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The risk and return of owning equities depend on the investment horizon. Systematic risk is

measured as covariance with a pricing factor (beta) while an investment’s abnormal return is what

that pricing factor cannot explain (alpha). Under the Capital Asset Pricing Model, the market is

the single pricing factor, leading to CAPM alpha and beta estimates ubiquitous in academic and

investment communities. The standard approach uses monthly returns with the implicit assumption

that monthly alphas and betas are appropriate for everyone. Unlike bond investments, for example,

term structure dynamics are rarely considered. This paper shows, however, that alpha and beta term

structures are not usually flat. Buy-and-hold investors with multi-year horizons may face different

risk-return characteristics than those implied by monthly returns. In some cases, the investment’s

beta can reverse sign, serving as a hedge instead of adding risk. Using monthly risk-return estimates

for all investors is thus inappropriate.

“Horizon,” as used in this paper, refers to an investment strategy’s anticipated period of

implementation. I assume this horizon is exogenous, perhaps due to the investor’s preferences or

perhaps money is set aside to fund a specific future expenditure. The investment strategy need

not be passive but can involve active rebalancing and other preset rules, such as signal-dependent

trades, stop-loss rules, or even volatility management. The key requirement is that alpha and beta

are estimated using the strategy’s past returns and the same strategy remains over the anticipated

investment period. The paper explores horizons ranging from 1-month to 10-years. Stock holding

periods vary across investors, and these periods can be lengthy. Cella, Ellul, and Giannetti (2013)

document for institutional investors a 5%-to-95% range of implied stock holding periods that span

2-months to 6-years. Ameriks and Zeldes (2004) study defined contribution retirement accounts and

find that asset allocation changes over the course of a 10-year period occur in less than 30% of them.

The paper studies size, value, and momentum long-short portfolios that do not have fixed

holdings but are periodically rebalanced according to the standard Fama and French (1993) approach.

Rebalancing ensures the strategies remain exposed to the desired characteristics, even over many

years. The paper focuses on CAPM alphas and betas for these characteristics because of their

central importance in the asset pricing literature. I study the single market source of systematic risk

to simplify the analysis of drivers of sloped alpha and beta term structures. However, the paper’s

message and methods are applicable more generally. Alphas and betas that reflect multi-factor

2



models can also be estimated, and they can be done for an individual stock, an industry portfolio,

or other dynamic portfolios. The paper does not investigate general equilibrium implications or

the perspective of the representative investor. It focuses on the empirical documentation of term

structure shapes without taking a stand on the economic forces that drive these patterns.

Sloped alpha and beta term structures occur for two theoretical reasons. First, market and

individual portfolios can exhibit significant lead-lag correlations with each other. Long-horizon betas

aggregate short-horizon contemporaneous betas plus short-horizon lead-lag correlations. Negative

correlations produce long-horizon betas smaller than short-horizon ones, resulting in and downward-

sloping term structure. I observe this for size when horizons exceed one year. On the other

hand, positive lead-lag correlations result in an upward-sloping term structure. I observe this for

momentum. Second, alphas and betas are time-varying and mean-reverting. Even without lead-lag

correlations, an abnormally high short-horizon beta will likely be followed by less extreme betas,

resulting in a long-horizon estimate that’s a moderate average. Like interest rates, alpha and beta

term structures will tend to be downward-sloping given abnormally high short-horizon estimates

and upward-sloping given abnormally low ones. For these two reasons, short-horizon alpha and

beta estimates can indeed differ from their long-horizon counterparts. Alphas and betas should thus

properly reflect the investment strategy’s horizon just like future cashflows should use discount rates

with the appropriate maturity. Indeed, betas are inputs into computing discount rates so a wrong

beta can lead to misvaluation.

The paper offers two novel contributions. First, it develops a new conditional beta estimation

method that uses returns observed at a higher frequency than the investment horizon of interest.

For example, to estimate a one-year conditional beta, the method can use daily or monthly returns.

This approach is non-parametric, avoiding the use of instruments to capture conditionality (e.g.

Ferson and Schadt (1996), Ferson and Harvey (1999)) and of models to describe return behavior.

Using high-frequency data is standard in the realized volatility literature (e.g. Andersen and

Bollerslev (1998), Fleming, Kirby, and Ostdiek (2003), Barndorff-Nielsen and Shephard (2004),

Andersen et al. (2006)). However, the realized approach ignores the conditional mean and estimates

quadratic variation rather than the conditional variance needed for betas. It also assumes no lead-lag

correlations among high-frequency returns, and thus cannot produce sloped average term structures
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by construction. Compared to the classical rolling-window approach, the new conditional beta

method better captures period-to-period variation and better estimates long-horizon moments that

have few adjacent periods.

The paper’s second contribution is the documentation of several novel empirical findings

regarding long-short portfolios sorted on size (SMB), value (HML), and momentum (UMD). First, it

finds significant market-portfolio lead-lag correlations at monthly and annual horizons. They show in-

sample and in some cases, out-of-sample predictability. Second, the three portfolios exhibit different

average term structure shapes. Size’s beta term structure mostly slopes downward, momentum’s

exhibits the opposite shape, and value’s stays mostly flat. Beta term structure effects directly affect

alpha term structures since conditional mean return estimates remain similar across horizons. In

addition, the covariance term between beta and the market premium has a flat term structure too.

Finally, short-horizon conditional alphas and betas are stationary and mean-revert. Consequently,

the term structure at a particular point in time can still be sloped even without lead-lag correlations.

Overall, these empirical findings have important implications for the estimation and use of alphas

and betas, pointing to a more nuanced approach that accounts for the investment horizon. This

impacts investor asset allocation and corporate investment decisions requiring beta-dependent

discount rates.

Figure 1 previews the paper’s main results and shows the average conditional term structure

estimated using the new high-frequency approach. Size’s beta peaks at the 1-year horizon since

monthly lead-lag correlations with the market tend to be positive. With a further lengthening of

the horizon, beta’s slope reverses and turns downward as negative correlations dominate at annual

horizons. When size’s beta falls, market comovement explains less of its excess returns. Unexplained

alpha thus increases from an insignificant 0.6% at the annual horizon to a significant 5.0% per year

at the 10-year horizon. Value and momentum do not share these term structure shapes because

they exhibit different lead-lag correlation patterns. Value tends to have insignificant correlations

and thus flat alpha and beta term structures. On the other hand, momentum has significantly

positive correlations at annual horizons. This produces an upward-sloping beta term structure and

alphas that fall from a significant 7.2% at the annual horizon to an insignificant 4.5% per year

at the 10-year horizon. I assess the impact of these term structure changes using unconditional
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Figure 1: Average Alpha and Beta Conditional Term Structures (New High-Freq
Method). Data from 1926-2015 used to form non-overlapping monthly, quarterly, annual returns and
annual-overlapping 3-year, 10-year returns. Conditional alpha and beta estimated using the new high-
frequency approach described in Section 2. Dotted lines contain the 95% confidence interval calculated using
Newey-West ’94 standard errors.
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results that assume an investor who seeks a global minimum variance portfolio and has a relative

risk aversion of 5. If the investor has a 10-year horizon but improperly optimizes using monthly

returns, the certainty-equivalent loss is 9% per year.

This paper builds on the large literature on equity horizon effects. Samuelson (1969) and Merton

(1969) demonstrate how the market portfolio’s risk-return dynamics depend on the investment

horizon. More recent work along this vein includes Campbell and Viceira (2002), Ang and Liu

(2004), Campbell and Viceira (2005), Bandi and Perron (2008), Colacito and Engle (2010), Rua

and Nunes (2012), Diris, Palm, and Schotman (2014), Chaudhuri and Lo (2015). In particular, the

tendency for equity alphas and betas to change with the return horizon is known as the intervalling

effect (e.g. Levhari and Levy (1977), Hawawini (1983), K. Cohen et al. (1983), Handa, Kothari, and

Wasley (1989), Handa, Kothari, and Wasley (1993), Gencay, Selcuk, and Whitcher (2005), Gilbert et

al. (2014)). Past papers usually focus on unconditional alphas and betas and not the time-varying

conditional ones I study here. I also analyze a much broader range of horizons, from 1-month to

10-years. For example, Gilbert et al. (2014) find differences between daily and quarterly betas that

are mostly induced by positive lead-lag correlations. In contrast, I find the most dramatic effects at

multi-year horizons, with negative correlations playing the key role.

There’s also recent work studying horizon issues of the size, value, and momentum characteristics

I examine (e.g. R. Cohen, Polk, and Vuolteenaho (2009), Bandi et al. (2010), In, Kim, and Faff

(2010), In, Kim, and Gencay (2011), Jurek and Viceira (2011), Ang and Kristensen (2012), Brennan

and Zhang (2013), Kamara et al. (2015)). I differ by investigating the underlying lead-lag correlations

that drive alpha and beta horizon effects and by also developing a new conditional estimation

approach. I do not explore cross-sectional pricing implications. For example, Kamara et al. (2015)

find term structure effects for different factors’ cross-sectional price of risk while I study term

structure effects for different portfolio’s time-series CAPM alpha and beta. Indeed, there’s lots

of recent work studying term structure dynamics for many other finance concepts. These include

historical average returns (Boguth et al. (2016)), market-implied expected returns (Van Binsbergen,

Brandt, and Koijen (2012), Ang and Ulrich (2012)), optimal cost-of-capital estimates (Levi and

Welch (2016)), investor risk-aversion (Andries, Eisenbach, and Schmalz (2015)), dividend volatility

(Belo, Collin-Dufresne, and Goldstein (2015)), tail-risk estimates (Guidolin and Timmermann
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(2006)), macroeconomic risks (Boons and Tamoni (2015)), inflation risk price (Ang, Bekaert, and

Wei (2008)), variance risk price (Andries et al. (2015)), and consumption risk price (Croce, Lettau,

and Ludvigson (2014), Bryzgalova and Julliard (2015), Dew-Becker and Giglio (2016)).

1 Theoretical Sources of Term Structure Effects

This section investigates the drivers of CAPM alpha and beta term-structure dynamics. Alpha

estimates follow from betas, so the section begins with an investigation of the determinants of beta

term structures. A decomposition of long-horizon betas into short-horizon moments makes clear

that beta term structures are only flat under special conditions. The dual presence of lead-lag

correlations among short-horizon returns and of mean-reversion in beta estimates induces sloped

term structures. Given horizon-dependent betas, alphas are usually horizon-dependent too.

1.1 Decomposing Long-Horizon Beta Into Short-Horizon Betas*

A long-horizon beta estimate can be decomposed into short-horizon market autocorrelation and

market-portfolio lead-lag terms. Specifically, the conditional market beta estimate given information

at time t and log returns of portfolio i spanning a period of horizon h can be expressed as follows.

β̂t→t+h ≡
ˆCovt(rit→t+h, rmt→t+h)

ˆVart(rmt→t+h)
=

ˆCovt(
∑h
τ=1 r

i
t+τ−1→t+τ ,

∑h
υ=1 r

m
t+υ−1→t+υ)

ˆCovt(
∑h
τ=1 r

m
t+τ−1→t+τ ,

∑h
υ=1 r

m
t+υ−1→t+υ)

=
(ρ̂imt,h,lag=−h+1 + ...+ ρ̂imt,h,lag=0 + ...+ ρ̂imt,h,lag=h−1)(σ̂it,h,lag=0σ̂

m
t,h,lag=0)

(ρ̂mt,h,lag=−h+1 + ...+ ρ̂mt,h,lag=0 + ...+ ρ̂mt,h,lag=h−1)(σ̂m2
t,h,lag=0)

=
(ρ̂imt,h,lag=0 +

∑h−1,l 6=0
l=−h+1 ρ̂

im
t,h,lag=l)(

σ̂it,h,lag=0
σ̂m
t,h,lag=0

)

1 + 2
∑h−1
l=1 ρ̂

m
t,h,lag=l

(1)

=
β̂t,h,l=0 +

∑h−1,l 6=0
l=−h+1 β̂t,h,lag=l

1 + 2
∑h−1
l=1 ρ̂

m
t,h,lag=l

(2)

The hat “ ˆ ” symbol denotes sample estimates. Without loss of generality, I assume the short-

horizon return spans a period of 1 unit while the long-horizon one spans h units, where h is an
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integer larger than 1. In line 1, I can thus disaggregate period h returns into the higher-frequency

returns indexed by τ and υ. I then assume for line 2 that returns are conditionally covariance

stationary, permitting me to consistently estimate the h-horizon covariance terms as a series of

higher-frequency correlations.1 The numerator consists of lead-lag cross-correlations (ρ̂imt,h,lag=l)

while the denominator consists of market autocorrelations (ρ̂mt,h,lag=0). The σ scaling terms are the

high-frequency portfolio and market standard deviations. Subscripts t and h mean these terms are

estimated using information conditional at t for the period spanning horizon h while the numeric

index l denotes the number of high-frequency leads or lags. Equation (1) simply groups together all

non-contemporaneous lead-lag correlations. A long-horizon beta equals the properly-scaled sum of

higher-frequency market-portfolio cross-correlations divided by the sum of higher-frequency market

autocorrelations. Equation (2) converts correlations into betas. The result is a more general case of

the classic Scholes and Williams (1977) non-synchronous beta, which adjusts betas for correlated

lead-lag returns induced by micro-structure noise. As this derivation shows, Scholes-Williams betas

estimate a longer-horizon beta by explicitly incorporating particular choices of lagged betas and

autocorrelations. Dimson (1979) betas are also used to correct for micro-structure noise but its

definition differs from Scholes-Williams and equation (2) since Dimson betas suffer from inconsistency

(Fowler and Rorke (1983)).

The long-horizon beta equals the short-horizon zero-lag beta (ie. β̂t→t+h = β̂t,h,lag=0) only if all

numerator and all denominator lead-lag correlations cancel. This occurs, for example, if all lead-lag

correlations equal zero. Furthermore, only if this special case holds across all possible horizons is

the average beta term structure flat. I emphasize average because β̂t,h,lag=0 can be viewed as the

average short-horizon beta estimated for the period spanning t to t+h. Therefore, the first driver of

sloped beta term structures is the significant presence of market autocorrelations or market-portfolio

lead-lag correlations. This idea is old and dates back to at least Levhari and Levy (1977). Lead-lag

cross-correlations in the numerator shift the long-horizon beta away from the short-horizon one to

the point where the sign can even reverse, as is the case for size and momentum. On the other hand,
1Despite having more covariance terms, closer lead-lag correlations are not weighted more heavily in equations (1)

or (2). The definition of lead-lag correlation estimates already accounts for the different number of product terms,

ρ̂imt,h,lag=l ≡
∑h−l

τ=1
(ri
τ+lr

m
τ )√∑h

τ=1
(ri2τ )

√∑h

τ=1
(rm2
τ )

.
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market autocorrelations in the denominator preserve the sign but modulate the magnitude of the

long-horizon beta. Empirically, this denominator effect exhibits more limited impact.

