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Abstract 

External costs of freight trucks include air pollution, highway damage and congestion.  We 

show that diesel taxes reduce both the pollution and congestion externalities, but worsen 

highway damage: an increase in the fuel price causes trucks to adjust dispatch decisions so as to 

reallocate their loads to fewer but heavier trucks.  Even with the associated decline in total 

demand for cargo, the dispatch effect leads to a net increase in road damage.  We investigate the 

relationship between diesel fuel prices and freight truck activities using individual truck data 

recorded by road sensors in California and New York between 2011 and 2015.  The dual use of 

diesel fuel in New York for transportation and home heating enables an IV approach to estimate 

price elasticities for fuel demand, cargo dispatching, road damage, and vehicle-ton miles 

traveled.  We use the estimates to inform assessments of diesel tax increases and fuel economy 

standards for heavy trucks.  

I. Introduction 
A substantial literature discusses the need for multiple instruments in the presence of multiple 

externalities.1  The focus, however, has been on the inadequacy of a single Pigouvian instrument 

– say, a carbon tax – to deal with a second problem such as insufficient technological innovation, 

rather than the possibility that, in isolation, the first instrument may worsen the second 

externality.  This is the issue we investigate.  We show that an increase in the tax on diesel fuel 

leads to heavier trucks and, in the absence of a second instrument addressing truck weight 

                                                           
1 See, e.g., Jaffe, Newell and Stavins, 2005; Bennear and Stavins, 2007; Goulder and Parry, 2008.  Our concern is 
when a “first best” instrument such as a carbon tax, is available but flawed.  Much of the multiple-instruments 
literature has analyzed second best options, assuming that use of a Pigouvian tax is restricted by politics, or 
considered how multiple instruments work at cross purposes to undermine efficiency.  See e.g., Fankhauser et al 
(2010) 
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externalities, more road damage.  Our calculations suggest that the increased external costs due 

to the diesel tax from road damage offset its benefits from lower carbon emissions. 

This finding is perhaps ironic because these taxes are often levied to repair roads. While 

economists generally discourage taxation of intermediate goods (Diamond and Mirrlees, 1971),2 

policy discussions of diesel fuel taxes often focus on how the revenues can be dedicated to 

highway infrastructure and the contribution of such infrastructure to economic growth (CBO, 

2015; Durranton, Morrow, and Turner, 2014). 3  We find that an increase in the diesel tax to raise 

revenues for road maintenance increases the need for maintenance.  Approximately 10% of the 

revenue from a diesel tax increase is lost to additional road damage due to cargo reallocation.  

The relationship between fuel price and truck weight arises from dispatch decisions faced by 

trucking firms.  Freight shippers bundle price and quality, where a key dimension of quality is 

the frequency of shipment.  More frequent deliveries lower inventory costs for the freight 

customers or the waiting costs of the final customers.  Indeed, absent transportation costs, it 

would be optimal to move individual goods between origin-destination pairs at exactly the time 

the good was demanded. As transportation costs increase, it becomes profitable to spatially and 

temporally aggregate loads. Heavier trucks use more fuel overall, but fuel consumption per ton 

of cargo—the relevant measure for the commercial trucking industry—is lower. Thus 

manufacturers face a tradeoff between inventory and transportation costs (De Vany and Saving, 

1983; Shirley and Winston, 2003; Shah and Brueckner, 2012).4  Ceteris paribus, an increase in 

fuel prices will further aggregate loads. 5  

If road damage were linear in total weight, such redistribution would be of little consequence, 

but road damage sharply increases in weight per truck axle (Small and Winston, 1986). Adding 

1,000 pounds to an already fully loaded 5 axle truck generates 38 times more damage than 

adding 1,000 pounds to an empty one. Because truck weight generates nearly all road non-

weather related road damage, understanding the determinants of truck weight is key to 

                                                           
2 Except in cases, like that of trucking, where the good generates externalities (Sandmo, 1975). 
3 For example President Obama’s 2014 State of the Union Address promoted infrastructure spending stating that, “In 
today’s global economy, first-class jobs gravitate to first-class infrastructure...” 
4 Shirley and Winston’s analysis of the external costs and benefits of infrastructure spending is very similar to what 
we attempt here with respect to marginal costs for freight trucks. 
5 The aggregation results in savings in labor and capital costs as well as fuel; changes in the cost of any component 
changes dispatching.  This paper addresses only fuel.  
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understanding infrastructure damage. Thus, the dispatch effect of a fuel price increase—the 

distribution of an equivalent weight in cargo among fewer trucks—is consequential.   

We investigate the impact of fuel prices on cargo shipments using a unique data set and a 

novel instrument for diesel prices. We obtained sensor readings on over 1.4 billion vehicle events 

from weigh-in-motion data collected in New York and California.  These data allow us to track 

daily changes in the weight and number of trucks at specific locations. Most importantly, these 

data allow for sophisticated identification. Our primary identification concern relates to the close 

link between trucking, trade, and economic activity.  Diesel fuel prices are expected to be 

endogenous to cargo weight because changes in economic conditions will affect both the world 

oil price, a major determinant of the price of diesel fuel, and demand for goods and services that 

involve hauling freight.6 To identify the price effect, we exploit weather-related fuel differences 

between New York and California.   In New York, sales of distillate fuel oil for residential 

heating purposes average 70% of the quantity sold for on-highway transportation.7 Cold 

weather—particularly unexpected cold weather—increases demand for heating oil and the price 

of diesel fuel in New York relative to California, whereas an unanticipated warm spell decreases 

the differential.  

We therefore explain the weight differential between New York and California as a function 

of the diesel price differential using unexpected weather as an instrument.  We find that when 

fuel prices increase 10 percent, fuel use by heavy trucks declines 2.7 percent and average truck 

weight increases 3 percent.  While total truck traffic decreases by around 1 percent, on net there 

is 18 percent more road damage.  

The dispatch effect changes the welfare comparison of using fuel taxes versus efficiency 

standards to control carbon emissions.  For automobiles, economists have overwhelmingly 

favored fuel taxes over efficiency standards (Parry et al., 2007, Bento et al. 2009, Jacobsen 2013) 

because the standards, by reducing the cost of driving, induce an increase in vehicle miles 

traveled (the “rebound” effect) which undermines some of the fuel savings as well as 

                                                           
6 If world oil price is used as an instrument for price in a trucking demand analysis, we expect the estimated demand 
elasticity to be biased down.  See, e.g., Winebrake et al (2015), whose estimate is much lower than ours. 
7 Sales of Distillate Fuel Oil by End Use, U.S. Energy Information Administration, 
http://www.eia.gov/dnav/pet/pet_cons_821dst_dcu_SNY_a.htm.  Even if some sales of home heating oil may in fact 
wind up in the tanks of trucks—the only difference between home heating oil and diesel fuel is the tax—residential 
demand is significant. 

http://www.eia.gov/dnav/pet/pet_cons_821dst_dcu_SNY_a.htm
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exacerbating other externalities like congestion. Similar rebound driving is expected for trucks 

(De Borger and Mulalik, 2012; Leard et al., 2015).8 But we find that a reduction in per-mile 

shipping cost from the standard causes freight to be reallocated across more trucks so that 

schedules are enhanced—that is, the rebound occurs on both a quality and a quantity dimension.  

In consequence, road damage declines.  While there is considerable uncertainty about the cost of 

external congestion and safety of trucks, we find that fuel efficiency standards dominate fuel 

taxes as a policy to reduce carbon emissions for a wide range of parameter estimates.9  

Broadly, our analysis supports the use of axle-weight taxes that have been championed by 

transportation economists (Winston, 1991). A single heavy truck generates more road damage 

than 1000 passenger vehicles, yet heavy trucks contribute only 36 percent of the taxes that 

generate the highway trust fund.10  Despite the benefits of axle-weight taxes, states have 

gradually repealed them in the face of political and judicial headwinds. However, the failure to 

implement axle-weight taxes undermines the ability of regulators to enact other policies. 

The remainder of the paper is organized as follows.  The next section discusses some relevant 

features of the heavy truck industry and the market for diesel fuel.  Section 3 presents a stylized 

model that motivates our empirical analysis.  Section 4 addresses some data construction issues 

and section 5 goes into the validity of our instrument.  Sections 6 and 7 contain estimation results 

and policy simulations, and section 8 concludes. 

II. Heavy Trucks and Diesel Fuel: Background 

A. Heavy Trucks and Cargo Weight 

Trucks are classified by axle count, weight, and size.  There are three broad classes of heavy-

duty trucks: heavy-duty pickups, tractor-trailers, and vocational vehicles.11 While all of these 

                                                           
8 The work on the relationship between fuel economy standards and rebound for automobiles is extensive (Jacobsen, 
2013; Small and Van Dender, 2007).  An excellent discussion of the rebound effect for both automobiles and other 
consumer goods is contained in Borenstein, 2013. 
9 Sathaye et al (2010) also consider how policies intended to improve welfare by reducing truck externalities may be 
undone by road damage – in their case, regulations requiring increased load factors so as to reduce the VMT-related 
externalities of trucks.   
10 See Joint Committee on Taxation, 2015. Diesel taxes generate $8.9 billion and other taxes on trucks generated 
$4.9 billion of the $37.9 billion highway trust fund.  If roads are not optimally maintained, they will cause an 
additional external cost in damage to other vehicles.  See Winston, 2013.   
11 Examples of heavy-duty trucks include the Ram 2500-3500, Silverado 2500-3500. Vocational vehicles generally 
have fewer than 5 axles and are tailored to a specific task with examples including garbage trucks, cement trucks, 
busses, and fire trucks. 
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vehicles could conceivably be used to haul freight and are likely to burn diesel, we focus on 

tractor-trailers, which dominate long-haul freight moved by road.  

