle 1.08 9.00 1.04 9.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set (MSSS)
for several estimators described in the text.
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Table 8
Forward Model Selection Simulation Results:

Sample Size : n = 200, Dimensionality : p = .5n
Disturbances : Homoskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 0.64 4.03 0.64 4.04
Forward II 0.41 5.98 0.41 5.98
Forward III 0.41 6.00 0.41 6.00
Lasso 4.61 4.11 4.29 4.39
Post-Lasso 0.65 4.11 0.60 4.39
Oracle 0.25 10.00 0.25 10.00

B. θj = .5j−1

Forward I 0.35 2.12 0.36 2.11
Forward II 0.26 2.81 0.26 2.84
Forward III 0.26 2.82 0.26 2.84
Lasso 1.34 1.31 2.04 1.75
Post-Lasso 0.58 1.31 0.43 1.75
Oracle 0.16 4.00 0.16 4.00

C. θj = (−.5)j−1

Forward I 0.38 1.14 0.38 1.16
Forward II 0.24 2.04 0.24 2.07
Forward III 0.24 2.04 0.24 2.08
Lasso 0.89 0.00 0.87 0.06
Post-Lasso 0.89 0.00 0.86 0.06
Oracle 0.14 4.00 0.14 4.00

D. θj = (−.75)j−1

Forward I 0.63 1.47 0.63 1.48
Forward II 0.40 3.34 0.40 3.38
Forward III 0.40 3.35 0.40 3.39
Lasso 1.02 0.00 1.01 0.04
Post-Lasso 1.02 0.00 1.01 0.04
Oracle 0.22 10.00 0.22 10.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set (MSSS)
for several estimators described in the text.
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Table 9
Forward Model Selection Simulation Results:

Sample Size : n = 200, Dimensionality : p = .5n
Disturbances : Heteroskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 1.41 1.51 1.34 1.60
Forward II 1.27 2.10 1.19 2.19
Forward III 1.27 2.11 1.19 2.19
Lasso 4.37 11.65 3.95 12.77
Post-Lasso 1.46 11.65 1.58 12.77
Oracle 0.80 10.00 0.81 10.00

B. θj = .5j−1

Forward I 0.87 1.01 0.83 0.99
Forward II 0.85 1.15 0.78 1.15
Forward III 0.85 1.15 0.78 1.15
Lasso 2.89 8.68 2.79 9.97
Post-Lasso 1.33 8.68 1.44 9.97
Oracle 0.49 4.00 0.50 4.00

C. θj = (−.5)j−1

Forward I 0.79 0.47 0.68 0.50
Forward II 0.79 0.49 0.68 0.52
Forward III 0.79 0.49 0.68 0.52
Lasso 1.72 7.04 1.70 8.01
Post-Lasso 1.34 7.04 1.45 8.01
Oracle 0.49 4.00 0.49 4.00

D. θj = (−.75)j−1

Forward I 1.00 0.37 0.92 0.39
Forward II 1.00 0.42 0.92 0.44
Forward III 1.00 0.42 0.92 0.44
Lasso 1.89 7.67 1.78 8.16
Post-Lasso 1.55 7.67 1.58 8.16
Oracle 0.79 10.00 0.78 10.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set (MSSS)
for several estimators described in the text.
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Table 10
Forward Model Selection Simulation Results:

Sample Size : n = 200, Dimensionality : p = 2n
Disturbances : Homoskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 0.70 3.69 0.71 3.65
Forward II 0.44 5.59 0.45 5.56
Forward III 0.44 5.59 0.45 5.57
Lasso 3.89 3.77 3.80 4.05
Post-Lasso 0.71 3.77 0.66 4.05
Oracle 0.25 10.00 0.25 10.00

B. θj = .5j−1

Forward I 0.37 2.02 0.37 2.01
Forward II 0.29 2.58 0.29 2.62
Forward III 0.29 2.58 0.29 2.62
Lasso 1.07 1.07 1.56 1.59
Post-Lasso 0.69 1.07 0.47 1.59
Oracle 0.16 4.00 0.16 4.00

C. θj = (−.5)j−1

Forward I 0.40 1.06 0.40 1.08
Forward II 0.26 1.86 0.26 1.91
Forward III 0.26 1.86 0.26 1.91
Lasso 0.89 0.00 0.89 0.02
Post-Lasso 0.89 0.00 0.89 0.02
Oracle 0.14 4.00 0.14 4.00

