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Abstract
This paper proposes a new orthogonalisation method that uses the cross-section

of returns to construct a macroeconomic shock. This λ-shock demands the high-
est possible risk price per unit of exposure, or equivalently, best approximates the
stochastic discount factor with VAR residuals. When applying the method to the
HML-SMB-industry portfolios, a robust feature of the λ-shock is the delayed ef-
fect on output and the sharp impact on the term spread and interest rates. The
estimated λ-shock closely resembles (>70% correlation) monetary policy and tech-
nology news shocks studied by macroeconomists. In contrast, the λ-shock implied
by momentum portfolios is markedly different.
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1 Introduction

“We would like to understand the real, macroeconomic, aggregate, nondiver-
sifiable risk that is proxied by the returns of the HML and SMB portfolios.”
(pp. 442 Cochrane (2005))

The literature is yet to find a compelling macroeconomic explanation behind the cross-
sectional variation of asset returns. Part of this challenge is caused by the fact that
innovations in macroeconomic variables are reduced-form objects: they are combinations
of orthogonal structural shocks that may offset each other over the business cycle and
demand possibly very different levels of risk premia. Using reduced-form variables such
as output growth or inflation, as often done in the empirical asset pricing literature, can
therefore pose an insurmountable challenge to estimate risk exposures and risk prices
associated with structural macroeconomic forces.

My paper aims to solve this problem by proposing the following econometric strategy
in a vector autoregression (VAR) model: instead of starting with economic assumptions
and testing their asset pricing implications, I start by using a given asset portfolio to
construct an orthogonal shock that has the highest risk premium in absolute value when
pricing the given portfolio. Equivalently, this shock is the best possible approximation of
the stochastic discount factor (SDF) that can be recovered from the space of residuals of a
given VAR model when pricing the given portfolio. Only then I check the macroeconomic
characteristics of the resulting shock by inspecting the associated impulse response func-
tions, forecast error variance decomposition and the estimated time-series of the shock.

The method is general and could be applied to any VAR and any test assets. When
applying it to a simple five-variable macroeconomic VAR and to the 25 portfolios of
Fama and French (1993) augmented with the 30 industry portfolios as prescribed by
Lewellen, Nagel, and Shanken (2010) (FF55 henceforth), I find that the obtained shock,
which I refer to as a λ-shock, closely resembles well-known structural shocks, studied
by the macroeconomic literature. The shock triggers a delayed reaction in aggregate
quantities such as GDP and consumption, and has a sharp impact on the short-term
interest rate and the term spread. These features make the λ-shock similar to monetary
policy shocks and also to what macroeconomists refer to as news shocks about future
total factor productivity (TFP). In fact, the correlation between the λ-shock series and
the TFP news shock series, estimated by Kurmann and Otrok (2013), and the monetary
policy shock series, proposed by Romer and Romer (2004), are more than 70%. This is
striking given that my orthogonalisation strategy, as explained further below, has nothing
to do with the strategies used to identify monetary policy or TFP news shocks, as my
VAR model does not even contain a measure of TFP as an observable. When applying
the method to other test portfolios such as size-operating profitability or size-investment,
I find that the economic properties of the λ-shock are largely unchanged.
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In contrast, the obtained macroeconomic shock is markedly different when using the
same VAR model but applying the orthogonalisation method to momentum portfolios. In
this case, a positive λ-shock induces an immediate positive jump in output, which coin-
cides with a sharp increase in the short-term interest rate. The shock can be interpreted
as a strong, aggregate demand-type shock that is strongly counteracted by endogenous
monetary policy reactions. Overall, these applications of my method suggest that a risk-
based explanation of momentum could be based on structural macroeconomic forces that
are very different from the structural shocks that are related to the “macroeconomic,
aggregate, nondiversifiable risk proxied by the returns of the HML and SMB portfolios”.

The Orthogonalisation Strategy The starting point of my analysis is a standard
VAR including a small set of macroeconomic variables. The finance literature often
used Cholesky decomposition to obtain triangularised innovations in the spirit of the
Intertemporal CAPM (Merton, 1973)1. Triangularisation is merely one of the infinite
number of identification strategies to transform the reduced-form variance-covariance
matrix to a structural form. I build on this point by exploring the entire space of possible
orthogonalisations, given the estimated time-series of reduced-form residuals, with the
aim to find the best approximation of the SDF from linear combinations of these residuals.
Mechanically, the λ-shock is constructed as the one that, if used as a factor in the two-
pass procedure of Fama and MacBeth (1973) applied to the given test portfolios, would
generate the highest estimated factor risk premium in absolute value.

My approach does not make any of the assumptions that macroeconometricians tend
to make when identifying structural shocks, e.g. restrictions regarding the short/long-run
effects of the shock, or regarding the shock’s contribution to the forecast error variance
(FEV) of a target variable in the VAR over a pre-specified horizon. Compared to these
approaches, my method can be thought of as much more agnostic. Hence, there is no
direct reason to believe that the obtained structural λ-shock should capture any of the
economic forces studied by the structural VAR literature. The fact that it does, by
closely resembling the statistical features of well-known macroeconomic shocks, could
provide strong evidence on the relevance of those shocks in not only driving business
cycles but also in explaining the cross-section of stock returns.

In addition, approximating the SDF with VAR residuals may have a possible advan-
tage over standard no-arbitrage methods of estimating the SDF. The VAR framework and
its rich machinery allows one to explore the link between the SDF and macroeconomic
dynamics in more detail, making full use of the traditional macroeconometric toolkit.
Impulse response function (IRF) analysis can be used to estimate how the λ-shock prop-
agates through the economy in comparison with structural shocks traditionally identified
in the macroeconomic literature. FEV decomposition can be used to estimate the con-

1See Campbell (1996), Petkova (2006) and Boons (2016) amongst others.
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tribution to business cycle dynamics of shocks that do not demand risk compensation,
according to the given test portfolios, compared to shocks that do (λ-shock). These are
just two of the examples of how the proposed framework can potentially provide a better
understanding of the links between asset prices and business cycles.

Related Literature My paper is related to the finance literature on finding macroeco-
nomic factors that drive the cross-sectional variation of risk premia. A partial list includes
Chen, Roll, and Ross (1986), Ferson and Harvey (1991), Campbell (1996), Cochrane
(1996), Vassalou (2003), Brennan, Wang, and Xia (2004), Petkova (2006), Liu and Zhang
(2008), Maio and Santa-Clara (2012), Koijen, Lustig, and van Nieuwerburgh (2012),
Boons and Tamoni (2015), He, Kelly, and Manela (2016). In addition, consumption
based asset pricing (CCAPM) models also had success in explaining the cross-section
of returns by introducing conditioning variables ((Jagannathan and Wang, 1996; Lettau
and Ludvigson, 2001; Lustig and Nieuwerburgh, 2005; Santos and Veronesi, 2006; Yogo,
2006)) or focusing on the long-run component of consumption risk (Bansal and Yaron
2004; Parker and Julliard 2005; Hansen, Heaton, and Li 2008; Constantinides and Ghosh
2011; Bryzgalova and Julliard 2015).

