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Abstract

Motivated by the empirical prevalence of simultaneous bidding across a
wide range of auction markets, we develop and estimate a structural model
of strategic interaction in simultaneous first-price auctions when objects are
heterogeneous and bidders have preferences over combinations. We estab-
lish non-parametric identification of primitives in this model under standard
exclusion restrictions, providing a basis for both estimation and testing of
preferences over combinations. We then apply our model to data on Michi-
gan Department of Transportation (MDOT) highway procurement auctions,
quantifying the magnitude of cost synergies and evaluating the performance
of the simultaneous first-price mechanism in the MDOT marketplace.
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1 Introduction

Simultaneous bidding in multiple first-price auctions is a commonly occurring but
rarely discussed phenomenon in many real-world auction markets.! In environments
where values over combinations are non-additive in the set of objects won, bidders
must account for possible combination wins at the time of bidding. This in turn sub-
stantially alters the strategic bidding problem compared to the standard first price
auction with ambiguous welfare implications depending on the importance of syn-
ergies (either positive or negative) among objects. As a first step toward exploring
this issue, we develop a structural model of bidding in simultaneous first-price auc-
tions and study identification and estimation in this framework. We then apply our
methodology to estimate cost synergies arising in Michigan Department of Trans-
portation (MDOT) highway procurement auctions, using the resulting estimates to
analyze revenue and efficiency performance of the simultaneous first-price mechanism
in this application.?

To illustrate the policy questions arising in simultaneous multi-object auctions,
note that given a set of L heterogeneous objects for sale, bidders i’s preference struc-
ture could in principle be as complex as a complete 2/-dimensional set of signals
describing the valuations 7 assigns to each of the 2% possible subsets of objects. Mean-
while, the simultaneous first-price mechanism allows bidders to submit (at most) L
individual bids on the L objects being sold. Consequently, the simultaneous first-
price auction format is necessarily inefficient — the “message space” (standalone bids)

is insufficiently rich to allow bidders to express their true preferences. Allowing com-

!To underscore the prevalence of simultaneous bidding in applications, note that most widely
studied first-price marketplaces in fact exhibit simultaneous bids. Concrete examples include mar-
kets for highway procurement in most US states (Jofret-Bonet and Pesendorfer 2003, Krasnokut-
skaya 2009, Krasnokutskaya and Seim 2004, Somaini 2013, Li and Zheng 2009, Groeger 2014,
many others), snow-clearing in Montreal (Flambard and Perrigne 2006), recycling services in Japan
(Kawai 2010), cleaning services in Sweden (Lunander and Lundberg 2012), oil and drilling rights in
the US Outer Continental Shelf (Hendricks and Porter 1988, Hendricks, Pinkse and Porter 2003),
and to a lesser extent US Forest Service timber harvesting (Lu and Perrigne 2008, Li and Zheng
2012, Li and Zhang 2010, Athey, Levin and Siera 2011, many others).

2This paper focuses on complementarities arising when auctions are run simultaneously. This
complements the literature on potential linkages in valuations over time, e.g. Balat 2015, De Silva
2005, De Silva et al 2003, Groeger 2014, Jofre-Bonet and Pesendorfer 2003 among others.



binatorial bids might help to alleviate this “message space” problem, but need not
produce an efficient allocation (see e.g. Crampton at al. 2006 for a review) and
could impose substantial practical costs on both bidders and the seller (the “winner
determination problem”). Hence in evaluating the relative merit of the simultaneous
first-price format it is first necessary to assess the empirical magnitude of revenue and
efficiency losses due to simultaneous bidding. Very little is presently known about
these questions, due in part to the scarcity of methods for analyzing preferences over
combinations in simultaneous auctions.

We develop a structural empirical model of bidding in simultaneous first-price
auctions when objects are heterogeneous and bidders have non-additive preferences
over combinations, to our knowledge the first such in the literature. We represent
the total value 7 assigns to each combination as the sum of two components: the sum
of the standalone valuations bidder ¢ assigns to winning each object in the combi-
nation individually, plus a combination-specific complementarity (either positive or
negative) capturing the incremental gain or loss i assigns to the combination as a
whole. We interpret standalone valuations as private information drawn indepen-
dently across bidders conditional on observables, but require incremental preferences
over combinations to be stable in the sense that complementarities are functions of
observables.> We find this framework natural in a variety of procurement contexts —
when, for instance, non-additivity in preferences can be represented as realizations of
a utility shock realized after a multiple win. Furthermore — and crucially — our frame-
work collapses immediately to the standard separable model when complementarities
are zero, supporting formal testing of this hypothesis.

Building on this framework, we make four main contributions to the literature
on structural analysis of auction markets. First, we establish a new set of identifi-
cation results applicable even when complementarities are non-zero. We first show
that optimal behavior in this environment yields an inverse bidding system non-

parametrically identified up to the unknown function describing complementarities,

3Note that this structure does not restrict dependence between i’s standalone valuations for
different objects in the market. We view this flexibility as critical, as in practice we expect ¢’s
standalone valuations to be positively correlated.



which collapses to the standard inverse bidding function of Guerre, Perrigne and
Vuong (2000) when complementarities are zero. Under natural exclusion restrictions
— namely, that marginal distributions of standalone valuations are invariant either
to characteristics of other bidders or characteristics of other objects — we then trans-
late this inverse bidding system into a system of linear equations in unknown bidder
complementarities, with excludable variation in competition yielding non-parametric
identification and excludable variation in other characteristics yielding semiparamet-
ric identification of these. We thereby provide a formal basis for structural analysis
of simultaneous first-price auctions with non-additive preferences over combinations,
to our knowledge the first such in the literature.

Second, we develop a three-step procedure by which to estimate primitives in our
structural model. First, in Step 1, we estimate the multi-variate joint distribution
of bids as a function of bidder- and auction-level characteristics. Due to the high-
dimensional nature of this estimation problem, we follow several prior studies (e.g.
Cantillon and Pesendorfer 2006 and Athey, Levin and Siera 2011) by employing
a parametric approximation to the bid density in implementing this step. Next,
in Step 2, we parametrize preferences over combinations as a function of bidder-
and combination-specific covariates* and estimate parameters in this function by
minimization of a simulated analogue to our semiparametric identification criterion.
Finally, in Step 3, we map estimates derived in Step 2 through the inverse bidding
system derived in Step 1 to obtain estimates of the distribution of private costs
rationalizing observed bidding behavior.

Third, we apply our structural framework to analyze simultaneous bidding in
Michigan Department of Transportation (MDOT) highway procurement markets.
We view this market as prototypical of our target application: large numbers of
projects are auctioned simultaneously (an average of 45 per letting round in our
2005-2015 sample period), more than half of bidders bid on at least two projects

simultaneously (with an average of 2.7 bids per round across all bidders in the sam-

4In our application, combination-specific covariates might include the sum of engineer’s estimates
across projects in a combination, distance between projects in a combination, and indicators for
whether projects in a combination are of the same type, among others.



ple), and combination and contingent bidding are explicitly forbidden. Within this
marketplace, we show that factors such as size of other projects, number of bidders in
other auctions, and the relative distance between projects have substantial reduced-
form impacts on ¢’s bid in auction [, a finding hard to rationalize in standard sep-
arable models. We then apply the three-step estimation algorithm described above
to recover structural estimates of primitives. Our results suggest that a combination
win would generate roughly 13 percent cost savings for a combination at the 95th
(best) percentile in our sample, transitioning to roughly 3.5 percent cost increases
for a combination at the 5th (worst) percentile, with large and / or heterogeneous
projects more likely to be substitutes.

Finally, building on our structural estimates, we measure potential inefficien-
cies associated with the simultaneous first price auction design. Towards this end,
we compare the simultaneous first-price auction used in the MDOT marketplace
with a mechanism which ensures both an efficient allocation and provides a rea-
sonable benchmark to compare procurement costs: the combinatorial proxy auc-
tion of Ausubel and Milgrom (2002).> As expected, this counterfactual alternative
yields non-trivially lower social costs costs: our estimates suggest total social gains
of approximately four percent, with relatively larger gains in lettings with larger
complementarities. Interestingly, however, the majority of these social gains accrue
to bidders: MDOT’s expected procurement costs fall by only about 1 percent. In
other words, even in the presence of substantial complementarities, and ignoring
any other implementation costs, the benefits of switching to a combinatorial mech-
anism are (from MDOT’s perspective) relatively small. This is to our knowledge
the first structural comparison of the simultaneous first-price format with leading
combinatorial alternatives, and in our view helps to rationalize the popularity of the
simultaneous first-price format in applications.

While this is to our knowledge the first structural analysis of bidding in simul-

SFollowing Ausubel and Milgrom (2002), we assume for the purposes of this comparison that
bidders truthfully report their valuations to the proxy bidder. Alternatively, one could instead
consider the classic Vickery-Clarke-Groves (VCG) mechanism as an efficient benchmark. This would
lead to the same allocations as the Ausubel-Milgrom proxy auction, but the VCG mechanism is
known to have poor revenue performance.



taneous first-price auctions, our work builds on a small but growing structure liter-
ature analyzing combinatorial auctions.® Cantillon and Pesendorfer (2006) analyze
combinatorial first-price sealed-bid auctions for London bus routes, using the possi-
bility of package bidding to identify bidder preferences over combinations. In their
framework, identification turns on invertibility of the Jacobian of the mapping be-
tween player ¢’s bids and the equilibrium probability that player ¢ wins each possible
combination, which in turn allows one to invert the system of necessary first order
conditions describing optimal bidding to recover combinatorial valuations in terms of
combinatorial bids. In our setting, this procedure necessarily fails; by construction,
we observe only L bids for up to 2 — 1 unknown combinatorial valuations. This
represents a substantially different (and more challenging) identification problem,
for which we develop a novel solution. More recently, Bajari and Fox (2013) have
estimated the deterministic component of bidder valuations in FCC simultaneous
ascending spectrum auctions without package bidding. They exploit the assumption
that the allocation of licenses is pairwise stable in matches and use the maximum
score estimator for matching game to estimate the valuation function. Finally, Kim,
Olivares and Weintraub (2014) have extended the methodology of Cantillon and
Pesendorfer (2006) to analyze the large-scale combinatorial auctions used in pro-
curement of Chilean school meals.

Paralleling these structural studies, there is also a small reduced-form literature
seeking to quantify the role of preferences over combinations in multi-object auc-
tions. Ausubel, Cramton, McAfee and McMillan (1997) and Moreton and Spiller
(1998) measure synergy effects in FCC spectrum auctions. Lunander and Lundberg
(2012) empirically compare combinatorial and simultaneous first-price auctions in
a Swedish market for internal cleaning services, finding that bidders inflate their
standalone bids in combinatorial auctions relative to first-price auctions but that

this does not significantly affect the procurer’s final costs. De Silva (2005) and

6 Although only tangentially related to our problem, there is also a growing empirical literature
on multi-unit auctions, which focus on markets for homogeneous, divisible goods like electricity
and treasury bills. See e.g. Fevrier, Preget, and Visser (2004); Chapman, McAdams and Paarsch
(2007); Kastl (2011); Hortacsu and Puller (2008); Hortacsu and McAdams (2010) and Hortacsu
(2011); Wolak (2007); and Reguant (2014).



De Silva, Jeitschko and Kosmopoulou (2005) analyze spatial synergies in Oklahoma
Department of Transportation highway procurement auctions, finding that bidders
winning earlier projects participate more often and bid more aggressively in subse-
quent nearby projects. These findings are consistent with the hypothesis of spatial
synergies in procurement, motivating the structural model we consider here.

Finally, from a more theoretical perspective, there have been several studies ana-
lyzing strategic interaction in stylized models involving simultaneous first-price auc-
tions; see for example Szentes and Rosenthal (1996) and Ghosh (2012). Gentry,
Komarova, Schiraldi and Shin (2015) study existence and proprieties of equilibrium
in a setting closely paralleling that studied here. There is also a substantial literature
analyzing properties of various combinatorial auction mechanisms: Ausbel and Mil-
grom (2002), Ausbel and Cramton (2004), Cramton (1998, 2002, 2006), Krishna and
Rosenthal (1996), Klemperer (2008, 2010), Milgrom (2000a, 2000b), and Rosenthal
and Wang (1996), to mention just a few. Detailed surveys of this literature are given
in de Vreis and Vorha (2003) and Cramton et al. (2006).

The rest of this paper is organized as follows. Section 2 outlines the simulta-
neous bidding framework on which our structural model is built. Section 3 studies
identification in this model. Section 4 describes the Michigan Department of Trans-
portation (MDOT) highway procurement marketplace, while Section 5 presents our
structural results. Section 6 counterfactually analyzes performance of the simultane-
ous first-price mechanism in the MDOT marketplace. Finally, Section 7 conclusions.
Additional results are collected in a set of technical appendices: Appendix A col-
lects technical proofs, Appendix B extends our framework to incorporate entry, and

Appendices C and D present extended identification results.

"There is also a growing theoretical literature on simultaneous first-price auctions in computer
science; see Feldman et al. 2012, and Syrgkanis 2012 among others. This literature focuses primarily
on deriving bounds on the “Bayesian price of anarchy,” or fractional efficiency loss, in simultaneous
first-price auction markets. Positive results in this literature are largely restricted to settings with
negative complementarities, and even in these settings bounds tend to be wide (e.g. Feldman et al.
(2012) show that Bayesian Nash equilibrium captures at least half of total social surplus).



2 The simultaneous first-price bidding game

A set N = {1,..., N} of risk-neutral bidders compete for (subsets of) a set £ =
{1, ..., L} of objects allocated via separate but simultaneous first-price auctions. For
each bidder i € N, let M; C L be the set of auctions in which ¢ is participating, and
let M; = #M; be the number of auctions in this set.

Our analysis focuses on the bidding game arising after participation sets M =
(My, ..., My) are determined. We see this focus as natural for at least two rea-
sons. First, bid-stage identification is a necessary prerequisite for studying entry;
one cannot understand participation if one does not understand bidding. Second,
insofar as our primary purpose is to estimate preferences over empirically relevant
combinations, it is sufficient to focus on bidding taking participation as given. For
completeness, Appendix B gives one example of an entry game which formally jus-

tifying our key identifying restrictions.

Combinatorial valuations In principle, bidder ¢ may have distinct preferences
over every possible combination (subset of objects) in her participation set M.
Following Cantillon and Pesendorfer (2006), we assume that these combinatorial

M;

preferences are described via a 2 x 1 vector of combinatorial valuations Y;, drawn

privately by bidder i from a joint distribution F{,\’Z‘ satisfying the following properties:

Assumption 1 (Independent Private Values). Under each participation structure
M, bidder i draws private type Y; is drawn from a continuous c.d.f. F{)’Z‘ with support

M, .
on a compact, conver set YM C R?*™. Furthermore, Y? = 0, F' is common

knowledge, and type draws are independent across bidders: Y; L'Y; for alli,j € N.