D. θj = (−.75)j−1

Forward I 0.67 1.24 0.67 1.24
Forward II 0.44 2.96 0.44 2.96
Forward III 0.44 2.96 0.44 2.97
Lasso 1.02 0.00 1.02 0.01
Post-Lasso 1.02 0.00 1.02 0.01
Oracle 0.22 10.00 0.23 10.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set (MSSS)
for several estimators described in the text.
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Table 11
Forward Model Selection Simulation Results:

Sample Size : n = 200, Dimensionality : p = 2n
Disturbances : Heteroskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 1.47 1.29 1.41 1.40
Forward II 1.33 1.76 1.26 1.90
Forward III 1.33 1.76 1.26 1.90
Lasso 4.37 18.07 4.14 21.89
Post-Lasso 1.93 18.07 2.21 21.89
Oracle 0.79 10.00 0.83 10.00

B. θj = .5j−1

Forward I 0.89 0.92 0.85 0.92
Forward II 0.88 0.99 0.83 1.01
Forward III 0.88 0.99 0.83 1.01
Lasso 3.01 14.04 2.95 17.73
Post-Lasso 1.76 14.04 2.02 17.73
Oracle 0.49 4.00 0.49 4.00

C. θj = (−.5)j−1

Forward I 0.81 0.33 0.72 0.40
Forward II 0.81 0.34 0.72 0.42
Forward III 0.81 0.34 0.72 0.42
Lasso 2.00 11.97 2.11 14.80
Post-Lasso 1.76 11.97 1.96 14.80
Oracle 0.48 4.00 0.49 4.00

D. θj = (−.75)j−1

Forward I 1.01 0.22 0.95 0.27
Forward II 1.01 0.23 0.95 0.30
Forward III 1.01 0.23 0.95 0.30
Lasso 2.21 13.33 2.34 16.90
Post-Lasso 2.00 13.33 2.20 16.90
Oracle 0.79 10.00 0.81 10.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set (MSSS)
for several estimators described in the text.
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Appendix B: Suppliment: Supporting Calculations

This appendix includes supporting calculations for the proof of the main result.

B.1. Calculation 1

n∑
i=1

(yi − ψ(xi)
′θ̂)2 6

n∑
i=1

(yi − ψ(xi)
′θ∗
Ŝ

)2

=⇒
n∑
i=1

(ψ(xi)
′θ∗ + εi + ai − ψ(xi)

′θ̂)2 6
n∑
i=1

(ψ(xi)
′θ∗ + εi + ai − ψ(xi)

′θ∗
Ŝ

)2

=⇒
n∑
i=1

(ψ(xi)
′θ∗ + εi + ai − ψ(xi)

′θ̂)2 6
n∑
i=1

(ψ(xi)
′θ∗ + εi + ai − ψ(xi)

′θ∗
Ŝ

)2

=⇒
n∑
i=1

[ψ(xi)
′(θ∗ − θ̂)]2 + (εi + ai)

2 + 2(ai + εi)ψ(xi)
′(θ∗ − θ̂)

6
n∑
i=1

[ψ(xi)(θ
∗ − θ∗

Ŝ
)]2 + (εi + ai)

2 + 2(ai + εi)ψ(xi)
′(θ∗ − θ∗

Ŝ
)

=⇒
n∑
i=1

(fθ∗(xi)− fθ̂(xi))
2 6

n∑
i=1

[ψ(xi)(θ
∗ − θ∗

Ŝ
)]2 + 2(ai + εi)ψ(xi)

′(θ̂ − θ∗
Ŝ

)

Considering Ŝ fixed when calculating E(Ŝ), note that

E(S∗)− E(Ŝ) =
1

n

n∑
i=1

E[(yi − ψ(xi)
′θ∗)2 − E(yi − ψ(xi)

′θ∗
Ŝ

)2]

=
1

n

n∑
i=1

E[(ai + εi)
2 − (ai + εi − ψ(xi)

′(θ∗
Ŝ
− θ∗))2]

=
1

n

n∑
i=1

E[(ψ(xi)
′(θ∗

Ŝ
− θ∗))2 + 2(ai + εi)ψ(xi)

′(θ∗
Ŝ
− θ∗)]

=
1

n

n∑
i=1

E[(ψ(xi)
′(θ∗

Ŝ
− θ∗))2 + 2aiψ(xi)

′(θ∗
Ŝ
− θ∗)]