In addition to the presence of lead-lag correlations, mean-reverting short-horizon betas are the

second driver of sloped beta term-structures. Notice that the short-horizon lag-0 beta discussed

above, β̂t,h,lag=0, may not equal the short-horizon conditional beta estimated at time t, β̂t→t+1. Both

are of the same frequency with a short-horizon of 1 unit, and both are conditional on information at

time t. But the former is an unconditional estimate of all zero-lag short-horizon betas from time

t to t+ h while the latter concerns only the first period following time t. The two estimates are

similar only if short-horizon betas remain constant over period h or if betas have unit roots. Unit

root betas mean further away beta estimates are martingales and thus have an expectation equal to

the same horizon beta next period. Therefore, even without auto or lead-lag cross-correlations (such

that β̂t→t+h = β̂t,h,lag=0), the time t conditional long-horizon beta (β̂t→t+h) differs from the time

t conditional short-horizon beta (β̂t→t+1) if short-horizon betas are time-varying and stationary.

Indeed, the literature does view betas as stochastic and mean-reverting processes (e.g. Andersen et

al. (2006)). Abnormally high betas tend to be followed by lower ones, such that a high β̂t→t+1 will

tend to be followed by a lower β̂t+1→t+2. The beta term structure will thus be downward-sloping

since β̂t→t+h is then likely lower than β̂t→t+1. The opposite occurs given abnormally low betas,

which tend to be followed by higher betas and a upward-sloping term structure.

Understanding the difference between the term structure at a specific point in time and the

average term structure over all time helps differentiate between the two term structure drivers.

The first driver, auto and cross-correlations, can produce both date-specific and average sloped

term structures. A non-zero ρ̂imt,h,lag=1 affects the time t term structure while a non-zero Ê[ρimt,h,lag=1]

affects the average term structure. The latter is a much stronger condition, requiring multiple time

t ρ̂imt,h,lag=1 in the historical record to push consistently in the same direction. On the other hand,

the second driver, beta mean-reversion, can produce date-specific sloped term structures but not

average ones. Without lead-lag correlations, mean-reversion inducing term structure effects will be

averaged out across time because Ê[βt→t+1] ≈ Ê[βt,h,lag=0]. The two unconditional average betas

are similar because both are the same horizon, estimate contemporaneous comovement, and use the

same historical data. Section 4 analyzes the historical average term structure where only historical
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average auto and lead-lag correlations can explain their slopes. Section 5 assumes away all lead-lag

correlations and analyzes how beta mean-reversion induces date-specific sloped term structures.

1.2 How Beta Determines Alpha

Given a conditional beta estimate and conditional mean returns, the conditional alpha estimate

follows.

α̂t→t+h = Êt[rit→t+h]− β̂t→t+hÊt[rmt→t+h] (3)

Ê[αt→t+h] = Ê[rit→t+h]− Ê[βt→t+h]Ê[rmt→t+h]− ˆCov[βt→h, Êt[rmt→t+h]] (4)

Equation (3) expresses the date-specific conditional alpha estimate while equation (4) expresses the

historical average estimate. Jagannathan and Wang (1996) shows how the covariance term can play

a critical role. The average conditional alpha term structure is thus a result of the term structures

of its four components. The paper’s use of log returns produces flat expected mean return term

structures. Section 4 estimates a flat term structure for the covariance between betas and market

premiums. This leaves the average beta term structure driving the average alpha term structure.

2 Data and Methods Used For Estimating Term Structures

This section covers the data and the empirical methods for estimating CAPM alphas and betas.

For each portfolio, three different term structures are estimated: an unconditional, a rolling-window

conditional, and a new high-frequency conditional approach.

2.1 Data Source

The paper uses monthly data from Ken French’s website and collects market, size (SMB),

value (HML), and momentum (UMD) excess-return portfolios for the period from 1927 through

2015. Monthly returns are used to avoid microstructure issues that may impact higher-frequency
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daily or weekly returns.2 Gross returns are converted to log returns and compounded by adding

them.3 To get a sense of the term structure, I study monthly, quarterly, annual, 3-year, and 10-year

horizons. Multi-year results use overlapping annual returns to increase power. For shorter monthly

and quarterly horizons, the high-frequency conditional beta estimation approach necessitates the

use of daily returns. Intra-daily data are not used because they have relatively short histories.

All empirical analyses was done with R (RStudio and Microsoft R Open), and I would like to

grateful acknowledge the authors of the packages I used: sandwich (Zeileis (2004)), gmm (Chausse

(2010)), data.table (Dowle et al. (2015)), zoo (Zeileis and Grothendieck (2005)), dplyr (Wickham

and Francois (2016)), magrittr (Bache and Wickham (2014)), tidyr (Wickham (2016)), rmarkdown

(Allaire et al. (2016)).

2.2 Unconditional Alpha and Beta

Unconditional alphas and betas simply use OLS regression of portfolio excess returns on market

excess returns. Each horizon h requires a separate regression.

rit→t+h = α̂Uh + β̂Uh r
m
t→t+h ∀t = 1, h+ 1, 2h+ 1, ..., T − h (5)

T denotes the total number of monthly observations and equals 1,068 in this paper (1927 through
2Higher-frequency returns may not reflect actual market prices, but admittedly, the distinction between noise and

true prices isn’t clear-cut. W. Liu and Strong (2008) and Asparouhova, Bessembinder, and Kalcheva (2013) argue that
even monthly returns may be too short since posted prices may not be tradeable in large volumes or with acceptable
transaction costs. I analyze much longer horizons precisely because I agree it’s unrealistic to assume active monthly
monitoring. Nevertheless, to get longer horizon returns, I do compound monthly returns. The paper’s appendix shows
that multi-year results that compound annual instead of monthly returns are qualitatively similar.

3Directly adding excess log returns is equivalent to directly compounding excess gross returns and implies monthly
rebalancing between the portfolio’s long and short legs. For example, 2-month horizon returns obtained through
compounding of two 1-month excess gross returns is equivalent to implementing a long-short strategy for the first
month, rebalancing to equal weights between the long and shorts legs, and then repeating the strategy for the second
month. rgr,ext→t+2 = [1 + rgr,ext→t+1] × [1 + rgr,ext+1→t+2] − 1 = [1 + rgr,longt→t+1 − rgr,shortt→t+1 ] × [1 + rgr,longt+1→t+2 − rgr,shortt+1→t+2] − 1 =
[1 + (1 + rgr,longt→t+1 ) − (1 + rgr,shortt→t+1 )] × [1 + (1 + rgr,longt+1→t+2) − (1 + rgr,shortt+1→t+2)] − 1. I do not compound long and short
legs separately because I analyze size, value, and momentum as dynamic strategies rather than as fixed assets. This
approach is consistent with the way Fama-French form SMB, HML, and UMD, with annual portfolio formation for
SMB and HML and monthly formation for UMD. Separate compounding would also confound horizon effects since the
long-horizon excess return no longer equals the sum of short-horizon returns. The evolution of the long-leg’s weight
relative to the short-leg’s over the horizon will also play a role too.
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2015). The five horizons I study translate to h values of 1, 3, 12, 36, and 120 months.

2.3 Conditional Alpha and Beta

Conditional moments are notoriously difficult to estimate since only one observation exists for

each time t estimate. In the context of the paper, this reality is problematic for two reasons. First,

a variance cannot be estimated with a single observation because it depends on two parameters

(i.e. mean and variance). Second, even if a mean parameter were available exogenously, a variance

estimate that squares the demeaned single observation, (rt+1 − Et[rt+1])2, is likely too noisy to be

useful. Since betas are the ratio of covariance and variance terms, beta estimates further suffer

from the noise’s non-linear compounding. Meaningful estimates of conditional moments thus require

multiple observations. This paper uses two nonparametric methods that avoid an explicit model of

returns or return moments. However, the need for multiple observations requires constraints on how

conditional moments change. The rolling window approach assumes conditional moments remain

constant across multiple observations of the return horizon while the high-frequency approach

assumes conditional moments remain constant within the return horizon.

The rolling-window approach is old and is often used to estimate conditional CAPM alphas

and betas (e.g. Fama and MacBeth (1973), Merton (1980), Lewellen and Nagel (2006)). Assuming

conditional moments remain constant across time allows an estimate to use adjacent returns of the

same horizon. This method is normally used on shorter horizon returns, but the paper implements

it on multi-year returns too. Alpha and beta estimates use an OLS regression with the previous J

observations of h-horizon returns. Each horizon h and time t requires a separate regression.

rit−τ→t+h−τ = α̂C.Rollt→t+h + β̂C.Rollt→t+hr
m
t−τ→t+h−τ ∀τ = h, 2h, ..., Jh (6)

For the estimates to be consistent, the conditional alpha and beta during the window period Jh

need to be constant. Backward looking windows avoid look-ahead bias, and the base set of results

uses window lengths of 5, 10, 20, 30, and 40 years for monthly, quarterly, annual, 3-year, and
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10-year horizons, respectively. Five years for monthly returns is standard in the literature, and

window lengths rise for longer horizon returns under the constraint that only 89 years of data

exists. This constraint means longer horizon returns have windows with fewer observations (i.e. J

= 60, 40, 20, 10, and 4, respectively) even as they are longer in duration. The Appendix explores

alternative specifications for robustness, and average term structure results remain largely unchanged.

Regardless of the window length, average results require an unconditional mean over all the data.

Different window lengths may thus affect the persistence and volatility of moment estimates but

less so the average level.

2.4 A New High-Frequency Conditional Estimation Method

The paper develops a novel way to estimate conditional moments using returns of a higher

frequency than the horizon of interest. Assuming high-frequency conditional moments remain

constant within the horizon allows these estimates to be unbiased. The method modifies the

standard realized approach since realized volatility may fail to capture multi-month or multi-year

variances. Realized volatility estimates quadratic variation and not conditional variance, and the

two concepts can diverge at long horizons. This difference can be seen using a simple decomposition

of returns under a continuous-time model without jumps.4

rt→t+h =
∫ t+h

t
µsds+

∫ t+h

t
σsdWs

≡ µt→t+h +Mt→t+h

µs is the continuous-time expected return process, σs is the instantaneous conditional volatility, and

Ws is standard Brownian motion. The sum of all the innovations over horizon h are aggregated into

the martingale Mt→t+h.

Quadratic variation is the realized square of the martingale innovation, M2
t→t+h. In the absence

of jumps, it equals the integrated volatility
∫ t+h
t σ2

sds because Brownian innovations are uncorrelated,
4This setup follows Andersen, Bollerslev, and Diebold (2010). They use “expected volatility” to refer to conditional

variance and “notional volatility” to refer to quadratic variation.
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Cov[dWsdWv] = 0 ∀s 6= v. The expected return process is usually considered to have bounded

variation so adds no quadratic variation. In contrast, the discrete horizon conditional variance is

defined as Vart[rt→t+h] ≡ Et[(rt→t+h−Et[rt→t+h])2], with Et[rt→t+h] = Et[µt→t+h] as the conditional

mean over horizon h. Expected quadratic variation, Et[M2
t→t+h], is a component of conditional

variance as the following decomposition shows.

Vart[rt→t+h] ≡ Et[(rt→t+h − Et[rt→t+h])2]

= Et[((µt→t+h − Et[rt→t+h]) +Mt→t+h)2]

= Vart[µt→t+h] + 2Covt[µt→t+h,Mt→t+h] + Et[M2
t→t+h] (7)

Et[·] denotes the conditional expectation using information available at time t. Standard realized

measures that estimate quadratic variation deliver the third term of equation (7). Thus, they

are adequate approximations of conditional variance if the first two terms of (7) are negligible.

The approximation works given a sufficiently short horizon when the magnitude of unexpected

innovations dominates that of expected returns. In the limit as the horizon shrinks to zero,

conditional variance approaches expected quadratic variation, with both equal to the instantaneous

variance σ2
s . The mean return process contributes no variance or covariance, and the Vart[µt→t+h]

and Covt[µt→t+h,Mt→t+h] terms can be ignored.

With a lengthening of the horizon, the difference between quadratic variation and conditional

variance increase as the relative contribution of the expected return component grows. Andersen,

Bollerslev, and Diebold (2010) provide a numerical example based on the mean-reverting Ornstein-

Uhlenbeck process. They estimate a near-zero deviation between quadratic variation and conditional

variance at the daily horizon but a few percentage point difference by the quarterly horizon. The

next section shows that by the annual horizon, the relative importance of expected versus unexpected

returns can reverse. Lead-lag covariances can dominate contemporaneous covariance such that

quadratic variation is no longer a meaningful approximation of conditional variance. At long

horizons, the Covt[µt→t+h,Mt→t+h] terms cannot be ignored.
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Figure 2 provides a useful comparison of realized volatility and this paper’s new variance

estimation method. Panel (a) shows that even if lead-lag cross-correlations generate a sloped variance

term structure, realized volatility will always estimate a flat average term structure by construction.

This flaw extends to betas and is apparent in equation (2). The realized approach ignores lead-lag

correlations so even if they exist, a flat term structure ensues because β̂t→t+h = β̂t,h,lag=0 regardless

of h.

Two modifications to the realized approach lead to the new high-frequency estimation method

and are necessary for estimating conditional variance instead of quadratic variation.

1. Assume a conditional expected value for the return horizon, µ̄t→t+h, that proxies for

Et[rt→t+h] = Et[µt→t+h]. The conditional mean process µs can be stochastic and be left

unspecified but its expected value over horizon h is a constant and must be assumed. In my

base case, I use a rolling-average of past returns to specify µ̄t→t+h.

2. Provide a weighting method for the lead-lag auto-covariances among the high-frequency returns.

In my base case, I use a Gaussian kernel where the weights for lead-lag l of horizon h are

w(l, h) = e−
(πl/h)2

2 . This gives the concurrent term a weight of 1 with more distant terms

receiving smaller and smaller weights. Closer correlations more likely capture true economic

relationships that contribute to the conditional variance while more distant correlations more

likely reflect noise. Leads and lags are treated symmetrically. Figure 2 panels (c)-(d) provides

a visual depiction.

