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Abstract

The standard equation-by-equation OLS that is routinely used in performance
evaluation ignores information in the alpha population and leads to severely
biased estimates for the alpha population. Recent research has proposed a new
approach — essentially rethinking performance evaluation. Our contribution is
a framework that treats fund alphas as random effects. This allows us to make
inference on the alpha population while controlling for various sources of esti-
mation risk. At the individual fund level, our method pools information from
the entire alpha distribution to make density forecasts for each fund’s alpha.
In simulations, we show that our method generates parameter estimates that
universally dominate the OLS estimates, both at the population and at the in-
dividual fund level. We also show the advantage of our approach compared to
recently proposed alternative methods. An out-of-sample forecasting exercise
also shows that our method generates superior alpha forecasts.
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1 Introduction

In a method reaching back to Jensen (1969), most studies of performance evaluation
run separate regressions to obtain the estimates for alphas and standard errors. By
following this approach, each fund is treated as a distinct entity and has a fund-
specific alpha. This is analogous to the fixed effects model in panel regressions where
a non-random intercept is assumed for each subject. We focus on a “random effects”
counterpart, which we term the noise reduced alpha (NRA) model. In particular, we
assume that fund i’s alpha, αi, is drawn independently from a common distribution.

There are many reasons for us to consider this type of alpha model. First, the
fund data that researchers use (particularly, hedge fund data) are likely to only cover
a fraction of the entire population of funds. Therefore, with the usual caveats about
sample selection in mind, it makes sense to make inference on this underlying pop-
ulation rather than just focusing on the available fund data. This is one of the
situations where a random effects setup is preferred over a fixed effects procedure in
panel regression models.1

Second, our NRA model provides a structural approach to study the distribution
of fund alphas. It not only provides estimates for the quantities that are economically
important (e.g., the 5th percentile of alphas, the fraction of positive alphas), but also
provides standard errors for these estimates by taking into account various sources of
parameter uncertainty, in particular the uncertainty in the estimation of alphas.

Traditionally, performance evaluation involves fund-by-fund regressions in the first
stage and hypothesis tests are performed in the second stage. The regression t-
statistics are obtained for each fund and used to test statistical significance. Recent
papers have adjusted for test multiplicity (Barras et al. 2010, Fama and French 2010,
Ferson and Chen 2015, and Harvey and Liu 2015a).

There are several problems with this fund-by-fund approach when it comes to
making inference on the cross-sectional distribution of fund alphas. First, while fund-
specific hypothesis testing may be useful to search for outperformers and underper-
formers, its use is limited when it comes to making precise statements about the
properties of the population of alphas. Consider one obvious economically important
question: what is the fraction of mutual funds or hedge funds that generate a posi-
tive alpha? Under the usual fund-by-fund testing framework, one candidate answer
is the fraction of funds that are tested to generate a significant and positive alpha.
However, this answer is likely to be severely biased given the existence of many funds
that generate a positive yet insignificant alpha. Indeed, these funds are likely to be
classified as zero-alpha funds — funds that generate insignificant alphas under clas-

1See, for example, Maddala (2001) and Greene (2003). Searle, Casella, and McCulloch (1992)
explore the distinction between a fixed effects model and a random effects model in more details.
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sical hypothesis testing. In essence, equation-by-equation hypothesis testing treats
fund alphas as dichotomous variables and thus does not allow us to make inference
on the cross-sectional distribution of fund alphas.2 Second, the idea of correcting
for multiple hypothesis tests involves choosing a penalty from a number of different
approaches and specifying a Type I error threshold. For instance, while Fama and
French (2010) focus on extreme t-statistic percentiles, Barras et al. (2010) and Fer-
son and Chen (2015) focus on the false discovery rate. In contrast, our framework
relies on the likelihood function of the panel of fund returns, which allows an efficient
weighting of cross-sectional and time-series information.

Recent research proposes a fundamentally different design — essentially rethinking
performance evaluation. This new approach focuses on the cross-sectional distribu-
tion of the alphas. While Barras et al. (2010) and Ferson and Chen (2015), by
modeling the alpha distribution as following a degenerate distribution and estimat-
ing this distribution through penalties that are borrowed from the hypothesis testing
literature, can be thought of as simplified versions of this approach, several other
papers — including ours — have taken a structural approach to provide a more gen-
eral and detailed description of the alpha population. This new initiative allows us
to address the standard approach’s unanswered questions. For example, by model-
ing the cross-sectional distribution of alphas, it is possible to answer the question of
how many managers outperform. In addition, inference on the performance of any
individual manager is enhanced by taking cross-sectional information into account.
Furthermore, various sources of uncertainty are directly incorporated into the infer-
ence. In order to understand our contribution, consider the three paths that this
research initiative has taken.

The first path involves first running fund-level OLS and then trying to estimate the
distribution of the fitted alphas. By doing this, it is possible to make inference on the
alpha population. Chen et al. (2015) provide a variant of this approach by proposing a
two-stage estimation procedure that takes fund level alpha uncertainty into account.
However, this approach only uses fund specific information to estimate regression
parameters that govern return dynamics (i.e., factor loadings and residual standard
deviations) and ignores information from the alpha population. Such information
is important given the high level of estimation uncertainty for individual funds since
many of them have limited histories. In addition, their two-stage estimation procedure
is inconsistent from the perspective of decomposing fund returns into skill and luck as
what is identified as skill in the first-stage estimation may be attributable to luck in
the second-stage estimation, where cross-sectional information is taken into account.
Our approach simultaneously estimates parameters that govern the alpha population

2While the main goal of Fama and French (2010) is to test the overall null of no performance,
they do propose an informal “plug-in” approach to estimate the underlying alpha population. Our
framework extends their method in two ways. First, we flexibly model the underlying alpha pop-
ulation, which, as they acknowledged, might be necessary to capture the tails of the distribution
of the cross-section of alphas. Second, while they provide inference by matching certain t-statistic
percentiles of the actual data to the simulated data, we rely on the likelihood function to provide
more rigorous and efficient inference.
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and parameters that govern individual fund return dynamics, providing a unified
framework to incorporate individual fund time-series uncertainty and cross-sectional
alpha uncertainty.

The second path applies Bayesian methods to learn about the alpha population.
For example, Jones and Shanken (2005) impose a normal prior on the alpha for an
average fund and uses this to adjust for the performance of an individual fund.3

Conceptually, their approach is closely related to ours in that we also try to make
inference on the alpha population. However, there are important differences. We build
on the frequentist approach and do not need to impose a prior distribution on the
alpha population. We also allow fund alphas to be drawn from several subpopulations,
which enriches the structure of the alpha population.4 Later, we provide a detailed
discussion of Bayesian methods and contrast them with our approach.

The third path incorporates information other than return performance. By using
portfolio holdings data, Cohen, Coval, and Pastor (2005) infer a manager’s skill from
the skill of managers that have similar portfolio holdings. Intuitively, if two managers
have similar time-series of holdings, their alpha estimates should be close to each
other. Cohen, Coval and Pastor weight the cross-section of historical alpha estimates
by the current portfolio holdings to refine the alpha estimate of a particular fund.
Their idea of learning from the cross-section of managers is similar to ours. However,
there are several differences between their paper and ours. First, while their method
learns through portfolio holdings, we learn about skill by grouping funds with similar
alpha estimates, after adjusting for the estimation uncertainty in the alpha estimation.
Second, while current holdings are informative about future fund performance, a
fund’s unconditional alpha estimate should depend on the entire history of holdings.
Finally, our method relies on the return data alone and is applicable to hedge fund
performance evaluation where we do not have holdings data for most funds.

Our approach relies on the construction of a joint likelihood function that de-
pends on both the alphas and the betas. By finding the maximum-likelihood estimates
(MLE) of the model parameters, we make inference on the alpha distribution, control-
ling for various sources of estimation uncertainty. We provide a structural framework
to assess performance, factor model estimation, and parameter uncertainty.

The common element among these three paths that rethink performance evalu-
ation is the use of cross-sectional information to refine funds’ alpha estimates. All
three methods imply a certain degree of shrinkage of the OLS alpha estimates. Our
approach also implies shrinkage but differs from existing methods in that we present a
new way to model the shrinkage target as well as the optimal degree of shrinkage. We
achieve this by trying to answer three fundamental questions. First, what is the best

3Other papers that apply Bayesian methods to study fund performance include Baks, Metrick,
and Wachter (2001), Pástor and Stambaugh (2002a,b), Stambaugh (2003), Avramov and Wermers
(2005), Busse and Irvine (2005), and Kosowski, Naik, and Teo (2007).

4See Barras, Scaillet, and Wermers (2010), Ferson and Chen (2015), and Chen, Cliff, and Zhao
(2015).
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way to estimate the shrinkage target, that is, the underlying alpha population, with-
out imposing any prior information on this target? We adopt a frequentist approach
to estimate the underlying alpha population and this distinguishes our method from
the Bayesian approach. Second, how can we use the shrinkage target to improve the
inference on individual funds, both for their alpha estimates and other OLS param-
eters that govern return dynamics? We derive the optimal inference on individual
funds, conditional on a given shrinkage target. Our solution features the revision
of all OLS parameters according to the shrinkage target and this distinguishes our
method from Chen et al. (2015), who only update the alpha estimates. Third, how
do the previous two questions interact with each other in that refined inference on in-
dividual funds (the second question) can also improve our inference on the underlying
alpha population (the first question)? To answer this question, we propose an “equi-
librium” shrinkage target that makes sure that the optimal inference on individual
funds, which draws on information from the equilibrium shrinkage target, implies the
very same shrinkage target as the equilibrium shrinkage target. This equilibrium view
of the alpha population also distinguishes our method from Chen et al. (2015) in that
their second-stage estimate of the alpha population does not need to be consistent
with the alpha population implied by the optimal inference on individual funds.

Our empirical work begins with a simulation study that takes many realistic fea-
tures of the mutual fund data into account. We show that our method generates
parameter estimates that achieve both a low finite-sample bias and standard error,
dominating those that are generated under OLS and Chen et al. (2015). The superior
performance of our model applies to the alpha population as well as the individual
funds. We also perform an out-of-sample exercise by estimating our model in-sample
and forecasting the alphas of individual funds out-of-sample. We show that our
method provides a substantial improvement over existing techniques with respect to
forecasting accuracy.

While our research contribution is methodological, we offer an application to a
sample of mutual fund returns. Our results suggest a different answer to: What
proportion of mutual funds outperform? While the existing literature suggests few
if any funds are deemed to outperform, our results suggest that over 10% of funds
generate positive risk-adjusted performance. Two effects contribute to our estimate.
In the usual fund by fund regressions, 0-1% of funds have positive significant alphas.
However, due to the high level of estimation uncertainty at the individual fund level,
funds with small positive alphas are likely deemed insignificant from the perspective
of the traditional approach. Our framework provides a more powerful procedure
to identify these funds by directly modeling the underlying alpha population. On
the other hand, we cannot take the fund-by-fund OLS alpha estimate at face value
as the cross-sectional learning effect dictates that we should shrink positive alphas
towards zero given that the median fund has a negative alpha. Notice that these two
effects work against each other. The overall impact is to have a larger estimate for
the fraction of outperforming funds to account for funds with small positive alphas,
despite the various degrees of shrinkage for these funds.
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We also propose a new procedure to efficiently estimate our structural model.
It extends the standard Expectation-Maximization algorithm that allows us to se-
quentially learn about fund alphas (which are treated as missing observations) and
estimate model parameters. Our method is important in that it allows us to capture
the heterogeneity in fund characteristics in the cross-section. While we focus on per-
formance evaluation in the current paper, the procedure has a number of immediate
applications. For example, fund attributes can be incorporated to sharpen inference
and macroeconomic data may also be useful in characterizing how the cross-sectional
distribution evolves through time (see Harvey and Liu, 2016a). It is also possible
to use the technique in other applications such as choosing the set of factors with
significant risk premia (see Harvey and Liu, 2016b).

Our paper is organized as follows. In the second section, we present our model.
In the next section, we discuss the estimation method for our model and provide a
simulation study. In the fourth section, we apply our framework to mutual funds
to make inference on the distribution of fund alphas. Some concluding remarks are
offered in the final section.

2 Model

2.1 The Likelihood Function

For ease of exposition, suppose we have a T × N balanced panel of fund returns,
T denoting the number of monthly periods and N denoting the number of funds
in the cross-section. Importantly, balanced data is not required in our framework.
As we shall see later, both our model and its estimation can be easily adjusted for
unbalanced panel data.

Suppose we are evaluating fund returns against a set of K benchmark factors.
Fund excess returns are modeled as

ri,t = αi +
K∑
j=1

βijfj,t + εi,t, i = 1, . . . , N ; j = 1, . . . , K; t = 1, . . . , T, (1)

where ri,t is the excess return (i.e., actual return minus the one-month Treasury bill
rate) for fund i in period t, αi is the alpha, βij is fund i’s risk loading on the j-th
factor fj,t, and εi,t is the residual.

To simplify the exposition, let us introduce some notation. LetRi = [ri,1, ri,2, . . . , ri,T ]′

be the excess return time-series for fund i. The panel of excess returns can be ex-
pressed as R = [R1, R2, . . . , RN ]′. Let βi = [βi,1, βi,2, . . . , βi,K ]′ be the risk load-
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ings for fund i. We collect the cross-section of risk loadings into the vector B =
[β′1, β

′
2, . . . , β

′
N ]′. Similarly, we collect the cross-section of alphas into the vector

A = [α1, α2, . . . , αN ]′. Let the standard deviation for the residual returns of the
i-th fund be σi. We collect the cross-section of residual standard deviations into the
vector Σ = [σ1, σ2, . . . , σN ]′. Finally, let θ be the parameter vector that describes the
population distribution of the elements in A.

Under the model assumptions, the likelihood function of the model is

f(R|θ,B,Σ) =

∫
f(R,A|θ,B,Σ)dA (2)

=

∫
f(R|A,B,Σ)f(A|θ)dA, (3)

where f(R,A|θ,B,Σ) is the complete data likelihood function (that is, the joint
likelihood of both returnsR and alphas A), f(R|A,B,Σ) is the conditional likelihood
of returns given the cross-section of alphas and model parameters, and f(A|θ) is the
conditional density of the cross-section of alphas given the parameters that govern
the alpha distribution.

Notice that the likelihood function of the model does not depend on the cross-
section of alphas (i.e., A). This is because, in our approach, A is treated as missing
data and needs to be integrated out of the complete likelihood function f(R,A|θ,B,Σ).
However, once we obtain the estimates of the model parameters, the conditional dis-
tribution of A can be obtained through the Bayes’ law:

f(A|R, θ̂, B̂, Σ̂) ∝ f(R|A, B̂, Σ̂)f(A|θ̂). (4)

This enables to us to evaluate the performance of each individual fund. Our ap-
proach to making inference on individual funds is distinctively different from current
frequentist methods. Existing approaches, as mentioned previously, draw their infer-
ence based on either the time-series likelihood (i.e., f(R|A,B,Σ)) as in Barras et al.
(2010), Fama and French (2010), and Ferson and Chen (2015), or the cross-sectional
likelihood (i.e., f(A|θ)) as in Chen et al. (2015). Our method, as shown in (4),
combines information from both types of likelihoods, leading to a more informative
inference.
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Assuming that the residuals (i.e., εi,t’s) are independent both across funds and
across time, the likelihood function can be written as:

f(R|θ,B,Σ) =

∫ N∏
i=1

f(Ri|αi, βi, σi)f(αi|θ)dA, (5)

=
N∏
i=1

∫
f(Ri|αi, βi, σi)f(αi|θ)dαi. (6)

Our goal is to find the maximum-likelihood estimate (MLE) of θ, which is the focus
of the paper, along with other auxiliary parameters (i.e., B and Σ) that govern the
return dynamics of each individual fund. To obtain an explicit expression for the
likelihood function, we assume that the residuals are normally distributed.

Residual independence is not a key assumption for our model. When there is
residual dependency, the model will be misspecified. The likelihood function becomes
the quasi-likelihood function. Our QMLE still makes sense as the parameters govern-
ing the dependency structure are treated as auxiliary parameters with respect to the
goal of our analysis. Despite the model misspecification, in theory, the QMLE is still
consistent in that it gives asymptotically unbiased estimates. It will be less efficient
compared to the MLE of a correctly specified model. In our simulation study, we
consider residual dependency and quantify the loss in efficiency.

2.2 The Specification of the Alpha Distribution

What is a good specification for the alpha distribution, which we denote as Ψ? First,
the density of Ψ needs to be flexible enough to capture the true underlying distribution
of alpha. For instance, from both a theoretical and an empirical standpoint, two
groups of fund managers could exist, one group consisting of skilled managers, and
the other consisting of unskilled managers. Alternatively, we could think of five groups
of managers (i.e., top, skilled, neutral, unskilled, and bottom), similar to the five star
evaluation system used by Morningstar. These concerns suggest that the density of
Ψ should be able to display a multi-modal pattern, the density associated with each
mode capturing the alpha distribution generated by a particular group of managers.5

On the other hand, having a flexible distribution does not mean that the distribu-
tion should be complicated. In fact, the very principle of regularization in statistics
is to have parsimonious models to avoid overfitting.6 Hence, without sacrificing too
much flexibility, we would like a distribution that is simple and interpretable.

5Our specification of Ψ makes it possible for the density to display a multi-modal pattern.
However, under certain parameterizations, a unimodal pattern is also possible. Our model estimation
will help us determine what pattern is most consistent with the data.

6See, for example, Bickel and Li (2006).
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Driven by these concerns, we propose to model the alpha distribution by a Gaus-
sian Mixture Distribution (GMD) — a weighted sum of Gaussian distributions — that
is widely used in science and medical research to model population heterogeneity. A
one-component GMD is just a standard Gaussian distribution. The two-component
GMD is a mixture of two Gaussian distributions and allows for considerable hetero-
geneity:

Y = (1− I) · Ye + I · Yh,

where Y is the random variable that follows the GMD, and I, Ye and Yh are indepen-
dent random variables.7 I is an indicator variable that takes a value of 0 or 1, and it
is parameterized by π, which is the probability for it to equal 1 (i.e., Pr(I = 1) = π).
Ye and Yh are normally distributed variables that are parameterized by (µe, σ

2
e) and

(µh, σ
2
h). To achieve model identification, we assume µe < µh. In total, there are five

parameters that govern a two-component GMD.

In our context, the model has a simple interpretation. With probability 1−π, we
draw a manager from the population of unskilled managers (that is, I = 0), who on
average generate an alpha of µe (‘e’ = low alpha). With probability π, the manager
is drawn from the population of skilled managers (that is, I = 1), who on average
generate an alpha of µh (‘h’ = high alpha). The overall population of alpha is thus
modeled as the mixture of the two normal distributions.