=⇒
n∑
i=1

(fθ∗(xi)− fθ̂(xi))
2 6

n∑
i=1

[ψ(xi)
′(θ∗ − θ∗

Ŝ
)]2 + 2(ai + εi)ψ(xi)

′(θ̂ − θ∗
Ŝ

)
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Therefore,

1

n

n∑
i=1

(fθ∗(xi)− fθ̂(xi))
2 6 |E(Ŝ)− E(S∗)|+ |2 1

n

n∑
i=1

ε∗iψ(xi)
′(θ̂ − θ∗

Ŝ
)|

+

∣∣∣∣∣ 1n
n∑
i=1

(aiψ(xi)− Eaiψ(xi))
′(θ∗

Ŝ
− θ∗)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

(ψ(xi)
′(θ∗

Ŝ
− θ∗))2 − E(ψ(xi)

′(θ∗
Ŝ
− θ∗))2

∣∣∣∣∣
:= D1 +D2 +D3 +D4

B.2. Calculation 2

Suppose that |E(Ŝ) − E(S∗)| 6 sctestceig(s) then we can bound D3 + D4 by
noting that

|E(Ŝ)− E(S∗)| ≡ D1 6 sctestceig(s)

implies a bound on ‖θ∗
Ŝ
− θ∗‖1. To show this, define dŜ = θ∗

Ŝ
− θ∗. Recall that

E(Ŝ)− E(S∗) =
1

n

n∑
i=1

E[(ψ(xi)
′(θ∗

Ŝ
− θ∗))2 + 2aiψ(xi)

′(θ∗
Ŝ
− θ∗)]

= d′
Ŝ

[
1

n

n∑
i=1

Eψ(xi)ψ(xi)
′

]
dŜ + 2

1

n

n∑
i=1

Eaiψ(xi)
′dŜ

Consider two cases. First, if∣∣∣∣∣2 1

n

n∑
i=1

Eaiψ(xi)
′dŜ

∣∣∣∣∣ 6 1

2
d′
Ŝ

[
1

n

n∑
i=1

Eψ(xi)ψ(xi)
′

]
dŜ

Then since the right hand side above is nonnegative, it follows that

D1 = E(Ŝ)− E(S∗) >
1

2
d′
Ŝ

[
1

n

n∑
i=1

Eψ(xi)ψ(xi)
′

]
dŜ

>
1

2
λmin(

1

n

n∑
i=1

Eψ(xi)ψ(xi)
′)‖dŜ‖

2
2

which implies that

‖dŜ‖1 6
√
|Ŝ ∪ S∗| 1√

2
D

1/2
1 λmin(

1

n

n∑
i=1

Eψ(xi)ψ(xi)
′)−1/2
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Consider the other case, that

|2 1

n

n∑
i=1

Eaiψ(xi)
′dŜ | >

1

2
d′
Ŝ

[
1

n

n∑
i=1

Eψ(xi)ψ(xi)

]
dŜ

Then bound∣∣∣∣∣2 1

n

n∑
i=1

Eaiψ(xi)
′dŜ

∣∣∣∣∣ 6 2‖dŜ‖1

√√√√ 1

n

n∑
i=1

Ea2i max
j

√√√√ 1

n

n∑
i=1

Eψj(xi)2

Combining the above two bound with

1

2
d′
Ŝ

[
1

n

n∑
i=1

Eψ(xi)ψ(xi)
′

]
dŜ > λmin

[
1

n

n∑
i=1

Eψ(xi)ψ(xi)
′

]
‖dŜ‖

2
2

gives

λmin

[
1

n

n∑
i=1

Eψ(xi)ψ(xi)
′

]
‖dŜ‖

2
2 6 2‖dŜ‖1

√√√√ 1

n

n∑
i=1

Ea2i max
j

√√√√ 1

n

n∑
i=1

Eψj(xi)2

Simplifying by noting the assumed facts that
√

1
n

∑n
i=1Eψj(xi)2 = 1 and

λmin

[
1
n

∑n
i=1EψS∗∪Ŝ(xi)ψS∗∪Ŝ(xi)

′] > ceig(ŝ+ s)−1 yields

ceig(ŝ+ s)−1(ŝ+ s)−1‖dŜ‖
2
1 6 2‖dŜ‖1csprs

which implies that

‖dŜ‖1 6 2csprsceig(s+ ŝ)(ŝ+ s).