The following illustrative example is consistent with Figure 2 and estimates the time t

conditional variance of a 5-period horizon return, V̂art[rt→t+5]. It may be helpful to think of a single

period as one month. The realized approach estimates quadratic variation as M̂2
t→t+5 =

∑5
τ=1 r

2
τ

but quadratic variation may not adequately approximate conditional variance. Alternatively, a

naive unbiased estimate of conditional variance squares the demeaned return: V̂art[rt→t+5] =

r̃2
t→t+5, where r̃t→t+5 ≡ rt→t+5 − µ̄t→t+5. Next, high-frequency returns are used by noting that

r̃2
t→t+5 = (

∑5
τ=1 r̃τ )(

∑5
υ=1 r̃υ), where r̃τ and r̃υ are demeaned high-frequency returns. I demean

through an even split of µ̄t→t+5 to get r̃τ = rτ − 1
5 µ̄τ .

5 The second modification simply weights
5The decomposition holds regardless of how µ̄t→t+h is allocated among the high-frequency returns. But different

allocations can affect individual high-frequency cross-terms. Since the proposed high-frequency method incorporates
only a subset of these cross-terms, the resulting conditional variance estimate may be sensitive to how µ̄t→t+h is
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Figure 2: Realized vs. New High-Frequency Approach. Figure illustrates differences between
the standard realized approach shown in panels (a)-(b) and the paper’s new high-frequency approach shown
in panels (c)-(d). The following is an unbiased conditional covariance estimate under rational expectations:

ˆCovt[rit→t+h, rmt→t+h] = r̃it→t+hr̃
m
t→t+h, where r̃ is a demeaned return. These estimates are shown as large

boxes with numeric side labels counting the periods constituting the h-period horizon. Each interval on an
axis depicts one period, with market returns on the x-axis and portfolio returns on the y-axis. Panels (a)
and (c) depict a sequence of five 5-period horizons while panels (b) and (d) depict a single 25-period horizon.
The standard realized approach captures only high-frequency contemporaneous cross-products, represented
by the sequence of diagonal black boxes. In contrast, the new approach weights all lead-lags based on a
specified weighting kernel, with darker shades representing larger weights. I use a Gaussian kernel. The
realized approach’s average covariance term structure (comparing 5-period versus 25-period horizons, with
proper scaling) is flat by construction since the two horizons capture the same black squares. This is not
true for the new approach. More lead-lags exist for the 25-period horizon, and the squares are also weighted
differently. The average term structure will thus be upward-sloping if the sign of the sum of these different
weighted terms is positive.

(a) Realized Approach (Horizon = 5)

(b) Realized Approach (Horizon = 25)
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(c) New High-Frequency Approach (Hori-
zon = 5)

(d) New High-Frequency Approach (Hori-
zon = 25)

lead-lag correlations based on their distance from contemporaneous comovement. The resulting

estimate equals V̂art[rt→t+5] =
∑5
τ=1w(0, 5)r̃2

τ +2
∑4
τ=1(w(1, 5)r̃τ+1r̃τ )+ ...+2(w(4, 5)r̃τ+4r̃τ ) where

w(0, 5) = 1, w(1, 5) ≈ 0.82, . . . w(4, 5) ≈ 0.04 under the Gaussian kernel.

allocated. I choose an even allocation because it is simplest. I did not investigate alternative allocation strategies and
suspect that reasonable alternatives are unlikely to result in qualitatively different estimates.
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The standard realized method is a special case of the new high-frequency method, with a

conditional mean assumption of µ̄t→t+h = 0 and only the lag-0 term receives a unit weight. To

the extent that these assumptions are appropriate, the realized approach does estimate conditional

variance. But as the following section demonstrates, not weighting any lead-lag correlations is likely

inappropriate for multi-month and multi-year portfolio returns. The realized approach estimates

quadratic variation, but quadratic variation no longer approximates conditional variance well. And

it is conditional variance estimates that are needed.

The Scholes-Williams beta can also be considered a special case of the new high-frequency

method, where a preselected set of lags is uniformly unit-weighted while all other lead-lags are

ignored. Traditionally, Scholes-Williams beta corrects for microstructure noise, so included lags are

the ones where these effects spill into. In addition, the conditional mean assumption µ̄t→t+h equals

the realized return over horizon h because Scholes-Williams betas use standard regressions that

effectively assume that. This is problematic, however, since the realized return is now being used to

estimate both the mean and the variance. When all lead-lags are equally weighted, this results in

a meaningless zero variance estimate. Scholes-Williams normally doesn’t weight all lead-lags, but

those that are ignored are ignored because they have zero expectation. Therefore, to the extent

that the resulting estimate is non-zero, it must be estimating bias among the incorporated lags

and not the actual variance. For this reason, the new high-frequency approach first demeans using

an exogenously specified mean and then squares (and weights) the resulting demeaned returns. It

avoids using a standard regression to estimate lead-lag betas precisely because that implicitly and

inappropriately sets the conditional mean assumption to the realized return.

Using the new high-frequency approach to estimate conditional betas reflects the result in

equation (2). Alphas directly follow using equation (3). Specifically, I use realized returns at

time t + 1 to estimate conditional expectations formed at time t for the following t + 1 period.

This approach follows the realized literature where time t + 1 realized variance also estimates

conditional variance formed at time t. As long as there are no systematic biases in expectations, the

realized observation is an unbiased estimate of the conditional expectation. To address concerns of

look-ahead bias, an alternative interpretation uses the time t+ 1 realized estimate as the conditional

expectation at t+ 1 for time t+ 2. This difference does not affect the paper’s main empirical results

18



since these results average across all conditional expectations.

One wrinkle is that a lower limit, Min.Den, needs to be placed on the beta denominator term

since the inclusion of large negative autocorrelations may dramatically shrink and even turn the

denominator negative. The denominator estimates long-horizon market variance so it should clearly

be positive. A positive Min.Den enforces this while a non-epsilon value prevents the denominator

from being too small and blowing up the beta estimate. The following summarizes the high-frequency

approach for estimating alphas and betas of horizon h using information conditional at time t. Each

horizon h and time t requires a separate estimate.

β̂C.HFt→t+h ≡

(∑h−1
l=−h+1w(l, h)ρ̂imt,h,lag=l

)( σ̂it,h,lag=0
σ̂m
t,h,lag=0

)
Max

(∑h−1
l=−h+1w(l, h)ρ̂mt,lag=l,Min.Den

) (8)

α̂C.HFt→t+h ≡ µ̄it→t+h − β̂C.HFt→t+hµ̄
m
t→t+h

where

r̃iτ ≡ riτ −
1
h
µ̄it→t+h

σ̂it,h,lag=0 ≡

√√√√ h∑
τ=1

(r̃i2τ )

ρ̂imt,h,lag=l ≡
∑h−l
τ=1(r̃iτ+lr̃

m
τ )

σ̂it,h,lag=0σ̂
m
t,h,lag=0

w(l, h) ≡ weighting kernel for lead-lag l

µ̄it→t+h and µ̄mt→t+h must be exogenously specified and not be the realized return within the horizon.

I follow the rolling-window approach with the same base case window lengths and average the

previous J periods of horizon h returns. I use the Gaussian weighting kernel w(l, h) = e−
(πl/h)2

2 . I

use daily returns as the high-frequency return for monthly and quarterly horizons and monthly

returns for annual, 3-year, and 10-year horizons. As long as the high-frequency horizon isn’t too

coarse, the specific choice shouldn’t matter much. Looking at Figure 2 panel (d), a Gaussian

weighting kernel means the weights at specific locations of the grid should be largely unaffected

by the grid’s granularity. Finally, I choose Min.Den = 0.3, which constrains the long-horizon

market variance to be at least 30% of the scaled short-horizon variance. This limit binds only
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in rare circumstances when dramatic reversion in market returns occurs during the period. All

these specifications are somewhat arbitrary, so the Appendix explores alternatives and finds broadly

similar results.

3 The Presence of Auto and Lead-Lag Correlations

Persistent market-portfolio cross-correlations or market autocorrelations are the only way to

produce a sloped average beta term structure. This possibility is often dismissed since substantive

lead-lag correlations contain predictive and potentially profitable information that should be

arbitraged away. However, predictability need not imply market inefficiency (Fama and French

(1989)), and the literature has consistently documented both market return autocorrelation (e.g.

Fama and French (1988), Poterba and Summers (1988), Conrad and Kaul (1989)) and portfolio

cross-correlations (e.g. A. Lo and MacKinlay (1990), Chordia and Swaminathan (2000), Hou (2007),

Hong, Torous, and Valkanov (2007), L. Cohen and Frazzini (2008), Menzly and Ozbas (2010),

Chordia, Sarkar, and Subrahmanyam (2011), L. Cohen and Lou (2012)). Different explanations

have been proposed, including time-varying risk aversion, liquidity shocks, differences in the speed

of information diffusion, and supply-chain links. This section empirically evaluates the presence of

market autocorrelations and market-portfolio cross-correlations in monthly and annual returns. I

ignore daily returns because micro-structure noise leading to daily or weekly lead-lags is already

well-known and will play only a minor role in the longer-horizon results I examine.

3.1 Significance of Individual Auto and Lead-Lag Correlations

Figure 3 shows standard auto and cross-correlograms using all historical data, with exceedances

beyond the dotted lines indicating a 95% significance level. Significance is based on a single test,

but the figure shows results for multiple lead-lags. For every 20 lead-lags shown, therefore, we

should expect only one exceedance occurring by chance. Left and right panes show monthly

and annual correlations, respectively. Panel (a) depicts excess-market autocorrelations that are

adjusted for finite-sample bias (Kendall (1954)). Although there is some evidence of significant

monthly correlations, no exceedances occur at the annual horizon. What can cause sloped beta term
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structure are sequential correlations of nearby lags that push in the same direction. Otherwise, if

some correlations are negative while others are positive, they cancel and leave no net impact. This

directional consistency, however, is not apparent in market returns, suggesting a limited contribution

from the market denominator component of term structure effects (see equation (1)).

Panels (b)-(d) show market-portfolio correlations for size, value, and momentum, with positive

lags indicating market returns that occur before and thus anticipate portfolio ones. Results here

are interesting and foreshadow beta term structure patterns in the next section. Monthly lag-0

correlations can be easily converted into monthly betas (simply scale by σimonth
σm
month

) while annual lag-0

correlations similarly reflect annual betas. Ignoring market denominator effects, equation (1) shows

that long-horizon betas are simply the sum of higher-frequency lead-lag correlations. Visually

summing these correlations tells us the direction in which average longer-horizon betas slope. The

same scale for monthly and annual results is maintained to facilitate this exercise.

Let’s begin with size in panel (b). Monthly exceedances abound, with the 1-month lagged

correlation being the most striking. Gilbert et al. (2014) argue that small stock prices incorporate

information more slowly because they are likely less-understood and more opaque. It thus takes time

for market changes to catch up to small stocks, resulting in rising betas as the horizon lengthens

and fundamental co-movement is eventually reflected more fully. Interestingly, this pattern reverses

itself as the number of lags increase, with negative correlations becoming more prevalent and

having greater significance. Annual results make this pattern apparent and show a sequence of 5

negative correlated lags. The second is especially significant and large enough to counteract the

positive lag-0 correlation. This anticipates the next section when we see SMB’s historical-average

beta term structure peak at the annual horizon and then decline to become eventually negative

at multi-year horizons. It’s unlikely that gradual information diffusion explains this finding since

negative correlations reflect reversal and not return continuation.

The results for value in panel (c) are interesting in a different way. The lag-0 monthly correlation

is significantly positive, but the magnitude shrinks by half and becomes insignificant for the lag-0

annual correlation. Indeed, at the annual horizon, non-contemporaneous lead-lag correlations have

much larger magnitudes. But these correlations have little significance and mostly cancel. This

suggests that estimation noise will dominate at the annual horizon, making it difficult to reject the
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Figure 3: Auto and Lead-Lag Correlations at Individual Lead-Lags. Data from 1926-2015
used to form non-overlapping monthly (left panes) and annual returns (right panes). Panel (a) shows market
excess return autocorrelations at individual lead-lags, with adjustments for finite-sample bias using Kendal
’54. Panels (b)-(d) show market-portfolio lead-lag correlations. Dotted lines contain the 95% confidence
interval under the null of iid returns leading to zero correlation at all lags. This means ρ̂l is asymptotically
normal with mean zero and variance 1

T .

(a) Market Autocorrelations

(b) Market-Size Cross-Correlations
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(c) Market-Value Cross-Correlations

(d) Market-Momentum Cross-Correlations
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flat beta term structure hypothesis. Momentum’s results in panel (d) are like size’s but in reverse.

At the monthly horizon, the lag-0 correlation is very negative, but significant exceedances at further

lead-lags go the other way and tend to be positive. By the annual horizon, the lag-0 correlation

loses its significance and is in fact, dwarfed by highly positive lag-1 and lag-2 values. This points to

a term structure pattern that’s opposite to size, where monthly betas tend to be negative but then

slope upward to become positive at longer horizons.

3.2 Significance of Cumulative Auto and Lead-Lag Correlations

Beta term structure effects require adjacent lead-lag correlations to push in the same direction

consistently. While Figure 3 looks at individual lags, Table 1 sums them cumulatively to capture

better when correlations of neighboring lead-lags agree and are more likely to have an impact. Leads

and lags of the same distance are summed since their impact on the beta term structure occur

together. Panel (a) shows in-sample results that use all historical data, like the Figure 3 results

we already looked at. Market autocorrelations are positive at monthly horizons, in some cases

significantly so, but they become negative by Year-2. Cumulative autocorrelations peak at -25% by

Year-5, reflecting the mean-reversion tendencies of 3 to 5-year returns found in Fama and French

(1988). The market denominator impact is thus to pull betas toward zero at monthly horizons (when

the denominator becomes larger) but magnifies them at multi-year horizons (when the denominator

shrinks). These results, however, have little to no statistical significance.

For size, we see cumulative positive correlations that are significant up to a lag of 3-months, but

the sign then reverses and becomes significantly negative by Year-5. Value shows little significance

and only small magnitudes, implying a mostly flat term structure. Momentum sees mostly positive

cumulative lead-lag correlations with significance beginning at Month-3 and also showing up in

Year-2. Like size, momentum has large annual lagged correlations but where it differs, as Figure 3

shows, is that its leads offset much of these effects. Size’s leads are relatively smaller in magnitude,

and thus the lags dominate. This means that multi-year term structure effects will be more muted

for momentum, and we see this in lower cumulative annual correlations that are less significant.

