

# **IMF Working Paper**

Trade Costs of Sovereign Debt Restructurings: Does a Market-Friendly Approach Improve the Outcome?

by Tamon Asonuma, Marcos Chamon and Akira Sasahara

*IMF Working Papers* describe research in progress by the author(s) and are published to elicit comments and to encourage debate. The views expressed in IMF Working Papers are those of the author(s) and do not necessarily represent the views of the IMF, its Executive Board, or IMF management.

INTERNATIONAL MONETARY FUND

# **IMF Working Paper**

Research Department and Western Hemisphere Department

# Trade Costs of Sovereign Debt Restructurings: Does a Market-Friendly Approach Improve the Outcome?

Prepared by Tamon Asonuma, Marcos Chamon and Akira Sasahara\*

Authorized for distribution by Xavier Debrun and Inci Ötker November 2016

# This Working Paper should not be reported as representing the views of the IMF.

The views expressed in this Working Paper are those of the author(s) and do not necessarily represent those of the IMF or IMF policy. Working Papers describe research in progress by the author(s) and are published to elicit comments and to further debate.

#### Abstract

Sovereign debt restructurings have been shown to influence the dynamics of imports and exports. This paper shows that the impact can vary substantially depending on whether the restructuring takes place preemptively without missing payments to creditors, or whether it takes place after a default has occurred. We document that countries with post-default restructurings experience on average: (i) a more severe and protracted decline in imports, (ii) a larger fall in exports, and (iii) a sharper and more prolonged decline in both GDP, investment and real exchange rate than preemptive cases. These stylized facts are confirmed by panel regressions and local projection estimates, and a range of robustness checks including for the endogeneity of the restructuring strategy. Our findings suggest that a country's choice of how to go about restructuring its debt can have major implications for the costs it incurs from restructuring.

JEL Classification Numbers: F14; F34; F41; H63;

Keywords: Sovereign Debt; Sovereign Defaults; Sovereign Debt Restructurings; Trade; Panel Regression; Local Projections;

Author's E-Mail Address: TAsonuma@imf.org, MChamon@imf.org, ASasahara@ucdavis.edu

\* Tamon Asonuma is an economist in the Research Department. Marcos Chamon is a deputy division chief in Western Hemisphere Department. Akira Sasahara is a Ph.D. student at University of California Davis. The authors thank Sebastian Acevedo Mejia, Jaebin Ann, Gaetano Basso, Diego Alejandro Cerdeiro, Xavier Debrun, Aitor Erce, Atish Rex Ghosh, Martin D. Kaufman, Junko Koeda, Yen Nian Mooi, Keiichi Nakatani, Inci Otker, Ugo Panizza, Michael G. Papaioannou, Romain Ranciere, Michael Ruta, Alan M. Taylor, Christoph Trebesch, Tao Wang, Felix Ward, as well as seminar participants at Waseda University for comments and suggestions.