Tractor-trailers have seen large growth between 1990 and 2010 when vehicle miles traveled 

(VMT) grew by 87 percent and ton-miles by 47 percent. 12  Together these trends suggest that the 

average load has grown lighter over time. While some of these changes are likely due to overall 

growth of trade and the economy, this time period also saw low oil prices and the rise of ‘just-in-

time’ manufacturing (Kamakate and Schipper, 2009). From the cargo recipient’s perspective, 

more frequent deliveries, of perhaps smaller loads, lowers inventory costs for manufacturers, 

wholesalers or retailers, or (in the absence of inventory) waiting times of consumers.13  For 

operators, the cost of scheduling also increases with the size of the load. Not only is there a cost 

of finding additional freight to fill a vehicle to capacity, but there is also a cost of finding cargo 

for the return trip. We refer to combined scheduling and inventory costs, which may fall on 

either the consumers or the operators, as logistics costs. 

The growth of trucking miles and ton-miles is of policy importance beyond its indication of 

economic transformation and expansion. Tractor-trailers are the second largest and fastest 

growing source of carbon emission in transportation. They are also, along with weather, the 

predominant source of damage to roads. Both of these concerns are closely tied to vehicle 

weight. Engineers define a unit of damage to a road based on the cumulative axle-weight of 

vehicles. One equivalent single axle load (ESAL) is the amount of wear caused by a single axle 

bearing 18,000 pounds. Because road damage as measured by ESALs rises to the third or fourth 

power of axle weight, an 80,000 pound, 5-axle truck causes 1000 to 1500 times more damage 

than a passenger vehicle and most states, including California and New York, limit the maximum 

total weight of a vehicle to 80,000 lbs.14 Larger loads are only allowed for ‘non-divisible’ loads 

and require special permits issued by the state.15  

                                                           
12 For comparison, light-duty vehicle miles grew by 34 percent. 
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/index.html  

13 See DeVany and Saving (1983) for an early discussion of the cost of quality expressed as wait-time to receive a 
product.   
14 Weights and axle configurations are also governed by the FHWA ‘bridge-formula’ which sets the maximum 
allowable weight for a given axle configuration on the interstate system, but for the standard 5-axle tractor-trailer 
that is 51 feet between its first and final axle it is capped at 80,000 lbs. 
15 These permits are rarely denied but are often required to use particular routes that avoid bridges or sensitive 
infrastructure. States also encourage operators to use vehicles with more than five axles to minimize damage. 

http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/index.html


 
 

6 
 

Aggregating cargo is a key way to lower freight costs because it reduces capital costs (if 

fewer trucks are needed), driver costs, and fuel costs.  Although trucks with heavier loads use 

more fuel, the fuel use per ton declines with total vehicle weight (Franzese and Davidson, 2011). 

The industry is thus characterized by both a private and public conflict.  For the private market 

there is a tradeoff between the cost of delivery per ton, in both fuel, equipment, labor and 

maintenance,16 and the frequency of delivery with its attendant dispatch costs.  In the public 

sphere, the tradeoff is between road damage and the pollution generated by fuel use as well as 

other externalities associated with greater truck traffic. 

The carbon emissions of these vehicles has come under the scrutiny of the Environmental 

Protection Agency in recent years.17 To reduce petroleum consumption in this sector it has 

instituted efficiency standards. The standards, beginning with model year 2014, require a 

maximum fuel consumption per brake-horsepower-hour for engines, which, as a measure of an 

engine’s ability to do work, essentially regulates the gallons of diesel fuel consumed per ton-

mile.  Increasing fuel taxes, the standard economists’ tool for dealing with carbon emissions, are 

also the subject of current policy debates, although usually in the context of infrastructure 

funding.  The federal tax has been constant (and not indexed for inflation) at 24.4 cents since 

1993; increasing it was the focus of extensive discussions during the congressional debates over 

the 2016 Transportation Act.  While ultimately a tax increase was not included in the bill, 

between 2013 and 2016 seventeen states increased their diesel taxes.18  As we show in Section 7, 

efficiency standards and taxes have different impacts on the private costs of dispatch and 

delivery; as such, they also have a different impact on the public costs of the related externalities. 

B. No. 2 Distillate.  

Certain features of petroleum markets drive our identification strategy.  Petroleum refining 

converts crude oil, a complex mixture of hydrocarbons, into a variety of products ranging from 

methane gas to asphalt. Two of the most important are gasoline and distillate.  While gasoline is 

                                                           
16 The American Trucking Research Institute breaks down per-mile motor carrier costs in 2013 as 38% fuel, 34% 
labor, and 28% other vehicle-based expenses including purchase payments and maintenance (Torrey and Murray, 
2014). 
17 An growing literature addresses fuel consumption of trucks and options to enhance fuel efficiency.  See, e.g., 
National Research Council 2010; 2014, whose studies were influential in the debates over the recent changes in 
heavy truck efficiency standards. 
18 “Recent Legislative Actions Likely to Change Gas Taxes,” National Conference of State Legislatures, 2/9/2016, 
at http://www.ncsl.org/research/transportation/2013-and-2014-legislative-actions-likely-to-change-gas-taxes.aspx;  

http://www.ncsl.org/research/transportation/2013-and-2014-legislative-actions-likely-to-change-gas-taxes.aspx
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primarily used in cars, distillate fuel oil is used in several applications and is further 

categorized.19 No. 2 distillate fuel oil is primarily used as diesel fuel in automobiles, railroads, 

and trucks. It is also used as home heating oil (No. 2 fuel oil), although this use is highly regional 

with nearly 88% of all No 2. fuel oil being used in the Northeast. A single home may use 

between 850 and 1,200 gallons in a season, which is stored in tanks holding several hundred 

gallons. With the exception of quality/pollution standards and taxation, the fuel used for home 

heating and powering diesel vehicles is identical. In the United States, refineries are optimized 

for gasoline production, but on net the U.S. imports gasoline and exports diesel to countries with 

a higher share of diesel transportation demand.   

No. 2 distillate is also distinguished on the basis of intended use. ‘Off-road’ distillate is 

exempt from road taxes and is used not only in home heating but also in vehicles used for 

farming, construction, and in locomotives. ‘On-road’ diesel is used by trucks on highways. The 

first comprehensive regulations on diesel for both on- and off-road purposes were phased in 

starting in 2006 and required the use of ultra-low sulfur diesel (<15 ppm). Ultra-low sulfur home 

heating oil has been phased in more gradually on a state-by-state basis, with New York first to 

adopt the standard in 2012. While consumers cannot legally switch fuels between home heating 

and on-road use, the two uses compete with one another. 20 In the mid-Atlantic region, including 

New York, highway use accounts for about 55% of distillate use and residential heating is 

23%.21 One result of the competition is that diesel prices follow an overall seasonal pattern 

opposite to gasoline.  Whereas gasoline prices (and gasoline imports) rise in the summer, diesel 

prices routinely rise in the winter, accompanied by a decline in diesel exporting, particularly in 

the Northeast.22  In addition to seasonal shifts, unusual winter weather is credited with increasing 

or decreasing diesel prices.23  We explore this relationship below. 

                                                           
19 Distillate No. 1 is typically used on vehicles such as city buses, which are excluded from our analysis, while 
higher numbered residuals (No. 5 and 6) are generally used for steam powering in electric generation or maritime 
freight. 
20 Off-road diesel is dyed red to aid in the detection of fraud.  But despite both the color and some quality variations, 
off-road diesel is apparently diverted frequently to road-using vehicles (Marion and Muehlegger 2008). 
21 The fuel statistics all come from the Energy Information Administration. 
22 Marion and Muehlegger (2011) use this variation to examine pass-through rates of taxes, exploiting the seasonal 
variation in demand elasticity for diesel fuel.  
23 See, e.g., “Strong El Nino helps reduce U.S. winter heating demand and fuel prices,” Today in Energy, U.S. 
Energy Information Administration, April 25, 2016, at http://www.eia.gov/todayinenergy/detail.cfm?id=25952. 
(accessed August 12, 2016); “Diesel Average Increases 3.1 cents to $3.904 as Cold Weather Lifts Seasonal 

http://www.eia.gov/todayinenergy/detail.cfm?id=25952
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III. Model of the Freight Trucking Market 

A. A stylized model of freight trucking 

Our analysis unpacks the impact of fuel prices on freight truck activities into two components: 

the change in weight per truck-mile, and the change in the total cargo-miles, or vehicle ton-

miles.24 We focus on several issues that are omitted from similar models for light-duty vehicles. 