Unlike in-sample panel (a) results, Table 1 panel (b) assesses how investors could have

24



T
ab

le
1:

A
ut
o
an

d
Le

ad
-L
ag

C
or
re
la
ti
on

s
at

C
um

ul
at
iv
e
Le

ad
-L
ag
s.

D
at
a
fr
om

19
26
-2
01
5
us
ed

to
fo
rm

m
on

th
ly

an
d
an

nu
al

no
n-
ov
er
la
pp

in
g
re
tu
rn
s.

P
an

el
(a
)
as
se
ss
es

th
e
ex
te
nt

of
in
-s
am

pl
e
pr
ed

ic
ta
bi
lit
y.

U
sin

g
al
lh

ist
or
ic
al

da
ta
,e

xc
es
s-
m
ar
ke
t
au

to
co
rr
el
at
io
ns

an
d

m
ar
ke
t-
po

rt
fo
lio

le
ad

-la
g
co
rr
el
at
io
ns

ar
e
ca
lc
ul
at
ed

.
C
or
re
la
tio

ns
of

th
e
sa
m
e
di
st
an

ce
ar
e
co
m
bi
ne

d
an

d
cl
os
er

co
rr
el
at
io
ns

ar
e
su
m
m
ed

to
ge
th
er

∑ l=
la
g

l=
−
la
g
,l
6=

0
ρ
l.

T
hi
s
in
di
ca
te
s
th
e
to
ta
ld

ire
ct
io
na

li
m
pa

ct
on

lo
ng

er
ho

riz
on

re
tu
rn
s
of

al
lc

or
re
la
tio

ns
up

to
th
e
in
di
ca
te
d
la
g.

A
sig

ni
fic

an
t
di
ffe

re
nc

e

fro
m

ze
ro

at
a
tw

o-
sid

ed
95

%
le
ve
li
s
bo

ld
fa
ce
d
an

d
as
se
ss
ed

us
in
g
ts
ta
t l
a
g

=
∑ l=l

a
g

l=
−
la
g
,l
6=

0
ρ
l

√
2l
a
g
/
T

.
St
an

da
rd

er
ro
rs

ar
e
ca
lc
ul
at
ed

un
de

r
th
e
nu

ll
of

iid
re
tu
rn
s

le
ad

in
g
to

ze
ro

co
rr
el
at
io
n
at

al
ll
ag

s.
P
an

el
(b
)
as
se
ss
es

th
e
ex
te
nt

of
ou

t-
of
-s
am

pl
e
pr
ed
ic
ta
bi
lit
y
by

sh
ow

in
g
th
e
O
O
S
R

2 la
g

=
1
−

M
S
E
la
g
,a
lt
e
r
n
a
t
i
v
e

M
S
E
la
g
,n
u
ll

,
w
ith

M
S
E
la
g
,f
o
r
e
c
a
s
t

=
∑ t=

T
t=

11
(∑ l=

la
g

l=
−
la
g
,l
6=

0
ρ
t,
l,
f
o
r
e
c
a
s
t
−
∑ l=

la
g

l=
−
la
g
,l
6=

0
ρ
t,
l,
a
c
tu
a
l)

2 .
T
he

fir
st

30
pe

rio
ds

fo
rm

th
e
tr
ai
ni
ng

pe
rio

d.
Fo

r
m
on

th
ly

an
d

an
nu

al
co
rr
el
at
io
ns
,ρ

t,
l,
a
c
tu
a
l
is

ca
lc
ul
at
ed

us
in
g
th
e
ne

xt
12

-m
on

th
an

d
10

-y
ea
r
pe

rio
d,

re
sp
ec
tiv

el
y.

T
he

nu
ll
pr
ed

ic
ts

ze
ro

co
rr
el
at
io
n
at

al
ll
ag

s
w
hi
le

th
e
al
te
rn
at
iv
e
pr
ed

ic
ts

th
ey

eq
ua

lt
he

ir
hi
st
or
ic
al

va
lu
e.

Pr
ed

ic
ta
bi
lit
y
is
as
se
ss
ed

on
a
on

e-
st
ep

-a
he

ad
ro
lli
ng

ba
sis

w
ith

co
nt
in
uo

us
ly

up
da

te
d
fo
re
ca
st
s.

B
ol
df
ac
ed

R
2
va
lu
es

ar
e
po

sit
iv
e
an

d
in
di
ca
te

hi
st
or
ic
al

ou
tp
er
fo
rm

an
ce

by
th
e
al
te
rn
at
iv
e
ov
er

th
e
nu

ll.
M
ar
ke
t
au

to
co
rr
el
at
io
ns

ar
e
ad

ju
st
ed

fo
r

fin
ite

-s
am

pl
e
bi
as

us
in
g
K
en

da
l’
54
.

(a
)
In
-S
am

pl
e
C
um

ul
at
iv
e
Le

ad
-L
ag

C
or
re
la
ti
on

s
(%

)

M
on

th
s

Ye
ar
s

(C
um

La
gs

an
d
Le

ad
s)

(C
um

La
gs

an
d
Le

ad
s)

1
2

3
4

5
6

7
8

9
10

11
1

2
3

4
5

6
7

8
9

M
ar
ke
t
A
ut
o

11
10

2
4

12
10

12
16

21
22

22
8

-6
-9

-1
6

-2
5

-2
0

-1
1

-4
1

M
ar
ke
t-
Si
ze

C
ro
ss

25
26

23
7

-5
-1
0

-1
2

-1
6

-4
5

6
-7

-3
0

-4
9

-5
7

-6
7

-8
0

-8
8

-8
4

-9
5

M
ar
ke
t-
Va

lu
e
C
ro
ss

12
10

-3
-8

-5
-1
6

-1
5

-1
5

-0
1

-5
-0

-1
4

2
-2
1

-3
4

-3
8

-2
1

-2
8

11
M
ar
ke
t-
M
om

en
tu
m

C
ro
ss

-1
7

-4
17

23
25

28
35

41
28

29
33

17
49

35
15

27
18

30
41

51

(b
)
O
ut
-O

f-
Sa

m
pl
e
R

2
of

C
um

ul
at
iv
e
Le

ad
-L
ag

C
or
re
la
ti
on

s
(%

)

M
on

th
s

Ye
ar
s

(C
um

La
gs

an
d
Le

ad
s)

(C
um

La
gs

an
d
Le

ad
s)

1
2

3
4

5
6

7
8

9
10

11
1

2
3

4
5

6
7

8
9

M
ar
ke
t
A
ut
o

-1
1

-9
-1

-0
1

5
7

10
10

17
15

-4
6

-3
4

-2
8

-1
6

-2
0

-2
3

-2
0

-1
8

-1
4

M
ar
ke
t-
Si
ze

C
ro
ss

-1
3

1
2

-1
-1
1

-0
-5

-1
9

-8
5

-8
5

-7
2

-1
8

9
-1
1

-8
0

-6
17

-2
14

-5
12

-3
13

-1
17

M
ar
ke
t-
Va

lu
e
C
ro
ss

-2
5

6
8

-3
-7

0
-3

-1
2

-4
6

-5
9

-7
8

-1
3

-1
7

-4
8

-3
2

-5
57

-2
74

-3
26

-3
20

-1
06

M
ar
ke
t-
M
om

en
tu
m

C
ro
ss

3
-4

-2
0

-8
-8

-1
-1
2

-2
0

-5
1

-9
7

-1
01

-3
0

-7
8

-2
3

-2
76

-3
67

-4
42

-4
66

-2
24

-8
1

25



anticipated the direction of future cumulative correlations in real time. Investors have access only to

backward-looking information, so the results avoid look-ahead bias by using a pseudo out-of-sample

approach. In each period, I form two forecasts, with the null assuming zero cumulative correlations

at all lags and the alternative assuming correlations that reflect the history up to that point. The

null hypothesizes iid returns while the alternative assumes past lead-lag patterns are persistent

and repeat themselves. I compare these two forecasts to actual realized future led-lags using next

12-month returns for monthly results and next 10-year returns for annual results. Squared forecast

errors are then calculated, and the exercise is repeated on a one-step-ahead basis for the next

month or year. Correlation forecasts are updated recursively at every step using the latest available

information given an expanding historical window. When squared forecast errors are calculated

for all periods, they are averaged to form the mean-squared-error (MSE) for each forecast. Panel

(b) shows the OOS R2, where positive numbers mean the alternative hypothesis has outperformed

while negative ones reflect null out-performance. Out-of-sample predictability is rare compared to

in-sample predictability, and Goyal and Welch (2008) show that nearly all market mean-return

predictors lack out-of-sample performance. Nevertheless, panel (b) shows that positive OOS R2

occur at the monthly horizon for market autocorrelations and at the annual horizon for market-SMB

correlations at two years. This indicates strong persistence in some lead-lag patterns such that

they are possibly actionable in real-time. For SMB especially, investors could have anticipated long-

horizon betas that deviate from short-horizon ones and formed adjusted conditional expectations

accordingly.

4 The Shape of Alpha and Beta Average Term Structures

This section presents the paper’s main empirical findings and shows the average term structure

shape for size, value, and momentum. For each portfolio and for alpha and beta separately, I compare

the three methods described in the previous section: unconditional, conditional rolling-window,

and the new conditional high-frequency approaches. Table 2 displays coefficient estimates and

corresponding Newey-West ’94 standard errors. The three approaches are broadly consistent.
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Table 2: Alpha and Beta Term Structures. Data from 1926 - 2015 used to form non-overlapping
monthly, quarterly, annual returns and annual-overlapping 3-year, 10-year returns. Tables show unconditional
and average conditional alpha and beta term structures. Unconditional alphas and betas are calculated using
all historical data in an OLS regression: rit→t+h = αUt→t+h + βUt→t+hr

m
t→t+h. Conditional alpha and beta

methods described in Section 2. T-statistics are shown in brackets using Newey-West ’94 standard errors.
Boldfaced coefficients denote a significant difference from zero at a two-sided 95% level.

(a) Size (SMB)

Alpha Beta

Mn Qt Yr 3Y 10Y Mn Qt Yr 3Y 10Y
Unconditional 0.9 0.4 0.7 1.2 3.9 0.2 0.3 0.2 0.2 -0.2

[0.9] [0.4] [0.6] [0.5] [3.1] [6.0] [4.6] [3.6] [1.3] [-1.7]
Cond- Rolling 1.3 1.3 0.0 1.0 4.7 0.2 0.2 0.3 0.2 -0.2
Window [10.8] [1.9] [0.0] [1.1] [2.4] [8.6] [8.6] [5.6] [0.4] [-0.7]
Cond- High 1.9 1.0 0.6 2.0 5.0 0.1 0.2 0.3 0.0 -0.3
Frequency [7.4] [1.5] [0.7] [2.2] [6.1] [4.6] [6.7] [4.5] [0.2] [-2.8]

(b) Value (HML)

Alpha Beta

Mn Qt Yr 3Y 10Y Mn Qt Yr 3Y 10Y
Unconditional 3.1 3.1 3.5 3.8 4.9 0.1 0.1 0.1 0.0 -0.1

[2.2] [2.2] [2.8] [2.5] [7.9] [1.8] [1.1] [0.8] [0.4] [-0.5]
Cond- Rolling 3.8 4.2 3.8 4.3 4.9 -0.0 -0.0 0.0 -0.0 -0.0
Window [13.1] [8.4] [5.3] [5.7] [4.3] [-0.1] [-0.3] [0.1] [-0.0] [-0.0]
Cond- High 4.7 4.3 3.6 4.4 5.2 -0.0 0.0 0.1 -0.0 -0.1
Frequency [19.3] [10.0] [4.3] [7.9] [6.9] [-0.5] [0.2] [0.6] [-0.1] [-0.4]

(c) Momentum (UMD)

Alpha Beta

Mn Qt Yr 3Y 10Y Mn Qt Yr 3Y 10Y
Unconditional 8.6 9.1 7.4 6.1 5.1 -0.3 -0.4 -0.1 0.1 0.3

[5.4] [5.6] [3.7] [2.8] [1.8] [-2.4] [-2.6] [-1.5] [1.0] [1.5]
Cond- Rolling 6.2 7.4 7.8 6.4 3.5 -0.1 -0.2 -0.1 0.1 0.3
Window [14.2] [8.4] [5.1] [3.8] [0.2] [-4.4] [-3.8] [-1.9] [1.1] [1.4]
Cond- High 6.0 7.0 7.2 7.4 4.5 -0.0 -0.1 -0.1 -0.0 0.2
Frequency [12.1] [7.1] [6.3] [6.0] [1.3] [-2.1] [-1.0] [-0.7] [-0.6] [1.1]

4.1 Discussion of Size, Value, and Momentum Results

Size’s monthly betas are positive and strongly significant. They increase and peak at the

quarterly or annual horizon, and then decline until they’re negative by the 10-year horizon. Only

the high-frequency approach shows statistical significance. Beta term structures impact alpha

term structures directly. They are positive at the monthly horizon and significantly so under both
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conditional approaches. As the horizon lengthens, alpha changes follow beta ones but with the

opposite sign, falling as betas rise and then rising as betas fall. Conditional alphas shrink and lose

their significance at the quarterly and annual horizons. Handa, Kothari, and Wasley (1989) and

Handa, Kothari, and Wasley (1993) find that the size anomaly disappears under annual instead of

monthly returns. They examine only unconditional results over a more limited time period, however,

and I provide updated, confirming evidence for conditional alphas as well. In addition and more

strikingly, the pattern reverses at multi-year horizons, with alphas becoming highly significant by

10-years with magnitudes roughly triple that of monthly ones. To my knowledge, this is the first

time this pattern has been documented. Recent work (e.g. Hou and Van Dijk (2014), Asness et

al. (2015)) has shown ways to resurrect the size effect given its poor performance in the past three

decades. It turns out that long-horizon returns are another place where the size effect is alive and

well.

From equation (4), the mean conditional alpha term structure is determined not just by beta

effects but also by the covariance between conditional betas and the market risk-premium (i.e. the

market’s conditional mean). Figure 4 plots the covariance’s term structure on the same scale as

Figure 1. Under both conditional approaches, the level is near zero and the term structure is

essentially flat. This term thus plays no major role in either the level or shape of the alpha term

structure, and it must be beta effects that drive alpha results. The result is consistent with Lewellen

and Nagel (2006)‘s and Ang and Kristensen (2012)’s findings that this covariance term is simply

too small to explain the magnitude of these anomalies’ alpha.

