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1. INTRODUCTION

Useful knowledge can be obtained by processing available information and acquiring new
information. The amount of such information is typically enormous, although very little
of it may be relevant for the job at hand. A potentially much quicker way to acquire
useful knowledge is to learn from others. Some such learning can be by simple obser-
vation. But often it requires the participation of someone who is already in possession
of the more useful knowledge. In many environments, there are teachers and students
engaged in the transfer of useful knowledge.

This paper describes a model of long-run growth in which useful knowledge accumu-
lates as a result of both individual discovery and learning from others. Consumption is
produced by teams of managers and workers. Those who have somehow acquired useful
knowledge can be managers, and everyone who is not a manager can supply labor. The
productivity of a manager in charge of a team of workers evolves over time as the result of
a process of random discovery that tends to cause managerial productivities to diverge.
In addition, while producing consumption, managers and workers can be assigned to
more knowledgeable managers as students. Teaching managers can teach one student at
a time, and teachers cannot be students at the same time. The assignment of students
to teachers is determined in competitive markets, where students pay teachers for the
time it takes to learn what their teachers know.

Everyone is born with a certain ability to learn, but without any useful knowledge.
Newborn individuals begin life as workers. Sufficiently fast learners will choose to pay
teachers and try to learn something that allows them to start as a manager. This takes
an uncertain amount of time, and then their own managerial discovery process begins.
Depending on how productive they are at any point in time, they may decide to teach
or learn more from others. Managers whose productivities lag behind earn very little
and may find it optimal to quit and become workers again. They lose whatever useful
knowledge they do have and need to learn from others if they want to become managers
again. Because of their comparative advantage in learning, the equilibrium assigns fast
learners to the most productive managers in the economy.

At any point in time, the state of the economy is a count of how many managers there
are with different abilities to learn and different levels of productivity. Learning from
others prevents the distribution of productivities from spreading out indefinitely, and the
combination of individual discovery and learning from others causes the distribution of
productivities to continuously shift to the right. Stable growth emerges in the long run.

Although the allocation of workers to managers and students to teachers is determined



by a more or less standard competitive equilibrium, the state variable in a large economy
is an infinite-dimensional capital stock, and the economy turns out to have a continuum
of balanced growth paths. These paths are indexed by the growth rate of the economy,
and higher growth rates correspond to productivity distributions with thicker right tails,
which make learning from others more productive. The long-run growth rate depends
crucially on the initial distribution of productivity in the economy. A definite prediction
for the long-run growth rate emerges when the initial distribution of productivities has
a bounded support, as would be the case in any finite economy: it is the lowest rate
among those that are consistent with balanced growth. This growth rate is increasing
in the variance of individual discovery rates, in the rate at which the fastest learners can
learn, and in their life expectancy. Income inequality also increases with the variance
of individual discovery rates. But a faster learning rate makes for a thinner right tail
because less knowledgeable individuals can catch up more quickly.

In this economy, ex post earnings inequality is the result of several factors. Because
teaching is one-on-one, not all students can be matched with the most knowledgeable
teachers. Even among students with the same ability to learn, some will study with
more knowledgeable teachers than others. They will have to pay those teachers more,
and their subsequent incomes will be higher. Equilibrium only requires that students
of the same type are ex ante indifferent across such assignments. The time it takes for
students with the same ability and assignment to learn is also uncertain, creating more
unequal outcomes. For managers, the individual discovery process generates even more
dispersion.

Overall, the factor that dominates the determination of inequality in the right tail
of the income distribution is variation in the ability to learn itself. Equilibrium earnings
distributions have Pareto-like right tails. An explicit formula obtained for an economy
with two types of learners shows that the right tail of the earnings distribution of fast
learners is discretely thicker than the right tail of the earnings distribution of slow
learners, even if the difference in learning speeds is negligible. Perfect sorting across
teachers means that fast learners are assigned to and learn to become like teachers with
the most productive knowledge. Instead, slow learners who acquire useful knowledge
enter the population of managers at the bottom of the productivity distribution. They
can make up for this with successful individual discoveries, but the odds that this pushes
them into the right tail of the managerial productivity distribution are extremely small.
This shows how the competitive assignment of students to teachers can greatly magnify

the inequality in ex post outcomes among individuals with small differences in ability.



If they are not too abundant, fast learners are better off than slow learners also on an ex
ante basis. But, unlike the ex post outcomes, the ex ante rents associated with learning
ability are continuous: they vanish when differences in ability become negligible.

As in the data, the future income prospects of individuals in this economy are to
some extent predictable. The conditional distribution of income growth depends on how
fast a worker or a manager can learn. This contrasts with pure random growth models
of cities (Gabaix [1999]) or firms (Luttmer [2007]), and is similar to the firm growth
model proposed in Luttmer [2011]. Although data on how fast people can learn are
typically not available, there are observable characteristics that correlate with future
income growth. From the perspective of the model in this paper, these observable
characteristics can be seen as proxies for the ability to learn from others. But because
there is some indeterminacy in who learns from whom, observable characteristics that
are unrelated to current productivity, and that do not reflect any kind of ability, may

also predict future income growth.

Related Literature As in the span of control model of Lucas [1978], individuals who
are more productive as managers sort into managing those who are less productive.
In Lucas [1978], this sorting is instantaneous and mediated by the relative wages of
managers and workers. Here it takes time to learn something productive, and quitting
as a manager results in a destruction of managerial knowledge. The factor price for
managerial services and the wage of a worker still mediate the sorting process, but
becoming a manager is not instantaneous, and managers solve a stopping problem to
decide when to quit.

This paper is closely related to and motivated by a more recent literature that gives
explicit and joint accounts of productive heterogeneity and long-run growth. In Luttmer
[2007, 2012], Alvarez, Buera, and Lucas [2008], Lucas [2009], Ko6nig, Lorenz, and Zili-
botti [2012], Lucas and Moll [2014], and Perla and Tonetti [2014], agents randomly find
others who are more knowledgeable and imitate instantaneously when they do. With
the exception of Luttmer [2007, 2012] and Ko6nig, Lorenz, and Zilibotti [2012], these pa-
pers do not determine the long-run growth rate of the economy but only relate it to an
assumption about the thickness of the right tail of the stationary distribution of knowl-
edge. Kortum [1997] pioneered the use of sources of ideas with Pareto-like distributions
to generate unbounded growth.

An early version of the random meeting and imitation structure was developed by

Jovanovic and Rob [1989]. Randomness in who meets whom limits the speed at which



knowledge can diffuse. Here, the delay in knowledge transmission is not finding others
who know more—they are easy to find, in an instant. But it takes an uncertain amount
of time to learn from those individuals. Moreover, learning is not just imitation but a
process that requires the input of both the individual trying to learn and the individual
who has the more useful knowledge. This second feature eliminates an externality.
As argued forcefully in Boldrin and Levine [2008], imitation externalities are not an
essential ingredient of the process of long-run growth. The results in this paper imply
that internalized knowledge transfers and imitation externalities are hard to distinguish
based only on their implications for income distributions.

Knowledge transfer is internalized in Chari and Hopenhayn [1991], where unskilled
workers can become skilled in using the technology of a particular vintage not only on
their own, but also by working in a team with workers who are already skilled in op-
erating that technology. This yields a model of endogenous technology adoption, but
not one that produces analytically tractable results for the distribution of knowledge

in the economy.!

In the literature on the international diffusion of knowledge, learn-
ing by imitating trading partners involves externalities whereas knowledge flows inside
multinational firms may not.? For the most part, this literature does not give concrete
answers to the question addressed in this paper: how precisely do such knowledge flows
determine long-run growth and inequality?

In a recent paper, Jovanovic [2014] does study this question in an overlapping gener-
ations economy in which the young are assigned to the old to both produce consumption
and learn. What young individuals learn depends not only on what their teachers know
but also on an average of what all teachers know. This average effect is an externality
that is essential for growth to happen in the model, and an explicit interpretation is
not immediately clear. Here there is no such average effect, but teachers with relatively
unproductive knowledge can become students instead. Together with randomness in
the individual processes of discovery, this sorting of individuals with different levels of
knowledge into teaching or learning is what makes long-run growth possible. The fact
that managers can exit to become workers also makes the supplies of students and teach-
ers respond to interest rates and beliefs, whereas the assignment problem in Jovanovic

[2014] is essentially static.

!See Beaudry and Francois [2010] for a recent model, along similar lines, of (a one-time) technology

adoption in which unskilled workers learn by working together with skilled managers.
2For recent contributions to an extensive literature, see Antras, Garicano, and Rossi-Hansberg [2006],

Nocke and Yeaple [2008], Burstein and Monge-Naranjo [2009], Alvarez, Buera, and Lucas [2013], Ra-
mondo and Rodriguez-Clare [2013], and Keller and Yeaple [2013].



Small differences in talent lead to large income differences in the superstar economy of
Rosen [1981] and the assignment models of Rosen [1982], Gabaix and Landier [2008] and
Tervio [2008]. These are static models in which individual talent has a multiplicative
effect on the quality of some consumable output. Here, talent means an ability to
learn from others, and the model is explicitly dynamic. The mechanism by which small
differences in the ability generate inequality is more akin to the Matthew effect of Merton
[1968]: those with the ability to learn quickly shall be given more valuable learning

opportunities.

Outline of the Paper Section 2 describes the economy and characterizes the equi-
librium tuition schedules that can arise when students and teachers are matched in
competitive markets. Section 3 specializes to an economy with individuals who have
either high or low abilities to learn from others, and describes the conditions for a bal-
anced growth path. The key insights are Figure 1 and equations (30)-(31). Section 4

illustrates the workings of this economy quantitatively, and Section 5 concludes.