Summarizing the above calculation, we have that

‖dŜ‖1 6 max
{

2csprsceig(s+ ŝ)(s+ ŝ),
√
ŝ+ s2

√
sctestceig(ŝ+ s)1/2ceig(ŝ+ s)1/2

}
6 2(s+ ŝ) max{csprs, ctest}ceig(s+ ŝ)

Note now that

D3 6 ‖θ∗ − θ∗
Ŝ
‖1 max

j

∣∣∣∣∣ 1n
n∑
i=1

aiψj(xi)− Eaiψj(xi)

∣∣∣∣∣
6 2(s+ ŝ) max{csprs, ctest}ceig(s+ ŝ)creg.

In addition,
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D4 =
∑
j,l

[θ∗ − θ∗
Ŝ

]j [θ
∗ − θ∗

Ŝ
]l

1

n

n∑
i=1

ψj(xi)ψl(xi)
′ − Eψj(xi)ψl(xi)

′

6 ‖θ∗ − θ∗
Ŝ
‖21 max

j,l

∣∣∣∣∣ 1n
n∑
i=1

ψj(xi)ψl(xi)
′ − Eψj(xi)ψl(xi)

′

∣∣∣∣∣
6 [2(s+ ŝ) max{csprs, ctest}ceig(s+ ŝ)]2creg.

B.3. Calculation 3

In this subsection, we bound 2 1
n

∑n
i=1εiψ(xi)

′(θ̂ − θ∗
Ŝ

).
Note that by Hölder’s inequality,

∣∣∣∣∣ 1n
n∑
i=1

2εiψ(xi)
′(θ̂ − θ∗

Ŝ
)

∣∣∣∣∣ 6 ‖ 1

n

n∑
i=1

2εiψ(xi)‖∞‖θ̂ − θ∗Ŝ‖1

Use Condition 4 to bound ‖ 1n
∑n
i=12εiψ(xi)‖∞ 6 creg. Use the notation ψŜ to

be the matrix with elements ψj(xi) for j ∈ Ŝ, and similar for ψj . Define for each
S, εiS = yi − ψS(xi)θ

∗
S . Using Conditions 4 and 5, the following bounds hold:

‖θ̂ − θ∗
Ŝ
‖1 = ‖(ψ′

Ŝ
ψŜ)−1ψŜεŜ‖1

6 ŝ1/2
∥∥∥(ψ′

Ŝ
ψŜ)−1ψŜεŜ

∥∥∥
2

6 ŝ1/2λmin(
1

n
ψ′
Ŝ
ψŜ)−1‖ 1

n
ψ′
Ŝ
εŜ‖2

6 ŝ1/2λmin(
1

n
ψ′
Ŝ
ψŜ)−1ŝ1/2 max

j∈Ŝ
| 1
n
ψ′jεŜ |

6 ŝ1/2λmin(
1

n
ψ′
Ŝ
ψŜ)−1ŝ1/2

(
max
j6p

∣∣∣∣ 1nψ′jε
∣∣∣∣+ max

j∈Ŝ

∣∣∣∣ 1nψ′j(εŜ − ε)
∣∣∣∣
)

6 ŝceig(ŝ)

(
creg + max

j∈Ŝ

∣∣∣∣ 1nψ′j(εŜ − ε)
∣∣∣∣
)

6 ŝceig(ŝ)

(
creg + max

S:|S|6N, E(S)−E(S∗)62sctestceig(N)
max
j∈S

∣∣∣∣ 1nψ′j(εS − ε)
∣∣∣∣)

6 ŝceig(ŝ)(creg + c′reg(N))

B.4. Calculation 4

Here we calculate ∆jE(S) in terms of the quantities θ̃, γ̃j as defined in the main
text.
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Let Q denote projection onto space orthogonal to the previously selected
regressors. Note that ∆jE(S) = 〈f∗,Qxj〉 (〈Qxj ,Qxj〉)−1 〈Qxj , f∗〉.

Note that if j /∈ S∗, then Qxj = w̃j . Apply f∗ = fθ∗ + a and note that by

construction, 〈fθ∗ , w̃j〉 = γ̃′j θ̃, from which the claim follows.

B.5. Calculation 5

Here we calculate the constants C1 and C2 in the proof of Theorem 1. To ease
notation, we omit the dependence on N of the constant ceig: any appearence of
ceig is meant as ceig(s+m).