In the results presented for size so far, I’ve only demonstrated the significance of coefficients in

their deviation from zero. For betas, this is important for understanding whether the portfolios are

risks or hedges, and for alphas, whether they are anomalous with respect to the CAPM. However, I

have not yet shown that coefficients at different horizons differ from each other in a statistically

significant way and therefore, the term structure is indeed sloped. Looking at Figure 1, we can get

a sense of this by examining whether the 95% confidence interval at different horizons overlap with

each other. No overlap suggests significance but this approach is too stringent since it ignores the

likely correlation of coefficient estimates across horizons. For example, a high monthly beta estimate

for a particular period is likely to occur during a high annual estimate too. This means coefficient
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Figure 4: Term Structure of Covariance Term between Conditional Betas and the
Market Risk Premium. Data from 1926 - 2015 used to form non-overlapping monthly, quarterly, annual
returns and annual-overlapping 3-year, 10-year returns. Conditional alpha and beta methods described in
Section 2. Figures show the unconditional covariance between conditional betas and the market risk premium
(i.e. the market conditional mean return estimated using the rolling-window approach).
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differences across horizons can be small yet still be significant. To account for this possibility, I

continue using a t-test to assess significance but incorporate in the denominator standard error

correlations. These are estimated with an exactly-identified GMM setup for each pairwise horizon.

GMM estimates the coefficient covariance matrix that’s easily convertible to correlations and by

using a Newey-West ’94 kernel, leads to estimates robust to heteroskedasticity and autocorrelation.

Table 3 presents t-statistics of horizon coefficient differences that incorporate GMM correlation

estimates. Positive values imply an increase in alphas or betas as the horizon lengthens. Looking

only at size for now, I find significant coefficient differences primarily for 10-year versus shorter

horizons. Betas are significantly more negative while alphas are significantly more positive. The

new high-frequency approach shows the strongest results, especially for betas. Alpha significance

is rarer because standard errors include variation from both betas and expected returns. I obtain

only significance for alphas increases at multi-year horizons and not for alpha decreases going from

monthly to quarterly or annual horizons. Prior works’ finding that the size effect becomes less

anomalous at annual horizons is thus much weaker than and completely reversed by the opposite

effect at multi-year horizons. Size becomes more anomalous at these longer horizons, and it is only

here are differences significant.

Turning to value, Table 2 shows consistent results among all three estimation approaches.

We see insignificant betas and highly significant alphas across all examined horizons. Value’s beta

is indistinguishable from zero regardless and given value’s excess return historically, translates to

significant alphas at all horizons. Alpha’s flat term structure reflects beta’s flat-term structure

since the covariance term between beta and the market-premium plays a negligible role (Figure

4). Table 3 contains almost no significant differences between any two horizons for all estimation

approaches. The null hypothesis that the value term structures are flat and that different horizon

returns result in the same alpha and beta estimates thus stands. These patterns are unsurprising

given earlier findings showing value’s lack of significant lead-lag correlations (Table 1). Unlike size

or momentum, value lacks monthly or annual lead-lag correlations that consistently push in the

same direction. Given this necessary condition for sloped average term structures, value’s alpha and

beta stay similar regardless of the investment horizon.

These results contrast with R. Cohen, Polk, and Vuolteenaho (2009) who find that value stocks
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Table 3: T-Statistics for Alpha and Beta Term Structure Differences. Data and method
as in Table 2. Table shows the t-statistic of alpha and beta differences across different horizons (denoted in
the rows versus columns). For example, Tstat(βQt − βMn) = βQt−βMn√

se(βQt)2+se(βMn)2−2ρQt,Mnse(βQt)se(βMn)
where

ρQt,Mn denotes the correlation between the coefficient estimates calculated using pairwise GMM. Positive
numbers denote an increase in alpha or beta with a lengthening of the horizon. Boldfaced tstats denote a
significant difference at a two-sided 95% level.

(a) Size (SMB)

Alpha Beta

Qt Yr 3Y 10Y Qt Yr 3Y 10Y
Unconditional Mn -0.3 -0.2 0.1 1.7 1.2 0.6 -0.2 -2.9

Qt 0.1 0.3 2.0 -0.4 -0.7 -3.1
Yr 0.3 1.7 -0.6 -3.3
3Y 1.0 -3.3

Cond- Rolling Mn -0.0 -2.0 -0.4 1.7 1.3 1.5 0.0 -1.4
Window Qt -1.4 -0.2 1.4 1.0 -0.1 -1.7

Yr 1.4 2.0 -0.1 -1.8
3Y 1.6 -0.9

Cond- High Mn -1.2 -1.5 0.1 3.5 3.4 3.0 -0.9 -3.9
Frequency Qt -0.4 0.8 3.5 0.8 -2.0 -4.8

Yr 1.4 4.0 -2.5 -4.8
3Y 3.1 -2.7

(b) Value (HML)

Alpha Beta

Qt Yr 3Y 10Y Qt Yr 3Y 10Y
Unconditional Mn -0.0 0.2 0.3 1.1 0.1 -0.5 -0.6 -1.3

Qt 0.2 0.4 1.2 -0.5 -0.6 -1.3
Yr 0.4 1.2 -0.3 -1.1
3Y 0.8 -0.9

Cond- Rolling Mn 0.7 0.1 0.8 1.1 -0.2 0.1 -0.0 -0.0
Window Qt -0.4 0.1 0.5 0.2 0.0 -0.0

Yr 2.5 1.4 -0.1 -0.1
3Y 0.9 -0.0

Cond- High Mn -0.9 -1.4 -0.5 0.6 0.4 0.9 0.1 -0.3
Frequency Qt -0.7 0.2 1.3 0.4 -0.2 -0.4

Yr 1.7 1.4 -1.2 -0.8
3Y 0.9 -0.3
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(c) Momentum (UMD)

Alpha Beta

Qt Yr 3Y 10Y Qt Yr 3Y 10Y
Unconditional Mn 0.2 -0.4 -0.9 -1.1 -0.5 1.2 2.6 2.7

Qt -0.6 -1.1 -1.2 1.6 2.8 3.0
Yr -0.7 -0.9 2.2 1.9
3Y -0.7 1.4

Cond- Rolling Mn 1.2 1.2 0.2 -0.2 -1.4 0.7 2.8 1.9
Window Qt 0.2 -0.4 -0.2 1.7 4.3 2.6

Yr -1.0 -0.3 1.7 1.7
3Y -0.2 1.4

Cond- High Mn 0.9 1.0 1.1 -0.4 -0.1 -0.3 0.0 1.3
Frequency Qt 0.1 0.2 -0.6 -0.2 0.1 1.2

Yr 0.2 -0.9 0.5 1.2
3Y -1.1 1.2

have rising betas and declining alphas over multi-year horizons. Our approaches to value investing,

however, are different. R. Cohen, Polk, and Vuolteenaho (2003) hold a fixed basket of stocks that

start out as value but may drift over time and not be considered value after a few years. In contrast,

I hold a value strategy that automatically rebalances toward new value stocks each year. R. Cohen,

Polk, and Vuolteenaho (2003) calculate cashflow betas whereas my betas reflect period-end total

returns from all sources, including dividends assumed to be reinvested along the way. Their results

are thus more relevant for holding an initially-cheap asset for a long time whereas mine are more

applicable for implementing a consistent value stock investing strategy. Since the portfolios differ,

estimation results may differ too. Nevertheless, one central point of agreement is that alpha and

beta estimates can vary depending on the investment horizon.

Momentum results tend to be the reverse of size’s but weaker. Monthly betas are significantly

negative but increase and turn positive at multi-year horizons. Alphas are strongly significant at

short and medium term horizons but decline and lose significance by 10-years. Increasing betas

drive down alphas but widening standard errors also contribute. Indeed, investing over the long run

is a rare example of momentum not being anomalous with respect to the CAPM. Table 3 shows

significant differences between multi-year betas and shorter horizons under the unconditional and

conditional rolling-window approaches. Alpha differences, however, exhibit no significance at all.

Momentum alphas do decline substantially, with magnitudes comparable to size’s alpha changes.

But momentum 10-year standard errors are much wider, making it harder to draw significant

32



inferences. Like size and value, Figure 4 also shows that the term structure of the covariance

term between momentum beta and the market risk-premium is mostly flat. There is a slight ~1%

elevation at shorter horizons, suggesting some correlation without which short-term alphas would

be even higher. Positive correlations increase the market’s ability to explain momentum’s excess

returns and thus lower the anomalous alpha. Since the correlation diminishes at longer horizons,

this also dampens the degree to which the alpha term structure slopes downward.

The paper’s momentum results are consistent with Daniel and Moskowitz (2015). They find

that momentum crashes tend to follow large market declines and coincide with subsequent market

rebounds. This pattern is partly forecastable, and proper risk management can lead to much better

momentum performance. Negative momentum returns in a rising market environment contribute

to negative contemporaneous short-term betas. When this follows market declines, they add to

positive lagged correlations. These patterns result in an upward-sloping momentum beta term

structure, which is exactly what I find. Longer horizons pick up lead-lag patterns short-horizons

avoid, including the tendency for momentum to crash after a market crash. This positive correlation

thus raises beta and lowers alpha. The momentum strategy I study assumes automatic rebalancing

toward momentum regardless of market conditions. Daniel and Moskowitz (2015) as well as Barroso

and Santa-Clara (2015) argue that this isn’t optimal when crashes may be anticipated. But this

paper’s purpose is not to develop optimal trading strategies but rather to document the potential for

risk-return expectations to vary according to investment horizon. The forecastability of momentum

crashes thus implies that investors can form conditional expectations about these lead-lag correlations

and do so on an ex-ante basis.

4.2 Consistency and Implication of Results

Overall, the unconditional and two conditional approaches lead to similar conclusions regarding

average term structure shapes. Agreement between the two conditional approaches is reassuring since

both should be measuring time-varying ex-ante expectations. But what about agreement between

the unconditional and conditional approaches? Focusing on beta’s numerator, unconditional

and average conditional results are linked through the law of total covariance: Cov(rit, rmt ) =

E[Covt(rit, rmt )] + Cov(E[rit],E[rit]). The unconditional covariance of returns must equal the average
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conditional covariance of returns plus the covariance of the returns’ conditional means. Differences

in the shape of unconditional and average conditional covariance term structures must, therefore,

require a sloped term structure for this additional component. The covariance of the conditional

means must vary with the investment horizon, and as already seen in equation (2), this requires

them to exhibit lead-lag correlations. But conditional means have processes more stable than

the returns they are part of, making lead-lag correlations that much more difficult to detect and

estimate. Term structure effects in conditional means are thus likely swamped by term structure

effects in returns, making minimal the wedge between unconditional and mean conditional covariance

results. Of course, the same analysis also applies to beta’s denominator. The finding of broadly

consistent unconditional and conditional beta term structure shapes is thus unsurprising. This along

with minimal term structure effects in the covariance term between beta and the market-premium

(Figure 4) makes unsurprising consistent unconditional and conditional alpha term structure shapes

too.

The two conditional approaches have similar average alpha and beta coefficients, but Newey-

West standard errors for these mean estimates can differ. Given t-statistics in Table 2, we can infer

that the new high-frequency approach has much smaller standard errors at multi-year horizons. By

construction, the rolling-window approach has more persistent estimates over time (see Appendix

for summary statistics), and this high autocorrelation makes precise estimation of its mean difficult.

On the other hand, the high-frequency approach uses only data within each period, producing

independent observations whose mean can be more confidently estimated. Take the longest 10-year

horizon with the given 89-year dataset. The rolling-window approach has effectively 2 independent

40-year observations (base case window for 10-year horizons) while the high-frequency approach

has nearly 9. Long horizons thus limit the rolling-window approach’s usefulness since the approach

requires sampling across adjacent periods. Thankfully, the new high-frequency approach samples

within periods instead, making it an especially useful method for long-horizon alpha and beta

estimation.

The average term structure patterns presented here have important implications for investors

implementing size, value, or momentum strategies or equivalently, for investors holding stocks

weighted toward SMB, HML, or UMD factors. Size should be considered risky from a market
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exposure perspective but only at horizons less than one-year. At multi-year investment periods, size

adds no risk and in fact, can be considered a hedge when its beta turns negative. Momentum shows

the opposite pattern while value carries no significant market exposure regardless of the horizon.

These beta patterns produce a size alpha that increases with the horizon, a value alpha that stays

similar, and a momentum alpha that decreases. By the 10-year horizon, all three alphas have

similar magnitudes of around 4-5% annually, with only momentum lacking statistical significance.

Given that size is generally considered weak while momentum strong (e.g. Fama and French (2012),

Novy-Marx and Velikov (2016), Harvey, Liu, and Zhu (2015)), this is, as far as I know, the first

paper to document how size can outperform momentum on a risk-adjusted basis. You only need to

hold the strategies long enough.

5 Stationarity of Conditional Alpha and Beta

The paper has so far focused exclusively on the average term structure across all time periods

and found some to be significantly sloped. This can only be induced by persistent lead-lag correlations,

and I’ve thus only investigated the first driver of term structure effects. In this section, I cover the

second driver, namely the stationary nature of conditional alphas and betas. Stationarity implies

mean-reversion after stochastic shocks, such that high alphas or betas tend to be followed by lower

ones. In the absence of lead-lag correlations, the long-horizon conditional beta approximates the

average conditional short-horizon beta over the horizon (Equation (2)). This means abnormally

high short-horizon betas at a particular time tend to occur along with downward-sloping conditional

term structures. Given the difficulty in estimating conditional moments precisely, however, it’s hard

to demonstrate that the term structure at a particular time is sloped in a statistically significant

way. As seen in the previous section, long-horizon standard errors are already large for average

conditional alphas and betas, leading to statistically significant average differences across horizons

that are challenging to achieve. Obtaining significant differences across horizons for a term structure

at a particular point in time would thus be even more difficult. The standard errors are simply too

large for meaningful inferences.

I overcome this difficulty by focusing on the demonstration of alpha and beta stationarity. Sloped
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conditional term structures are then a direct implication, thus avoiding the need to demonstrate this

explicitly for individual cases at different time periods. I conduct Augmented Dickey-Fuller tests to

assess the null that alphas or betas have unit-roots such that rejection of the null implies stationarity.