2. AN EconoMy WITH COMPETITIVE KNOWLEDGE DIFFUSION

Consider an economy with a unit measure of dynastic households whose preferences over

consumption flows {C;};>¢ are determined by the utility function

/ e " In(C;)dt.
0

The dynastic subjective discount rate p is positive. Every dynastic household is char-
acterized by an immutable ability to learn from others A € A C (0,00). An individual
household member dies randomly at a positive rate 0 and is then immediately replaced
by a successor, with the same ability to learn. The set of household types A is finite,
and the measure of households of type A € A is denoted by M ()\). Newborn household
members begin life as workers who can supply one unit of labor per unit of time. Over
time, workers can learn to become managers, and managers can learn to become more
productive managers, in a manner described in detail below. At any given point in time
t, there will be a measure M;(\,z) < M(\) of household members who are managers
with productivity state variables in (—oo, z]. The remaining M (\) — M;(\, 00) type-A
household members are workers. The random death rate ¢ can be interpreted more gen-

erally as a random exit rate that turns managers into workers again—for example, the



project a manager works on may fail and make the knowledge acquired by the manager
obsolete.

There is no aggregate uncertainty and markets are complete. The resulting risk-free
interest rate satisfies r; = p + DC;/Cy.3

2.1 The Consumption Sector

A manager in productivity state z can hire [ units of labor to produce (e*/(1—a))~(l/a)*
units of consumption per unit of time. Wages at time ¢ are w;, measured in units of

consumption, and so a manager in state z earns

o, 2) :mlax{(le_za)la (é)a—wtl} _ oot (1)

from producing consumption. Here, v; can be interpreted as the factor price of one

unit of managerial services. The unit cost function for this Cobb-Douglas technology is
vl *w®, and so (1) implies v; = 1 /w7,

Managers cannot supply labor when they are employing workers, and they must
incur a fixed cost of ¢ > 0 units of overhead labor per unit of time to remain active as
managers. The wage a manager could earn by becoming a worker again is an opportunity
cost that can be viewed as an additional fixed cost associated with being a manager.
The amount of variable labor that attains v(¢, z) is (ve®/w;)a/(1 — «). Aggregating the
output of consumption across managers at the wage that clears the labor market gives

Ct_<1£>1‘a<1—<1+¢>zvt)“, )
-« a
where H; and N, are defined by

H, = Z/ezj\/[t()\,dz), N, =) My(\, ). (3)

AEA AEA
The total supply of labor is 1 — N; and 1 — (1 + ¢)N; of this supply can be used as
variable labor to produce consumption. The market-clearing wage can be inferred from

the fact that, as usual, the compensation of variable labor is a fraction « of output,

Wt <Z M) = (1+ Cb)Nt) = aC. (4)

AEA

3The perfect consumption insurance implications of this model are extreme but help simplify the
analysis. Plausible relations between productivity and wealth are absent in this economy. See Nirei and
Souma [2007] and Benhabib, Bisin, and Zhu [2011] for recent models that generate thick-tailed income
and wealth distributions.



Together, (1)-(4) determine Cy, H;, N;, v, and w; in terms of the measure {M;(\, 2) :
A € A} of managers. This measure is the state variable for this economy. Managers can
become workers in an instant, and so M;(, z) can jump down. But it will take time for
workers to become managers again, and so M,(\, z) cannot jump up. For the purpose
of determining aggregate output in this Cobb-Douglas economy, it happens to suffice to
know the aggregate stock of managerial human capital H;. In contrast, the technology
for accumulating managerial human capital to be described next depends on the entire
distribution M, (A, 2).

Anticipating the balanced growth paths that will be constructed below, suppose the
distribution of z — kt happens to be stationary for some x. Then (3) implies that H,
grows at the rate x. It follows from (2) and (4) that consumption and wages grow at
the rate (1 — )k, and viw; ® = 1 implies that v, declines at the rate ax. As a result,

vie? /wy is stationary, and so variable employment per manager is stationary as well.

2.2 Knowledge Creation and Transmission

Workers can become managers by learning from incumbent managers. The productivities
of incumbent managers evolve stochastically, as a result of idiosyncratic productivity
shocks, and because managers can also learn from other managers. Managers can teach
workers and other managers, one-on-one, to become as productive as they are themselves.
More precisely, a type-A worker matched with a teaching manager learns the useful
knowledge of this teaching manager after a random time, distributed exponentially with
mean 1/A. And the time-t state z; of a type-\ manager matched with a teaching manager

in state z; > z; evolves according to
dZt = ,Lbdt + O'dBt + (:gt_ - Zt_)dJ)Ht, (5)

conditional on managerial survival. B; is a standard Brownian motion, and Jy; is a
Poisson jump process with arrival rate A. The Brownian motions evolve independently
across managers, and the Poisson jumps are independent as well. The drift g may
be interpreted as learning-by-doing. The Brownian increments may be the result of a
changing environment that affects the usefulness of what a manager knows how to do.
Alternatively, a manager may be in charge of a project and have to make irreversible
decisions about how the project is operated. Workers can supply labor while they learn
to become managers, and managers can oversee workers producing consumption while

engaged in teaching or learning. But managers who teach cannot be students at the



same time.*

The Brownian increments combined with the fact that new and low-z managers can
learn from high-z managers will cause the cross-sectional distribution of z to shift to the
right, indefinitely. Unlike in some traditional models of human capital transmission (for
example, Bils and Klenow [2000]), here there is no mean reversion in human capital. In
Gabaix and Landier [2008], managerial skill contributes multiplicatively to the output of
a firm and the managerial skill distribution is bounded. Here, the ability of individuals
to learn )\ is bounded in the population, but the usefulness of what managers can know
is not. In this economy, it is not their skill but their useful knowledge, their ideas, that
makes managers particularly productive in organizing the production of consumption.®

Further, it is important to note that the rate at which managers and workers learn
from others is assumed to depend only on their ability type A € A and not on what
they are trying to learn or what they may already know. This emphasizes the fact
that students can acquire useful knowledge without having to know the entire history
of thought that gave rise to that useful knowledge. It is easy to imagine a long list of
examples of obsolete or simply useless knowledge that is just as difficult to acquire as
knowledge that is useful. In this economy, a high z just means that a manager in state
z can produce more with a team of workers, not that learning to be like this manager
is particularly difficult. But because teaching is one-on-one, and because the supply of
managers who can teach high z is limited, not everyone can learn those high 2z at the

same time.

2.3 The Market for Students and Teachers

The assignment of who learns from whom is determined in competitive markets. At
any point in time ¢, students who want to learn from teachers in state z must pay flow
tuition 7;(z) > 0, and potential teachers in state z decide whether to make themselves
available at this price or not. Managers can be on different sides of the market at
different points in time, depending on how productive they are. Students only pay
for the time of their teachers, and students who succeed in adopting the state of their
teachers experience capital gains. Markets are complete, and so these capital gains can

be hedged in advance. Since there is no aggregate uncertainty, managers and workers

4 A natural assumption would be that knowledge transfer interferes with overseeing workers as well,

as it does in the random imitation environment of Lucas and Moll [2014].
SLe [2014] explores an important alternative to idiosyncratic Brownian shocks, in which trends in z;

are governed by idiosyncratic Markov chains. This yields unbounded growth even though at any point

in time, managerial productivities are bounded after a finite history.



simply maximize the expected present value of their earnings from supplying labor,
managing workers, and teaching or learning.

Let W;(\) and V;(z|\) be the dynastic present values of the earnings, respectively,
of a worker at time ¢ and of a manager in state z at time ¢, both with learning ability
A. Workers supply labor and can choose to pay tuition and learn to become managers.
Thus, W;(A) is bounded below by the present value of current and future worker wages.
Managers can choose at any point in time to become workers again, and hence V;(z|\) >
W3(X). Since wages are positive at all times, it follows that W;(\) and V;(z|\) are positive
as well. The fact that managerial profits from producing consumption are v(¢, z) = v;e*
will imply that V;(z|)\) is an increasing function of the managerial productivity state z.
A lower bound for V;(z|\) is the expected discounted present value of {vse* — dw;}s>y
given z; = z, and this present value behaves like e* for large 2. It follows that V;(z|\)
increases without bound as z becomes large. For low enough z, managerial profits are
going to be well below the wages of workers, and such unproductive managers will not be
able to earn significant or any tuition income from teaching others. Since their ability
to learn does not depend on being a manager or a worker, sufficiently unproductive
managers will choose to become workers, and hence V;(z|\) = Wi(\) for all low enough
values of z. So Wi (A) = min, {V;(z|\)} can be used to recover W;(\) from V;(z|\).

With these considerations in mind, fix some time ¢ and conjecture that W;(\) and
Vi(z|\) satisty

Vi(z|A) is continuous in z
0 < WiN) = min{VEN},  m Vi) = oo
DVi(z|A\) > 0 with equality only if Vi(z|\) = W;(\)
Vi(z|]N) > Vi(z|\) when X' > .

Implicit in these conditions is the fact that Vi(z|\) = W;(A) if and only if z is at or
below some A-specific threshold. Given these conjectures about W;(\) and V;(z|\), take

some tuition schedule T}(z) > 0 and define
Si(A) = sup {AVi(2|A) — Ty(2)} - (6)

With some abuse of terminology, call this the surplus value of a type-A student. The
actual net expected gain from studying for a type-A student is S;(\) — AW;(A) if the
student is a worker, and S;(A\) — AV;(z|\) if the student is a manager in state z. Since
Vi(z|A) > Wi(A), these net gains are always larger for workers than for managers with

the same ability to learn. Type-A workers or managers strictly prefer not to be students

9



if Si(A) — AW(N\) < 0. But then Ti(z) > AW (A) — Sy(N\) > 0 for all z, since (6) implies
Ti(2) > AVi(z|A) — Si(A). So the gain from studying for a type-A worker can be strictly
negative only if tuition is strictly positive at all z, even for arbitrarily low z, and bounded
away from zero. This possibility will be ruled out in Lemma 3.