A number of recent papers explored factors that are less reduced-form and are more
tied to macroeconomic primitives. Modern macroeconomic models interpret business cy-
cles as the outcome of simultaneous realisations of various structural disturbances with
potentially very different quantities and prices of risk (Smets and Wouters (2007); Justini-
ano, Primiceri, and Tambalotti (2010); Rudebusch and Swanson (2012); Borovicka and
Hansen (2014); Campbell, Pflueger, and Viceira (2015); Greenwald, Lettau, and Ludvig-
son (2015); Ludvigson, Ma, and Ng (2015); Kliem and Uhlig (2016)). In this spirit, more
recent explanations of the cross-sectional variation of returns involve macroeconomic sur-
prises related to monetary policy (Weber 2015; Ozdagli and Velikov 2016) and production
technology (Papanikolaou 2011; Kogan and Papanikolaou 2014; Garlappi and Song 2016)
among others. My paper builds on these developments, and the results from applying
my orthogonalisation strategy to the FF55 portfolios are consistent with the empirical
findings of these two literatures.

Further, the method I propose builds heavily on the structural VAR literature (Sims
1980; Stock and Watson 2001). More specifically, the implementation of my orthogonali-
sation theme draws on the more recent identification themes that use sign restrictions to
identify structural shocks (Uhlig 2005; Rubio-Ramirez, Waggoner, and Zha 2010; Fry and
Pagan 2011). As mentioned, finance papers using VARs (Campbell, 1996; Petkova, 2006;
Boons, 2016) typically applied Cholesky decomposition to the estimated reduced-form
variance covariance matrix. While the obtained innovations had success in explaining
the cross-section of returns, it has been difficult to assign macroeconomic interpretations
to these innovations. Moreover, the idea of using observed asset prices to select a struc-
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tural shock draws on the long-standing literature of no-arbitrage estimation of the SDF
(Hansen and Singleton 1982; Ait-Sahalia and Lo 2000; Rosenberg and Engle 2002; Cher-
nov 2003; Ross 2015; Ghosh, Julliard, and Taylor 2016). Building on these papers, my
method to explore the entire space of possible orthogonalisations in a VAR and to find
the structural shock based on approximating the SDF given a set of portfolios is, to the
best of my knowledge, novel in the literature.

Structure of the Paper The remainder of the paper is as follows: Section 2 explains
my empirical approach, Section 3 presents the empirical results and Section 4 concludes.

2 The Econometric Framework

2.1 The Geometry of the λ-shock

Before presenting the VAR model, it is instructive to first summarise the intuition behind
finding the λ-shock. To do so and to highlight the geometrical nature of the ideas, I try
to map some of the relevant mathematical background into a simplified 3-dimensional
graph shown in Figure 1. There is an underlying probability space, and L2 denotes the
collection of all random variables with finite variances defined on that space. L2 is a
Hilbert-space with the associated norm ‖p‖ = (E (p2))1/2 for p ∈ L2. Let P denote the
space of portfolio excess returns (zero-price payoffs) that is assumed to be a closed linear
subspace of L2.2 P is represented by the red plane in Figure 1. An admissible stochastic
discount factor is a random variable m in L2 such that the inner product of the excess
return and m satisfies 0 = E (pm) for all p ∈ P . The set of all admissible SDFs denoted
by M is represented by the black line which goes through the origin and perpendicular
to the red plane in Figure 1.3

Let S denote the set of reduced-form innovations from a VAR (the blue solid arrows
in the Figure) and denote D the space spanned by these innovations. D is assumed
to be a closed subspace of L2, and it is represented by the blue plane in the Figure.
The Gram-Schmidt orthogonalisation procedure allows the reduced-form innovations that
span D to be transformed into a set of orthonormal vectors that also span D. The blue
dashed arrows in Figure 1 represent two possible elements of the infinite sequence of
orthogonalisations. The set of the all admissible orthogonalisations is denoted by O and
is represented by the blue circle with unit radius in the Figure.

The space of VAR innovations is unlikely to contain an SDF because of model mis-
specification or measurement error associated with observing SDFs (Roll (1977)). Loosely

2See Hansen and Jagannathan (1991, 1997) for a detailed discussion.
3As is well known, all SDFs can be represented as the sum of the minimum norm SDFs (the intersection

of the black line and the red plane in Figure 1) and of a random variable that is orthogonal to the space
P of excess returns (Hansen and Richard (1987); Cochrane (2005)).
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Figure 1: A Simplified Geometry of Finding the λ-shock

speaking, the tilted nature of the blue plane prevents all elements of O to be orthogonal
to the space of excess returns, i.e. M ∩ O = ∅. Nevertheless, one can find an element in
O that is closest to M in the spirit of Hansen and Jagannathan (1997) by applying the
classical Projection Theorem.4 This has important implications for linear models of the
SDF that use structural innovations from VAR models as pricing factors: there is one
particular orthogonalisation of the reduced-form VAR residuals that delivers a structural
shock, which is closer to the SDF than all the other structural shocks in the VAR. This
is the blue arrow labelled as the λ-shock in Figure 1, whose projection onto the space
of SDFs is the magenta line. Given that this shock is the best possible approximation
of the SDF, it summarises all the relevant information contained in all the reduced-form
residuals of the VAR model. The next proposition for the two-dimensional case highlights
that it is in fact easy to find the rotation which generates the λ-shock.

Proposition 1 Given the linear combination: m = af1 + bf2, where a, b ∈ R, m, f1, f2 ∈

R2, ‖f1‖ = ‖f2‖ = 1 and 〈f1, f2〉 = 0, there exists a rotation rθ =
 cos θ − sin θ

sin θ cos θ

 with

0 < θ < 2π such that m = a?f ?1 + b?f ?2 , where a? 6= 0, b? = 0 and f ?i = rθfi for i = 1, 2.

Proof. It suffices to find an angle θ? and associated rotation rθ? such that m will be a
scaled multiple of any one of the rotated vectors denoted by f ?1 . If θ? exists then b? = 0
because f1⊥f2 and rθ? is an orthonormal transformation. The angle θ? = arctan

(
b
a

)
4That is, assuming that O is a complete linear subspace of H, there exists a unique vector m0 ∈ O,

corresponding to any vector x ∈ M , such that ‖x −m0‖ ≤ ‖x −m‖ for all m ∈ O. See pp. 50-51 of
Luenberger (1969) for a classic treatment and pp. 608-609 of Hansen and Richard (1987) for a conditional
version of the theorem.
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satisfies f ?1 = rθ?f1 so that m = a?f ?1 + b?f ?2 with the associated scalars a? = ‖m‖
‖f?

1 ‖
and

b? = 0.
Extending proposition 1 to higher dimensions is straightforward. While the proposi-

tion may seem a trivial piece of linear algebra, it has important implications for using
orthonormalised shocks from VAR models as pricing factors in linear pricing models. It
is a well known theorem that beta pricing models are equivalent to linear models for the
SDF (pp. 106-107 Cochrane (2005)). Denoting the SDF, the pricing factor, the excess
returns and the first- and second-stage regression coefficients from a linear pricing model
by m, f , Re, β and λ, respectively, I re-state the version of the theorem when the test
assets are all excess returns:

Theorem 2 (Cochrane 2005) Given the model

m = 1 + [f − E (f)]′ b

0 = E (mRe) ,
(2.1)

one can find λ such that
E (Re) = β′λ, (2.2)

where β are the multiple regression coefficients of excess returns Re on the factors. Con-
versely, given λ in 2.2, we can find b such that 2.1 holds.