In order for a false selection of wj to occur while vk is the next unselected
true regressor, it is necessarily the case that for the current standing selected
set S,

TjS = 1 and WjS >WkS if TkS = 1

In the case that TkS = 0, then because of Condition 3, projection of vk to
the space spanned by the previously selected regressors has length at least c−1eig

in the direction ṽk, which yields

c−1eig θ̃k + 〈Qṽk, a〉 < c
1/2
test.

where Q denotes projection onto the space orthogonal to the span of
the previously selected regressors. Then with Cauchy-Schwarz, |〈Qṽk, a〉| 6

(〈ṽk, ṽk〉)1/2c1/2sprs = c
1/2
sprs gives

θ̃k 6
c
1/2
test + c

1/2
sprs

c−1eig

.

At the same time, since wj was selected,

(γ̃′j θ̃ + 〈w̃j , a〉)2

〈w̃j , w̃j〉
> c′test.

This, along with the fact that 〈w̃j , w̃j〉 > 1 by consequence of the normalization,
gives gives

(γ̃′j θ̃ + 〈w̃j , a〉)2 > c′test.

Next note that |〈w̃j , a〉| 6 〈w̃j , w̃j〉1/2〈a, a〉1/2 = (〈r̃j , r̃j〉+ 〈ũj , ũj〉)1/2 〈a, a〉1/2

with the final expression bounded by 6 (〈r̃j , r̃j〉+ 1)
1/2

c
1/2
sprs. Finally, 〈r̃j , r̃j〉 6

ceig also by Condition 3. So

γ̃′j θ̃ >
[
c′test

1/2 − c1/2sprs(1 + ceig)1/2
]
+
.
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This implies the relation

γ̃′j θ̃/θ̃k > c−1eig

[
c′test

1/2 − c1/2sprs(1 + ceig)1/2
]
+

ctest1/2 + c
1/2
sprs

=: C ′1.

In the other case, where TkS = 1, then

(γ̃′j θ̃ + 〈w̃j , a〉)2

〈w̃j , w̃j〉
> c′′test(c

−1
eig θ̃k + 〈ṽk, a〉)2

then

|γ̃′j θ̃ + 〈w̃j , a〉| > c′′test
1/2|c−1eig θ̃k + 〈ṽk, a〉|

then

γ̃′j θ̃/θ̃k > c′′test
1/2
[
c−1eig +

1

θ̃k
〈ṽk, a〉

]
+

− 1

θ̃k
|〈w̃j , a〉|

but since TkS = 1 then

(θ̃k + 〈Qṽk, a〉)2

〈Qṽk,Qṽk〉
> c′test

which gives θ̃k > c′test
1/2
c
−1/2
eig −c

1/2
sprs and 1

θ̃k
6 1(

c′test
1/2c

−1/2
eig −c1/2sprs

)
+

which implies

that

γ̃′j θ̃/θ̃k > c′′test
1/2

c−1eig −
c
1/2
sprs(1 + c′′test

−1/2
(1 + ceig)1/2)(

c′test
1/2c

−1/2
eig − c1/2sprs

)
+


+

= c′′test
1/2

c−1eig −
(
csprs
c′test

)1/2
(1 + c′′test

−1/2
(1 + ceig)1/2)(

c
−1/2
eig − (csprs/c′test)

1/2
)
+


+

=: C ′′1

defining C1 = min {C ′1, C ′′1 }, we have that

γ′j θ̃/θ̃k > C1.

Finally, by similar logic as above, we may take C2 = C1c
−1/2
eig .
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B.6. Here we prove Theorem 2

Use the stacking notation defined previously. Let PS = ψS(ψ′SψS)−1ψ′S MS =
I − PS . Then

[θ̂jS ]j = [θ∗jS ]j + (ψ′jMSψj)
−1ψ′jMSεjS .

Use ψ̆jS to denote MSψj . Under quadratic loss we have

∆jE(S) = E
1

n

n∑
i=1

[
(yi − x′iθ∗S)2 − (yi − x′iθ∗jS)2

]
and a simple derivation gives

∆jE(S) = [θ∗Sj ]
2
j



[ 1

n

n∑
i=1

ψ̆(xi)ψ̆(xi)
′

]
Sj,Sj

−1

jj


−1

:= [θ∗Sj ]
2
jAjS

Let:

εijS = yi − ψjS(xi)
′θjS

ζjS = ψ̆jSεjS

ΣjS =

n∑
i=1

ψ̆2
ijSεijS

2, Σ̂jS =

n∑
i=1

ψ̆2
ijS ε̂

2
ijS

VjS = A−2js ΣjS , V̂jS = A−2js Σ̂jS

finally, we define the quantity ξijS : εijS = εi + ξijS .
We denote by ε the vector of true disturbances (without subscripts). We use

similar notation for ξjS etc. Then we can write

[θ̂jS ]j − [θ∗jS ]j = A−1jS ζjS

We analyze the quantity
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ZNn := max
j,|S|6Nn