Since V;(z|\) increases without bound, sufficiently productive managers cannot gain
from studying. If S;(\)—AV;(z|\) < 0, then (6) implies T3(2) > AVi(z|]\)—Si(z) > 0, and
so managers who would expect negative net gains from studying can earn strictly positive
tuition. Since V;(z|\) is conjectured to be strictly increasing when Vi(z|A\) > Wi(A),
essentially all managers strictly prefer to be either a student or a teacher. And if a
type-A manager in state z strictly prefers to teach, then so do all type-A managers in
states z > z.

The inequality T3(z) > AVi(2|\) — Si(A) holds for all z and A. If this inequality is
strict for some z and all A\, then no students of any type choose to study with teachers
in state z. Therefore, if there are managers in state z who choose to teach, then market
clearing implies that this inequality has to be an equality for some A. Only if there
are no teachers at z can T;(z) exceed maxyep{AVi(2|A) — S¢(N\)}. In that case, lowering
tuition by any amount is not going to induce any managers at z to become teachers.
And lowering tuition down to maxyea{[AVi(z|A) — Se(A)] T} > maxyea{AVi(z]\) — Se(N) }
keeps tuition non-negative and does not make any students strictly prefer to select a
teacher in state z. That is, such a reduction in the tuition at z will not affect the value

of Si(\) as defined in (6). This implies the following lemma.

Lemma 1 The tuition schedule can be taken to be of the form

12) = max {[WVA(0) — S @
without loss of generality.
An immediate implication of the fact that the value functions V;(z|\) are strictly in-
creasing when V;(z|\) > Wy(\) is that the tuition schedule (7) is strictly increasing
when positive.

Starting with candidate surplus values {S;(A) : A € A} that do not necessarily satisfy
(6), one can simply use (7) to define T;(z). Such a construction immediately implies
St(A) > sup,{A\Vi(z|\) — Ti(2)}, but the inequality can be strict. Very large values of
some S;(A) imply that the construction of T;(z) is not affected by lowering those S;(\).
Lemma 2 Given any {S;(\) : A € A}, define

Ti(:) = max { WA (10) = SV}, i) = sup {(AVi(:IA) = Ti(=)}

10



Then Ti(z) = maxyep {[AVi(z|\) — S (M) T}

The construction of S;(A) implies S;(A) < S;(A), and that then immediately implies
Ti(z) < maxyep {[A\Vi(2]\) — Si(A)]T}. The reverse inequality follows because T;(z) > 0,
Si(A) > AVi(z|A) — Ty(2) for all (A, z), and hence Ty(z) > maxyea{[AVi(2|\) — S:(A)]T}.
Lemma 2 implies that it is without loss of generality to take the surplus values {S;()) :
A € A} to be small enough so that the surplus values and the tuition schedule satisfy
(6) and (7), respectively.

Since managers die and may choose to become workers, some type of workers will
have to be willing to be students if the population of managers is not to die out. That
is, there must be at least one type A for which S;(\) — AW;(A) > 0. If that is indeed the

case, then every type of worker is willing to be a student in this economy.

Lemma 3 Suppose there are N\ € A such that Si(\) — A\Wy(\) > 0, and suppose
that for such A the supply of type-\ managers is strictly positive at all z that satisfy
Vi(z|A) > Wi(N). Then min,{T;(z)} = 0, and hence Si(A) — AW3(X) > 0 for all X € A.

The proof is given in Appendix A. Because managers are subject to Brownian shocks
to their productivity states, the supply of type-A managers will indeed be positive in
any state z in which type-A managers strictly prefer to continue as managers. The
basic intuition for Lemma 3 is the fact that there will always be cheap teachers in
an economy in which the only alternative use of teaching time is studying. The least
productive teachers can only be teaching less productive students of their own type, and
the marginal teacher does not have anything to offer to the most productive students of

the same type. This means that tuition cannot be positive everywhere.

2.4 Value Functions

At any point in time, the market for students and teachers establishes a tuition schedule
Ti(z) of the form (7) and associated surplus values S;(\) defined by (6). This leads to
earnings flows and expected capital gains for the various types of workers and managers.

The value of a worker with ability A must satisfy the Bellman equation
TtWt()\) = w; + max {0, St()\) — )\Wt()\)} —+ DtWt()\) (8)

Workers earn wages w; and choose to study only if the net gains S;(\) — AW;(\) are

positive. The value function V;(z|\) of a type-A manager has to satisfy the Bellman

11



equation

rVi(z|A) = wve® — pwy + max {Sp(N) — A\Vi(2|\), Te(2) } + S[Wi(N) — Vi(z|\)]
+ DiVi(2|A) + D, Vi(2| ) + %JQDZZV}(,Z\)\). (9)

The first two terms on the right-hand side constitute the net revenue from hiring workers
to produce output, and the third term represents the gains from being a teacher or a
student. At the rate J, one generation passes and is immediately replaced by a new
generation. When this happens, the new generation begins life as a worker, and the
dynasty experiences a negative capital gain W;(A) — V;(z|A). These value functions also
have to satisfy a transversality condition that requires V;(z;|\) discounted back to the

initial date to converge in mean to zero as t becomes large.

2.5 Equilibrium and a Robust Indeterminacy

At any point in time ¢, there are measures M;(\,z) that describe how the managers
of the various types A are distributed across the productivity states z. The number
of type-A workers is M (\) — M;(\, 00). These measures can change in an instant only
when a positive mass of managers quits. This may happen at some initial date, but
not subsequently because there is no aggregate uncertainty. The supplies of managers
and workers at time ¢ determine the output of aggregate consumption C; and the factor
prices v; and w,. Beliefs about future factor prices {vs, ws}s>¢, and future surplus values
{Ss(A) : XA € A}sst, together with tuition schedules given by (7), determine the time-¢
value Wy(\) of a type-\ worker and the time-t values V;(z|\) of a type-A\ manager in
state z, for all A € A and all z. The market for students and teachers at time ¢ then
determines the surplus values {S;(\) : A € A}, the associated tuition schedule, and the
assignment of students and teachers at time t. Together with the productivity dynamics
(5), this assignment pins down how the measures M;(), z) are evolving at time ¢, and
therefore the prices that will be realized in future factor markets and future markets for
students and teachers. In a perfect foresight equilibrium, these prices have to match the
beliefs formed at time t.

One can expect the perfect foresight path of equilibrium consumption to be unique.
The technologies for producing consumption and for transferring useful knowledge ex-
hibit constant returns to scale, and preferences over consumption sequences have indif-
ference curves that are strictly convex. But the assignment of students to teachers will
certainly not be unique: at any point in time, there is a continuum of teachers indexed

by their productivity states z, and only a finite number of student types A € A. This

12



means students are going to have to be indifferent across teachers with different z, and
this implies an assignment that is to some extent random. This will matter for the life
histories of individuals in this economy, even though ex ante everyone of a given type
faces the same possibilities. This type of indeterminacy is inherent in any environment
in which students are more similar than their teachers, and it is a source of ex post
income inequality. Random assignment of like students is only one possible mechanism
for resolving this indeterminacy. Equilibrium implies that individuals who only differ
in terms of payoff irrelevant characteristics are equally wealthy ex ante. But their in-
vestment in learning from others and their ex post income histories may very well be
correlated with these payoff irrelevant characteristics.

Solving for the perfect foresight equilibrium amounts to finding a fixed point in a
space of value functions and productivity measures indexed by time. Finding these value
functions and productivity measures requires solving systems of interrelated partial dif-
ferential equations indexed by equilibrium factor prices and surplus values: the Bellman
equations (8)-(9) and the Kolmogorov forward equations that govern the productivity
distributions. This is a task that involves confronting approximation and convergence
questions that remain unanswered in the existing literature. The rest of the paper will
focus instead on balanced growth paths. These balanced growth paths are much more
tractable: partial differential equations become ordinary differential equations. More-
over, the assumed Cobb-Douglas technology makes it possible to solve these differential
equations analytically (analytical solutions are also available if the technology for pro-

ducing consumption is Leontief).

3. BALANCED GROWTH IN A Two-TYPE ECONOMY

The assignment of students to teachers is trivial in an economy with only one type
of student. And such an economy would fail to account for the fact that there are
observable characteristics that can predict future earnings. A two-type economy with
A ={pB,7} and v > 8 > 0 is sufficiently rich to illustrate the assignment problem and
the impact of small differences in the ability to learn from others, and it can account for
the predictability of future earnings.

Conjecture that such an economy has a balanced growth path with a growth rate s
that makes the cross-sectional distribution of z; — xt independent of time. This gives
rise to a constant supply of managers and of variable labor, and the aggregate stock of
managerial human capital (3) will grow at the rate k. The Cobb-Douglas technology (2)

then implies that aggregate consumption and wages grow at the rate (1 — a)x and that

13



vy grows at the rate —ax. The implied interest rate is r; = p + (1 — a)k.
It remains to solve Bellman equations for value functions, Kolmogorov forward equa-
tions for stationary densities, and to find an assignment of students to teachers that

clears markets.