The two-component model can be easily generalized to multi-component models.
For a general L-component GMD, we order the means of its component distributions
in ascending order (i.e., µ1 < µ2 < · · · < µL) and parameterize the probabilities of
drawing from each component distribution as

π = (π1, π2, . . . , πL)′,
L∑
l=1

πl = 1.

With enough number of components in the model, the GMD is able to approx-
imate every density with arbitrary accuracy, the fact of which partly explains its
popularity. However, the model becomes more difficult to identify when the number
of components gets large.8 Therefore, between two models that produce similar likeli-
hood values, we prefer the parsimonious model. We rely on our simulation framework
to perform formal hypothesis testing on the candidate models and to select the best
model.9 The idea of using a mixture distribution to model the cross-section of fund

7For applications of the Gaussian Mixture Distribution in finance, see Gray (1996) and Bekaert
and Harvey (1995).

8See, for example, Figueiredo and Jain (2002) for a discussion on the identifiability problem for
a GMD and a potential solution.

9Another benefit in using the GMD is that it reduces the computational burden for the estimation
of our model. In particular, when the components in A follow a GMD and the returns R follow
a normal distribution conditional on A, we show in the appendix that the conditional distribution
of the components in A given R is also a GMD. This makes it easy for us to simulate from the
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alphas has also been explored by the recent literature on performance evaluation, e.g.,
Chen et al. (2015). However, we offer a new approach that takes the various sources
of estimation uncertainty into account.

2.3 The Identifiability and Interpretability of Ψ

The recent literature on investment fund performance evaluation attempts to group
funds into different categories. For example, Barras, Scaillet and Wermers (2010)
and Ferson and Chen (2015) assume that funds are drawn from a few subpopula-
tions, with “good” and “bad” managers coming from distinct subpopulations. Our
parameterization of Ψ also bears this simple interpretation of a multi-population
structure for the alpha distribution. However, different from Barras, Scaillet and
Wermers (2010) and Ferson and Chen (2015), our structural estimation approach al-
lows to take various sources of estimation risk into account when we classify funds into
distinct performance groups. Our empirical results show that our approach makes a
material difference in the classification outcome.

Alternatively, we can think of Ψ as a parametric density to approximate the dis-
tribution of the population of fund alphas. The GMD is a flexible and widely used
parametric family to approximate unknown densities. As in most density estimation
problems, we are facing a tradeoff between accuracy and overfitting. In our appli-
cation, we pay special attention to the overfitting issue. In particular, we perform
a simulation-based model selection procedure to choose a parsimonious model. This
allows us to use the simplest structure — provided that it adequately models the
alpha distribution — to summarize the alpha population. This also makes it easier
to interpret the composition of the alpha population.

To think about the identification of Ψ in our model, we first focus on an extreme
case. Suppose we have an infinitely long time-series for each fund so that there is no
estimation uncertainty in alpha. In this case, our model will force Ψ to approximate
the cross-section of “true” alphas. Suppose the left tail of the alpha distribution is
very different from the right tail. The single component GMD will fail to capture
this asymmetry.10 A two-component GMD may be a better candidate. Intuitively,
we can first fit a normal distribution for the alpha observations that fall below a
certain threshold and another normal distribution for the alpha observations that fall
above a certain threshold (these two thresholds are not necessarily equal). We then
mix these two distributions in a way that the mixed distribution approximates the
middle part of the alpha distribution well, that is, the alpha distribution that covers
the non-extreme alphas.

conditional distribution of A given R, which is the key step for the implementation of the EM
algorithm that we use to estimate our model.

10Fama and French (2010) find that the left tail of the alpha distribution is indeed more dispersed
than the right tail, consistent with our findings when we apply our model to mutual funds.
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In practice, we have a finite return time-series. This introduces estimation un-
certainty in both the alphas and the other OLS parameters. As a result, instead
of fitting the cross-section of “true” alphas, our method tries to fit the cross-section
of the distributions of the alphas, each distribution corresponding to the estimation
problem of the alpha of an individual fund and capturing estimation risk. However,
our previous discussion on the identification of Ψ when “true” alphas are available
is still valid. In particular, the parameters in Ψ are identified by capturing the de-
parture of the alpha distribution from a single normal distribution, only that this
time the alpha distribution is no longer the distribution of “true” alphas but a mixed
distribution of the estimated distributions of the alphas.

More rigorously, the parameters in Ψ can be shown to be identified through high
order moments of the alpha population. For example, for a two-component GMD, its
five parameters can be estimated by matching the first five sample moments of the
data with the corresponding moments of the model.11 Despite its intuitive appeal, the
moments-based approach cannot weight different moments efficiently. Our likelihood-
based approach is able to achieve estimation efficiency. In our simulation study, where
we experiment with a two-component GMD, the model parameters seem to be well
identified and accurately estimated.

2.4 Model Discussion

The traditional fund-by-fund hypothesis testing framework poses a number of chal-
lenges with respect to making inference on the population of fund alphas. While
hypothesis testing may be useful when we want to test the significance of a single
fund, we need to make adjustment for test multiplicity when the same test is per-
formed on many funds.12 This method is less useful when we try to make inference
on the entire alpha population. By testing against a common null hypothesis (e.g.,
alpha equals zero), this method essentially treats fund alphas as dichotomous vari-
ables, while, more realistically they should be continuous. Our model assumes that
the true alpha is a continuous variable and provides density estimates that can be
used to evaluate each individual fund as well as the alpha population.

The traditional approach also places too much weight on the statistical significance
of individual alphas and overlooks their economic significance from a population per-
spective. For example, suppose we have two funds that both have a t-statistic of 1.5.
One has an alpha of 20% (per annum) and the other has an alpha of 2% (per annum).
Should we treat them the same? We think not. The 20% alpha, albeit volatile, tells
us more about the plausible realizations of alphas in the cross-section than the 2%

11See Cohen (1967) and Day (1969) for the derivation of a two-component GMD based on the
method of moments approach.

12For recent papers on investment fund performance evaluation that emphasize multiple hypoth-
esis testing, see Barras et al. (2010), Fama and French (2010), and Ferson and Chen (2015).
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alpha.13 Following the standard approach, we not only ignore the difference in mag-
nitude between the two alphas, but we also classify both funds as zero-alpha funds,
causing an unnecessary loss of information regarding the cross-sectional distribution
of alphas.

Our critique of the traditional approach is consistent with the recent advances in
statistics, and in particular in machine learning, that emphasize regularization.14 In
general, regularization refers to the process of introducing additional information or
constraints to achieve model simplification that helps reduce model overfitting. In
the context of our application, we have a complex dataset given the multidimensional
nature of the cross-section of investment funds. The standard approach, by treating
each fund as a separate entity and running equation-by-equation (that is, fund-by-
fund) OLS to obtain a separate t-statistic to summarize its performance, does not
reduce the complexity of the dataset. In contrast, our framework imposes a parametric
distribution on the cross-section of alphas and thereby substantially reduces the model
complexity. It is unlikely to produce a time-series fit that is as good as the equation-
by-equation OLS. However, the better fit by the equation-by-equation estimation
may reflect overfitting, which means that the estimated cross-sectional distribution
of alphas may be a poor estimate of the future distribution. Our method seeks to
avoid overfitting with the goal of getting the best forecast of the future distribution.

At the core of our method is the idea of extracting information from the cross-
section of funds. This information can be used both to make inference on the alpha
population and to refine our inference on a particular fund. To motivate the idea,
we use two examples throughout our paper. The first example is what we call a
one-cluster example. Suppose all the funds in the cross-section generate an alpha of
approximately 2% per annum and the standard error for the alpha estimate is about
4%. Since the t-statistics are all approximately 0.5 (=2%/4%), which is not even high
enough to surpass the single test t-statistic cutoff of 2.0, let alone the multiple testing
adjusted cutoffs, we would declare all the funds to be zero-alpha funds. Using our
method, the estimate of the mean of the alpha population would be around 2%. In
this case, we think our approach provides a better description of the alpha population
than the usual hypothesis testing approach. Declaring all the funds to be zero-alpha
funds ignores information in the cross-section.

While the one-cluster example illustrates the basic mechanism of our approach, it
is too special. Indeed, a simple regression that groups all the funds into an index and
tests the alpha of the fund index will also generate a positive and significant estimate
for the mean of the alpha population. This motivates the second example, which we
call the two-cluster example. For the two-cluster example, suppose we have half of
the funds having an alpha estimate of approximately 2% per annum and the standard
error for the alpha estimate is about 4%. The other half have an alpha estimate of

13While some investment funds can use leverage to amplify gains and losses, they also face leverage
constraints. Therefore, 20% tells us more about the tails of the alpha distribution than 2%.

14For recent survey studies on regularization, see Fan and Lv (2010) and Vidaurre, Bielza, and
Larrañaga (2013).
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approximately −2% per annum and also have a standard error of about 4%. Similar
to the one-cluster example, no fund is statistically significant individually. However,
we throw information away if we declare all the funds to be zero-alpha funds. Different
from the one-cluster example, if we group all the funds into an index and estimate the
alpha for the index fund, we will have an alpha estimate close to zero. In this case,
the index regression approach does not work as it fails to recognize the two-cluster
structure of the cross-section of fund alphas. Our approach allows us to take this
cluster structure into account and make better inference on the alpha population.

The one-cluster and two-cluster examples are special cases of the alpha distribu-
tions that our framework can take into account. They correspond to essentially a
point mass distribution at 2% and a discrete distribution that has a mass of 0.5 at
−0.2% and 0.5 at 0.2%, respectively. Our general framework uses the GMD to model
the alpha distribution and seeks to find the best fitting GMD under a penalty for
model parsimony. It therefore extracts information from the entire cross-section of
alphas.

After we estimate the distribution for the cross-section of alphas, we can use this
distribution to refine the estimate of each individual fund’s alpha. For instance, for
the one-cluster example, knowing that most alphas cluster around 2.0% will pull our
estimate of an individual fund’s alpha towards 2.0% and away from zero. Similarly,
for the two-cluster example, knowing that the alphas cluster at −2.0% and 2.0% with
equal probabilities will pull our estimate of a negative alpha towards −2.0% and a
positive alpha towards 2.0%, and both away from zero. In our general framework,
after we identify the GMD that models the alpha cross-section, we use it to update
the density estimate of each fund’s alpha, thereby using cross-sectional information
to refine the alpha estimate of each individual fund.

We now discuss the details of our model. To see how our method takes esti-
mation uncertainty into account, we focus on the likelihood function in (6) (that
is,

∏N
i=1

∫
f(Ri|αi, βi, σi)f(αi|θ)dαi). Suppose we already have an estimate of B

and Σ (e.g., the OLS estimate) and seek to find the estimate for θ. Notice that
f(Ri|αi, βi, σi), the likelihood function of the returns of fund i, can be viewed as a
probability density on αi. In particular, under normality of the residuals, we have

f(Ri|αi, βi, σi) ≡ w(αi) ∝ exp{−
[αi −

∑T
t=1(rit−β′

ift)

T
]2

2σ2
i /T

}, (7)

where ft = [f1,t, f2,t, . . . , fK,t]
′ is the vector of factor returns at time t. Viewing in

this way,
∫
f(Ri|αi, βi, σi)f(αi|θ)dαi =

∫
w(αi)f(αi|θ)dαi is a weighted average of

f(αi|θ), with the weights (i.e., w(αi)) given in (7).

When σi/
√
T is small, that is, when there is little uncertainty in the estimation

of αi, w(αi) will be concentrated around its mean, i.e.,
∑T

t=1(rit−β′
ift)

T
. In fact, when

σi → 0, i = 1, . . . , N and when B and Σ are set at their OLS estimates, the like-
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lihood function in (6) converges to
∏N

i=1 f(α̂OLSi |θ) — the likelihood function when
the alphas are exactly set at their OLS estimates. Therefore, ignoring the time-
series uncertainty in the estimation of the alphas, the likelihood function collapses to
the likelihood function constructed under the traditional approach, that is, running
equation-by-equation OLS first and then estimating the distribution for the fitted
alphas. Simple as it is, this is what people commonly do when they try to summarize
fund performance in the cross-section. Our approach, by using a weighting function
w(αi) that depends on σi/

√
T , allows us to take the time-series uncertainty in the

estimation of the alpha into account.

Moreover, the weighting function w(αi) is fund specific, that is, w(αi) depends
on the particular level of estimation uncertainty for αi (i.e., σi/

√
T ). Therefore, the

likelihood function in (6) allows different weighting functions for different funds. This
is important given the cross-sectional heterogeneity in estimation uncertainty across
funds, in particular across investment styles.

Our approach offers more than just taking the estimation uncertainty for αi (i.e.,
σi/
√
T ) into account. As it shall become clear later, our estimates of both αi and σ2

i

not only rely on fund i’s time series, but also use information from the cross-sectional
distribution of the alphas. Hence, in our framework, the OLS t-statistic is not an
appropriate metric to summarize the significance of fund alphas. Both its numerator
and denominator need to adjust for the information in the alpha population. In
contrast, the approach in Chen et al. (2015) relies on the OLS t-statistics to estimate
the cross-sectional distribution of the alphas. As a result, it fails to use information
in the alpha population to adjust OLS t-statistics and yields biased and inefficient
estimates of the cross-sectional distribution of the alphas, as we will show in our
simulation study.

On the other hand, our knowledge about the alpha population helps refine our
estimates of the risk loadings and the residual variances. Suppose we already have an
estimate of θ and seek to estimate B and Σ. We again focus on the likelihood func-
tion

∫
f(Ri|αi, βi, σi)f(αi|θ)dαi, but instead view f(αi|θ) as the weighting function.

f(αi|θ) tells us how likely it is to observe a certain αi from a population perspective.
If αi is unlikely to occur over a certain range, the likelihood function will downweigh
this range relative to other ranges over which the occurrence of alpha is more plau-
sible. In the extreme case when we have perfect knowledge about the alpha of a
certain fund (say, α̂0

i ), the likelihood function becomes f(Ri|α̂0
i , βi, σi), essentially the

likelihood function for a linear regression model when the intercept is fixed. In gen-
eral, the MLE of βi and σi will be different from their unconstrained OLS estimates,
reflecting our knowledge about the alpha population. This is again different from the
approach in Chen et al. (2015), where risk loadings and residual variances are fixed
at their OLS estimates.
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2.5 Context

Our paper is related to the statistics literature on random effects models, which, un-
like fixed effects models, explicitly assume that the variables of interest are drawn
from an underlying population.15 Our innovation to this literature is two fold. First,
we propose a flexible normal-mixture distribution to approximate the random ef-
fects population, which is important given the well-documented multi-group nature
of investment fund performance (see Barras et al., 2010, Ferson and Chen, 2015).
Standard random effects models often impose simple distributions on the random
effects population (e.g., a normal distribution), as their main goal for inference is
on the fixed effects portion of the model. Second, we propose a new twist on the
EM algorithm to solve the model MLE, which takes into account both the main pa-
rameters that characterize the random effects population (e.g., the GMD parameters
that govern the alpha population) and a large set of auxiliary parameters that govern
individual funds’ time-series (e.g., factor loadings and residual standard deviations).
We show our algorithm performs well through simulation evidence.

Our paper is also related to the literature on latent factor models and the EM
algorithm.16 Standard EM algorithms apply to situations where we need to fit a mix-
ture distribution (e.g., a GMD) to the data. Since we do not know which component
distribution of the mixture model that an observation falls into, the EM algorithm
provides an efficient way to sequentially classify observations into the components and
estimate the density function for each component distribution. In our application,
importantly, we do not observe fund alphas. They are defined through the assumed
return dynamics that involve unknown parameters such as factor loadings and resid-
ual standard deviations for each individual fund. As such, our innovation is to embed
the EM framework into a panel regression model that allows heterogeneous regression
coefficients in the cross-section. We analytically derive key formulas that allow us to
implement the EM algorithm and illustrate its performance through simulations.

A recent paper by Chen et al. (CCZ, 2015) also implements the EM algorithm
to extract the underlying alpha population. In particular, they employ a two-stage
estimation procedure to first run equation-by-equation OLS to obtain the fitted alphas
and their standard errors, and then feed them into an EM framework to estimate
the underlying alpha distribution. We show their method is problematic in several
respects. Their two-stage procedure only uses fund specific information to estimate
the OLS parameters (i.e., factor loadings and residual standard deviations) in the
first stage of their estimation procedure. In contrast, our approach allows us to use
information in the entire cross-section to update the OLS parameter estimates. This
is important given our structural model assumption that fund alphas are drawn from
the same underlying population and that many funds in our sample have a short
return history. Indeed, we show through simulations that our approach represents

15See Hsiao (2014) and Wooldridge (2013) for an introduction on random effects models.
16See Dempster, Laird, and Rubin (1977), Bilmes (1998), and McLachlan and Krishnan (2007).
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a substantial improvement over CCZ in estimating both the model parameters and
important summary statistics of the alpha population.

On a deeper level, CCZ’s approach is inconsistent from the perspective of decom-
posing fund performance into luck and skill. In their first stage regression, by running
OLS, they are forcing the luck components for each fund (i.e., return residuals) to sum
up to zero. However, in their second stage regression where one updates individual
funds’ alphas by drawing on information from the cross-section, the luck components
no longer sum up to zero. This inconsistency does not exist in our framework as
our model tries to find the MLE for all parameters simultaneously, thereby making
sure that structural parameters that govern the alpha population are compatible with
fund specific OLS parameters. Hence, our framework is conceptually different from
CCZ. We provide a detailed comparison of the two models in the next section.

Our paper is also related to the multiple hypothesis testing approach that has
been applied to performance evaluation (see Barras et al., 2010, Fama and French,
2010, and Ferson and Chen, 2015). The idea is to first subtract fund alphas in-
sample to create a pseudo sample of funds that have zero alphas and then test the
null hypothesis of zero alphas using resampling techniques. While Fama and French
(2010) mainly focus on the null of zero alphas for all funds, Barras et al. (2010)
and Ferson and Chen (2015) show the importance of injecting non-zero alphas when
resampling to increase test power. Our approach generalizes the insight of Barras et
al. (2010) and Ferson and Chen (2015) by explicitly estimating the cross-sectional
alpha distribution. Our framework builds on the likelihood function and seeks to find
the optimal alpha distribution that trades off fitting the cross-sectional distribution
of alpha and explaining individual fund returns. In contrast, as we mentioned earlier,
the multiple testing technique needs to choose a penalty from a number of different
approaches and specify a Type I error threshold.