It is shown by Cochrane (2005) that λ and b are related λ = −var (f) b. This result
simplifies greatly when working with pricing factors (such as orthonormalised VAR resid-
uals) that have zero mean and unit variance. In this case, λ = −b and E (f) = 0. The
following example highlights that finding the orthonormalised shock in a VAR model that
demands the highest price of risk when pricing a given portfolio of assets is equivalent to
finding the shock that summarises all the information (contained in the residuals of the
given VAR model) relevant to pricing the given portfolio.5

Example 3 (A Two-variable VAR Model) Suppose the pricing factors are arbitrar-
ily rotated orthonormalised residuals from a two-variable VAR model. Given a linear
pricing model 2.2, the model for the SDF (m) is written as a linear combination of the
two innovation series:

m = a+ λ1f1 + λ2f2, (2.3)

where a is a constant and λ1 and λ2 are the estimated prices of risk associated with f1

and f2. Because f1 ⊥ f2 and var(f1) = var (f2) = 1, the variance of the SDF is simply
5Another way of saying this is that the cross-sectional R2-measure associated with a pricing model

that includes all the reduced-form residuals from the VAR is the same as the R2-measure associated
with the one-factor model which uses the appropriately orthonormalised shock. This will be confirmed
during the empirical application of the method (Panel A and B of Tables 3–8.)
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the sum of the squared values of the estimates of prices of risk associated with each one
of the two VAR shock series:

var (m) = λ2
1 + λ2

2. (2.4)

Rotation does not affect the overall information content in the VAR, that is, the volatility
of the implied SDF is determined by the specification of the VAR and not by rotating
the variance-covariance matrix of the residuals. The main implication of proposition 1 is
that the information contained in the VAR residuals can be summarised by merely one
structural shock after applying an appropriate rotation to the variance-covariance matrix.

To put it simply, there exists a rotation rθ =
 cos θ − sin θ

sin θ cos θ

 such that using f ?i = rθfi

for i = 1, 2 as pricing factors, one of the estimated prices of risk would be non-zero
λ?1 6= 0 and in fact it would be λ?1 =

√
var (m), as the other one corresponding to the

rotated factor f ?2 would be zero λ?2 = 0. This implies that the best approximation of the
SDF is found, f ?1 = m, and rθ can be used to perform structural analysis in the VAR.

The next subsection will show how to implement the method in practice.

2.2 The VAR Model

To implement the ideas above, I follow the macro-finance literature (Campbell and Shiller
(1988); Campbell, Giglio, and Polk (2013)) by using a linear reduced-form VAR model
to describe the evolution of the macroeconomic state:

yt = c+
p∑
j=1

Bjyt−j + ut, (2.5)

where yt is an n × 1 vector of observed endogenous variables, c is an n × 1 vector of
constants, p denotes the number of lags, Bj is an n× n matrix of coefficients and ut is a
T × n matrix of reduced-form residuals with a variance-covariance matrix Σ. Given that
the estimated Σ̂ is positive definite, there exists a non-unique decomposition A0A

′
0 = Σ̂

such that the relationship between the reduced-form and structural errors can be written
as ut = A0εt, where εt is a T ×n matrix of structural errors and A0 is an n×n structural
impact matrix to be determined. To find A0, I first apply Cholesky decomposition to the
estimated reduced-form variance-covariance matrix Σ̂ = Ã′0Ã0. It is known that one can
take any orthonormal matrix Q to obtain a new structural impact matrix A0 = QÃ0,
thereby obtaining a new set of structural shocks, which is still consistent with the reduced-
form variance covariance matrix, i.e. Σ̂ =

(
QÃ0

)′
QÃ0.6

6This is also the starting point for a range of identification strategies in the macroeconometric litera-
ture, e.g. sign restrictions (Uhlig (2005); Rubio-Ramirez, Waggoner, and Zha (2010), see Fry and Pagan
(2011) for a survey), identification of news shocks (Barsky and Sims (2011); Pinter, Theodoridis, and
Yates (2013); Kurmann and Otrok (2013)) etc.
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The key step in finding the λ-shock is the following: I select the matrix Q? from the
space of all Q matrices such that the implied εt matrix of structural shocks contains one
T × 1 vector of shocks ε?t with the following property: if it were to be used as a factor
to price the given test portfolios, it would command the largest possible risk premium
from the set of all possible structural shocks, consistent with Σ̂, i.e. A0 = Q?Ã0. To put
it formally, denote the T × k matrix of portfolio excess returns, Re

t and write the beta
representation as (Chapter 9 of Cochrane (2005)):

E (Re
t ) = β (ε?t )× λ (ε?t ) , (2.6)

where β (ε?t ) is a k × 1 vector of factor betas, and λ (ε?t ) is the associated factor risk pre-
mium. The notation aims to emphasise that both the factor betas and the risk premium
are naturally functions of the underlying structural λ-shock, ε?t , that I aim to find. I pro-
ceed by searching through the entire space of n × n orthonormal matrices and estimate
the associated candidate λs using the two-stage procedure of Fama and MacBeth (1973).
Given a candidate Q̃, the first stage is an OLS estimation of the time-series regression of
each of the k portfolios’ excess returns on the implied candidate structural shock ε̃t:

Re
it = ai + ε̃tβi + εit, (2.7)

where βi represents the ith element in β. Given 2.7, the second stage is a cross-section re-
gression of average portfolio returns on the estimated betas associated with the candidate
matrix Q̃:

R̄e
i = β̃i × λ+ αi, (2.8)

where R̄e
i = 1

T

∑T
t=1 R

e
it, and β̃i is the OLS estimate obtained in the first stage and αi

is a pricing error. To sum up, I will select matrix Q? from all Q̃ candidate matrices
to generate the time-series ε?t which will generate the highest estimated λ in absolute
value in 2.8. Finding ε?t is done via the following optimisation routine: I span the space
of n-dimensional orthonormal matrices that are rotations with an n-dimensional Givens
rotation. I then choose the Euler-angles of the Givens rotation appropriately such that
the corresponding second-pass λ is maximised.7

It is worth reiterating that while assumptions about identification determines risk
exposures and prices of risk, it does not at all affect the overall cross-sectional (R2-
type) fit of the transformed residuals, if all the structural shocks were to be used for
pricing the cross-section of returns. After all, the structural shocks are merely different
linear combinations of the reduced-form residuals, thereby containing exactly the same
information set. As the previous subsection showed, it is straightforward to find a single
shock that is the best candidate for the SDF. And it will summarise all the relevant

7See Fry and Pagan (2011) for further details on Givens rotations in the context of sign restrictions.
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information, contained in the reduced-form VAR innovations, that is relevant to pricing
the given cross-section of portfolios.

3 The Empirical Results

3.1 Data

To operationalise the VAR model described in Section 2, one needs to specify the variables
to be included in the state vector. I opt for a parsimonious model with the following five,
completely standard state variables: output, aggregate price level, the policy interest
rate, the default spread and the term spread. Data on the following four series are
from the Federal Reserve Bank of St. Louis (FRED): output is measured as quarterly
seasonally adjusted real GDP (FRED code: GDPC1), price level is measured as the
personal consumption expenditures (chain-type) price index (FRED code: PCEPI), the
policy interest rate is the Federal Funds Rate (code: FEDFUNDS) and the default spread
is the difference between the AAA (FRED code: AAA) and BAA (FRED code: BAA)
corporate bond yields. The term spread is defined as the difference between the long term
yield on government bonds and the T-bill as used in Goyal and Welch (2008). These
five variables have long been recognised as good candidates for state variables within
the ICAPM framework (Petkova, 2006), and they frequently appear as key variables
in macroeconomic forecasting models as well. When estimating the VAR, I deliberately
avoid using financial variables such as aggregate excess returns or various valuation ratios,
that are known to increase the overall fit of cross-sectional asset pricing models. The
specification of the state vector is motivated by the desire to stay as close as possible to
macroeconomic explanations of the cross-section of stock returns, in the spirit of Chen,
Roll, and Ross (1986) and subsequent papers. The baseline VAR model includes two lags
as suggested by the Schwarz Information criterion.