3.1 The Bellman Equations

(1-a)k e

Given factor prices of the form w; = we t and v; = ve~ ", conjecture that the value

functions, tuition schedules, and surplus values are of the form
[Wi(A), Vi(z + KA), Se(A), To(=z + wt)] e = [W(X), V(2[A), S(N), T(2)]

where z now represents the state of a manager detrended by —xt. An example of what
these functions look like is given in Figure 1. With this conjecture, the Bellman equation

(8) for type-A workers simplifies to

w w—i—S()\)}. (10)

W) = max{ ,

pptA

This means that the value of a type-A worker may exceed the present value of wages,
but only if the surplus value S()\) is large enough—more precisely, if and only if S(\)/A
exceeds w/p. The balanced growth version of the Bellman equation (9) for a type-A

manager becomes

(p+0)V(z|]\) = wve* —ow+ oW (A) +max{S(\) — AV (z|A),T(z)}
+ (u— r)DV(2|)\) + %J2D2V(Z|/\). (11)

This differential equation has to hold for all z at which managers strictly prefer to con-
tinue as managers. In particular, this means that V'(z|\) has to be smooth at thresholds
where type-A managers switch between studying and teaching. As in Lemma 2, the

tuition schedule can be taken to be
_ _ +
T(2) = max {[\V(2])) - SO} (12)

The option to become a worker again means that V(z|\) > W(\) for any z. As already
argued, managers with sufficiently low productivities will find it optimal to become
workers again. This implies thresholds b(\) so that type-A managers strictly prefer to
continue as managers if and only if z > b(A). By construction, W () = V(z|A) for all
z < b(A). Optimality of the exit decision of a type-A manager requires that V' (z|)\) is
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also differentiable at b(\). This gives the familiar value-matching and smooth-pasting
conditions

W(A) =V(6(A)[A),  0=DV(bN[N) (13)

for both A € {3,~}. Inserting the tuition schedule (12) into the Bellman equation (11)
results in a system of piecewise linear second-order differential equations for {V(z|\) :
A € A}, with boundary conditions implied by (10) and (13), and parameterized by the
factor prices v and w and by the surplus values {S(\) : A € A}.

A recipe for constructing value functions {V(z|\) : A € A} is to partition (b()), c0)
into segments on which the types of managers who match as students and teachers do
not change. The second-order differential equation (11)-(12) then remains linear on
these segments and can be solved explicitly. The resulting solutions will depend on
undetermined boundary values and must be smoothly pasted together across segments.
The optimal exit thresholds b(\) are then determined by (13). The rest of this section

implements this recipe.

3.1.1 Teaching Thresholds

More can be said about who teaches whom. Consumption cannot be produced without
managers, and managers die. Along a balanced growth path, there therefore has to
be at least one type of worker who is willing to study. Lemma 3 then implies that
S(A)=AW(A) > 0 for both A € {,~}. Because the value functions V' (z|\) are increasing
and unbounded above, it must be that the gains from studying for a type-\ manager
S(A) = AV (z|A) < S(A) — AW(X) decrease monotonically in z and become negative for
large enough 2. On the other hand, the tuition such a manager can earn is increasing
and unbounded above. There must therefore be thresholds z(\) > b()\), defined by

S(A) = AV(z(N)[A) = T(z(N)),

so that type-A managers strictly prefer to teach if and only if z > x(\). For all large
enough z, these managers will teach type-y students. To see this, note that an immediate
consequence of v > f > 0 and V(z|]y) > V(z|8) > 01is 4V (z|]y) — BV (2]|8) > (v —
B)V(z|8) > 0. This gap will become large for large z, simply because V' (z|3) increases
without bound. Thus, type-v students determine the tuition schedule for all large enough
z. Specifically, there must be a threshold y > max{x(f), z()}, defined by

y =sup{z: T(2) >V (z|]y) = S(v)},
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so that teachers in states z > y only teach type-y students. If vV (z|y) — S(v) crosses
BV (z]8) — S(B) only once, as will be the case in the equilibria constructed below, then
teachers below y teach only type-3 students.

3.1.2 Surplus Values and Managerial Profits in Equilibrium

Given a tuition schedule of the form (12), the value functions and their associated thresh-
olds are functions only of the factor prices [v, w] and the surplus values [S(5), S(7)]. All
prices and value functions can be expressed in units of labor by dividing by w. The result-
ing value functions [W (), V(:|\)]/w are then functions only of v/w and [S(5), S(7)]/w.
The variable managerial profits that appear in the Bellman equations are ve?/w = €.
With a change of variables from z to Z, one obtains Bellman equations that are parame-
terized only by [S(5), S(7)]/w. The exit and teaching thresholds for the state variable
z are b(A\) + In(v/w) and x(A\) + In(v/w) for both A € {8,7}, and y + In(v/w). The

Bellman equations therefore imply the equilibrium condition
[S(8), ()] fw = (v/w) [P, "D " P) 7O o] (14)

That is, the Bellman equations relate the managerial profits at the exit and teaching
thresholds to the surplus values [S(f),S(v)]/w. A useful corollary is that the gaps
{ly = b(N\),y —x(N)] : A € {B,~7}} only depend on [S(5), S()]/w, and not on v/w. Put
differently, the shape of the value functions depends only on [S(5), S(v)]/w, and their

location is determined by v/w.

3.1.3 Three Ability Rent Scenarios

Recall from Lemma 3 that S(\) — A\W/(X) > 0 for both A\ € {8,7}. Workers of both
types are willing to study. The Bellman equation for workers (10) implies that this is
equivalent to S(A)/A > w/p, and both inequalities are strict at the same time: workers
strictly prefer to be students if and only if S(A)/\ exceeds w/p, and then the value W ()
of being a worker exceeds w/p: type-A workers earn rents from their ability to learn to
become managers. An implication of the original definition (6) of the surplus values
S(A) is that S(A)/A must be increasing in A. So fast learners strictly prefer to study as
workers when slow learners do, and slow learners do not if fast learners do not. This
implies there are three possible scenarios: both types of workers are indifferent between
studying or not, slow learners are indifferent but fast learners strictly prefer to study,

and a scenario in which both types of workers strictly prefer to study.
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In the first scenario, S(y)/v = S(B)/5 = w/p. This implies that S(A) = AV (z|\) <0
whenever V(z|\) > W(A) = w/p, and thus managers choose to teach rather than study.
Since managers do not study, and since W (\) = w/p for both A, it must be that V' (z|5) =
V(z]y) for all z. The tuition schedule must then be given by T'(z) = vV (z]y) — S(v) =
Y[V (z]y) — w/p], since this is strictly greater than 5V (z|5) — S(8) = B[V (z|y) — w/p]
whenever V(z]y) > W(y). For slow learners, S(f) is attained at the exit threshold,
where tuition is zero, whereas fast learners are indifferent across all possible teachers.
This can only be an equilibrium if no type-3 workers study and all managers are fast
learners. Appendix B characterizes this equilibrium and shows that it arises when the
ratio M(vy)/M(p) is high enough.

On the other hand, if type-v households are sufficiently scarce, then there can be
no equilibrium in which both types of workers are indifferent students. One or both
types of workers must strictly prefer to study. If S(v)/y > S(8)/8 > w/p, then both
do, and market clearing immediately implies that half of the population is a teacher
and half a student. Because only managers can teach, this implies that at least half of
the population must be a manager. Attempting to relate such a scenario to data would
require the use of a very broad notion of who is a manager. Instead, the focus from here
on will be on the remaining scenario in which type-3 workers are indifferent students,

while type-vy workers strictly prefer to study.

3.1.4 The Scenario S(v)/v > S(B)/6=w/p

The value functions and the assignment of students to teachers shown in Figure 1 are
constructed for this scenario. Since type-3 workers have to be indifferent, the Bellman
equation for workers (10) implies

S(B) = W (B), W(B) = > (15)

The ex ante value of type-3 workers is simply the present value of their labor income.
Some type- workers may study and become managers with heterogeneous initial pro-
ductivity states determined by who their teachers were. But the tuition they pay absorbs
all the expected gains, and many may be worse off ex post. Type- managers never
choose to be students, because V' (z|5) > W(3) implies S(5) — BV (z|8) < 0. Thus, the
threshold at which type-/3 managers become teachers is simply z(3) = b(3). In contrast,
S() > yW (~) combined with (10) implies

_ w+ S(v)

W(v) P

: (16)
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and this will exceed w/p precisely when S(v) > vW(y). Relative to type-8 workers,
type-y workers earn rents from their ability to learn fast. The payoffs of being a student
are uncertain for both types of workers, but type-y workers have a cushion and more
of them will gain ex post. Since S(vy) > vV (z|y) for z > b(7y) close enough to b(y),
some type-y managers will also be students, and the threshold at which they become
teachers will satisfy x(y) > b(7). In this scenario, the thresholds are b() < y and
b(v) < x(v) < y, where, recall, y is the defined to be the highest managerial state z to
which type-£ students are assigned. Type-y students determine the tuition schedule (7)
for z > y. Thus, y is the point where both types of students are willing to pay the same
tuition,

YV yly) = S(v) = BV (ylB) — S(B). (17)

To continue the construction, conjecture now that 5V (z|3) — S(8) and vV (z|y) — S(v)
cross only once, at z = y. Then type-3 students set the tuition for all z < y. In
particular, this means that type-y managers teach type-3 students when they switch
from studying to teaching at x(y). The threshold z(vy) must therefore satisfy

S() = Viz(y)ly) = BV (x(1)18) — S(8). (18)

The Bellman equation (11) has to hold at z(y) and y, but smooth solutions that can be
constructed on the open intervals (b(3),y), (b(7),z(%)), (z(7),y), and (y,00) will not
automatically satisfy the differential equation (11) at z(y) and y. Forcing the solution

to be smooth at x(vy) and y gives rise to the boundary conditions

fvem ) [ Ve ] (19)
#Aa() | DV (2]y) | slz(n) | DV(2]y)

veny | V(2|)\)

W ovew |~ DV(Z\A)]’ reds 20)

With continuity and differentiability imposed, twice differentiability is implied because
the solutions on the open intervals already satisfy (11). As in more familiar stopping
problems (Dixit and Pindyck [1994]), the optimal exit thresholds b(f) and b(y) must

satisfy the value-matching and smooth-pasting conditions
W) =V(OMNA), 0=DV(OMA)A), Ae{B 7} (21)

To summarize, the differential equation for V'(z|3) and V' (z|7y) is (11)-(12). The values of
S(B) and W (3) are simply given by (15). The surplus value S(7y) > yw/p immediately
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pins down W (v) via (16). This then provides the initial values needed for the value-
matching conditions in (21). The remaining boundary conditions are (17)-(20) and the

smooth-pasting part of (21).