First, truck operators can influence their per mile costs.25 Second, total vehicle miles traveled can 

change without necessarily changing total cargo demand.  Lastly, we are interested in identifying 

changes in vehicle weight and their associated road damage, which are justifiably ignored in 

models of light-duty vehicles. 

The following stylized model describes the relationship between vehicle weight and fuel 

price.  Consider the market for hauling freight where Q is total demand for cargo measured in 

ton-miles. A representative tractor-trailer operator will choose a cargo of size w (per mile). Given 

Q, the choice of w determines two costs. The first is a fuel cost which depends on the price of 

diesel, p, and the quantity of fuel required to ship the one ton of cargo one mile, f(w), where fʹ(w) 

< 0 and fʺ(w) > 0.  The fuel use per truck-mile is wf(w) and total fuel use in the industry is 

Qf(w).  The model captures the fuel consequence of dispatching: total fuel use declines when 

cargo is aggregated into fewer, heavier loads.26 

We call the second cost determined by w the logistical cost, l, which is a quality of service 

characteristic associated with the frequency of deliveries.27  It may include inventory costs for 

the customers of freight services when less frequent deliveries mean that they have to store 

goods; alternatively, it may be the waiting costs for their customers if inventory is unavailable.  

Finally, it may include the cost to shippers of organizing a load of freight.  In each case, for a 

constant level of total demand, Q, an increase in per-truck cargo weight w implies less frequent 

                                                           
Demand,” Transport Topics, 2/3/2014, at 
http://www.ttnews.com/gateclient/premiumstorylogin.aspx?storyid=34064, (accessed August 12, 2016). 
24 The ratio of the two yields vehicle miles traveled, or the number of trucks on the road. 
25 Similar capability exists for light-duty vehicles either by purchasing a different vehicle (Li, Timmins, and von 
Haefen 2009), or by changing driving speed and acceleration patterns (Burger and Kaffine, 2009) but these changes 
are generally ignored in VMT demand (rebound) models. 
26 Aggregation will also result in savings in capital and labor costs of trucking.  These factors are excluded as we 
observe no changes in them in our data; however, extending the model to include other costs is straightforward. 
27 This model is closest to (although simpler than) the price/frequency freight model in De Vany and Saving (1983).  
More sophisticated market conditions are considered in Shah and Brueckner (2010) and references cited therein. 

http://www.ttnews.com/gateclient/premiumstorylogin.aspx?storyid=34064
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delivery and higher logistic costs.  Given Q, the frequency of delivery is N = Q/w.  N is also the 

number of trucks on the road (per mile), and, under the model’s assumption of identical trucks, 

the number of truck-miles driven.  For mathematical convenience, we model logistical costs as a 

function of infrequency, or l(1/N) = l(w/Q), where lʹ(ˑ) > 0 and lʺ(ˑ) > 0.28  The logistical costs 

may be shared between the shippers and customers or borne entirely by either side of the market. 

 Total cost for delivering cargo Q is:29 

(1) 𝑇𝑇𝑇𝑇 = 𝑝𝑝𝑝𝑝𝑝𝑝(𝑤𝑤) + 𝑄𝑄𝑄𝑄 �𝑤𝑤 𝑄𝑄� � 

De Vany and Saving (1983) show that if a market of this type is competitive, two conditions 

hold: first, the total shipping price to final customers – including any quality-related costs 

external to the transaction price – will equal marginal total costs.  Second, in equilibrium, 

average total costs are minimized.  The freight trucking industry is competitive30, so in 

equilibrium w will minimize average total cost: 

(2) 𝑝𝑝𝑓𝑓′(𝑤𝑤) + 1
𝑄𝑄
𝑙𝑙′ �𝑤𝑤

𝑄𝑄
� = 0 

Equation (2) states that, in equilibrium, per truck cargo w is set to equate the marginal fuel 

savings and the marginal logistics/inventory penalty. 

The relationship between cargo weight and fuel price is derived from equation (2): 

 (3) 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑� 𝐴𝐴 + 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑� 𝐵𝐵 = 1 

where 

(4) 𝐴𝐴 =  
�𝑝𝑝𝑓𝑓′′(𝑤𝑤)+ 1

𝑄𝑄2
𝑙𝑙′′�𝑤𝑤𝑄𝑄��

−𝑓𝑓′(𝑤𝑤)
> 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵 =  

�− 1
𝑄𝑄2
𝑙𝑙′�𝑤𝑤𝑄𝑄�−

𝑤𝑤
𝑄𝑄3
𝑙𝑙′′�𝑤𝑤𝑄𝑄��

−𝑓𝑓′(𝑤𝑤)
 < 0 

The first term in (3) is the dispatch effect.  Note that if demand is inelastic, or Q unaffected by 

changes in the diesel price, 1/A measures the extent to which cargo is reallocated among trucks 

                                                           
28 This model assumes that the economy is not strictly constant returns to scale.  An increase in aggregate demand, 
Q, allows the industry to improve transportation along both the quality dimension (more frequent deliveries) and 
price (lower costs per ton from upweighting the cargo per truck).  Under constant returns to scale, the number of 
trucks would double and average cost remain unchanged. 
29 All values are per mile, an annotation that we drop for concision.  Costs are for delivering cargo one mile, as are 
the marginal costs. 
30 We ignore heterogeneity among customers; alternatively, suppose the industry is separated into unrelated 
submarkets, each of which is competitive. 
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when fuel costs increase so as to take advantage of the fuel savings from aggregation.  The 

second term in equation (3) is the freight demand effect.  Absent dispatch changes (that is, if 

dw/dp = 0), this term would measure the extent that an increase in fuel cost raises total freight 

cost, and the consequent drop in demand.  Efficiency gains from a change in dispatch reduces the 

demand response.  The demand response in turn modifies dispatching, as lower demand means 

that for a given cargo w, frequency is reduced, changing the relative marginal costs for fuel and 

quality.  For modest demand elasticity, per-truck cargo weight will increase with an increase in 

fuel cost.  But for sufficiently elastic demand, an increase in fuel costs could be associated with 

lower weight per-truck cargos.  It is, however, straightforward to show that frequency will never 

increase when, ceteris paribus, the fuel price increases.  

B. The elasticity of demand and the rebound effect  

The elasticity of fuel use turns on both the dispatch effect and the freight demand effect.  Let 

F(p) be the total fuel use for fuel price p: 

(5)  𝐹𝐹(𝑝𝑝) = 𝑄𝑄(𝑝𝑝)𝑓𝑓(𝑤𝑤(𝑝𝑝)) 

We derive an expression for the diesel demand elasticity by differentiating (5) with respect to 

p: 

(6) 𝜀𝜀𝐹𝐹,𝑝𝑝 = 𝜀𝜀𝑄𝑄,𝑝𝑝 +  𝜀𝜀𝑓𝑓,𝑤𝑤𝜀𝜀𝑤𝑤,𝑝𝑝 

Where the terms in (6) are elasticities of total fuel use with respect to fuel price, quantity with 

respect to fuel price (the freight demand effect), fuel use with respect to weight (an engineering 

relationship) and weight with respect to fuel price (the dispatch effect).   

Fuel economy regulations are evaluated relative to the “rebound effect,” or the extent to 

which the standards, by lowering fuel use, reduce the cost of driving and hence increase freight 

activity.  To calculate the rebound effect of fuel economy regulations, we follow the prior 

literature and assume that regulators impose a standard 𝛾𝛾 with no capital costs.31  The rebound 

effect compares the fuel savings under the naive model F0 = γ[w(p)N(p)]f(w(p)  with a model 

                                                           
31  More precisely, capital costs are fixed costs and assumed to be small enough that they do not dissuade anyone 
from buying a car –but more importantly that they do not change the cost of driving a mile.  For freight, this 
assumption is less sound: we would expect operators to pass through all capital costs that increase transportation 
costs, affecting aggregate demand Q and truck hauling choices in line with the analysis in Section III. The 
calculations here should then be viewed as upper bounds for the extent of rebound and the associated calculations. 
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that acknowledges the price change for hauling freight, F1= γ[w(γp)N(γp)]f(w(γp). The rebound 

effect is calculated as 1 −
𝜕𝜕 𝐹𝐹0

𝜕𝜕𝜕𝜕�

𝜕𝜕 𝐹𝐹1
𝜕𝜕𝜕𝜕�

, which can be simplified to  

(7) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝜀𝜀𝑁𝑁,𝑝𝑝 + 𝜀𝜀𝑤𝑤,𝑝𝑝  +  𝜀𝜀𝑓𝑓,𝑤𝑤𝜀𝜀𝑤𝑤,𝑝𝑝 

  

Expression 7 is identical to the demand elasticity in equation (6) as Q = Nw.  It extends prior 

examinations of the rebound question by including the change in efficiency that occurs when 

freight aggregation changes. Prior work has only accounted for the change in miles (the first 

term) or ton-miles (the first two terms). 