Note that (for the moment) we consider a fully general framework allowing arbitrary
combinatorial preferences; this simplifies development of the key notation and defini-
tions we describe below. In Section 3, we specialize this to the case of deterministic

complementarities on which our empirical analysis is based.

The bidding game FEach bidder ¢ € N submits a single bid b;; for each auction [ in

her participation set M;. Bids are binding and bidders may not submit combinations



bids. Bidding is simultaneous and objects are awarded auction by auction: for each
[ € L the high bidder in auction [ wins object [ and pays her bid in auction [. For the
moment, we assume that ties are broken independently across bidders and auctions;
we return to this issue when discussing equilibrium below.

Let By C R* denote the set of feasible bids in auction ¢ = 1, ..., L; without loss
of generality, we take this to be a compact set. A bid b; for player ¢ is an M; x 1
vector such that by, € By for all £ € M;. Let BM = x4c, By denote i’s action space

under participation structure M. A distributional strategy for bidder i in the sense
M
i

YM s .7-"{,"1‘ Let oM = (o1, ...,041) denote a distributional strategy profile for all

bidders, and o™ denote a distributional strategy profile for rivals of bidder i.

i

of Milgrom and Weber (1985) is a measure o™ over YM x BM whose marginal over

For notational convenience, we omit the superscript M for the remainder of this
section. All objects defined below should be interpreted with reference to a given

participation structure M.

Outcomes Define an outcome w from the perspective of bidder ¢ as an 1 x M;
vector such that for each ¢ € {1,..., M;} the element w, = 1 if the ¢th element of
M, is allocated to ¢ and w, = 0 otherwise. Similarly, let the outcome matriz €; for
bidder i be the 2Mi x M; matrix whose rows describe all outcomes possible for i. For

example, if if M; = 2, then the (transpose of) €2; would be:

gr_ |00 11
“lo 101

With slight abuse of notation, let ¥;* denote the combinatorial valuation ¢ assigns to
the combination corresponding to outcome w. Note that taking bid b; € B; as given,

i’s net payoffs over possible outcomes are described by the 2™ x 1 vector Y; — ;b;.

Standalone valuations and complementarities Let ¢’s standalone valuation
for object | € M;, denoted Vj,, be the valuation i assigns to the outcome “i wins
object £ alone”: V;, = Y;{Z}. Similarly, let i’s standalone valuation vector, denoted V;,

be the M; x 1 vector describing ¢’s standalone valuations for each of the M; objects for



which 7 is competing. We define the complementarity (positive or negative) which i
associates with outcome w, denoted K, as the difference between the combinatorial
valuation ¢ assigns to outcome w and the sum of i’s standalone valuations for objects
won under w:

K¢ =Y¥ -V,

Vectorizing this definition yields the 2" x 1 complementarity vector:
K=Y, —QV,.

Intuitively, €2;V; describes the additive part of bidder i’s preferences over combina-
tions, while K; describes non-additivities in i’s preferences. In particular, our model

reduces to the standard additively separable case if and only if K; = 0.

Joint and marginal win probabilities Taking rival strategies o_; as given, let
P;(bs; o_;) be the 2Mi x 1 vector describing the probability distribution over outcomes
arising when ¢ submits bid b;, with element P¥(b;;0_;) of Pi(b;;0-;) denoting the
probability that ¢ wins the combination associated with outcome w. Similarly, let
[;(b;; 0_;) be the M; x 1 vector whose (th element T';,,(b;; 0_;) describes the marginal
probability that bidder ¢ wins her /th auction taking own bid vector b; and rival
strategies o_; as given. Observe that T';(b;;0_;) is related to P;(b;;0_;) by

Li(bi;o—;) = Q?Pi(bi; o).

Note that if ties occur with probability zero at b, then I'y(b;;0_;) is simply the

c.d.f. of the maximum rival bid in auction ¢, evaluated at b;,.

Interim payoffs Finally, consider bidder ¢ with type Y; € ); competing against
rivals who bid according to strategy profile o_;. Applying the definitions above, we

10



can then write bidder ¢’s interim payoff function as follows:

7Ti<bi§ Yi, 04) = (Y} - Qibi)TPi(bi; Uﬂ')
= (QV; — Qibi)TPz‘(bz‘; o)+ K@'TPi(bi; ;)
=(V, — bi)TFi<bi; o_i)+ KiTPi<bi; i), (1)

Note that if i’s preferences over combinations are additive (i.e. if K; = 0), then (1)

reduces to the standard separable form

M.
Wi(bi;vi,a—i) = Z(Vzm - bim)rim(bim;a—i)~

=1

S,

In this case, standard first-price theory applied auction by auction will characterize

an equilibrium of the overall simultaneous first price auction game.

3 Identification

Consider a population of simultaneous first-price lettings. In each letting ¢, the auc-
tioneer offers L; objects for auction to N; bidders active in the marketplace (though
as above not all bidders need be active in all auctions). Each bidder i then submits
a vector b;; of sealed bids for each auction in which she is active, with bids submitted
simultaneously and the high bidder in each auction winning that object.

For each bidder 7 and letting ¢, the econometrician observes bidder ¢’s participa-
tion set My, bidder i’s bid vector b;, and a vector of bidder-specific characteristics
Zi. To simplify notation, we will adopt the convention that Z;; includes M;..% Let
Zy = (Zy4, ..., Zny) describe characteristics of all bidders active in letting t.

On the auction side, the econometrician observes two sets of covariates: a vector

of generic auction characteristics Xj;; for each object [ auctioned in letting ¢, and

8 As above, we do not explicitly model determination of M, but rather focus on bidding behavior
taking realizations of M; as given; we simply require M; to be drawn jointly with other observables
from a stable underlying process. We describe in Appendix B how our analysis can be extended to
accommodate endogenous determination of M, in a fully specified entry game.

11



(optionally) a vector of combination characteristics Wy taken to affect project com-
plementarities without influencing standalone valuations. In a highway procurement
context, X;; would typically include factors like project size, project location, and
type of work in project [, whereas W; might include distance between projects, sum
or product of project sizes, and degree of overlap in project schedules. For future
reference, let X; = (X4, ..., Xz, ) describe characteristics of all auctions at time t,
with X/ and W} denoting the subvectors of X; and W, relevant for bidder 1.
Building on the first-order approach of Guerre, Perrigne and Vuong (2000), our
identification analysis aims to leverage necessary conditions for best-response behav-
ior in simultaneous first-price auctions. For analysis based on these conditions to

proceed, we require the following hypotheses on bidder behavior:

Assumption 2. For each realization (Z, W, X) in the support of (Zy, Wy, Xy), the dis-
tribution of bids observed at (Z, W, X) are generated by play of a Bayesian Nash equi-

librium. Furthermore, holding (Z, W, X) constant, the same equilibrium is played.

We emphasize that both aspects of this statement are assumptions — formal equi-
librium analysis at the level of generality we consider here would represent a funda-
mental breakthrough in its own right and as such is beyond the scope of this paper.”
In this respect we parallel many prior studies on complex auction games, in which
either existence (Fox and Bajari (2013) on spectrum auctions, Ausubel and Mil-
grom (2002) on proxy auctions) or uniqueness (Jofre-Bonet and Pesendorfer (2003),
Roberts and Sweeting (2014), Somaini (2014) and references cited therein) cannot
be guaranteed in general. From an applied perspective, we view Assumption 2 as

natural: if K; = 0, then existence is immediate and uniqueness follows under regu-

9“Fundamental” in the sense that existing theoretical tools appear insufficient to support such
an analysis. As in multi-unit auctions, the presence of both multidimensional bids and multidimen-
sional types leads to failure of classical differential-equations approaches to equilibrium analysis.
Monotonicity-based methods widely used in multi-unit auctions — e.g. Athey (2001), McAdams
(2006), and Reny (2011) — can be applied in special cases, but (due to potential failure of mono-
tonicity) do not apply at the level of generality we consider here. Other approaches — e.g. that of
Jackson, Simon, Swinkels and Zame (2002) applied in Cantillon and Pesendorfer (2006) — deliver
generalizations of Bayes-Nash equilibria, but not Bayes-Nash equilibrium itself. See Gentry et al
(2016) for a detailed discussion of the challenges associated with equilibrium analysis in simultane-
ous first-price auctions, plus results on equilibria in some special cases.

12



larity conditions (Lebrun 1999); otherwise, any model under which one can dispense
with Assumption 2 will be misspecified. In this sense, our analysis formally embeds
the classical additively separable model within a much more general (but far more
challenging) framework permitting arbitrary complementarities.°

To leverage necessary conditions for optimal behavior, we require only the hy-
potheses on equilibrium behavior stated in Assumption 2. For such an analysis to
yield point (rather than partial) identification of primitives, we require the equilib-

rium played to satisfy the following additional regularity conditions:

Assumption 3. For each realization (Z, W, X) in the support of (Zy, Wy, Xy), the
joint cumulative distribution function of bids for each bidder at (Z, W, X) is absolutely
continuous, and for any auction | € L, and any bidders i,j active in auction [, the

marginal distributions of bids by, by at (Z, W, X) have common support.

As above, under the null of separability (K; = 0), these properties follow immediately
from standard regularity conditions; when K; # 0, we require them as assumptions.
In practice, the main role of Assumption 3 is to ensure that marginal bid distributions
are atomless, which in turn permits extension of the Guerre, Perrigne and Vuong
(2000) first-order approach to identification analysis to settings with simultaneous
auctions. In Appendix C, we show how to extend the analysis below to accommodate
violations of Assumption 3. The main ideas of this extension closely parallel those

in the text, although only yielding partial identification of model primitives.!!

10 Although existence in continuous bid spaces is beyond the scope of present theory, existence in
any discrete bid space follows immediately from results in Milgrom and Weber (1985). Although it
is conventional to interpret bid spaces as “approximately continuous,” in practice almost every real-
world bid space is ultimately discrete. In this sense, we see existence as a concern of more theoretical
than practical importance. Appendix C provides an alternative set of partial identification results
applicable in settings where discreteness is viewed as economically important.

1 As noted when discussing Assumption 2 above, in real-world applications bid spaces are virtu-
ally always discrete. From a theoretical perspective this can be used to guarantee that equilibrium
always exists; from a practical perspective it raises the question of how to deal with discreteness.
Our analysis follows the literature’s overwhelming convention of interpreting bid spaces as “ap-
proximately continuous.” This seems natural in our application as bid increments are tiny (cents)
relative to bids (thousands or millions of dollars). In settings where discreteness is perceived as
economically important, one could fall back on the more general results in Appendix C.

13



3.1 Deterministic complementarities

Even cursory analysis of the simultaneous first-price bidding game suggests a major
empirical challenge: bidder i’s private type Y; could involve up to 2 — 1 distinct
combinatorial valuations, but we observe only M; bids corresponding to these 2 —1
unknowns. To make empirical progress, it is therefore necessary to impose additional
structure. We therefore propose to specialize the empirical model as follows: whereas
standalone valuations (V;) remain private information as in the standard separable
model, complementarities K; are stable functions of bidder, auction and combination

specific unobservables. We formalize this assumption as follows:

Assumption 4 (Stochastic V;, stable K;). For all i, standalone valutations V;
are distributed according to joint c.d.f. F;(-|Z,W,X) but complementarities K; =
ki(Z, W, X), with V; LV} for all i and j and both F; and k;(-) common knowledge.

We view this structure as natural in applications such as procurement contracting for
at least two reasons. First, Assumption 4 reflects our interpretation of K}’ as a pure
combination effect; i.e. an incremental cost or benefit derived from winning objects
in w together, or the expectation over a combination-specific shock realized after a
multiple win. Second, as above, Assumption 4 naturally nests the null hypothesis
of additively separable preferences: r;(Z, W, X) = 0 for all (X, W, 7). It therefore
provides an ideal framework within which to evaluate this hypothesis.

As usual, our identification analysis proceeds holding generic auction character-
istics X fixed. For simplicity, we therefore omit X in notation in this section. All

statements that follow should be interpreted as applying pointwise in X.

3.2 Nonparametric identification up to x;

Holding X constant, let G;(-|Z, W) be the c.d.f. of the equilibrium joint distribution
of the M; x 1 bid vector b; submitted by bidder i at observables (Z, W, X). Let
P_i(-|Z,W) : B; = A%" be the probability distribution over outcomes facing bidder
i taking rival strategies at (Z, W) as given, and I'_;(-|Z, W) = QT P_;(-|Z, W) be the

M; x 1 vector of marginal win probabilities corresponding to P_;(-|Z, W).

14



Note that under Assumption 2, G;(-|Z, W) is identified directly from the data
for all 4, with identification of G,..., Gy implying identification of P_; and I'_;.
Given any realization v; of V; and any candidate complementarity vector K;, we can
therefore write the problem facing bidder i at observables (Z, W) in terms of directly
identified objects as follows:

max{(v; — b) - Ti(b| 2, W) + P_i(b|W, Z)" K}
€L
Let K; be the (2Mi — M; — 1)-dimensional subspace of R2" containing all 2M:-

dimensional vectors whose first M; + 1 components are zero:!'2
Ki={keR™ :ki=ky=...=ky4 =0}

Temporarily suppose that i’s objective is differentiable at b; € int(5;); Proposition
1 establishes that under Assumption 3 this holds almost surely with respect to the
measure on B; induced by G;. Then by hypothesis of equilibrium play, b; must satisfy

necessary first-order conditions for an interior optimum:
Vol _i(bs| Z, W) (v; — b*) = T _i(bs| Z, W) — V P_i(bs|W, Z)T K. (2)

Clearly, this system is not invertible for (v;, K;) jointly. But taking K; € K; as
given, it reduces to an M; x 1 system of equations in the M; x 1 vector of unknown
standalone valuations v;. Under our assumptions, this system is invertible, implying
that for any candidate K; € K; there exists a unique candidate for v; at which b;

satisfies first order necessary conditions for a best response:'?

Proposition 1 (Inverse Bidding Function). Suppose that Assumptions 1-3 hold. Let
K; € K; be any candidate for bidder i’s complementarity vector k;(Z,W). Then
for almost every (Z, W) and almost every b; drawn from G;(-|Z, W), there ezists a

12These zero components correspond to the outcomes in which bidder i wins either no objects
(w=1(0,...,0)) or one object (w'w = 1), for which complementarities are zero by construction.

BObviously, imposing sufficient conditions for b; to be a best response — by, for instance, requiring
second-order conditions to hold at £(b;|K;; Z, W) — can only improve identification.
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unique vector v; € RMi satisfying the first-order system (2) at b; under the hypothesis

ki(Z,W) = K;. This ¥; can be expressed in terms of b; as
0 = &§i(bi| K3 Z, W),
where & (|3 Z, W) : B; x K; — RMi s defined by

&K Z,W) = b+ VI _i(b|Z, W)™ x T_i(b| Z, W)
— Vol i (0| Z, W)™t x VyP_;(b| Z, W)TK;, (3)

and the right-hand expression is identified up to K;.
Proof. See Appendix A. ]

Recall that I'(b;; Z, W) is an M; x 1 vector whose mth element is the c.d.f. of the
maximum rival bid in the mth auction played by ¢, in which case V,I'(b;; Z, W) will be
a diagonal matrix whose mth diagonal element describes the corresponding rival bid
density. Hence if K; = 0, then &(+) reduces to the standard inverse bidding function
of Guerre, Perrigne and Vuong (2000) defined auction-by-auction. Proposition 1
simply extends this observation to arbitrary K; € IC,.

