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Abstract

We analyze how market design influences bidding in multi-unit procure-
ment auctions where suppliers have uncertain costs. Similar to wholesale
electricity markets there is a risk that a supplier is pivotal, i.e. that realized
demand is larger than the realized total production capacity of the competi-
tors. In our setting with flat marginal costs, we show that welfare improves
if the auctioneer restricts offers to be flat. We solve for a unique Bayesian
NE and find that the competitiveness of market outcomes improves with
increased market transparency. We identify circumstances where the auc-
tioneer prefers uniform to discriminatory pricing, and vice versa.
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1 Introduction

Multi-unit auctions are used to trade commodities, securities, emission permits
and other divisible goods. Our discussion focuses on electricity markets, where
producers submit offers before the demand and production capacities are fully
known. Due to demand shocks, unexpected outages and intermittent output from
renewable energy sources, there is a risk that a producer is pivotal, i.e. that realized
demand is larger than the realized total production capacity of the competitors.
We are interested in how such markets are influenced by the auction design. Most
electricity markets use uniform-pricing where the highest accepted offer sets the
transaction price for all accepted production. A few markets, such as the British
real-time market, use discriminatory pricing, where each accepted offer is instead
paid its own offer price.! Bilateral and continuous trading in forward markets often
have similarities with discriminatory pricing. We also discuss how bid constraints,
which give producers less flexibility when making their offers, influence welfare
and payoffs among participants in electricity markets.

Our model accounts for asymmetric information in suppliers’ production costs.
Our analysis is, for example, of relevance for European wholesale electricity mar-
kets, where the European Commission has introduced regulations that increase
the market transparency, so that uncertainties and information asymmetries are
reduced. According to EU No. 543/2013, the hourly production in every single
plant should be published. EU No. 1227/2011 (REMIT) mandates all electricity
market participants to disclose insider information, such as the scheduled avail-
ability of plants.

In electricity markets, marginal costs can be estimated from engineering data
on plant characteristics and input fuel price indexes. Long before delivery, in
forward markets, the uncertainty about future fuel prices is to a large extent a
common uncertainty among producers. The relative size of the common uncer-
tainty typically decreases closer to the delivery. In the spot market, an owner of a
thermal plant has private information about the actual price paid for its input fuel
and how the plant is maintained and operated. We believe that the cost uncer-
tainty and the information asymmetry are greatest in hydro-dominated markets.
Such markets are also special in that they have a significant common uncertainty
component also in the spot market. The opportunity cost of using water stored
in the reservoir behind a specific generation unit is typically estimated by solving
a stochastic dynamic program based on estimates of the probability distribution
of future water inflows and future offer prices of thermal generation units, which
can leave a significant scope for differences across market participants in their es-
timates of the generation unit-specific opportunity cost of water. The uncertain
opportunity cost is exacerbated by political risks such as the possibility of regula-
tory intervention and each producer’s subjective beliefs about the probability of
these events occurring during the planning period. The influence of these polit-

'In addition, some special auctions in the electricity market, such as counter-trading in the
balancing market and/or the procurement of power reserves, sometimes use discriminatory pric-
ing (Holmberg and Lazarzcyk, 2015; Anderson et al., 2013).



ical risks on cost uncertainty is likely to be the greatest during extreme system
conditions when water is scarce and the probability of regulatory intervention is
high.

Our simplified model of the electricity market considers a multi-unit auction
with two capacity-constrained producers facing an inelastic demand. Demand is
uncertain and realized after offers have been submitted. Similar to the model of
the electricity market by von der Fehr and Harbord (1993), each firm has a flat
marginal cost (independent of output) and must make a flat offer. We generalize
von der Fehr and Harbord (1993) by introducing uncertain interdependent costs.
Analogous to Milgrom and Weber’s (1982) auction for single objects as well as
Ausubel et al.’s (2014) and Vives’ (2011) models of multi-unit auctions, each firm
makes its own estimate of production costs based on private imperfect information
that it receives, and then makes an offer.? As is customary in game theory, we refer
to this private information as a private signal. We solve for a unique Bayesian
NE when signals are drawn from a bivariate distribution that is known to the
suppliers.

In our setting with flat marginal costs, the bid constraint that offers must also
be flat improves welfare and ensures that there are no welfare losses in equilibrium.
A comparison of our results to Vives (2011) suggests that the bid constraint is par-
ticularly beneficial for uniform-price auctions where producers have large common
uncertainties in their costs. This is relevant for uniform-price auctions of forward
contracts and hydro-dominated electricity markets, where the opportunity cost
has a significant common uncertainty and is approximately flat for a wide range
of outputs.

We show that the expected payoffs for uniform and discriminatory pricing are
equal when signals are independent. An auctioneer tends to favour discriminatory
pricing when a higher signal of a producer is more informative of the competi-
tor’s signal. The opposite is true when a higher signal is less informative of the
competitor’s signal. Advantages and disadvantages with uniform pricing tend to
be amplified if producers are pivotal with a higher probability. Equilibrium offers
in a discriminatory auction are determined by the expected sales of the highest
and lowest bidder, respectively. In our setting, the variance in these sales after
offers have been submitted — due to demand shocks, outages and intermittent
renewable production — will not influence the bidding behaviour of producers or
their expected payoffs in the discriminatory auction. Offers and payoffs in the
uniform-price auction are also insensitive to this variance in sales, as long as the
probability is negligible that a market shock would change the pivotal status of
at least one producer. For independent signals, expected payoffs (but not offers)
in the uniform-price auction are independent of the variance in sales, even if the
pivotal status of producers changes with a positive probability.

Independent of the payment scheme, we find that mark-ups decrease if pro-
ducers’ are more likely to receive similar information. This is related to Vives
(2011) who finds that mark-ups decrease when producers receive less noisy cost

?Milgrom and Weber (1982) and Ausubel et al. (2014) analyse sales auctions, so in their
settings each agent estimates the value of the good that the auctioneer is selling.



information before competing in a uniform-price auction. In single object auc-
tions, disclosure of information is beneficial for the auctioneer under more general
circumstances, a result which is often referred to as the linkage principle or the
publicity effect (Milgrom and Weber, 1982). It is known from Perry and Reny
(1999) that there are exceptions from the linkage principle for multi-unit auctions.
Still, taken together, these results suggest that publicly available information of
relevance for production costs — such as weather conditions, fuel prices, prices of
emission permits — is likely to improve the competitiveness of market outcomes
in electricity markets. It is also easier for a producer to estimate the marginal
cost of its competitors if the market operator discloses detailed historical bid data
and/or detailed production data. Thus, our results support the argument that the
transparency increasing measures of the European Commission should improve the
performance of European electricity markets. In addition, information provision
about outcomes from financial markets just ahead of the operation of related phys-
ical markets should lower the market uncertainty. Similarly, trading of long-term
contracts, which help producers predict future electricity prices, should reduce the
extent of informational asymmetries among suppliers about the opportunity cost
of water.

Extending this logic further, our results suggest that regulatory risks are partic-
ularly harmful for competition in hydro-dominated wholesale electricity markets,
especially when water is scarce, because of the potential informational asymmetries
about the likelihood of regulatory interventions. Thus, we recommend clearly de-
fined contingency plans for intervention by the regulator in case of extreme system
conditions. This could potentially mitigate the extraordinarily high-priced periods
that typically accompany low-water conditions in hydro-dominated markets such
as California, Colombia, and New Zealand.

Because increased transparency reduces the payoff of producers in our model,
we would not expect producers to agree to voluntarily disclose production cost-
relevant information. This has similarities to Gal-Or (1986) who shows that pro-
ducers that play a Bertrand equilibrium would try to conceal their private costs
from each other. Moreover, increased transparency would only be helpful up to
a point, because there is a lower bound on equilibrium mark-ups when producers
are pivotal. Another caveat is that we only consider a single shot game. As argued
by von der Fehr (2013), there is a risk that increased transparency in European
electricity markets can facilitate tacit collusion in a repeated game.

Our study focuses on procurement auctions, but the results are analogous
for multi-unit sales auctions. Purchase constraints in sales auctions correspond
to production capacities in our setting.®> As an example, U.S. treasury auctions
have the 35% rule, which prevents a single bidder from buying more than 35%
of the securities sold. Similar rules are used in spectrum auctions by the Federal
Communications Commission (FCC) and in California’s auctions of Greenhouse
Gas emission allowances. Purchase constraints are used to avoid the outcome

3To some extent, bidders’ financial constraints would also correspond to production capacities.
Financial constraints of bidders partly explain the bidding behaviour in security auctions (Che
and Gale, 1998).



where a single bidder purchases the vast majority of the good sold, which would
give it significant market power in secondary markets. On the other hand, such
constraints increase the probability that a bidder will be pivotal and/or make
bidders pivotal with a larger margin in the auction. The latter would make bidding
less competitive and the auctioneer’s revenues would go down.

Analogous to the demand uncertainty in our model, the auctioneer’s supply of
treasury bills is typically uncertain when bids are submitted due to an uncertain
amount of non-competitive bids (Wang and Zender, 2002) or because the auction-
eer wants to wait for the latest market news before finally announcing its supply
of treasury bills.

Most treasury auctions around the world use discriminatory pricing (Bartolini
and Cottarelli, 1997). An important exception is the U.S. Treasury, which switched
from the discriminatory format to the uniform-price format during the 1990s.
Analogous to our model, bidders’ marginal valuation of securities is fairly insensi-
tive to the purchased volume. Moreover, securities do often have a large common
value component. This indicates that bid constraints should increase welfare and
auction sales revenues in uniform-price security auctions. Finally, our results show
that it is beneficial for auctioneers of securities to disclose market relevant informa-
tion before the auction starts, so that bidders have access to similar information.

The remainder of the paper is organized as follows. Section 2 compares details
in our model with the previous literature. Section 3 formally introduces our model,
which is analysed for auctions with discriminatory and uniform-pricing in Section
4. The paper is concluded in Section 5. All proofs are in the Appendix.