3.1.5 Constructing the Value Functions

The assumed single-crossing property means that the solution for V(z|3) is governed by
(11) with T(z) = BV (28) — S(8) on (b(8),y) and T(z) = 7V (z]7) - S(3) on (y,00).
On both segments, the general solution is a particular solution of (11) plus a linear
combination of the two solutions to the homogeneous part of (11). One can verify that
one of the homogeneous solutions on (y, c0) explodes relative to e*. This cannot be part
of the solution because the V' (z|3) has to converge to a present value that scales with e?
when z becomes large. This leaves three undetermined coefficients: two for the solution

on (b(3),y) and one for the solution on (y,c0).

V(@9 -S(9

bV(z|b) - S( b)
S(9) - gv(zl9

0F— : :
b(b) b(g) x(9 y

z

FI1GURE 1 Student-Teacher Assignment When S(3) = W (p)

The solution for V' (z|y) is governed by (11) with S(v) =7V (z]y) > T(z) on (b(7), z(7)),
T(z) = pV(z]B) = S(B) on (z(7),y), and T(z) = vV (z]7) — 5(7) on (y,00). Again, the
homogeneous equation has two solutions on each of these segments, and on (y, c0) one of
them can be ruled out because it would cause the value function to diverge from a present
value that scales with e?, for large z. This results in five undetermined coefficients. It is
easy to guess particular solutions on the open intervals (b(5),y), (b(7),z(7)), (x(7),y),
and (y,00): they can be taken to be present values of flow profits calculated as if the
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differential equation holds throughout (—o0,c0). So now we have eight undetermined
coefficients and the four unknown thresholds b(3), b(v), z(7), and y. Determining these
coefficients and thresholds requires twelve boundary conditions. These are provided by
(17)-(21).

3.2 The Kolmogorov Forward Equations

Continue with the scenario in which ability rents are positive for type-y workers only. So
type-8 managers in (b(/3), y) and type-y managers in (z(7), y) teach type-5 students, and
both types of managers in (y, co) teach type-vy students. Type-y managers in (b(7), z(7))
are students.

Setting the time derivative of the time-f density of type-8 managers to zero in the
Kolmogorov forward equation can be used to show that the stationary density of type-£

managers must satisfy

om(B,z) = —(u—r)D.m(B,2)+ %UQDZZm(B, z)
pm(p, z), z € (b(8),z(7))
+q BmB,2) +m(y,2)], =€ (x(v)y) (22)
0, z € (y,00).

By teaching type-5 students, type-8 managers in (b(3),y) are in a sense replicating
themselves at the rate 5. Type-y managers in (x(7),y) also teach type-8 students,
adding a flow fgm(~,z). In (y,o00), teaching type-y students produces more type-vy
managers but no additional type-8 managers. Type- managers exit and become workers
again when their productivity state crosses b(3) from above. This gives rise to the

boundary condition

m(B,b(83)) =0 (23)
(see Cox and Miller [1965]). Similarly, the stationary density for type-y managers has
to satisfy
1
5m<77 Z) = _(:u - K>Dzm(77 Z) + iazDzzm(/% Z)
+ 0, z € (x(7),9) (24)

Vm(B, 2) + m(y,2)], 2 € (y,0).

Type-y managers in (b(7), z(y)) are students, and they transition into productivity states
in (y,00) at the rate . Type-y managers in (z(7),y) are teachers of type-3 students.
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In (y, 00), everyone teaches type-y students. Since there is one student per teacher, the
flow of new type-y managers with productivity states in (y,c0) is 7 times the number
of teachers in this range, who can be of either type. Exit at b(7y) produces the boundary

condition
m(7y,b(7)) = 0. (25)

A further set of boundary conditions is implied by the requirement that the flow to the
left is continuous everywhere on (b(f3),00) and (b(7y),00). A discontinuity would imply
entry or exit at interior points of these intervals. This continuous-flow requirement says
that

1
—(p—K)m(\, z) + 502Dzm()\, z) is continuous at x(y) and y, for A € {8,7}.  (26)

The densities {m(\, z) : A € {,v}} are supposed to integrable—their integrals represent
the numbers of type-£ and type-y managers. A necessary condition for integrability is

lim m(A,z) =0, for A€ {B,7}. (27)

Z—00

Because the densities {m(\, z) : A € {5,~}} will turn out to have exponential right tails,
this condition is also sufficient for integrability.

The equations (22)-(27) define a two-dimensional homogeneous system of piecewise
linear second-order differential equations. Both types of managers teach students of the
other type, and so the differential equations are interrelated. The system is autonomous,
except for the location of the thresholds b(5), b(7), z(7), and y. Because of this, the
implied type-£ and type-vy stationary densities for z — y can only depend on the gaps
y—b(B), y —b(vy), and y — (). The scale of any solution is clearly indeterminate.

3.2.1 Implied Managerial Entry Rates

Integrating (22) and (24) and imposing the boundary conditions (23) and (25)-(27) gives

i [ ; m(3. )0z + Lo"D.m(3.b(3) = ( | mgzaz [ mis z)dz>,

)] ()

b > 2(7)
5/12(7) m(y,z)dz + %UZDZm(% b(v)) =~ (/y [m(3, z) —|—m(fy,z)]dz—/b m(y, z)dz>_

)

The left-hand sides of these two equations represent flows of type-5 and type-y managers
exiting, randomly or because their productivities reach the respective exit thresholds

b(8) and b(7y). The right-hand sides represent managerial teaching minus learning by
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students who are already managers, or, equivalently, the supply of teaching to students
who are not yet managers. If the market for students and teachers clears, then these
right-hand sides also represent flows of entering managers. The flows of exiting and

entering managers then balance for each type.

3.2.2 Solving the Differential Equation

The differential equation (22)-(27) is parameterized by the unknown balanced growth
rate £. The equation can be solved for stationary densities m(f3, z) and m(v, z) provided
this growth rate is high enough (the inequality (29) below) and v > §. It is easy to see
that v < § would not be consistent with stationarity. Besides random exit at the rate
J, there is also exit across the thresholds b(3) and b(vy). So even if all managers taught,
at the maximal rate v, they would not be able to sustain their numbers.

First, note that the differential equation (22) for m(3, z) on (z(7), y) and the differen-
tial equation (24) for m(~, z) on (y, c0) are inhomogeneous equations on these intervals,
with inhomogeneous terms m(v, z) and m(f, z), respectively. A particular solution to
(22) on (z(7),y) is simply —m(7, 2), because the term B[m(f, z) + m(y, z)| equals zero
for that solution, and —m(+y, z) has to solve the second equation in (24). Similarly,
—m(f, z) is a particular solution to (24) on (y, c0). On every interval, the homogeneous
parts of (22) and (24) are linear second-order differential equations with constant co-
efficients, and this implies a pair of exponential solutions for both densities on each of
the three intervals. If these exponential solutions are distinct, then one can combine
these homogeneous solutions with the two particular solutions to construct a twelve-
dimensional linear space of solutions. The boundary conditions (23) and (25) at b(3)
and b(vy) provide two linear restrictions. The continuity requirements (26) at z() and
y provide four more linear restrictions. This leaves a six-dimensional linear space of
solutions.

It remains to impose the integrability conditions (27). Consider m(f, z) and note
that (22) is homogeneous on (y, o), with solutions of the form e=%+*, where £ solves
the characteristic equation 6 = (u — k), + 50251. Since ¢ is positive, this implies
€. >0 > &_. So the coefficient on e*-* must be zero, or else |m(3,z)| — oo as
z — 00. The integrability condition for m(f, z) therefore adds another linear restriction.
Next, consider the integrability condition for m(v, z). On (y, cc0), the homogeneous part

of (24) has solutions of the form e %+* where (. solves the characteristic equation
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d—v=(p—r)CL+ %O’QCi. The roots of this quadratic are

2
. - 5
Ci: KJOQ,U:E\/(KOQ:U’) _?;-2/2‘ (28)

Because v > 4, these roots will be complex if the balanced growth rate x is too close

to p. Complex roots would result in solutions for m(v, z) that oscillate around zero
and must therefore be ruled out. If the roots (, are real and x < pu, then both (.
would be negative, resulting in explosive solutions. A positive and integrable solution
for m(v, z) on (y,00) can therefore only be constructed if the growth rate s satisfies
(k —p)/0?)? > (y—9)/(0%/2) and k > p. This is equivalent to

=20
o2/2"
This condition implies ¢, > ¢(_ > 0 and ensures the integrability of any linear combi-

nation of e+ and e *-*. The roots (, and (_ are distinct if and only if (29) holds

strictly. Thus, the homogeneous part of (24) on (y, c0) has a two-dimensional space of

K>+ o’ (29)

solutions if (29) holds strictly and a one-dimensional space of solutions if (29) holds with
equality.b

Suppose that (29) holds strictly. Then the integrability condition (27) generates one
linear restriction on the space of solutions. This reduces the dimension of the space
of solutions from six to five. Picking a scale reduces it to four. Conjecture now that
there is a solution for which not only the flows —(u— r)m(, 2) +30°D.m(A, z) but also
the densities m(\, z) themselves are continuous (and thus continuously differentiable).
Imposing this continuity condition adds four linear restrictions: one for each m(\, z) at
x(y) and y. These four restrictions are just enough to determine the solution for m(g, z)
and m(v, z) up to a common scale factor. When (29) holds with equality, the two roots

¢, and ¢_ merge into one, given by

)
¢ =1/ 5 (30)

®Note that the homogeneous part of (22) on (b(83),z(v)) U (z(v),y) is of the same form as the
homogeneous part of (24) on (y,00). But if (29) holds weakly, then it must hold strictly when
is replaced by S € [0,7). And the characteristic equation automatically has distinct real roots if
B < 6 < . The space of homogeneous solutions for m(53, z) on (b(8),z(v)) U (x(v),y) is therefore
guaranteed to be four-dimensional.
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The homogeneous part of (24) on (y,00) is then one-dimensional rather than two-
dimensional, suggesting that it might not be possible to construct a smooth solution.
But, as in Luttmer [2007] and Appendix B, the continuous solution that can be con-
structed when (29) holds strictly converges to a continuous solution as x approaches the

lower bound (29) from above. The following proposition summarizes these results.