V̂
−1/2
jS (̂[θjS ]j − [θjS ]∗j )

= max
j,|S|6Nn

([
Σ
−1/2
jS ζjS

]
+
[
(Σ̂
−1/2
jS − Σ

−1/2
jS )ζjS

])
6 max
j,|S|6Nn

[
Σ
−1/2
jS ζjS

]
+ max
j,|S|6Nn

[
(Σ̂
−1/2
jS − Σ

−1/2
jS )ζjS

]
=: Z

[1]
Nn

+ Z
[2]
Nn

The goal is to get control on the two bracketed terms on the right hand side
uniformly for all j, |S| 6 Nn, for the sequence Nn defined in the conditions of
the theorem. Analyze the two terms on the right hand side above separately.
Starting with the second:

Z
[2]
Nn

= max
jS
|(Σ̂−1/2jS − Σ

−1/2
jS )ζjS |

6 max
jS
|(Σ̂−1/2jS /Σ

−1/2
jS )− 1|max

jS
|Σ−1/2jS ζjS |

Next we show uniformly over sequences satisfying the conditions of Theorem
2, (with common implied constants), that

max
jS
|(Σ̂−1/2jS /Σ

−1/2
jS )− 1| = OP

√
N2
n log p/n

Consider

Σ̂jS − ΣjS =

n∑
i=1

ψ̆2
ijS(ε̂2ijS − εijS2)

6
n∑
i=1

ψ̆2
i ψ
′
ijS(θ∗jS − θ̂jS)2 + 2

n∑
i=1

ψ̆2
ijSεiψ

′
ijS(θ∗jS − θ̂jS)

Letting djS = θjS − θ̂jS then the above is bounded according to:

6 ‖djS‖21
n∑
i=1

ψ̆2
ijS‖ψijS‖2∞ + ‖djS‖1

∥∥∥∥∥
n∑
i=1

ψ̆2
ijSεiψijS

∥∥∥∥∥
∞

6 ‖djS‖21O(n) + ‖djS‖1OP (
√
Nn log p)

We bound the quantity djS by

max
jS
‖djS‖2 = max

jS
‖(ψ′jSψjS)−1ψ′ε‖2 6 ceig(Nn)‖ψ′jSε‖2
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6
√
Nnceig(Nn) max

j
| 1
n
ψ′jε|

so that,

max
jS
‖djS‖1 6

√
Nn
√
Nnceig(Nn) max

j
| 1
n
ψ′jε|

= O(Nn) max
j
| 1
n
ψ′jε|.

Note that maxj | 1nψ
′
jεi| 6 |maxj Σ

−1/2
j∅

1
nψ
′
jεi|maxj Σ

1/2
j∅

Using Condition 4 and applying the theory for moderate deviation bounds for
self-normalized sums (see [26], [5]), this gives uniformly over sequences satisfying
conditions of Theorem 2:

|max
j

√
nΣ
−1/2
j∅

1

n
ψ′jεi|max

j
Σ

1/2
j∅ /
√
n = OP (

√
log p)OP (1).

Which implies

Σ̂jS − ΣjS = OP (Nn
√

log p/n)

Since the ΣjS are all bounded away from zero and above with probability
1− o(1), we have finally that

max
j,|S|6Nn

|Σ̂−1/2jS /Σ
−1/2
jS − 1| = OP (

√
N2
n log p/n).

We note here that the upcoming derived bounds also hold uniformly over
sequences Pn, but we will from here forward omit mention of that fact.

Now we turn to bounding the quantiles of maxjS |Σ−1/2jS ζjS |. This is a self-
normlized sum. The denominator has the form

=

√√√√ n∑
i=1

ψ̆2
ijS(εi2 + 2εiξijS + ξijS

2)

which due to the large deviation assumption stated in Condition 4, is with high
probability smaller than √√√√ n∑

i=1

ψ̆2
ijSε

2
i

In the numerator of the self-normlized sum Σ
−1/2
jS ζjS , we have

ψ̆′jS(ε+ ξjS) = ψ̆′jSε

from the fact that ξjS and ψ̆jS are exactly orthogonal (using that fact that the
covariates are fixed). Note that had we allowed random covariates, we would
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have needed to additionally bound terms of the form
∑n
i=1 ξ

∗
i ψk(xi)√∑n

i=1 ξ
∗
i ψk(xi)

2
ranging

over j, S.