Table 4 shows the resulting test statistics under both conditional estimation methods and under

alphas and betas estimated using monthly, quarterly, and annual returns. The rolling-window

approach’s base case window length has 60, 40, and 20 observations, respectively. Even if the true

conditional moments are stationary, the way in which the approach’s estimates are formed makes

rejecting the null especially difficult. Therefore, I explore an alternative specification where the

window length is half that of the base case.

Table 4: Augmented Dickey-Fuller Statistics to Test for Unit Roots In Conditional
Alphas and Betas. Data from 1926 - 2015 used to form non-overlapping monthly, quarterly, and annual
returns used to estimate conditional alphas and betas (methods described in Section 2). Rolling Window
(Half) uses 2.5, 5, and 10-year windows to estimate monthly, quarterly, and annual moments, respectively
(these are half that of the base case specification). The table shows Augmented Dickey-Fuller test statistics
using intercept but no trend and with BIC-specified lags. Boldfaced values denote a significant rejection of
the unit root null at the 95% level.

Alpha Beta

Mn Qt Yr Mn Qt Yr
Size Rolling Window -2.5 -4.0 -4.1 -2.7 -4.5 -0.8
(SMB) Rolling Window (Half) -3.6 -4.9 -3.0 -3.6 -4.2 -2.4

High Frequency -4.3 -3.7 -4.6 -11.7 -12.3 -6.4
Value Rolling Window -4.2 -3.2 -2.0 -1.6 -1.6 -0.9
(HML) Rolling Window (Half) -4.9 -3.7 -2.1 -2.3 -1.9 -2.0

High Frequency -6.4 -9.2 -5.6 -6.4 -8.9 -5.5
Momentum Rolling Window -3.6 -3.4 -1.8 -2.6 -3.0 -1.4
(UMD) Rolling Window (Half) -4.7 -4.3 -2.2 -3.5 -3.5 -2.4

High Frequency -5.5 -5.1 -4.2 -11.8 -9.7 -5.0

Under the new high-frequency method, significant rejection of unit-roots occurs in all cases.

Under the rolling-window approach, they occur in most cases, with HML betas and annual moments

being the main exceptions. As expected, halving the window length leads to stronger results, but

the findings are broadly consistent with base case windows. Consequently, stationary alphas and

betas imply sloped conditional term structures when these moments receive an especially large shock

or when they are estimated with especially large errors. Even in the absence of lead-lag correlations,

the conventional practice of using conditional monthly alphas and betas for long-term investors is
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thus incorrect. In the absence of these correlations, long-horizon conditional moments are better

approximated by unconditional rather than conditional short-horizon moments. The long-term

investor is better served with regression estimates that use all historic data rather than the most

recent rolling-window. Using recent data estimates conditional results that lack persistence while

using all data better captures the long-horizon after conditional information gradually dissipates.

Therefore, even if the evidence presented in the previous section for lead-lag correlations and for

sloped average term structures is unpersuasive, sloped conditional term structures still occur because

of stationary conditional alphas and betas.

6 Conclusion

This paper examines the unconditional and conditional term structures of CAPM alphas and

betas for long-short portfolios sorted on size, value, and momentum. The literature traditionally

uses monthly returns to estimate alphas and betas even though they are inappropriate for long-term

investors. Many investors have horizons that span years and are more interested in long-horizon

moments. In addition, firms’ investing or financing decisions use discount rates matched to cashflows

and thus require betas of the right horizon. Researchers should thus explore alternative return

periods and not rely on monthly returns exclusively. More generally and especially since the financial

crisis, there’s broad acknowledgment of the pitfalls associated with Wall Street’s short-term thinking.

Looking at returns beyond just 1-month is perhaps a small step away from that.

Long-horizon betas can deviate from short-horizon ones for two reasons. First, portfolios

exhibit lead-lag correlations that are significant and persistent across time. Long-horizon betas

can be dominated by these correlations rather than simply reflect short-term contemporaneous

comovement. I find this especially true for size, which exhibits strongly negative annual lead-lag

correlations with the market. This leads to size’s beta sign reversal such that size turns from a risk

into a hedge at multi-year horizons. Value has lead-lag effects that are weak and largely cancel,

resulting in a mostly flat beta term structure. Momentum is the opposite of size but with weaker

horizon effects. The second reason for sloped beta term structures is that short-horizon conditional

betas are stationary and mean-reverting. Abnormally large short-horizon betas tend to be followed
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by smaller ones such that a period-specific conditional term structure can be sloped even in the

absence of lead-lag correlations.

These beta term structure effects directly impact alphas. A higher beta that explains more of

the portfolio’s excess return will thus diminish unexplained alpha. The other possible alpha driver,

the covariance term between conditional beta and the market risk-premium, shows no term structure

dynamics. Therefore, size’s downward-sloping beta term structure translates into an upward-sloping

alpha term structure. Momentum’s is the opposite while value’s is flat. At the 10-year horizon, all

three portfolios have comparable alphas, and it is momentum’s that’s least significant. Horizon does

matter.

Many questions remain unanswered. First, what are the economic drivers behind these

significant and persistent lead-lag correlations? If slow information diffusion can explain positive

monthly correlations for the size portfolio, what can explain the much larger and negative annual

correlations? Second, are investors aware of these term structure effects, and do they take advantage

of them? For example, do long-term investors capitalize on the upward slope of size’s alpha term

structure and invest more in size relative to short-term investors? Finally, what are the general

equilibrium implications of these empirical findings? How are prices determined given the presence

of heterogeneous investors with different horizons? I plan on exploring these issues in future drafts

or additional papers.
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Appendix I. Summary Descriptions

In this appendix, I provide basic summary statistics with a brief discussion. Table A1 panel
(a)’s left-hand side contains summary statistics for each portfolio’s excess return. This is done at
horizons ranging from 1-month to 10-years. All returns are log returns, so long-horizon returns
simply sum short-horizon ones. Since different horizons use the same historical data, returns of
different horizons should all have the same mean statistic when annualized. However, the table
shows slight deviations at multi-year horizons because these horizons use overlapping annual data.
This effectively underweights the beginning and end portion of the dataset, deviating from the
uniform weighting of non-overlapping returns at short-horizons. Table A1 panel (a)’s right-hand
side contains summary statistics for each portfolio’s conditional mean return, as estimated using
backward-looking rolling windows. Use of backward-looking windows exacerbates mean statistic
discrepancies by increasing the differences in how the historical dataset is effectively weighted.

The mean return term structure for log returns should be flat, but the same is not necessarily true
for gross returns. Long-horizon gross returns are not the simple sum of short-horizon returns but
instead, require geometric compounding. Long-horizon mean returns will thus be smaller than
short-horizon ones given volatility and Jensen’s inequality. However, I find a nearly flat mean return
term structure for gross returns too (results not shown). The Jensen inequality term turns out not
to be important because I study only excess-return portfolios. These portfolios have Jensen terms
that are driven by long-short leg volatility differences, and these differences tend to be small.

Table A1 panel (b) contains summary statistics of the conditional alpha and beta estimates under
both the rolling-window and the high-frequency approaches. The rolling window approach smooths
across periods whereas the high-frequency approach does not, leading to higher beta autocorrelations
of 0.4 ~ 1 versus 0 ~ 0.4. Higher persistence leads to lower volatility. Beta standard deviations
(annualized) are 0.2 ~ 0.5 for the rolling-window approach and 0.4 ~ 0.7 for the high-frequency
approach. These are sizable time-series fluctuations roughly comparable to those estimated by
Lewellen and Nagel (2006). Beta variation reflects not only changing market sensitivities but
also changing equity compositions since these excess return portfolios are reconstituted annually
(or monthly in momentum’s case). As for alphas, the high-frequency approach also has larger
standard deviations than the rolling-window approach. Differences here are smaller though since
both method’s alpha use the same conditional mean estimates.

Figure A1 plots alpha and beta time-series under both conditional approaches. Let’s look at the
most recent 20-year period to get a sense of their properties. Panel (a) actually begins with market
returns and volatility, and I focus on market volatility at the annual horizon. The rolling-window
approach responds slowly to real-time events since annual results average over 20-year windows.
High-volatility periods during the early 2000s and during 2008-2009 shows up smoothed and with a
lag. On the other hand, the high-frequency approach registers two distinct spikes that map directly
to the crisis periods, with much larger magnitudes that more appropriately reflect these periods’
turmoil. Turning to size, value, and momentum in panels (b)-(d), the high-frequency approach also
estimates more dramatic peaks and troughs. During the late 90’s boom, for example, momentum’s
annual beta experiences sharp increases while value’s beta plummets. This period saw high-growth
technology stocks continuously climb upward during an especially strong bull market. In contrast,
the rolling-window approach depicts smoothed estimates less sensitive to return moments’ real-time
movement. This comparison highlights the advantage of using the new high-frequency approach for
alpha and beta estimation.
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Table A1: Summary Statistics. Monthly portfolio excess returns from Ken French’s website for
the period 1927-2015. I convert to log returns (%/year) so long horizon returns are the simple sum of
monthly returns. Panel (a) shows summary statistics for portfolio returns and for estimated conditional
means using backward-looking windows of 5, 10, 20, 30, and 40 years for monthly, quarterly, annual, 3-year,
and 10-year returns, respectively. I permit partial windows in the early history whenever there are at least 2
observations. Monthly, quarterly, and annual returns are non-overlapping while 3-year and 10-year ones are
annual-overlapping (autocorrelation statistics use non-overlapping returns in all cases though). Mean statistics
are in percent and annualized (e.g. x12 for monthly). Standard deviations are also in percent and annualized
but done differently for returns (scale by square root, e.g. x

√
12) versus for conditional means (scale directly,

e.g. x12). This accounts for the different time-series properties of returns (little autocorrelation) versus of
conditional means (highly persistent). Panel (b) shows summary statistics for conditional alphas (%/year)
and betas estimated using two different methods. The rolling-window approach is the OLS regression alpha
and beta using a backward-looking window of returns of the same horizon (with same window lengths as
conditional mean estimates above). The high-frequency approach uses high-frequency data within each
horizon and weights lead-lag covariance terms according to its lead-lag. See Section (2) for details of the
conditional estimation approaches. The Rolling-HF Corr row shows the estimate’s correlation across the two
conditional approaches. All single-lag autocorrelations (Auto1) are adjusted for finite sample bias where ρ is
back-solved given ρ̂ and the bias term, E[ρ̂− ρ] = − 1+4ρ

T (Kendall (1954)).

(a) Portfolio Returns and Conditional Mean Estimates

Return Conditional Mean

Mn Qt Yr 3Y 10Y Mn Qt Yr 3Y 10Y
Obs No Overlap 1068 356 89 30 9 1067 355 88 29 9

Yr Overlap 87 80 86 79
Market Mean 6.0 6.0 6.0 5.7 6.2 6.2 6.0 5.6 4.3 5.9
(MktRF) SD 18.7 21.2 20.0 19.8 16.0 8.7 6.6 5.3 5.3 2.5

Auto1 0.1 -0.0 0.1 -0.3 0.1 1.0 1.0 0.8 0.7 0.9
Size Mean 2.0 2.0 2.0 2.1 2.4 2.0 1.8 1.7 1.8 3.0
(SMB) SD 10.9 11.8 12.3 14.7 11.2 6.2 4.1 3.2 3.2 1.6

Auto1 0.1 -0.0 0.3 0.0 -0.5 1.0 1.0 0.9 0.2 1.0
Value Mean 3.9 3.9 3.9 4.1 4.5 4.1 4.0 3.9 4.1 4.8
(HML) SD 11.9 13.8 12.3 11.2 7.6 4.9 2.9 2.3 1.7 0.7

Auto1 0.2 -0.0 -0.0 -0.1 -0.2 0.9 0.9 0.8 0.5 0.4
Momentum Mean 6.7 6.7 6.7 6.5 6.7 6.9 7.4 7.6 7.0 5.8
(UMD) SD 18.2 20.6 18.5 17.6 17.0 7.5 6.1 4.8 4.6 4.3

Auto1 0.1 -0.1 -0.0 -0.2 0.3 1.0 1.0 0.9 0.8 1.0
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(b) Conditional Alphas and Betas

Alpha Beta

Mn Qt Yr 3Y 10Y Mn Qt Yr 3Y 10Y
Obs No Overlap 1067 355 88 29 9 1067 355 88 29 9

Yr Overlap 86 79 86 79
Size Rolling Mean 1.3 1.3 0.0 1.0 4.7 0.2 0.2 0.3 0.2 -0.2
(SMB) Window SD 1.7 3.3 5.1 5.9 5.5 0.2 0.4 0.2 0.3 0.3

Auto1 1.0 0.6 0.7 0.1 0.7 1.0 0.4 0.8 0.9 0.8

High Mean 1.9 1.0 0.6 2.0 5.0 0.1 0.2 0.3 0.0 -0.3
Frequency SD 2.3 2.9 5.5 8.9 10.9 0.5 0.5 0.5 0.5 0.5

Auto1 0.5 0.4 0.3 0.1 0.4 0.1 0.0 -0.0 0.3 0.3

Rolling-HF Corr 0.7 0.4 0.4 0.6 0.4 0.3 0.1 0.0 -0.0 0.3
Value Rolling Mean 3.8 4.2 3.8 4.3 4.9 -0.0 -0.0 0.0 -0.0 -0.0
(HML) Window SD 1.5 1.8 2.5 3.3 4.0 0.3 0.3 0.3 0.3 0.3

Auto1 0.9 0.7 0.8 0.8 1.0 1.0 0.9 1.0 1.0 1.0

High Mean 4.7 4.3 3.6 4.4 5.2 -0.0 0.0 0.1 -0.0 -0.1
Frequency SD 2.0 2.8 5.9 6.1 7.4 0.5 0.6 0.7 0.6 0.4

Auto1 0.4 0.2 0.3 0.3 -0.3 0.3 0.2 0.3 0.2 -0.0

Rolling-HF Corr 0.7 0.4 0.4 0.4 0.3 0.5 0.4 0.4 0.3 0.5
Momentum Rolling Mean 6.2 7.4 7.8 6.4 3.5 -0.1 -0.2 -0.1 0.1 0.3
(UMD) Window SD 2.2 4.3 5.0 9.1 17.8 0.3 0.5 0.2 0.2 0.3

Auto1 1.0 0.4 0.8 0.6 1.0 1.0 0.4 0.7 0.7 0.4

High Mean 6.0 7.0 7.2 7.4 4.5 -0.0 -0.1 -0.1 -0.0 0.2
Frequency SD 2.9 3.9 7.4 10.8 23.7 0.7 0.7 0.7 0.6 0.7

Auto1 0.6 0.6 0.3 0.4 0.9 0.4 0.3 0.2 -0.0 -0.0

Rolling-HF Corr 0.7 0.5 0.7 0.7 0.6 0.1 0.1 0.4 -0.2 0.1
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Figure A1: Times Series of Market Volatility and of Portfolio Alphas and Betas. Data
from 1927-2015 used to form non-overlapping monthly, annual returns and annual-overlapping 10-year returns.
Panel (a) shows the time-series of market excess-returns (%/year) and of its standard deviation (%/year).
Monthly, annual, and 10-year rolling means average the previous 5, 20, and 40-year windows, respectively.
Panels (b)-(d) show the time-series plots of size, value, and momentum alphas (%/year) and betas, estimated
under the rolling-window and the high-frequency approaches. These methods are described in Section 2.