Proposition 1  Fiz some thresholds b(y) < x(y) < y and b(B) < z(vy). Suppose
{B,6} C (0,v) and that the balanced growth rate r satisfies (29). Then the Kol-
mogorov forward equation (22)-(27) can be solved for a continuous stationary density
[m(5, z), m(v, 2)], and the solution is unique up to scale. The implied density of (A, z—y)
only depends on the threshold gaps y — b(B3), y — b(7), and y — x(y).

The growth rate s for which (29) holds with equality will be important below. The right
tail of m(7y, z) will then behave like e™¢*, with a tail index (., defined by (30). The
integrability condition for m(3, z) implies that the tail of m(3,2) behaves like e+,
with &, = ((k — p)/0?) + /((k — ) /022 + 6/(02/2). When (29) holds with equality,
this says that m(/, z) has a tail index £, = (4 given by

G =64y (31)

This is a revealing formula, for two reasons: it does not depend on 8 < +, and it im-

mediately implies (45 > (. For both types of managers, the distribution of e* restricted
to (y,00) will be like a Pareto. But (31) implies a significantly thicker right tail for
fast learners than for slow learners, even though v may not exceed $ by much. The
competitive equilibrium assigns only fast learners to the most productive teachers. The
differential equation (22) for m(/3, z) has no flow into (y, 00), and (31) shows how this
sorting on learning ability magnifies the effect of even small differences in ability on the

distribution of managerial productivities.

3.3 Balanced Growth Paths

The value functions and stationary densities consistent with a balanced growth rate x
that satisfies (29) can be combined to construct a balanced growth path. Throughout
this section, fix such a . Recall from (14) that the Bellman equation maps the surplus
values [S(3), S(7)]/w into (v/w)[e?®), ™) ) er() ev]. In the scenario in which type-

B workers are indifferent students, condition (15) pins down the surplus value of type-3
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students at S(8)/w = /p, and z(5) = b(B). The Bellman equation then defines a map

St v ¢! b =) ev] | (32)

w w
defined for any S(v)/w > v/p, and shown in Figure 2. This results in one map S(v)/w —
veY /w. A second such map can be constructed by combining S(v)/w — [y — b(5),y —
b(7),y—x(y)] with the stationary densities implied by Proposition 1 and market-clearing

conditions.

3.3.1 Student-Teacher Market Clearing

Proposition 1 determines the stationary densities m(/3, z) and m(+y, z) up to scale, taking
for granted that the number of workers who want to be students matches the supply of
teaching services of incumbent managers. To ensure that this is the case, it remains to

impose the market-clearing conditions for students and teachers,

M@ - [Cmeat 2 [ mE e [ nee (33)

(8) B) z(7)

o0 o0 2(7)
M(v) — / m(y,z)dz = / [m(5, z) + m(y, z)|dz — / m(y,z)dz.  (34)
b(v) Y b(v)
The left-hand sides of (33)-(34) are the numbers of workers who are potential type-/ and
actual type-y students, respectively. The right-hand side of (33) is the aggregate of type-
B teachers in (b(5), y) and type-7y teachers in (z(7), y), all of whom teach type-/3 students.
This market-clearing condition can be a strict inequality because type-3 workers are
indifferent between studying or not. The right-hand side of (34) is the number of type-£3
and type-y managers in (y,00), all of whom teach type-vy students, minus the type-y
students who are already managers. One can think of (34) as determining the scale of
[m(5, z), m(v, 2)], and of (33) as a side condition that amounts to a lower bound on
how large the supply of type-£ households must be for type-5 workers to be indifferent
students in equilibrium. Type-3 workers can be indifferent students in equilibrium only

if there are enough type-3 households.

3.3.2 The Implied Factor Supplies

Given a stationarity density for (A, z —y) determined by Proposition 1 and (34), one can
compute the supply of variable labor used to produce consumption, as well as the stock

of managerial human capital relative to eY. First, note that the number of managers is
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given by

o0 o)

N = m(ﬁ,z)dz—i—/ m(7, z)dz. (35)
b(B) b(7)

The resulting supply of labor is M () + M () — N. The aggregate use of overhead labor
is ¢ N, and so the supply of variable labor is

L=M(3)+M(y) - (1+¢)N. (36)

Next, the supply of managerial human capital (3) must satisfy H; = He™, where

He™¥ = / e U'm(B, z)dz +/ e m(y, z)dz. (37)
b(8) b(v)

Recall that the density of (A, z — y) determined in Proposition 1 only depends on the

threshold gaps y — b(53), y — b(7y), and y — z(7y), and so (35)-(37) only depend on these

gaps and not on y itself. Because of the unknown scale factor e ¥, (36)-(37) is not

enough information to compute aggregate consumption and the factor prices [v, w]|. But

the Cobb-Douglas technology implies vH/(wL) = (1 — «)/«a, and therefore

vey_l—a L

w a He v

(38)

Combining Proposition 1, the market-clearing condition (34), and (35)-(38) therefore
gives an equilibrium condition of the form

veY

[y —0(8),y = b(7),y —x(7)] — o (39)

The shape of the stationary density of managerial productivities pins down the variable

profits, expressed in units of labor, of managers at the threshold y.

3.3.3 The Equilibrium Level of a Balanced Growth Path

Figure 2 shows the equilibrium conditions S(7v)/w — wve¥/w given by (32) and the
composition of (32) and (39). These curves are labeled ve? /w and ((1 — «)/a)L/He™Y,
respectively. Their intersection determines S(v)/w and veY/w. The threshold gaps
y—b(8) —y, y —b(), and y — x(y) then follow from (32), and the stationary density
of (A, z — y) in turn follows from Proposition 1. The distribution of (), z) at the initial
date t = 0 is given. If this distribution is consistent with balanced growth at the rate
k used in this construction, then this initial distribution determines the value of y: it is
the y for which the distribution of (A, z — y) at t = 0 matches distribution of (A, z — y)
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implied by Proposition 1. With this solution for y, one can compute H from He ¥, and
then aggregate consumption and the factor prices [v, w].

A minimal requirement for this construction to work is that the mean of e*7¥ is finite.
Necessary and sufficient for this to be the case for some r consistent with (29) is the
requirement ¢, > 1. If x exceeds the lower bound given by (29), then ¢, > (, > (_,
and so the mean of e*~¥ will not be finite for any ~ that satisfies (29) if it is not finite
when (29) holds with equality. Suppose therefore that (., > 1. This is equivalent to
v > 6 +0?/2, a tightening of the requirement v > § needed in Proposition 1 to construct
a stationary density.

The construction can still fail if the curve S(v)/w — veV/w = ((1 — «)/a)L/He™ ¥
implied by the composition of (32) and (39) is everywhere below the curve S(v)/w —
veY /w implied by (32) itself, even at S(y)/w = 7/p. This can happen when the ratio

ve’/w
4
PR ((1-a)a)li(He™)

1 > < i
'''' ve*@py

25 T4 ~
..... ve @
....... ve"®py

1+ —_ =1 |

...... f=0
L L
0 0.2 0.4 0.6
(S(9/w) - gr

F1GURE 2 Condition (32) and the Composition of (32) and (39).

M (~)/M () is too high—there are too many fast learners. One can then construct an
equilibrium in which ability rents are zero not only for type-5 households but also for
type-v households, as outlined in Appendix B. The remaining possibility is that the
equilibrium conditions in Figure 2 do intersect for some S(v)/w > 7/p, but the side
condition (33) fails. That is, even if they all choose to be students, there are not enough
type-f workers to maintain the population of type-3 managers required for stationarity.
When this happens, M (vy)/M () is still too high. In that case, type-$ households must
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also earn strictly positive ability rents, and one obtains the scenario in which at least

half of the population will be a manager.

3.4 The Emergence of Long-Run Growth

A balanced growth path of the type illustrated in Figure 2 can be constructed if v >
§ + 0%/2, type-y households are sufficiently scarce, and the assumed balanced growth
rate k is high enough to satisfy (29). What then determines the long-run growth rate
K?