Bayesian methods have also been applied to performance evaluation. Both Bayesian
methods and our approach imply shrinkage. However, while we explicitly estimate the
shrinkage target — the underlying alpha population, some Bayesian methods imply
shrinkage towards a pre-specified target. For example, Baks, Metrick, and Wachter
(2001) use informative priors to show how prior beliefs about investment opportunities
affect people’s investment decisions. Jones and Shanken (2005) use several intuitive
priors, including both informative and non-informative priors, to summarize informa-
tion in the cross-section.17 When diffuse priors are used, Bayesian methods arguably
can minimize the impact of the prior specification and let the data speak. However,
the choice of a particular distributional family (e.g., normal vs. non-normal distri-
butions) for the prior still has a substantial impact on the posterior inference, as we
show in simulations. While such a decision is likely to be an issue for any type of para-
metric inference, we try to minimize the impact of this choice by using a more flexible
distributional family than what is used in Jones and Shanken (2005). In addition,

17For other papers on Bayesian performance evaluation, see Pastor and Stambaugh (2002),
Kosowski, Naik and Teo (2007), and Busse and Irvine (2006).
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we apply the likelihood ratio test — thanks to our frequentist setup — to select the
best performing parsimonious model to describe the alpha population. We think this
offers a clearer picture of the alpha distribution than what a standard Bayesian model
averaging framework generates, assuming one extends Jones and Shanken (2005) to
cope with the more flexible distributional family in our model. Our extension is also
important given the documented asymmetric tail behavior of the alpha population
(see, e.g., Fama and French, 2010) that is crucial to identify extreme performers, as
well as the recent attempt to classify funds into broad performance groups (Kosowski
et al. 2006, Barras et al. 2010, Ferson and Chen 2015, and Chen, Cliff, and Zhao
2015).

Our approach relies on the MLE and is therefore inherently a frequentist approach.
By trying not to add to the longstanding debates between frequentist and Bayesian
approaches, we provide some simulation results to address the Bayesian critique that
one can generate the frequentist estimate of the alpha distribution by specifying
the “correct” prior. In particular, we choose a few of the prior specifications in
Jones and Shanken (2005) and show that the associated Bayesian estimates are much
different from our estimates, both for the alpha population and for individual fund
alphas. Since our estimate for the underlying alpha distribution is unbiased (as we
show in simulations), Bayesian methods may lead to biased inference on the alpha
population, echoing the findings in Busse and Irvine (2006) that the prior specification
greatly affects the predictive accuracy of Bayesian alphas. Given that our goal is to
have an objective assessment of the underlying alpha population and, through which,
to evaluate individual fund performance, our framework at the very least offers a
competing approach to Bayesian performance evaluation.

Our approach features the use of a mixture distribution to model the underlying
alpha population. This gives us the flexibility to capture the non-normal distribution
of fund alphas, as emphasized by recent findings of the literature.18 With Bayesian
methods, such flexibility is challenging, as such, conjugate priors are imposed for
analytical tractability. As shown in Verbeke and Lesaffre (1996), the population
parameters for random effects may be badly estimated under the normality assump-
tion in a random effects model. We confirm this in our simulation study: the Jones
and Shanken (2005) specification leads to biased inference on the alpha population
when the alpha distribution features non-normality. Sastry (2013) extends Jones
and Shanken (2005) by proposing a Bayesian approach that incorporates non-normal
priors and shows improvement over Jones and Shanken (2005) in capturing funds
with extreme alphas. However, since funds with extreme alphas are infrequently ob-
served, seemingly non-informative priors on key parameters of the non-normal prior
often yield inconsistent estimates of the model, as shown in Ishwaran and Zarepour

18See, e.g., Kosowski et al. (2006), Barras et al. (2010), Ferson and Chen (2015), and Chen,
Cliff, and Zhao (2015). The non-normality of the distribution of alphas should be more pronounced
for hedge fund and venture capital returns, making our framework an appealing candidate for per-
formance evaluation for these alternative investment vehicles.
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(2012).19 In addition, by imposing a GMD with a pre-specified number of component
distributions, we are not able to evaluate the incremental contribution of alternative
GMD’s statistically, which may lead to biased inference of the alpha population. An-
drikogiannopoulou and Papakonstantinou (2016) further generalize Sastry (2013) to
model each tail of the alpha distribution as following a separate normal-mixture dis-
tribution and estimate the model using Bayesian methods. However, using likelihood
ratio tests, we show that such extensions are unlikely to be necessary and may lead
to model overfitting. Overall, our frequentist framework provides estimates that are
not driven by prior specifications and are shown to be consistent in simulations. At
the same time, we rely on the likelihood ratio statistic to test for model adequacy,
overcoming the dilemma of being forced to choose a prior distribution in the Bayesian
framework.

Besides the full-blown Bayesian approach, another way to achieve shrinkage is
through multiple shrinkage. In our context, multiple shrinkage amounts to a method
that first partitions the cross-section of funds into meaningful groups (e.g., groups
classified by certain fund characteristics) and then uses group information to refine
the alpha estimate based on fund-specific information. George (1986a,b) provides
statistical foundations for this approach. For finance applications, Vasicek (1973),
Karolyi (1993), and Cosemans et al. (2015) are examples that use cross-sectional
information to obtain better estimates for risks. This approach is very intuitive. When
there are fund attributes (e.g., fund size) that are believed to affect performance a
priori, incorporating these attributes in performance evaluation should produce better
alpha estimates. In fact, one can combine multiple shrinkage and our framework by
first partitioning funds into sub-populations (e.g., different style groups) and then
apply our method to each sub-population. On the other hand, when it is not clear
what fund attributes should be used to predict alphas (for example, Jones and Mo
(2016) demonstrate the elusive roles of discovered alpha predictors in forecasting fund
returns out-of-sample), multiple shrinkage based on a pre-determined set of attributes
may lead to biased and inefficient alpha estimates. Our framework is agnostic about
instrumental variables that can potentially help predict fund returns and we extract
the shrinkage target — the underlying alpha population — given it is based on returns
data only. Harvey and Liu (2016a) show how to extend our current framework to
evaluate alpha predictors.

19In particular, Ishwaran and Zarepour (2012) show that naive use of the non-informative Dirichlet
prior for the drawing probabilities of the mixture model leads to inconsistent estimates of the mixture
density. Besides the issue with the prior on the mixture model, Sastry (2013) also imposes diffuse but
proper priors (i.e., conjugate priors with large variances) on the means and variances of the mixture
model, as well as on the cross-section of factor loadings. However, our simulation experience with
Jones and Shanken (2005) is that one needs diffuse and improper priors on factor loadings in order
to achieve consistent parameter estimates when the mixture model is composed of a single normal
component. Hence, we do not expect Sastry (2013) to be able to generate consistent parameter
estimates for the cross-sectional distribution of alphas. See Kass and Wasserman (1996) for a further
discussion on how small samples (i.e., time-series) may lead to inconsistent estimation of individual
fund regression coefficients under different prior specifications (including diffuse priors).
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Finally, our approach is closely related to the literature on empirical Bayes meth-
ods. One way to interpret our method is to cast it into an empirical Bayes framework
where alphas are assumed to be drawn from an underlying distribution that is char-
acterized by a few population parameters (also known as hyperparameters). Given
this distribution and the return time-series for each fund, we can derive the marginal
densities of the cross-section of fund returns conditional on the hyperparameters. We
then estimate the hyperparameters by maximizing these marginal densities. For fi-
nance applications of empirical Bayes methods, see Frost and Savarino (1986) and
Karolyi (1993). Our innovation to this literature is two-fold. First, we introduce a
new panel regression model that features non-normally distributed random intercepts
and heterogeneous regression coefficients in the cross-section, both of which are nec-
essary to accommodate our application to performance evaluation. Second, we offer a
new implementation of the EM algorithm to solve for the MLE. Our implementation
sequentially updates hyperparameters that govern the underlying alpha distribution
and regression coefficients that govern individual funds’ return dynamics and is shown
to perform well in simulations. Our methodological contribution should not be un-
derestimated as the biggest hurdle to empirical Bayes methods is usually the efficient
estimation of the model MLE. In our framework, the model MLE is impossible to
solve by a brute-force search due to the large number of parameters. Our reliance
on the EM algorithm, aside from its intuitive appeal, is also necessary as finding the
MLE for even the simplest model with latent variables (i.e., missing alphas in our
context) is usually not possible.20

3 Estimation

3.1 A New Expectation-Maximization Framework

A direct maximization of (6) is difficult. The size of the parameter space is large and
the likelihood function involves high-dimensional integrals. We offer a new implemen-
tation of the well-known Expectation-Maximization (EM) algorithm to facilitate the
computation.

The idea of the EM algorithm is to treat the cross-section of alphas as missing
observations and iteratively update our knowledge of the alpha distribution and the
model parameters. With this approach, parameter estimates and learning about the
missing observations can be done sequentially. In the context of our application,
manager skill (i.e., alphas) are missing observations. In the “expectation” step of the
EM algorithm, for a given set of parameter values,21 we fill in the missing observations

20See Bilmes (1998) for a tutorial on some basic features of the EM algorithm.
21In our model, parameter values refer to fund-specific factor loadings, residual standard devia-

tions, and parameters that govern the alpha population. The given set of parameter values could be
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with random draws from the conditional distribution of alphas given the parameter
values. We calculate the averaged value of the likelihood function across these random
draws. Essentially, at this step, we learn about manager skill to the best of our
knowledge of the model parameters and update the likelihood function accordingly.
In the “maximization” step of the algorithm, we maximize the updated likelihood
function, which takes into account our recently updated information about manager
skill. We obtain a new set of parameter estimates for factor loadings and residual
standard deviations. These parameter estimates are subsequently fed into another
“expectation” step to start a new round of estimation. The “expectation” step and
the “maximization” step are performed iteratively to arrive at the MLE.

From a methodological perspective, our framework contributes to the literature
on EM algorithm by allowing heterogeneous funds in the cross-section and simulta-
neously estimating fund specific parameters and other structural parameters.22 In
particular, we allow both factor loadings and residual standard deviations to be fund
specific and update the entire cross-section of fund-specific variables along with other
structural parameters in the maximization step of the EM algorithm. This is an im-
portant and necessary extension for the purpose of our application as we know there
is estimation uncertainty as well as a large amount of heterogeneity in the risk-taking
behavior of mutual funds. Failing to take either the heterogeneity or the estimation
uncertainty into account may bias our estimate of the alpha population. On the other
hand, allowing fund heterogeneity does not compromise the simplicity and the intu-
itive appeal of the standard EM algorithm. We show that our new algorithm simply
embeds a constrained OLS estimate for fund specific parameters (i.e., factor loadings
and residual standard deviations) into an otherwise standard EM algorithm. This
greatly reduces the computational burden of our model. We provide a comprehensive
simulation study to demonstrate the performance of our estimation procedure.

While we apply our framework to study fund performance in the current paper,
we expect its general insight to be useful in other applications as well. Harvey and Liu
(2016a) modify the framework in this paper to study the cross-sectional predictability
of alpha.

the initial set of parameters to start the entire algorithm, for which a reasonable choice is the factor
loadings and residual standard deviations from the equation-by-equation OLS estimates. It could
also be the optimization outcome following the intermediate step (i.e., the “maximization” step) of
the algorithm.

22See Dempster, Laird, and Rubin (1977) for the original paper that proposes the EM algorithm.
See McLachlan and Krishnan (2007) for a more detailed discussion of the algorithm and its exten-
sions. Different from these papers on the EM algorithm, our method allows for heterogeneous factor
loadings and residual standard deviations in the cross-section. Chen et al. (2015) use a modified EM
algorithm to group funds into different categories. They employ a two-step estimation procedure to
first estimate the equation-by-equation OLS and then use the t-statistics of alphas to classify funds.
We put fund-specific variables on an equal footing with other structural parameters and simultane-
ously estimate the model parameters. This allows us to take into account the estimation uncertainty
for fund-specific variables using information from the entire fund cross-section. In contrast, CCZ
only take into account the estimation uncertainty using fund-specific information.
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3.2 Estimation Procedure

We discuss the idea of the algorithm in the main text and describe the details in the
appendix. The following steps describe the procedure of the EM algorithm:

Step I Let G = [θ′,B′,Σ′]′ denote the collection of parameters to be estimated. We
start at some parameter value G(0). A sensible initial choice is the equation-
by-equation OLS estimate for B and Σ, and the MLE for θ based on the fitted
OLS alphas.

Step II After the k-th iteration of the algorithm,23 suppose the model parameters are
estimated as G(k). We calculate the expected value of the log complete likelihood
function, with respect to the conditional distribution of A given the current
parameter values and R, i.e.,

L(G|G(k)) = EA|R,G(k) [log f(R,A|G)], (8)

= EA|R,G(k) [
N∑
i=1

log f(Ri|αi, βi, σi)f(αi|θ)]. (9)

It is very likely that L(G|G(k)) will not have a closed-form expression. But
a variant of the EM algorithm — named the Monte Carlo EM algorithm —
recommends replacing the expectation with the sample mean, where the sample
is generated by simulating from the distribution of A|R,G(k).24 We draw M(=
100) A’s from the distribution A|R,G(k) and approximate the expectation in
(9) by its sample counterpart:25

L̂(G|G(k)) =
1

M

M∑
m=1

[
N∑
i=1

log f(Ri|αmi , βi, σi)f(αmi |θ)]. (10)

Step III We need to find parameter values that maximize L̂(G|G(k)) and update the
parameter estimate as G(k+1). This is usually not easy if the dimension of the
parameter space is high. However, in our context, there is a simple solution. An

23In our algorithm, an iteration refers to one round of updates for all model parameters, includ-
ing parameters that characterize the alpha population, as well as fund-specific factor loadings and
residual standard deviations.

24See Greg, Wei and Tanner (1990), McCulloch (1997), and Booth and Hobert (1999).
25A larger number of M gives us a closer approximation to the expectation in (9). However, it

also increases the computational burden. We find that M = 100 gives us an estimate of θ (notice
that the estimates of B and Σ do not depend on M , as shown in the appendix) that is very close
to that under, say, M = 1, 000. This is due to the fact that we have a large cross-section of alphas
so an insufficient sampling of the alpha distribution for individual funds do not have a large impact
on the optimization outcome. We therefore set M = 100 to save computational time.
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inspection of (10) shows that (B′,Σ′) and θ can be updated separately. More
specifically, (10) can be written as

L̂(G|G(k)) =
N∑
i=1

1

M

M∑
m=1

log f(Ri|αmi , βi, σi) +
1

M

M∑
m=1

N∑
i=1

log f(αmi |θ). (11)

Notice that L̂(G|G(k)) splits into two parts, one involving B and Σ, and the other

involving θ. This allows us to maximize L̂(G|G(k)) by separately maximizing the
two parts.

Step IV With the new parameter estimate G(k+1) obtained in Step III, we return to Step
II and start the (k+1)-th iteration. We iterate between Step II and Step III
until the parameter estimates converge.

The EM algorithm provides a tractable approach to find the MLE. It breaks
the multi-dimensional optimization problem into smaller steps that are manageable.
In theory, the EM estimator is guaranteed to converge to at least a local optimum
of the likelihood function.26 It has been successfully applied to panel regression
models with random effects when the the random effects do not follow a standard
distribution.27 However, our model falls out of the realm of the standard application
of the EM algorithm to panel regression models in that we allow heterogeneous risk
loadings across funds. Therefore, it is an open question as to whether the algorithm
performs well in our application. We provide a detailed simulation study to evaluate
the performance of our EM algorithm.

We pay particular attention to the local optimum issue and construct a sequential
estimation procedure to maximize the chance that our estimator converges to the
global optimum. In particular, we first try a large number of randomly generated
vectors of parameters to start the algorithm. Under a mild convergence threshold, we
obtain many sets of initial parameter estimates. Some of these estimates correspond
to a local optimum. We then select the top performers among these estimates and
apply tougher convergence thresholds to sequentially identify the global optimum.
Our on-line appendix provides the details of the implementation of our algorithm.

The steps of the EM algorithm make intuitive sense. They build on the idea
that our knowledge about the cross-section of alphas and the model parameters can
be sequentially updated. In Step I, we start with some initial parameter estimates,
possibly the standard OLS estimates. In Step II, given our starting estimates of
the model parameters, we calculate the expected value of the log likelihood function
conditional on the distribution of the alphas. An intuitive way to think about this
step is to replace A|R,G(k) with the best estimate of A given R and G(k).28 By

26See Wu (1983) for the convergence properties of the EM algorithm.
27See Chen, Zhang and Davidian (2002).
28See Neal and Hinton (1998) for a more rigorous interpretation of the EM algorithm.
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doing this, we are trying to come up with our best guess of the missing alphas given
the return data and the model parameters. This is the step where we update our
knowledge about the cross-section of alphas given our current estimates of the model
parameters. In Step III, pretending that the estimated alphas in Step II are the true
alphas, we have complete data and can easily estimate the model parameters. This
is the step where we update our knowledge about the risk loadings and the residual
variances (i.e., B and Σ). It is through the iterations between Step II and Step III
that our estimates of the model parameters get refined.

More insight can be gained into the EM algorithm by specifying the parametric
distribution Ψ. In Step II, assuming a Gaussian Mixture Distribution, the appendix
shows that the conditional distribution of A given the current parameter values (de-
noted as Ĝ) and R can be characterized as the distribution for N independent vari-
ables, with the i-th variable αi following a fund specific GMD that is parameterized
by θ̃i = ({π̃i,l}Ll=1, {µ̃i,l}Ll=1, {σ̃2

i,l}Ll=1):

µ̃i,l = (
σ̂2
l

σ̂2
l + σ̂2

i /T
)āi + (

σ̂2
i /T

σ̂2
l + σ̂2

i /T
)µ̂l, (12)

σ̃2
i,l =

1

1/σ̂2
l + 1/(σ̂2

i /T )
, (13)

π̃i,l =
π̂lφ(āi − µ̂l, σ̂2

l + σ̂2
i /T )∑L

l=1 π̂lφ(āi − µ̂l, σ̂2
l + σ̂2

i /T )
, l = 1, 2, . . . , L, (14)

where

āi ≡
T∑
t=1

(rit − β̂′ift)/T,

and φ(µ, σ2) is the density of the normal distribution N (0, σ2) evaluated at µ.

We can think of āi as the fitted alpha when βi is fixed at β̂i. It would be the
OLS estimate of alpha if β̂i were the OLS estimate of βi. The variance of the time-
series residuals is fixed at σ̂2

i . Taken together, āi and σ̂2
i /T can be interpreted as

the alpha estimate and its variance based on time-series information. On the other
hand, θ̂i = ({π̂i,l}Ll=1, {µ̂i,l}Ll=1, {σ̂2

i,l}Ll=1) is the current parameter vector governing the
GMD for the cross-sectional distribution of the alphas. Therefore, (12), (13) and
(14) update our estimates of the alphas by combining time-series and cross-sectional
information.