(a) Market (MktRF)
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(b) Size (SMB)
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(c) Value (HML)
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(d) Momentum (UMD)
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Appendix II. Robustness of Average Term Structure Results

In this appendix, I evaluate the robustness of the main empirical results on the term structure of
alphas and betas (Table 2). Beginning with the unconditional approach, Table A2 Panels (a)-(c)
presents a series of alternative estimation specifications. I forgo using overlapping annual returns
and use only the 30 3-year and 9 10-year observations that are available. I use gross instead of log
returns to calculate alphas and betas. To obtain longer-horizon returns, I use annual rather than
monthly returns, thus reducing the implicit rebalancing that occurs between the long and short
legs. Each alternative involves a single change while preserving all other specifications under the
base case. For nearly all coefficients, the sign and degree of significance remain the same, and no
alternative specification changes the main findings. In fact, some results strengthen. Size’s 10-year
beta increases in magnitude and in significance under all alternatives.

Table A2 panel (d) separately examines the long and short legs of the size, value, and momentum
excess-return portfolios. This allows identification of the leg driving the results while providing
reassurance term structure findings are not artificially induced by the need to short. Size and
value are formed annually using the same 6 portfolios, with 3 cuts on book-to-market using NYSE
30th-70th percentiles and 2 cuts on market-value using the NYSE 50th percentile. Size longs an
equal-weight of the 3 small-cap portfolios and shorts an equal-weight of the 3 big-cap portfolios.
Value longs the 2 value portfolios and shorts the 2 growth portfolios. Momentum is formed monthly,
with 3 cuts on 2-12 month prior-returns and 2 cuts on market-value using the same NYSE percentiles.
It longs the 2 winner portfolios and shorts the 2 loser ones. See Ken French’s website for additional
details.

Let’s begin with size-value long-only portfolios. Big-Growth stocks are the only portfolio with betas
that stay roughly the same across all horizons. Big-Value sees modest declines while Small-Value
and Small-Growth see major beta drops of 0.5 and 0.35, respectively. These portfolios have alphas
that increase with the horizon, with Small-Value posting the most dramatic gains. The tendency for
a downward-sloping size beta term structure and an upward-sloping alpha one is therefore driven
by small stocks and to a much lesser extent, value stocks. This is why size’s horizon effects are
most apparent while value’s is slight and insignificant. Let’s turn to momentum-size long-only
portfolios. The two size portfolios also have the largest horizon effects. These portfolios are on
opposing long-short legs, however, so their effects somewhat cancel. Nevertheless, the interaction
between size and loser stocks is especially strong. Since momentum shorts this portfolio, its term
structures experience the opposite pattern as size’s, with rising betas and falling alphas. In sum,
small-caps, followed to a lesser extent by loser and value stocks, have the strongest term structure
effects, with falling betas and rising alphas as the horizon lengthens. This opens the possibility that
a single explanation may account for all the paper’s average term structure effects, although the
explanation should also clarify why Size-Value and Size-Down interactions are especially strong.

Turning to the robustness of the conditional rolling-window approach, Table A3 shows results
under alternative specifications. In addition to the alternatives explored for unconditional results,
different ways of forming rolling-windows are also assessed. First, instead of backward-looking
windows, I consider forward-looking ones. Although not implementable in real-time, they may
better proxy for investors’ conditional expectations under rational expectations. I also consider
window sizes that are half of the base case, that use a fixed number of 10 independent observations
for all horizons (i.e. 10 months, 10 quarters, etc.), and that use a fixed time period of 20-years for
all horizons. Under the base case and all alternatives, I allow for partial windows so that more data
can be used. This mainly affects the 10-year horizon and means its 10-Period specification becomes
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an expanding historical window given its lack of 10e independent observations.

Overall, base case rolling-window patterns are robust to alternative specifications. In nearly all cases,
coefficients retain both similar magnitudes and statistical significance thus leading to comparable
alpha and beta term structure shapes. I briefly discuss some exceptions. For size betas, the gross
return specification does not lead to sign reversal. Nevertheless, there’s still a downward-sloping
term structure, with an alpha that doubles in magnitude from a monthly to a 10-year horizon. In
results not shown, gross returns with non-overlapping data preserve the sign-reversal pattern. For
value, look-ahead windows have some alphas that lose statistical significance due to ~1% smaller
coefficients. In results not shown, half of this is from higher market-beta covariance and half from
lower mean excess returns. The look-ahead approach effectively weights observations at the end
of the dataset more, and these have been weaker for value. Finally, momentum’s non-overlapping
10-year results are the most anomalous compared to base case ones. The mean beta estimate has
as its first observation a partial window that contains only two periods. This leads to an extreme
result that swamps others when averaged together. Requiring three instead of just two periods
restores the base case pattern. Nevertheless, it’s important to acknowledge that 10-year estimates
are the least robust for all three portfolios. This is expected and already shows up under the base
case, where all three portfolio betas and one alpha lacks statistical significance.

Table A4 completes the robustness section and contains results for the new conditional high-
frequency approach. Alternative specifications change the weighting kernel for lead-lag high-
frequency returns, using triangular (Bartlett) instead of Gaussian weights or using uniform weighting
that includes only the closest half of all lead-lag terms. Other specifications vary the conditional
mean assumption, by halving the rolling-window period or by using forward-looking instead of
backward-looking windows. I also alter the choice of high-frequency returns, using weekly instead of
daily returns for the quarterly horizon, quarterly instead of monthly returns for the 3-year horizon,
and annual instead of monthly returns for the 10-year horizon. Finally, I alter the limit in which
market autocorrelations can impact the beta denominator, using a denominator minimum of 0.5 or
0.1 versus the base case’s 0.3. The main term structure patterns remain robust. The largest changes
occur under the alternative of using forward-looking windows to estimate conditional mean returns.
Especially for size and for long-horizons, alphas decline substantially, although the significance level
and the overall term structure shape remain comparable.

In sum, robustness results add confidence to the term structure patterns shown in Table 2. Most
specifications are similar to or strengthen base case estimates. Nevertheless, the largest horizon
effects do occur at the longest 10-year horizons where uncertainty is indeed the greatest. A skeptical
look may discount 10-year results and argue that findings here reflect noise that’s obscuring an
otherwise flat term structure. I offer four responses to this skepticism. First, as Table 3 shows, some
significant term structure differences occur not just at 10-years but at shorter horizons where data
is more abundant. Second, 10-year results are driven by higher-frequency lead-lag correlations with
more precise estimates and stronger significance (Table 1 and Figure 3). Lead-lag correlations
imply longer-horizon term structure effects even when these effects are statistically insignificant
due to a lack of power. Third, this paper builds on a much older and larger literature that has
already documented some lead-lag patterns and intervalling effects among stocks. Finally, even in
the absence of lead-lag correlations that induce average term structure effects, period-specific term
structures can still be sloped due to mean-reversion in conditional alphas and betas.
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Table A2: Robustness of Unconditional Approach. Data from 1927-2015 used to form non-
overlapping monthly, quarterly, annual returns and annual-overlapping 3-year, 10-year returns. The table
shows different specifications for estimating unconditional alphas and betas, where estimates are from
regressing portfolio excess-returns on the market excess-return using all historical data. No Overlap uses
non-overlapping returns (affects only 3-year and 10-year horizons which use annual overlapping horizons
under the base case). Gross Returns uses gross rather than log returns. Annual Returns compound annual
rather than monthly returns. Panel (d) shows select portfolios for the long and short legs of size, value, and
momentum (with risk-free rates subtracted). T-statistics are in brackets using Newey-West ’94 standard
errors. Boldfaced coefficients denote a significant difference from zero at a two-sided 95% level.

(a) Size (SMB)

Alpha Beta

Mn Qt Yr 3Y 10Y Mn Qt Yr 3Y 10Y
Base Case 0.9 0.4 0.7 1.2 3.9 0.2 0.3 0.2 0.2 -0.2

[0.9] [0.4] [0.6] [0.5] [3.1] [6.0] [4.6] [3.6] [1.3] [-1.7]
No Overlap 1.2 5.5 0.1 -0.6

[0.8] [4.6] [1.0] [-3.6]
Gross 1.1 0.3 0.9 2.0 5.4 0.2 0.3 0.2 0.2 -0.2
Returns [1.1] [0.2] [0.6] [0.8] [2.8] [6.0] [6.7] [3.7] [1.0] [-2.3]
Annual 0.9 1.6 4.5 0.2 0.2 -0.3
Returns [0.7] [0.6] [3.5] [3.9] [1.1] [-1.8]

(b) Value (HML)

Alpha Beta

Mn Qt Yr 3Y 10Y Mn Qt Yr 3Y 10Y
Base Case 3.1 3.1 3.5 3.8 4.9 0.1 0.1 0.1 0.0 -0.1

[2.2] [2.2] [2.8] [2.5] [7.9] [1.8] [1.1] [0.8] [0.4] [-0.5]
No Overlap 3.3 5.4 0.1 -0.2

[3.6] [5.6] [0.9] [-1.3]
Gross 3.4 3.2 4.2 4.8 6.4 0.1 0.2 0.1 0.0 -0.0
Returns [2.4] [2.1] [3.1] [2.6] [6.3] [1.7] [1.4] [0.8] [0.3] [-0.2]
Annual 3.4 3.6 4.3 0.1 0.1 0.0
Returns [2.4] [2.1] [4.7] [0.8] [0.7] [0.3]
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(c) Momentum (UMD)

Alpha Beta

Mn Qt Yr 3Y 10Y Mn Qt Yr 3Y 10Y
Base Case 8.6 9.1 7.4 6.1 5.1 -0.3 -0.4 -0.1 0.1 0.3

[5.4] [5.6] [3.7] [2.8] [1.8] [-2.4] [-2.6] [-1.5] [1.0] [1.5]
No Overlap 4.8 4.2 0.3 0.4

[2.1] [1.2] [2.2] [1.5]
Gross 10.5 11.3 9.6 8.6 9.4 -0.3 -0.3 -0.1 0.0 0.2
Returns [7.3] [8.0] [5.2] [3.4] [2.2] [-2.7] [-3.6] [-1.8] [0.2] [1.5]
Annual 8.1 6.7 5.8 -0.1 0.1 0.3
Returns [4.4] [2.0] [0.7] [-1.1] [0.5] [1.0]

(d) Long and Short Legs

Alpha Beta

Mn Qt Yr 3Y 10Y Mn Qt Yr 3Y 10Y
Small Value 2.7 2.4 2.9 3.4 6.7 1.3 1.3 1.2 1.2 0.8

[1.7] [1.4] [1.3] [1.0] [3.6] [21.0] [16.2] [12.7] [6.0] [3.3]
Small Growth -2.5 -3.0 -2.9 -2.4 -0.3 1.2 1.3 1.3 1.2 0.9

[-1.8] [-2.3] [-3.5] [-1.1] [-0.2] [28.2] [20.9] [34.6] [10.5] [7.4]
Big Value 0.9 0.8 1.1 1.5 2.4 1.2 1.2 1.1 1.1 1.0

[0.7] [0.7] [0.9] [1.1] [1.7] [17.9] [11.9] [13.6] [9.0] [6.1]
Big Growth -0.2 -0.1 -0.0 -0.1 -0.6 1.0 1.0 1.0 0.9 1.0

[-0.3] [-0.2] [-0.1] [-0.2] [-0.9] [59.8] [37.9] [30.2] [20.3] [14.1]
Small Up 5.7 5.5 5.6 6.0 8.3 1.2 1.2 1.2 1.2 0.9

[4.3] [3.5] [2.9] [2.2] [5.4] [25.4] [20.2] [14.8] [7.6] [8.2]
Small Down -6.9 -7.5 -7.2 -6.2 -3.1 1.4 1.5 1.5 1.4 0.9

[-4.7] [-4.2] [-3.4] [-1.8] [-1.3] [30.4] [26.9] [22.0] [7.7] [3.7]
Big Up 3.5 3.7 3.3 3.2 3.1 1.0 0.9 1.0 1.0 1.0

[5.2] [5.7] [5.2] [3.6] [5.3] [31.0] [26.0] [23.8] [18.2] [20.9]
Big Down -6.3 -6.5 -6.1 -6.2 -4.8 1.2 1.3 1.2 1.3 1.1

[-5.6] [-5.6] [-4.8] [-3.4] [-5.0] [17.3] [16.2] [14.0] [8.8] [8.5]
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Table A3: Robustness of Conditional Rolling Window Approach. Data from 1927-2015
used to form non-overlapping monthly, quarterly, annual returns and annual-overlapping 3-year, 10-year
returns. The table shows different specifications for estimating the conditional rolling-window approach, where
estimates are from regressing portfolio excess-returns on the market excess-return using a backward-looking
window. Base Case uses windows of 5 years for the monthly horizon, 10 years for the quarterly horizon,
20 years for the annual horizon, 30 years for the 3-year horizon, and 40 years for the 10-year horizon. No
Overlap uses non-overlapping returns (affects only 3-year and 10-year horizons which use annual overlapping
horizons under the base case). Gross Returns uses gross rather than log returns. Annual Returns compounds
annual rather than monthly returns. Look Ahead uses a forward-looking window instead of the base case’s
backward looking window. Half Window uses half the window length compared to the base case (i.e. 2.5, 5,
10, 15, 20 years, respectively). 10 Periods uses 10 non-overlapping observations for each horizon (10 months,
10 quarters, etc.) with partial windows permitted. 20 Years uses rolling windows of 20 years for all horizons.
T-statistics are shown in brackets using Newey-West ’94 standard errors. Boldfaced coefficients denote a
significant difference from zero at a two-sided 95% level.