Consider the event Rt defined as

Rt :=

{
|
∑n
i=1 εiψk(xi)|√∑n
i=1 εiψk(xi)2

6 t for every k 6 p

}
Next note that on Rt, the following inequality holds

 n∑
i=1

∑
k∈jS

ηkψk(xi)εi

2

6

t ∑
k∈jS

ηk

√√√√ n∑
i=1

ψk(xi)2ε2i

2

Next, define the matrix Ψε
jS such that [Ψε

jS ]k,l =
∑n
i=1 ε

2
iψk(xi)ψl(xi) for k, l ∈

jS. Similarly, define ΨjS such that [ΨjS ]k,l =
∑n
i=1 ψk(xi)ψl(xi). With this

definition we have

 n∑
i=1

∑
k∈jS

ηkψk(xi)εi

2

6 τjS
2t2η′Ψεη = τjS

2t2
n∑
i=1

∑
k∈jS

ηkψk(xi)

2

ε2i

So that
|Σ−1/2jS ζjS | 6 τjSt on Rt

Applying Condition Ex1.4 and using the moderate deviation results derived
in [26], in the manner described in [5], we are led to the conclusion that

max
j,|S|6Nn

|Σ−1/2jS ζjS | = OP (
√

log p)

Which in turn implies that

max
jS
|(Σ̂−1/2jS /Σ

−1/2
jS )− 1|max

jS
|Σ−1/2jS ζjS | = OP (

√
N2
n log2 p/n) = oP (1)

finally giving

Z
[2]
Nn

= oP (1).
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At this juncture, having shown the simplification that ZNn = Z
[1]
Nn

+oP (1), we
turn to understanding the size and power properties of the defined hypothesis
tests. Unfortunately, the quantity τ is infeasible since it involves εi terms. Note
that in constructing testing thresholds, we had proposed replacing Ψε with the
analogously defined estimate Ψε̂ (defined so that [Ψε

jS ]k,l =
∑n
i=1 ε

2
iψk(xi)ψl(xi)

for k, l ∈ jS.) Under calculations like before we have

max
j,|S|6Nn

‖Ψε
jS −Ψε̂

jS‖2→2 →P 0

which implies that uniformly over j, |S| 6 Nn, τ̂jS − τjS →P 0.

Let tα := Φ−1(1− α/p). Then by construction,

TjSα = 1 ⇐⇒ |V̂ −1/2jS [θ̂jS ]j | > cτ τ̂jStα

Note that, as argued above using moderate deviation bounds applied by Con-
dition Ex1.4, we have P (Rtα) = α + o(1). By the above, with probability
1− α+ o(1),

|V̂ −1/2jS ([θ̂jS ]j − [θ∗jS ]j)| 6 τjStα + o(1)

The above two inequalities imply that whenever TjSα = 1,

|V̂ −1/2jS [θ∗jS ]j | > (cτ τ̂jS − τjS)tα − o(1)

Also, with probability 1− o(1), for n sufficiently large,

V̂ 1/2(cτ τ̂jS − τjS)tα > V
1/2
jS

cτ + 1

2
τjStα.

Summarizing gives that with probability 1− α− o(1) :

{
TjSα = 1 =⇒ |[θ∗jS ]j | > V

1/2
jS

cτ + 1

2
τjStα

}
.

which is equivalent to{
|[θ∗jS ]j | 6

cτ + 1

2
V

1/2
jS τtα =⇒ TjSα = 0

}
.

By similar logic, we have with probability 1− o(1)− α the event:

{
|[θ∗jS ]j | > (cτ + 1)V

1/2
jS τjStα =⇒ TjSα = 1

}
.
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At this point, we point out that by assumption, V
1/2
jS ×

√
n is with high

probability bounded away from zero and above, for all j, S, by constants which
are independent of n. The same is true for τ . These calculations imply that
there are sequences

ctest = ctest(n) = O

(√
log(p/α)

n

)

and

c′test = c′test(n) = Θ

(√
log(p/α)

n

)
such that {

|[θ∗jS ]j | 6 ctest(n) =⇒ TjSα = 0
}

and {
|[θ∗jS ]j | > c′test(n) =⇒ TjSα = 1

}
for all j, |S| 6 Nn with high probability 1− o(1).