| Contents                                                                                           | Page |
|----------------------------------------------------------------------------------------------------|------|
| I. Introduction                                                                                    | 4    |
| II. New Stylized Facts on Trade Dynamics around Debt Restructurings                                | 7    |
| A. Classification of Restructuring Approaches                                                      |      |
| B. New Stylized Facts on Trade Dynamics                                                            |      |
| III. Data and Empirical Strategies                                                                 | 12   |
| A. Data                                                                                            |      |
| B. Conventional Panel Regression Approach                                                          |      |
| C. Local Projection Approach                                                                       |      |
| IV. Baseline Results                                                                               | 17   |
| A. Conventional Panel Regression                                                                   |      |
| B. Local Projection Estimation                                                                     |      |
| V. Dealing with Endogeneity                                                                        | 26   |
| A. Endogeneity Issue                                                                               |      |
| B. Instrument Variable (IV) Estimation Approach                                                    | 29   |
| C. Local Projections                                                                               | 31   |
| VI. Robustness Check                                                                               | 36   |
| A. Expanding Sample of Observations                                                                |      |
| B. Exchange Rate Regimes, Commodity Exporters, IMF-supported progra Paris Club restructurings      |      |
| Turis Club restructorings                                                                          |      |
| VII. Conclusion                                                                                    | 46   |
| REFERENCES                                                                                         | 53   |
| Figures                                                                                            |      |
| Trade Dynamics around Debt Restructurings                                                          | 9    |
| 2. Exports and Imports around Debt Restructurings                                                  |      |
| 3. GDP, Investment, and Exchange Rates around Debt Restructurings                                  |      |
| 4. Conditional Cumulative Change from the Start of Restructurings, OLS                             |      |
| 5. Local Projections on Other Variables, OLS                                                       |      |
| 6. Estimated Probability of Treatment                                                              |      |
| 7. Local Projections with Baseline Specification, AIPW                                             | 35   |
| Tables                                                                                             | 1.4  |
| 1. Summary Statistics                                                                              | 14   |
| Conventional Panel Regression Results, OLS      Local Projection Results under Baseline Model, OLS |      |
| 4. Local Projections for Other Variables under Baseline Model, OLS                                 |      |
| 5. Difference between Treatment and Control Sub-samples                                            |      |
| 6. Predicting Restructuring Events, Logit Estimation (Marginal Effects)                            |      |
| 6 6 (                                                                                              | 20   |

| 7. Conventional Panel Regression Results, IV                                        | 30 |
|-------------------------------------------------------------------------------------|----|
| 8. Predicting Debt Restructuring Events, Multinomial Logit Summary Statistics       | 32 |
| 9. Local Projections with Baseline Specification, AIPW                              | 34 |
| 10. Conventional Model with Expanded Sample, OLS                                    | 37 |
| 11. Local Projections with Expanded Sample, OLS                                     | 39 |
| 12. Local Projections for Exchange Rate Regimes, Commodity Exporters, IMF-supported |    |
| programs, and Paris Club Restructurings, OLS                                        | 42 |
| Appendixes                                                                          |    |
| I. Data                                                                             | 47 |
| II. Exports and Imports in Restructuring Countries                                  | 49 |
| III. Local Projections for Other Variables using AIPW Methods                       |    |

#### I. INTRODUCTION

Sovereign debt restructurings are typically associated with a decline in imports and exports (Rose, 2005 and Martinez and Sandleris, 2011). While the effect of restructurings on trade has been well documented, the existing literature has lumped together all the episodes without taking into account differences in the nature of the restructuring process. This paper explores how the trade response varies depending on whether the restructuring takes place before or after a default occurs. That is, whether countries restructure pre-emptively (without missing any payment to creditors), or wait until payments are missed (default) to restructure. This distinction will prove key in determining the trade costs associated with the debt restructuring.

There are a number of channels through which sovereign debt restructurings could impact trade. Imports could decline if the restructuring country has difficulties financing a trade deficit, or if the restructuring is accompanied by an exchange rate depreciation (through a standard expenditure switching channel as in Abiad et al., 2014). Constrained access to trade credit can contribute to a decline in exports, as shown by Zymek (2012) for sovereign defaults and Amiti and Weinstein (2011) and Ahn et al., (2011) for financial crises. Limited financing for imports of intermediate goods can also affect exports (Levchenko et al., 2010). Pre-emptive restructurings are generally more creditor-friendly, and countries that avoid defaulting may be able to maintain better access to financing, which can help support trade as discussed above.

Using data from 177 private external debt restructurings in 69 countries over 1978–2007, we document that countries with a post-default restructuring—results in larger net present value (NPV) haircuts—experience have on average: (i) a more severe and protracted decline in imports, (ii) a larger fall in exports, and (iii) a sharper and more prolonged decline in both GDP, investment and real exchange rate than those with a preemptive restructuring. Interestingly, the experience of countries that start their debt renegotiation prior to a default but temporarily miss some payments during that process (which we call weakly pre-emptive restructurings with smaller NPV haircuts), tends to fall in between that of the strictly pre-emptive and post-default restructurings. While not the main focus of our paper, we also document that pre-emptive restructurings are associated with more rapid GDP and investment recoveries and less depreciation of the exchange rate.