The sample period for the estimation is 1963Q3-2008Q3 and the data are at quarterly
frequency. The start of the estimation period is chosen by the majority of empirical asset
pricing studies of the cross-section. The end of the estimation period is chosen to exclude
the Great Recession period when the Federal Funds Rate hit the zero-lower bound. As
for the FF55 portfolios, 25 of them (FF25 henceforth) are formed from independent sorts
of stocks into five size groups and five B/M groups as described in Fama and French
(1993). The other 30 portfolios are four-digit SIC code level industry portfolios. The
returns are the accumulated monthly returns in excess of the one-month U.S. Treasury
bill rate. As studied extensively by the empirical asset pricing literature, average returns
typically fall from small stocks to big stocks (size effect), and they rise from portfolios
with low to large book-to-market ratios (value effect). Augmenting the FF25 with the
30 industry portfolios follows prescription 1 (pp. 182) of Lewellen, Nagel, and Shanken
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(2010), thereby relaxing the tight factor structure of Size- B/M. Moreover, I apply the
orthogonalisation method to additional test portfolios such as the 25 portfolios sorted
on size and operating profitability, the 25 portfolios sorted on size and investment, and
the 10 momentum portfolios sorted on the cumulative returns of stocks from 12 months
before to one month before the formation date using a one-month gap before the holding
period. All the portfolios are value-weighted and are taken from Ken French’s data library.
As an alternative, I also use the 10 momentum portfolios as constructed in Daniel and
Moskowitz (2016).8

3.2 The Economic Characteristics of the λ-shock

Using the OLS estimates of the VAR, I compute impulse response functions (IRF) after
performing the orthogonalisation strategy described in Section 2. This is to understand
the macroeconomic impact of the λ-shock which is by construction the structural shock
that best approximates the SDF given the 5-variable VAR(2) model and the FF55 port-
folios. Section B of the Appendix describes a Bayesian treatment of the computation of
the IRFs in order to explore the role of parameter uncertainty in the VAR model.

Figure 2: Impulse Responses to a λ-shock
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Figure 2 displays the IRFs of the five variables to a one standard deviation structural
innovation. The term spread jumps by about 70 basis points on impact and there is a

8As explained in Daniel and Moskowitz (2016) the biggest difference is that the portfolio breakpoints
for the portfolios constructed by Ken French are set so that each of the portfolios has an equal number of
NYSE firms. In contrast, Daniel and Moskowitz (2016) set their breakpoints so that there are an equal
number of firms in each portfolio. This mainly affects the low-momentum returns.
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very sharp and persistent drop in the Federal Funds Rate. The initial drop in the price
level is lower than the drop in the Federal Funds Rate, suggesting a sharp drop in the
real interest rate. Interestingly, the λ-shock has virtually no effect on GDP on impact,
but the effect increases substantially with the horizon from the third quarter onwards
and reaching a peak impact of about 0.8% approximately 12-15 quarters after the shock
hits. As shown by Figure 7 in the Appendix, the shape of these IRFs is similar when
the lag length is changed or when output is replaced by consumption in the VAR. In
addition, Section D of the Appendix illustrates the equivalence between two algorithms
to construct the λ-shock: maximising the price of risk and maximising the cross-sectional
R2.

To assess the contribution of the λ-shock to business cycles, in comparison with other
structural shocks that have zero covariance with the implied SDF, I compute FEV de-
composition over different horizons and for different lag structures of the VAR. Table 1
presents the results for VAR(2), VAR(3) and VAR(4) models using the FF55 portfolios
as test assets. The results suggest that the λ-shock explains less than 10% of output
fluctuations over the one-year horizon, but the shock explain around 40-75% of fluctua-
tions over longer (4-9 years) horizon. While these number are substantial, there is some
unexplained fraction of output fluctuations that is driven by structural shocks exposures
to which do not demand risk compensation according to the given test assets. Moreover,

Table 1: The Contribution of the λ-shock to Business Cycles:
Results from Forecast Error Variance Decomposition

Output CPI FFR Def. Spread Term Spread
VAR(2)

4Q 8.5 18.3 72.8 5.0 61.2
8Q 40.5 24.7 70.5 20.0 59.2
16Q 57.9 28.6 69.8 27.6 58.6
24Q 72.3 33.3 69.2 31.9 58.3
36Q 75.3 34.1 69.2 31.8 58.3

VAR(3)
4Q 5.0 15.9 65.5 5.0 57.4
8Q 25.1 16.5 55.9 19.2 50.2
16Q 40.5 16.3 51.9 25.7 49.1
24Q 51.2 15.6 48.5 26.3 48.8
36Q 54.3 14.9 48.0 26.1 48.2

VAR(4)
4Q 3.8 16.6 71.2 5.5 67.8
8Q 26.4 16.3 63.6 24.1 62.9
16Q 43.8 14.4 58.6 33.4 62.3
24Q 51.6 10.3 52.6 31.5 61.4
36Q 53.4 8.5 51.5 31.4 60.4

Notes: The table shows the % fraction of the total forecast error variance that is explained by the λ-shock over different
forecast horizons. The FF55 portfolios are used as test portfolios for each VAR model.
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Table 1 also shows that the λ-shock drives around 50-70% of interest rate and term
spread fluctuations and around 10-30% of fluctuations in the aggregate price level and
the default spread. The explained variation in the FEV in the interest rate and the term
spread seems to decrease over the forecast horizon, whereas it increases for output and
the default spread.

To place these results in the literature, the delayed response of aggregate quantities
in response to innovations that are relevant to asset pricing is a phenomenon that has
been documented by the consumption based macro-finance (Parker and Julliard, 2005)
and long run risk literatures (Bansal and Yaron, 2004). More recently, Bryzgalova and
Julliard (2015) have shown that “slow consumption adjustment shocks” account for about
a quarter of the time series variation of aggregate consumption growth, and its innovations
explain most of the time series variation of stock returns. My results are consistent with
their findings. In addition, my multivariate time-series framework is somewhat richer
than their reduced-form consumption growth model, so it can possibly shed further light
on the macroeconomic drivers of the slow consumption adjustment shocks that are the
main source of aggregate risk.

One possible interpretation of Figure 2 is that the λ-shock behaves like a supply-type
shock with aggregate production moving in the opposite direction compared to the price
level and the short-term interest rate. However, the delayed expansion of output would
make the λ-shock clearly distinct from a positive unanticipated technology shock which
would have an immediate positive impact on output and consumption, as traditionally
studied by the Real Business Cycle (RBC) and the subsequent New Keynesian litera-
ture.9 However, a news-type technology shock that typically triggers a delayed reaction
in aggregate quantities may be perfectly consistent with Figure 2.10 Indeed, Figure 4 of
Kurmann and Otrok (2013) shows results for an identified TFP news shock with very
similar IRFs to mine. The striking similarity between my Figure 2 and their findings
occurs in spite of the fact that they identify a TFP news shock, following Barsky and
Sims (2011), by searching for a shock that accounts for most of the forecast error vari-
ance of TFP over a given forecast horizon, and they force this shock to be orthogonal to
contemporaneous movements in TFP.

9Though technology shocks had some theoretical success in explaining aggregate excess returns in an
RBC framework (Jermann, 1998), the most recent empirical evidence by Greenwald, Lettau, and Lud-
vigson (2015) finds that the contribution of unanticipated TFP shocks to the variance of aggregate stock
market wealth is close to zero. These authors identify three mutually orthogonal observable economic
disturbances that are associated with over 85% of fluctuations in real quarterly stock market wealth.
They find that the third triangularised shock from a cointegrated three-variable VAR (including con-
sumption, labor income, and asset wealth) is the main driver of the variance of aggregate stock market
wealth. Their identifying assumption implies zero contemporaneous impact on consumption – an as-
sumption that is consistent with the IRF results implied by the more agnostic orthogonalisation theme
adopted in this paper.