We start with a L-component GMD specification for the alpha population. The
updated alpha distribution for each individual fund is also a GMD with the same
number of components. However, the parameters that govern the GMD will be dif-
ferent across funds. For each of the L component distributions for the fund-specific
GMD, the mean (i.e., µ̃i,l) is a weighted average of the fitted time-series alpha and
the original mean for the GMD, the variance (i.e., σ̃2

i,l) is the harmonic average of the
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time-series variance and the original variance for the GMD, and the drawing probabil-
ity (i.e., π̃i,l) weights the original probability by φ(µ̄i− µ̂l, σ̂2

l + σ̂2
i /T ), which depends

on the distance between µ̄i and µ̂l (i.e., |µ̄i − µ̂l|) and the average of the variances
σ̂2
l + σ̂2

i /T .

Holding everything else constant, a lower time-series variance (i.e., σ̂2
i /T ) pulls

both the updated mean and variance closer to their time-series estimates, thereby
overweighing time-series information relative to cross-sectional information. On the
other hand, a smaller distance between µ̄i and µ̂l implies a higher drawing probabil-
ity (i.e., π̃i,l), which means that compared to the original GMD, we are now more
likely to draw from the component distribution that has a mean that is closer to µ̄i.
Hence, we revise our estimate of the cross-sectional distribution based on time-series
information. The expressions in (12), (13) and (14) bear intuitive interpretations as
to how we update the alpha estimates based on both time-series and cross-sectional
information. This synthesis of information is important as it allows us to obtain
the most informative estimate of the A distribution, which is then used to evaluate
the likelihood function as in Step II of the EM algorithm. It also distinguishes our
method from existing approaches that only rely on one source of information, either
cross-sectional or time-series.

Another way to interpret the formulas in equations (12)-(14) is to consider the
extreme case and assume that we have a single component GMD (that is, L = 1),
and moreover, its mean is zero (that is, µ̂1 = 0). In this case, we link the t-statistic
of fund i’s alpha (defined as µ̃i/σ̃i) with its OLS t-statistic (defined as āi/

√
σ̂2
i /T )

through:

µ̃i
σ̃i

=
āi√
σ̂2
i /T
×

√
σ̂2

1

σ̂2
1 + σ̂2

i /T
. (15)

Notice that
√

σ̂2
1

σ̂2
1+σ̂2

i /T
< 1 and the larger the time-series variance (that is, σ̂2

i /T ) is

relative to the cross-sectional variance (that is, σ̂2
l ), the smaller this number becomes.

Therefore, when the average alpha is zero in the population, we discount the OLS

t-statistic with a discount factor that equals
√

σ̂2
1

σ̂2
1+σ̂2

i /T
. More time-series uncertainty

results in a harsher discount.

The idea of discounting OLS t-statistic is consistent with the idea of multiple
testing adjustment, which has recently gained attention in both performance evalua-
tion and asset pricing in general.29 However, the mechanism in our model to deflate
t-statistics is different from standard multiple testing approaches. Our model, by
treating the alpha of an investment fund as random, takes into account the cross-
sectional uncertainty in alpha from a population perspective. Multiple testing meth-
ods, by treating the alpha as a fund-specific variable (that is, a fixed effect), adjust

29For recent finance applications of multiple hypothesis testing in asset pricing, see Barras et al.
(2010), Fama and French (2010), and Ferson and Chen (2015), Harvey, Liu, and Zhu (2016), and
Harvey and Liu (2015b).
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t-statistics by having a more stringent Type I error threshold. Despite the method-
ological difference, these two fundamentally different approaches arrive at the same
conclusion — we need to apply a “haircut” to the individual t-statistics of fund alphas.

In Step III, we update our parameter estimates based on the conditional distri-
bution of the alphas. We first update the OLS parameters except for the regression
intercepts, and then update θ — the parameter vector that governs the alpha popu-
lation.

For the update of the OLS parameters (see the appendix), we derive analytical
expressions for the MLE of βi and σ2

i . In particular, let m(αi) = EA|R,G(k)(αi) and
var(αi) = V arA|R,G(k)(αi) be the conditional mean and variance of αi. The MLE of
βi can be found as the regression coefficients obtained by projecting the return time-
series (i.e., {ri,t}Tt=1) onto the factor time-series (i.e., {ft}Tt=1), fixing the regression
intercept at m(αi). Therefore, the MLE of βi in our model differs from the usual
OLS estimate in that the regression intercept is forced to equal m(αi), the mean of
αi given our current knowledge about the alpha population (i.e., A|R,G(k)).

The MLE of σ2
i can be found by fixing βi at its MLE (i.e., β̆i). In particular,

define

ε2
i ≡

1

T

∑
t=1

(rit − β̆′ift −m(αi))
2, (16)

as the fitted residual mean squared error. Then the MLE of σ2
i is given by

σ̆2
i = ε2

i + var(αi). (17)

Notice that if we use (σ2
i )
MLE to denote the MLE of the residual variance for the stan-

dard regression model that projects the time-series of excess returns (i.e., {ri,t}Tt=1)
onto {ft}Tt=1, then we must have:

ε2
i ≥ (σ2

i )
MLE,

since the standard regression model seeks to minimize the sum of squared residu-
als without any parameter constraints. Therefore, two effects make the MLE of the
residual variance (i.e., σ̆2

i ) in our model larger than the standard model MLE (i.e.,

(σ2
i )
MLE). First, ε2

i is no less than (σ2
i )
MLE because we are considering a regression

model whose intercept is fixed at m(αi). Second, there is uncertainty in αi as cap-
tured by var(αi), which depends on the parameters given in (12), (13) and (14) of
the updated GMD (see the appendix). Since, as discussed previously, the updated
GMD takes both time-series and cross-sectional information into account, var(αi)
also incorporates information about the cross-sectional dispersion of the alphas.

These two effects implied by our model make intuitive sense as they allow us to
learn from both the mean and the variance of the alpha population. Additionally, the
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learning effect is more pronounced in small samples and will go away when we have
a long enough time series of returns. This can be easily seen from the formulas of
our algorithm. When T goes to infinity and based on equation (12)-(14), the alpha
distribution collapses to the point mass at āi, which is the estimate based on time-
series information only. This implies that m(αi) = āi and var(αi) = 0. As a result,
our MLE of βi and σi converge to their OLS estimates. The fact that our method
implies differential adjustment to the alpha estimate between small and large samples
makes it an attractive method for performance evaluation, where a large fraction of
funds have short time series.

For the update of θ, we seek for the parameter vector θ of a GMD that best
describes the alpha distribution. The optimization problem we are solving is:

θ̂ = arg max
θ

N∑
i=1

1

M

M∑
m=1

log f(αmi |θ), (18)

where {αmi }Mm=1 are randomly generated samples from the conditional distribution
of αi given R and G(k). If there were just one fund in the cross-section, then θ̂ will
approximately equal the parameters that govern the GMD for a single fund that
are given in equation (12)-(14). With multiple funds in the cross-section, we have
multiple GMD’s, each one governing the alpha distribution of a particular fund. Our
method tries to find the best θ that describes the cross-section of GMD’s, which can
be viewed as a mixture distribution that chooses a fund with equal probability from
the cross-section of funds and, conditional on a fund being chosen, draws an alpha
from the fund’s GMD. Notice that this mixture distribution in our model is very
different than the alpha distribution in the equation-by-equation OLS model, where
it is simply the cross-section of fitted alphas. Our method allows us to capture the
estimation risk of each fund’s alpha and leads to a more informed estimate of the
alpha distribution at the population level.

One concern about our model estimation is the large number of parameters. In-
deed, since we allow heterogeneity in fund risk loadings and residual variances, the
number of parameters grow almost proportionally with the number of funds in the
cross-section. However, the set of parameters that grow with the number of funds are
auxiliary parameters that govern the time-series dynamics of each individual fund.
The key parameter set of interest — θ that parameterizes Ψ — does not change
with the size of the cross-section. Intuitively, each additional fund added to the
cross-section, while creating a new set of parameters to estimate for its time-series
dynamics, will provide additional information for us to estimate θ. We show in the
simulation study that θ is accurately estimated when we have a large cross-section.
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3.3 A Simulation Study

3.3.1 Simulation Design

We detail a comprehensive simulation study to examine the performance of the NRA
model and compare it with existing models.

We use mutual fund data as an example.30 For our simulation study, we require
that a fund has at least eight months of return observations. This allows us to have
enough time series to estimate the factor model and is consistent with the existing
literature (e.g., Fama and French, 2010, Ferson and Chen, 2015). Imposing this
constraint, we have 3,619 funds in the cross-section covering the 1983–2011 period.
We obtain monthly returns for these funds. Except for the restriction on sample
length, we do not impose any further restrictions on the data and we use all the funds
in the data for our simulation study.

With this sample of mutual funds, we run equation-by-equation OLS based on
the full sample to obtain the estimates for B and Σ (i.e., B∗ and Σ∗). Factor load-
ings in B are based on the four-factor model in Carhart (1997). To make sure that
the parameters in θ are representative of the parameter space that governs the alpha
population, we use the set of parameters (θ∗) that correspond to the optimal param-
eter estimates for our mutual fund application in the next section. We collect all
parameter estimates into G∗ = [θ∗,B∗,Σ∗]′. G∗ will be the true underlying parameter
vector that governs the data generating process. Special attention is paid to funds
that do not have enough data to cover the entire sample period. In our simulations,
we make sure that the simulated returns for these funds cover the same time periods
as the original fund data.31 In our on-line appendix, we provide additional results
under alternative parameterizations of θ.

Table 1 reports the summary statistics of the parameter vector θ∗. The two-
component GMD separates the alpha cross-section into two groups. The first group
has a mean that is very negative (−2.28%, per annum) and a large standard deviation
(1.51%), and the second group has a mean that is slightly negative (−0.69%, per
annum) and a smaller standard deviation (0.59%). It is less frequent for an alpha to
fall into the first group as its drawing probability is around 28%.

30For a detailed description of these data, see the next section where we apply our method to the
universe of mutual funds.

31We need to make a choice for the number of component distributions for the GMD in our
simulation study. A one-component GMD (i.e., a single normal distribution) is obviously the simplest
GMD one can specify, but it is too special for a simulation study. We therefore specify a two-
component GMD — the simplest multi-component GMD, which also turns out to be the preferred
model for our mutual fund application, as shown in Section 4. Our simulation results do not
depend on the chosen structure of the GMD. We also try a three-component GMD. The results are
qualitatively similar in that NRA provides both more accurate (i.e., less biased) and less volatile (as
measured by the RMSE) estimates for both model parameters and implied summary statistics for
the alpha population than alternative models.
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Table 1: Parameter Vector (θ∗) for the Simulated Model

Parameter vector (θ∗) for the simulated model. It is the same
as the estimated parameter vector for the mutual fund applica-
tion in Section 4. µl and σl are the (annualized) mean and the
(annualized) standard deviation for the l-th component normal
distribution, and πl is the probability for drawing from the l-th
component, l = 1, 2.

First component (l = 1) Second component (l = 2)

µl(%) −2.277 −0.685

σl(%) 1.513 0.586

πl 0.283 0.717

Based on G∗, we simulate D (=100) panels of fund returns, each one having the
same size as the original data panel. In particular, for each fund i, we randomly
generate its alpha based on the GMD that is parameterized by θ∗. We then generate
ni N (0, (σ2

i )
∗) random variables, where ni is the sample size for fund i in the original

data. These random variables will be the simulated return residuals. Together with
the randomly generated alpha and the factor loadings β∗i , these residuals enable us
to construct the simulated return series for fund i.

To examine how residual correlation affects our results, we experiment with two
correlation choices. One scheme is to allow the cross-section of residuals to be contem-
poraneously correlated with a common correlation coefficient of ρ. The other scheme,
which is more realistic, is to calibrate a parametric model to match salient features of
the collection of pairwise correlations among funds in the cross-section, capturing the
heterogeneous cross-sectional dependency in the actual data. We provide simulation
results for both approaches. We describe the details of the second scheme in our
on-line appendix.

3.3.2 The Alpha Population

For each of the simulated return panels, we estimate our model, thereby obtaining
D sets of estimates. Table 2 summarizes these estimates and compares with the
estimates of two alternative models.32 The first is the standard OLS model (that
is, we first run equation-by-equation OLS and then fit a GMD for the cross-section
of alpha estimates). Simple as it is, OLS is widely used for performance evaluation.
Researchers often run equation-by-equation OLS first and then provide summary

32Note that π1+π2 = 1. However, we present the estimates for both parameters for completeness.
Summary statistics for π1 and π2 in general will not sum up to one as we are averaging over the
simulations.
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statistics on fitted alphas. The second is the model in CCZ, which offers a two-step
procedure that first estimates the cross-section of fund alphas and their associated
standard errors through the equation-by-equation OLS, and then fits a GMD based
on these estimates. It improves on the standard OLS model by taking into account
the equation-by-equation estimation uncertainty for the alphas.

Based on the results in Table 2, the NRA model stands out as superior to the two
alternative models. In particular, its finite sample biases are uniformly smaller (in
absolute value) than those under alternative models.

Let’s focus on the case when there is zero correlation among return residuals, i.e.,
ρ = 0. We first examine the means of the component normal distributions. For the
first component, for which the group mean is very negative (-2.28%) and the drawing
probability is relatively small (28%), the bias is 0.16% for NRA, 0.37% for CCZ, and
0.46% for the OLS model. Moreover, the estimation uncertainty (RMSE) for NRA
(0.19%) is about half of that of CCZ (0.39%), both of which are substantially smaller
than the RMSE for OLS (2.59%). For the second normal component, which happens
more frequently than the first group (drawing probability is 72%), the bias in the
mean estimate is small across all three models. Although both OLS and CCZ are
inferior to NRA by making less precise and more noisy alpha estimates for individual
funds (as we shall see later), when we pool the cross-section of funds together to
estimate the overall population mean, the noise at the individual fund level largely
cancels out. As a result, OLS and CCZ do not seem to provide significantly worse
parameter estimates for the population means than NRA. This is particularly the case
for the second normal component as we have more observations (72%) that fall into
this component so the diversification effect is stronger. For the first component, for
which we have fewer observations (28%) and more extreme alphas, NRA substantially
improves on OLS and CCZ in estimating the population mean.

Turning to the estimates of the variances of the two component distributions, the
contrast in model performance is starker. First of all, OLS provides variance estimates
that are severely biased. This is not surprising since, by ignoring the uncertainty in
the estimation of fund alphas, OLS attributes all the variation in the cross-section of
fitted alphas to the variation of the underlying alpha population, thereby exaggerating
the level of alpha dispersion for the alpha population. This result suggests that it is an
ill-advised practice to first run equation-by-equation OLS and then provide summary
statistics on fitted alphas.

NRA also provides variance estimates that are significantly better than CCZ. For
example, for the first normal component, CCZ overestimates the standard deviation
by 37% (= 0.564/1.513) and has a RMSE of 0.60%. Under the NRA model, the
percentage bias is only 3% (= 0.046/1.513) and the RMSE is 0.08%. The reason
for the underperformance of CCZ, relative to the NRA model, is that it takes the
first stage OLS parameter estimates (i.e., factor loadings and residual standard devi-
ations) as given and fails to use the estimated alpha population in the second stage to
update the first stage estimates. Intuitively, if we knew what a fund’s alpha is (more
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precisely, in our context, the underlying population from which the alpha is drawn),
we should be able to use this information to obtain better estimates for the fund’s
factor loadings and residual standard deviation. The analogy to the OLS regression
context is the efficiency gain of an OLS with a pre-specified intercept — if we have
external information on the distribution of the intercept — over an unconstrained
OLS. Such efficiency gain is important in our context since many funds in our sample
have a short return history so the estimation uncertainty (not only for alphas, but
also for the other OLS parameters) is high.33 In contrast to the two-step approach in
CCZ, the NRA model tries to simultaneously estimate the structural parameters that
govern the alpha population and the cross-section of OLS parameters that determine
the return dynamics of individual funds, thereby providing better estimates for both
types of parameters. We defer a more detailed comparison between CCZ and our
approach to the end of this section.

When return residuals are correlated, the estimates for model parameters in gen-
eral become more variable for all three methods. This is expected as we have less
information in the cross-section compared to the case when residuals are independent.
Across different correlation specifications, our model still performs well. In particular,
both bias and RMSE are small relative to the magnitude of the true parameters. For
example, compared to the case of ρ = 0, when ρ = 0.2 and for σ1, the estimation
bias (= −0.02%) does not seem to go up (in absolute value) while RMSE goes up
from 0.08% to 0.22%. Both remain small compared to the magnitude of the true σ1

(= 1.51%), dominating the performance of CCZ, which is quite upwardly biased in
estimating σ1. The increased estimation uncertainty (RMSE) is the price we have to
pay for misspecifying the likelihood function by not taking the correlation structure
into account. However, the increase seems small for reasonable levels of residual cor-
relations. Barras et al. (2010) document that the average pairwise correlation among
the four-factor model residuals is 0.08, which is consistent with our estimate of 0.06
(see our on-line appendix). We think that ρ = 0.2 is a conservative upper bound for
the average level of residual correlation. Moreover, when we take the heterogeneity
in residual dependence into account by using our second correlation specification, our
model performs even better than the case with ρ = 0.2. Overall, residual correla-
tion does not substantially alter our model’s performance, neither does it alter the
relative performance of the three models. Hereafter, we use ρ = 0 as the benchmark
correlation specification. We will also rely on our heterogeneous correlation model to
provide robust standard errors.

Our results in Table 2 suggest that the OLS model, by first running equation-by-
equation OLS regressions to obtain estimated alphas and then fitting a parametric
distribution to these alphas, is massively biased in estimating the parameters that
govern the cross-sectional alpha distribution. CCZ provides improvements over OLS
by taking the estimation uncertainty in alpha into account by using fund specific time-
series information. However, in the context of our structural model, where fund alphas

33See Ang (2014) for a discussion on the difficulty in obtaining reliable estimates of factor expo-
sures for investment funds.

29



are intrinsically linked in the cross-section, using fund specific information alone is
insufficient. In particular, information about the cross-sectional alpha distribution
can be used to update the OLS parameter estimates for individual funds, which in
turn leads to, first, a more accurate adjustment for estimation uncertainty in alpha for
individual funds, and secondly, a better estimate for the underlying alpha distribution.
Simulation results show that the NRA model, by utilizing information from the entire
cross-section, presents consistent improvements over CCZ, both in terms of estimation
bias and estimation uncertainty.