Finally, observe that if the conjecture k;(Z,W) = K, is in fact correct, then
by Proposition 1 we must have v; = &(b;|K;; Z, W) almost surely. Hence for each
candidate K; € K;, there exists a unique identified candidate Fj(-|K;; Z, W) for the
unknown c.d.f. F;(-|Z, W) consistent with the hypothesis x;(Z, W) = K;:

Fiol K 2W) = [ UG(BIK: Z,W) < 0] G(dB2.W). @)
B;

Since Fy(-|Z, W) = Fi(-|r:(Z,W); Z, W) by construction, it follows that identification
of the model reduces to identification of k;(Z,W). We thus now turn to consider
identification of x;, both non-parametrically through variation in rival characteristics

Z_; and semi-parametrically through variation in combination characteristics W.
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3.3 Nonparametric identification of x; with excluded com-

petitor characteristics

Now suppose that to the assumptions described so far, we add the restriction that

bidder ¢’s primitives Fj, k; depend only on bidder i’s type Z;:
Assumption 5. F;(:|Z,W) = F,(:|Z;,W) and k;(Z, W) = k;i(Z;, W).

Similar assumptions have been widely employed in the empirical auction literature;
see, e.g., Haile, Hong and Shum (2003), Guerre, Perrigne and Vuong (2009), and
Somaini (2014) among others. We will show that under Assumption 5, variation
in competitor characteristics Z_; induces a large (infinite) set of restrictions on the
finite vector k;(Z;, W). Under mild conditions on variation in Z_; made precise
below, this system will have the unique (overdetermined) solution x;(Z;, W) € K;,
leading to nonparametric identification of x;(Z;, W) (and hence the model as above).

To understand how variation in Z_; identifies x;(Z;, W), consider a simple two-
auction example. Starting from some initial set of competitor characteristics Z_;, let
Z" . be the competitor characteristics derived from Z; by adding, for example, one
additional bidder to Auction 2. Then the marginal probability that ¢ wins Auction
1 will be similar at Z_; and Z’,, but the probability of the joint outcome “i wins
both 1 and 2” will differ. Furthermore, under Assumption 5, this is the only way
that shifting 7’

; matters in Auction 1. Therefore to the extent that moving from

Z_; to Z', matters for i’s behavior in Auction 1, it can be only through x;(Z;, W);
in particular, if x;(Z;, W) = 0, then we should see no effect. Since the set of such
“experiments” is limited only by the support of Z_;|Z;, W, this in turn provides a
powerful source of identifying information on r;(Z;, W).

We now formalize this intuition. By linearity of &;(-|K;; Z, W) in K;, we have for
any (Z,W) and any K € K;:

Ep,[6(Bi|K; Z, W) | Z,W] = Y42, W) — U(Z,W) - K, (5)
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where Y;(Z, W) is an identified M; x 1 vector defined by

Yi(Z,W) = / (Bi + Vol —i(By| Z,W)~'T_y(B;| 2, W)) Gi(dB;|Z, W)
B;

and W;(Z, W) is an identified M; x 2 matrix defined by

Ui(Z,W) = / Vol _i(By| Z, W) Ny P_y(B;| Z, W)' Gi(dB;|Z, W).
B;

Now consider any Z; and any Z_;, Z' , in the support of Z_;|Z;, W. From above, we
have F;(+|Z;, W) = F;(-|ks(Z;, W); Z,W) for all Z, hence in particular

But invariance of distributions implies invariance of expectations, hence letting Z =
(Zi7 Z—z) and 7' = (ZZ, Zl_z)

EBi[é(Bi’f‘di(Zm W)S Z, W) ’ Z, W] = Ep, [f(Bi\/fi(Zm W)§ AN W)]Z', W] (7)

Substituting (5) into (7), we obtain an M; x 1 system of linear equations in the
2Mi % 1 vector of unknowns k(Z;, W) € K;:

[Tz(Zv W) - Ti(Z/a W)] o [\Ijz(Zv W) - \Iji(Z/a W)] ) '%(Zia W) =0. (8)

For a single Z_;, Z’ , pair, this system will typically be rank-deficient. But the under-
lying equality restriction must hold for every Z_;, Z', in the support of Z_;|Z;, W.

Pooling these restrictions across Z_;, Z";, we ultimately conclude:

Proposition 2. Suppose there exist vectors Z_;,Z_;1,...,Z_; y in the support of
Z_i|Z;,W such that the submatriz My formed by that last (2Mi — M; — 1) columns
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of the JM; x 2Mi matrix

\IJZ(Z“ Z—i,l) W) - l:[J’L(Z’n Z—i,O) W)
M = :
\I]’L(Zla Z—i,Ja W) - \IJ’L(ZM Z—i,Ov W)

has rank 2Mi — M; — 1. Then k;(Z;, W) is identified.

Recall that the identification criterion (8) exploits only invariance of first moments
of F;(-|Z;,WW) across competitor characteristics Z_;, whereas the underlying distri-
butional invariance restriction (6) requires equality of all moments. The system of
equations in Proposition 2 merely provides a simple and testable sufficient condition
under which the underlying system has a unique solution. Note also that variation
in, e.g., number of rivals in each auctions will produce exactly the kind of vari-
ation needed for full column rank of My: nonlinear changes in combination win
probabilities which matter for cross-auction bidding only through x;(Z;, W). Even
discrete variation in Z_; thus naturally gives rise to full column rank of My, yielding

nonparametric identification of primitives as above.

3.4 Semiparametric identification of x; with excludable com-

bination characteristics

While the restriction that own primitives are invariant to competitor characteristics
is both natural and widely employed, it could potentially be violated in environments
with richer strategic interaction among players. For instance, if there is a competitive
upstream market for sub-contractors, then capacity utilization by ¢’s rivals could in
principle affect i’s costs. We therefore also consider semi-parametric identification
of k;(+) based on excludable variation in combination characteristics W. In this
approach, we replace Assumption 5 with two alternative identifying assumptions: a

parametric form for x;(Z, W) and an exclusion restriction on W:

Assumption 6 (k; linear in parameters). x;(Z, W) = C;(Z;, W)-0y;, where C;(Z;, W)

is a known mapping from (Z;, W;) to RPi and 6y; € ©; is an unknown p; x 1 vector
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of parameters.
Assumption 7 (Standalone valuations invariant to W). F;(-|Z, W) = F;(-|Z).

We see some version of Assumption 6 as natural since we will typically wish to param-
eterize k; in practice; the linear-in-parameters structure considered here is inessential
and serves mainly to simplify the analysis. Meanwhile, Assumption 7 simply formal-
izes the exclusion restriction underlying the definition of W: i.e. that W contains
factors which shift complementarities without shifting standalone valuations. For
instance, in our application, W includes factors such as distance between projects
(holding distance to the bidder constant) or overlap in project schedules (holding
project length constant). For such variables we see Assumption 7 as quite natural.
Now taking Z = (Z;, Z_;) as given, consider identification of x; based on variation
in W. Let (W% W .., WY) be any collection of realizations of W, and for each
j=0,1,..J let Y/ = Yy(Z W), ¥ = T,(Z,WI), and C! = C;(Z;, W’) denote
values of the functions T;(-), ¥;(-), and C;(-) evaluated at (Z,W7). Substituting

ki(Z, W) = Cg fy; into Equation 8, it follows that true parameters 6y, must satisfy:

While for any given (j, k) pair this system might be rank deficient, the number of
available “experiments” (W° W1 .. W) is again limited only by the support of
W|Z. So long as variation in W|Z is sufficiently rich in the following (weak) sense,

it follows that the model is semiparametrically identified:

Proposition 3. Suppose there exist vectors WO, W, ... Z7 in the support of W|Z
such that the JM; x p; matriz My, defined by

vley — poqo
My = :
v/ Y — poCo

has rank p;. Then Oy; (and hence F;(:|Z)) is identified.
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Note that although for simplicity we have omitted generic auction covariates X in
the discussion so far, it may be that some elements of W (for instance, total size of
a combination) depend deterministically on X. In this case, as in our application,

we proceed instead under the following variant of Assumption 7:
Assumption 8. For all bidders i and auctions 1, Fy(-|Z,W,X) = F;(-|Z, X)).

This assumption imposes two key restrictions: the marginal distribution of each
standalone valuation Vj; is invariant to W, and (conditional on Z) this marginal dis-
tribution is invariant to characteristics in auctions other than [.'* The identification
argument changes in only two respects: the invariance condition (9) is evaluated
separately for each Vj; (rather than jointly over V;), and identification arises from

variation in W|Z, X; rather than variation in W|Z, X as above.

4 Application: Michigan Highway Procurement

We now turn to our empirical application: the marketplace for Michigan Department
of Transportation (MDOT) highway construction and maintenance contracts. As
common in similar procurement contexts, MDOT allocates contracts for a wide range
of highway construction and maintenance services via low-price sealed-bid auctions.
The vast majority of MDOT projects are allocated via large simultaneous letting
rounds, which take place on average every three weeks.!®> There are an average of
45 auctions per letting round and more than half (56 percent) of bidders submit
bids on multiple contracts in any given letting.! A bid is an itemized description
of unit costs for each line item specified in contract plans; bids are submitted to
MDOT project by project, with the winner of each project the bidder submitting

the bid involving the lowest total project costs. Contracts are advertised up to

HMSince this assumption deals with marginal rather than joint distributions, it is neither strictly
stronger nor strictly weaker than Assumption 7.

5There are only two months without lettings.

I6MDOT runs a pre-qualification process, which ensures quality of work. The process involves
a check on the financial status of the firm and its backlogs from all construction activities. A bid
submission includes a detailed break down of all costs involved in the contract. The winner is
determined solely by the total cost of the project.
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ten weeks prior to letting, with the closing deadline for submitting, amending or
withdrawing bids typically 10am on the letting date. MDOT then publically opens
bids and allocates contracts, with opened bids legally binding and winning bidders
held liable to complete contracts won. In view of prior work documenting proximity
effects and capacity constraints in highway procurement, we expect factors such
as capacity constraints, project proximity, project types, and scheduling overlap to

induce substantial non-additivities in bidder payoffs across auctions.

4.1 Data

MDOT provides detailed records on contracts auctioned, bids received, and letting
outcomes on its letting website (http://www.michigan.gov/mdot). Drawing from
these records, we observe data on (almost) all contracts auctioned by MDOT over
the sample period January 2005 to March 2014.17 Our sample includes a total of
8224 auctions, where for each auction the following information is observed: project
description, project location, pre-qualification requirements, the internal MDOT en-
gineer’s estimate of total project cost, and the list of participating firms and their
bids. Based on project descriptions, we classify projects into five project types:
bridge work, major construction, paving (primarily hot-mix asphalt), safety (e.g.
signing and signals), and miscellaneous, leading to a final distribution of projects
across types summarized in Table 1. As evident from Table 1, roughly 80 percent
of contracts are for road and bridge construction and maintenance broadly defined,
with the remainder split between safety and other miscellaneous construction.

The data contains information on a total of 859 unique bidders active in the
MDOT marketplace over our sample period, which we subclassify by size and scope
of activity as follows. We define “regular” bidders to be those who have submitted
more than 100 bids in the sample period. This yields a total of 36 regular bidders in

2

our sample, with all remaining bidders classified as “fringe.” For the subsample of

bidders who have submitted more than 50 bids, we also collect data on number and

TMDOT records for a small number of contracts are incomplete. Although we have data from
October 2002 to March 2014, we have discarded the first few years (from October 2002 to December
2004) so to construct bidder backlog variables.

22



Table 1: Summary of Projects by Type

Contract Type Frequency

Bridge 13.33
Major Construction 9.64
Paving 56.33
Safety 12.25
Miscellaneous 8.45

location of plants by firm. This data is derived from a variety of sources: OneSource
North America Business Browser, Dun and Bradstreet, Hoover’s, Yellowpages.com
and firms’ websites. Based on this information, we further classify bidders as “large”
or “small” based on their number of plants, with “large” bidders defined as those
with at least 5 plants in Michigan. We thus obtain a final classification of 8 large
regular bidders, 28 small regular bidders, and 823 fringe bidders (of which 4 are also
large bidders) in the MDOT marketplace.

Table 2 surveys the auction side of the MDOT marketplace. The first key feature
emerging from this table is, not surprisingly, the large number of contracts auctioned
simultaneously in the market: a mean of 45 per letting, with a maximum of 133 on
a single letting date (note that smaller supplemental lettings are occasionally held
two or three weeks after the main letting in a given month). On average about
five bids are received per contract, which is small relative to the average number of
bidders (approximately 84) active in any given letting. For each contract, MDOT
prepares an internal “Engineer’s Estimate” of expected procurement cost released
to bidders before bidding; as evident from the dispersion in this measure, projects
in the marketplace vary substantially in size and complexity. The statistic “Money
Left on the Table” measures the percent difference between lowest and second-lowest
bids; on average this is 7.4 percent or roughly $112,000 per contract, suggesting the
presence of substantial uncertainty in the marketplace.

Table 3 re-frames the auction-level variables in Table 2 to provide a clearer picture
of bidder behavior in the MDOT marketplace. Again, the key pattern emerging

from Table 3 is the prevalence of simultaneous bidding in MDOT auctions, with the
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Table 2: Auction Level Summary Statistics

Mean St. Dev. Min Max

Auctions per Round 45.19 35.67 1 133
Total Bids per Round 228.1 180.9 1 669
Distinct Bidders per Round 83.97 57.06 1 207
Number of Bidders per Auction 5.048 3.186 1 28
Large Regular Bidders per Auction  0.398 0.672 0 3
Regular Bidders per Auction 1.500 1.362 0 7
Fringe Bidders per Auction 3.149 2.926 0 23
Engineer’s Estimate (in thousands) 1,514 4,689 4.412 165,313
Project Duration (in days) 175.8 205.1 2 1,838
Money Left on the Table 0.0744 0.0966 0 3.016

Table 3: Bidder Level Summary Statistics

Mean St. Dev. Min Max

Bids by Round 2.716 2.785 1 33
Bids by Round if Large 6.65 6.27  1.000  33.000
Bids by Round if Regular  5.96 458  1.00  33.00
Backlog (in millions) 5.792 19.01 0 2755

average bidder competing in roughly 2.7 auctions per round and large and regular
bidders competing in substantially more. The variable “backlog” provides a bidder-
specific measure of capacity utilization. As usual in the literature, we define backlog
for bidder ¢ at date t as the sum of work remaining among projects [ won by ¢ up to t,
where work remaining on project [ at date ¢ is defined as total project size (measured
by the engineer’s estimate) times the proportion of scheduled project days remaining
at date t. Note that number of bids submitted by any given bidder is small relative
to the number of bidders in the marketplace, with even large bidders competing in
less than fifteen percent of total auctions on average.