2 Comparison with related studies

Divisible-good auctions do often have restrictions on how many offer prices each
producer can submit or, equivalently, how many steps a producer is allowed to have
in its supply function. Similar to models of electricity markets by von der Fehr
and Harbord (1993) and Fabra et al. (2006), we make the assumption that offers
must be flat; a producer must offer its whole production capacity at the same unit
price. We generalize their setting to cases where costs are uncertain. Our model
also generalizes Parisio and Bosco (2003), which is restricted to producers with
independent private costs in uniform-price auctions. Our bid constraint makes
the discriminatory auction identical to a Bertrand game with uncertain costs and
uncertain demand. Thus, we generalise the Bertrand models by Gal-Or (1986) and
Spulber (1995), which consider producers with independent private costs. Another
consequence of the bid constraint is that uniform and discriminatory pricing are
equivalent when firms are non-pivotal with certainty, i.e. when the capacity of
each producer is always larger than realized demand. Independent of the auction
format, the payoff is then zero for the producer with the highest offer price and
the other producer is paid its own offer price. This corresponds to the first-price
single-object auction that is studied by Milgrom and Weber (1982). We generalize
their model to the case where producers are pivotal with a positive probability.
Ausubel et al. (2014) and Vives (2011) consider multi-unit auctions for producers



that are non-pivotal with certainty. Unlike them, we allow producers to be pivotal
with a positive probability, as is often the case in electricity markets. Moreover,
we contribute relative to them by studying the effect of a bid constraint. The bid
constraint and the assumption that the pivotal status of producers is uncertain
are useful when we prove uniqueness of equilibria. Unlike Ausubel et al. (2014)
and Fabra et al. (2006), we compare auction designs for settings with unique
equilibria. Vives (2011) focuses on linear SFE in uniform-price auctions.

It follows from Ausubel et al. (2014) that auctions where producers have
asymmetric information about flat marginal costs can only be efficient if offers
are also flat. In our model, the bid constraint ensures that offers are flat and
that welfare losses can be avoided. Ausubel et al. (2014) provide a few examples
where equilibrium offers are flat and allocations efficient without a bid constraint,
but that is not true in general. Equilibrium offers in discriminatory auctions
tend to be flatter (more elastic with respect to the price) than in uniform-price
auctions (Genc, 2009; Anderson et al., 2013; Ausubel et al., 2014). Therefore, we
conjecture that our bid constraint will have a greater positive influence on market
performance in uniform-price auctions.

Related to the above, the results in Vives (2011) illustrate that the lack of
bid constraints can have anti-competitive consequences in uniform-price auctions.
In an auction where the costs are positively interdependent, a high clearing price
is bad news for a firm’s costs, because this increases the probability that the
competitor has received a high-cost signal. Ausubel et al. (2014) refer to this as
a generalized winner’s curse. As illustrated by Vives (2011), a producer therefore
has an incentive to reduce its output when the price is unexpectedly high and
increase its output when the price is unexpectedly low. This will make supply
functions steeper or even downward sloping in auctions with nonrestrictive bidding
formats, and this will significantly harm competition. If costs have a large common
uncertainty, then mark-ups in a uniform-price auction can be as high as for the
monopoly case (Vives, 2011). Our restrictive bidding format avoids this problem.
The bid constraint gives a producer less flexibility to indirectly condition its output
on the competitor’s signal. It does not matter how sensitive a producer’s cost is to
the competitor’s signal, our results are the same irrespective of whether the costs
are private, common or anything in between those two extremes.

Our reading of previous theoretical comparisons of auction formats by for ex-
ample Holmberg (2009), Histé and Holmberg (2006), Pycia and Woodward (2015)
and Ausubel et al. (2014) is that they tend to conclude that discriminatory pric-
ing is weakly preferable to uniform-pricing from the auctioneer’s perspective. We
think that the bid constraint makes payoffs in the two auction formats more sim-
ilar and that details in the bidding format can influence the ranking of auction
designs. Empirical studies by Armantier and Sbai (2006;2009) and Hortagsu and
McAdams (2010) find that the treasury would prefer uniform pricing in France
and Turkey, respectively, while Kang and Puller (2008) find that discriminatory
pricing would be best for the treasury in South Korea. Wolak (2007) and Kastl
(2012) have developed structural econometric models that account for further de-
tails in the bidding format, which can be useful in future empirical assessments of



multi-unit auction designs.

As for example illustrated by Wilson (1979), Klemperer and Meyer (1989),
Green and Newbery (1992) and Ausubel et al. (2014), there are normally multiple
NE in divisible-good auctions when some offers are never price-setting. The bid
constraint mitigates this problem. In our setting, there is a unique equilibrium in
the discriminatory auction also for a given demand level and given production ca-
pacities. Some uncertainty in demand or production capacities, so that the pivotal
status of producers is uncertain, is required to get uniqueness in our uniform-price
auction. Uniqueness of equilibria is another reason why highly anti-competitive
equilibria in uniform-price auctions can be avoided. In the special case where pro-
ducers are pivotal with certainty, there is, in addition to the symmetric Bayesian
equilibrium that we calculate, also an asymmetric high-price equilibrium (von der
Fehr and Harbord, 1993) in the uniform-price auction. This equilibrium is very
unattractive for consumers of electricity, because the highest offer, which sets the
clearing price, is always at the reservation price.? Thus, for circumstances when
the high-price equilibrium exists and is selected by producers, the uniform-price
auction is significantly worse than the discriminatory auction for an auctioneer
(Fabra et al., 2006).

In practice, the number of pivotal producers in wholesale electricity markets
depends on the season and the time-of-day (Genc and Reynolds, 2011), but also on
market shocks. Pivotal status indicators as measures of the ability to exercise uni-
lateral market power have been evaluated by Bushnell et al. (1999) and Twomey
et al. (2005) and have been applied by the Federal Energy Regulator Commission
(FERC) in its surveillance of electricity markets in U.S. Such binary indicators
are supported by von der Fehr and Harbord’s (1993) high-price equilibrium in
uniform-price auctions, where the market price is either at the marginal cost of
the most expensive supplier or the reservation price, depending on whether pro-
ducers are non-pivotal or pivotal with certainty. Our equilibrium is more subtle,
the pivotal status can be uncertain before offers are submitted and the expected
market price increases continuously when producers are expected to be pivotal
with a larger margin.

In order to facilitate comparisons with previous studies, we are interested in re-
sults for the limit where the cost uncertainty decreases until the costs are common
knowledge. In this limit, our model of the discriminatory auction corresponds to
the classical Bertrand game. For producers that are non-pivotal with certainty, we
get the competitive outcome with zero mark-ups, both for uniform and discrimi-
natory pricing. This result agrees with the competitive outcomes for non-pivotal
producers in von der Fehr and Harbord (1993) and in Fabra et al. (2006). If signals
are independent and producers pivotal, it follows from Harsanyi’s (1973) purifica-
tion theorem that in the limit when costs are common knowledge, our Bayesian
Nash equilibria for uniform-price and discriminatory auctions correspond to the
mixed-strategy NE analysed by Anderson et al. (2013), Anwar (2006), Fabra et al.
(2006), Genc (2009), Son et al. (2004) and von der Fehr and Harbord (1993). Anal-

4The equilibrium offer from the low-price bidder must be sufficiently low to ensure that the
high-price bidder would not find it profitable to deviate and undercut the low-price bidder.



ogous mixed strategy NE also occur in the Bertrand-Edgeworth game, where pro-
ducers are pivotal, (Edgeworth, 1925; Allen and Hellwig, 1986; Beckmann, 1967;
Levitan and Shubik, 1972; Maskin, 1986; Vives, 1986; Deneckere and Kovenock,
1996; Osborne and Pitchik, 1986).

The costs are not influenced by private information in the limit where they are
common knowledge. In our model, the results are the same for the more general
case where the costs are insensitive to common variations in signals. Hence, non-
pivotal producers do not get any informational rent even if they have private
information about the outcomes where producers have different signals.

3 Model

There are two risk-neutral producers in the market. Each producer i € {1,2}
receives a private signal s; with imperfect cost information. The joint probability
density x (si, s;) is continuously differentiable and symmetric, so that x (s;,s;) =
X (85, 8;). Moreover, x (s, s;) > 0 for (s;, s;) € (s,5) X (s,5).° Signals are affiliated
when

/ !/ /
X (u,0) = x(u,v)
where v/ > v and v/ > wu. Thus, if the signal of one player increases, then it
(weakly) increases the probability that its competitor has a high signal relative to
the probability that its competitor has a low signal. Signals are strictly affiliated
when the inequality in (1) is strict. We say that signals are negatively affiliated
when the opposite is true, i.e.

V(v x (o)
(@) = x (@) @

where v > v and v’ > u. Note that independent signals are both affiliated and
negatively affiliated. We let

F(si):/_i/::x(u,v)dvdu

denote the marginal distribution, i.e. the unconditional probability that supplier
1 receives a signal below s;. Moreover,

f(si) = F'(si).

As in von der Fehr and Harbord (1993), we consider the case when each firm’s
marginal cost is flat up to its production capacity constraint ¢;.° But in our
setting, marginal costs and possibly also ¢; are uncertain when offers are submitted.

We do not require x (s;, sj) > 0 at the boundary, but is assumed to be
bounded for u € [s,5].

This corresponds to flat demand in the sales auction of Ausubel et al. (2014).

Xl (uvg) — X2 (gvu)
x(u,5) x(5,u)



The production capacities of the two producers could be correlated, but they are
symmetric information and we assume that they are independent of production
costs and signals. In Europe, this assumption could be justified by the fact that
any insider information on production capacities must be disclosed to the market
according to EU No. 1227/2011 (REMIT). Capacities are symmetric ex-ante, so
that E [¢;] = E [g;]. Realized production capacities are assumed to be observed by
the auctioneer when the market is cleared.”