We have shown that the NRA model produces superior parameter estimates for
the alpha population in comparison with OLS and CCZ. Based on these parameter
estimates, we can calculate several important statistics that summarize the alpha
population. The NRA model produces more accurate and less volatile estimates for
these statistics than alternative models, as shown in Table 3. To save space, we
only present results for ρ = 0, that is, assuming there is no cross-sectional residual
correlation. Alternative correlation specifications lead to qualitatively similar results.
We leave them to our on-line appendix.
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Table 2: A Simulation Study: Parameter Estimates for the Alpha Popula-
tion

Model estimates in a simulation study. We fix the model parameters at G∗ (Table 1) and
generate D sets of data sample. For each set of data sample, we estimate our model using the
proposed noise reduced alpha model (NRA), the standard equation-by-equation OLS (OLS),
and the model in Chen, Cliff and Zhao (CCZ, 2015). ρ is the assumed level of pairwise cor-
relation for the correlation model that assumes an equal correlation for each pair of residual
series. “Data Depen.” corresponds to the correlation model that resembles the realized cor-
relations for the actual data. For a given parameter γ, let γd be the model estimate based on
the d-th simulation run, d = 1, 2, . . . , D. “True” reports the assumed true parameter value
given in G∗. “Bias” reports the difference between the average of the simulated parameter
estimates and the true value, that is, (

∑D
d=1 γd)/D − γ. “RMSE” reports the square root of

the mean squared estimation error, that is,
√∑D

d=1(γd − γ)2/D. “p(10)” reports the 10th

percentile of the parameter estimates and “p(90)” reports the 90th percentile of the param-
eter estimates. µl and σl are the (annualized) mean and the (annualized) standard deviation
for the l-th component normal distribution, and πl is the probability for drawing from the
l-th component, l = 1, 2.

ρ = 0 ρ = 0.2 Data Depen.

NRA OLS CCZ NRA OLS CCZ NRA OLS CCZ

µ1(%) Bias 0.160 0.455 0.367 0.178 0.937 0.442 0.126 0.317 0.382
(True = −2.277) RMSE 0.187 2.592 0.394 0.507 3.333 0.778 0.340 2.949 0.540

p(10) −2.233 −4.457 −2.097 −2.655 −4.755 −2.638 −2.478 −4.485 −2.355
p(90) −2.007 0.481 −1.749 −1.307 2.350 −0.837 −1.832 0.197 −1.371

σ1(%) Bias 0.046 13.255 0.564 −0.020 13.920 0.496 −0.003 15.167 0.521
(True = 1.513) RMSE 0.081 16.501 0.598 0.217 18.486 0.597 0.193 20.047 0.591

p(10) 1.486 2.594 1.898 1.261 3.887 1.602 1.303 4.340 1.701
p(90) 1.631 27.107 2.237 1.826 32.800 2.459 1.719 29.454 2.368

π1(%) Bias 0.023 −0.128 0.084 0.006 −0.141 0.067 0.013 −0.146 0.077
(True = 0.283) RMSE 0.029 0.324 0.089 0.071 0.315 0.087 0.099 0.318 0.115

p(10) 0.284 0.016 0.341 0.205 0.017 0.289 0.197 0.017 0.284
p(90) 0.324 0.979 0.398 0.392 0.584 0.435 0.445 0.556 0.483

µ2(%) Bias −0.012 0.066 −0.015 0.017 0.078 0.019 0.017 −0.318 0.012
(True = −0.685) RMSE 0.027 1.549 0.051 0.310 1.603 0.265 0.247 0.785 0.200

p(10) −0.729 −1.180 −0.756 −1.047 −1.664 −0.998 −0.966 −1.554 −0.927
p(90) −0.675 1.870 −0.647 −0.232 −0.057 −0.263 −0.332 −0.586 −0.392

σ2(%) Bias 0.009 5.752 0.055 −0.023 4.914 0.033 −0.001 4.719 0.053
(True = 0.586) RMSE 0.018 13.429 0.059 0.046 11.429 0.048 0.083 10.120 0.086

p(10) 0.579 2.204 0.618 0.514 2.114 0.576 0.504 2.128 0.569
p(90) 0.608 23.765 0.669 0.608 11.795 0.657 0.672 13.857 0.733

π2(%) Bias −0.023 0.128 −0.084 −0.006 0.141 −0.067 −0.013 0.146 −0.077
(True = 0.717) RMSE 0.029 0.324 0.089 0.071 0.315 0.087 0.099 0.318 0.115

p(10) 0.676 0.022 0.602 0.608 0.416 0.565 0.555 0.444 0.517
p(90) 0.719 0.984 0.659 0.795 0.983 0.711 0.803 0.983 0.716
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Table 3: A Simulation Study: Population Statistics

Population statistics based on the model estimates in a simulation
study. We fix the model parameters at G∗ (Table 1) and generate
D sets of data sample. For each set of data sample, we estimate
our model using the proposed noise reduced alpha model (“NRA”),
the standard equation-by-equation OLS (OLS), and the model in
Chen, Cliff and Zhao (CCZ). We then calculate summary statistics
for the alpha population for both models based on the estimated
model parameters. “Mean” is the mean of the alpha distribution.
“Stdev.” is the standard deviation of the alpha distribution. “Iqr.”
is the inter-quartile range of the alpha distribution. “p10” is the
10 th percentile of the alpha distribution. The other percentiles are
similarly defined. “True” reports the population statistics based
on the true model. “Estimate” reports the averaged estimate of
the population statistics across theD sets of simulations. “RMSE”
reports the square root of the mean squared estimation error, that

is,
√∑D

d=1(sd − s)2/D, where s is the true statistic and sd is the
estimated statistic based on the d-th simulated sample. Residual
correlation is set at zero.

NRA OLS CCZ

Mean(%) Estimate −1.133 −1.140 −1.142

(True = −1.136) RMSE 0.034 0.061 0.039

Stdev.(%) Estimate 1.191 3.908 1.577

(True = 1.187) RMSE 0.031 2.886 0.294

Iqr.(%) Estimate 1.163 3.385 1.362

(True = 1.144) RMSE 0.050 2.250 0.198

p5 (%) Estimate −3.642 −5.499 −4.270

(True = −3.700) RMSE 0.108 1.806 0.481

p10 (%) Estimate −2.815 −4.420 −3.150

(True = −2.832) RMSE 0.091 1.595 0.341

p50 (%) Estimate −0.892 −1.120 −0.882

(True = −0.860) RMSE 0.044 0.285 0.043

p90 (%) Estimate 0.041 2.148 0.244

(True = 0.008) RMSE 0.051 2.145 0.243

p95 (%) Estimate 0.307 3.174 0.675

(True = 0.284) RMSE 0.054 2.893 0.407
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All three methods generate similar results regarding the overall population mean
of the alpha distribution. This is not surprising as different methods that feature
shrinkage do not change the overall mean of the shrinkage target, that is, the popula-
tion mean. It is the degree of shrinkage, which is characterized by the cross-sectional
dispersion of the alpha population, that distinguishes among alternative shrinkage
models. For this metric, the NRA model has a far better performance than both
OLS and CCZ. In particular, OLS severely overestimates the standard deviation of
the alpha population. CCZ overestimates it by 33% (= (1.58− 1.19/1.19) while the
NRA model implies a bias of 0.3% (= (1.191− 1.187)/1.187). Hence, CCZ consider-
ably overstates the cross-sectional dispersion of the alpha population. Consequently,
it provides biased estimates for different alpha percentiles. For example, for under-
performers that rank at the 5th percentile of the alpha distribution, CCZ underesti-
mates their alphas by 15% (= (4.17− 3.70)/3.70) while NRA implies a bias of −2%
(= (3.64− 3.70)/3.70).

One message from our simulation study is that it is a mistake to infer the cross-
sectionally distribution of skill from the estimated alphas. When we test the perfor-
mance of thousands of funds, extreme performers will exist and may influence our
perception about the cross-sectional distribution. However, since skill is estimated
with error, it is incorrect to equate the cross-sectional distribution of estimated alpha
with the cross-sectional distribution of true skill. One has to take estimation uncer-
tainty into account to extract the underlying alpha distribution. Our model provides
a systematic framework to achieve this.

3.3.3 Individual Funds

Having discussed the simulation results regarding the alpha population, we now turn
to the inference of each individual fund. As mentioned previously, our method allows
us to make inference on each individual fund through (4). More specifically, given
a set of parameter estimates, the density forecast of an individual fund is given by
equations (12)-(14).

In order to evaluate relative model performance, we need to choose a few statistics
that summarize the forecasting accuracy at the individual fund level. We concentrate
on two statistics. The first focuses on the point estimates. In particular, the absolute
deviation (AD) calculates the absolute distance between the alpha estimate and the
true alpha value. The second reflects estimation uncertainty. We calculate the length
of the confidence interval that is constructed to cover the true alpha value with a
certain probability. Notice that the usual t-statistic is not an appropriate metric for
model comparisons in our simulations since, by assumption, fund alphas are nonzero.
For example, suppose the true alpha is 5% per annum for a certain fund and the point
estimates based on the NRA model and the OLS are 4% and 7%, respectively. In
addition, suppose the standard errors for the two models are the same. Clearly, the
NRA model is a better model as it provides a more accurate point estimate without
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raising the standard error. However, the OLS t-statistic will be higher than that
based on the NRA model, suggesting a more significant finding under the OLS. This
is misleading. We therefore avoid the use of the t-statistic and separately show the
improvement of our model over the OLS for the numerator and the denominator of
the t-statistic, that is, the point estimate and the length of the confidence interval,
both of which can be easily obtained through the density forecast of the NRA model.
Ideally, a better performing model will imply both a more accurate point estimate
and a narrower confidence interval.

Table 4 reports the results. Both in terms of point estimates and confidence
intervals, OLS is dominated by the other two models by having a larger mean absolute
deviation in point estimates and a wider confidence interval for a given confidence
level. Between the NRA model and CCZ, the mean absolute deviation by CCZ is 31%
(= (0.80 − 0.61)/0.61) higher than that of the NRA model. In terms of estimation
uncertainty, both methods generate confidence intervals that roughly achieve the pre-
specified coverage rate (i.e., the probability for the confidence interval to contain the
true alpha value) of 90% and 95%. However, the length of the confidence interval
generated under CCZ is larger than that generated by the NRA model. For instance,
under 90% significance, the median length is 3.23% for CCZ, which is 15%(= (3.23−
2.81)/2.81) larger than that of the NRA model. Therefore, at the individual fund
level, the NRA model is able to generate alpha estimates that are both more precise
and less variable than the two alternative approaches.

Overall, our results suggest that the NRA model dominates the equation-by-
equation OLS and CCZ, both in terms of estimating the alpha cross-section and
making inference on a particular fund’s alpha. Hence, under the assumption that
fund alphas can be viewed as coming from an underlying population, we advocate
the use of the NRA model for performance evaluation.

3.3.4 Further Comparisons with CCZ

Let us further contrast our approach with CCZ.

Theoretically, CCZ ignores the updated OLS parameters (i.e., B and Σ), which
is part of Step III in our algorithm. In particular, as we show in the appendix
(Section 2), fund specific factor loadings and residual standard deviations should be
re-estimated through the MLE once we have updated information on individual fund
alphas. This information is different from the equation-by-equation OLS densities
for individual fund alphas as it combines individual funds’ time-series information
with information about the alpha population, which is given in Step II. The update
of OLS parameters is important not only because it generates better estimates for
fund-specific OLS parameters, but also because these parameters are later fed into
the next iteration of the algorithm, leading to a better estimate of the cross-sectional
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Table 4: A Simulation Study: Individual Funds

Summary statistics on model performance at the individual fund level. We fix the
model parameters at G∗ (Table 1) and generate D sets of data sample. For each
set of data sample, we estimate our model using the proposed noise reduced alpha
model (NRA), the standard equation-by-equation OLS (OLS), and the model in
Chen, Cliff, and Zhao (CCZ, 2015). For NRA and CCZ, given the parameter es-
timates, we use equations (12)-(14) to first construct the density forecast for each
individual fund, and then obtain the point estimate and the confidence interval. For
OLS, its point estimate is the estimate for the intercept, and its confidence interval
is constructed using the point estimate and the standard error for the intercept.
“Mean absolute deviation” is the averaged (across simulations) mean absolute dis-
tance between the estimated alpha and the true alpha for the cross-section of funds.
“Stdev. of mean absolute deviation” is the averaged (across simulations) standard
deviation of the absolute distance between the estimated alpha and the true alpha
for the cross-section of funds. “Length, p” reports the averaged (across simulations)
p-th percentile of the length of the 90% (or 95%) confidence intervals for the cross-
section of funds. “Coverage probability” reports the averaged (across simulations)
probability for the 90% (or 95%) confidence intervals to cover the true alpha val-
ues for the cross-section of funds. Other variables are similarly defined. Residual
correlation is set at zero.

NRA OLS CCZ

Mean absolute deviation(%) 0.611 1.853 0.803
Stdev. of mean absolute deviation(%) 0.659 3.187 0.724

90% confidence interval Length, p10 (%) 1.975 3.297 2.169

Length, p50 (%) 2.812 6.163 3.232

Length, p90 (%) 4.095 12.487 4.770

Coverage probability 0.890 0.893 0.907

95% confidence interval Length, p10 (%) 2.433 3.928 2.680

Length, p50 (%) 3.545 7.343 4.083

Length, p90 (%) 4.822 14.878 5.677

Coverage probability 0.943 0.943 0.952

alpha distribution. In our on-line appendix, we provide evidence on the improvement
of our model over CCZ in estimating fund specific OLS parameters.

To better illustrate the difference between the two methods, let’s look at an ex-
ample. To simplify, let’s assume that factor loadings are known for sure and we strip
them out to focus on realized alphas (i.e., true alpha plus noise). Suppose a fund has
an excess return sequence of [2%, 3%, 3%, 2%] over four years. In the CCZ model,
the fund is generating an OLS alpha of 2.5% and residual standard deviation is esti-
mated to be 0.5%.34 So the fund is significantly outperforming and, by feeding the
OLS t-statistic for the fund to their model, CCZ is forcing the cross-sectional alpha
distribution to explain the extremely good performance of the fund.

34We use the MLE. The OLS estimate, due to the adjustment for finite sample bias of the MLE,
is 0.58%. Their small difference in inconsequential for our interpretation of the example.
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In our model, the story is different. Suppose we have a good knowledge of the
cross-sectional alpha distribution and we believe that it is unlikely that any fund
has an alpha of 2.5%. Due to shrinkage, we will reduce the alpha estimate for this
particular fund to, say, 1% (i.e., we shrink its alpha by 1.5%). This new alpha estimate
forces us to re-estimate the residual standard deviation of the fund as the noise
sequence now becomes [1%, 2%, 2%, 1%] (=[2%− 1%, 3%− 1%, 3%− 1%, 2%− 1%]),
so the residual standard deviation estimate becomes 1.58%, which is much higher
than CCZ’s estimate.

Notice that in our framework individual fund return residuals do not have to sum
up to zero, which leads to a different decomposition of fund returns into skill (i.e., true
alpha) and luck (i.e., residuals) than what people usually do by following the equation-
by-equation estimation approach. In our example, if we strongly believe that the fund
should have an alpha of 1%, we will conclude that the fund has experienced four years
of luck, which is very likely given the short return history of the fund. However, in
the traditional equation-by-equation estimation approach, such a conclusion is not
possible as the luck components have to sum up to zero (i.e., the luck is reflected in
the risk-adjusted returns). We believe that our approach is more intuitive than the
traditional approach, especially when many funds have a short return history.

Viewing from the perspective of decomposing returns into luck and skill, the
CCZ framework is inconsistent. In their first stage estimation, they run equation-
by-equation OLS and therefore force the luck components for each fund to sum up to
zero. In the second stage estimation, they fit the cross-sectional alpha distribution,
through which they can update the individual alpha estimate for each fund. However,
under this updated alpha estimate, the luck components for each fund no longer sum
up to zero. This contradiction is inherent in their two-stage estimation approach and
has a significant bearing on the interpretation of the estimation outcome. Our model,
by simultaneously solving for the parameters that govern the alpha population and
fund specific OLS parameters (i.e., B and Σ), provides a coherent framework to think
about alpha estimation, as well as decomposing fund performance into skill and luck.

From a methodological perspective, especially in comparison with the literature on
multiple shrinkage that we mentioned before, our model shows that when we shrink
the set of parameters of interest (i.e., parameters that govern the alpha population
in our application), we indirectly introduce interactions among auxiliary parameters
(i.e., fund specific factor loadings and residual standard deviations) that are not
of primary interest to us. For example, the inference on a particular fund’s factor
loadings impacts our inference on the alpha population, which in turn impacts the
inference on factor loadings for another fund. Our model captures these interactions
through the joint estimation of the model MLE. Alternatively, one could directly
introduce shrinkage to auxiliary parameters, which is straightforward to achieve in
our framework (see Harvey and Liu, 2016a). However, such an approach has the
risk of misspecifying the distribution for auxiliary parameters, which may lead to
biased inference on variables that are of primary interest to us. Hence, we focus
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on the shrinkage of fund alphas and do not directly model shrinkage on other OLS
parameters in this paper.

3.3.5 Comparisons with Jones and Shanken (2005)

Can a Bayesian framework that also features learning across funds, such as Jones
and Shanken (JS, 2005), arrive at similar estimates to our framework? The answer
is no and we prove this by comparing JS to our model through simulations (detailed
results are in the on-line appendix).

For our initial comparison with JS, we implement our framework assuming a single
normal distribution characterizes the alpha population.35 In particular, we assume
that the alpha distribution is characterized by the second component of the GMD
in Table 1, that is, a normal distribution with a mean of -0.69% and a standard
deviation of 0.59%. We follow JS to estimate the model and present the results
in Table B.1 of the on-line appendix. We find that JS overestimates the standard
deviation of the alpha population by 15% (=(0.672-0.586)/0.586) under a diffuse
prior (which is the more relevant prior from the perspective of model comparison).
The degree of overestimation is even higher under informative priors.36 In contrast,
NRA overestimates the standard deviation by 4% (=(0.610-0.586)/0.586). NRA also
implies better estimates of different percentiles of the alpha population and fund
alphas at the individual fund levle.

When the alpha population is described by a mixture distribution that corresponds
to the parameter configuration in Table 1, the difference between JS and the NRA
model is more dramatic. JS, by modeling alphas as random draws from a normal
distribution, provides biased estimates of summary statistics for the alpha population,
both under uninformative (diffuse) and informative priors. For example, under a
diffuse prior, JS overestimates the 5th percentile of the alpha population by 18%
relative to the magnitude of the true value. In comparison, the NRA model has a
bias of 2% (see on-line appendix Table B.2).

Notice that JS provides reasonable estimates for the overall mean and standard
deviation of the alpha population, which are the two metrics that JS focuses on.
However, having a good estimate of the first two moments of the alpha population
does not necessarily imply a good estimate of individual fund alphas. In particular,
the mean absolute deviation of individual funds’ alpha estimates under JS is 0.75%
per annum, which is 23% (=(0.75 − 0.61)/0.61) higher than that under NRA and

35We use the normal distribution for an “apples to apples” comparison with JS. Later we will
compare the mixture of normals vs. JS.