Now suppose TjSα = TkSα = 1 and that WjS > WkS . We derive some facts
which are useful for verifying Condition 2(III) for applying Theorem 1 to this
problem. We have,

|V̂ −1/2jS ([θ̂jS ]j − [θ∗jS ]j) + V̂
−1/2
jS [θ∗jS ]j | > |V̂ −1/2kS ([θ̂kS ]k − [θ∗kS ]k) + V̂

−1/2
kS [θ∗kS ]k|

We lower bound the right hand side and upper bound the left hand side of the

above inequality. We start with the right hand side. As above, |V −1/2kS [θ∗kS ]k| >
cτ+1

2 τjStα and |V̂ −1/2kS ([θ̂kS ]k − [θ∗kS ]k)| 6 τjStα imply that

WkS >
cτ − 1

2
|V̂ −1/2kS [θ∗kS ]k|

A similar argument shows that

cτ + 1

2
|V̂ −1/2jS [θ∗jS ]j | >WjS

letting F̂jkS =
AjS V̂

−1/2
jS

AkS V̂
−1/2
kS

, we have from our formula for ∆jE(S) above that

−∆jE(S) > F̂jkS
cτ − 1

cτ + 1
(−∆kE(S))

Finally, F̂jkS > c with probability 1− o(1).
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As above, V̂
1/2
jS = AjSΣ̂

1/2
jS and Σ̂

1/2
jS = Σ

1/2
jS (1+oP (1)). Since ΣjS is bounded

in probability away from zero and above uniformly in j, |S| 6 Nn and AjS is
similarly bounded away from zero and above uniformly. Therefore, there is a
constant, suggestively c′′test which is independent of n such that for n sufficiently
large, with probability 1− o(1)− α:

−∆jE(S) > c′′test × (−∆kE(S)) ∀j, k, |S| 6 Nn : TjSα = TkSα = 1,WjS >WkS .

We are now in a position to apply Theorem 1. We’ve already set ctest =(√
log p/α
n

)
, ctest = Θ

(√
log p/α
n

)
, c′′test = Θ(1)

We take csprs = 0. We take ceig = O(1) and δeig(N) = o(1)1{N6Nn}+1{N>Nn}
Finally, note that by the assumption of no approximation error we have

max
j6p

∣∣∣∣∣ 1n
n∑
i=1

aiψj(xi)− Eaiψj(xi)

∣∣∣∣∣ = 0,

max
j,l6p

∣∣∣∣∣ 1n
n∑
i=1

ψj(xi)ψl(xi)− Eψj(xi)ψl(xi)

∣∣∣∣∣ = 0,

and that by the assumption of fixed regressors,

max
S:|S|6N, E(S)−E(S∗)62sctestceig(N)

max
j∈S

∣∣∣∣∣ 1n
n∑
i=1

ψj(xi)(εiS − εi)

∣∣∣∣∣ = 0

Therefore, assign c′reg(N) = 0 and δ′reg(N) = 0

As before, as an implication of Condition Ex1.4, it follows that

max
16j6p

| 1
n

n∑
i=1

ψj(xi)εi|, |
1

n

n∑
i=1

f∗(xi)εi|, |
1

n

n∑
i=1

fθ∗(xi)εi| = OP (
√

log p/n).

It follows that for each δreg there is a constant c̃reg < ∞ such that for n suffi-
ciently large,

max
16j6p

| 1
n

n∑
i=1

ψj(xi)εi|, |
1

n

n∑
i=1

f∗(xi)εi|, |
1

n

n∑
i=1

fθ∗(xi)εi| 6 creg(δreg)
√

log p/n

with probability 1− δreg.

Given the sequences defined above, we can take C2 = O(1) (after a simple
calculation, and noting that C2 does not depend on creg).
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In order to conclude the second assertion of Theorem 2, we need to show that
for any δ0, for n sufficiently large, there is C0 such that with probability 1− δ0.

1

n

n∑
i=1

(f̂(xi)− f∗(xi))2 6 C0

√
s log p/n

In addition, given the sequences defined above and applying Theorem 1,
it follows that for each δ0, we can find n sufficiently large, such that C1 =
Oδreg(s log p/n) with probability 1− δ0, (provided δreg is sufficiently small such
that 1− δ − α < δ0)

1

n

n∑
i=1

(f̂(xi)− f∗(xi))2 6 C1

From this, and noting that all bounds used about were uniform in sequences
Pn, Theorem 2 follows.
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