Finally, Figure 1 plots the histogram (over all bidders i and lettings ¢) of the
number of bids submitted by bidder i in letting ¢.*®* As evident from Figure 1, more

than 55 percent of active bidders submit multiple bids in the same letting. Despite

18 An observation for the purposes of Figure 1 is thus a bidder-letting pair.
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Figure 1: Number of Simultaneous Bids Submitted, Bidder by Letting
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this, it is relatively uncommon for a typical bidder to compete in a large number of
auctions; almost 90 percent of bidders in our sample bid in 6 or fewer auctions and

only 2 percent bid in more than 10.

4.2 Descriptive regressions

We next explore a series of simple regressions designed to explore the potential
economic implications of simultaneous bidding in the MDOT marketplace. The
unit of analysis in these regressions is a bidder-auction-round combination, with the
dependent variable log of bid submitted by bidder ¢ in auction [ in letting ¢. We
regress log bids on a vector of regressors intended to capture effects of own-auction

and cross-auction characteristics on 7’s bid in auction [ at time ¢.

Regression specification As usual, we control for a number of auction-level char-

acteristics which we expect to be key direct determinants of ¢’s bid in auction [: the
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size of auction [, proxied by the MDOT engineer’s estimate of expected project cost,
the level of competition 7 faces in auction /, and the distance between project [ and
i’s base of operations.'® To explore potential cross-auction interaction in the MDOT
marketplace, we seek a set of covariates relevant for bidding in auction [ only through
ki, 1.e. factors shifting combination payoffs but irrelevant for standalone valuations
after conditioning on characteristics of auction [/, as specified below.

To control for cross-auction competition which may shift combination win prob-
abilities, we consider the number of rivals across all auctions played by bidder i. The
effects of cross-auction competition on ¢’s bids in auction [ are theoretically ambigu-
ous, depending both on the sign of x; and on strategic responses by rival bidders. A
priori, however, if objects are substitutes, we expect greater competition in auction
k to increase marginal returns to winning auction [.

To capture the presence of capacity constraints or diseconomies of scale, we con-
sider two variables. First, as a direct measure of total project size, we consider the
(log of) the sum of engineer’s estimates across all auctions in which i is bidding.
Second, as a measure of the degree of schedule overlap on projects for which ¢ is
bidding, we consider the total number of overlapping days for projects for which ¢
submits bids, scaled by the sum of days scheduled for each of these projects. Insofar
as marginal costs are increasing in capacity utilization, we expect the coefficients on
these variables to be positive.

In principle, complementarities arising between similar projects may differ from
those arising between different projects. To account for this possibility, we consider
the Herfindahl index for project types for which bidder 7 is bidding. A negative sign
is interpreted as a relative complementarity between similar projects.

Finally, as an additional proxy for potential economies and / or diseconomies
among projects, we compute a measure of distance between projects, defined as the
(log of) distance between the current project and the other projects in which 7 bids

normalized by the total distance between each of these projects and the closest plant

19We construct for each bidder-project pair the minimum straight-line distance (in miles) between
any of ¢’s plants and the centroid of the county in which project [ is located. We take the shortest
distance if bidder ¢ owns multiple plants.
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owned by bidder i. Insofar as relatively more distant projects potentially reduce

economies of scale, We expect this variable to have a positive sign.

Regression results Table 4 reports OLS estimates for our baseline regression
specifications: logs bids by bidder, round, and auction on the own- and cross-auction
characteristics defined above. All regression specifications include a full set of bidder
type, project type, and letting date indicators, with standard errors clustered at the
bidder-round level to allow for correlation within bidder ¢’s bids.

Estimated effects of own-auction characteristics correspond closely both to our
prior and to findings elsewhere in the literature. As expected, bids are increasing
almost one for one in project size, with the coefficient on log engineer’s estimate
exceeding 0.97 in all specifications. Similarly, the negative coefficient on number of
rivals suggests that competition increases bidder aggressiveness, with one additional
competitor associated with a 4 — 5 percent decrease in average bids. Finally, the
coefficient on log distance to project suggests that a one percent increase in i’s
distance from the project leads to about a 2 percent increase in i’s bid on average.

More importantly, estimated cross-auction effects are also highly significant, with
magnitudes stable across specifications and signs broadly consistent with our prior
expectations. In particular, the positive coefficient on log of engineer’s estimates
across auctions suggests that competing in larger auctions leads to a substantial
decrease in aggressiveness by bidder ¢ in auction [, with the negative coefficient on
same-type projects suggesting that this effect is ameliorated slightly when the two
projects are of the same type. Similarly, the positive sign on log distance among
projects suggests that increasing distance to other projects reduces the synergies
among them, which corroborates the hypothesis that simultaneous bidding induces
strategic spillovers. Finally, the significant negative coefficient on total number of
rivals in auctions participated by 7 suggests that facing more competition across

auctions leads bidder ¢ to bid more aggressively in auction [.
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Table 4: OLS Estimates of Cross-Auction Effects

y = In(bid) 1 2
Log engineer’s estimate 0.971%F*  0.9765***
(0.0011)  (0.0011)
Log number of rivals -0.0499***  _0.0398***
(0.0032)  (0.003)
Log distance to project 0.021** 0.0129%***
(0.0011)  (0.001)
Log days to project start 0.0038***  (.0038***
(0.0009)  (0.0009)
Standardized backlog 0.0029%**  0.0033***
(0.001)  (0.0011)
Log number of big rivals faced 0.0047*%%  0.0049**
(0.0024)  (0.0022)
Log number of regular rivals faced 0.026***%  0.0304***
(0.0031)  (0.0028)
Multiple-bid indicator -0.0951***  _0.1805***
(0.023)  (0.0223)
Log sum engineer’s estimate across played auctions — 0.0062***  (0.0119%**
(0.0016)  (0.0015)
Log sum number of rivals across played auctions -0.0162***  -0.0124***
(0.0025)  (0.0023)
Log distance across played projects 0.0047** 0.0042%*
(0.002) (0.002)
Fraction overlapping time across projects 0.0175%*FF  (0.0139***
(0.0037)  (0.004)
Same-type-auctions concentration index -0.0101**  -0.0267***
(0.0051)  (0.0053)
Big bidder - 0.0019
; (0.0045)
Regular Bidder - -0.0044*
- (0.0026)
Year FE, Month FE, Auction type FE YES YES
Bidder type FE NO YES
Bidder ID FE YES NO
R-squared 98.16 97.93

Unit of analysis is bidder-auction-round, with standard errors clustered by bidder within each round. There are 40,624

observations. Variables log of engineer’s estimate, log of number of rivals in the auction and log of distance to the county
centroid measure size, strength of competition, and distance to project I respectively. Remaining variables proxy for
cross-auction characteristics: number of rivals in other auctions, sum engineer’s estimate, distance to auctions scaled
by distance to project I in which ¢ is competing and number of overlapping days among projects scaled by the total
number of days to completion.
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5 Structural estimation of complementarities

We now turn to this paper’s primary interest: structural estimation of the function
ki(+) describing preferences over combinations. In principle, the results in Section 3
support fully non-parametric estimation of ;. In practice, of course, the dimension-
ality of the problem renders this infeasible. We therefore implement our structural
procedure in two steps. First, following Athey, Levin and Siera (2011) and Cantillon
and Pesendorfer (2006) among others, we estimate a parametric approximation to
the equilibrium distribution G; of bids submitted by each bidder i. Second, we map
these estimates through the first-order condition (2) to obtain a minimum-distance
criterion paralleling Equation (7) which we use to estimate parameters in ;. Fol-
lowing Groeger (2014), we assume there is no binding reserve price. When a bidder
is the sole participant (which happens only 137 times out of 8824 auction analyzed),

he will face MDOT that draws a completion cost from a fringe bidder’s cost.

5.1 First step: estimation of G4,...,Gy

In constructing first-step estimates of G, ..., Gy, we model i’s bid in auction [ and
letting t as depending on the following observables: i’s type, characteristics X in-
fluencing ¢’s standalone valuation for contract [, characteristics W;; relevant for ¢’s
preferences over combinations involving auction [, competition in auction [, and com-
petition in other auctions in which ¢ bids. In particular, for bidder i at (Z;, Wy, X;),

we specify and estimate a first-step model of the form:
hl(bit) ~ MVN('|Milt7 Eilt)7
where p;;; is a linear-in-parameters function of the form

il = Q- DZ(Zta Wt>Xt)7
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we specify the variance and covariance components of Y;; respectively as

Ui2lt = eXp(ﬁ : D;'Tl<Zt7 WtaXt))a
exp(’y ) kaz<Zta WtaXt) - 1)
exp(y - Dy (Z, Wi, Xi) + 1)

Pilkt =

and D}(-), DJ(-), and D%, (-) are known (user-specified) subvectors of (Z;, Wy, X3).
Table 5 reports first-step estimates from applying the first-step model above to
the sample described in Section 4 once we restrict our attention (for computational
reason) only to bidders who bids in up to 16 auctions which represents 96% of all
bidders. Panel 1 reports estimates & for the parameters o appearing in the mean
function p;; not surprisingly, are very similar to those in our descriptive regressions.
Panel 2 reports estimates B for parameters 3 appearing in the variance function o2,
which suggest that bidders competing in multiple auctions and for larger projects
submit less dispersed bids.?? While we do not have strong priors on these effects,
the direction seems natural. Finally, Panel 3 reports estimates 4 for parameters
appearing in the covariance function p;;;. These suggest at least two broad patterns
in bidding behavior across auctions. First, bidders bid tend to bid more similarly for
similar projects: i.e. for those in the same county and / or of the same type. Second,
bidders competing for projects whose schedules overlap in time tend to compete
for one relatively more aggressively than for the other. We interpret the latter
as consistent with the presence of potential diseconomies of scale for overlapping

projects.

5.2 Second step: estimation of complementarities

Let x¥(Z,W,X) denote the complementarity bidder i assigns to outcome w at ob-

servables (Z, W, X). We consider the following simple linear specification for ;(+):

HJ;U(Z,VV,X,G()) = Cw<ZZ‘, VVZ) . 90, (10)

20While the parametrization of ¥;;; does not imply its positive semi-definitiveness, the estimated
variance-covariance matrix is positive semi-definite.
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Table 5: First-step MLE estimates of parameters in G;

Mean g a MLE SEs 95% CI
Constant  0.3208 0.0159 0.2896  0.352
Log engineer’s estimate  0.9809 0.0009 0.9791  0.9827
Log rivals in auction -0.0422 0.0027 -0.0475 -0.0369
Multiple bids dummy -0.1333 0.0207  -0.1739 -0.0927
Log sum engineer’s (across [)  0.0079 0.0014 0.0052  0.0106
Log sum rivals (across I) -0.0078  0.0022  -0.0121 -0.0035
Log days to the start  0.0032 0.0008 0.0016  0.0048
Standardize backlog 0.0036 0.001 0.0016  0.0056
Same-type-auctions index -0.0214 0.005 -0.0312 -0.0116
Fraction overlapping time 0.0186 0.0035 0.0117  0.0255
Log number of big rivals faced 0.0056 0.0022 0.0013  0.0099
Log number of regular rivals faced 0.0242 0.0024 0.0195  0.0289
Big bidder  0.008 0.0045  -0.0008 0.0168
Regular bidder -0.0056 0.0025  -0.0105 -0.0007
Log distance to project 0.0146 0.0009 0.0128  0.0164
Log distance across played projects  0.0074 0.0017 0.0041 0.0107
Bidder Type FE  YES - - -
Auction Type FE  YES - - -
Year FE  YES - - -
Month FE  YES - - -
Variance o2, B MLE SEs 95% CI
Constant  0.0984 0.0743  -0.0472  0.244
Multiple bids dummy -0.2032 0.019 -0.2404  -0.166
Log engineer’s estimate -0.2647 0.0054 -0.2753 -0.2541
Covariance p;p; 4 MLE SEs 95% CI
Constant  0.2057 0.023 0.1606  0.2508
Same county projects  0.2209 0.0275 0.167  0.2748
Same type projects 0.1261 0.0188 0.0893 0.1629
Fraction overlapping time -0.0275 0.0203 -0.0673  0.0123

31



where 6y C © is a p x 1 vector of unknown parameters and C“(Z;, W;) is a known
p x 1 function of (Z;, W;) describing characteristics relevant to combination w.?!
In view of our linear specification (10) for x;, we here consider estimation under

the following combination of Assumptions 5 and 8&:
Fim(-|Z,W,X) = F(:|Z;, X)) for all 7, all m € My, and all (Z, W, X), (11)

where F;,,(+|]-) denotes the conditional marginal distribution of bidder ¢’s standalone
valuation for object m € M;. We thus exploit both variation in rival characteristics
Z_; and variation in combination characteristics W as defined in section 3 above.
The essence of our identification strategy is to compare the equilibrium bidding
behavior of similar bidders competing for similar contracts within letting environ-
ments that differ either in rival characteristics Z_; or in combination characteristics

W. We implement this intuition as follows.
(a) Given a bidder i, randomly select an auction m played by 1.

(b) Holding auction m and the number of auctions played by i constant, draw two
different sets of auctions played by bidders of the same type as ¢. This yields
two distinct letting environments 7 and k, which by construction are identical

on non-excluded dimensions but differ on excluded dimensions.

(c) For each of these hypothetical letting environments, we approximate the key
equilibrium-dependent terms V;(Z, W, X) and T;(Z, W, X) via simulation as fol-
lows. We first draw a size-R sample of bids {0/ }22; from the estimated condi-
tional distribution G;(-|Z, W, X) of bids submitted in lettings with the charac-
teristics given.?? For each draw b}, we then compute estimates of T';(b7|Z, W, X),
V(b Z, W, X), and V P;(b7|Z, W, X ) based on our initial estimate of G;(-| Z, W, X).

2n practice, C¥(-) includes the following elements: bidder i’s net backlog after winning com-
bination w (i.e. 4’s current backlog plus the sum of engineer’s estimates among projects won),
the Herfindahl index of auction types in w, the fraction of time overlap among projects in w, the
product of fraction overlapping time and total combination size, the distance among projects in
combination w, and a set of dummies for bidder size (large, regular) and bidder type. Construction
of these variables is described in detail in Section 4.1 above.