We refer to ¢; (s;,s;) as the marginal cost of producer ¢, but actually costs
are actually not necessarily deterministic for given s; and s;. More generally,
¢; (8i,55) is the expected marginal cost conditional on all information available
among producers in the market. We use the convention that a firm’s own signal
is placed first in its list of signals. Firms’ marginal costs are symmetric ex-ante,
ie. ¢ (sq,5) = ¢j(sq4,5). But costs and information about costs are normally
asymmetric ex-post, after private signals have been observed. We assume that

aCi (Si, Sj)

so that a firm’s marginal cost increases with respect to its own signal. We also
require that a firm’s cost is weakly increasing with respect to the competitor’s
signal:
801' (81', Sj)
— 27 >0. 4
8sj - ( )
A firm’s private signal has more influence on its own cost than on the competitor’s
cost:
aCi (SZ', Sj) 80]' (S]’, 87;)
> .
Osi aSi
Taken together, (3) and (4) imply that:

()

de; (s, )

T 0. (6)

The special case with independent signals and %

= 0 corresponds to the
private independent cost assumption, which is, for exa]mple, used in the analysis by
Parisio and Bosco (2003) and Spulber (1995). The common cost/value assumption
that is used by Wilson (1979) and others corresponds to ¢; (s;, s;) = ¢; (s;, s;). Our
model approaches the latter case in the limit where 601(8?’% ) _ acjéssj_’si) \, 0.
Costs are insensitive to private information about both producelis in the limit
where costs are common knowledge. For our Bayesian NE, it turns out that bid-
ding behaviour is determined by properties of the cost function along its diagonal
where producers receive identical private information. Thus, for us it is sufficient

to define a weaker form of common knowledge about costs.

" Alternatively, similar to the market design of the Australian wholesale market, producers
could first choose bid prices and later adjust production capacities at those prices just before
the market is cleared. Anyway, we assume that the reported production capacities are publicly
verifiable, so that bidders cannot choose them strategically.



Definition 1 Production costs are insensitive to common variations in signals in
the limit where % N 0 for s € [s,3).

As in von der Fehr and Harbord (1993), demand can be uncertain D € [D, D].
It could be correlated with the production capacities, but demand is assumed to
be independent of the production costs and signals. In addition, it is assumed
that all outcomes are such that 0 < D < g; + g, so that there is always enough
production capacity to meet the realized demand. As in von der Fehr and Harbord
(1993), demand is inelastic up to a reservation price p. Analogous to Milgrom and
Weber (1982), we assume that the reservation price is set at the highest relevant
marginal cost realization, i.e. p = ¢;(5,5) for i € {1,2}. This assumption can
be motivated by the fact that an auctioneer would lower its procurement cost by
lowering the reservation price whenever p > ¢; (5,3).

A firm i € {1,2} submits its offer after it has received its private signal s;. We
assume that the bidding format constrains offers such that each firm must offer its
entire production capacity at one unit price p; (s;). The auctioneer accepts offers
in order to minimize its procurement cost. Thus, output from the losing producer,
which has the highest offer price, is only accepted when that firm is pivotal and
in that case the auctioneer first accepts the entire production capacity from the
winning producer, which has the lowest offer price. Ex-post, we denote the winning
producer, which gets a high output, by subscript H. The losing producer, which
gets a low output, is denoted by the subscript L. Winning and losing producers
have the following expected outputs:

q¢r = B [min (gx, D)] (7)

and
qr = E[max (0, D — qy)] . (8)

A rationing rule is used when producers submit offers at the same price and
realized demand is strictly less than the realized market capacity. We assume
that the rationing rule is such that, whenever rationing is needed, any producer
would get a significantly larger output, an increment bounded away from zero, if
it reduced its offer price by any positive amount.

In a uniform-price auction, the highest accepted offer price sets the market
price for all accepted offers. In a discriminatory auction, each accepted offer is
paid its individual offer price. The payoff of each producer is given by its revenue
minus its realized production cost. We solve for Bayesian Nash equilibria in a
one-shot game, where p; (s;) is weakly monotonic and piece-wise differentiable.

4 Analysis

4.1 Discriminatory pricing

We start the section on discriminatory pricing by deriving the best response of a
firm ¢ € {1,2}. We denote its competitor by j # i. We use the best response to
explicitly solve for the unique Bayesian NE.

10



Each firm is paid as bid under discriminatory pricing. The demand uncertainty
and the production capacity uncertainties are independent of the cost uncertain-
ties. Thus, the expected profit of firm ¢ when receiving signal s; is:

i (si) = (pi (s

i) —BE[ci(si,85)|p; > pi]) Pr(p; > pil 5i) qu
+(pi (s:) ~ B ©)

i (si,85)pj < pil) (1= Pr(p; = pil s1) az

In the Appendix, we show that:

Lemma 1 In markets with discriminatory pricing:

87:9i—£,fi) =Pr(p; 2 pil si) qu + (1 = Pr(p; = pil 1)) qr

+(pi — e (50,5 (pi))) 22222 (g — ),

whenever p; (s;) and pj (s;) are locally differentiable and locally invertible for sig-
nals that have offer prices around p; (s;).

(10)

The first two terms on the right-hand side of (10) correspond to the price effect.
This is what the producer would gain in expectation from increasing its offer price
by one unit if the acceptance probabilities were to remain unchanged. However,
on the margin, a hlgher offer price lowers the probability of being the winning

producer by M Switching from being the winning to the losing bidder

Op;
reduces the accepted quantity by qg — qr,. We refer to %}fmsl) (qg — qr) as the

quantity effect, i.e. the quantity that is lost on the margin from a marginal price
increase. The mark-up for lost sales, p; —¢; (si, pj_l (pi)), times the quantity effect
gives the lost value of the quantity effect. This is the last term on the right-hand
side of (10). Note that marginal changes in p; (s;) only result in changes in output
for cases where the competitor, producer j, is bidding really close to p;, which
corresponds to the competitor receiving the signal pj_1 (p;). This explains why
i (si, p;l (pz)) is the relevant cost in the mark-up for lost sales in the quantity
effect.

We find it useful to introduce the function H* (s), which is proportional to the
quantity effect and inversely proportional to the price effect for a given signal s.

Definition 2

_ x (s, 5) (gn — q1)
Jox (s,85) dsjau + [ x (s, 55) dsjar

H* (s) := (11)

H* (s) depends on exogenous variables/parameters and captures the essen-
tial aspects of the information structure, the auction format and the essential
properties of demand and the production capacities. The unique equilibrium is
symmetric, so in the following we sometimes find it convenient to drop subscripts.

11



Proposition 1 If

d (f;X(S,Sj) dszH_'_QL I;X(S7Sj)d3j> -0

ds X (s, ) (12

for all s,z € (s,3), then there is a unique Bayesian NE in the discriminatory
auction. There is a unique equilibrium for more general probability distributions
when % 1s large for v < 5. The unique equilibrium is symmetric, without

welfare losses and has the property that p' (s) > 0, where

s d v *
p(s)=c(s,s) —l—/ %e I3 H wydu gy, (13)

S

for s € [s,35). The above expression can be simplified for the following circum-
stances:

1. In the limit when production costs are insensitive to common variations in
signals, (13) can be simplified to:

pls) =c(s,s) +e JH WG _c(s,s)). (14)

2. The condition in (12) is satisfied if signals are independent, and (13) can
then be simplified to:

" de (v,v) (G ) 4,y

p(s)=c(s,s)+ /

Cr=co | (0= Fe)m + PO a
In the limit when production costs are insensitive to common variations in
signals, then (15) can be further simplified to:

—c(s. s dr p—c(s,8)).
p(S) - (—7—) + <<<1 . F(S))QH —f-F(S) QL)) (p (_7_)) (16)

3. The condition in (12) is satisfied if signals are affiliated and producers are
non-pivotal with certainty, in which case (11) can be simplified to:

e () e X(58) 17
R T 1

If, in addition, production costs are in the limit where they are insensitive to
common variations in signals, the equilibrium offer is perfectly competitive,
ie. p(s) =c(s,s) for s € [s,3).

Demand is inelastic so the total output is efficient. The marginal costs are flat
and in our unique equilibrium, the firm with the highest cost and signal makes
the highest offer. Thus, the bid constraint ensures that the allocated output is
efficient and that welfare losses are avoided.
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The term [° %W o= [ H"(Wdugy in (13) corresponds to a mark-up. Given
that H* (s) is proportional to the quantity effect and inversely proportional to the
price effect, it makes sense that a high H* (s) results in more competitive offers
with lower mark-ups. For example, higher production capacities so that ¢y — qr,
increases, and less restrictive purchase constraints in analogous sales auctions, will
make bidding more competitive. We also note from Definition 2 that H* (s) and
p(s) are determined by the expected sales of the high price bidder and the low
price bidder, but H* (s) and p (s) are independent of the variances of those sales.

Another conclusion that we can draw from Proposition 1 is that bidding be-
haviour is only influenced by properties of ¢; (s;, s;) at points where s; = s;. Thus,
for given properties along the diagonal of the cost function where signals are iden-
tical, it does not matter for our analysis whether the costs are private, so that

W = 0, or whether the costs have a common uncertainty component, such
J
that w > 0. As noted above, the reason is that when solving for the locally

optimal offer price, a producer is only interested in cases where the competitor is
bidding really close to p;. In a symmetric equilibrium, this occurs when the com-
petitor receives a similar signal. The properties of ¢ (-) for signals where s; # s;
could influence the expected production cost of a firm, but not its bidding behav-
iour. This would be different if each producer submitted an offer with multiple
offer prices or even a continuous supply function as in Vives (2011), so that a
producer could indirectly condition its output on the competitor’s information.

Costs that are common knowledge constitute a special case of the limit where
firms’ marginal costs are insensitive to common variations in signals, as in (14).
If costs are common knowledge, the signals only serve the purpose of coordinat-
ing producers’ actions as in a correlated equilibrium (Osborne and Rubinstein,
1994). If, in addition, signals are independent as in (16), signals effectively be-
come randomization devices of a mixed-strategy NE. To illustrate this, signals
could be transformed from s to P = p(s), i.e. a signal that directly gives the offer
price that a firm should choose. The price signal has the probability distribution
G (P) = F (p ' (P)). If we rewrite (16), we get that

qH p—c¢c qr

¢ ) g —q.  P—cqu —qr (18)
This probability distribution of offer prices corresponds to the mixed-strategy NE
that is calculated for discriminatory auctions by Fabra et al. (2006). This confirms
Harsanyi’s (1973) purification theorem that a mixed-strategy NE is equivalent to
a pure-strategy Bayesian NE, where costs are common knowledge and signals are
independent.