A rigorous answer to this question can be given in a much simpler economy in which
there is only one type of manager, say with learning rate v, and managers never exit,
say because ¢ = 0 and there is a fixed population of managers who cannot supply labor.
With the innocuous further simplification p© = 0, the Kolmogorov forward equation
for the time-t density of the state of a manager (not detrended in any way) is given
by Dym(t,z) = 20°D..m(t,z) — ym(t, z) below the median of m(t, z) and Dym(t, z) =

202D..m(t, z)+ym(t, z) above the median. The associated measure M (¢, z) then satisfies
1
D:M(t, z) = 502D22M(t, z) —ymin{M(t,z), M(vy) — M(t, z)}. (40)

As in the more general case, there is a continuum of long-run growth rates s that
have to satisfy the bound (29), with associated stationary distributions that are easy to
compute. The partial differential equation (40) is a reaction-diffusion equation. A key
feature of this particular equation is that the term subtracted on the right-hand side of
(40) is a hump-shaped function of M (¢, z) with zeros at M (t,z) = 0 and M (¢, z) = M (7).
For equations of this type, Kolmogorov, Petrovskii, and Piskunov [1937] and others have
shown that the long-run stationary distribution that emerges from an initial distribution
with bounded support is the one associated with x at the lower bound (29).7 Tt is
essential for this result that ¢ is positive. It is not difficult to show that when o = 0 (as
in related models of Alvarez, Buera, and Lucas [2008], Lucas and Moll [2014], and Perla
and Tonetti [2014]), there is a continuum of stationary distributions and growth rates,
not only for exponentially de-trended managerial productivities but also for linearly

detrended productivities. A bounded initial distribution of productivities in such a

T Alternative proofs and generalizations can be found in McKean [1975], Bramson [1983], and a large
literature on reaction-diffusion equations. Fisher [1937] formulated the same equation to describe the
geographic spread of an advantageous gene. Cavalli-Sforza and Feldman [1981] used the Fisher [1937]
interpretation of these equations to describe the geographic spread of a useful idea. Here geography is
absent, but there are many ideas, of varying quality. See Staley [2011] and Luttmer [2012] for a more
detailed discussion.
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world would lead to permanent stagnation because nobody can become more productive
than the most productive manager in the initial population.

Applying this idea here results in the prediction that the economy grows, in the
long run, at a rate kK = u + 02@ = p+ Um. The economy can grow rapidly
because managers are able to improve their own productivities at a rapid pace (u is high),
because they can learn quickly from others (v — § is high), or because their individual
discovery processes are noisy (o is high). The only learning speed that matters is that of
the fastest learners, conditional on their survival. Noisy individual discovery processes
produce a lot of dispersion in managerial productivities. Because high and low z can be
learned at rates that are unrelated to the level of z, this implies a population with many
particularly productive learning opportunities, and therefore rapid growth.

When (29) holds strictly, the right tail of m(y, z) behaves like e™¢-*, with (_ < ¢,

given by (28). The above argument therefore selects the stationary distribution with the

thinnest right tail. The expression (., = \/(y — 9)/(c?/2) says that rapid growth goes
together with a particularly thick-tailed distribution of managerial productivities if it is
due to a high o, but with a thinner tail if due to a high v — 4. Across economies on a
balanced growth path, there is no unambiguous relation between growth and inequality:

it depends on how economies differ in terms of the underlying parameters.

3.4.1 Relation to Models of Imitation

A similar multiplicity of stationary distributions and balanced growth rates arose in
Luttmer [2007]. It was resolved in the same way, by taking the initial distribution
of productivities to have bounded support. There, when entrepreneurs can imitate
incumbent producers at the rate 7, the resulting growth rate is again x = p+ 0% .- But
the tail index is ¢, = \/[(YE/N) — 6]/(0?/2), where E is the number of entrepreneurs
trying to imitate and N is the number of incumbent firms. The entry rate vE/N is

determined in equilibrium and depends on the rate at which consumers discount. The
key difference with the assignment model studied here is that, in an economy with
imitation, there is no bound on how many can flow into the right tail of the productivity
distribution. Here, this flow is limited by the capacity of particularly knowledgeable
managers to teach others.

Without any entry or exit, random meetings at a rate 7 combined with imitation give
rise to the same dynamics as (40), with the last term on the right-hand side replaced by
—y[M () — M(t,z)|M(t,z)/M(vy). That is, a tent is replaced by a parabola in M (¢, z).
By linearizing this parabola near M (t,00) = M(7), one can show that the stationary
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distribution will have the same tail index ¢, (see Staley [2011] and Luttmer [2012]). The
right tail properties of the stationary distribution of managerial productivities cannot be
used to distinguish between random meetings with imitation and one-on-one teaching

with delayed learning.

4. QUANTITATIVE IMPLICATIONS

The type of learning from others modeled in this paper is best thought of not as resulting
from formal education but as learning that happens on the job during a career. The
ability to successfully engage in such forms of learning probably depends not only on
narrowly defined cognitive traits but also on a range of social skills. And unmodeled
prior education is likely to affect these social learning speeds as well, by allowing students
to acquire a language that they can subsequently use to communicate with and learn

from others.

4.1 The Magnification Effect

Modest differences in learning speeds can have rather drastic consequences for who tends
to become and succeed as a manager. To illustrate this, consider the following benchmark
specification of an economy with a subjective discount rate p = 0.04, a random exit rate
0 = 0.04, and learning speeds 8 = 0.05 and v = 0.06, with time measured in years.
That is, both slow and fast learners are more likely than not (if only just) to learn
something useful from someone else before they die or are forced to exit randomly.
Consider further an individual discovery process with a standard deviation o = 0.10.
For US social security data, Guvenen et al. [2015] report a cross-sectional variance of log
earnings that increases by .45 between age 25 and age 60. For a pure random walk, such
an increase would correspond to a standard deviation of \/T/% ~ 0.11. Here, only
managers are subject to Brownian productivity shocks, but the dispersion in earnings
of both managers and workers is also affected by large positive and negative jumps that
occur when students learn from teachers and when managerial projects fail.

The long-run growth rate of the aggregate stock of managerial human capital, in
excess of the average rate p at which managers can improve their own productivities,

follows immediately from the assumed rate parameters,

Kk —u=042(y—6)=0.10,/2(0.06 — 0.04) = 0.02.

The implied tail indices (30) and (31) of the densities m(y,z) and m(f,z) are also
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immediate:

/0.06 — 0.04 /| 0.06

Workers all earn the same wage, and so the tail index of the overall income distribution
will be (., = 2. For the low-inequality 1950s and 1960s, Piketty and Saez [2003] report
that the top 10% of US taxpayers by income (not including capital gains) earned about
32.5% of aggregate income. For a Pareto distribution, this would correspond to a tail
index of 1/(1 — In(.325)/1In(.1)) ~ 1.95. The densities m(f, z), m(v, z) and m(5, z) +
m(+y, z) are shown in the first panel of Figure 3, and the second panel shows the odds
ratio m(f, z)/[m(B, z) +m(~, z)]. The rapid decay of the right tail of m(f, z) compared
with that of m(v, z) is the immediate reason for the fact that most managers in the
right tail are fast learners, as illustrated in the second panel of Figure 3. Although the
difference in learning speeds is small, only fast learners are assigned to teachers in the
right tail of the productivity distribution, and so only fast learners can jump into the
right tail. Slow learners can make it into the right tail, but only as a result of a long

string of useful individual discoveries.

1.25

m(b,z)+m(g,z)

0.5

1 15 2
zy
FIGURE 3 The Stationary Densities m(\, z), A € {§,~}

Figures 2 and 3 were computed for a version of this economy in which 10% of the

population is a fast learner, overhead labor equals ¢ = 1, and the labor share parameter
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is @ = 0.60. As can be seen in these figures, the exit thresholds used by the two
types of managers are very similar. In terms of variable profits, these managers earn
ve?!®) Jw =~ 1.61 and ve®™ /w ~ 1.64, respectively. This is more than the unit wage
earned by workers, but managers also have to cover the fixed cost of ¢ = 1 units of labor.
After fixed costs, their earnings from producing consumption at the exit threshold are
below what they could earn as a worker, a reflection of the option value of continuing
as a manager. Type- managers are not earning anything from being teachers at the
exit threshold, since they are teaching their own type of students for a tuition equal
to BW(B) — S(B) = 0. Type-y managers at their exit threshold earn only modest net
gains equal to [S(v) — YW (vy)]/w = 0.10 as students, but they can earn the same net
gains when studying as workers. The value in units of labor of a type-5 worker is
simply 1/p = 1/.04 = 25 in this economy. The ability to learn fast results in a value of
W) /w= (14 [S(y) —yW()]/w)/p ~ 1.1/.04 = 27.5 for fast learners. This is only
about 10% more than W (S)/w, even though the ex post outcomes for fast and slow
learners implied by the tail indices ¢, = 2 and (4 &~ 5.5 are very different.

Along the balanced growth path, managers make up about 6.6% of the population.
The detrended wages of workers are constant, and so the cross-sectional standard de-
viation of the continuous part of earnings growth is only about 0.1 x 1/0.066 ~ 0.026.
Earnings growth in this economy exhibits the combination of stability and large jumps
observed in US social security data (Guvenen et al. [2015]). Workers who learn go
from earning the wage w as a worker to earning ve® — ¢w from managing other workers.
The distribution of e* among new managers is just the distribution of e* among their
teachers, who are managers in (b(3),y) for slow learners and managers in (y,o0) for
fast learners. For the latter, the distribution of earnings growth of workers who succeed
in learning to be managers thus inherits the thick-tailed distribution of e*. Similarly,
every manager is subject to random exit shocks, and such a shock takes a manager from
ve* — ¢w back to w. The left tail of the distribution of earnings growth will therefore
also inherit the thick tail of the distribution of e*. The prevalence of these large positive
and negative jumps can be adjusted by changing the gross flows v and ¢ by the same
amount. This will also affect the tail index (4 but leaves the growth rate of the economy
and the tail index (,, of the overall earnings distribution unaffected.

Because of the assumed logarithmic preferences, none of this depends on the rate
at which managers can improve their own productivity. Suppose managers can improve
on their own at a rate of g = 0.02. Then managerial human capital grows at an annual

rate of 4%. The assumed labor share parameter of 60% implies that consumption grows
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at 1.6% per annum, and the logarithmic utility function then implies an interest rate of
5.6%.

4.2 Ability Rents

Recall from the Bellman equation (10) that the ability rents (W (\) —w/p)/w are strictly
positive if and only if S(\)/w > A\/p and strictly increasing in S(\)/w in that case. In
the scenario of interest, only fast learners earn ability rents. These rents depend in
intuitive ways on technology parameters and the supplies of slow and fast learners.