22In practice we set R to 500, with larger samples having very little effect on results.
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Taking appropriate averages of these, we ultimately obtain the desired approxi-
mations to U and T:

A

R
1
Ti(2,W,X) = 5 > b+ V(0| Z, W, X) T (05| Z, W, X))
r=1

A

R
1
Vi(Z, W, X) = 5 > V(0|12 W, X) VR 2, W, X)T
r=1

(d) Select the elements in Tz, \I/z, Tk WF corresponding to auction m for which the

exclusion restrictions implied by Assumption 8 are satisfied.
(e) Repeat the previous steps from (a) to (d)

(f) Construct an estimator @ for 6, by minimizing violations of (9) as measured by
the following least-squares estimation criterion:

. . - )
mind D (Vi = T = (WGl = ¥ Cl) - 0) (12)

While so far we have emphasized first moments as sufficient for identification, the
analysis in Section 3 in fact yields a much stronger identifying restriction: invariance
of the whole distribution of Vi, to suitable variation in (Z_;, W). Both in principle
and in practice, matching on features beyond simple first moments conveys substan-
tial additional information on the shape of this distribution, thereby significantly
improving precision of estimates of 6y. To incorporate this additional information,
we extend the criterion (12) to enforce invariance also in certain predicted quantiles
of V;,,.2 Since these predicted quantiles are themselves functions of #, we minimize
this richer criterion by iteration. Starting from the initial estimate 6 derived from
(12), we simulate a new set of predicted means and quantiles of V;,, as above. We
then minimize divergence in these to obtain a new estimate él of 6y, and iterate this

procedure until convergence. In each iteration, the criterion to minimize reduces to

23In practice, we consider the 25", 50" and 75" quantiles.
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a linear least-squares estimator (OLS), which we implement via robust regression
to reduce influence of skewness, outliers, and non-constant variance in the errors.

Standard error are boot-strapped.?*

5.3 The main result: structural estimates of 6,

Table 6 reports estimates 6 derived from mapping the first-step estimates @1, o G
in Section 5.1 through the second-step procedure outlined in Section 5.2. Although
we estimate Gl, e Gy for all bidders, when forming the criterion (12) used to esti-
mate § we restrict attention to the subsample of bidders competing in two auctions.
This restriction serves both to reduce computational costs and to improve the nu-
merical quality of our simulated criterion (12); as usual, performance on both fronts
declines rapidly in higher dimensions.?> Note, however, that as defined above ()
depends only on characteristics such as total size of, overlap between, and distance
among projects in a given combination. Insofar as these scale naturally to other
combination sizes, so will our estimates of the complementarity vector «(-).
Bearing in mind that positive signs reflect “positive complementarities” (lower
costs) while negative signs reflect “negative complementarities” (higher costs), the
coefficients reported in Table 6 have the following economic interpretations. The
variable “Current backlog plus sum of engineer’s estimates” reflects the ez post back-
log that i would realize in the event of a combination win, with a negative coef-
ficient on this variable suggesting that higher ex post backlog renders a joint win
less valuable, as we would expect in the presence of capacity constraints. The vari-
ables “Fraction overlapping time” and “Fraction overlapping time x Sum engineer’s
estimates” measure the extent to which project schedules overlap, with negative
signs on these suggesting that schedule overlap substantially increases both average
completion costs and the rate at which completion costs increase in combination

size. Meanwhile, signs on the variables “Distance among projects” and “Same-type

24Tn practice, we generate 1297 pseudo-observations as described above to construct our criterion
function.

25This is particularly true with respect to simulated gradients of probabilities of higher-order
combinations, which would play a central role in any attempt to estimate «(-) in higher dimensions.
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Table 6: Estimated complementarity parameters 6,

~

Combination characteristics (Elements of W) 0 SE
Current backlog in ’000 plus sum engineer’s estimates in ‘000  -0.0013  0.0003
Fraction overlapping time among projects in combination -21.1490  7.0028
Fraction overlapping time x Sum engineer’s estimates in 000 -0.0063  0.0014
Distance in KM among projects in combination -0.0288  0.0062
Same-type-auctions index 82.8348 17.5152
Bidder type / size FE YES -

Units are in thousands of dollars, positive x means lower cost (more cost synergy,
larger complementarities) between projects.

auction index” suggest that both greater distance and greater heterogeneity make
projects more substitutable. Finally, although not reported in Table 6, we include
a vector of bidder type and bidder size dummies; signs on these vary, but suggest a
positive intercept for k(-) on aggregate as we quantify in detail next.

To illustrate the economic significance of these parameter estimates, we next
translate the parameter estimates 6 in Table 6 into estimates for the underlying
complementarities x(-) themselves. These will of course vary both across bidders and
across combinations, so for the moment we proceed as follows. We first construct,
for each bidder ¢ in the sample, the complementarity x“(Z;, W;; é) associated with
the largest combination played by i. We then normalize this complementarity by
the total size of the relevant combination, and analyze the distribution of these
normalized complementarities across bidders.

Table 7 summarizes the results of this procedure, reporting quantiles of normal-
ized complementarities for both (i) all bidders competing in two auctions and (ii) all
bidders in our MDOT sample. As evident from Table 7, there is substantial hetero-
geneity in complementarities across bidders in the MDOT sample, with a joint win
leading to cost savings of approximately 13 percent of combination size at the 95th
(best) quantile of complementarities, transitioning to cost increases of approximately

3.5 percent at the 5th (worst) quantile. Recalling the parameter estimates in Table
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6, we view these pattern as consistent with an underlying U-shaped cost curve, with
completion costs falling until firm resources are fully employed and rising thereafter.

We conclude this section with a note on interpretation of Tables 6 and 7 under
endogenous entry. In Appendix B, we embed the bidding model considered here
within a fully specified entry and bidding game, showing that our estimation strategy
is robust to this extension. Hence the parameter estimates reported in Table 6 remain
valid even under entry. In interpreting Table 7, however, endogenous entry will be
pivotal: the distribution of complementarities among projects in which bidders enter
will obviously differ from that which would arise if projects were randomly assigned.
In particular, insofar as bidders tend to bid for complementary combinations, we

would expect the distribution in Table 7 to be positively selected.

6 Counterfactuals

While the simultaneous first-price auction is clearly inefficient when bidders have
combinatorial preferences, little is known empirically about the magnitude of these
inefficiencies in practice. Furthermore, little is known (either theoretically or empir-
ically) about the revenue properties of the simultaneous first-price auction relative
to other feasible multi-object mechanisms such as the Vickery-Clarke-Groves (VCG)
mechanism, the combinatorial proxy auction (Ausubel and Milgrom 2002), or the
clock-proxy auction (Ausubel, Crampton and Milgrom 2006). Given that implemen-
tation of such combinatorial mechanisms involves substantial practical costs (even
solving the allocation problem once is NP-hard), determining the magnitude of their
potential revenue and efficiency effects is crucial in evaluating whether policymakers
might want to switch. If efficiency gains are small and / or revenue effects are am-
biguous, an optimal policymaker may prefer the simplicity and transparency of the
simultaneous first-price auction to better-performant but more complex combinato-
rial mechanisms. Conversely, if large efficiency and / or revenue gains are feasible,
incurring greater combinatorial implementation costs may be worthwhile.

In this section, we compare revenue and efficiency outcomes of the simultaneous

low-bid first-price auction with those of a descending combinatorial proxy auction
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Table 7: Distribution of complementarities across bid-
ders

Quantile of normalized #“(Z;, W;) in:
Quantile rank  Two-auction sample Full sample

oth -0.0352 -0.0365
10th -0.0205 -0.0239
15th -0.0103 -0.0170
20th -0.0045 -0.0117
25th -0.0010 -0.0079
30th 0.0022 -0.0050
35th 0.0057 -0.0023
40th 0.0094 0.0007
45th 0.0139 0.0034
50th 0.0187 0.0062
55th 0.0231 0.0097
60th 0.0287 0.0139
65th 0.0358 0.0186
70th 0.0437 0.0242
75th 0.0554 0.0321
80th 0.0732 0.0414
85th 0.0923 0.0554
90th 0.1244 0.0812
95th 0.1847 0.1291

“Normalized #“(Z;, Wi;)” denotes estimated comple-
mentarity ~(Z;, Wi; é) among projects bid by 4 divided
by the sum of engineer’s estimates among projects bid by
1, with quantiles evaluated over the empirical distribu-
tion of (Z;, W;) over all bidders and periods in the sample
indicated. Positive fractions represent positive comple-
mentarities (lower costs). Thus the statement that the
50th quantile of normalized #“(Z;, W;) is 0.0075 in the
full sample means that for the median bidder a joint win
would generate cost savings equal to approximately 0.7
percent of combination size, and similarly.
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a la Ausubel and Milgrom (2002). While efficiency can also be achieved with the
VCG mechanism, this can also exhibit very poor revenue performance. The Ausbel-
Milgrom proxy auction mitigates the potential revenue disadvantages of the VCG
auction, while still achieving efficiency so long as bidders report their true preferences

to the proxy agent.

Descending proxy auction Adapted to our procurement setting, the descending
proxy auction operates as follows. First, each bidder i reports to its proxy agent a
(2Mi — 1) x 1 vector describing costs of completion for each possible combination of
the M; products on which ¢ has undertaken cost discovery. Second, proxies compete
on behalf of bidders in a virtual descending package auction, bidding according to
the following rule: in each bidding round, submit the allowable package bid that,
if accepted, would maximize the bidder’s profit given its reported costs. After each
bidding round, a provisional winning allocation is determined by minimizing procurer
costs over existing bids, and bidding proceeds to the next round. If no new bids are
submitted in a round, the auction ends.

Consistent with most prior work on proxy auctions, we restrict attention to the
case where bidders truthfully report costs. This guarantees that the final allocation
is efficient and in the core of the corresponding exchange game. Note, however, that
it is uncertain whether truthful reporting is an equilibrium in general.?® Insofar as
false reports distort final allocations, our results may overstate gains from the proxy
auction. Nevertheless, we see truthful revelation as a useful and practical benchmark
for comparison with the simultaneous first-price auction.

Computation of final outcomes in the Ausubel-Milgrom proxy auction is known
to be extremely challenging, requiring one to solve a NP-hard winner determination
problem for every bidding round. Since the proxy auction obtains (approximate) ef-
ficiency only with a small bid increment, and the number of bidding rounds required
for convergence increases substantially as the bid increment decreases, naive appli-
cation of the Ausubel-Milgrom algorithm can be extremely costly computationally.

We therefore focus instead on two variants of the Ausubel-Milgrom auction iden-

26See related discussion in, e.g., Ausubel and Milgrom (2002).
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tified by Sandholm (2006) as having good computational properties: the safe-start
proxy auction, in which starting bids for each bidder are determined by the VCG
payment rule, and the increment scaling proxy auction, in which the bid increment
automatically scales down as the auction proceeds. In both variants we target a
final-iteration bid increment of $1000, which is quite small as bids are typically in
hundreds of thousands to millions of dollars. These algorithms need not generate
the same revenue as the naive proxy auction, but retain its desirable efficiency and

revenue properties. See Sandholm (2006) for detailed discussion of these algorithms.

Counterfactual implementation As described above, the main challenge in im-
plementing our counterfactuals is computational: the optimal winner determination
problem in combinatorial auctions is well-known to be NP-hard, with complexity
growing very rapidly in the number of auctions and bidders.?” To ease this com-
putational burden, we restrict our counterfactual sample as follows. First, we drop
the 5 percent of bidders submitting more than 8 bids. Second, starting from the
778 self-contained lettings in our counterfactual sample, we partition each letting
involving more than one million possible allocations into smaller sub-lettings via the
Girvan-Newman algorithm: interpreting each letting as a network with bidders and
auctions defining nodes and bids defining edges, we iteratively drop bids with the
highest “edge connectivity” until the letting is partitioned.?® We then repeat this
process until no letting involves more than 1 million potential allocations. Our final
counterfactual sample thus involves 1656 self-contained lettings representing roughly
95 percent of unique bidders and roughly 70 percent of total bids, of which 1193
lettings (our primary interest) involve at least two auctions.

Given this sample, we implement our counterfactual comparisons as follows.

2TFor instance, to determine the efficient allocation in a letting with 30 auctions receiving 4 bids
each — by no means the largest in our sample — we might have to compare up to 43° ~ 10'® possible
allocations. Even comparing a billion allocations per second — faster than feasible on a standard
microprocessor — this would take more than 30 years to solve exactly. Real-world approaches to
solving large-scale combinatorial auctions rely instead on heuristic winner-determination algorithms,
which aim to achieve reasonable solution quality in reasonable computation time. Since we here
wish to solve exactly, we do not explore these.

%See Girvan and Newman (2002) for a formal description of this algorithm.
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First, for each bidder ¢ and letting ¢ in the counterfactual sample, we draw a sample
of bids {b/*}/, from the corresponding bid distribution G;(-) estimated in Step 1 of
our structural procedure. Second, for each bid vector b;* drawn for each bidder 4,
we recover the corresponding standalone valuation vector v/’ implied by the inverse
bid function (2), taking as given the estimates #;(-) for x;(-) obtained in Step 2 of
our structural procedure. For each letting ¢ in the counterfactual sample and each
replication r € {1, ..., R}, we then proceed in three steps.

. . . ,rt rt . .
First, we simulate the allocation a}:p, and procurement cost C';p, arising under

N .

the simultaneous first-price auction given bid realizations {b;*}.* ;; i.e. awarding each

auction to the bidder submitting the lowest standalone bid. Then, given estimated

rt\ N
i Ji=1»

complementarities {#;(-)}¥, and estimated valuations {v we simulate total
social costs of project completion S}, corresponding to allocation alip ,.

Second, assuming truthful reporting of types by bidders, we simulate proxy auc-
tion procurement costs Cppoyy based on the safe-start and incremental scaling al-
gorithms described above. In both variants, we target a final iteration bid increment
of $1000, which is quite small relative to typical bids. While in principle efficiency in
proxy auctions obtains only when the bid increment approaches zero, in practice our
$1000 bid increment leads to allocations which are virtually indistinguishable from

the VCG mechanism.

Revenue and efficiency We now describe results of this counterfactual compar-
ison based on R = 10 simulation replications, focusing on the subsample of lettings
involving at least two auctions. For purposes of these simulations, we set MDOT’s
effective reserve price for each project equal to 125 percent of the MDOT engineer’s
cost estimate; other plausible values generate very similar results.

Two striking patterns emerge from this exercise. First, as expected, the simulta-
neous first-price mechanism is socially inefficient, generating expected social costs of
roughly $6.60 million per counterfactual letting versus $6.36 million per letting for
the (socially efficient) proxy mechanism. In level terms this difference is nontrivial,
translating to an average savings of roughly $40, 000 per auction. Yet in percentage

terms gains are relatively small: roughly 3.7 percent social cost savings relative to
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total project completion costs under the simultaneous first-price mechanism.

Second, and even more striking, expected payments by MDOT to bidders are very
similar across mechanisms, with the proxy auction generating savings of only about
one percent of total MDOT payments. We emphasize that this is not a prediction of
the theory; with different parameters, one can easily obtain substantial differences
in revenue.