36Besides the diffuse prior, JS specify two alternative priors that are informative. See our on-line
appendix for the details of these priors.
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about 6% (=|0.80 − 0.75|/0.80) lower than that under CCZ.37 NRA differs from JS
by allowing shrinkage towards the mean of a particular group of funds, as opposed
to the overall population mean as in JS. Its improvement over JS is akin to the
improvement of multiple shrinkage (see, e.g., Karolyi, 1993) over simple shrinkage
(see, e.g., Vasicek, 1973). Importantly, while multiple shrinkage uses pre-specified
instrument variables to partition the data into different groups, our method relies
on the likelihood function that only involves the return data to classify funds into
different performance groups.

One may argue that a mixture distribution for the alpha population is not a fair
assumption in terms of model comparison since JS assumes that alphas are drawn
from a normal distribution. However, the main point of our paper, consistent with
recent empirical findings on performance evaluation (Kosowski et al., 2006, Barras et
al., 2010, Ferson and Chen, 2015), is to provide a flexible and parsimonious frame-
work to model the alpha population, through which we can make better estimates of
individual fund alphas. When the alpha population features salient departures from
normality (as we tested to be the case in the next section), it is important to take
these departures into account to sharpen our inference on fund alphas.

It is not our purpose to critique the Bayesian approach, as it does provide a
powerful framework to achieve shrinkage. It also provides probabilistic analysis that
is solely based on the given data. Our goal is to present a frequentist approach
that allows a rich modeling of the alpha population, from which we can make better
inference on fund alphas.

37The average absolute alpha is 1.23% per annum, indicating that the percentage mean absolute
deviation under JS is 61% (=0.75/1.23), 49% (=0.61/1.23) under NRA, and 65% (=0.80/1.23) under
CCZ. Hence, the percentage improvement of NRA over the two alternative approaches is still sizable.
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4 Results

4.1 Mutual Funds Example

We now provide an empirical application of our method to a sample of mutual funds.38

We obtain the mutual fund data used in Ferson and Chen (2015). Their fund data
is from the Center for Research in Security Prices Mutual Fund database. They focus
on active, domestic equity funds covering the 1984-2011 period. To mitigate omission
bias (Elton, Gruber and Blake, 2001) and incubation and back-fill bias (Evans, 2010),
they apply several screening procedures. They limit their tests to funds that have
initial total net assets (TNA) above $10 million and have more than 80% of their
holdings in stock. They also combine multiple share classes. We require that a fund
has at least eight months of return observations to enter our test. This leaves us with
a sample of 3,619 mutual funds for the 1984-2011 period.39 We use the four-factor
model in Fama and French (1993) and Carhart (1997) as our benchmark model.40

4.1.1 Parameter Estimates and Model Selection

A central issue is how we choose the number of components for the GMD that models
the alpha distribution in the cross-section. A more complex model (i.e., a model
with more component distributions) can potentially provide a better approximation
to the underlying alpha distribution, but may overfit, leading to a model that has
inferior forecasts out of sample. Standard model selection criteria (e.g., the Akaike
information criterion or the Bayesian information criterion) may not work well in
our context as they rely on asymptotic approximations. In our application, since
the number of parameters grow with the number of funds in the cross-section, it is
unclear what size of the cross-section would be regarded as large enough to warrant
asymptotic approximations. To have a rigorous model selection framework that takes
many aspects of our application into account (e.g., unbalanced panel, large number
of model parameters), we use a simulation-based model selection approach.41

38We choose this application given the data are relatively clean compared to hedge fund data.
However, we recognize up front that there are disadvantages to applying our method to mutual
funds with the primary one being the distinct lack of evidence that any mutual fund manager has
skill (see, e.g., Berk and Green 2004). That is, if we are proposing a method to reduce the noise
to better measure skill, then it will be more challenging to apply to data where there is very little
evidence of skill in the first place.

39We thank Yong Chen for providing us with the mutual fund data used in Ferson and Chen
(2015).

40We report results on our model estimation using alternative benchmark factor models in the
on-line appendix.

41For a similar approach that bootstraps likelihood ratios to test the number of components in a
GMD, see Feng and McCulloch (1996).
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Consider two nested models M0 and M1, with M1 being the bigger model. For
example, in our context, a GMD with a single component distribution will be nested
within a two-component GMD specification as, by setting the drawing probability
for one of the component distributions to zero, the latter collapses to the former.
To distinguish between M0 and M1, we need a metric that evaluates relative model
performance. Given that our estimation relies on the MLE, a natural choice is the
likelihood-ratio statistic, which measures the difference in likelihoods between the two
candidate models. The likelihood-ratio statistic is also a key ingredient for many pop-
ular model selection criteria. In particular, let L0 (L1) be the value of the likelihood
function evaluated at the model estimates for M0 (M1). The likelihood-ratio statistic
(LR) is defined as:

LR = −2(logL0 − logL1). (19)

When the bigger model (i.e., M1) provides a substantial improvement over the smaller
model (i.e., M0), LR will be large and positive. Therefore, a large likelihood-ratio
statistic provides evidence against the smaller model.

We use simulations to find the cutoff value for LR. We first estimate M0 and
obtain its parameter estimates. Assuming M0 is the true model, we simulate normally
distributed return innovations to generate D = 100 return panels, similar to what we
do in the simulation study in the previous section. For each panel, we estimate both
M0 and M1, and calculate the LR statistic. The 95 th percentile of these LR statistics
will be used as the cutoff for the LR statistic.

We incrementally select the best performing parsimonious model. We first esti-
mate a one-component and a two-component model. Based on the parameter esti-
mates, the LR statistic between the two models is calculated to be 45.60. Assuming
that the one-component model is true and simulating the model based on its param-
eter estimates, the 95 th percentile of the LR statistic is found to be 3.64,42 which is
smaller than the realized likelihood statistic. Therefore, the two-component model
presents a significant improvement over the one-component model.

Next, we estimate a three-component model. The LR statistics between the two-
component model and the three-component model is calculated to be 4.70. This time,
assuming that the two-component model is true and simulating the model based on
its parameter estimates, the 95 th percentile of the LR statistic is 14.30.43 Hence,
the realized LR statistic is less than the simulated LR cutoff, suggesting that we
do not have enough evidence to discard the simpler two-component model.44 Given

42The 90 th and 99 th percentile of the LR statistic are 2.57 and 5.83. Hence, the two-component
model is superior than the one-component model even at the 1% level.

43The 90 th and 99 th percentile of the LR statistic are 12.46 and 17.47. Hence, the three-
component model is not significant, even at the 10% level.

44The results reported are based on the benchmark correlation specification where residual cor-
relation is set at zero. We also perform the model selection exercise using our correlation model
that mimics the dependence structure in the actual data. Between the one-component model and
the two-component model, the simulated 90 th, 95 th, and 99 th percentile of the LR statistic are
9.24, 12.08, and 33.73. Hence, we have strong evidence to reject the one-component model. Between
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the rejection of the three-component model, we do not need to further consider the
four-component model as its incremental contribution to the three-component model
is likely to be even smaller than the incremental contribution of three-component
model to the two-component model. We therefore select the two-component model
as the final model. It is the most parsimonious model that still provides an adequate
description of the cross-sectional distribution of fund alphas.

Our finding of a two-group categorization of mutual fund managers is consistent
with the recent literature on mutual fund performance evaluation. For example,
Barras et al. (2010) use the false discovery approach to control for multiple testing
and find that 75% of the funds are zero-alpha funds and 24% are unskilled (i.e.,
significantly negative).45 The remaining 1% appear to be skilled but are statistically
indistinguishable from zero. We also find that a two-group classification is sufficient
to describe the universe of fund managers. In particular, unlike for underperformers,
we do not need a third component distribution to model outperformers.

4.1.2 Evaluating the Population of Fund Performance

Table 5, Panel A shows the parameter estimates for the GMD that describes the alpha
population. Panel B reports the estimates for several important population statistics.
We also report the corresponding standard errors for both parameter estimates and
the estimates for population statistics. Notice that the parameter estimates in Panel
A are the same as those in Table 1 since we deliberately set the model parameters at
their MLE to evaluate our model’s performance in the simulation study.46

Our estimates are related to but different from what the literature has found. For
example, Fama and French (2010) document that the left tail of the alpha distribution
should be more dispersed than the right tail. To make inference, they propose an
informal approach that assumes that alphas for the two tails are drawn from two
normal distributions with a common mean but different variances. They calibrate
their model by matching extreme percentiles of the cross-section of t-statistics. They
estimate a dispersion of 1.25% to 1.50% for the left tail and 1.25% for the right tail of
the alpha distribution. We generalize their insights in two ways. First, there is little
reason to believe that alphas drawn from the left tail should have the same mean as
alphas drawn from the right tail. We allow a flexible two-component GMD to model

the two-component model and the three-component model, the simulated 90 th, 95 th, and 99 th
percentile of the LR statistic are 16.16, 21.72, and 46.80. Hence, we do not have enough evidence
to reject the two-component model.

45Barras et al. (2010) study 2,076 funds covering the 1975–2006 period. So their sample is
somewhat different from ours. However, given the 23 years overlap between our samples, we believe
their estimates should roughly apply to our sample as well.

46Notice that the standard errors in Table 5 are different from those reported in the simulation
study. In the simulation study, we simply set factor loadings and residual standard deviations at
their equation-by-equation OLS estimates. In contrast, the results in Table 5 are based on the MLE,
which are different from the OLS estimates.
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the underlying alpha distribution. Second, we estimate our model through the joint
likelihood function that combines information from the cross-section and time-series.
Our estimates are materially different from their estimates. For example, we find a
much thinner right tail (dispersion = 0.59%).

Figure 1 plots the density for the estimated alpha distribution as well as the
empirical density for the OLS estimates. The density for the OLS fitted alphas is
left skewed, indicating that there are more managers with large negative alphas than
there are managers with large positive alphas. Our model estimation picks this up by
having a separate component distribution that mostly covers negative alpha values.
Allowing multiple component distributions gives our model the flexibility to capture
the departure from normality in the data. Our results on model selection also show
that it is both necessary (i.e., statistically significant) and sufficient to have this
separate component distribution.

Another important observation from Figure 1 is that our method does not try
to fit the OLS alphas. In fact, the overall density for the estimated GMD is more
concentrated around its population mean than the empirical density for the OLS al-
phas. This is because our method allows us to downweigh noisy alpha estimates of
individual funds when trying to make inference on the alpha population. Extreme
alpha estimates based on OLS are more likely to happen for funds with a short sam-
ple, more variable risk loadings, and/or more noisy return residuals. Our structural
approach allows us to take these sources of estimation risk into account.

Our method allows us to make inference on important population characteristics
by deviating from the usual fund-by-fund hypothesis testing framework. For example,
we estimate the fraction of funds generating positive alphas to be 10.6%. In contrast,
Barras et al. (2010) use the multiple testing approach and find that less than 1% of
funds generate a positive yet statistically insignificant alpha. To interpret the differ-
ence between our results and those in Barras et al. (2010), it is important to bear
in mind the difference between our method and the usual fund-by-fund hypothesis
testing. By testing against the null hypothesis that fund alphas are zero, the tra-
ditional approach places more prominence on alpha equalling zero than alternative
values. Our method assumes that the alpha distribution is continuous and tries to
back out this distribution. It is therefore more appropriate to provide inference on
population characteristics.

We will likely have more power in identifying alphas with a small magnitude
in our framework than the fund-by-fund approach, provided that our parametric
assumption of the alpha distribution is a good approximation of reality. For example,
for the one-cluster example that we introduced previously, we assume that all the
funds in the cross-section generate an alpha of approximately 2% per annum and
the standard error for the alpha estimate is about 4%. Under the usual hypothesis
testing approach, none of the funds is statistically significant individually. Using
our approach, the estimate of the mean of the alpha population would be around
2%. For this example, we think our approach provides a better description of the
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Table 5: The Alpha Population: Mutual Funds

Model estimates and population statistics for mutual funds. For a cross-section
of 3,619 mutual funds covering the 1983–2011 period, we estimate our model,
which is based on a two-component GMD specification for the alpha pop-
ulation. Assuming the estimated model is the true underlying model, we
simulate to find the percentiles of both the parameter estimates and the pop-
ulation statistics. Panel A reports the parameter estimates for the model.
µl and σl are the (annualized) mean and the (annualized) standard devia-
tion for the l -th component normal distribution, and πl is the probability for
drawing from the l -th component, l = 1, 2. Panel B reports the estimated
population statistics for the alpha distribution. “Mean” is the mean of the al-
pha distribution. “Standard deviation” is the standard deviation of the alpha
distribution. “Interquartile range” is the inter-quartile range of the alpha dis-
tribution. “10 th percentile” is the 10 th percentile of the alpha distribution.
The other percentiles are similarly defined. For both Panel A and B, “p(5)”
and “p(95)” report the 5 th and 95 th percentiles of the variable of interest
across simulations, respectively.

Panel A: Parameter Estimates for the Alpha Population

Estimate ρ=0 Data Depen.

p(5) p(95) p(5) p(95)

µ1(%) −2.277 −2.301 -1.948 −2.543 -1.739
σ1(%) 1.513 1.424 1.654 1.221 1.730
π1 0.283 0.280 0.330 0.173 0.496

µ2(%) −0.685 −0.748 -0.894 −0.993 -0.269
σ2(%) 0.586 0.569 0.615 0.468 0.724
π2 0.717 0.670 0.720 0.504 0.827

Panel B: Population Statistics for the Alpha Population

Estimate ρ=0 Data Depen.

p(5) p(95) p(5) p(95)

Mean(%) −1.135 −1.189 -1.075 −1.596 -0.717
Standard deviation(%) 1.185 1.121 1.247 0.972 1.456
Interquartile range(%) 1.142 1.085 1.234 0.824 1.716

5 th percentile(%) −3.689 −3.803 -3.445 −4.257 -3.038
10 th percentile(%) −2.862 −2.966 -2.652 −3.544 -2.104
50 th percentile(%) −0.894 −0.935 -0.851 −1.354 -0.447
90 th percentile(%) 0.012 −0.016 0.096 −0.327 0.504
95 th percentile(%) 0.287 0.222 0.390 −0.091 0.811

Fraction of positive alphas 0.106 0.095 0.123 0.038 0.261

alpha population. Declaring all the funds to be zero-alpha funds misses important
information in the cross-section and leads to a large loss of test power.47

47See Harvey, Liu and Zhu (2016) for a discussion on test power in the context of multiple testing.
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Figure 1: Alpha Distribution for the Mutual Fund Population
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Density plots for the alpha population. For a cross-section of 3,619 mutual funds covering
the 1983–2011 period, we estimate our model, which is based on a two-component GMD
specification for the alpha population. The solid line shows the density for the estimated
GMD. The dotted line shows the density for the first component of the GMD that has
a negative mean. The dash-dotted line shows the density for the second component of
the GMD that has a positive mean. We also estimate the equation-by-equation OLS. The
dashed line shows the empirical density for the fitted OLS alphas.

Notice that our estimates of extreme percentiles of the alpha distribution are sub-
stantially lower in magnitude than the estimates based on the equation-by-equation
OLS. For example, the estimate for the 5th percentile is -3.69% under NRA and
-5.48% under OLS. The estimate for the 95th percentile is 0.29% under NRA and
3.07% under OLS. This stems from the shrinkage effect that we mentioned previ-
ously. Since the median fund generates an alpha of around -0.89%, cross-sectional
learning forces us to pull alphas that are different from the population mean towards
the population mean. Notice that the shrinkage effect seems to be stronger for large
positive alphas than for large negative alphas. This is because large positive alphas
are usually generated with a higher level of residual standard deviation than large
negative alphas with the same magnitude. For example, the mean residual standard
deviation for funds with alphas above the 95th percentile (i.e., 3.07%) is 7.4% (per
annum) whereas the mean residual standard deviation for funds with alphas below
-3.07% is 5.9%. Intuitively, in a competitive market, it is more difficult to generate a
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positive alpha than a negative alpha of the same magnitude. As a result, our method
downweights the time-series information of funds with positive alphas more aggres-
sively than funds with negative alphas with the same magnitude. These two features
reinforce each other and generate the large discounts for positive alphas within our
structural framework.

Linking to the existing literature, three approaches are proposed to evaluate mu-
tual fund performance. The first method uses the extreme test statistics and tries
to evaluate the significance of the best/worst funds, while controlling for test multi-
plicity (see, for example, Kosowski et al. 2006, Fama and French, 2010, Harvey and
Liu, 2015a). It is based on fund-by-fund hypothesis testing and its null hypothesis
is that each fund has a zero alpha. It is designed to answer the question of whether
there exists any funds that significantly outperform/underperform and cannot further
classify funds into different performance groups. Using this approach, Kosowski et
al. (2006) find that there exist managers that significantly outperform. Refining the
method in Kosowski et al. (2006) to control for cross-sectional dependency, Fama
and French (2010) find no outperforming funds.

The second approach tries to classify funds into broad categories. Papers that
follow this procedure include Barras et al. (2010) and Ferson and Chen (2015). The
assumption of this approach is less stringent than the assumption under the previous
method in that not all funds need to have a zero alpha. Certain funds can have
nonzero alphas and this approach tries to control the false discovery rate at 5%.
Using this approach, Barras et al. (2010) find that about 75% of funds are zero-alpha
funds. Ferson and Chen (2015) refine this method by allowing a non-zero probability
for true alphas to disguise themselves as zero, and find that 50% or fewer have zero
alphas. Neither paper finds evidence of funds that significantly outperform.

From an methodological perspective, there are several important differences be-
tween our approach and the false classification (FC) method in Barras et al. (2010)
and Ferson and Chen (2015). The FC approach, being essentially a variant of the
traditional hypothesis testing framework, postulates that fund alphas can only take
a few particular values, each value for a certain performance group. While this offers
a simplification of the inference problem, there is no particular reason to think that
fund alphas can only take a few values. As a result, if a fund has a true alpha that
is very different from these assumed values, the estimation error by assigning this
fund to any particular performance group might be large. Our approach allows us to
flexibly model the alpha population as following a continuous distribution, thereby
reducing the estimation error in the FC approach where fund alphas are forced to
take a few values.