C. Empirical Strategy 

We are interested in the effect of changing diesel prices on vehicle weight. Although our data 

are observations of individual trucks, our diesel prices and weather data are at the daily and 

weekly level by region. Therefore we aggregate to the day-by-state level.  An initial approach is 

laid out in the following system of equations 

(8)                                                        𝑦𝑦𝑠𝑠𝑠𝑠 = 𝛽𝛽 𝑃𝑃𝑠𝑠𝑠𝑠 + 𝑋𝑋𝑠𝑠𝑠𝑠′ 𝛾𝛾 + 𝜀𝜀𝑠𝑠𝑠𝑠,    𝜀𝜀𝑠𝑠𝑠𝑠 = 𝜃𝜃𝑡𝑡 + 𝑢𝑢𝑠𝑠𝑠𝑠   

and  

(9)                                                        𝑃𝑃𝑠𝑠𝑠𝑠 = 𝑋𝑋𝑠𝑠𝑠𝑠′ 𝛿𝛿 + 𝜂𝜂𝑠𝑠𝑠𝑠                  𝜂𝜂𝑠𝑠𝑠𝑠 = 𝜆𝜆𝑡𝑡 + 𝑣𝑣𝑠𝑠𝑠𝑠    

where  𝑦𝑦𝑠𝑠𝑠𝑠 is average truck weight in state 𝑠𝑠 on date 𝑡𝑡, 𝑃𝑃𝑠𝑠𝑠𝑠 is state level diesel price, Xst is other 

determinants of truck weight and  𝜀𝜀𝑠𝑠𝑠𝑠 and 𝜂𝜂𝑠𝑠𝑠𝑠 are the unobserved determinants of truck weight 

and diesel prices.32 Additional regressions replace 𝑦𝑦𝑠𝑠𝑠𝑠 with the daily average count of trucks, 

ESALs, and speed. One condition for the OLS regression of truck weight on price to be a 

consistent estimate of 𝛽𝛽 is that 𝐸𝐸[𝜀𝜀𝑠𝑠𝑠𝑠𝜂𝜂𝑠𝑠𝑠𝑠] = 0. If there are omitted transitory shocks at the 

national (𝜃𝜃𝑡𝑡 and 𝜆𝜆𝑡𝑡) or state level (𝑢𝑢𝑠𝑠𝑠𝑠 and 𝑣𝑣𝑠𝑠𝑠𝑠) that covary with diesel prices and truck weight, 

the OLS estimator will be biased. In particular, we are concerned that local, national, or 

international economic activity may change demand for freight movement and the cost of freight 

logistics simultaneously with diesel prices or world oil prices.  

                                                           
32 Measurement error of prices would represent another type of error that would result in attenuation bias. Because 
of the long distances that tractor-trailers can drive before refueling, our diesel price may be measured with error. 
This is another benefit of our instrumental variables approach.  



 
 

12 
 

We use data on daily average truck weight in New York and California, discussed in Section 

4, below.   A differencing approach will absorb any national level shocks33 and dispose of 𝜃𝜃𝑡𝑡 and 

𝜆𝜆𝑡𝑡. 

(10)                                     𝑦𝑦𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑦𝑦𝐶𝐶𝐶𝐶𝐶𝐶 = 𝛽𝛽 (𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶) + (𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶)′𝛾𝛾 + (𝑢𝑢𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑢𝑢𝐶𝐶𝐶𝐶𝐶𝐶)   

and  

(11)                                   (𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶) = (𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶)′𝛿𝛿 + (𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶)  

For unbiased estimation of 𝛽𝛽, 𝐸𝐸[(𝑢𝑢𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑢𝑢𝐶𝐶𝐶𝐶𝐶𝐶)(𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶)] = 0. This condition may not be 

satisfied.  For example, if local demand for one-way trips increases, average cargo weight will 

fall and the demand for diesel will increase.  

Consistent estimation requires an instrumental variable, 𝑍𝑍𝑡𝑡, that causes changes in the diesel 

price spread between regions but does not change truck weight. We propose the use of random 

fluctuations in temperature as measured by excess heating degree days over the prior month. The 

assumption is that abnormally cold weather will result in an excess number of heating degree 

days and the demand for heating oil will compete for stocks of No. 2 distillate fuel oil.34 

Equation (11) then becomes: 

(12)                                    (𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶) = (𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶)′𝛿𝛿𝑋𝑋 +  𝑍𝑍𝑡𝑡𝛿𝛿𝑍𝑍 + (𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶) 

where 𝑍𝑍𝑡𝑡 is a rolling sum of excess heating degree days (EHDD) in the Northeast over the prior 

30 days. One benefit of this instrument is that it will raise diesel prices in a region as large as the 

driving range of a truck. Another benefit is that the mechanism can be partially observed by 

examining demand for residential distillate. Because our diesel price data is weekly, we cluster 

our standard errors at the week level.  

There are some exclusion concerns with our instrument.  First, truck drivers may avoid 

traveling on days with bad weather. This can be addressed by directly including measures of 

daily temperature, snowfall, and rainfall. Our assumption is that weather may affect travel on the 

                                                           
33 The shocks eliminated by this differencing will also include world oil prices. Because refinery contracts are often 
many months in duration, lags of world oil prices are often occasionally included in regressions using high 
frequency data. An additional benefit of this differencing approach is that it allows us to remove the effect of lagged 
world prices avoiding the need for a second instrument.   
34 Heating Degree Days alone are also correlated to diesel prices, as these are anticipated and, together with seasonal 
variations in cargo demand, in part determine export decisions, they may but may not be independent of cargo 
demand.  We use a seasonal dummy variable to account for the anticipated weather changes.  
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date of travel but temperature during the prior weeks does not directly influence trucking 

decisions. This assumption may be violated if extremely cold weather depresses economic 

activity. If cold weather reduces freight shipments of retail goods, EHDD may measure a 

demand rather than a supply shift of diesel.  We can examine the robustness of our result by 

using autumn and spring subsamples when heating is still required but the absolute temperature 

is milder than in winter. Furthermore in the autumn residential inventories of heating oil are 

likely to be high and demand will not (initially) respond, while in the spring even relatively small 

temperature changes will affect demand as heating oil inventories are depleted. In section V, 

below, we show that there is an asymmetric response between these seasons, which suggests that 

our instrument is shifting supply rather than demand.   

IV. Data  

Weigh-in-Motion Data. The data documenting trucks is collected from weigh-in-motion 

(WIM) sensors on major interstates, US highways, and state roads in New York and California. 

WIM sensors automatically measure the axles, spacing, weight, and speed of all trucks passing a 

point in the road. These sensors are used by states to enforce weight restrictions, monitor road 

demand, and to flag potential weight restriction violators for inspection at static weigh stations.  

WIM sensors are typically a strip embedded across all lanes of the roadway that detect 

characteristics of trucks at high speed.  

WIM files contain only a few measures for a given truck as well as the date, time, and 

location of detection, but as a census of all vehicles passing over a point, they provide an 

unusually large amount of data. We have at least one recorded truck for 126 detectors in 

California and 33 detectors in New York. The records for California and New York detail 1.28 

billion and 0.2 billion truck records respectively. We restrict our analysis to 5-axle tractor 

trailers.35 WIM data are noisy, and we delete some observations as errors, in accord with 

                                                           
35 This restriction eliminates the possibility that fuel prices generate substitution across vehicles of different axle 
count. We make this restriction because, of all vehicles with more than two axles, five axle trucks are more than 78 
percent of all vehicles. We also believe vehicles with more or less than five axles to be less relevant to our study. 
Vehicles with fewer axles are often vocational vehicles that do not haul freight. Vehicles with more axles are often 
used to haul invisible loads and are more likely to be data errors. When passing trucks generate large pavement 
vibrations, WIM detectors can erroneously detect multiple ‘ghost axles’ with extremely light weight. Expanding our 
analysis to include vehicles with more than 5 axles would only further increase the road damage generated as fuel 
prices increase because fuel use is increasing in axle count.  
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standard procedures for this data.36   

We use the WIM data on vehicle weight, axles, and axle spacing to calculate per vehicle 

Equivalent Standard Axle Loads (ESAL), the standard measure used to characterize road damage 

caused by vehicles. Our procedure for calculating ESALs is contained in the appendix.  ESALS 

cannot be estimated from average truck weights and vehicle miles traveled because they are 

nonlinear in truck weight.  Individual truck-level data are required to estimate ESALS; this is a 

key advantage of using WIM data.  

From the truck level data we generate daily measures for each state of average truck weight, 

total ESALS, total vehicle count, average speed, and the average cargo weight of a truck (truck 

weight less 23,000 lbs.37). Some detectors have dates with missing data resulting in an 

unbalanced panel. We drop detectors with less than 75 percent data coverage and impute the 

remaining missing observations.38 Once all relevant detectors are imputed, we average across all 

detectors to the state level to generate 1,822 daily observations for each of New York and 

California.  As is discussed further below, we assume that the average values across detectors per 

state is proportionate to highway traffic within the state so that we can interpret the regression 

coefficients as applying to vehicle ton miles traveled, ESALS per mile, cargo per truck mile, and 

so on. 

Figure 1 maps the location of the detectors and the weight distribution of 5-axle vehicles 

(before aggregation) used in our analysis. The maps show that detectors are widely dispersed and 

are not exclusively on the largest freeways. The bottom panels show the weight distribution. The 

bimodal distribution demonstrates the prevalence of empty trucks on the road, which introduces 

considerable slack in the system to reorganize loads as the marginal cost per mile changes. 