Recall that (by construction) the number of bids submitted per bidder is lower in
our counterfactual than in the data: approximately 2.2 bids per bidder in the coun-
terfactual, versus 2.7 bids per bidder in the data. To determine whether our results
are sensitive to this, we reweight counterfactual lettings such that the average number
of bids per bidder in the counterfactual equals the average number of bids per bidder
in the data.?? This increases estimated efficiency gains slightly to approximately 4.3
percent, leaving estimated MDOT payments essentially unchanged.

Finally, to explore the role of complementarities per se in the performance of
the simultaneous first-price mechanism, we compute a measure of “complementarity
importance” defined as follows: for each letting, we find the maximum (in absolute
value) complementarity among combinations played by each bidder, average this
measure across bidders, and then normalize by average size of projects. Reweighting
the bid-adjusted sample by this measure of complementarity importance, estimated
gains increase to about 5.5 percent social savings and 1.5 percent MDOT savings
relative to the corresponding simultaneous first-price baseline. In other words, coun-
terfactual gains tend to be substantially larger in lettings where complementarities
are more important — as expected given the discussion above.

On the whole, we view these findings as strong suggestive evidence that the
simultaneous first-price mechanism in fact performs remarkably well in the MDOT
marketplace. This analysis is of course only partial in that we effectively hold entry
behavior fixed across mechanisms. By construction, social savings not captured by

MDOT must accrue as profit to bidders, and in equilibrium this should translate

298pecifically, we choose a final weight vector to minimize the Euclidean distance between our
final weights and unit weighting, subject to the constraint that the average number of bids per
bidder in the reweighted sample equals that in the data.
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into greater entry. This in turn might generate slightly larger revenue effects than
we find here. In contrast, since new entrants are by definition marginal, we expect

true efficiency gains to be similar to those reported above.

7 Conclusion

Motivated by an institutional framework common in procurement applications, we
develop and estimate a structural model of bidding in simultaneous first-price auc-
tions, to our knowledge the first such in the literature. Non-parametric and semi-
parametric identification of the model is achieved under standard exclusion restric-
tions. Finally, we apply this framework to data on Michigan Department of Trans-
portation highway construction and maintenance auctions. Our estimates suggest
that winning a two-auction combination generates cost effects ranging from roughly
3.5 percent cost increases (relative to combination size) at the 5th percentile to
roughly 13 percent cost savings (relative to combination size) at the 95th percentile,
with combination costs increasing in joint size of, scheduling overlap between, and
distance between projects in the combination. Building on these observations, we
compare performance of the simultaneous first-price mechanism with performance of
a descending proxy auction a la Ausubel and Milgrom (2002). Despite the presence of
substantial complementarities (both positive and negative) in the data, we find that
this alternative mechanism generates relatively modest gains: roughly four percent
savings in social costs of project completion, with little change in MDOT’s expected
procurement costs. We view this as strong suggestive evidence that simultaneous
first-price auctions can perform relatively well even in environments with econom-
ically important complementarities. This observation may partially rationalize the

widespread popularity of simultaneous first-price auctions in practice.

References

ATHEY, S., J. LEVIN, and E. SEIRA (2011), “Comparing Open and Sealed Bid

Auctions: Evidence from Timber Auctions.” The Quarterly Journal of Economics,

42



126, 207-257.

AUSUBEL, L.M., and P. CRAMTON (2004), “Auctioning Many Divisible Goods”,
Journal of the European Economic Association 2, 480-493, April-May.

AUSUBEL, L.M., P. CRAMTON, P. MCAFEE, and J. MCMILLAN (1997), “Syn-
ergies in Wireless Telephony: Evidence from the Broadband PCS Auctions”, Journal
of Economics and Management Strategy 6(3), 497-527.

AUSUBEL, L.M., P. CRAMTON, and P. MILGROM (2006), “The Clock-Proxy
Auction: A Practical Combinatorial Auction Design”, in P. Cramton, Y. Shoham,
and R. Steinberg (eds.), Combinatorial Auctions, MIT Press, MIT Press, Chapter
5, 115-138.

BAJARI, P., and J. FOX (2013), “Measuring the Efficiency of an FCC Spectrum

Auction”, American Economic Journal: Microeconomics 5(1), 100-146.

BALAT, J. (2015), “Highway Procurement and the Stimulus Package: Identification
and Estimation of Dynamic Auctions with Unobserved Heterogeneity.” Working

paper, Johns Hopkins University.

CANTILLON, E., and M. PESENDORFER (2006), “Combination Bidding in Multi-

Unit Auctions.” Working paper, London School of Economics.

CHAPMAN, J.T., D. MCADAMS, and H.J. PAARSCH (2007), “Bounding Revenue
Comparisons across Multi-Unit Auction Formats under -Best Response.” American
Economic Review 97(2), 455-458.

CRAMTON, P. (2006), “Simultaneous Ascending Auctions.” Ch. 4 in Cramton, P.,
Shoham, Y., and Steinberg, R. (eds) Combinatorial Auctions (Cambridge, MA: MIT
Press), 99-114.

CRAMTON, P., Y. SHOHAM, and R. STEINBERG (eds) (2006), Combinatorial
Auctions (Cambridge, MA: MIT Press).

DE SILVA, D. (2005), “Synergies in Recurring Procurement Auctions: An Empirical
Investigation.” Economic Inquiry 43(1), 55—66.

43



DE SILVA, D., T. JEITSCHKO, and G. KOSMOPOULOU (2005), “Stochastic Syn-
ergies in Sequential Auctions.” International Journal of Industrial Organization 23,
183-201.

DE VREIS, S., and R.V. VORHA (2003), “Combinatorial Auctions: A Survey.”
INFORMS Journal of Computing 13(3), 284-3009.

FELDMAN, M., H. FU, N. GRAVIN, and B. LUCIER, (2012), “Simultaneous Auc-
tions are (Almost) Efficient.” (Working Paper, http://arziv.org/abs/1209.4703).

FLAMBARD, V., and I. PERRIGNE (2006), “Asymmetry in Procurement Auctions:
Evidence from Snow Removal Contracts.” The Economic Journal (116), Issue 514,
1014-1036.

FEVRIER, P., R. PREGET, and M. VISSER (2004), “Econometrics of Share Auc-
tions.” Center for Research in Economics and Statistics (CREST) Working Paper,
2002-20009.

GENTRY, M., T. KOMAROVA, P. SCHIRALDI, and W. SHIN (2016), “On Mono-
tone Equilibria in Simultaneous First-Price Auctions.” Working paper, London

School of Economics.

GIRVAN, M. and M. E. NEWMAN (2002), “Community structure in social and
biological networks.” Proceedings of the National Academy of Sciences, 99, 78217826.

GHOSH, G. (2012), “Simultaneous First-Price Auctions with Budget-Constrained
Bidders.” Working paper.

GROEGER, J.R. (2014), “A Study of Participation in Dynamic Auctions.” Inter-
national Economic Review 55(4), 1129-1154.

GUERRE, E., I. PERRIGNE, and Q. VUONG (2000), “Optimal Nonparametric
Estimation of First-Price Auctions.” Econometrica, 68(3), 525-574.

HENDRICKS, K., J. PINKSE, and R.H. PORTER (2003), “Empirical Implications
of Equilibrium Bidding in First-Price, Symmetric, Common Value Auctions.” Review
of Economic Studies, 70, 115-145.

44



HENDRICKS, K., and R.H. PORTER (1988), “An Empirical Study of an Auction

with Asymmetric Information.” American Economic Review, 78(5), 865-883.

HORTACSU, A. (2011), “Recent Progress in the Empirical Analysis of Multi-Unit
Auctions.” International Journal of Industrial Organization, 29(3), 345-349.

HORTACSU, A. and D. McADAMS (2010), “Mechanism Choice and Strategic Bid-
ding in Divisible Good Auctions: An Empirical Analysis of the Turkish Treasury
Auction Market.” Journal of Political Economy , 188(5), 833-865.

HORTACSU, A.; and S.L. PULLER (2008), “Understanding Strategic Bidding in
Multi-Unit Auctions: A Case Study of the Texas Electricity Spot Market.” RAND
Journal of Economics, 39(1), 86-114.

JACKSON, M.O., L. K. SIMON, J.M. SWINKELS, and W.R. ZAME (2002), “Com-
munication and Equilibrium in Discontinuous Games of Incomplete Information.”
Econometrica, 70(5), 1711-1740.

JOFRE-BONET, M., and M. PESENDORFER (2003), “Estimation of a Dynamic
Auction Game.” Econometrica, 71(5), 1443-1489.

KAWAI K. (2011), “Auction Design and the Incentives to Invest: Evidence from
Procurement Auctions.” Working paper, UCLA.

KIM, S.W., M. OLIVARES and G.Y. WEINTRAUB (2014), “Measuring the Perfor-
mance of Large-Scale Combinatorial Auctions: A Structural Estimation Approach.”
Management Science 60(5), 1180-1201.

KLEMPERER, P. (2008), “A New Auction for Substitutes: Central Bank Liquidity
Auctions, the U.S. TARP, and Variable Product-Mix Auctions. Bayesian Games and

the Smoothness Framework.” Working paper, Oxford University.

KLEMPERER, P. (2010), “The Product-Mix Auction: A new auction design for
differentiated goods.” Journal of the European Economic Association, 8(2-3), 526—
536.

KRASNOKUTSKAYA, E. (2011), “Identification and Estimation in Procurement

45



Auctions under Unobserved Auction Heterogeneity.” Review of Economic Studies

78(1), 203-327.
KRASNOKUTSKAYA, E., and K. SEIM (2011), “Bid Preference Programs and

Participation in Procurement.” American Economic Review 101(6), 2653-2686.

KRISHNA, V., and R. W. ROSENTHAL (1996), “Simultaneous Auctions with Syn-

7

ergies.” Games and Economic Behavior 17, 1-31.

LI, T., and B. ZHANG (2010), “Testing For Affiliation In First-Price Auctions Using
Entry Behavior.” International Economic Review 51(3), 837-850.

LI, T., and B. ZHANG (2015), “Affliation and Entry in First-Price Auctions with
Heterogeneous Bidders: An Analysis of Merger Effects.” American Economic Jour-
nal: Microeconomics T(2), 188-214.

LI, T. and X. ZHENG (2009), “Entry and Competition Effects in First-Price Auc-
tions: Theory and Evidence from Procurement Auctions.” Review of Economic
Studies 76(4), 1397-1429.

LI, T. and X. ZHENG (2012), “Information Acquisition and/or Bid Preparation:
A Structural Analysis of Entry and Bidding in Timber Sale Auctions.” Journal of
Econometrics 168(1), 29-46.

LU, J. and PERRIGNE, 1. (2008), “Estimating Risk Aversion Using Ascending and
Sealed Bid Auctions: Application to Timber Data.” Journal of Applied Econometrics
23, 871-896.

LUNANDER, A., and S. LUNDBERG (2013), “Bids and Costs in Combinatorial and
Noncombinatorial Procurement Auctions — Evidence from Procurement of Public

Cleaning Contracts.” Contemporary Economic Policy 31(4), 733-745.

MILGROM, P. (2000a), “Putting Auction Theory to Work: The Simultaneous As-
cending Auction.” Journal of Political Economy 108(2), 245-272.

MILGROM, P. (2000b), “Putting Auction Theory to Work: Ascending Auctions
with Package Bidding.” Working paper, Stanford University.

46



MILGROM, P.; and R. WEBER (1985), “Distributional Strategies for Games with
Incomplete Information.” Mathematics of Operations Research 10(4), 619-632.

MORETON, P. and P. SPILLER (1998), “Whats in the Air: Interlicense Synergies
and their Impact on FCC Broadband PCS Spectrum Auctions.” Journal of Law and
Economics 41(2), 677-716.

Ofcom (2007). Digital dividend review: A statement on our approach to awarding the
digital dividend. United Kingdom Office of Communications. http://www.ofcom.org.uk/consult/condo

statement /

REGUANT, M. (2014), “Complementary Bidding Mechanisms and Startup Costs in
Electricity Markets”, Review of Economic Studies 81(4), 1708-1742.

ROSENTHAL, R.W., and WANG, R. (1996), “Simultaneous Auctions with Syner-

gies and Common Values.” Games and Economic Behavior 17, 32-55.

SANDHOLM, T. (2006), “Optimal Winner Determination Algorithms.” Chapter
14 in Combinatorial Auctions, CRAMTON, SHOHAM, and STEINBERG, R. (eds),
Cambridge, MA: MIT Press.

SOMAINI, P. (2013), “Competition and Interdependent Costs in Highway Procure-
ment.” Working Paper, Stanford University.

SYRGKANIS, V. (2012), “Bayesian Games and the Smoothness Framework”, (Work-
ing Paper, http://arziv.org/abs/1203.5155).

SZENTES, B., and ROSENTHAL, R.W. (2003), “Three-object Two-bidder Simul-
taneous Auctions: Chopsticks and Tetrahedra.” Games and Economic Behavior 44,

114-133.

WOLAK, F. (2007), “Quantifying the Supply-Side Benefits from Forward Contract-
ing in Wholesale Electricity Markets.” Journal of Applied Econometrics 22(7),
1179-12009.

47



Appendix A: Proofs

Proof of Proposition 1. The proof of Proposition 1 rests on two key claims. First, the
first-order system (2) must be well-defined for almost every b; submitted by i, i.e. almost
everywhere with respect to the measure induced by G;(-|Z,W). Second, at almost every
b; at which first order conditions hold, the first-order system (2) must be invertible. We
establish each claim in turn.