Only the lowest offer price is accepted when ¢; > D for both producers and all
outcomes, so that producers are non-pivotal with certainty as in Case 3. In this
special case, there is no difference between our discriminatory and uniform-price
auctions, because the winning offer sets its own price also in the uniform-price auc-
tion. This case also corresponds to the first-price single-object auction, which is
analysed by Milgrom and Weber (1982). As in Milgrom and Weber (1982), private
information normally gives an informational rent, so if costs are asymmetric infor-
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mation, then non-pivotal bidders also have a positive mark-up. However, mark-ups
are zero in the limit when production costs are insensitive to common variations
in signals, even if non-pivotal producers have private information for outcomes
where signals differ. For the special case where costs are common knowledge, this
result concurs with von der Fehr and Harbord (1993) and Fabra et al. (2006),
where mark-ups are zero in auctions with both uniform and discriminatory pric-
ing. Recall that our discriminatory auction is identical to the Bertrand model, so
our results also apply to the Bertrand game.

4.2 Uniform-pricing

As mentioned earlier, Case 3 in Proposition 1 also applies to producers that are
non-pivotal with certainty in a uniform-price auction. Now, we consider the other
extreme where producers are pivotal with certainty in a uniform-price auction. As
in the discriminatory auction, we solve for a symmetric equilibrium. Later, we
will consider the general case where the pivotal status of producers is uncertain,
in which case the unique equilibrium is symmetric.

The highest offer sets the market price in a uniform-price auction when produc-
ers are pivotal with certainty. The demand and production capacity uncertainties
are independent of the signals and cost uncertainties. Thus, when producers are
pivotal with certainty, the expected profit of firm ¢ when receiving signal s; is:

i (si) = B pj — ci(si,55)| pj = pi] Pr(p; > pil 83) qu (19)
+ (pi (si) —Eci (si,85) | pj < pi]) (1 —=Pr(p; > pil si)) qur.

Lemma 2 In a uniform-price auction with producers that are pivotal with cer-
tainty, we have:

aﬂaiz()fi) = (1=Pr(p; = pils:)) ar
OPr(p;j>pilsq _
+% (pi — G <8i7pj ! (pi))) (gm — qr)

(20)
whenever p; (s;) and p; (s;) are locally differentiable and locally invertible for sig-
nals that have offer prices around p; (s;).

The first-order condition for the uniform-price auction is similar to the first-
order condition for the discriminatory auction in Lemma 1, but there is one dif-
ference. In contrast to the discriminatory auction, the lowest bidder does not
gain anything from increasing its offer price in a uniform-price auction when pro-
ducers are pivotal with certainty. Thus, the price effect has one term less in the
uniform-price auction, which reduces the price effect. There is a corresponding
change in the H function which is proportional to the quantity effect and inversely
proportional to the price effect.

I:[(S) _ (QH S_QL>X(S7S)' (21)
ar J; x (s,85) ds;
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Proposition 2 The symmetric Bayesian Nash equilibrium offer in a uniform-
price auction where producers are pivotal with certainty is given by

p(s) =c(s,s) —|—/ —dc Eiv’v)e—fsv H(u)du g, (22)
v

s

for s € [s,3) if signals are negatively affiliated. The symmetric equilibrium exists
for more general probability distributions when %i’v) is large for v < 5. The
equilibrium is without welfare losses and has the property that p'(s) > 0. The
expression can be simplified for the following circumstances:

1. In the limit when production costs are insensitive to common variations in
signals, (22) can be simplified to:

p(s) =cls,s) +e FHOL (G _c(s,5)). (23)

2. Independent signals are negatively affiliated. In this case, (22) simplifies to:

(arr—ar)

po) = e+ [ (TN T g (24)

S

In the limit when production costs are insensitive to common variations in
signals, then (24) can be further simplified to

(amr—ar)

p(s)=c(s,5)+(F(s)) = (p—cls9). (25)

Equation (22) has properties similar to the corresponding expressions for the
discriminatory auction in Proposition 1. But the ratio of the quantity and price
effects differs. It follows from Definition 2 and (21) that H (s) > H* (s) or, equiv-
alently, that the price effect is relatively smaller in the uniform price auction as
compared to a discriminatory auction. Thus, producers make offers with lower
mark-ups in uniform-price auctions. On the other hand, in a uniform-price auc-
tion, the losing producer with the highest offer price sets the transaction price
for both accepted offers, so in the end it is not self-evident that a uniform-price
auction would lower the procurement cost of an auctioneer. We will analyse this
further in Section 4.4.

We can use an argument similar to the one we used for the discriminatory
auction to show that the limit result in (25) corresponds to the mixed-strategy
NE that is derived for uniform-price auctions by von der Fehr and Harbord (1993).
(25) can also be used to calculate the expected clearing price.

Proposition 3 If the signals are independent, the production costs are insensitive
to common variations in signals, and producers are pivotal with certainty, then the
expected market price in the uniform-price auction is given by:

_ (p—9)(qum —qr)
p —
qu + qr,

where ¢ = ¢ (s, 8) .
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Expected

market price
Reservation price

High-price equilibrium 7

Competitive equilibrium

Non-pivotal firms Pivotal firms
i > Demand
Production capacity Total production
of one firm capacity in the market

Figure 1: Comparative statics analysis for our symmetric equilibrium and von
der Fehr and Harbord’s (1993) asymmetric high-price equilibrium in a uniform-
price auction where producers have a certain pivotal status, costs are common
knowledge and signals are indepedent.

In the special case with certain demand and certain production capacities that
are pivotal, we have qy = ¢ and q, = D — ¢ > 0, so that the expected market
price is given by

_ (P—¢)(2¢—D)

p- 5 . (26)

Figure 1 plots this relationship, which gives a comparative statics analysis
of the expected transaction price with respect to a certain demand level. The
expected market price increases continuously as demand increases and it does not
reach the reservation price until demand equals the total production capacity in the
market. With more firms in the market, the expected price in our model would stay
near the marginal cost until demand is near the total production capacity in the
market, where the expected price will take off towards the reservation price. This
would be reminiscent of what is often called ”hockey-stick pricing” that is typical
for wholesale electricity markets (Hurlbut et al., 2004; Holmberg and Newbery,
2010). In Figure 1, we also plot the high-price equilibrium in von der Fehr and
Harbord (1993). In this equilibrium, the market price jumps directly from the
competitive price with zero mark-ups up to the reservation price when demand
increases at the critical point where producers switch from being non-pivotal to
being pivotal with certainty in a uniform-price auction.

In the comparative statics analysis in Figure 1, where costs common knowledge,
the expected transaction price is continuous at the point where producers switch
from being non-pivotal to pivotal. This is not the case for uncertain costs. In the
special case where producers are just pivotal with certainty, so that gz \, 0, then
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it follows from Proposition 2 that p(s) = c(s,s). This corresponds to Milgrom
and Weber’s (1982) results for second-price sales auctions, because the lowest
bidder gets to produce (almost) the whole demand while the highest bidder sets
the uniform market price. When comparing this to Case 3 in Proposition 1, which
also applies to uniform-price auctions with non-pivotal producers, we note that
the comparative statics analysis of our symmetric equilibrium has a discontinuity
at the critical point where producers’ capacities switch from being nonpivotal
with certainty to being pivotal with certainty. Somewhat counter-intuitively, offer
prices decrease at this critical point, even if demand increases. The reason for
this is that the offer that sets the market price also switches at this point, which
drastically changes the bidding behaviour. Just pivotal firms bid truthfully as in
a second-price auction while non-pivotal firms set their own price and use similar
bidding strategies as in a first-price procurement auction, i.e. firms’ mark-ups
are strictly positive for uncertain costs. The following proves that the producer’s
revenues can also shift downwards at the critical point where producers’ capacities
switch from being nonpivotal with certainty to being pivotal with certainty.

Proposition 4 If producers’ signals are strictly affiliated, then the expected payoff
of the auctioneer is strictly larger for just pivotal producers than for producers
that are just non-piwotal with certainty in markets with uniform pricing and a
symmetric equilibrium.

4.2.1 Uncertain pivotal status

In the general case, the pivotal status of producers is uncertain when offers are
submitted. In this case, all offers are price-setting with some probability, which
will ensure a unique equilibrium. In particular, the high-price equilibrium does
not exist when the pivotal status of producers is uncertain.® Unlike the discrim-
inatory auction, allowing for uncertain pivotal status makes the analysis of the
uniform-price auction more complicated. The problem is that the lowest bidder,
which has the highest output, would set its own transaction price, as in a dis-
criminatory auction, for outcomes when the highest bidder is non-pivotal, while
the highest bidder would set the transaction price of the lowest bidder when the
highest bidder is pivotal. Thus, unlike the discriminatory auction, the payoff of
the winning producer generally depends on the probability that the highest bid-
der is non-pivotal. We denote this probability by IIVF. Demand and production
capacities are independent of the signals, so the pivotal status of producers is also
independent of signals.

8 Uncertain pivotal status implies that the lowest bidder will set its transaction price with a
positive probability. As shown by von der Fehr and Harbord (1993), this implies that the lowest
bidder would find it optimal to choose an offer just below the high-price offer at the reservation
price. But this means that the high-price bidder, in its turn, would find it optimal to deviate
and slightly undercut the low-price bidder.
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Lemma 3 In a uniform-price auction, where p; (s;) and p; (s;) are locally differ-
entiable and locally invertible, we have:

871'7; S;
sied = Pr(p; > pif s;) aff "IV + (1= Pr(p; = pil s:) au

+8Pr(pj2pi|5i)

G (e — e (sipy () (an — o) 27)

where
qn" =B [qu|qu > D].

Thus, the quantity effect is similar, as when producers are pivotal with cer-
tainty. But the price effect depends on the probability that the highest bidder is
non-pivotal. Increasing an offer price contributes to the price effect when a pro-
ducer’s offer is price-setting, i.e. when the producer is pivotal and has the highest
offer price or when the producer has the lowest offer price and the highest bidder
is non-pivotal. The function H (s) generalizes as follows:

Definition 3

i (s) = — X (s,8) (qm — qr)

fssx(s,sj)dsquPHNP—i—fgx(s,sj)dsqu'

Proposition 5 If the pivotal status is uncertain and

d (7 x(s,55) dsjai"TINY 4+ g [T x (s, 55) ds; .-
ds X (s, ) -

(28)

for all s,x € (s,5), then there is a unique Bayesian NE in the uniform-price
auction. There is a unique equilibrium for more general probability distributions
when % s large for v < 5. The unique equilibrium is symmetric, without

welfare losses, and has the property that p’ (s) > 0, where:

p(s) =c(s,s)+ / We— S ACdu g, (29)
v

s

for s € [s,3). The expression can be simplified for the following circumstances:

1. In the limit when production costs are insensitive to common variations in
signals, (29) can be simplified to:

pls)=cls,s) +e fHOL (G _c(s,5)). (30)

2. Independent signals satisfy the condition in (28), in which case (29) simplifies
to:

s (emr—ar)
=c(s,s Sde(v,v) ((1—F ) gy TINY + F (v) q,\ o570 —ar )
p(s)=c(s, )+/ dv <<1_F(S>>quHNP+F(S)qL) .