Weather data. Daily weather data come from the National Climatic Data Center’s Global 

                                                           
36 Quinley (2010). See the Appendix for more details.  We tried several different cleaning strategies, which made no 
difference to our results.  As most of our analysis is based on average daily values per state, we expect these 
estimates are affected little by the kinds of errors found in WIM data.  The exception is for the regressions that 
estimate total traffic.  While these coefficients are measured imprecisely, the point values are robust to our different 
choices for cleaning.    
37 The Department of Energy identifies the empty vehicle weight range for tractor-trailers (combination trucks; class 
8b) at 20,000 to 26,000 lbs.  See Gross Vehicle Weight vs. Empty Vehicle Weight, DOE, Office of Energy Efficiency 
& Renewable Energy, Fact #621, May3, 2010, at http://energy.gov/eere/vehicles/fact-621-may-3-2010-gross-
vehicle-weight-vs-empty-vehicle-weight, accessed 8/12/2016. 
38 See Appendix for further details on the imputation. 

http://energy.gov/eere/vehicles/fact-621-may-3-2010-gross-vehicle-weight-vs-empty-vehicle-weight
http://energy.gov/eere/vehicles/fact-621-may-3-2010-gross-vehicle-weight-vs-empty-vehicle-weight
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Historical Climatology Network-daily, which provides daily minimum and maximum 

temperature and total rainfall and snowfall for weather stations in the United States. This 

database collects and performs quality control for weather data. Because households with heating 

oil are primarily concentrated in upstate New York we use the average readings of weather 

stations centered at Albany.39  

Daily weather data is used directly as a control in our regressions and also to form the 

instrument of excess heating degree days (EHDD).  Heating degree days (HDD) are a commonly 

used measure that reflects the demand for heating energy. Using a base of 65 F, a day spent at 64 

F will be one HDD. Temperatures above 65 F are not counted.40 We proportionally assign the 

temperature to the range between the minimum and maximum temperature recorded. To 

calculate the expected number of HDD, we average the number of HDD during that day over the 

forty-year period between 1975 and 2015. To calculate the EHDD, we take the difference 

between the realized HDD days for a given day and the expected HDD days on that date. These 

values are then summed over the prior 30 days. This 30-day EHDD measure is positive 

(negative) when winter weather is unusually cold (warm).  In summer, EHDD is usually zero. 41 

V. The Effect of Cold Weather in the Northeast on Diesel Price 

Diesel prices vary between regions of the US. Differences in taxation, environmental 

standards, distance from refineries, and retail competition all contribute to baseline variation.42 

The most important for our analysis concerns the regional use of diesel as heating oil.  

For our instrument of EHDD to be relevant it should increase the price gap between New 

York and California diesel prices. Figure 2 plots the kernel smoothed EHDDs, the diesel price 

spread, and the weight difference. The top panel displays the daily average heating degree days. 

                                                           
39 We use inverse distance weighting of these stations up to 200km. 
40 Rather than assign the HDD days as the difference of the mean of min and max temperature from 65 F, we 
proportionally assign the temperature to the range between the min and max temperature recorded. 
41  Sources for other data used in the regressions are: The Energy Information Administration for weekly crude oil 
prices (WTI), weekly regional diesel prices (California is available by itself; we use PADD 1b for New York), 
weekly residential distillate demand (available nationally; but over 88% is consumed in the Northeast).  Truck 
tonnage information is from the Bureau of Transportation Statistics and information of real GDP from the Bureau of 
Economic Analysis. 
42 Diesel taxes did not change in New York or at the federal level over the sample period.  In California, the 
structure of taxes changed in a complicated “tax swap” that allowed the State to use revenues to pay a highway 
bond. Rates are now calculated on a quarterly basis.  California diesel fuel tax varied between $.335 and $.395 
during the sample period.  See https://www.boe.ca.gov/sutax/strf.htm  

https://www.boe.ca.gov/sutax/strf.htm
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The two coldest time periods are in early 2014 and 2015, while the winter of 2011-2012 was 

mild.  

The second panel plots the difference in diesel prices between the two regions. Differencing 

removes any shocks, trends, or seasonality in diesel prices that are common to both locations, but 

may not remove seasonality that differentially affects each location. One of the largest price 

differentials occurs in early 2014 and a second differential occurs in early 2015 when 

temperatures were abnormally cold. The price differential remains relatively stable throughout 

the mild winter of 2011-2012.  

To more rigorously examine the patterns suggested by Figure 2, it is useful to remove the 

trend and seasonality using a regression. To quantify the effect of excess HDD on the diesel 

price differential between New York and California, we estimate regressions of the form  

(12)                                                     𝑃𝑃𝑁𝑁𝑁𝑁,𝑡𝑡 − 𝑃𝑃𝐶𝐶𝐶𝐶,𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡30 + 𝑋𝑋𝑡𝑡′𝛾𝛾 + 𝜀𝜀𝑡𝑡 

where 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡30 is our measure of excess heating degree days on date t over the prior 30 days, 

which we scale dividing by 100. The term 𝑋𝑋𝑡𝑡′ includes a trend, monthly fixed effects, and other 

potential controls such as GDP, monthly freight, and the world oil price in some regressions. 

Because our diesel price data is weekly, we cluster standard errors at the week level. 

Table 1 reports the estimates of the effect of EHDD on diesel price. Column 1 reports results 

for our simplest specification indicating that 100 EHDD in the past month increases the price 

spread by roughly 4 cents. The next column 2 includes controls for GDP, monthly freight, and 

the WTI oil price, which we generally omit due to endogeneity concerns. The addition of these 

regressors decreases the magnitude of the effect to 2.5 cents but it remains statistically 

significant at the 0.1% level.  

The next set of regressions include controls for daily weather, which are important controls in 

later regressions on truck weight, but which are insignificant and minimally affect the estimates 

in Table 1. Column 4 uses all data price starting in 2007. While this is earlier than the time 

period for which we have WIM data, it shows that the relationship is robust to the addition of 

more years of data. Columns 5 and 6 examine the data from August through November and 

March through June, respectively. In the autumn, when retail stockpiles of heating oil are high, 

we would expect little effect of EHDD on the diesel price differential. The point estimate on 
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EHDD in column 5 is small and statistically insignificant. In the spring, when stock piles are 

low, we would expect a response and the coefficient on EHDD in column (6) similar response as 

the specifications in columns 3 and 4. The final column replaces the diesel price spread with the 

gasoline prices spread between New York and California. Heating oil does not directly compete 

with gasoline, and consequently the price gap should not increase with cold weather.43 The 

coefficient on EHDD in column 7 is smaller than that of diesel and statistically insignificant.   

Lastly, we provide additional evidence that heating oil is the mechanism by which cold 

weather affects diesel prices. If consumers have sufficient reserves such that they do not require 

additional heating oil during cold periods, weather is unlikely to influence diesel prices. Table 2 

provides evidence that excess HDD increases demand for residential distillate. The coefficient on 

EHDD in column 1 indicates that for every 100 excess HDDs in the prior month, demand for 

residential distillate increase by 15,000 barrels per day. This suggests that heating oil demand 

responds to unusually winter weather and that we adequately capture unusual weather in New 

York, and the Northeast more generally. 

VI. The Effect of Diesel Prices on Trucking 

This section examines the relationship between diesel prices and 5-axle truck behavior.  We 

begin with vehicle weight. Table 3 panel A presents these results using IV-estimation. For 

comparison, the OLS results are presented in column 1. The OLS estimate of the vehicle weight-

diesel price elasticity is 0.10.  The specification in column 2 estimates equation 8 using the 

EHDD instrument. This specification estimates that the vehicle weight-diesel price elasticity is 

0.33, suggesting that the OLS estimate is downward biased by roughly two thirds. The logged 

specification changes the units on the first stage but presents a similar picture to the prior section.  

The F-test is statistically significant at conventional levels.  

One potential concern with the estimates in column 2 is that cold weather may affect demand 

for diesel for trucks rather than demand for heating oil.   For example, suppose unusually cold 

weather over the previous month depresses the local economy and lowers total demand for 

goods. Trucking companies might respond by parking the empty backhauling trucks, as they will 

                                                           
43 Gasoline is coproduced with diesel and cold weather may depress the price in New York if excess gasoline is 
refined to keep pace with demand for distillate. In some robustness regressions using a longer period of data or other 
controls we find a marginally significant decrease in the price gap in response to cold weather, consistent with 
coproduction.  
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not be needed soon for a full load. This would imply that the average weight of trucks on the 

road would increase, together with a reduction in overall demand for cargo.44 We can directly 

test this hypothesis by estimating the IV regression using data restricted to August through 

November (column 3) and March through June (column 4). These months are generally mild 

compared with December through February, removing extreme events. 

In the autumn, no effect is found because of a weak first stage, as discussed in section V. 

Alternatively, in the spring, shown in column 4, we find a highly significant F-test and a positive 

estimated effect of diesel prices on truck weight.  Inventories are depleted in the spring so that 

EHDD shocks are more likely to require additional heating oil deliveries and abnormal weather 

is less likely to directly change demand for freight services. These results support our 

interpretation that we are observing a supply side shock in the instrumented diesel price 

variation. 