10A partial list of the rapidly increasing macroeconomic literature on news shocks includes Beaudry
and Portier (2006, 2014), Jaimovich and Rebelo (2009), Barsky and Sims (2011), Schmitt-Grohe and
Uribe (2012), Kurmann and Otrok (2013), Malkhozov and Tamoni (2015).
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Figure 3: Comparing the λ-shock to the TFP News Shock Series of Kurmann and Otrok
(2013) (Correlation: 78%) and to the Monetary Policy Shock Series of Romer and Romer
(2004) (Correlation: 73%).

1965 1970 1975 1980 1985 1990 1995 2000 2005
−6

−4

−2

0

2

4

P
er

ce
nt

 

 

TFP News Shock
λ−shock

1970 1975 1980 1985 1990 1995 2000 2005
−6

−4

−2

0

2

4

P
er

ce
nt

 

 

Monetary Policy Shock
λ−shock

Notes: The TFP news shock series are the ones plotted in Figure 5 on pp. 2625 of Kurmann and Otrok (2013) who apply
the method of Uhlig (2004) to identify a TFP news shock over the period 1959Q2-2005Q2. The monetary policy shock
series are originally developed by Romer and Romer (2004) and updated by Tenreyro and Thwaites (2016) to the period
1969Q1-2007Q4.

An alternative interpretation of Figure 2 is that a positive λ-shock behaves like an
expansionary monetary policy shock to the extent that it generates an immediate jump
in the short-term interest rate and the term spread and a delayed but persistently ex-
pansionary reaction in output. Though CPI goes the ’wrong’ way, but it is somewhat
consistent with the ’price puzzle’ (Sims, 1992) associated with early methods of Cholesky
orthogonalisation to identify monetary policy shocks as in Christiano, Eichenbaum, and
Evans (1999) and others.

To formally show the similarity between the λ-shock and some well-known structural
shocks studied by macroeconomists, Figure 3 plots the time-series of the λ-shock against
the TFP news shocks identified by Kurmann and Otrok (2013) (upper panel) and against
the monetary policy shocks identified by Romer and Romer (2004) (lower panel). Based
on the overlapping estimation period 1963Q4–2005Q2, the correlation coefficient between
the TFP news shock series (red dashed line) as identified in Kurmann and Otrok (2013)
and the λ-shock series (blue solid line) is 0.78. Based on the overlapping estimation
period 1969Q1–2007Q4, the correlation coefficient between the monetary policy shock
series (black dashed line) as identified in Romer and Romer (2004) (and updated by
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Tenreyro and Thwaites (2016)) and the λ-shock series is 0.73.

Table 2: Robustness of the λ-shock to Changing the VAR Model

Correlation Coefficients
λ-shock λ-shock λ-shock λ-shock λ-shock λ-shock External Shocks
Baseline VAR(3) VAR – C VAR – IP VAR – CPI VAR – Spr
1.00
0.93 1.00
0.95 0.91 1.00
0.91 0.84 0.91 1.00
0.98 0.92 0.95 0.90 1.00
0.92 0.79 0.81 0.84 0.88 1.00
0.78 0.69 0.80 0.77 0.78 0.67 TFP News
0.73 0.76 0.79 0.74 0.74 0.64 Monetary Policy

Notes: The table reports the correlation coefficients among λ-shocks from the baseline (Column 1), the baseline VAR
with 3 lags (Column 2), the VAR using the consumption measure from Greenwald, Lettau, and Ludvigson (2015) instead
of GDP (Column 3), the VAR after replacing GDP with the real monthly Industrial Production Index (FRED code:
INDPRO) lead by a month and averaged over each quarter (Column 4), the VAR using CPI (FRED code: CPIAUCSL)
as an alternative measure of the aggregate price index (Column 5), the VAR using the difference between the 10-year
Treasury constant maturity rate (FRED code: GS10) and the Federal Funds rate as an alternative measure of the term
spread (Column 6), and the external shocks (Column 7). The values are computed based on the overlapping period
1963Q4–2005Q2 with Kurmann and Otrok (2013), except the last row which is using data for 1969Q1–2008Q3, dictated
by the availability of the monetary policy shock series of Romer and Romer (2004). In all cases, the FF55 portfolios were
used as test assets.

To check whether these results are robust to changing the specification of the VAR
model, Table 2 shows the cross-correlations among the various λ-shock series the TFP
news and monetary policy shock series. I explore increasing the lag length of the VAR
and experiment with alternative measures of GDP, the aggregate price level and the
term spread. Overall, I find that changing the specification of the VAR does not have
a material impact on the results. Though it may be worth noting that replacing GDP
with aggregate consumption increases the correlation of the λ-shock with TFP news and
monetary policy shocks up to around 0.80.

To reiterate, my orthogonalisation strategy is unrelated to those frequently used in the
macroeconomic literature as it (i) makes no assumption about the λ-shock’s contribution
to the forecast error variance of any of the variables11, (ii) does not rely on any narrative
measures such as FOMC records, (iii) does not impose any zero-type or sign restrictions
and (iv) does not even include TFP as an observable in the VAR. Not to mention the
additional differences of my empirical model in terms of lag structure, sample period
and variables used in the VAR. The fact that I come close to reconstructing the object
the TFP news literature and the monetary policy literature have studied (by applying
a completely different and relatively more agnostic methodology) could provide strong
empirical support for the relevance of these shocks in driving business cycles as well as
asset price dynamics.

11The latter type of restriction has been increasingly popular (since its development by Uhlig (2004)),
particularly in the context of the identification of news shocks.
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3.3 The λ-shock Implied by Other Test Portfolios

To check the robustness of the findings above, I explore how the behaviour of the λ-shock
changes when the same VAR model and the orthogonalisation method are applied to
other test assets. A natural choice is the 25 portfolios double sorted on size-profitability
and size-investment. These portfolios feature prominently in the most recent empirical
asset pricing studies (Fama and French, 2015, 2016), because the standard 3-factor model
of Fama and French (1993) turned out to miss much of the variation in average returns
related to profitability and investment. In addition, I also compute the IRFs for the
λ-shock implied by the benchmark FF25 portfolios, sorted on size-B/M, that have been
the most studied test assets to date.

Figure 4: Impulse Responses to a λ-shock, Implied by FF25, 25 Profitability-Size and 25
Investment-Size Portfolios
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Notes: The vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters.

Figure 4 shows the IRFs for all three sets of test portfolios. The results suggest
that the economic behaviour of the λ-shock implied by these portfolios is very similar to
the λ-shock implied by the baseline FF55 as shown in Figure 2. The only quantitative
difference is that the baseline results imply a larger peak effect on output and a more
delayed effect on the default spread compared to Figure 4. Overall, these results suggest
that the average returns of the equity portfolios studied so far capture approximately
the same source of macroeconomic risk. As shown in the next subsection, these results
change markedly when using momentum portfolios to construct the λ-shock.
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3.4 Momentum

Since it was first documented (Asness, 1994; Jegadeesh and Titman, 1993), momentum
returns have been challenging to explain with pricing factors that worked well in pricing
the traditional Fama-French portfolios. As a result, many linear factors models since
Carhart (1997) included a momentum factor explicitly in their pricing models in order to
explain momentum. Even the most recent generation of pricing models such as the five-
factor model of Fama and French (2015, 2016) fail badly as descriptions of average returns
on momentum portfolios without including a momentum factor in their model. This is
particularly puzzling given that momentum is a pervasive phenomenon that appears in
many diverse markets and asset classes (Asness, Moskowitz, and Pedersen, 2013).