S

(31)
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If, in addition to independent signals, production costs are insensitive to
common variations in signals, then (31) can be simplified to

(ar—ar)

=c(s,s ar R p—c(s,8)).
b6 = el (o) b

As in the pivotal case, the price effect is smaller in the uniform-price auction as
compared to the discriminatory auction. Thus, offers are lower, but transaction
prices are set differently and could still be higher on average. Similar to the
discriminatory auction, the mark-ups are lower when ¢ increases, as this increases
the quantity effect. We note that as I’V increases towards 1, so that producers
are more likely to be non-pivotal, the bidding behaviour in the uniform-price
auction gets closer to offers in the discriminatory auction, which concurs with our
discussion in Section 4.1. At the other extreme, when IIV? decreases towards 0,
bidding gets closer to the uniform-price auction with producers that are pivotal
with certainty. For a given ¢}, producers will increase their offer prices when
ITV? increases. This may seem counterintuitive, but this is to compensate for the
fact that there is a higher risk that the market price is set by the lowest offer price
rather than the highest offer price.

4.3 Transparency improves auction performance

We will now use Proposition 1 and Proposition 5 to draw conclusions about the
influence from the information structure. It is useful to normalize the signals and
cost functions when comparing different information structures.

Definition 4 We say that signals and cost functions have been mnormalized if
c(s,s)=s.

We have by assumption that % > 0, so any signal s and cost function
c (s, s) can be normalized by the transformations s; = c(s;, s;), 5; = c¢(s;,s;) and
E(gz, §j> =C (SZ’, 8j>.

Definition 5 For normalized signals and cost functions, we say that two pairs of
probability density functions and marginal cost functions, {XA (si,8;), ¢ (s4, Sj)}
and {XB (si,55),cP (si, sj)}, are equivalent if the two pairs have the same marginal
distribution of normalized signals and the same joint distribution of marginal costs.

It follows from Definitions 2 and 3 that H* (u) and H (s) both increase when the
density at x (s, s) increases relative to both [ x (s,s;) ds; and [ x (s, s;) ds;. The
reason is simply that the quantity effect of increasing one’s offer price increases
if, conditional on the reception of a signal s, it becomes more likely that the
competitor receives a similar signal s and chooses a similar offer price. Thus, we
can conclude from Propositions 1 and 5 that
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Corollary 1 Consider two auctions A and B with identical payment schemes
(uniform or discriminatory pricing). Producers have lower mark-ups in auction
A, characterized by the normalized pair { XA (si,85), ¢ (84, Sj)}, in comparison to
auction B, characterized by the normalized pair {XB (54, 85),cP (si, sj)}, if the two
pairs are equivalent and if the signals are more likely to be similar in auction A in
the sense that normalized signals in auction A have a relatively higher probability
density for identical signals, so that

x* (s, 5) XB (s,5)
f;X s, 8;) ds; f xZ (s, ;) ds;
and
x* (s, s) XB (s,5)
f:XA (s,5;)ds; f XB (s, s;)ds;
for s € (s,3).

In particular, if increased transparency makes signals more similar without
changing the relevant properties of costs, then this will lower the mark-ups. Sim-
ilarly, for hydro-dominated markets, mark-ups would also decrease for increased
political and regulatory transparency if the result is that producers are more likely
to observe similar signals.

4.4 Ranking of auction formats

We already know from Section 4.1 that the two auction formats are equivalent in
the non-pivotal case. Below we show that there are cases where the two auction
formats are equivalent also when producers are pivotal with a positive probability,
so that ¢, > 0.

Lemma 4 If the signals are independent and the costs are common knowledge,
the expected profit for a producer is given by

m(s) =qu(p—c(ss)), (33)

for both the uniform-price and the discriminatory auction and irrespective of the
probability that the highest bidder is pivotal.

The equivalence result implies that the comparative statics analysis of the
symmetric equilibrium in Figure 1 also applies to the expected transaction price
in the discriminatory auction. There is a simple intuition for this equivalence
result. If the signals are independent and the costs are common knowledge, then
our Bayesian NE corresponds to a mixed-strategy NE. In a mixed-strategy NE, a
producer gets the same expected payoff for any price that is chosen with a positive
probability in equilibrium. Thus, irrespective of the auction format, the expected
payoff can be calculated from the case when a producer chooses a price near the
reservation price and is almost surely undercut by the competitor, which gives
the payoff in (33). The proposition below generalizes the equivalence result to
uncertain costs.
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Proposition 6 If the signals are independent, then the expected profit for a pro-
ducer is the same for the uniform-price and the discriminatory auction and inde-
pendent of the probability that the highest bidder is pivotal.

As compared to independent signals, it follows from Corollary 1 that the mark-
ups in both auctions will decrease if producers are more likely to receive similar
information. If a producer’s signal s becomes more informative of the competitor’s
signal as s increases, so that [ x (s, s;)ds; decreases relative to [ x (s, s;) ds;,
then it follows from Definitions 2 and 3 that H* (s) will tend to increase relative to
H (s), and it follows from Propositions 1 and 5 that this would make discriminatory
pricing relatively more attractive for an auctioneer. It would be the other way
around if a higher signal was instead less informative of the competitor’s signal.
It also follows from Definitions 2 and 3 that advantages and disadvantages of
uniform-pricing tend to increase if producers are pivotal with a higher probability,
i.e. IIV? decreases, for fixed g7 and qg.

5 Concluding discussion

We consider a duopoly model of a divisible-good procurement auction with pro-
duction uncertainty, such as a wholesale electricity market. Each producer receives
a private signal with imperfect cost information from a bivariate probability dis-
tribution (known to each producer) and then chooses one offer price for its whole
production capacity. The demand and production capacities could also be un-
certain. A producer is pivotal when the realized capacity of the competitor is
smaller than realized demand. Marginal costs are flat (independent of output).
We assume that the bidding format has the constraint that offers must also be
flat.

The bid constraint facilitates uniqueness of equilibria. There is a unique
Bayesian NE, which is symmetric, in the discriminatory auction. The uniform-
price auction has a unique equilibrium, which is symmetric, when the pivotal status
of producers is uncertain. The bid constraint also reduces production inefficien-
cies and ensures that welfare losses can be avoided. The bid constraint mitigates
Vives (2011) highly anti-competitive outcomes for uniform-price auctions where
costs have large common uncertainties. Costs do often have relatively large com-
mon uncertainties in forward markets and in hydro-dominated electricity markets.
In such markets, the marginal costs are also approximately flat for a wide range
of outputs. This indicates that it should be optimal for welfare and from the
auctioneer’s perspective to limit the number of allowed steps in producers’ sup-
ply schedules in uniform-price auctions of forward contracts and hydro-dominated
electricity markets. Alternatively, as is often the case in practice, the auction-
eer could also avoid uniform-price auctions when trading forward contracts long
before delivery.

In expectation, uniform and discriminatory pricing are equivalent when the
signals are independent. Consumers of electricity tend to favour discriminatory
pricing when a higher signal of a producer is more informative of the competitor’s
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signal. The opposite is true when a higher signal of a producer is less informative
of the competitor’s signal. Advantages and disadvantages of uniform pricing tend
to be amplified if producers are pivotal with a higher probability. We show that
equilibrium offers in a discriminatory auction are determined by the expected sales
of the producer with the highest and lowest offer price, respectively. The variance
of these sales — due to demand shocks, production outages and volatile renewable
production — will not influence the bidding behaviour of producers. Bidding in
the uniform-price auction is also insensitive to this variance, as long as it is not
sufficiently large to occasionally change the pivotal status of at least one producer.
Moreover, for given expected sales and independent signals, the probability that a
producer is pivotal in a uniform-price auction does not influence the expected pay-
offs. For strictly affiliated signals and certain demand in a uniform-price auction, a
comparative statics analysis of our equilibrium has, somewhat counter-intuitively,
a discontinuous decrease in producers’ payoffs if there is a small increase in de-
mand, such that producers switch from being non-pivotal to pivotal with certainty.

The markups fall in both auction formats if producers are more likely to re-
ceive similar information. This concurs with a related result in Vives (2011), which
shows that less informational noise makes uniform-price auctions more competi-
tive, and with the linkage principle for single object auctions in Milgrom and Weber
(1982). Taken together, these results support the measures taken by the Euro-
pean Commission to increase the transparency in European wholesale electricity
markets. However, disclosure of information is only beneficial up to a point. A
pivotal producer can deviate to the reservation price, which ensures it a minimum
profit. Moreover, in a repeated game, there is a risk that increased transparency
will facilitate tacit collusion as argued by von der Fehr (2013).

We are concerned that cost uncertainty and asymmetric information could
result in significant mark-ups in hydro dominated electricity markets with scarce
water. This could help explain the extraordinarily high price-periods that typically
accompany scarcity of water in such markets. One measure that could mitigate
this is to clearly define contingency plans for intervention by the market operator
and the regulator under extreme system conditions. In hydro-dominated markets,
improved political transparency has similar pro-competitive effects as improved
market transparency.

The results are analogous for multi-unit sales auctions, such as security auc-
tions. In particular, given that bidders’ marginal valuation of financial instruments
should be approximately flat and bidders’ valuations of securities typically have
large common uncertainties, we believe that it would be beneficial for welfare and
the auctioneer that uniform-price auctions of securities or emission permits use a
bidding format that significantly restricts the number of steps in the bid-schedules.
Purchase constraints in sales auctions increase the probability that bidders are piv-
otal and make them pivotal by a wider margin. This results in less competitive
outcomes, at least in a one-shot game. On the other hand, purchase constraints
may improve the competitiveness of secondary markets.
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Appendix

We start the Appendix by proving equilibrium properties that will be useful when
proving uniqueness and symmetry of Bayesian NE in auctions with discriminatory
or uniform-pricing. In Appendix B, we prove some relationships for conditional
probabilities and conditional expected values that will be used when solving for
equilibria in the two auctions. In Appendix C, we prove results for the discrimi-
natory auction. Results for the uniform-price auction are proven in Appendix D
and payoffs in the two auctions are compared in Appendix E.