(a) Size (SMB)

Alpha Beta

Mn Qt Yr 3Y 10Y Mn Qt Yr 3Y 10Y
Base Case 1.3 1.3 0.0 1.0 4.7 0.2 0.2 0.3 0.2 -0.2

[10.8] [1.9] [0.0] [1.1] [2.4] [8.6] [8.6] [5.6] [0.4] [-0.7]
No Overlap 1.4 5.5 0.1 -0.4

[1.7] [7.0] [0.2] [-3.1]
Gross 1.6 1.3 0.4 2.5 3.4 0.2 0.2 0.3 0.2 0.1
Returns [12.9] [2.0] [0.5] [1.2] [3.0] [8.4] [8.9] [5.1] [0.7] [1.3]
Annual 0.3 1.6 5.5 0.3 0.2 -0.2
Returns [0.4] [1.6] [2.1] [6.5] [0.3] [-0.7]
Look Ahead 1.4 0.4 0.3 1.6 4.1 0.2 0.3 0.2 0.1 -0.4

[6.8] [0.0] [0.2] [0.9] [10.7] [13.4] [4.2] [2.9] [0.2] [-7.1]
Half 1.1 1.4 -0.1 1.5 4.3 0.2 0.2 0.3 0.1 -0.1
Window [5.3] [1.4] [-0.0] [0.9] [2.5] [11.6] [7.4] [3.4] [0.4] [-0.4]
10 Periods 1.3 1.2 -0.1 1.0 4.9 0.2 0.2 0.3 0.2 -0.2

[4.2] [1.0] [-0.0] [1.1] [4.1] [14.9] [7.3] [3.4] [0.4] [-1.2]
20 Years 0.8 1.0 0.0 1.4 4.3 0.2 0.2 0.3 0.2 -0.1

[3.4] [2.2] [0.0] [1.1] [2.5] [20.5] [11.2] [5.6] [0.4] [-0.4]
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(b) Value (HML)

Alpha Beta

Mn Qt Yr 3Y 10Y Mn Qt Yr 3Y 10Y
Base Case 3.8 4.2 3.8 4.3 4.9 -0.0 -0.0 0.0 -0.0 -0.0

[13.1] [8.4] [5.3] [5.7] [4.3] [-0.1] [-0.3] [0.1] [-0.0] [-0.0]
No Overlap 3.7 5.4 0.0 -0.1

[3.9] [5.5] [0.2] [-0.5]
Gross 4.3 4.8 4.5 5.0 6.2 -0.0 -0.0 0.0 -0.1 -0.1
Returns [13.2] [8.3] [4.3] [3.5] [5.8] [-0.0] [-0.2] [0.0] [-0.5] [-0.7]
Annual 3.5 3.6 3.8 0.0 0.0 0.1
Returns [3.3] [2.5] [1.1] [0.1] [0.0] [0.1]
Look Ahead 3.5 3.2 2.9 3.4 4.0 -0.0 -0.0 0.0 -0.1 -0.1

[11.4] [0.6] [1.1] [4.1] [0.8] [-0.3] [-0.1] [0.0] [-0.4] [-0.1]
Half 3.3 3.9 3.7 4.3 5.4 -0.0 -0.0 0.0 -0.1 -0.1
Window [11.0] [4.3] [3.4] [4.0] [5.5] [-0.0] [-0.3] [0.0] [-0.4] [-0.7]
10 Periods 2.2 3.1 3.7 4.3 4.4 -0.0 -0.0 0.0 -0.0 0.1

[5.5] [1.9] [3.4] [5.7] [3.0] [-0.0] [-0.1] [0.0] [-0.0] [0.3]
20 Years 3.9 4.2 3.8 4.3 5.4 0.0 -0.0 0.0 -0.0 -0.1

[17.8] [10.7] [5.3] [5.0] [5.5] [0.5] [-0.0] [0.1] [-0.2] [-0.7]

(c) Momentum (UMD)

Alpha Beta

Mn Qt Yr 3Y 10Y Mn Qt Yr 3Y 10Y
Base Case 6.2 7.4 7.8 6.4 3.5 -0.1 -0.2 -0.1 0.1 0.3

[14.2] [8.4] [5.1] [3.8] [0.2] [-4.4] [-3.8] [-1.9] [1.1] [1.4]
No Overlap 5.8 7.9 0.2 -0.4

[2.1] [4.8] [1.2] [-1.1]
Gross 8.2 10.1 10.1 9.3 11.8 -0.1 -0.2 -0.1 0.0 -0.0
Returns [31.2] [13.8] [6.8] [3.6] [3.5] [-4.3] [-3.8] [-2.1] [0.5] [-0.2]
Annual 9.5 9.0 8.1 -0.0 0.1 0.1
Returns [8.8] [4.5] [4.8] [-0.4] [1.4] [0.2]
Look Ahead 6.0 7.2 8.0 6.0 4.9 -0.1 -0.2 -0.2 0.1 0.3

[12.0] [0.9] [4.6] [0.5] [4.8] [-4.3] [-1.3] [-1.7] [0.1] [3.5]
Half 5.0 6.4 7.4 6.7 5.2 -0.1 -0.2 -0.1 0.1 0.2
Window [7.6] [5.2] [3.5] [2.6] [0.7] [-6.3] [-2.7] [-1.0] [0.9] [1.0]
10 Periods 5.6 5.5 7.4 6.4 1.9 -0.1 -0.1 -0.1 0.1 0.4

[9.3] [2.7] [3.5] [3.8] [0.1] [-3.8] [-1.7] [-1.0] [1.1] [2.1]
20 Years 7.9 8.3 7.8 6.7 5.2 -0.2 -0.3 -0.1 0.1 0.2

[31.1] [14.3] [5.1] [3.4] [0.7] [-5.1] [-5.1] [-1.9] [0.8] [1.0]
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Table A4: Robustness of Conditional High-Frequency Approach. Data from 1927-2015 used
to form non-overlapping monthly, quarterly, annual returns and annual-overlapping 3-year, 10-year returns.
The table shows different specifications for calculating the conditional high-frequency approach (see Section 2
for details). Base Case uses daily, daily, monthly, monthly, monthly high-frequency returns with conditional
means calculated using backward-looking rolling windows of 5, 10, 20, 30, 40 years for monthly, quarterly,
annual, 3-year, and 10-year horizons, respectively. No Overlap uses non-overlapping returns (affects only
3-year and 10-year horizons which use annual overlapping horizons under the base case). Wght: Triangular
uses as the weighting kernel for lead-lag terms a triangular (Bartlett) kernel instead of a Gaussian kernel
under the base case. Wght: Unit Closest Half uses uniform weighting that includes only the closest half of all
lead-lag terms while ignoring all others. Cond Mean: Look Ahead uses a forward-looking window for the
conditional mean (instead of the base case’s backward looking window). Cond Mean: Half Window uses half
the window length for the conditional mean (i.e. 2.5, 5, 10, 15, 20 years, respectively). Lower HF Frequency
uses a lower-frequency for the horizon’s high-frequency returns (NA, weekly, monthly, quarterly, annually,
respectively). Den Limit uses a different limit on the extent to which market autocorrelations can affect the
beta denominator (0.5 and 0.1 limits compared to the base case of 0.3). T-statistics are shown in brackets
using Newey-West ’94 standard errors. Boldfaced coefficients denote a significant difference from zero at a
two-sided 95% level.

(a) Size (SMB)

Alpha Beta

Mn Qt Yr 3Y 10Y Mn Qt Yr 3Y 10Y
Base Case 1.9 1.0 0.6 2.0 5.0 0.1 0.2 0.3 0.0 -0.3

[7.4] [1.5] [0.7] [2.2] [6.1] [4.6] [6.7] [4.5] [0.2] [-2.8]
No Overlap 1.8 4.7 0.0 -0.4

[2.5] [6.1] [0.4] [-2.5]
Wght: 1.8 1.1 0.8 2.0 4.9 0.1 0.2 0.2 0.0 -0.3
Triangular [7.7] [1.6] [1.0] [2.2] [6.3] [4.8] [6.1] [4.0] [0.2] [-3.1]
Wght: Unit 1.7 0.6 0.7 2.2 5.4 0.1 0.2 0.3 -0.0 -0.3
Closest Half [5.7] [0.8] [0.8] [2.3] [2.3] [5.5] [7.3] [4.4] [-0.3] [-1.2]
Cond Mean: 1.9 0.7 -0.2 0.7 2.6 0.1 0.2 0.3 0.1 -0.2
Look Ahead [5.7] [1.1] [-0.3] [0.8] [4.2] [5.8] [6.0] [4.2] [1.3] [-1.7]
Cond Mean: 2.0 1.2 0.5 1.8 4.9 0.1 0.2 0.3 0.1 -0.1
Half Wndw [7.0] [1.3] [0.5] [2.1] [4.5] [4.8] [6.6] [5.2] [1.5] [-0.5]
Lower HF 1.1 0.6 1.9 5.1 0.2 0.3 0.0 -0.3
Frequency [1.6] [0.7] [2.2] [5.3] [5.7] [4.5] [0.4] [-2.3]
Den Limit: 1.9 1.1 0.6 1.9 4.8 0.1 0.2 0.2 0.0 -0.3
0.5 [8.5] [1.7] [0.7] [2.1] [4.6] [4.9] [6.4] [4.7] [0.3] [-2.3]
Den Limit: 1.9 0.9 0.6 1.9 5.2 0.1 0.2 0.3 0.0 -0.4
0.1 [6.9] [1.3] [0.7] [2.3] [6.2] [4.5] [6.5] [4.4] [0.3] [-3.1]
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(b) Value (HML)

Alpha Beta

Mn Qt Yr 3Y 10Y Mn Qt Yr 3Y 10Y
Base Case 4.7 4.3 3.6 4.4 5.2 -0.0 0.0 0.1 -0.0 -0.1

[19.3] [10.0] [4.3] [7.9] [6.9] [-0.5] [0.2] [0.6] [-0.1] [-0.4]
No Overlap 3.4 4.6 0.1 -0.0

[3.0] [11.4] [0.7] [-0.0]
Wght: 4.7 4.3 3.7 4.4 5.3 -0.0 0.0 0.0 -0.0 -0.1
Triangular [18.4] [9.8] [4.8] [8.9] [7.1] [-0.4] [0.2] [0.5] [-0.2] [-0.6]
Wght: Unit 4.7 4.1 3.4 4.4 6.0 -0.0 0.0 0.1 -0.0 -0.1
Closest Half [17.6] [8.8] [3.5] [7.3] [2.3] [-0.6] [0.9] [0.7] [-0.1] [-0.4]
Cond Mean: 3.1 2.8 2.8 3.0 3.6 -0.0 0.0 0.0 -0.0 -0.0
Look Ahead [8.5] [4.3] [3.7] [1.9] [4.1] [-0.2] [0.3] [0.3] [-0.1] [-0.1]
Cond Mean: 4.6 4.4 3.8 3.9 5.1 -0.0 0.0 0.0 0.0 -0.1
Half Wndw [16.3] [6.3] [4.0] [6.6] [6.7] [-0.5] [0.2] [0.3] [0.1] [-0.8]
Lower HF 4.3 3.6 4.4 5.4 0.0 0.1 -0.0 -0.1
Frequency [10.4] [4.3] [7.7] [6.6] [0.1] [0.6] [-0.0] [-0.5]
Den Limit: 4.6 4.2 3.6 4.4 5.2 -0.0 0.0 0.0 0.0 -0.1
0.5 [19.8] [9.8] [5.0] [8.8] [6.7] [-0.5] [0.2] [0.5] [0.0] [-0.4]
Den Limit: 4.7 4.2 3.5 4.3 5.0 -0.0 0.0 0.1 -0.0 -0.0
0.1 [18.1] [10.2] [3.9] [7.0] [8.3] [-0.3] [0.5] [0.8] [-0.1] [-0.2]

(c) Momentum (UMD)

Alpha Beta

Mn Qt Yr 3Y 10Y Mn Qt Yr 3Y 10Y
Base Case 6.0 7.0 7.2 7.4 4.5 -0.0 -0.1 -0.1 -0.0 0.2

[12.1] [7.1] [6.3] [6.0] [1.3] [-2.1] [-1.0] [-0.7] [-0.6] [1.1]
No Overlap 6.7 6.2 0.0 0.1

[5.5] [3.3] [0.5] [0.7]
Wght: 5.9 6.8 7.3 7.3 4.5 -0.0 -0.0 -0.1 -0.0 0.2
Triangular [12.1] [6.9] [6.4] [5.9] [1.2] [-1.5] [-0.6] [-0.9] [-0.6] [1.1]
Wght: Unit 6.2 7.3 7.4 7.7 2.9 -0.1 -0.1 -0.1 -0.0 0.4
Closest Half [11.8] [7.4] [6.2] [6.4] [0.7] [-2.7] [-1.7] [-0.9] [-0.2] [1.3]
Cond Mean: 7.8 7.2 7.5 6.4 5.4 -0.0 -0.1 -0.1 0.0 0.2
Look Ahead [20.7] [10.0] [8.9] [8.3] [3.2] [-2.0] [-0.9] [-0.8] [0.1] [1.7]
Cond Mean: 4.6 6.1 6.7 7.5 5.3 -0.1 -0.1 -0.1 -0.0 0.2
Half Wndw [8.3] [5.1] [5.0] [4.5] [1.5] [-2.5] [-1.0] [-1.2] [-0.5] [1.9]
Lower HF 7.0 7.2 7.4 4.3 -0.1 -0.1 -0.1 0.2
Frequency [7.4] [6.3] [6.1] [1.2] [-1.3] [-0.7] [-0.8] [1.2]
Den Limit: 6.0 7.0 7.4 7.4 4.3 -0.0 -0.1 -0.1 -0.0 0.3
0.5 [13.0] [7.4] [6.5] [6.1] [1.0] [-1.9] [-1.1] [-0.8] [-0.7] [1.2]
Den Limit: 6.0 6.9 7.0 7.5 4.8 -0.0 -0.0 -0.0 -0.1 0.2
0.1 [11.8] [6.8] [5.8] [5.6] [1.4] [-2.1] [-0.7] [-0.4] [-0.7] [0.8]
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