In Panel B we explore the changes in trucking behavior in more depth. Although our data do 

not provide a measure of vehicle cargo weight, we estimate cargo by removing the average 

weight of empty trucks of 23,000 lbs.  Column 1 contains the estimated fuel price elasticity for 

cargo. Column 2 displays IV estimates for total truck traffic (the count of observations). 

Although the total traffic regression is imprecisely measured,45 the point estimates imply that a 

10 percent increase in fuel price is associated with 5.69 percent more cargo per truck, which is 

loaded onto 6.57 percent fewer trucks: that is, our results suggest that total cargo declines by 

0.88 percent.  In the short run at least, the reduction in traffic is consistent with fewer vehicle 

miles travelled by heavier trucks.  But the reduction in vehicle miles traveled is associated more 

with dispatch changes—perhaps fewer deliveries per day or week, or otherwise less convenient 

scheduling—than mode-shifting. 

Assessing road damage requires knowledge of how the additional cargo weight is distributed.  

Redistributing a given amount of cargo to moderate-weight vehicles will produce significantly 

                                                           
44 Note that our instrument for price depends on temperatures over the previous month; our daily weather measures 
will capture changes in demand from snowfall, for example, but we do not expect snow or rain to factor into the 
instrumented diesel price. 
45 The imprecision is likely because detectors occasionally have lane outages which introduces noise into the count 
of vehicles at any station. Outages are only noted in our data by the disappearance of observations from a particular 
lane, and while there is no definitive way to confirm outages, they can be recognized on busier roads. These outages 
will introduce error into our measures of vehicle weight and speed if outages are correlated with the lanes tractor-
trailer drivers chose. We see no evidence that these outages are more likely in any particular lane. 
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less damage than redistributing it to the heaviest vehicles.  As is discussed in Section 4, the 

ESAL calculations are derived directly from raw (disaggregated) WIM data so as to account for 

the redistribution of truck weights in addition to the average change in weight. We conclude 

(column 3) that increasing the diesel price results in a statistically significant increase in ESALs.  

The point estimate indicates that a 10 percent increase in diesel price raises road damage by 

18.98 percent. Because of the quartic relationship between axle weight and road damage, even 

small average upweighting can greatly increase road damage.  

The final column examines the recorded speed of vehicles. Burger and Kaffine (2009) show 

that light-duty vehicle drivers reduce speed in uncongested traffic when gasoline prices are high 

and some studies have shown that tractor-trailers may have a similar ability to reduce fuel use by 

driving slower.46  In column 4 we find that tractor-trailers reduce speed in response to higher 

diesel prices consistent with this conjecture.  Although we are less confident in assigning a value 

to the amount of fuel saved by this action, slower speed may represent a second dimension in 

which scheduling suffers when marginal costs per mile increase.  

VII. Discussion 

A. Demand elasticity and the change in vehicle ton-miles 

The estimates in section VI allow us to evaluate the welfare implications of a carbon or diesel 

tax and a fuel efficiency standard. The parameters used in this simulation are given in Table 4 

with further discussion in Appendix II. Calculation of the carbon externalities in these 

simulations requires estimating the diesel fuel consumption response to a change in fuel price 

using the demand elasticity (or rebound effect) derived in equation (6), while other externalities 

including congestion, accidents and local pollutants are modeled as a function of ton-miles 

hauled.47  

                                                           
46 The results are very sensitive to road grade.  On-road measurements are further complicated as slower average 
driving is associated with road congestion rather than a sustained speed (Franzese and Davidson 2011). 
47 The standard calculations for passenger vehicles use vehicle-miles traveled (VMT) for congestion, safety, and 
local pollution externalities.  Externalities for heavy duty trucks are usually evaluated on ton-miles: heavier trucks 
accelerate and decelerate more slowly, causing more congestion and are plausibly less safe. Local pollutants vary 
with engine features as well as fuel consumption.  A combination of VMT, fuel consumption and ton-miles are 
implicated in these externalities. Our use of ton-miles is driven by available estimates for external costs of trucks, 
which are priced per ton-mile in most sources.  The appendix contains simulations that employ a range of estimates 
for these costs. 
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As is derived in section III, the elasticity of ton-miles with respect to price, or the “ton-miles 

rebound effect” is the sum of the change in per-truck tons (cargo weight) plus the change in 

vehicle miles traveled.  Table 3 panel B column 1 reports the elasticity of per-truck cargo weight 

𝜀𝜀𝑤𝑤,𝑝𝑝. We do not directly measure the elasticity of vehicle-miles traveled, but by assuming that 

vehicle miles travelled by freight trucks are proportionate to the measured traffic at WIM 

detectors we can use the estimate of the count elasticity, 𝜀𝜀𝑁𝑁,𝑝𝑝, also reported in Table 3, for this 

factor.48 Thus the sum of 𝜀𝜀𝑁𝑁,𝑝𝑝 and 𝜀𝜀𝑤𝑤,𝑝𝑝 is the ton-miles rebound effect at -0.088.  The 

imprecision with which we estimate 𝜀𝜀𝑁𝑁,𝑝𝑝 cautions against placing much weight on the point 

estimate, but we note that the ton-mile value is similar to that used by the EPA (2015), -.05, as 

well as the short-run estimates by Leard et al. (2015), -0.189 and De Borger and Mulalic (2015), 

-.10.  

To estimate the demand elasticity (fuel rebound effect) for diesel requires that the ton-mile 

elasticity be modified by the difference in fuel efficiency per ton-mile due to the cargo weight 

change (equation 6), which we denote by 𝜀𝜀𝑓𝑓,𝑤𝑤, and base on measures from the engineering 

literature (ORNL, 2011). Together these estimates imply a demand elasticity and short-run fuel 

rebound effect of -0.30.  

Both elasticities will presumably differ in the long run, but the direction of change is unclear. 

The long run allows more scheduling flexibility, which would imply that greater weight changes 

would be observed over time. Alternatively, during the short run empty trucks may only be 

dispatched when diesel is cheap, consistent with the observed increase in average weight and 

decrease in traffic existing only in the short-run.  Our ESAL estimates are not consistent with 

dispatch changes only in backhaul strategies, as it would imply no ESAL increase, but, if partly 

responsible for the observed changes, the implication is that the short run fuel response is more 

elastic than the long run.  Lastly, demand for cargo is more elastic in the long run: if deliveries 

remain inconvenient, customers may shift to another mode of transportation, leaving the truckers 

to either further reduce operations or enhance services, albeit at a cost, and a more elastic long-

run elasticity of demand for fuel and ton-miles. 

                                                           
48 Specifically, this assumes that upweighted trucks do not shift their driving to roads that disproportionately lack or, 
alternatively, are rife with traffic sensors.  
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B. Diesel Taxes, Short Run Carbon Emissions Reductions, and Road Damage 

Diesel taxes are discussed most often as a revenue generating mechanism but also, in recent 

years, as part of a comprehensive carbon tax policy. As a correction for external carbon damage, 

these taxes are broadly popular with economists. However, the presence of other unpriced 

externalities means the tax is, at best, second-best.  We consider here whether it may come in 

third, after a fuel efficiency standard.  

We begin by imposing a diesel tax of $0.37 per gallon as part of a carbon tax policy. This 

level of taxation corresponds to a carbon price of $36 per metric tonne of CO2 (Interagency 

Working Group, 2015). Applying our estimated demand elasticity to annual diesel sales, this 

diesel tax results in 800 million fewer gallons of diesel consumption and generates $292.4 

million in carbon benefits. 

A diesel tax, because it reduces ton-miles, will reduce other associated externalities. We apply 

our ton-miles rebound estimate to the total ton-miles shipped in the US, which implies that 21.7 

billion fewer ton-miles reduced congestion, accidents, local pollution, and noise externalities 

generating $576.3 million in benefits.   

To evaluate the potential increase in road damage from raising diesel taxes, we apply our 

ESAL elasticity to the typical detector in the New York sample and extrapolate the increase in 

road damage to the national network of interstates.  The increase of 8.5 billion ESALs 

nationwide generates $1,172.9 million in additional damage.  

Because the road damage externality overwhelms the carbon and ton-mile based externalities, 

the diesel tax on net costs of $304.2 million annually. While the revenue raised is not included in 

this calculation as it is a transfer from consumers of trucking services to the government, it could 

offset other taxes, such as labor taxes introducing additional benefits. More commonly, diesel 

taxes are dedicated towards funding road repairs and are not set to maximize consumer surplus; 

however, even from an infrastructure funding perspective, the road damage erodes more than 10 

percent of the increased revenue. As a second best strategy, the diesel tax is problematic.   
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C. Fuel Efficiency Standards and Road Damage 

Policy makers often attempt to improve efficiency through fuel efficiency standards. 

Particularly in the case of automobiles, economists stress that fuel efficiency standards, by 

lowering the price per mile of driving, may increase driving related externalities and reduce the 

carbon emissions saved by the policy. For automobiles, exacerbating the congestion, accident 

and pollution externalities associated with driving may be so large as to make fuel economy 

standards welfare reducing (Anderson et al., 2011).  The welfare effects for trucks are likely to 

differ significantly.  The reduced per ton-mile cost of shipping freight will lead to higher 

frequency (quality) shipments so that while vehicle ton-miles increase, the cargo weight per 

truck, and associated weight externality of tractor-trailers will decline.  