Appendix A: Uniqueness and symmetry of the equilibrium

We first introduce the following definitions:
Definition 6

1. We say that p; (s;) is sometimes price-setting if, conditional on that producer
i receiving the signal s; € [s,3], there is a strictly positive probability that
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producer ¢ has a strictly positive output and is paid the transaction price
pi (s3).

2. We say that firm ¢ has an accumulation of offers at p if there is a range of
signals (s1, s2), such that p; (s;) = p for s; € (s1, $2).

Lemma 5 Consider a Bayesian NE in a uniform-price or discriminatory auction
where producer i has the strateqy p; (s;) for s; € [s,5|. The following equilibrium
properties can be proven:

1. Firm ¢ cannot have a sometimes price-setting offer p; (s;) € (po,p1) if the
competitor j does not have any offer in the range (pg,p;) for any signal
s; € [s,5]. Similarly, firm ¢ cannot have a sometimes price-setting offer
pi (8;) € [po, p1) if firm j does not have any offer in the range (pg, p1) for any
signal s; € [s, 5] and firm j does not have an accumulation of offers at p.

2. If firm j has an accumulation of offers at py for signals s; € (sq,s3), then
there is no signal s; € [s,3] such that: p; (s;) = po > ¢; (s, S2).

3. If the lowest offer that can occur for any producer in equilibrium is sometimes
price-setting, then firms must have the same strategy when receiving the
lowest signal, i.e. p; (s) = p; (s).

4. Assume that firm ¢ has an offer p; (s) for signal s which is sometimes price-
setting and such that: p; (s) = p; (s), pi (3) < pi(s) and p; (5) < p; (s) for
any existing § < s, then there is no accumulation of offers at the price p; (s).

Proof. 1) Make the contradictory assumption that the statement is true. Firm
i can then increase the offer for signal s; up to a price p € (p; (s;),p1). Such a
change will never change the output of producer i for the stated circumstances, but
it will sometimes increase the revenue of firm ¢ (whenever p; (s;) is price-setting),
so the deviation is strictly profitable.

2) Make the contradictory assumption that the statement is true. Firm i can
then reduce its offer price p; (s;) by an arbitrarily small amount £ > 0. Due
to properties of the assumed rationing rule, such a deviation will for the signal
s; increase the output of firm ¢ by an amount that is bounded away from zero
whenever the competitor receives a signal s; in the range (s1, s2). The condition
Po > ¢ (8i,52) > ¢ (si,s;) for s; < sy ensures that it is profitable for firm ¢ to
increase its output for those circumstances. Thus, the deviation is profitable for
sufficiently small €, so that any resulting reductions in the transaction price of
firm ¢ become sufficiently small.

3) Weak monotonicity of p; (s;) and p; (s;) imply that firm ¢ has no offer below
pi (s) and that firm j has no offer below p; (s). Make the contradictory assumption
that p; (s) # pi(s). Without loss of generality, we assume that p; (s) < p; (s),
where p; (s) is sometimes price-setting. However, it follows directly from 1) that
this is not possible in equilibrium.

4) Make the contradictory assumption that at least one firm j has an accumu-
lation of offers at the price p; (s) for signals s; € [s, s5]. Without loss of generality,
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we assume that firm j has the (weakly) largest accumulation of offers at p; (s),
i.e. there is no signal § > s, such that p; (§) = p; (s). It follows from 2) that
pi(s) = pj(s) = pj(s2) < ci(s,s2) = ¢;(s,s2), where the latter equality follows
from symmetry of costs.” It also follows that p; (s2) < ¢; (s, 82) < ¢; (s2,$), be-
cause as assumed in (5), a firm is strictly more sensitive to changes in its own signal
as compared to changes in the competitor’s signal. Thus, we have from (3) that
p; (52) < ¢ (s2,s;) for s; € [s,35]. But this would imply that when receiving signal
g, firm j would have a strictly negative payoff whenever p; (s2) is price-setting.
Thus, firm j can increase its payoff by increasing p; (s2). ®

We can use the technical results above to prove the following, which will be
useful when proving uniqueness and symmetry of equilibria for both auctions.

Lemma 6 Consider an auction with uniform-pricing where producers are mon-
pivotal with a positive probability or a discriminatory auction. Assume that the
necessary first-order conditions of offers from producers i and j have the symmetry
property that p; (s) = pj; (s) whenever p;(s) = p; (s) = p and there is no accumu-
lation of offers at p. For such a first-order condition, any existing Bayesian NE
in the considered auction must be unique and symmetric. Moreover, the unique
symmetric equilibrium offer p; (s) must be invertible.

Proof. Assume that the considered auction has an equilibrium. The lowest
offer that can occur in the equilibrium is at least partly accepted with a positive
probability. We consider an auction with either discriminatory or uniform pricing.
In the latter case, producers are non-pivotal with a positive probability. Thus,
the lowest offer is sometimes price-setting in the considered auction. Hence, it
follows from 3) in Lemma 5 that p; (s) = p; (s). 1) and 4) ensure that there are
no discontinuities in p; (s;) at s and no accumulation of offers at p; (s). Let s* be
the highest signal in the range [s, 5], such that no producer has an accumulation
of offers or a discontinuity in its offer function for s < s*. Thus, the assumed
symmetry property of the first-order condition and piece-wise differentiability of
pi(s) and p; (s) ensure that pj(s) = p) (s) for the range of signals (s, s*). The
symmetry of the initial condition p; (s) = p; (s) and the symmetry of slopes p, (s)
imply that p; (s*) = p; (s*). Moreover, offers p; (s*) = p, (s*) are not undercut
with certainty by the other firm and are therefore sometimes price-setting if s* <
5. Thus, we can use 1) and 4) to rule out cases where s* < 5. Uniqueness
follows from the assumption that p = ¢; (5,3), which ensures that p; (5) = D
for a symmetric equilibrium, even if producers are non-pivotal. Finally, we note
that weak-monotonicity of p (s) combined with no accumulation of offers implies
that p (s) must be piece-wise strictly monotonic, and therefore invertible for any
Bayesian NE. m

Compared to discriminatory pricing, we need a stricter sufficient condition
to ensure uniqueness in the uniform-price auction: producers need to be non-
pivotal with a positive probability. The reason is that an offer may sometimes be

9Recall that we use the convention that a firm’s own costs are always first in the list of signals.
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accepted in a uniform-price auction, even if it is never price-setting, as in the high-
price equilibrium by von der Fehr and Harbord (1993). In the above uniqueness
argument, we use Milgrom and Weber’s (1982) assumption that p = ¢; (5,5). This
assumption is crucial when ensuring uniqueness in an auction where suppliers are
non-pivotal with certainty, as in a single object auction. However, if the pivotal
status of suppliers is uncertain, then the uniqueness result would also hold for

P> ¢ (5,9).

Appendix B: Relationships for conditional probabilities

Before proving the lemmas and propositions that have been presented in the main
text, we will derive some results that will be used throughout these proofs. By
assumption, p; (s;) is monotonic and invertible. Thus, we get

f 1 )XS’HSJ)dSJ

Pr(p; > pil si) =

f7 X(si,55)ds; 34
OPr(pj>pilsi) _ _Pfllgpi)x<8i,p;1(Pi)) (34)
op; f;‘ X (si,5;)ds; )

where the last result follows from Leibniz’ rule. The above results and Leibniz’
rule are used in the following derivations.

s

p.

1, €i(8i,85)x(54,85)ds; f 1 ci(si,s5)x(si,s5)ds;
o) ()

Elci (si,85)|pj > pil =

f;l )X(Sivsj)dsj Pr (pj>p1|51 f x(si,55)ds;
f
M (pi Si, C’L 5,8 Ci\ Sis (2 5,8 S
oleouslpyzp) _ 77 PN 00) [y (loon) e (s 0 o )
op;
P (f 1 X(sl,sj)ds]>
*Wf 1) (C'L (sir55)—ci(si.p; " (pi)) ) X(5i,55)ds;

(Pr(p] >pilsi)) f§ X(si,55)ds;

From (34) and (35), we have that:

OE[c;(si,s i OPr(p;>pilsi
— ISPy (p; > pif ) — Ble: (si5)) By 2 pi) SRR
_ f 1( (Cz (86,55)— Ci(5i7pj (pi)))x(si,sj-)dsj f 1y, © (si,85)x(s4,85)ds; O Pr(p;>pils:)
fpj,l(pi) X(si,85)ds; f -1 X(sl,sj)ds] Op;

5 —1
- ACH 2 i i85)d
o1y (oiny 0)x(s1) " 0Bty 2pi)
f;fl(p‘)X(Si’Sj)dsj opi
J 7

— O Pr(p;>pilsi
=G <5i7pj ! (pz)) %-

(36)
Using the above equation, we can derive the following result:

Ok C;(Si,S4 2 i OPr 2 i |Sq
(1 - Zlelousdbizvl ) pr(p; > | 57) + (ps = Bl (55,55)| py > pi]) 20221

=Pr(p; > pil si) + (pi — ¢ (si,pj.*l (pz))) %jml&).
(37)
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Similarly, from (34), we have that

1 (p:)
f;ﬂ x(si,55)ds;
_ >l s) =

;i) p; t(pi)
e o . 1_ f;] ci(si85)x(si,85)ds; [ ci(s:,85)x(si,85)ds;
Blei(sivsi)l vy < il = S = ) e x(ou ),
12 xe)de B
OB[es(si.slpy<pi] _ 2y " i)x(siwi (b)) S (e (supy 00 —ei(insy) )x(si,)ds, (38)
om v (0) ’
Js X(si,85)ds;
j =Pi|si (i
_ —% fad ¢ )(Ci(5i7p;1(pi))_Ci(sivsj))X(Sth)de
(1=Pr(p;>pilsi))? [ x(si,55)ds; '
It now follows from (38) that:
OE[c;i(si,55)|pi <pi OPr(p;j>pilsi
_ OBleisi,sy)lpi=pil 8;3"”@} (1 —=Pr(p; > pilsi)) +Elci (si,85)|pj < pil Or(p; 2pilsi) (Zg;pl ) 39
_ OPr(pizpilsi) (s- pit (p)) (39)
apz (3 19 7 (3 .
Appendix C: Discriminatory auction
Proof. (Lemma 1) It follows from (9) that
873;;%) _ (1 . 8E[Ci(siéspj;)‘pj2pi]> Pr (p; > pil si) qu
OPr(p;>pils;
+ (pi = Elc; (si, 55)| pj = pi]) % (40)

IOE|[c;(si,55)|p; <pi
+ (1 Blelpln2l) (- Pr(p, > pils))as
OPr jZ i |Si
— (pi = E[c;i (si,85) | pj < pi) %
Using (37) and the relation in (39) yields:

i (S - OPr(p; >p;ils;
aa—;) = PI"(pj > pi’ Si) qo + (p'i — G (Siapj ! (pz))) %
— OPr(p;i>pils;
+¢; (Siapj ! (pz)) %
OPr(p;>pils;
+ (1 =Pr(p; = pil si)) ar —pz‘%%,

which gives (10). =
The following lemma is useful when deriving results for the non-pivotal case.
Lemma 7 ¢ [ Hwdu > fors <s<wv<3sand e~ JT Hwdu _ () for s < s <.