First show that the first order system (2) is well-defined for almost every b; submitted
by i. Recall that we can write bidder i’s objective as

(v, )| K; Z, W) = (Qu; + K — Qb)T P_;(b| Z,W).

where v; and K are given at the time of maximization. Note that the system (2) necessarily
holds at any best respose where 7(v;,-|K;Z, W) is differentiable and that Assumption
2 implies that each observed b; is a best response. Hence the system (2) will be well
defined for almost every b; submitted by ¢ if and only if 7 (v;, |K; Z, W) is differentiable
almost everywhere with respect to the measure on B; induced by G;(-|Z, W). But under
Assumption 3, G;(+-|Z, W) is absolutely continuous. To establish the claim, it thus suffices
to show differentiability of 7 (v;,-|K; Z, W) a.e. with respect to Lebesgue measure on B;.
Clearly (Qu; + K — Qb) is differentiable in b. Thus differentiability of 7 (v;,-|K; Z, W)
at b is equivalent to differentiability of P_;(-|Z, W) at b. Let B_; be the M; x 1 random
vector describing maximum rival bids in the set of auctions in which i participates. Again
applying Assumption 3 to rule out ties, the probability ¢ wins combination w at bid b is
Pw(b|Zv W) = Pr({m{m:wmzl}o < B*i,m < bl,ﬂ’L} N {ﬂ{m:wm:()}bi,m < B*’L’,m < OO})

For each w € Q;, let b* be the (> w) x 1 sub-vector of b describing i’s bids for objects
in w, BY, be the (3 w) x 1 sub-vector of B_; describing maximum rival bids for objects
in w, and G¥,(b*|Z, W) be the equilibrium joint c.d.f. of B¥, at (Z, W). Applying the
formula for a rectangular probability and simplifying, we can then represent P_;(-|Z, W)
in the form
PE(bZ, W) = > a2 G (b2, W),
w’'eN

where each %, is a known scalar (determined by w, w’) taking values in {—1,0,1}. But by
absolute continuity each c.d.f. G¥;(-|Z, W) is differentiable a.e. (Lebesgue) in its support,
and interpreted as a function from B; to RM:  each v~ is continuously differentiable in b.
Thus interpreted as a function from B; to R, each G¥(b*'|Z, W) is differentiable on a set
of full Lebesgue measure in B_;. The set of points in B; at which all G¥,(b*'|Z, W) are
differentiable is the intersection of points in B; at which each G¥,(b*'|Z, W) is differentiable,
i.e. the intersection of a finite collection of sets of full Lebesgue measure in B;. But from
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above differentiability of G*(b|Z, W) for all ' implies differentiability of P¥,(b|Z, W).
Hence PY;(-|Z, W) is differentiable on a set of full Lebesgue measure in B;. This in turn
implies differentiability of 7(v;,-|K; Z, W) a.e. with respect to the measure on B; induced
by Gi(-|Z, W), as was to be shown.

We next establish that the first-order system (2) must yield a unique solution ¥ for
almost every b; submitted by 7. Let B; be the set of points in B; at which «(-,-|K; W, Z)
is differentiable in b; from above, B; is a subset of full Lebesgue measure in ;. Choosing
any b € B; and rearranging (2) yields

Vol _i(b|Z, W) = VT _;(b|Z, W)b + T _;(b| Z, W) — Vy P_s(b|W, Z)" K;.

Hence uniqueness of ¥ is equivalent to invertibility of the M; x M; matrix V,I'_;(b|Z, W).
Recall that I'_;(b|Z, W) is an M; x 1 vector whose [th element describes the probability
that bid vector b wins auction [. Note that b € Bl- rules out ties at b. Thus for b € BZ-
the mth element of I'_;(b|Z, W) is the marginal c.d.f. G ,(b|Z, W) of B_;,, from which
it follows that V,I'_;(b|Z) is a diagonal matrix whose m,mth element is the marginal
p.d.f. g_im(b|Z, W) of B_;,,. Hence V,I'_;(b|Z, W) will be invertible at b if and only if
g—im(b|Z,W) >0 for all m =1, ..., M;.

But by hypothesis each submitted bid b; is a best response to rival play at (Z, W)
for some (v, K). Suppose that there exists an ¢ > 0 such that g_;,,(-|Z,W) = 0 on
(bim, — €,b;]. Then player i could infinitesimally reduce b;,,, without affecting either I'_;
or P_;, a profitable deviation for any (v, K). Hence we must have g_;,(-|Z, W) > 0
almost everywhere (Lebesgue) in the support of B;. By Assumption 3, this in turn implies
Gg—im(:|Z, W) > 0 for almost every b; submitted by i. Since m was arbitrary, we must have
V' —;i(b;|Z, W) invertible for almost every bid b; submitted by . Hence for almost every
b; submitted by i there will exist a unique v satisfying (2) at b;, given by

B =b; + Vol _i(bs| Z, W) T _i(bs| Z, W)
+ Vi (03| 2, W) "IV, P (bW, Z2)T K.

The RHS of this expression is identified up to K, establishing the claim.

Appendix B: Entry

In this Appendix, we formally embed the bidding model we describe above within a two-
stage entry-plus-bidding model paralleling those considered by Li and Zhang (2015) and
Groeger (2014) among others. This discovery process proceeds as follows.

At the beginning of the game, each bidder i is endowed with a 2% x 1 combinatorial
valuation vector Y; drawn by nature from Fy;. However, realizations of Y; are ex ante
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unknown to ¢ and can be discovered by ¢ only through costly entry. Specifically, at the
beginning of Stage 1, each bidder i observes a 2% x 1 vector of private combinatorial entry
costs C;, with element CiS of C; describing the total cost ¢ must incur to enter auctions
S € S. This cost vector C; satisfies the following properties:

Assumption 9 (Private Entry Costs). For each bidder i, C; is drawn independently of
combinatorial preferences Y; from cost distribution Fg; with support on a compact, con-
vex set C; C R2L, with C; private information, Fo; common knowledge, and cost draws
independent across bidders: C; L C; for all i, j.

Having observed C;, bidder i chooses a set of auctions M; € S in which to enter, pays the
corresponding entry cost CiMi, and proceeds to Stage 2. Then, at the beginning of Stage 2,
Bidder i observes the realizations of her combinatorial valuations YZ-S/ for all combinations
feasible at Mj;; that is, for each S’ € S such that S’ € M,. Lastly, bidder ¢ submits a
single bid b;,, for each object m in her entry set M;. Conditional on realization of any
participation structure M = { My, ..., My} realized in Stage 1, the bidding subgame then
proceeds exactly as described in the main text.

Following Milgrom and Weber (1985), define a distributional entry strategy for player
i as a measure §; over C; x S whose marginal over C; is F¢;, with § = (&1, ...,&n) a profile
of distributional entry strategies. Then assuming that at least one Bayes-Nash equilibrium
exists, any such equilibrium must have the following form. For each participation struc-
ture M arising from the entry game, let II(M) = (II; (M), ..., IIx(M)) be any vector of
candidate bid-stage payoffs in the corresponding bidding subgame. Taking these payoffs
as given, let

2(S,6-i) = E[Li(S, M_;)|¢-i]

be i’s expected net profit from entering auction combination S € S given rival entry
strategies £_; (where the expectation is taken over rival entry sets M_;). We can then
write bidder i’s Stage 1 problem as:

;= =(S, &) —C7.
M; = argmax 2(5, i) — G

The Stage 1 action set for each bidder is the finite set S, and bidders’ private entry costs
are independent. Hence by Proposition 1 of Milgrom and Weber (1985), there exists an
equilibrium in distributional strategies for the entry game corresponding to continuation
payoffs II(M). So long as bid-stage payoffs II(M) are themselves generated from play
of a Bayes-Nash equilibrium in every bidding subgame, this in turn will constitute an
equilibrium of the overall entry and bidding game.

If to this we add the restriction that Fi; is atomless on C; for each 4, then Proposition
4 of Milgrom and Weber (1985) implies existence of a equilibrium in which bidders play
pure entry strategies. Specifically, the set of cost vectors C; at which bidder ¢ chooses to
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enter set S € S, denoted CZS , will be the affine cone
CS={C; e R .05 — 5 < =(S,6.,) —2(S,£.,)VS € S},

Furthermore, since C; L Y;, equilibrium behavior will involve variation in participation by
bidder ¢ which is effectively exogenous and hence excludable from the perspective of rival
bidders. This is precisely the form of variation we exploit in our identification argument.

Appendix C: Partial identification with general G;

The point identification result for the vector-function of complementarities r;(Z;, W, X)
and the conditional distribution of V;|Z;, W, X relied on the first order conditions obtained
from bidder’s optimization of the payoff function. To derive those equations we employed
the absolute continuity of the bid distribution functions ;. That, in particular, eliminated
the possibility of bidders playing atoms in the equilibrium. In this appendix, we want to
illustrate an approach to the identification question without any continuity restrictions
imposed on G;. Our identification method is based on using inequalities for bidder’s best
responses and employing the exclusion restrictions in Assumption 5 to obtain bounds on
ki(Z;, W, X) and the CDFs of V;;|Z;, W, X. Hereafter we assume that ties are broken
independently across auctions.

Let us fix (Z;, W, X) € Z; x W x X. For each Z_; € Z_;|Z;, W, X, bidder maximizes
the payoff function

m(vi, b; Z, W, X) = vl T_;(b| 2, W, X) — b'T_;(b| Z, W, X)) + P_i(b|Z, W, X)T ki (Z;, W, X)

with respect to b € B;. That is, for each Z_; € Z_;|Z;, X, W, every bidder i’s bid vector b;
observed in the equilibrium satisfies the inequality
Tr (p. ) Tr (b ) ey AT )
v; Ti(bi|Z-;) — b T_i(b;| Z—;) + P—i(bi|Z-;)" k(Z;, W, X)) >
vIT_i(b|Z_;) — bTT_;(b|Z_;) + P_i(b| Z_) (2, W, X)
Vb e B, (13)

where for notational simplicity we wrote I'_;(:|Z_;) and P_;(b;|Z_;) instead of I'_;(b;| Z, W, X)
and P_;(b;|Z, W, X)) respectively, thus omitting fixed (Z;, W, X) from the notation.
Equivalently, (13) can be written as

vl (Coi(bilZ-i) = T—i(b|Z-)) + (P-i(bil Z—3) — P_i(b| Z-3))" K(Zi, W, X) >

The set of (v;, k(Z;, W, X)) that satisfy linear inequalities in (14) is clearly convex. If the
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bidding set B; is a continuum, then (14) represents a continuum of linear inequalities in
(vi, k(Z;, W, X)). If the convex set described by (14) is a singleton, then we are in the
situation of point identification. Otherwise, we are in a scenario of partial identification.
This convex set is fairly difficult to describe in a closed form. A much easier task is to
describe its superset and then use it to derive bounds on the c.d.f.s of V;;|Z;, W, X.

We start by obtaining a closed form for a superset of the identified set for x(Z;, W, X).
To construct this superset, we consider in (14) only those b that are different from the
observed equilibrium vector b; in one component. Namely, we first consider

b=">b; +e€e, €B;

for e > 0 and obtain from (14) that

Vim (Ui (bim| Z—i) = T i (bim + €| Z_i))+(P—i(bi| Z—i) — P_i(bi + €em|Z_i))" £(Z;, W, X) >
bimI —i(bim|Z ;) — (bim + €)T —i(bim + €|Z_),

where we used the assumption that the ties are broken independently across auctions at
b;, and thus, a change in the mth component of b; affects only the mth component of I'_;.
Noting that I'_;,, is (weakly) increasing in bjy,, we have I'_; p, (bim|Z—i) — T'—im (bim +
€|Z_;) < 0. If bidder ¢’s probability of winning object m strictly increases as the m’s
component of the bid vector changes from b, to by, + ¢, then

o o (PeibilZ5) = Poi(bi + cemlZ_)" K(Z;, W.X) .
= Ui (bim|Z—i) = T i (bimn, + €| Z_3)
bim D —i(bim|Z—i) — (bim, + €)T_i(bim + €| Z_)

F—%ﬁm(bim’Z—i) - F—i,m(bz’m + elZ_i)

(15)

If F—i,m(bim’Z—i) — F—i,m(bim + dZ—i) = 0, then P_i<bi’Z_i) — P_i(bi + eem]Z_i) =0
and we obtain the following inequality that clearly holds:

0 > —GF,i(bim|Z7i).

If there exists a known scalar v < oo such that Vj,,, < v with probability 1 for any m (note
that v could be strictly outside the support of Vj;,), then in this situation we can just
bound v, from above by ©.
Analogously, taking
b=0b; —eey € B;
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for € > 0, obtain from (14) that

Vim (T i (bim| Z—i) — T i (bim — €| Z-i))H(P=i(bi| Z—;) — P—i(b; + eem|Z—3))" K(Zi, W, X) >
bimT —i(bim|Z_i) — (bim — €)T —i(bim — €|Z_;).

If bidder i’s probability of winning object m strictly increases as the m’s component of the
bid vector changes from b;,,, — € to b;,, then

oo (PilbilZ ) = Pribi+ een|Z0)" £(Z W, X)
= I _im(bim|Z-i) = T i (bim — €| Z_;)
bimD —i(bim|Z—i) — (bim — €)T—i(bim — €|Z_)

L im(bim|Z—i) = T =i (bim — €| Z_3)

(16)

If F—i,m(bim’Z—i) — F—i,m(bim — EIZ_Z') = 0, then P_i(bi|Z_i) - P_i(bz‘ — 6€m|Z_i) =0
and we obtain the inequality 0 > —el'_;(b;,|Z—;), which implies that T'_;(b;,|Z—;) = 0. If
there exists a known scalar v > 0 such that V;,,, > v with probability 1 for any m (note that
v could be strictly outside the support of V;,,), then in this situation we can just bound
Vim from below by v.

Inequalities (15) and (16) will be the basis for our analysis. But before we proceed
let us introduce some notations. Let AF [f(u)] and AZ,,[f(u)] denote differences in the
values of f(-) associated with adding € and —e to the mth component of u respectively:

ALnlf ()] = flu+ eem) — f(u),
Acmlf ()] = flu—eem) — f(u),

where e,, denotes the M;-dimensional mth unit vector.
For each b; € B;, define I_,,(bi|Z_;), I.},,,(bs] Z_;) as follows:

_ o a A ] T (i Z3))
Igm(bi’Z—i): Qlf A@m[I‘_Z(b,\Z_z)] :0, _7 else 5
Ae,m[r—i,m(bi|z—i)]
AL BIT (b Z-5)]
I (bl Z i) = S v if A, [T i(bi| Z-3)] = 0, -5 1
b bz { Db 2-0)) = 0, T2 R else
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Also, for each b; € B;, define the following S_,,, (b;|Z_;) and SZ,,(b;|Z—;):

Sem(bilZ-i) = 0if AZ, [T —i(bs]Z-3)] =0, —
’ { ’ Acm L —im(bi| Z-4)]

AL L P-i(bi] Z-3)] |
Al il 2]

A [P-i(bi| Z ;)] }
else » ;

S;m(bi|z,i) = {0 if Ajfm[F,i(bi|Z,i)] =0,

For K € K;, let F; (-|K; Z_;) denote the c.d.f. of

sup (1., (bil Z—i) — So(bi| Z-3) " K)

e>0 ©
and let F;' (-|K; Z_;) denote the c.d.f. of

: + . N\ . Qt . VA
gg (Ie,m(bZ‘Z—l) Se,m(bZ‘Z—l) K)

Then inequalities (15) and (16) imply that a superset of the identified set of k(Z;, W, X)
for bidder i can be found as

S

Iazm(Zl) W7X))

)

m=1

where l@i,m(Zi, W, X) is defined as

Kim(Zi, W, X) ={K € K; | F}} (|K;Z_;) < Fy,, (|K; ZL5) VZ_3,Z; € Z23|Z;, W, X}.

Let us denote this superset as Hl(lg(Zl, W, X).

Now we can construct supersets of the identified sets for the distributions of standalone
valuations. As F.(RP) we denote the set of all continuous cumulative distribution functions
on RP.