In our simulation, we consider an exogenous improvement in fuel efficiency per ton-mile, 

such that the standard translates the weight-efficiency frontier of trucks outward, that is, at every 

weight, fuel use declines by an equal factor. First we examine the primary welfare benefit—the 

reduction in carbon net rebound diesel consumption. When using our estimated rebound effect, 

we follow the prior literature and assume that regulators impose this standard with no capital 

costs.49 We choose a 4 percent improvement in efficiency to generate the same carbon reductions 

as the diesel tax in the prior section: a reduction of 800 million gallons that generates $292.4 

million in carbon benefits. 

Next we examine the secondary costs of increased ton-miles and miles that occurs when 

efficiency is improved. Using our ton-miles rebound effect, the standard will generate 9.3 billion 

additional ton-miles resulting in $246.6 million in congestion, accident, local pollution, and noise 

costs.  The comparison of welfare at this intermediate step reveals a result familiar in the context 

of automobiles—carbon benefits are nearly entirely offset by increased ton-mile related 

externalities (Fischer, Harrington, and Parry, 2007). The net welfare at this step is $45.8 million. 

Because fuel economy standards exacerbate these externalities, economists have criticized 

standards as not only sub-optimal, but also possibly even welfare reducing.  

                                                           
49  More precisely, capital costs are fixed costs and assumed to be small enough that they do not dissuade anyone 
from buying a car –but more importantly that they do not change the cost of driving a mile.  For freight, this 
assumption is less sound: we would expect operators to pass through these capital costs increasing transportation 
costs apart from the fuel saving component incorporated in our estimate, affecting aggregate demand Q and truck 
hauling choices in line with the analysis in Section III. The calculations here should then be viewed as upper bounds 
for the extent of rebound and the associated calculations. 
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Because fuel economy standards lower the cost per ton-mile, we expect a dispatch as well as 

price response with higher frequency deliveries in lower weight freight vehicles. The resulting 

reduction of 3.7 billion ESALs in damage to the interstate system yields an additional $501.9 

million in benefits, resulting in a net benefit of $547.7 million for the fuel efficiency standard.  

D. Comparison of Two Policy Instruments 

The simple analyses presented in the prior two sections are far from comprehensive but 

highlight the importance of the dynamics posited and estimated in this paper. Stated simply, 

using typical estimates of the ton-mile rebound effect and reasonable external cost estimates, the 

dispatch effect has the capacity to flip the preference for fuel taxes over fuel economy standards. 

We find that diesel taxes generate net costs of $304 million while fuel economy standards 

generate net benefits of $548 million.  

There are, of course, assumptions that reverse this conclusion. Assumptions that increase ton-

mile externalities will favor diesel taxes.  For example a more elastic ton-mile response to price 

also favors the diesel tax policy, as it will exacerbate the driving-associated externalities.  An 

elasticity of at least -0.19 flips the welfare preference for the two policies.50 This is outside the 

range in the current literature with most negative at -0.189 from Leard et al. (2015). Using higher 

costs per ton-mile will also favor diesel taxes. If we use the upper bounds given by the GAO for 

external cost of congestion, accidents, and local pollution, both policies will exhibit net benefits 

and the difference between them narrows, but the efficiency standard continues to dominate the 

tax. Assumptions that lower the dispatch effect also shift the preference towards diesel taxes. An 

ESAL elasticity less than one, which is within the 95 percent confidence interval, also reverses 

the preference.  However, because we omit damage to non-interstate roads, the per-ESAL 

damages are likely to be much larger than the value used in the simulations so that the fuel 

efficiency standard advantage is likely to survive each of these scenarios.   

Effects beyond our simple simulation may also change the preference ordering. For example, 

we omit potential tax efficiency benefits from using diesel tax revenue for reducing distortionary 

taxation (Parry and Oates, 2000).  Conversely, the ‘internal’ benefits of fuel economy standards 

for myopic consumers (Busse, Knittel, Zettelmeyer, 2013), which dominate the EPAs cost-

                                                           
50 See Appendix Tables A.1 and A.2 for these scenarios.   
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benefit analysis of heavy-duty-truck fuel economy standards,51 are not included here.52  Our data 

do not allow us to comment on the magnitude of such benefits, but we note that the benefits of 

reduced road damage discussed in this paper are not included in the EPA analysis. Imposing such 

a standard would also generate capital costs that would be reflected in average costs (Borenstein, 

2015).  It is unclear how inclusion of capital costs would change the relative comparison between 

policies as an offset in the standard’s reduced ton-mile costs drives both the dispatch effect and 

ton-miles rebound towards zero so that both external benefits and external costs of the efficiency 

standard decline. 

Another caveat is that these estimates are short-run responses, and do not account for long-run 

changes in engine technology choice in response to a diesel tax. Such a dynamic would increase 

carbon benefits and decrease road damage costs from a diesel tax, shifting the preference 

towards diesel taxes. 

Lastly, we note that the preference for fuel economy standards is dependent on the failure of 

policy makers to implement and courts to allow for comprehensive axle weight taxes.  In the 

presence of an axle-weight tax, operators would only aggregate loads where the fuel savings 

were greater than the tax penalty. 53  With a lower incentive to aggregate in the presence of a fuel 

price increase, particularly  on the heaviest trucks, the road damage penalty from a tax versus 

standard will be correspondingly lower so that other external costs, as with automobiles, will 

dominate the comparison.  

VIII. Conclusions 

Evaluating the effects of taxes and regulations on intermediate goods is challenging.  Policies 

that change the price of fuel, or cost per ton-mile, for freight trucks change the market for cargo 

on two dimensions: directly, in the price per ton-mile, and indirectly, through the change in 

                                                           
51 The EPA finds benefits of $175.1 billion in fuel savings compared with a technology cost of $25.4 billion. Overall 
total cost of the standard is estimated at $31.1 billion compared with a benefit of $275 billion (Table 8-38, EPA 
2015). The magnitudes in the EPA evaluation cannot be directly compared with ours as the EPA models a standard 
for multiple classes of vehicles that is changing over a longer time horizon. See Gayer and Viscusi (2013) for further 
discussion. 
52 While engineers and policy makers often include benefits for consumers who do not recognize the full value of 
reduced fuel costs when buying more efficient vehicles, economists have been skeptical of these claims (Gillingham 
and Palmer, 2012; Allcott and Wozny, 2014; Sallee, West, and Fan, 2016). Intuitively, myopia seems even less 
plausible for profit-maximizing firms in a competitive industry such as trucking than for consumers of automobiles 
53 Of course, even with axle-weight taxation, a diesel tax would still result in a cargo weight response and more road 
damage.  Optimal taxation requires joint optimization of the two instruments, recognizing their interdependency. 
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delivery schedules.  The choices along the price/quality margin depend on, and in turn affect, the 

structure of the manufacturing, wholesale, retail and trade markets that purchase cargo services.   

This paper focuses on how fuel prices affect dispatch decisions and the resulting change in 

truck loads.  We find that a 10 percent increase in diesel prices increases vehicle weight by 3 

percent. The relationship between fuel price and truck weight imposes an additional cost of 

increased road damage whenever fuel taxes are increased but confers added benefits to a fuel 

efficiency standard.  Of course, neither approach yields an optimal outcome for controlling both 

highway use externalities and pollution externalities.  Instead, multiple instruments are needed. 

Critical to generating optimal outcomes would be the imposition of axle-weight-mile taxes.  

The American Trucking Association has resisted any axle-weight use taxes, and the courts have 

largely agreed with their argument that the axle-weight taxes in most states have been 

implemented in a way that imposed unfair burdens on the freight truck industry.54 Much of the 

information required to impose trip specific axle-weight taxes already exists as trucks already 

extensively document their driving. An interesting feature of state diesel fuel taxes in the United 

States is that, unlike gasoline, diesel is taxed by the state of use rather than purchase.  Through a 

process moderated by the International Fuel Tax Agreement (IFTA), truckers pay tax in the state 

where diesel is purchased, but then keep track of where it is used by recording miles driven by 

state. The IFTA organization keeps track of net tax over- and under-payments by state, collects 

payments from truckers or issues them rebates, and arranges transfers between states. Many 

states, including New York and California, also have highway use taxes, levied on truckers based 

on the vehicle-miles-traveled within the state, with collection and disbursals organized by IFTA. 

Use taxes vary by class, but are insensitive to the weight changes analyzed here.55  Given the 

growth in trucking, the importance of infrastructure for economic activity, and the potential for 

benefits, we suggest revisiting the structure of taxes on heavy trucks to explore the value of a 

mix of fuel and weight use taxes. 