Proof. It follows from (17) that

H(u) = — X(U,U) _ —iln s us)ds, fixl (u, Sj) de. 4
) Jo x (u, 55) ds; du </u x(w55) )+ L2 x (u, s5) ds; (41)
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t fu x1(u,s;5)ds;

The assumptions that we make for the joint probability density imply tha sy )
u 8] Sj

is bounded. Thus, e~ /s #(®Wdu ig strictly positive, unless

e[ln(ffx(u,sj)dsj)]: _ ln(fvgx(v,sj)ds]-)—ln(fjx(s,sj)dsj)
f X (v, s;) ds;
f X (s dSJ

is equal to zero. This is the case if and only if fvs X (v,s;)ds; = 0. It follows from
the assumptions that we make on the joint probability distribution that this is the
case if and only if v =5. =

Proof. (Proposition 1) Consider a signal s € (s,5). Assume that p; (s) =
p; (s) = p(s) and that there is no accumulation of offers at p (s). Piece-wise dif-
ferentiability, weak-monotonicity of p; (s) and no accumulation of offers at p; (s)
implies that p; (s) must also be piece-wise strictly monotonic in some neighbour-
hood around s, and therefore invertible in that range. Thus, p;l (p;) = s. Hence,
we get the following first-order condition from (10).

Pl — Pr(p; > pls)qu + (1= Pr(p>pls))ar

OPr(p;>pl|s
+(p = ci (s,9)) B (g — qp) = 0.

Using (34) and that p; ' (p;) = ( 7> the condition can be written as follows:

/:x (s, 85) dsjqm + / X (s,85) dsjqr, — @%WX (s,8) (g — qz) = 0.

The condition is similar for both firms. Symmetry of the underlying parameters
together with [ x (s, s;) ds;qu > 0and [ x (s,s;) ds;qr > 0, ensures that p/; (s) =
P, (s). Thus, it follows from Lemma 6 that any existing Bayesian NE must be
symmetric and unique. Below we solve for this equilibrium.

We can use the definition in (11) to write the first-order condition on the
following form:

p(s) = (p—c(s ) H" (s) =0. (42)
Multiplication by the integrating factor eJs H* (wdu yields:
v (s) efjH*(u)du — pH* (s) efjH*(u)du
= —c(s,s) H" (s) eli H* (w)du

so that p ) B
T (pls) el @) < (s, 5) Y () el 0
S

Next we integrate both sides from s to s.

— p(s)eld H Wdu _ _/ (0, 0) H* () e H @ g,

p(s) = P I H* (w)du +/ ¢ (v,v) H* (v) e Js T Wdu gy,
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We use integration by parts to rewrite the above expression as follows:

* Ve 5 §d .
p(s) =peJe M [—C(U,v) e S H (“)d“] +/ —CEZU’U) — [ H* () gy,
s B )

which gives (13), because ¢(5,5) = p. It is clear from (13) that p > c(s,s) for
s € [s,5). Hence, it follows from (42) that p’ (s) > 0 for s € [s, 5).

It remains to show that p (s) is an equilibrium. It follows from (10) and (34)
that

om; (s) fpg-_l(p) X (5, 5;) ds; fpj (s,5) ds;
= 35 qu + qr
B Trea " e

5 0) x (505" (9)

J2x (s, 55) ds;
omi(s)  x(s5 () [ X(si)dsy [ (s ) ds
o [xlss)ds \ xGotm) 1 X0 0)

—p; V() (p—ci (s,0;" (D)) (am — ar)) -

(p—ci(s,p;" (0)) (aur — av) -

qL

We know that 87” = 0fors = p; !(p). Thus, whenever 4 (f x(s,85)dsjqm+ar [ x(s, sj)ds]) >

x(s,@)
0, it follows from the above and (3) that 87” 9m(s) - 0 when s > p; ' (p) <= p <p;(s)

and that 8”8;;5) < 0 when s < p;' (p) <:> p > pj(s). Thus, p(s) globally maxi-
mizes the profit of firm ¢ for any signal s when the inequality in (12) is satisfied.

In case 1) when costs are common knowledge, we have % N\, 0 for v <5,
so it follows from (13) that

*dc (v,v)

d
dv Y

p(s) = c(s,s)+ e—ffH*(u)du/
which gives (14).
For independent signals in case 2, we have x (s,s;) = f(s) f (s;), so the in-
equality

d (f;X (s,55) dsjqm +qr f;x (s,585) dsj)
ds

X (s, 7)
f f(s) f(s; dSJQH+QLf f(s) f(s5)ds; -
ds F(s)f (x) -
Cd (D () dsgam Fan J f (sy)ds; )
‘3§< @) )‘020
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is satisfied. Moreover, we have from Definition 2 that
H* (S) = f (S) (QH _SQL)
I, f(s5)dsjqm + fé f(sj)dsjar

= —%ln </s f(Sj)deQH +/S f(Sj) de(]L> .

Thus, (13) can be written as in (15). If, in addition, the costs are insensitive
to common variations in signals, so that W \. 0 for v < 3, then (15) can be
simplified to (16) as follows:

PO e+ (T Fmm) | a

=c(s,S L D—c(s,s)).
=cles)t (((1—F<s>>qH+F<s>qL>)(p (5:5)

Producers are non-pivotal with certainty and ¢;, = 0 in case 3. Thus H* (s),

simplifies to (17). For affiliated signals, we have <% X)) > () if 5; > 2, which
ds \ x(s,x) J

ensures that the global second-order condition in (12) is satisfied when ¢, = 0.
If, in addition, we have that the costs are insensitive to common variations of
signals, then it follows from (14) and Lemma 7 that equilibrium offers are perfectly
competitive for s <35. m

Appendix D: Uniform-price auction

The following derivations will be useful when analysing uniform-price auctions. It
follows from (34) and Leibniz’ rule that:

Sty o) D)

Epj — ci(si,s5)pj = pi] = fil( | X(si5)ds;
Pj Py

f:;l (ps) (pj(sj)—ci(si,55))x(si,55)ds;

Pr(p;>pilsi) [J x(si,55)ds;
BPr(ijpi |51>

f;j_l(m) (pj(si)*ci(si’sj)*(pifci(snp;l(pi))))x(si,sj)dsj

OB[pj—ci(si,sj)lpj>pi] ori _
Ipi (Pr(p;=>pilsi)” [ x(sis55)ds;
(43)
Similar to (36), it can be shown that:
OE[p;i—ci(si,si)|pi>pi OPr(p;i>pils:
LieCetlliZPl Pr () > pil i) + B [py — e (si,55)| py > pi] SR (44)
- 2Pl (o, (s ()
Op; Di (4 ’L?p_j Y2 .
Proof. (Lemma 2) We have from (19) that
‘9”81'(81') — aE[pj_Ci(;i:sj)‘ijPi] Pr (pj > p,| S-) qn
Di Di = e
OPr(p;i>pilsq
+E [pj — ¢ (Si; Sj)‘ Dj = Pi] —(%jp | )CIH (45)

+ <1 _ 3E[C¢(sz‘é8j)|pjﬁpi]> (1 _ Pr (pj > Pz" Sz)) ar

pi
OPr(p;i>pils:
— (pi — Elci(si,s5)| pj < pi]) %
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Next we use (39) and (44) to simplify this expression to (20). m

Proof. (Proposition 2) Note that (20) is very similar to (10) and the state-
ments can be proven in a very similar way to the proof of Proposition 1. In
particular, it can be shown that the first-order condition is given by:

/SX (s,85)ds;jqr, — p=cls5)

PTRRR (s,8)(qu —qr) =0

P () = pH (s) = —c(s,5) H (s).