A superset of the identified set for the c.d.f. of the standalone valuation Vi, conditional
on Z;, X can be found as the set of univariate functions Fiy,(-) € Fe(R) such that for any
neR,

Fam(m e ) N N [ (nlko; Z-i), Fyy (nlro; ZL)1} (17)

WEW‘ZI"XHOGHEQ(Zi,W,X)Zfi:Z'ﬂEZ*i‘Zi,W:X

Here we applied the exclusion restriction that the distribution of standalone valuations
conditional on Z;, W, X does not depend on W. Let us denote this superset as Hglgﬂm (Zi, X).

Our final step is to construct a superset HE%(ZZ-,X ) for the identified set for the

o4



joint distribution of the vector of standalone valuations. ’HEII;(Zi,X ) can be found as
the set of M;-variate functions F;(-) € F.(RMi) such that each mth marginal distribution
function generated by Fi(-) belongs to Hl(llz-,m (Ziy X), m = 1,...,M;. Moreover, for any
n= (7717"'a77Mz‘);

Fi(n) = mi inf inf inf  Fif L Z4), 18

= m=lon My WeW| 7, X noeﬂillir(lzi,w,x) 7€z Z, WX i (103 Z—1) (18)
M;

Fi(n) > maxq > sup sup sup F, o (mlko; Z—i) — M; + 1,0 5,

m=1 WEW‘Z“X KOGHE,Iiz(ZhWer) Z_ZEZ_AZ“WX
(19)

where we employed the well known result on sharp Frechet-Hoeffding bounds for joint dis-
tributions.

Below we provide an expectations version of the partial identification argument. Even
though the supersets in the expectations approach will be larger than those discussed
previously, computationally they are easier to obtain. Before describing these supersets,
let us define M; x 1 vectors W[ (Z_;), ¥} (Z_;) and M; x 2Mi matrices x_ (Z_;), xF (Z_;)
as follows:

V(7)) = Bl (Bil Z-)|Z2-) 2,
VH(Z) = [BUS(Bil Z-0)12-3)],,",
Xe(Z3) = [BISSu(BilZ-0) 23T,
XE(Zi) = [BISEH(Bil Z-0) 1 23T,

Then, applying the expectation over the distribution of bids conditional on Z;, W, X to
inequalities (15) and (16) and pooling restrictions across Z_;, Z' ; and m = 1,..., M;, we
establish that a superset of the identified set for x(Z;, W, X) can be found in the following
way:

HEN 2, W, X) = (| Ki(Zi, W. X),

>0

where K$(Z;, W, X) is defined as

~

Koz W, X) = {K € Ki | (W7 (2-0) - Wi (2L)

— (X (Zs) = XF(ZL)) K < 0forall Z_4,2"; € 24|, W,X}.
Notice two features of HEQR)(ZZ, W, X). First, it can be represented as the intersection
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of a set of half-spaces in K;, where half-spaces are bounded by hyperplanes involving
slope vectors (Xo,(Z-i) — x&(Z';)) and intercepts (¥, (Z-;) — ¥}, (Z";)), and the
intersection is taken over collections of (Z_;, Z’ ;,€,m).

2

Second, if G; is absolutely continuous, then H,; /(Z;, W, X) is a singleton, and as we
show below, the analysis of HEQ,Q(Z“ W, X) essentially becomes our identification strategy
in the case of point identification. Indeed, bidder i’s objective function is differentiable at

almost every observed b;. Hence as ¢ — 0 we will have for all m

lim A bl —i(bi| Z) . A bil—i(bilZ-i) e O(bT_i(bi] Z—;)) [ Obim,
0 Agml i m(bi| Z—i) =0 AgmT_im(bilZ-s) /e dU_im(bilZ_3))/dbip,

and therefore U (-) — ¥(-). Analogously, it is straightforward to show that U1 (-) — ¥(-),
xo — x(+), and xI — x(-). Hence after applying the expectations operator, inequalities
(15) and (16) imply that

\I/(Z_z) — X(Z_i)/ﬁ}() < \I/(Z/_Z) — X(Z/_Z)Iio A Z_i,Z/_Z- S Z—i‘Ziy W, X.

Noting that Z_;, Z' ; are interchangeable, we thus have for any Z_;, 2’ , € Z_;|Z;, W, X:

W(Z') = x(Z5)ko < V(Z_i) — x(Z—i)ko,

W(Z_;) — x(Z—i)ko < U (Z;) — x(Z.;)ko

or equivalently
U(Z)—x(Z_)ko =9 (Z")) —x(Z' ko VY Z 4,2 ;€ Z4|Z;, W, X.

But this is exactly the identification restriction invoked in Proposition 3 in the main text.
Thus we can strictly generalize our existing identification results (which depend on differ-
entiability a.e.) to partial identification for arbitrary Gj.

A superset for the identification set of the c.d.f. of Vj,;, can be found as in (17) by

replacing ’Hz(’l,z(Zl, W, X) with ’HZ(QF? (Z;,W, X). Similarly, a superset for the identification

set of the c.d.f. of vector V; can be found as in (18) and (19) by replacing 3'-[1(1,_,3 (Zi, W, X)
with H\2 (Z:, W, X).

Appendix D: Complementarities depending on V'

In this appendix, we explore prospects for generalizing our non-parametric identification
results to the case where complementarities are additively separable functions of standalone
valuations. In other words, conditional on Z, W, X the compementarities are stochastic but
their randomness can be fully explained by the standalone valuations. As a special case,
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we consider a scenario when these functions are affine in standalone valuations. Such a
case could arise if, for instance, winning two auctions together increases i’s valuation for
one or both objects by a fixed percentage.

Notation and definitions We say complementarities are additively separable in stan-
dalone valuations if for each w that contains at least two non-zero components (that is,
lw||? > 2), the complementarity for outcome w is a function of the vector of standalone

valuations v; = (v, vi2, . . . ,viMi)T such that
Kw(viy Zia VV» X) = Z ¢l(vil7 Zia Xv W) + [_{w(Zh X’ W) (20)
l:wy=1
for some functions ¢y, [ = 1,..., L. If each function ¢; is linear in v;;, then we obtain the

special case of complementarities affine in v;:

K (v, 2o, W, X) = > 6420, W, X)vi + K¥(Z, W, X), if |w|? > 2. (21)

lw=1

As usual, if w contains at most one component equal to one (that is, ||w|? < 1), then we
set K¥(v;, Z;, W, X) = 0. An interesting special case of (21) is when all 8! are identical and
K% = 0 for any w. This case describes the situation of a constant relative complementarity
— that is, when K“(v;, Z;, W, X) is a constant ratio of the additive valuation.

Now assume that complementarities are affine in v;, and define an M; x 1 vector
0(Z;, W, X) and an M; x M; matrix D(6(Z;, W, X)) as follows:

(S(Zw W’ X) = (51(Z17 I/Va X)? 52(Ziv VV, X)7 ) 5ML(Z7,7 W7 X))T
D(6(Zi, W, X)) = diag(8" (Z;, W, X), 8*(Zi, W, X), ..., 6" (Z;, W, X))
To write this in a convenient vector-matrix notation, let A; denote the 2Mi x 2Mi matrix such
that its submatrix (ai;); ;_p/. o ou coincides with the identity matrix of size 2Mi M —1,
with all the other elements of A; being 0. We then have

where K(Z;, W, X) denotes the 2Mi w1 vector of constant components in the comple-
mentarities (obviously, K(Z;, W, X) € K;). Clearly, the rank of matrix A;Q; is equal to
M;.

As can be seen, the functional form of complementarities does not depend on Z_;.
As we show below, under weak conditions there is enough variation in Z_; | Z;, W, X to

determine the linear (in v;) part of complementarities as well as the constant part.
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Non-parametric identification Using the first-order conditions and taking into ac-
count the form of K(v;, Z;, W, X), obtain

vi = b 4+ [Vl (bi] Z-)] T Ty (03] Z—i) — [Vl —i(bi| Z—)]) Vo Poi(bi| Z—3) T [AiQuD(8)v; + K],

where for notational simplicity conditioning on Z;, W, X is omitted from the notation in
the rest of this Appendix. Rewrite that system of equations by collecting all terms with v;
on the left-hand side:

(IMZ. + [V —s(bs| Z_)] ! VbP_i(bi]Z_i)TAiQiD(5)> v = b + [V _i(bi| Z_3)] "' Ti(bs] Z_y)
— [Vl (bil Z-0)) ' Vo Pos(bi| Z2-0)" K,
and introduce a notation for the matrix in front of v; on the left-hand side:
11(b;, 0, Z—i) = Ing, + [VoD—i(0i| Z20)] " Vo Poi(bs]| Z-5)T A D(5).
Define A(Z_;) as the set of § € R such that
I1(b;, 0, Z_;) is non-singular for almost all b;.

This set is non-empty as e.g. 0 € A(Z_;). If 6 € A(Z_;), then we can multiply the system
from the left by I1(b;, , Z_;) ™! resulting in

vi = T0(b;, 8, Z_3) "'by + TU(b;, 6, Z_s) " [Vl —i(bs] Z—i)) ' T—i(bil Z—s)
—T0(b;, 8, Z_i) " H VD _i(bi| Z_)] "t Vi P_s(bi| Z_9) TK.
Assuming that 6 € A(Z_;) and carrying on with fixed Z;, W, X, let us denote

D(8,Z-;) = Ep, [I(B;,6,Z_;) ' B;|Z_;] + Ep, [H(Bi,(s, Z_) T VT i(Bi| Z-i)) F—i(Bi|Z—i)’Zfi} ,

Do(8,Z_;) = Ep, [H(Bi, 8, Z_) " VD _i(Bi| Z_)] " VbP_i(BZ-\Z_i)T\Z_Z} .

Keeping Z;, W, X fixed, let us draw another value Z’, from Z_;|Z;, W, X. Due to the
assumptions made on the distribution of the standalone valuations, E[V;|Z;, Z_;, W, X| =
EWVi|Z;, Z" ;,W, X]. Therefore, for § € A(Z_;) N A(Z",),

D1(6,2";) — D1(6, Z—;) = (D2(6, Z;) — Da(6, Z—3)) K.
For fixed Z;, W, X, this system has 2*: — 1 unknowns (M; in 6 and 2 — M; — 1 in K)

and M; equations. This gives us the following result.

Proposition 4. Suppose that for (Z;, W, X) € Z; x W x X, there exist J +1 > (2Mi —
1)/M; + 1 vectors Z_; 0, Z—i1,...,Z_; j in the support Z_;|Z;, W, X such that there is a
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unique 6 € m}‘]:O A(Z_; ;) and a unique k € K; that solve the system of J - M; equations
Di(8,Z—-i;) — D1(8, Z—ip) = (D2(8, Z—i ) — D2(6, Z—i0)) Ky, J=1,...,J. (22)

Then the values of 6(Z;, W, X) and K(Z;, W, X) are identified, and thus, the complemen-
tarity function is identified for these values of Z;, W, X.

System (22) is non-linear in 0. However, for each fixed § € ﬂ;-]:(] A(Z_; ), this system
is linear in k. Proposition 4 implies that in the case of identification it is not possible
to have a situation when for different 61 and d2, where d1,d2 € ﬂ;}:O A(Z_;j), system
(22) has solutions k1 € K; and ke € K;, respectively. Thus, in this sense the question of
identification of §(Z;, W, X) and K (Z;, W, X) comes down to the question of the existence
of a solution to a system of linear equations: (22) can have a solution x for one § only,
and for that § it has to be unique. Using the Kronecker-Capelli theorem, which gives
the necessary and sufficient conditions for the existence of a solution to a system of linear
equations, and also the necessary and sufficient conditions for the uniqueness of such a
solution, we formulate the identification result in the Proposition 5 below.

Before we proceed to Proposition 5, let is rewrite (22) in a more convenient way. At
the moment k has to satisfy certain restrictions (namely, the first M; + 1 components of
this vector are 0) and we first want to rewrite it through an unrestricted parameter to
apply certain tools from algebra. Let E; denote the 2Mi x (2Mi — M; — 1) matrix such
that its submatrix (€i;),_ps 9 oM j—i oMy, coincides with the identity matrix of
size 2Mi — M; — 1, and all its other elements (that is, all the elements in the first M; + 1
rows) are equal to zero. For every k € I; there is a unique & € R2"=Mi=1 gych that

R = Ezlvi

Obviously, this & is a parameter that does not have to satisfy any prior restrictions. It is
formed by the last 2 — M; — 1 values in x. System (22) can equivalently be written as

Di(8,Z—i ;) —D1(8, Z—i0) = (D2(0, Z—; ;) E; — D2(0, Z_i0)E;) R, j=1...,J, (23)

with & € R ~Mi=1_ For a fixed 8, system (22) is linear in «, has the .J - M; x 2™ matrix
of coeflicients, and imposes restrictions on the solution x by requiring that x € IC;. Its
equivalent representation (23) is linear in & for a fixed d, has the J - M; x (2Mi — M; — 1)
matrix of coefficients, and does not impose any restrictions on the solution s € R2Yi=Mi—1,
This allows us to apply the Kronecker-Capelli theorem to system (23) in a straightforward

way.

Proposition 5. Suppose that for (Z;, W, X) € Z; x W x X, there exist J +1 > (2Mi —
1)/M; + 1 vectors Z_;0,Z—i1,...,%—; j in the support Z_;|Z;, W, X such that there is a
unique 0 € ﬂjzo A(Z_; ;) that satisfies the following two conditions:
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1. First,
rank ([M1(9) | Ma(9)]) = rank (M2(9)), (24)

where My (8) denotes the J - M; x (2Mi — M; — 1) matriz

Dy, Z_i1)E; — D2(6,Z—i0)E;
M;(0) = : ,
Dy(8,Z—i 1) E; — D2(6, Z—i0)E;

and M (0) denotes the J - M; x 1 vector

D1(6,Z-i1) — D1(5, Z_ip)
M1(5) =
D1(8,Z—i.7) — D1(0, Z_ip)

2. Moreover, this § is such that Ma(6) has full column rank:

rank (Mg (0)) = 2™ — M; — 1. (25)

Then the values of 5(Z;, W, X) and K(Z;, W, X) are identified, and thus, the complemen-
tarity function is identified for these values of Z;, W, X.

Condition (24) requires that in system (23), the rank of the matrix of coefficients My ()
is equal to the rank of the augmented matrix [M;(d) | M2(6)] for one 6 only. The Kronecker-
Capelli theorem guarantees then that (23) has a solution & for that ¢ only. Condition (25)
then guarantees this £ is determined uniquely, and, thus, x = E;& is determined uniquely.

Note that all the identification conditions in Proposition 5 are formulated in terms of 4.
The closed form for §(Z;, W, X') cannot be found but in practice one can find 6(Z;, W, X)
and K(Z;, W, X) by solving, e.g., the following optimization problem:

min o Q((S,IVQ,Z“I/V,X),
S€M)_o A(Z s 5), RERZ I —Mi=1

where
Q0, %, Zi, W, X) = (M1(0) — Mg(é)R)T (M;1(0) — Ma2(d)k) .
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