                                                           
54 As of 2016, Oregon has most successfully resisted court challenges to its tax but it imposes no diesel fuel tax. 
Other states have run afoul of the dormant commerce clause in their attempts to tax axle-weights.  See Pitcher, 2014; 
ATA Litigation Center, 2010. 
55 These use taxes are levied annually and are based on the vehicles’ maximum weight but do vary with the weight 
of any particular trip, and indeed appear to give an incentive for firms to increase weight per axle. An analysis of 
their effects is beyond the scope of this paper.  The information collected for IFTA raises the potential for taxes that 
are road and time specific and thus address congestion externalities as well (Parry, 2008). 
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Table 1: Heating Degree Days and Diesel Prices

Dep. Var.: NY Price - CA Price
Diesel Gasoline

(Placebo)
(1) (2) (3) (4) (5) (6) (7)

EHDD 0.042*** 0.025*** 0.040*** 0.033*** -0.007 0.037*** 0.018
(0.005) (0.005) (0.005) (0.006) (0.008) (0.007) (0.012)

Rain (cm) 0.005 0.004 0.007 -0.001 -0.000***
(0.004) (0.004) (0.004) (0.005) (0.000)

Snow (cm) 0.000 -0.003 -0.001 -0.001 -0.003***
(0.003) (0.004) (0.005) (0.005) (0.001)

Temp. (◦F/1000) -0.604 -0.504 -0.810 -0.862 0.008
(0.445) (0.585) (0.533) (0.660) (0.007)

GDP -0.046***
(0.009)

Monthly Freight -0.635*
(0.315)

WTI Oil Price -0.009
(0.041)

R-squared 0.44 0.52 0.44 0.22 0.14 0.68 0.46
N 1822 1731 1822 3258 610 610 1822

Sample 2011-2015 2011-2015 2011-2015 2007-2015 Aug.-Nov.
2011-2015

Mar.-Jun.
2011-2015

2011-2015

Notes: The estimates are from seven regressions of the listed daily fuel price or daily fuel price differential on the
listed regressands. EHDD is 100 excess heating degree days in the 30 prior days. Trend and fixed effects for month are
included in all regressions. Standard errors, clustered on week, are given in parentheses with * indicating significance
at 5%, ** at 1%, and *** at <1%

Table 2: Heating Degree Days and Distillate Consumption

Dep. Var.: Monthly Average Daily Residential Distillate Consumption (1000s)
(1) (2) (3) (4)

EHDD 18.082*** 14.902*** 15.813*** 16.709***
(3.840) (4.173) (3.891) (3.527)

Total Monthly Rain (cm) -0.450 -0.474 -0.874
(0.714) (0.704) (0.641)

Total Monthly Snow (cm) 0.612* 0.500 0.625*
(0.289) (0.283) (0.249)

GDP 0.065***
(0.008)

WTI Oil Price 0.021
(0.161)

R-squared 0.86 0.86 0.86 0.89
N 358 358 358 358

Sample 1986-2015 1986-2015 1986-2015 1986-2015
Quadratic Trend N N Y Y

Notes: Values shown are the coefficeints of four regressions of the daily residential distillate consumption
in thousands of barrels averaged at the monthly level on on the regressands. EHDD is 100 excess
heating degree days in the 30 prior days. Monthly average temperature is omitted because, at a monthly
aggregation, it is highly correlated with our measure of EHDD. Trend and fixed effects for month are
included in all regressions. Robust standard errors are given in parentheses with * indicating significance
at 5%, ** at 1%, and *** at <1%
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Table 3: 5-Axle Vehicles

Panel A: Average Vehicle Weight
Dependent Variable: log(NY Weight)-log(CA Weight)

OLS IV
(1) (2) (3) (4)

Second Stage
log($NY)-log($CA) 0.103*** 0.331*** 0.000 0.157*

(0.029) (0.063) (0.050) (0.068)
Rainfall (cm) -0.005*** -0.006*** -0.005*** -0.007***

(0.001) (0.001) (0.001) (0.001)
Snowfall (cm) 0.004*** 0.004*** 0.003 0.004***

(0.000) (0.000) (0.002) (0.001)
Temperature (◦F/1000) -0.226** -0.070 -0.447 0.004

(0.075) (0.085) (0.465) (0.105)
R-squared 0.18 0.12 0.10 0.12
N 1822 1822 610 610

Month Restriction None None Aug.-Nov. Mar.-Jun.

First Stage
EHDD 0.011*** 0.002 0.010***

(0.001) (0.002) (0.002)
Kleibergen-Paap F-Stat. 17.26 7.81 20.87

Panel B: Other Outcomes
Dependent Variable: Cargo Daily Count ESALs Speed

(1) (2) (3) (4)
Second Stage
log($NY)-log($CA) 0.569*** -0.657 1.898** -0.201***

(0.108) (0.547) (0.730) (0.042)
Rainfall (cm) -0.009*** 0.001 -0.013 -0.001*

(0.001) (0.005) (0.008) (0.001)
Snowfall (cm) 0.007*** -0.021*** -0.002 -0.009***

(0.001) (0.004) (0.005) (0.001)
Temperature (◦F/1000) -0.123 0.223 -0.717 0.110

(0.144) (0.707) (0.854) (0.059)
R-squared 0.14 0.12 0.05 0.38
N 1822 1822 1822 1822

First Stage
EHDD 0.011*** 0.011*** 0.011*** 0.011***

(0.001) (0.001) (0.001) (0.001)
Kleibergen-Paap F-Stat. 17.26 17.26 17.26 17.26

Notes: The estimates in Panel A are from four regressions of daily average vehicle weight on the listed
regressands. The estimates in Panel B are from our regressions of daily average daily vehicle count,
ESALS, cargo (weight - 23,000 lbs.), and vehicle speed on the listed regressands. EHDD is 100 excess
heating degree days in the 30 prior days. Trend and fixed effects for month are included in all regressions.
Standard errors, clustered on week, are given in parentheses with * indicating significance at 5%, ** at
1%, and *** at <1%
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Table 4: Simulation Parameters

Parameter Value Source
εg,c -0.32 Franzese and Davidson (2011) Eq. 1

Annual Diesel Sales 38.5 billion gallons EIA 2014 Adjusted Sales of Distillate Fuel
Oil by End Use

Average Diesel Price 2011-2015 $3.85 gallon Authors calculation and EIA PADD1B
(2015$)

Annual ESALs per Lane Mile from Tractor-
Trailers

553,340 Authors calculations and NY WIM data

Share of 3+Axle Truck Traffic that is 5 Axle 78 percent Authors calculations and NY WIM data

Average Vehicle Weight 55,000 lbs. Authors calculations and NY WIM data

Average Tractor-trailer Fuel Economy 8.67 Franzese and Davidson (2011) Eq. 1 at
55,000 lbs.

Road Damage Cost $0.137 per ESALa,b FHWA (1995)

Miles of Interstate 42,795 FHWA

Ton-miles of Freight in 2011 2.6 Trillion Bureau of Transportation Statistics

Social Cost of Carbon $36 per tonne CO2 Interagency Working Group on Social Cost
of Carbon (2015)

Congestion cost $0.0044 per ton-mileb,c GAO (2011)

Accident Risk $0.0121 per ton-mileb,d GAO (2011)

Local Pollution (PM 2.5 and NOx) $0.0095 per ton-mileb,e GAO (2011)

Noise $0.0005 per ton-mileb GAO (2011)

a Lower bound of $0.087 per ESAL in 1995 dollars. See text for further discussion.
b Converted to 2016 dollars.
c Range is $0.0026 to $0.0062 per ton-mile. Listed value is midpoint.
d Range is $0.0012 to $0.0230 per ton-mile. Listed value is midpoint.
e Range is $0.0012 to $0.0179 per ton-mile. Listed value is midpoint.
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Table 5: Simulation Outcomes

Simulation A: Diesel/Carbon Tax
Tax per gallona $0.37

Tax Revenue $10.8 Billion

Change in Fuel Useb,c -800.1 Million Gallons

Carbon Benefit $292.4 Million

Ton-Miles Change -21.7 Billion Ton-Miles

Congestion, Accidents, Local Pollution, and Noise Benefitd $576.3 Million
Upper and Lower Bound e [$118.5 to $1,034.1]

ESAL Change 8.5 Billion ESALs

Road Damagef -$1,172.9 Million
95% C.I. [-$2,075.1 to -$270.7]

Total -$304.2 Million

Simulation B: Fuel Economy Standard
Increase in Efficiency 4 percent

Change in Fuel Usec -800.1 Million Gallons

Carbon Benefit $292.4 Million

Ton-Miles Change 9.3 Billion Ton-Miles

Congestion, Accidents, Local Pollution, and Noised -$246.6 Million
Upper and Lower Bound e [-$442.5 to -$50.7]

ESAL Change -3.7 Billion ESALs

Road Damagef $501.9 Million
95% C.I. [$115.8 to $887.9]

Total $547.7 Million

a Assumed carbon tax of $36 per metric ton CO2.
b Assumes no change in technology. In the long run, without a binding fuel economy standard,
operators would be expected to purchase vehicles with higher fuel efficiency.
c Confidence intervals omitted as the demand elasticity makes use of parameters from the literature
and the level of fuel economy standard is chosen to match the carbon saved under the diesel tax.
d The GAOs cost of local pollution includes PM2.5 and NOx.
e Uses the lower or upper bound of all externality prices listed in footnotes to Table 4.
f Includes damage/benefit to 42,795 miles of Interstate Highways. Assumes two lanes per direction.
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