The property of negatively affiliated signals in (2) implies that % <%> >0
for x > s;, which is sufficient to ensure global optimality. m

Proof. (Proposition 4) In the non-pivotal case, the lowest offer price sets the
market price and the winning producer (with the lowest offer price) gets to produce
the entire demand, which corresponds to a first-price procurement auction. In the
just pivotal case, the highest offer price sets the market price and the winning
producer gets to produce the entire demand, which corresponds to a second-price

auction. Thus, the statement follows from Milgrom and Weber (1982). =

Proof. (Proposition 3) We let G (P) be the probability that a producer’s
offer price is below P. This is the same as the probability that s is below p~* (P).
Hence, it follows from (25) that

9L

G (P) = (]_D - C) B

p—c

From the theory of order statistics, we know that

2q7,

= (=)

p—c
is the probability distribution of the highest offer price, which sets the price.
Hence, the probability density of the market price is given by 2G (p) G’ (p). Thus,
the expected market price is given by:

[0 6 =l - [ e

c

P
29, 44 _
o (p—c)m—u . (p-9lgn —a1)
=P 21, — 2. - P qu +qr '
(s +1) G ==

c

Proof. (Lemma 3) The demand and production capacity uncertainties are
independent of the signals and the cost uncertainties. Thus, the expected profit

of firm ¢ when receiving signal s; is:
i (si) = B[p; — ¢ (si85)|pj = pi Pr(p; = pil 50) qgz (1 — TINT)
+E [pi (si) = ci (s, 85)|pj = pi] Pr(p; > pil s) qgy IV (46)
+ (pi (i) — Efci (56, 85)| pj < pil) (1 —Pr(p; > pil 51)) g,
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where
i = B[qul gu < DJ.
It follows from differentiation of (46) and the relations in (37), (39) and (44) that:

87;;}5;%) _ aPr(rgspilsn (p —¢ (sz,p] 1 (ng)) ( HNP)

4 (Pr(ry > mls) + (= e (s 07 () 282210 ) e
P) =

O Pr(p;>pilsi)
B =P (¢ (i, 05 (s

—f-(l-PI’( >pz|sz))qLa

(47)
pi )

SO

87;(31‘) _ 8Pr(%jzpi‘5i) (p, _ e (S p )) ( ]1; ( HNP) NPHNP _ qL)
pi pi ¢ L\
+Pr(p; > pil si) an PHNP + (1 =Pr(p; = pil si)) qr,

which can be simplified to (27), because ¢ = ¢f; (1 — IIN?) + ¢NFIINF. =
Proof. (Proposition 5) The proof is similar to the proof of Proposition 1.

Appendix E: Ranking of auction formats

Proof. (Lemma 4)
For the discriminatory auction, it follows directly from (9) and (16) that

m(s) = (p(s) —c(s,8) (1 = F(s)) g + (p(s) —c(s,8) F(s) qr

when costs are common knowledge and signals are independent. Going through
the same calculations for the uniform-price auction is rather tedious, because the
winning producer is sometimes paid the offer price of the losing producer, so
the expected transaction price is less straightforward. Thus, we use a different
approach for the uniform-price auction. It follows from (47) that

s OPr(p;>p;
g—p: = gp]gfp—) (pi —C; (§, §)) qfl (1 _ HNP)

8 r(p; 3
+ (Pr(py = pi) + (s = i (s, 5)) 222220 ) giPIING

OPr i i
+% (ci(s,8) —pi) ar

+(1—=Pr(p; >pi))qr =0

(48)

whenever signals are independent, s; < 5 and the costs are common knowledge.
Hence, in equilibrium the expected payoft of a producer will not change if it changes
the offer price in the range [, p| for a given signal. This is expected as this special
case corresponds to a mixed-strategy NE in accordance with Harsanyi’s purifica-
tion theorem. Thus, to calculate the expected equilibrium payoff for producer 1,
we can assume that it makes an offer at p. The competitor plays the equilibrium
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strategy, so it will almost surely undercut p, i.e. Pr(p; > p;) = 0. The expected
profit of producer i can now be calculated from (46):

mi(s) = (p—c(s,5)) qr-

Proof. (Proposition 6) It follows from (46) and (29) that the expected
revenue of a producer in a uniform price auction after observing the signal s is:

JZp(si)x(s,85)ds;al (1=TINT )+ [ p(s)x(s,5;)dsjaN T TINT 4 [ p(s)x(s,55)ds .
f; X(s,55)ds;
YV H(u)d
f]. (u) udv )X(S,Sj)dsjqu(l_HNP)
2 x(s,85)ds; (49)
5 5 de(v,v) _— [V H(u)du NPYNP
N (c(s,s)—i—fS —gre s dv) (s,85)ds;qy 11
J2 X(s,55)ds;
S (esys)+ 3 4G = I B gy )y (s,5)dsar,
J2 X(s5,s5)ds; '

R(s) =
fs (C(SJ 5])+f5 dc(v e

_|_

We can also use the above expression to calculate the expected revenue in the
discriminatory auction by setting II"” = 1. R(s) can be rewritten as follows:

fgc(s,s)x(s ;) ds;iqy f c(s,s)x (s,85)ds;jqL O (s)
R(s)==5 — -
) f;X(S7SJ>de " f§ X (s, 55) ds; +f;><(s,sj)dsj

. (50)

© (s) is defined below. It captures how differences in the auction format and the
probability that producers are pivotal influence the expected revenue.

f fs de( vv) dvx (s, 87) ds;jqf; (1 —TIVF)
+f [ det dc(vv) 71 Hudugyy (s, ;) ds;g NP TINE
+f fs dc(vv) o= J Hw)du g, X (8,5)ds;qr
7 esges) = eo5)) x(sr3) diafy (1= 1),

Next, we change the order of integration for the double integral and adjust limits,
so that the integrals describe the same domain of integration.

Ols)= / W/ ¢ TN (s, 5,) dsydvghy (1—1%)

£ d v 'S
+/ cilv,v)e—fs H(u)du/ X (s, 8;) ds;dv gNPIINP
S v S

+/ dc(v,v)e_f:ﬁ(u)du/ X(s7sj)d8deQL

+ /8 (c(s5,85) = c(s,5)) x(s,5) dsjqz (1 —TVT).
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dcvv)

Assume now that is zero for v below w > s. In this case, we have:

O (s) = / de E;; v) / ¢ ﬁ(u)dux (s,5) dsjdvgh (1- HNP)

£l d v 'S
+/ cilv,v)e—fs H(u)du/ X (s, 5;) ds;dv gYPIINF
w v S

+ /8 (¢ (s5,85) = c(w,w)) x(s,55)dsjqp (1 - TV,

if w > 5. We have dfl)(s =0 if w < s, otherwise
do (s) de(w,w) [ —[* A(u)du
T =TT /8 e % X (8, 55) dsqu (1 — HNP)
de (W, W) _ rw fgiude 3 s
_ %e [ H(u)d (/ X (s, 5;) dsqu—i—/ X (s, Sj)dsquPHNP)
de (w,w) [* )
— %/ X (s, 5) dsqu (1 — HNP) ) (51)

Next, we use that signals are independent, i.e. x (s,s;) = f(s) f(s;). We have
from Definition 3 that

~ f(s)(qu —aqr)

H (s) =
f f(s;)ds; qNPHNP—i-f [ (s;)ds;qr
d ((IH - QL>
— (1= F () YTV 4 F _dE —dr)
dS n(( (S)>QH + (8) q[/) quHNP —qr
/w T () s = (g5 — qr)In ((1 = F () gy "TINY + F (s) qr)
. qr, — quHNP
NPHNP F(w
e —a)ln ( (00 ke o )
- qL — qHPHNP
NPTINP o Zan)
o I A _ ((1 — F () gy " + F (w) QL) o (52)
(1= F(s)) gy "IN + F(s)qL

We substitute (52) and that x (s, s;) = f (s) f (s;) into (51)

—(arr—ar)
dO(s dcww 1-F(w)) NPHNPJrF'w o _gNPONP
o) — el (L S e ) T (s) f () dsyafy (1 — 1Y)
ag—ar)
de(ww) [ (1=F(w))gNPTONP 4 F(w) NPNP
N (dw : ((lfF(s))ngﬂNPJrF(s)quL)qL et f I (s) f(s;)dsjqyPIINP
—(amr—ar)
de(waw) [ (1—F(w))gNPTINY + F(w) NPHNP
_ C(;uvw ((I*F(S))ZSPHNP+€(S);LL>qL apy f f 8] dS]qL

—dew) () [7f (s5) dsjaly (1 - HNP)

36



Next, we use the substitution F' = F'(s;), so that dF = f (s;) ds;.

do(s) _  dc(waw) pF(w)

(1=F(w))qy "IN+ F(w)q
dw dw F(s)

qp,—aN NP
g ) T S () dFf (1 TIN)

—(ag—az)
de(w,w 1-F(w))g¥PONP +F(w _ NPNP
e (e ) =TT £ (5) (1= F (s)) gy TV

—(eg—ar)
 de(ww) ((1 F(w))ayy NPHNP+F(W)CIL)4LQ’I¥PHLNP f(s)F(s)qr
_de(w,w
) £ (5) (1= F (w)) gf (1 - 1Y)

( —(ag—ar)

dw \ (—F()gy "IN 1 F(s)az

(54)
The first integral can be solved as follows:
F(w) NPTINP o an)
F(s) (1= F)qy"IINF + Fqp,
—lag—an) - pF(w) _oman)
— ((1 — F(w))quHNP +F(w) QL) ap—qpyt INF / ((1 _ F) quHNP +FQL) ap—ayPUNP g
F(s)
[ a4 F(w)
NPTNP g oe) ((1—F)qNPHNP+Fq )mﬂ
= ((1—-F(w 11 + F(w ar—ag 1
(1~ F () g o e
- 4 F(s)
i aH—4 1 F(w)
NPTINP ) ((1—F)quHNP—|—FCZL)QL(fﬁﬁlglﬁj)\’wrl
= ((1 — F(w))qyg 1™ + F (w) CJL) ar—ap" 1 = o :
qp (1= 1INP)
- 4 F(s)

because gy = ¢y IV + ¢f; (1 — IIVP). Using this result, we can rewrite (54) as
follows:

—(apr—ar)
da(;) _ _dc(d%w) ((1 _F (w)) quHNP +F (w) qr )qL NPINP f (8)
(ar=an) 75
((1 — F)gq PHNP+FqL) ap—ayPINP
F(s
de(waw) (((1=F(w))gNPTINP+ F(w)q qLi—(Z%;qHLJ\BP i NPTTNP
el (P ) =TT 7 () (1 F () g T (55)
—(agr—ar)
_de(w,w w))gNFTIN P+ F(w NP NP
e g(< (<s;§ T )qL T f(s)F(s)ar
d

= e (0= F @) g "I & P (w) ar) £ ()
Zc(gwwf()( ( ) ai (1—1177)
= — 0 (1= F () qu + F (w) qu) f (s)
Hence, it follows that # is independent of ITV” and thus also independent of
whether the auction has a umform or a discriminatory format. The same type of
independency applies to “15) We have from Lemma 4 that the expected revenue
R (s) is the same, mdependent of IIN? and independent of the auction format, if
w /s and the signals are independent. From the above reasoning, it follows that
the result in Lemma 4 can be generalized to any w € (s,5). =
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