It is easy to see that the ability rents of fast learners increase with a decline in
the Cobb-Douglas labor share parameter . A reduction in « shifts the curve veV/w =
[(1—a)/a]L/He ¥ defined by the composition of (32) and (39) upward, and nothing else
changes. Since the equilibrium condition (39) for ve¥/w is upward sloping in S(v)/w,
the result is immediate. As Figure 2 shows, managers of either type at the thresholds
[b(B),b(7),x(7v),y] will earn more from managing workers as a result of the implied
increase in S(y)/w. But workers who are slow learners will continue to be indifferent
students, and hence it must be that for slow learners these increased managerial earnings

are fully absorbed by increases in the equilibrium tuition required to become a manager.
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FIGURE 4 Learning Ability Supplies and Rents

It turns out that a reduction in overhead labor costs also increases the ability rents of

fast learners. Figure 2 shows how the equilibrium conditions change when the overhead
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labor costs are reduced from ¢ = 1 to ¢ = 0. There is still an opportunity cost to being
a manager when ¢ = 0, because managers forego the opportunity to supply labor, but
there no longer any overhead. The immediate effect is to make it more profitable to
be a manager. As with a decline in the labor share parameter, some of the increase in
managerial profitability translates into higher ability rents for fast learners.

Figure 4 shows how the ability rents of type-v agents vary with their supply and
with the learning ability 3 of slow learners. These ability rents are quite sensitive to
the supply of fast learners: cutting the supply in half from 10% more than doubles the
ability rent W (y) — w/p of type-y workers. Conversely, raising the relative supply to
just above 17% eliminates all the ability rents of fast learners. This number matches the
threshold (41) above which one can construct an equilibrium with zero ability rents and
only type-y managers. The ability rents of fast learners also disappear, holding fixed the
relative supply M (v)/[M(B) + M (7)], when slow learners become almost as fast as fast
learners. As long as 3 < v, the tail indices ¢, and (5 = (., + \/m do not depend
on (3, and so ex post outcomes for these two types of learners will remain very different
when [ approaches v from below. But the second panel of Figure 4 shows that ex ante

rents are continuous.

4.3 These Managers Cannot Be Firms

It is tempting to interpret the team of workers employed by a particular manager to
be a firm, as in Lucas [1978]. But this interpretation runs into an important empirical
difficulty. The parameters used here give rise to an earnings distribution with a tail index
¢, = 2 that is in line with the US earnings distribution. The Cobb-Douglas technology
implies that employment per manager and managerial earnings are both proportional to
the managerial productivity state e*. It therefore follows that the model would predict
an employment size distribution of firms with a tail index equal to 2. In US data, the
firm size distribution has a tail index of about 1.05 (see, for example, Luttmer [2007]).
These are very different distributions. A Pareto-like distribution with a tail index as
close to 1 as 1.05 implies a Lorenz curve that is almost rectangular, unlike a Pareto-like
distribution with tail index 2 and unlike the Lorenz curve for US earnings.® A resolution

of this difficulty probably involves taking seriously the fact that large firms are not made

8Cagetti and De Nardi [2006] emphasize the prevalence of business owners and entrepreneurs among
wealthy households. Jones and Kim [2014] also note the difference between income and firm size
distributions. Ai, Kiku, and Li [2014] present a model in which firm size and managerial income

distributions have different tail indices.
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up of just a single manager with homogeneous workers, but of more intricate associations

of heterogeneous managers and workers.

5. CONCLUDING REMARKS

The model in this paper considers the opposite extreme of one that is more common
in the literature: knowledge diffusion here is all about teaching, whereas much of the
literature is about imitation. Teaching actively involves students and teachers, whereas
imitation is a more individual activity. Both phenomena play a role in real-world knowl-
edge accumulation, but it is far from obvious how economically important they each
are. A fundamental difficulty is that it is often hard to know if two individuals working
together are just producing widgets or also transferring knowledge. Very close observa-
tion may reveal the answer in specific instances, and one may be able to provide a rough
count of how frequent such instances are. But it seems almost incredible that this can
be measured with some precision at the aggregate level.

Arbitrarily small differences in learning abilities generate large differences in ex post
outcomes, because, with a limited supply of knowledgeable teachers, only fast learners
are assigned to the teachers with the most productive knowledge. The paper shows this
for an economy with slow and fast learners. More generally, one expects the basic fact
that a competitive equilibrium assigns students with faster learning abilities to teachers
with more productive knowledge to magnify the dispersion of outcomes that would arise
even in an economy with heterogeneous learning abilities and a random assignment of
students to teachers. But the ex ante welfare implications for students with different
learning abilities will not be as stark as the ex post outcomes, because teachers with
productive knowledge to impart are expensive.

The managerial activities of supervising production and teaching others are separable
in the economy described in this paper. Managers can teach students while supervising
workers who need not be their students. This makes for an extremely tractable model
of knowledge transmission and long-run growth, and of the role of both ability and
randomness in shaping labor market outcomes. But formal and informal apprentice
systems observed in actual economies suggest a complementarity between supervision
and teaching. Exploring the effects of such a complementarity on growth and inequality

is a worthwhile topic for further research.
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A PRroOF oF LEMMA 3

Let Ay = {X € A: S(\) — AW(A) > 0} and A_ = A\A,. The maintained assump-
tions about the value functions imply the existence of finite thresholds b;(\) = min{z :
Vi(z|A) > Wi(N)} and z(A) = min{z : AVi(z|\) > Si(N),z > b(N\)}, for all A € A. Let
xy = min{z,(\) : A € A}, and let A\, be any type that attains this minimum. These
definitions imply that A, Vi(z4|Ay) — S:(A+) = 0 and therefore Ay Vi(z|A;) — Si(Ay) >0
for all z > z,. Since xz, > b;(\,), there is assumed to be a positive supply of type-A,
managers at any z > x,. These managers strictly prefer to teach, and so there will have
to be students willing to study with managers in all states z > x,. The types A € A_
will never be students, not as workers and certainly not as managers.

Suppose now that T;(z) is strictly positive for all z. For type-A, managers, this
implies T;(z4) > 0 = A\ Vi(z|Ay) — Si(Ay), and hence Sy(Ay) > A\ Vi(zy|Ay) — Ty(zy).
This inequality will be true as well for all z > x, close to x,. Therefore, no type-A,
students select teachers in any state z > x, near x,. What about a type-A students
with A # A\, and A € A7 If x; < by()\), then type-\ workers cannot learn anything
from managers in the states z € (x,, b;(\)) that would make them viable as a manager.
Alternatively, z;(A\) > x4 > by(\) and so AVi(z4|\) < Si¢(N). This implies that type-A
students will not select managers in states z > x close to x,. This rules out these types
as students as well. So there are no students of any type who select teachers in the states
z > x4 close enough to x . This means the markets for students and teachers at z > z

close to x4 do not clear. Market clearing therefore requires that min,{7;(2)} = 0.

B THE SCENARIO S(A)/A =w/p FOR BOTH A € {f,~}

In this scenario, as argued in Section 3.1, all managers teach and both teachers and

students are fast learners. Define

z _ ve* A(A) _ V(Zh/) — w/p
(1+¢)w’ (14 9)w

Using the fact that T'(z) = v(V(z|y) — w/p) and W(vy) = w/p, the Bellman equation
(11) can be written as

S PO BSOS
(p+3 = NV(E) =& — 1+ (1~ K)DV(E) + 50"D*V (),
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for all 7 > b, together with the boundary conditions 0 = ‘A/(B) = D‘A/(B) The solution is
reported in Luttmer [2007],

. 1 o 1 — o—w(zD)
76 2 <ez—b_1_ _>

:p—1—5—71+w

~ — K _|_ 152 — —_ 2 5 —
b Y 1_# 27 , w=H H—i— H—FK +p+ v
1+w p+o—7 o2 o2 o2 /2
The exit threshold for the original state satisfies ve®™) /w = (1 + gb)eg.
There are no type-/5 managers, and the Kolmogorov forward equation for m(vy, z) is

1

2Dizm(7, z) + (v = d)m(y, 2),

0=—(u—r)Dm(v,2) +

for all z > b(7y), with the boundary condition m(v,b(7)) = 0. The roots of the charac-

teristic equation are (, > (_ > 0, as defined in (28). If (, > (_ > 0, then the solution

is m(y, z) = N f(z), where

o= (7b) _ g=C4(:-b)
C+ - C— ,

and N is the yet to be determined measure of managers. Taking the limit (, — ¢ that

f(Z) = C+C7 X

z > b(v)

arises when (29) holds with equality gives

F(2) = Gz = b(7))e G0N 2 > b(y).

This Gamma density also appears in Luttmer [2007]. A similar limit applies in the
general case of Proposition 1.

The mean of e*~*) is given by (¢,/(¢,—1))?, and so the scaled supply of managerial

b(

human capital He ) equals N times this mean. The equilibrium values of N and

ve?™ /w follow from
ve?™  1—a L 1—aM@)+MH)-(1+¢)N

Qo) == === g = (¢,/(C, = 1)2N

The Bellman equation pins down the left-hand side, and the right-hand side only depends
on N. This leads to a well-defined equilibrium if and only if M (y) > 2N. All N managers

are fast learners and they all teach. So there must be N type-+v workers who are students.
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This is only possible if there are at least 2N type-y households. Combining M () > 2N

together with the equilibrium value for N gives

M) o 1
M(6)+M(’y)_i¢(1+ﬁ(C_w)2€g)'

2 ¢ -1

(41)

Nobody earns rents associated with being a student if and only if there are enough
type-y households. If parameters are such that the right-hand side (41) is greater than
1, then some workers will have to strictly benefit from being students, no matter what
the skill distribution.
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