To explore the potentially different structural macroeconomic risks underlying mo-
mentum portfolios, I apply the same VAR and orthogonalisation technique to the 10
momentum (Prior 2-12) portfolios constructed by Ken French and to the 10 momentum
portfolios used in Daniel and Moskowitz (2016). Figure 5 shows the impact of a one stan-
dard deviation λ-shock implied by the momentum portfolios compared with the λ-shock
implied by the FF55 portfolios. The results suggest that the λ-shock implied by momen-
tum has a markedly different dynamic effect on the economy. Output jumps on impact
by about 0.4% which is strongly counteracted by endogenous monetary policy raising
the short-term interest rate by 80-90 basis points on impact thereby putting downward
pressure on the term-spread. The sudden economic expansion and the strongly coun-
tercyclical monetary policy response result in a small net effect on CPI and the default
spread.

Figure 5: Impulse Responses to a λ-shock, Implied by Momentum Portfolios
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Overall, these results suggest that the λ-shock implied by momentum resembles an
aggregate demand-type shock that induces a much more rapid but more transient re-
action in economic activity. This is in sharp contrast with the λ-shock implied by the
traditional FF55 portfolios. These findings are consistent with the rational explanation
of momentum suggesting that winners are more exposed to economic growth risks than
the losers (Johnson, 2002). For example, Liu and Zhang (2008) shows that winners
have temporarily higher loadings than losers on the growth rate of industrial production.
While the growth rate of industrial production is a reduced-form object and can be driven
by various structural shocks, Figure 5 confirms that the λ-shock implied by momentum
indeed induces a large contemporaneous impact on the growth rate of output.

Moreover, it is well known that momentum strategies and more traditional trading
strategies such as value are negatively correlated.12 In the present framework this would
suggest that the time-series of the macroeconomic shock exposures to which these two
strategies have delivered large risk premia historically must be quite distinct. Indeed,
the correlation between the time-series of the λ-shock implied by the FF55 portfolios and
of the λ-shock implied by the 10 momentum portfolios of Ken French and Daniel and
Moskowitz (2016) is -0.53 and -0.40, respectively.

3.5 Pricing the Cross-section of Stock Returns

It is worth emphasising that the focus of this paper is not the asset pricing performance of
the λ-shock. Conditional on the VAR model 2.5 being an accurate representation of the
economy, the λ-shock itself is the SDF by construction, so there is no longer any sampling
or model uncertainty surrounding the implied linear pricing model. Put it differently,
the pricing performance of the given λ-shock can easily be improved by changing the
specification of the VAR (e.g. including additional variables such as valuation ratios13)
but not by changing the orthogonalisation assumption. Naturally, the simple five-variable
macroeconomic VAR model is not an accurate representation of the economy, but it is an
entirely standard and parsimonious way of summarising macroeconomic dynamics which
also mitigates potential problems related to fishing bias.

Nevertheless, for the interested reader, I summarise in this subsection the asset-pricing
performance of the λ-shock implied by each test portfolios studied above. As argued
above, this only is a test as to whether the variables included in the VAR contain infor-
mation relevant to pricing the given portfolios. Tables 3–8 of the Appendix present the
results from the two-pass regression technique of Fama and MacBeth (1973). During this
exercise, I treat the uncovered λ-shock as a known factor when estimating the two-pass
regression model 2.7–2.8. To estimate the risk premium associated with the λ-shock, I

12For example, Table I of Asness, Moskowitz, and Pedersen (2013) shows that value and momentum
strategies in the US have had an average correlation about -0.60 over the period 1972/1-2011/7.

13These results are available upon request.

18



apply the GMM procedure described in Cochrane (2005) and implemented by Burnside
(2011).

Overall, the pricing performance of the VAR (or equivalently, the λ-shock) is com-
parable with the 3-factor model of Fama and French (1993).14 Moreover, as explained
in Section 2, finding the λ-shock implies that the other four structural shocks have zero
covariance with the implied SDF, and therefore the associated estimated prices of risk are
numerically zero, as shown in panel B of Tables 3–8. Relatedly, the R2 associated with
the one-factor model using the λ-shock is identical to the R2 for the model using any set
of five orthogonalised shocks or in fact the model which uses the five reduced-form VAR
residuals.

Moreover, the results are also consistent with Lewellen, Nagel, and Shanken (2010)
who pointed out the strong factor structure of the FF25 portfolios which makes it rela-
tively easy to find factors that generate high cross-sectional R2s. Hence, they prescribed
to augment the FF25 with the 30 industry portfolios of Fama-French in order to relax
the tight factor structure of the FF25. Indeed, the cross-sectional R2 drops drastically
from 0.84 to 0.13 for the 1-factor model without a common constant, and it drops from
0.76 to 0.13 for the 3-factor model of Fama-French without a common constant. This can
be interpreted as the relevant information content of the VAR being much smaller for
pricing the FF55 portfolios than for pricing the FF25 portfolios. This may of course lead
to a critique of the (lack of) relevant information content of the VAR for pricing the FF55
portfolios, which may call for enriching the information set by adding valuation ratios to
the VAR. Nevertheless, changing the VAR may be unnecessary because this poor pricing
performance is unlikely to undermine the results of this application of my orthogonalisa-
tion strategy: the macroeconomic shock that captures all relevant information for pricing
the cross section (irrespective of whether the information content is relatively small or
large) bears virtually the same economic characteristics as the λ-shock using the FF25
portfolios. The IRFs are similar for the λ-shock using the FF25 and the FF55 (Figures 2
and 4), and the time-series of the shocks implied by the two portfolios have a high (0.81)
correlation coefficient.

3.6 The λ-shock and the Fundamentals

An application of my proposed orthogonalisation strategy to the stock portfolios of FF55
led to the result that the estimated λ-shock bears a close empirical relationship both
with TFP news shocks and with monetary policy shocks. This ambiguity of the result
might seem an awkward outcome: after all, how can the resulting λ-shock have such a
high correlation with two, seemingly distinct structural disturbances? To convince the

14Applying the 3-factor model to the FF25 portfolios (Table 4) yields similar results to those obtained
in the literature (e.g. Petkova (2006)).
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reader that this is not a fault of my orthogonalisation strategy, I propose one possible
and simple explanation for such an ambiguity: TFP news shocks and monetary policy
shocks are in fact highly correlated in the data.

To provide some suggestive evidence for this argument, I use the VAR model of
Kurmann and Otrok (2013) to identify a monetary policy shock using Cholesky orthogo-
nalisation as done by Sims (1980), Christiano, Eichenbaum, and Evans (1999) and many
others in the monetary policy literature. In this case, I deliberately use exactly the same
VAR specification as used by Kurmann and Otrok (2013) when they identified a TFP
news shock so that I can learn about differences and similarities across the two iden-
tification themes without changing the information set. The upper panel of Figure 6
plots the estimated time-series of the TFP news shocks (black dashed line) against the
monetary policy shock series identified with Cholesky orthogonalisation (red solid line).
The correlation between the two series is strikingly high (0.96), raising questions about
the orthogonality of these shocks with respect to one another.