Second, the loss functions in our approach and the FC method are different. FC
relies on the multiple hypothesis testing approach and aims to strike a balance between
Type I (i.e., false discovery rate) and Type II error rates. Our maximum likelihood-
based approach tries to find the best parametric model that fits the data through
optimally weighting the likelihood from fitting the panel of return time-series and
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the likelihood from fitting the cross-section of alphas. Hence, a material advantage
of our framework is that it allows us to take into account the parameter uncertainty
in estimating both fund alphas and other OLS parameters (i.e., factor loadings and
residual standard deviations) when we try to fit the cross-section of estimated alphas.
On the other hand, our structural approach also allows us to address the Type I error
concern that is the focus of the FC method. In particular, assuming all funds have
a zero alpha, if we estimate the alphas of a thousand funds, on average 25 funds
will appear to have a significant positive alpha from a single test perspective. In
our framework, these 25 funds will likely not have a significant positive alpha as the
posterior distribution of alpha weights the information from the time-series (which
is what the single test p-values are based on) by using information from the alpha
cross-section. Since our estimate of the mean of the alpha population will likely be
zero, learning across funds allows us to downwardly adjust the significance of each
individual fund, leading us to correctly declare the 25 funds as insignificant. Equation
(15) shows the precise formula for how our model adjusts the statistical significance
of individual funds when the alpha population has a zero mean.

The third approach, as taken by our paper, is to treat alphas as continuous and
try to estimate the underlying distribution for alphas. We deviate from the usual
hypothesis testing approach in that we do not think an alpha of zero is any different
than an alpha of other value. Another salient feature of our model is that we take
various sources of estimation risk into account.

One can think of the three approaches as following an order that tries to obtain
a finer and finer understanding of the alpha distribution. The first approach tries to
answer the very basic question of whether there exists any fund that has a non-zero
alpha. If the answer is yes, we proceed to the second approach to classify funds into
broad categories. Finally, viewing alphas as coming from an underlying distribution,
we use the third approach to provide a more precise description of this distribution.

Fundamentally, our approach is different from the first two approaches that rely on
fund-by-fund hypothesis testing. Viewing fund alphas as coming from an underlying
distribution, our model estimates suggest that mutual fund managers are doing better
than what people have previously thought. We estimate that a little more than 10%
of funds are generating a positive alpha. Our estimate is higher than those reported
in the literature and likely due to the fact our structural approach has more power
in identifying small but non-negligible alphas. If decreasing return to scale were the
underlying economic mechanism that drives alpha dynamics (Berk and Green, 2004),
then small but positive alphas are usually associated with large funds.48 Given that
larger funds have a greater impact on the mutual fund industry than smaller funds,
it would be a mistake to label these funds as zero alpha funds from an economic
perspective.

48See Harvey and Liu (2016a) for the evaluation of economies of scale using a similar approach.

46



4.1.3 Individual Fund Evaluation: In-sample

We use our estimated model to make inference on the alphas of individual funds.
Given a set of parameter estimates, which use the information from the cross-section
of funds, we are able to refine the alpha estimate of an individual fund that is based
on time-series information alone, providing a more informative alpha estimate for an
individual fund.

The formulas that provide density forecasts for individual funds are given in (12)-
(14). We compare our model with the equation-by-equation OLS both from an in-
sample fit and an out-of-sample forecasting perspective.

Focusing on in-sample fitting, Figure 2 shows the density forecasts based on our
model for several exemplar funds. In particular, we rank funds by the t-statistics of
their OLS alpha estimates and choose several funds that represent different percentiles
of the cross-section of t-statistics.

We see several noticeable differences between our density forecasts and the fore-
casts based on OLS. First, there is a shrinkage effect where the means of our forecasts
pull the OLS means towards the overall population mean. This is the cross-sectional
learning effect that we mentioned previously. Knowing the alpha distribution of other
funds helps us make better inference on the alpha of a particular fund. The OLS al-
pha estimate exclusively uses fund-specific information and our approach augments
with cross-sectional information. The shrinkage effect seems particularly strong for
funds with large positive OLS alphas. This is because we are more likely to observe
a negative alpha than a positive alpha for the alpha population. In addition, as
we mentioned previously, large positive alphas are usually associated with a larger
residual standard deviation than negative alphas with the same magnitude. The
cross-sectional learning effect therefore shrinks a positive alpha towards the popula-
tion mean by more than what it shrinks a negative alpha with the same magnitude
towards the population mean.

Second, the dispersion for the density forecast of our model is uniformly lower
than that based on the OLS density forecast. This is consistent with our simulation
study where we show that the average length of the confidence interval based on our
method is substantially lower than that based on the OLS. Intuitively, our density
forecast combines information from both the cross-section and the time-series so it is
less disperse than the OLS density forecast, which only uses the time-series informa-
tion. (13) makes this intuition more precise. Suppose we have a single component
distribution for the GMD, then the variance of a fund’s alpha estimate following our
approach is always smaller than its variance based on time-series information alone.

47



Figure 2: Alpha Distributions for Individual Mutual Funds
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Density plots for individual funds. For a cross-section of 3,619 mutual funds covering
the 1983–2011 period, we estimate our model, which is based on a two-component GMD
specification for the alpha population. We also estimate the equation-by-equation OLS. We
rank the cross-section of funds based on the t-statistics of their OLS alpha estimates and
choose five funds whose t-statistics are the closest to the 5 th, 10 th, 50 th, 90 th, and 95 th
percentiles of the cross-section of t-statistics. Based on our model estimate, we plot the
density estimates for these funds using (12)-(14). We also plot the density estimates for the
OLS alphas.
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Table 6: Differences in Density Forecasts between OLS and the NRA Model

Differences in density forecasts between the OLS and the noise reduced alpha model. For a
cross-section of 3,619 mutual funds covering the 1983–2011 period, we estimate our model,
which is based on a two-component GMD specification for the alpha population. We also
estimate the equation-by-equation OLS. We group funds into several groups based on the
t-statistics of their OLS alpha estimates (denoted as tOLSα ). We calculate the average
difference in point estimates and confidence intervals between the NRA model and the
OLS model. “Diff. in mean” reports the average difference in the mean forecast between
our model and the OLS. “% diff. in CI(90)” and “% diff. in CI(95)” report the percentage
differences in the length of the 90% and 95% confidence intervals between our model and
OLS, respectively. “# of funds” reports the number of funds for each t-statistic category.

tOLSα Diff. in mean (%) % diff. in CI(90) % diff. in CI(95) # of funds

(−∞,−2.0) 3.391 −30.8% −32.7% 523

[−2.0,−1.5) 2.352 −42.1% −42.5% 391

[−1.5, 0) 0.688 −54.9% −53.3% 1,640

[0, 1.5) −2.052 −63.8% −61.7% 906

[1.5, 2.0) −3.774 −63.2% −61.0% 98

[2.0,∞) −5.722 −64.5% −61.8% 61

Finally, our density forecasts display non-normality, especially for funds with a
negative mean estimate for alpha. For funds with a positive mean estimate, although
the density looks unimodal, it is still a mixture distribution of two normal densities.
This shows the flexibility of the GMD specification to capture different shapes of a
probability density function. It also makes sense to have a non-normal density forecast
for individual funds if the the underlying distribution for the alpha population is non-
normally distributed. If this underlying distribution is more heavy-tailed and skewed
than the normal distribution, then the density forecasts for individual funds should
be able to reflect these non-normal features for the alpha population.

Table 6 summarizes the differences in both point estimates and confidence intervals
between our model and the OLS. We group funds into different categories based
on their OLS t-statistics and calculate the average difference between our model
estimates and the OLS model estimates.

Focusing on the mean estimates, we see the differential impact of the shrinkage
effect across different t-statistic groups. For example, for funds with an OLS t-
statistic below −2.0, on average our model pulls the OLS alpha estimate closer to
zero by 3.4% per annum. At the other extreme, for funds with significantly positive
OLS alpha estimates (i.e., OLS t-statistic > 2.0), we on average move their alpha
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estimates closer to zero by 5.7% per annum. The shrinkage effect seems to be more
pronounced for funds with large positive alpha estimates. This is attributable to, as
we mentioned previously, the differential treatment of positive and negative alphas by
the cross-sectional learning effect since we are more likely to observe a negative alpha
than a positive alpha for the alpha population and a large positive alpha is usually
generated with more uncertainty than a negative alpha with the same magnitude.

For confidence intervals, our model is able to shrink the 90% and 95% confidence
intervals by at least 30% of the corresponding OLS confidence intervals. The reduc-
tions in estimation uncertainty seem substantial and are consistent with our results
in the simulation study (see Table 4), in which we show that the reduction in the
length of the confidence interval is not accompanied by a loss in the coverage rate.
In fact, we are able to achieve a pre-specified coverage rate (i.e., 90% or 95%) with a
much narrower confidence interval.

The difference between Table 6 and Table 4 is that, unlike in the simulation study,
we no longer observe the true alpha for each individual fund. To better assess the
power of our approach, we perform an out-of-sample forecasting exercise in the next
section.

4.1.4 Individual Funds Evaluation: Out-of-sample

We perform an out-of-sample analysis of our method by splitting our data into an
in-sample estimation period and an out-of-sample holdout period. Notice that this is
not a true out-of-sample test as we have experienced the data. One way to interpret
our results is to assume that someone tries to assess the predictive power of our model
by following a simple strategy. She estimates our model at the end of the in-sample
period and uses the model estimates to forecast risk-adjusted returns for the out-of-
sample period. We try to evaluate such a strategy from a historical perspective.

Our sample runs from 1984 to 2011. We partition our sample into two parts,
with the first two-thirds as the estimation period and the last one-third as the out-of-
sample testing period. This way of partitioning the sample makes sure that we have
a long enough in-sample period to have a reasonable model estimate.49

49To capture higher frequency variation in funds’ risk loadings and alphas, one may want to run
the out-of-sample exercise over shorter horizons. However, the cross-sectional distribution of alphas
over a short horizon is likely to be significantly affected by contemporaneous macroeconomic and
market conditions and therefore unable to reflect the long-run stationary alpha distribution. One
can also potentially better capture beta variability if there are pre-determined instruments that help
predict funds’ factor loadings. However, to the extent that there is uncertainty around the choices
of these instruments, an incorrect specification of these instruments may lead to biased inference of
the cross-sectional alpha distribution (see our discussion on misspecification of factor models in the
next section). We therefore pursue an out-of-sample forecasting exercise that is closest to our model
setup, while leaving possible extensions to future research.
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For the in-sample period (i.e., 1984-2001), we estimate both our model and the
equation-by-equation OLS. Based on our model estimates, we construct a density
forecast for each fund’s alpha and use the mean of this density forecast to predict
fund alpha in the future. For OLS, we use its in-sample alpha estimate to forecast its
alpha in the future. The future alpha for both comparisons is obtained by running
equation-by-equation OLS for the out-of-sample period (i.e., 2002-2011). Notice that
the out-of-sample alpha may not represent the true alpha.

For the in-sample period (i.e., 1984-2001), similar to our requirement for the full-
sample estimate, a fund needs to have at least eight monthly observations to be
considered in our estimation. This leaves us with 1,765 funds. Additionally, in order
to have a valid alpha proxy for the out-of-sample period, we again require a fund to
have at least eight monthly observations for the out-of-sample period. This further
requirement leaves us with 1,488 funds for the out-of-sample period. To sum up, our
in-sample estimation is based on 1,765 funds. Among these funds, 1,448 will be used
in out-of-sample testing.

Table 7, Panel A shows the in-sample model estimates, and Panel B shows the
out-of-sample forecasting performance. Focusing on Panel A, there are noticeable dif-
ferences between the parameter estimates for the 1984-2001 period and for full sample
period (see Table 5). Compared with the estimates in Table 5, it is less likely (draw-
ing probability = 1.2%) to draw the alpha from the group with a very negative mean.
However, conditional on drawing from this group, the alpha dispersion (15.15%) is
much higher than the corresponding dispersion in Table 5 (1.51%). For the group
with a mildly negative mean, its mean (−0.35%) is higher than the corresponding
mean in Table 5 (−0.69%). At least two factors contribute to these differences in
model estimates. First, the average fund return (and OLS alpha) is significantly
higher for the in-sample period than for the full sample period. Second, compared to
the full sample estimation, we have fewer funds for the in-sample estimation. This
implies a lesser degree of learning across funds and may cause a larger estimate for the
dispersion of the alpha distribution. Despite these differences between the subsample
and the full sample estimation, it remains interesting to see how our model performs
out-of-sample.

Panel B shows the out-of-sample forecasting results. We again group funds based
on their in-sample OLS t-statistics and present the average forecast error for each
group. Compared to the equation-by-equation OLS estimates, our model seems to
provide a better alpha forecast for all but one group of funds. The improvement of
our model over the OLS is substantial. For example, for the 610 funds that have an
in-sample t-statistic between zero and 1.5, our model is able to reduce the average
forecast error from 5.54% to 2.61% (per annum). The reduction in forecast error
is more pronounced for funds with large (absolute) OLS t-statistics. This is consis-
tent with our finding based on the full sample estimation that the shrinkage effect is
stronger for funds with large (absolute) OLS t-statistics. Across all groups of funds,
the average percentage reduction in forecast error is 48% (= (5.17%−2.71%)/5.17%).
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Therefore, our model is able to provide substantially better out-of-sample alpha fore-
casts compared to the OLS model.

Although OLS is widely used in academic studies as well as in the practice of
finance, it is an easy model to beat. We considered two alternative shrinkage ap-
proaches: assume all alphas are zero and assume all alphas are equal to the average
of the fund-by-fund OLS alpha. These two methods also provide much lower forecast
errors than OLS. However, they do not provide superior performance relative to our
proposed noise reduced alpha model.

There are two important and related questions raised by the literature on per-
formance evaluation: 1) how to obtain a good estimate of fund alpha, and 2) how
persistent are fund alphas. In order to obtain a good estimate of fund alpha, we have
to assume that fund alphas are constant or at least persistent over a certain time
window. On the other hand, to evaluate alpha persistence, we need to rely on the
alpha estimates provided by methods that can answer the first question.

Our framework focuses on the first question, that is, obtaining a good estimate of
fund alpha. In order to achieve this, we need to assume that fund alphas are constant
and therefore persistent during the period over which we estimate the model. This is
also the implicit assumption underlying the many papers that take the fund-by-fund
hypothesis testing approach (see, e.g., Barras et al. 2010, Fama and French, 2010,
Ferson and Chen, 2015). However, a method that answers the first question has
implications for the second question. Therefore, we use our method to refine the alpha
estimates for individual funds and show that there seems to exist some persistence.
The fact that our framework outperforms the commonly used benchmark model in
forecasting alphas out-of-sample highlights the practical relevance of our approach.
One extension of our forecasting exercise is to estimate our model over shorter horizons
to allow for time variation in model parameters, similar to what people often do when
evaluating performance persistence. We leave this extension to future research.
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Table 7: Out-of-sample Forecasts for Mutual Funds

In-sample model estimates (1984-2001) and out-of-sample forecasts (2002-2011) based the
NRA model, the equation-by-equation OLS, and the all-zero model (i.e., forecasting alphas
for all funds to be zero). We partition the mutual fund data into two parts and use the
first part (1984-2001) for in-sample model estimation and the second part (2002-2011) for
out-of-sample testing. For the in-sample period, we require a fund to have at least eight
monthly observations. This leaves us with 1,765 funds. We estimate both our model and
the equation-by-equation OLS based on these 1,765 funds. Panel A shows the parameter
estimates for the NRA model. µl and σl are the (annualized) mean and the (annualized)
standard deviation for the l -th component normal distribution, and πl is the probability
for drawing from the l -th component, l = 1, 2. For out-of-sample testing, we additionally
require a fund to have at least eight monthly observations for the out-of-sample period. 1,448
out of the 1,765 funds satisfy this additional requirement. We evaluate the out-of-sample
forecasting performances of models based on these 1,448 funds. In particular, based on the
in-sample estimates for our model, we construct a density forecast for each fund’s alpha
and use the mean of this density forecast to predict fund alpha in the future. For OLS, we
use its in-sample alpha estimate to forecast its alpha in the future. The future alpha for
each fund is obtained by running equation-by-equation OLS for the out-of-sample period.
Panel B shows the forecasting results for the NRA model and the equation-by-equation OLS.
“tOLSα ” denotes the in-sample t-statistic for the alpha estimate of the OLS model. “NRA
(%)” and “OLS (%)” calculate the average absolute forecasting error (i.e., the alpha forecast
based on the in-sample model minus the out-of-sample OLS alpha estimate) for the NRA
model and the equation-by-equation OLS, respectively, within a group of funds.

Panel A: In-sample Model Estimates, 1984–2001

Parameters Estimate

µ1(%) −2.935
σ1(%) 15.146
π1 0.012

µ2(%) −0.354
σ2(%) 1.065
π2 0.988

Panel B: Out-of-sample Forecasting Error, 2002–2011

In-sample, tOLSα NRA (%) OLS (%) # of funds

(−∞,−2.0) 3.286 6.613 64

[−2.0,−1.5) 3.089 3.699 75

[−1.5, 0) 2.748 2.916 565

[0, 1.5) 2.606 5.542 610

[1.5, 2.0) 2.381 10.469 87

[2.0,∞) 2.766 12.022 87

Overall 2.710 5.165 1,488
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5 Other Issues

5.1 Misspecification of the Factor Model

Inference on fund alphas both at the population and at the individual fund level is
contingent upon the benchmark model being used. For instance, for mutual funds
performance evaluation, suppose the true benchmark model is a five-factor model
that includes the Fama and French (1993) and Carhart (1997) four factors. Then
misspecifying the benchmark model as the four-factor model will likely lead to biased
alpha estimates, both for the alpha population and for the individual funds.

The concern about model risk is to some extent alleviated by considering the noise
reduced alpha model. Using the aforementioned five-factor model example, suppose
the fifth factor — the factor that is missing from the four-factor model — only applies
to a small fraction of funds. By using a misspecified four-factor model, the equation-
by-equation OLS will imply biased alpha estimates for this small fraction of funds.
Under the noise reduced alpha model, we are able to learn from the entire cross-
section of funds, including those that are not exposed to the fifth factor. As a result,
the bias in the alpha estimates for the small fraction of funds that are exposed to the
fifth factor is likely to be lower under the noise reduced alpha model than under the
OLS model.

When the benchmark model is missing a factor that applies to the majority of
funds, it is unlikely that any performance evaluation model will do well. One therefore
needs to be cautious when trying to interpret the results of our paper. Our inference
relies on a pre-specified benchmark model for performance evaluation and could be
sensitive to this choice. In our on-line appendix, we report our model estimates under
alternative specifications for the benchmark factor model.