Figure 6: Comparing TFP News Shocks against Monetary Policy Shocks: Results from
Kurmann and Otrok (2013)’s VAR and from Smets and Wouters (2007)’s DSGE Model.
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Notes: The TFP news shock series (black dashed line) are the ones plotted in Figure 5 on pp. 2625 of Kurmann and
Otrok (2013) who apply the method of Uhlig (2004) to identify a TFP news shock over the period 1959Q2-2005Q2. The
monetary policy shock series in the upper panel (red solid line) are identified with Cholesky identification as in
Christiano, Eichenbaum, and Evans (1999), using the same variables and lag length as Kurmann and Otrok (2013). The
monetary policy shock series in the lower panel (blue solid line) are the estimated time-series of innovations in the
Taylor-rule in the DSGE model of Smets and Wouters (2007).

Of course, the identification of monetary policy shocks with Cholesky orthogonali-
sation is only one of the many possible identification strategies. Therefore, I provide
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additional evidence from the structural model of Smets and Wouters (2007) which is a
dynamic stochastic general equilibrium (DSGE) model estimated with Bayesian methods.
Monetary policy shocks in this framework are the estimated innovations in a Taylor-type
monetary policy rule. The estimated time-series of these structural innovations from the
DSGE model are plotted in the lower panel of Figure 6 (blue solid line) against the TFP
news shocks (black dashed line) of Kurmann and Otrok (2013). The correlation between
these two series is still remarkably high (0.81).

I interpret these findings as confirmation that the somewhat ambiguous characteri-
sation of the obtained λ-shock is not an outcome of the potential weakness of my or-
thogonalisation theme, but it is a result of the high empirical correlation between the
two, well-known structural disturbances that the λ-shock resembles. To the best of my
knowledge, this empirical regularity has not been documented in the literature yet, and
it could be subject to further research (Pinter (2016)).

4 Conclusion

This paper proposed a new orthogonalisation theme in a VAR framework based on the
ability of the obtained shock to explain the cross section of asset returns. The orthog-
onalisation theme is motivated by the long-standing challenge to link the origins of the
cross-sectional variation in stock returns to macroeconomic primitives. When applying
the method to the FF55 portfolios, the obtained shock is found to exhibit meaningful
economic characteristics, closely resembling well-known structural shocks studied by the
macroeconomic literature. These results have some direct implications for business cycle
and asset price dynamics. The structural shock that is responsible for the aggregate
risk captured by the FF55 portfolios is related to aggregate shocks that tend to generate
a delayed response in aggregate quantities. In contrast, when applying the method to
momentum portfolios, the implied λ-shock seems more related to unanticipated shocks
that tend to generate immediate jumps in aggregate quantities. These results are con-
sistent with the recent macroeconomic literature (Schmitt-Grohe and Uribe, 2012) that
emphasise the role of both anticipated and unanticipated shocks as sources of business
cycles.

More generally, the method I propose is not restricted to equity portfolios and could
easily be used to study the macroeconomic forces behind aggregate risks underlying port-
folios in other asset classes and markets. This could potentially help bridge some of the
gap between the macroeconomic and the financial market anomalies literatures (Harvey,
Liu, and Zhu, 2015; Bryzgalova, 2015; Fama and French, 2016; Novy-Marx and Velikov,
2016). Equally, the simple linear VAR framework could easily be extended to incorpo-
rate time-varying parameters, regime-switching, stochastic volatility and other forms of
non-linearities. These extensions could be interesting avenues for future research.
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Appendix

A Including Consumption in the VAR

Figure 7: Impulse Responses to a λ-shock: Output and Consumption

(a) VAR with Output
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(b) VAR with Consumption
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Notes: The vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters. In the upper panel,
the baseline IRFs (Figure 2) are shown against the IRFs implied by VAR(1) and VAR(3) models. In the lower panel IRFs
for VAR(1), VAR(2) and VAR(3) models are plotted where GDP is replaced by the consumption measure used in
Greenwald, Lettau, and Ludvigson (2015). In all cases, the FF55 portfolios were used as test assets.
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B Results from a Bayesian VAR

To explore the role of parameter uncertainty in the VAR model 2.5, I re-estimate the
model with Bayesian methods. I use Minnesota-type normal inverted Wishart priors that
I impose using the dummy observation approach of Sims and Zha (1998), as implemented
in Banbura, Giannone, and Reichlin (2010). To approximate the posterior marginal
distribution of the VAR parameters, I set up the Gibbs-sampler whereby I use the well-
known analytical formulae for the conditional distributions of the dynamic parameters
and the variance covariance matrix of the VAR. To construct a probability distribution
for the impulse response functions of the λ-shock, I proceed as follows: (i) I burn the first
N1 draws from the conditional distributions to avoid potential problems of initial values,
(ii) draw a B −Σ pair of VAR parameters from the conditional distributions, (iii) apply
the orthogonalisation method to these draws and save the resulting IRFs, and (iv) and
repeat the Gibbs-iteration and the orthogonalisation for another N2 times. The posterior
distribution of IRFs is then constructed based on the N2 draws.

Figure 8: Impulse Responses to a λ-shock: Results from a Bayesian VAR(2)
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Notes: The sample period is 1963Q3 - 2008Q3. The Minnesota-type normal inverted Wishart priors are implemented
following Banbura, Giannone, and Reichlin (2010). The figure shows the pointwise median and 5th-95th percentiles of
N2 = 5000 draws (after burning the first N1 = 5000 draws) from the posterior distribution of the impulse responses. The
vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters.

Figure 8 shows the posterior distribution of IRFs of the λ-shock. A one standard
deviation expansionary λ-shock continues to have a delayed effect on output. The 5th −
95th probability bands suggest that at a 15-quarter horizon output rises around 0.5%
above steady-state with 95% probability but does not rise more than 1.2% above steady-
state with the same probability. The rest of the IRFs can be interpreted in a similar
fashion.
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C Pricing Performance

Table 3: Results from the Two-pass Regressions, FF55 Portfolios

Factor prices (λ) R2

Panel A: 1-factor Model with the λ-shock
Constant λ-shock

0.69 0.51 0.21
(0.54) [0.70] (0.24) [0.26]

0.81 0.13
(0.31) [0.38]

Panel B: 5-factor Model with the λ- and the Other VAR Shocks
λ-shock Shock 2 Shock 3 Shock 4 Shock 5
0.81 0.00 0.00 0.00 0.00 0.13

(0.22) [0.24]
Panel C: The Fama-French 3-factor Model
Constant MKT HML SMB

3.20 -1.78 0.91 0.48 0.37
(0.95) [0.99] (1.11) [1.16] (0.45) [0.45] (0.44) [0.44]

1.43 0.92 0.35 0.13
(0.63) [0.63] (0.45) [0.46] (0.44) [0.44]

Notes: This table reports the cross-sectional regressions using the excess returns on the FF55 portfolios. The coefficients
are expressed as percentage per quarter. Panel A presents results for the 1-factor model where the identified λ-shock is
used as the sole pricing factor. Panel B presents the results for five-factor model using all structural shocks from the
VAR. Panel C presents results for the Fama-French 3-factor model. MKT is the market factor, HML is the
book-to-market factor and SMB is the size factor. OLS standard errors are in parentheses, whereas standard errors,
computed with the VARHAC procedure (following den Haan and Levin (2000); Burnside (2011), in order to take into
account possible serial correlation in the errors) are in brackets.