Another possible misspecification of the factor model assumes a constant beta
while the true beta is time-varying (see, e.g., Christopherson et al., 1999). If fund-
level characteristics and macroeconomic variables can be used as instruments to model
time-varying betas, then the static factor model considered in our current paper would
be missing factors that interact these instruments with the benchmark factors. On the
other hand, data snooping bias and spurious regressions make it difficult to choose
instruments that help enhance the inference on alphas, as shown in Ferson et al.
(2008). Hence, we focus on unconditional regressions in this paper. If strong and pre-
determined instruments were available, our approach can easily be applied to allow
for dynamic betas.
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5.2 Sample Selection Bias

As with all approaches to performance evaluation, sample selection may bias our re-
sults. On the one hand, studies that condition on fund survival overestimate fund
performance, see Brown, Ibboson, Ross (1992), Elton, Gruber, and Blake (1996),
and Carhart, Carpenter, Lynch, and Musto (2002). On the other hand, reverse-
survivorship may understate fund performance, as shown in Linnainmaa (2013). In
particular, Linnainmaa (2013) models fund survival as a function of past performance
and estimate the underlying alpha distribution, which is modeled as a normal distri-
bution, through simulated method of moments. We differ from Linnainmaa (2013)
by using the GMD to explicitly model the tail behavior of the alpha distribution and
relying on the likelihood function to provide exact and efficient inference.

We believe bias will likely be smaller in our framework compared to the standard
equation-by-equation OLS. For example, when there is reverse-survivorship bias, a
skilled fund may drop out of sample after having a bad (unlucky) shock. This makes
its in-sample alpha an understatement of its true population value. Hence, using
the equation-by-equation OLS, if we take the average of the cross-section of fitted
alphas, this average will underestimate the overall population mean if there is reverse-
survivorship bias. Funds that have a shorter history and a higher level of idiosyncratic
volatility are more likely to drop out after experiencing a bad shock. In our framework,
the importance of these funds is downwardly weighted. We know their alpha estimates
are more noisy so we put less weight on them in terms of learning about the alpha
population.

5.3 Noise Reduced Alpha Model vs. Multiple Hypothesis

Testing

By treating the alpha of an investment fund as random, our model takes into account
the cross-sectional uncertainty in alpha from a population perspective and helps de-
flate the fund alpha and its t-statistic, thereby imposing a more conservative inference
on the fund alpha. This is consistent with the idea of multiple testing that has been
applied to performance evaluation (see, Barras et al., 2010, Fama and French, 2010,
and Ferson and Chen, 2015) and to asset pricing in general (see, Harvey, Liu, and
Zhu, 2016, and Harvey and Liu, 2015b). What is the connection between the two
methods?

Suppose a researcher wants to test the effectiveness of a drug for all patients. The
researcher divides the sample into a female group and a male group and separately
tests the effectiveness of the drug. Since two tests have been tried, the chance of
finding a significant result is higher than the case with a one shot test. The researcher
can apply a multiple testing adjustment to these two tests so that the overall error
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rate, however defined, is controlled at a pre-specified level. However, it does not
make sense to use the model in our paper since there are a limited number of gender
types in the population (i.e., we do not have hundreds of gender types). It is not
appropriate to view the means of the two groups — male and female — as coming
from an underlying distribution as there are only two samples from this distribution.

The NRA model applies when it is plausible to view the objects in the cross-
section as coming from a certain underlying population. For fund alphas, it makes
sense to think that the alphas for different funds are not independent of each other
since there are limited investment opportunities in the financial market and funds
compete with each other to generate alphas.50

Despite their similarities in discounting fund alphas and their t-statistics, the two
models are fundamentally different. The multiple testing approach, and hypothesis
testing in general, treats the fund alpha as a dichotomous variable (that is, zero
vs. nonzero). Its objective function is also about controlling the probability or the
fraction of false discoveries, that is, a zero alpha fund being incorrectly classified
as a nonzero fund. On the other hand, the NRA model preserves the continuity of
the alpha distribution. Its objective function is the goodness-of-fit of a parametric
model to the data. While the fund-by-fund hypothesis testing framework is useful
to roughly classify investment managers into different groups, the NRA model is
designed to provide inference on the alpha population as well as refining inference
about a particular fund.

Another advantage to the NRA approach is that OLS t-statistics are no longer
sufficient statistics to rank the cross-section of funds. In contrast, the multiple test-
ing approach always preserves the ranking of funds based on OLS t-statistics. For
example, suppose Fund A has a more extreme positive OLS alpha estimate and at
the same time a higher OLS t-statistic than Fund B. Then Fund A will always be
regarded as more attractive than Fund B under multiple testing, regardless of the
multiple testing methods we use. In our framework, due to learning across funds, the
more extreme OLS alpha estimate of Fund A is pulled towards the population mean
more than the less extreme OLS alpha estimate of Fund B. As a result, the overall
relative attractiveness between Fund A and B might be reversed.

Our results suggest that there are more funds with positive alphas than what the
literature on fund-by-fund hypothesis testing suggests. We think that this is also
related to the difference in loss functions between the two methods. To estimate the
fraction of positive-alpha funds, the usual approach follows a two-stage procedure.
In the first stage, we adjust for multiple testing, controlling the false discovery rate
at a pre-specified level (e.g., 5%). In the second stage, we calculate the fraction of
funds that survive the multiple testing p-value cutoff. Notice that the first stage
multiple testing cutoff, which is found by meeting the size of the test, will have a

50See French (2008) for a similar argument on the competitiveness of the investment funds in-
dustry. Also see the argument in Jones and Shanken (2005) for the population perspective on fund
alphas.
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big impact of the second stage estimation. Typically, multiple testing sets a tough
cutoff in the first stage, which tends to lead to an underestimation of the fraction of
positive-alpha funds in the second stage. In other words, in the usual approach, the
stringent multiple testing cutoff in the first stage conflicts with the goal of obtaining
an unbiased estimate of the fraction of positive-alpha funds in the second stage. In
our framework, our goal is to directly estimate the density of the underlying alpha
population. As we show in our simulation study, we are able to provide unbiased
estimates of population statistics such as the fraction of positive-alpha funds.

5.4 Time-varying Alphas

While our paper focuses on unconditional alphas, we can use fund-level characteris-
tics as instruments to study conditional alphas. Jones and Mo (2016) show that a
number of firm characteristics help forecast the cross-section of fund alphas. They
also find that the performance of many of these characteristics in explaining fund
alphas deteriorates through time. Our model can be easily extended to take into
account the predictability and the variation in predictability of fund returns by using
fund characteristics. Our framework allows one to make inference by drawing infor-
mation from the entire cross-section, which can potentially improve the out-of-sample
predictability of fund alphas. This is further explored in Harvey and Liu (2016a).

6 Conclusions

How do we evaluate investment fund managers? This is a question that bears im-
portant economic consequences for wealth management and capital reallocation. Our
paper proposes a structural estimation approach to answer this question. Viewing
fund alphas as coming from an underlying population, our model first backs out the
distribution of the alpha population and then uses this distribution to refine the alpha
estimate for each individual fund. By drawing on information from the cross-section
of alphas, we show that our model is able to generate more accurate alpha estimates,
both in-sample and out-of-sample.

Methodologically, we pose a panel regression framework that allows us to make
inference on the underlying population of fund fixed effects, which we treat as the
anchor distribution to refine the inference on each individual fund. We allow fund
specific regression coefficients to capture cross-sectional heterogeneity. Facing a large
number of parameters to estimate, we adapt the EM algorithm to provide efficient
inference based on the MLE.

The idea of our model is likely to be useful for other applications. Essentially, when
there is cross-sectional heterogeneity and when it is appropriate to view the effects
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as coming from a certain population, we can apply our model to make inference on
both the population and the individual effects. Our use of the GMD is also flexible
enough to approximate a variety of parametric distributions for the population.

Our framework is part of a growing literature that rethinks performance evaluation
by explicitly considering cross-sectional information. If we run equation-by-equation
OLS, we get an alpha distribution for each fund by taking time-series uncertainty into
account. If we aggregate these alpha distributions, assuming each fund is drawn at
random from the fund population, we should obtain the cross-sectional distribution of
alphas. However, knowing the cross-sectional distribution of alphas should help refine
the alpha estimate for each individual fund. Our method provides an equilibrium view
of the alpha population. On the one hand, we draw on the distribution of the alpha
population to make inference on individual funds. On the other hand, by aggregating
the individual alpha distributions, we exactly obtain the distribution of the alpha
population.

Our framework can be extended along several important directions. First, while we
treat the alpha of a particular fund as fixed across time, we can relax this assumption
by allowing fund alphas to be time-varying. This allows us to study performance
persistence from a population perspective. Second, to capture the time variation in
risk loadings, we can allow betas to be time-varying as well, possibly through the
dependence of fund risk loadings on macroeconomic and financial variables. We leave
these extensions for future research.
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Pástor, L., and R. Stambaugh. 2002b. Investing in equity mutual funds. Journal of
Financial Economics 63, 351-380.

Sastry, R. 2013. The Cross-section of Investing Skill. Working Paper.

Stambaugh, R. 2003. Inference about survivors. Unpublished working paper. Whar-
ton School, University of Pennsylvania.

Searle, S. R., G. Casella, and C. E. McCulloch. 1992. Variance components. John
Wiley & Sons, New York.

Vasicek, O. A. A note on using cross-sectional information in Bayesian estimation
of security betas. Journal of Finance 28, 1233-1239.
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Appendix: Implementing the EM Algorithm

1. Characterizing f(A|R,G(k)) (Step II )

Using Bayes’ law, we have:

f(A|R,G(k)) ∝ f(R|A,G(k))f(A|G(k)). (20)

Given the independence of the residuals and the αi’s, the right-hand side of (20) is
the product of the likelihoods of all funds, i.e.:

f(R|A,G(k))f(A|G(k)) =
N∏
i=1

f(Ri|αi,G(k))f(αi|G(k)).

Therefore, to characterize f(A|R,G(k)), it is sufficient for us to determine f(Ri|αi,G(k))f(αi|G(k))
for each fund i. For ease of exposition, we use G and G(k) interchangeably to denote
the known parameters at the k-th iteration.

Under normality, we have

f(Ri|αi,G(k)) ∝ exp{−
∑T

t=1(rit − αi − β′ift)2

2σ2
i

},

∝ exp{−
[αi −

∑T
t=1(rit−β′

ift)

T
]2

2σ2
i /T

},

which can be viewed as the probability density for αi. Moreover, this is a normal
density with mean āi ≡

∑T
t=1(rit − β′ift)/T and variance σ2

i /T , i.e., N (āi, σ
2
i /T ).

By assumption, f(αi|G(k)) is the density for a GMD that is parameterized by
θ = ({πl}Nl=1, {µl}Nl=1, {σ2

l }Nl=1). It can be shown that f(Ri|αi,G(k))f(αi|G(k)) — the
product of a normal density (i.e., N (āi, σ

2
i /T )) and the density for a GMD — is also

a density for a GMD, whose parameters are given by

µ̃i,l = (
σ2
l

σ2
l + σ2

i /T
)āi + (

σ2
i /T

σ2
l + σ2

i /T
)µl,

σ̃2
i,l =

1

1/σ2
l + 1/(σ2

i /T )
,

π̃i,l =
πlφ(āi − µl, σ2

l + σ2
i /T )∑L

l=1 πlφ(āi − µl, σ2
l + σ2

i /T )
, l = 1, 2, . . . , L,
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where φ(µ, σ2) is the density of the normal distribution N (0, σ2) evaluated at µ.

Therefore, f(A|R,G(k)) can be characterized as the density for N independent
variables. The i-th variable follows a GMD that is parameterized by

θ̃i = ({π̃i,l}Ll=1, {µ̃i,l}Ll=1, {σ̃2
i,l}Ll=1).

2. Maximizing
∑N

i=1
1
M

∑M
m=1 log f(Ri|αmi , βi, σi) (Step III )

For αmi , m denotes the m-th random draw from the marginal distribution of αi ob-
tained from the previous step and i denotes the i-th fund in the cross-section. Given
the independence of the residuals, we can find the MLE of B and Σ fund-by-fund. In
particular, the log-likelihood for fund i is given by

1

M

M∑
m=1

log f(Ri|αmi , βi, σi) =
1

M

M∑
m=1

T∑
t=1

log f(rit|αmi , βi, σi), (21)

through which we can find the MLE of βi and σi. Under the normality assumption,
it can be shown that the right hand side of (21) can be written as

1

M

M∑
m=1

T∑
t=1

log f(rit|αmi , βi, σi) = −T
2

log(2πσ2
i )−

1

2σ2
i

[
T∑
t=1

(rit−β′ift−ᾱi)2+T (α2
i−ᾱ2

i )],

(22)

where ᾱi and α2
i are defined as:

ᾱi =
1

M

M∑
m=1

αmi , α2
i =

1

M

M∑
m=1

(αmi )2.

An inspection of (22) shows that the MLE of βi and σi can be found sequentially. We
find the MLE for βi first. Notice that the MLE β̂i is essentially the estimates of the
slope coefficients for the OLS that regresses the time-series of {rit− ᾱi}Tt=1 on {ft}Tt=1.
As a result, we have

β̂i = (F ′F )−1F ′Yi,

where

F(T×K) =


f1

f2
...
fT

 , Yi(T×1) =


ri,1 − ᾱi
ri,2 − ᾱi

...
ri,T − ᾱi

 .

65



Fixing βi at its MLE, we take the first-order derivative of (22) with respect to σ2
i to

obtain the MLE for σ2
i , i.e.,

σ̂2
i =

1

T

∑
t=1

(rit − β̂′ift − ᾱi)2 + (α2
i − ᾱ2

i ).

Define ε̂2
i ≡ 1

T

∑
t=1(rit − β̂′ift − ᾱi)2 and V̂ ar(αi) = (α2

i − ᾱ2
i ). The MLE of σ2

i can
be expressed as

σ̂2
i = ε̂2

i + V̂ ar(αi). (23)

Note that {αmi }Mm=1 are simulated data. When the size of the simulated data is large,
the sample moments in (23) will be close to the population moments. We therefore
replace the sample moments with their population moments. This helps us obtain
the exact analytical solutions for βi and σi when the conditional distribution of A is
given in Section 1 of the appendix. In particular, the exact MLE for βi is:

β̆i = (F ′F )−1F ′Ỹi,

where Ỹi = [ri,1 −m(αi), ri,2 −m(αi), . . . , ri,T −m(αi)]
′ and m(αi) = EA|R,G(k)(αi) =∑L

i=1 π̃i,lµ̃i,l (here “m” denotes mean). The exact MLE for σ2
i is:

σ̆2
i =

1

T

∑
t=1

(rit − β̆′ift −m(αi))
2 + var(αi),

where

var(αi) ≡ V arA|R,G(k)(αi),

=
L∑
l=1

π̃i,l[(µ̃i,l −m(αi))
2 + σ̃2

i,l].

The parameter values in θ̃i = ({π̃i,l}Ll=1, {µ̃i,l}Ll=1, {σ̃2
i,l}Ll=1)′ can be found in Section 1

of the appendix.

3. Maximizing
∑M

m=1

∑N
i=1 log f(αmi |θ) (Step III )

To optimize
∑M

m=1

∑N
i=1 log f(αmi |θ), we need to invoke the EM algorithm. Our goal

is to find the MLE of θ when MN observations are assumed to be drawn from the
GMD that is parameterized by θ. For ease of exposition, we replace the subscript in
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αmi with j so that {αmi }(i=1,...,N ; m=1,...,M) = {αij}(i=1,...,N ; j=1,...,M). The starting value
of θ is obtained from G(k).

• Suppose the initial parameter vector is θ̂ = ({π̂l}Ll=1, {µ̂l}Ll=1, {σ̂2
l }Ll=1).

• Expectation Step: Compute the expected value of the indicator variable that
indicates which population (e.g., the population of skilled or unskilled managers)
αij is drawn from:

p̂ijl = P̂ r(αij comes from Group l)

=
π̂lφ(αij; µ̂l, σ̂

2
l )∑L

l=1 π̂lφ(αij; µ̂l, σ̂2
l )
, i = 1, . . . , N ; j = 1, . . . ,M ; l = 1, . . . , L,

where φ( · ;µ, σ2) is the density of the normal distribution N (µ, σ2).

• Maximization Step: Compute the weighted means and variances, with weights
obtained from the Expectation Step:

µ̃l =

∑
ij p̂ijlαij∑
ij p̂ijl

, σ̃2
l =

∑
ij p̂ijl(αij − µ̃l)2∑

ij p̂ijl
,

π̃l =

∑
ij p̂ijl

MN
, l = 1, . . . , L.

• Iterate between the Expectation Step and the Maximization Step until conver-
gence.

4. The Value of the Likelihood Function

We derive the value of the likelihood function given in (3). This is used to evaluate
relative model performance.

Under the model assumptions, the overall likelihood function can be decomposed
as

L(G|R) ≡ f(R|θ,B,Σ), (24)

=
N∏
i=1

∫
f(Ri|ai,G)f(ai|G)dai, (25)

67



where G is the model MLE. Therefore, to obtain the overall likelihood, we only need
to calculate the component likelihood, that is,

∫
f(Ri|ai,G)f(ai|G). Under the model

assumptions, the integrand of the component likelihood can be written as:

f(Ri|ai,G)f(ai|G)

=
T∏
t=1

(2πσ2
i )
−1/2 exp[−(rit − αi − β′ift)2

2σ2
i

]×
L∑
l=1

πl(2πσ
2
l )
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2σ2
l

],
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i )
−T/2

L∑
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2
l )
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l

],
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where φ(αi;µ0i, σ
2
0i) is the density function for a normal distribution parameterized

by:

µ0i =

∑T
t=1(rit−β′

ift)

T
σ2
l + µl

σ2
i

T

σ2
l + σ2

i /T
,

σ2
0i = (σ2

i /T )σ2
l /(σ

2
l + σ2

i /T ).
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Therefore, by integrating over ai, the part involving the normal density becomes one,
and we have:

∫
f(Ri|ai,G)f(ai|G)dai = (2πσ2

i )
−T/2

L∑
l=1

πl

√
(σ2

i /T )/(σ2
l + σ2

i /T )

× exp{
(
∑T

t=1(rit−β′
ift)

T
σ2
l + µl

σ2
i

T
)2

2(σ2
l + σ2

i /T )σ2
l (σ

2
i /T )

−
(
∑T

t=1(rit−β′
ift)

2

T
σ2
l + µ2

l
σ2
i

T
)

2σ2
l (σ

2
i /T )

}.

Define

α̂i =

∑T
t=1(rit − β′ift)

T
,

α̂2
i =

∑T
t=1(rit − β′ift)2

T
,

wcl,i =
σ2
l

σ2
l + σ2

i /T
,

wtl,i = 1− wcl,i,

then the component likelihood can be written as

∫
f(Ri|ai,G)f(ai|G)dai = (2πσ2

i )
−T/2

L∑
l=1

πl

√
wtl,i

× exp{
(α̂iw

c
l,i + µlw

t
l,i)

2 − (α̂2
iw

c
l,i + µ2

lw
t
l,i)

2[1/(1/σ2
l + 1/(σ2

i /T ))]
}.

The overall likelihood can be calculated as the product of the component likelihoods
of the cross-section of funds, as given in (25).
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