Table 4: Results from the Two-pass Regressions, FF25 Portfolios

Factor prices (λ) R2

Panel A: 1-factor Model with the λ-shock
Constant λ-shock

0.18 1.32 0.85
(0.81) [1.49] (0.28) [0.46]

1.44 0.84
(0.47) [0.83]

Panel B: 5-factor Model with the λ- and the Other VAR Shocks
λ-shock Shock 2 Shock 3 Shock 4 Shock 5
1.44 0.00 0.00 0.00 0.00 0.84

(0.26) [0.38]
Panel C: The Fama-French 3-factor Model
Constant MKT HML SMB

2.92 -1.62 1.44 0.57 0.80
(1.12) [1.12] (1.30) [1.27] (0.43) [0.44] (0.43) [0.43]

1.24 1.44 0.64 0.76
(0.63) [0.64] (0.43) [0.44] (0.44) [0.43]

Notes: See notes under Table 3.
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Table 5: Results from the Two-pass Regressions, 25 Profitability-Size Portfolios

Factor prices (λ) R2

Panel A: 1-factor Model with the λ-shock
Constant λ-shock

0.04 1.53 0.67
(0.71) [1.21] (0.50) [0.82]

1.56 0.67
(0.59) [1.18]

Panel B: 5-factor Model with the λ- and the Other VAR Shocks
λ-shock Shock 2 Shock 3 Shock 4 Shock 5
1.44 0.00 0.00 0.00 0.00 0.84

(0.48) [0.77]
Panel C: The Fama-French 3-factor Model
Constant MKT HML SMB

2.40 -1.06 1.36 0.58 0.64
(1.01) [0.97] (1.20) [1.17] (0.74) [0.77] (0.45) [0.44]

1.21 2.11 0.57 0.59
(0.63) [0.63] (0.78) [0.96] (0.45) [0.44]

Notes: See notes under Table 3.

Table 6: Results from the Two-pass Regressions, 25 Investment-Size Portfolios

Factor prices (λ) R2

Panel A: 1-factor Model with the λ-shock
Constant λ-shock

0.24 1.47 0.66
(0.73) [1.29] (0.40) [0.60]

1.65 0.65
(0.57) [1.15]

Panel B: 5-factor Model with the λ- and the Other VAR Shocks
λ-shock Shock 2 Shock 3 Shock 4 Shock 5
1.65 0.00 0.00 0.00 0.00 0.65

(0.29) [0.53]
Panel C: The Fama-French 3-factor Model
Constant MKT HML SMB

3.11 -1.62 1.49 0.43 0.76
(1.31) [1.23] (1.45) [1.38] (0.56) [0.55] (0.44) [0.43]

1.38 2.14 0.44 0.71
(0.63) [0.63] (0.51) [0.50] (0.44) [0.43]

Notes: See notes under Table 3.
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Table 7: Results from the Two-pass Regressions, 10 Momentum Portfolios of Ken French

Factor prices (λ) R2

Panel A: 1-factor Model with the λ-shock
Constant λ-shock
-0.01 2.56 0.97

(0.78) [2.29] (0.53) [1.50]
2.54 0.97

(0.69) [2.10]
Panel B: 5-factor Model with the λ- and the Other VAR Shocks

λ-shock Shock 2 Shock 3 Shock 4 Shock 5
2.54 0.00 0.00 0.00 0.00 0.97

(0.42) [1.14]
Panel C: The Fama-French 3-factor Model
Constant MKT HML SMB
13.52 -12.29 -1.58 1.76 0.84

(2.70) [6.82] (2.95) [7.29] (1.15) [3.17] (1.41) [3.57]
2.20 -4.39 -4.16 0.76

(0.64) [0.71] (1.07) [2.28] (0.94) [1.80]
Notes: See notes under Table 3.

Table 8: Results from the Two-pass Regressions, 10 Momentum Portfolios of Daniel and
Moskowitz (2016)

Factor prices (λ) R2

Panel A: 1-factor Model with the λ-shock
Constant λ-shock

0.00 2.51 0.95
(0.82) [2.27] (0.46) [1.19]

2.51 0.95
(0.41) [1.29]

Panel B: 5-factor Model with the λ- and the Other VAR Shocks
λ-shock Shock 2 Shock 3 Shock 4 Shock 5
2.51 0.00 0.00 0.00 0.00 0.95

(0.41) [1.10]
Panel C: The Fama-French 3-factor Model
Constant MKT HML SMB

5.58 -3.53 -3.87 -3.18 0.93
(1.97) [3.92] (2.21) [4.40] (1.15) [2.24] (1.19) [2.34]

2.64 -5.38 -4.16 0.92
(0.66) [0.85] (1.14) [2.89] (1.06) [2.48]

Notes: See notes under Table 3.
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D The Equivalence between Maximising the Price of
Risk and Maximising the Cross-sectional Fit

This section provides a numerical illustration that finding the shock that has the highest
price of risk is equivalent to maximising the R2-measure from the associated 1-factor
model.15 I use the baseline VAR(2) model and the FF25 portfolios and explore the space
of admissible Q̃ matrices to uncover the relationship between λ and the R2 implied by
the corresponding 1-factor model. The scatter plot in Figure 9 displays this relationship
based on 20,000 random admissible matrices, all of which are consistent with the reduced-
form variance covariance matrix. To obtain these random draws, I apply Householder
transformations to five-dimensional matrices drawn from the multivariate Normal distri-
bution. The vertical red dashed line denotes the maximum achievable price of risk (1.44)
associated with the λ-shock given the VAR specification. The horizontal red dashed line
denotes the upper bound on the unadjusted R2 (0.84 as in Table 4), which puts a cap on
how well the orthogonalised structural shock can explain the cross-section.

Figure 9 makes it clear that if an admissible model generates a structural shock with
a high price of risk, then the corresponding 1-factor model tends to have a high R2. This
observation is based on the darker, densely populated range of the scatter, which most
admissible models fall into. Of course, there are a few admissible models that indeed
perform very poorly in pricing the cross section in spite of the fact that they command a
high price of risk (bottom-right part of the scatter), and there are also shocks that fare
well in asset pricing in spite of the relatively low price of risk they demand (left part of
the scatter). Nevertheless, as the random 1-factor models get closer and closer to the
upper bound in terms of the implied R2 values, the associated price of risk converges
to the maximum price of risk that is numerically achievable. Increasing the number
of random draws does not change Figure 9.16 Building on the theoretical discussion
of Subsection 2.1, this can also be interpreted as a numerical proof of the equivalence
between maximising the price of risk and maximising the cross-sectional fit – two different
algorithms to uncover the λ-shock.

15The R2 statistic has been calculated as:

R2 = 1−

[
R̄e − β̂ (ε?)× λ̂ (ε?)

]′ [
R̄e − β̂ (ε?)× λ̂ (ε?)

]
[
R̄e − R̈e

]′ [
R̄e − R̈e

] ,

where R̈e = 1
k

∑k
i=1 R̄

e
i is the cross-sectional average of the mean returns in the data, β̂ (ε?)×λ̂ (ε?) is the

model’s predicted mean returns and the estimated pricing errors are the residuals, α̂ = R̄e−β̂ (ε?)×λ̂ (ε?).
16These results are available upon request.
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Figure 9: A Simulation Exercise: Illustrating the Relationship between the Price of Risk
and Cross-sectional R2
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Notes: The scatter plot (based on 20,000 random Q̃ matrices) shows the relationship between the price of risk demanded
by ε̃t associated with a given candidate draw Q̃ and the cross-sectional R2 implied by the corresponding 1-factor model.
For presentation purposes, I exclude those rotations that imply negative R2 (about 48% of all admissible matrices), as it
does not cause any loss of generality in the relationship. The vertical red dashed line is the maximum achievable price of
risk (1.44) from the five-variable VAR model 2.5, and the horizontal red dashed line is the upper bound (0.84) on the
unadjusted R2-measure associated with any 1-factor model extracted from the VAR model 2.5. To obtain these random
draws, I apply Householder transformations to 20,000 five-dimensional matrices drawn from the multivariate Normal
distribution.
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