Our results show that the approach that countries take to a debt restructuring can have first order implications for some of the key costs associated with restructuring. This distinction has not received attention in the sovereign debt literature, with the exception of a couple of

<sup>&</sup>lt;sup>1</sup> Borensztein and Panizza (2009) and Sandleris (2015) identify four main costs of sovereign defaults: reputation costs, trade exclusion costs, costs to the domestic economy through the financial system, and political costs.

recent studies. IMF (2013) documents that recent preemptive restructurings on external private debt over 2005–2013 (10 episodes) achieve high creditor participation than post-default episodes.² Asonuma and Trebesch (2016) study 179 restructurings over 1978–2010 and show that preemptive restructurings are associated with lower haircuts, shorter duration, lower output losses, and quicker market re-access than post-default cases. The current paper fills a gap in the literature by exploring the impact of both preemptive and post-default restructurings on exports and imports. It suggests that much of the cost of restructuring may stem from waiting until after a default takes place to restructure. The difference in outcomes between a post-default and a strictly preemptive restructuring in our estimates is often smaller than the difference in outcomes between a strictly preemptive restructuring and the control sample of countries that did not experience a restructuring. Moreover, even temporarily missing payments after the start of renegotiation seems to be associated with significantly worse outcomes for the country, as shown by the difference in our results between strictly and weakly preemptively restructurings. These stark results have not been documented before in this new and emerging literature.

Our findings are supported by regression based estimates for the impact of trade, which control for a number of other variables such as terms of trade, the real exchange rate and GDP growth. We obtain these results both under a conventional panel regression, which is commonly used in the trade and sovereign default literature (Rose 2005, Martinez and Sandleris, 2011, Zymek, 2012), and under a local projection model—originally proposed by Jordà (2005) and recently used by Jordà et al., (2013, 2016), Jordà and Taylor (2016) and Kuvshinov and Zimmermann (2016). These two approaches are complementary. The conventional panel regression provides an estimate of direct period-specific impacts of the different restructuring strategies. On the other hand, the local projection method quantifies the overall effect (both direct and indirect) of the restructuring approach over longer horizon.

The conventional panel regression estimates indicate that post-default restructurings are associated with a severe and prolonged decline in imports (1.7 percent over the first 3 years on average – in line with that of sovereign defaults in Zymek, 2012). In contrast, weakly preemptive cases experience a mild and short drop (0.8 percent over first 2 years on average) and strictly preemptive cases only experience a contemporaneous fall in imports (0.7 percent at the start year). Similarly, on exports, post-default restructurings lead to a sharp contemporaneous drop in exports (1.8 percent), while neither weakly nor strictly preemptive cases experience a significant drop. Sharp differences also emerge in our local projection estimates. On imports, post-default restructurings lead to a sharp decline in imports for the first 3 years from the start year and a prolonged compression over 4 additional years —similar to Kuvshinov and Zimmermann (2016) on sovereign defaults. In contrast, the decline in imports is milder (but still severe) for weakly preemptive and even more gradual

\_

<sup>&</sup>lt;sup>2</sup> For recent case studies, see also Sturzenegger and Zettelmeyer (2006), Erce (2013), Panizza et al. (2009), Diaz-Cassou et al. (2008), Das et al. (2012), and Finger and Mecagni (2007).

for strictly preemptive ones. In a similar vein, post-default restructurings experience a severe decline of exports over the medium term followed by a moderate decline over the first 4 years. But the decline in exports is smaller for both weakly and strictly preemptive restructurings.

The decision of whether or not to restructure debt either pre-emptively or after default may be related to other country characteristics that help shape the post-restructuring outcome. For example, countries that restructure pre-emptively may be the ones that have accumulated debt and experienced more gradual adverse shocks. Similarly, countries with post-default restructurings suffer both prolonged recession and increased debt burden due to unexpected shocks. We address that potential endogeneity problem using a conventional Instrument Variable (IV) estimation and the Augmented Inverse Probability Weighted (AIPW) estimator (Jordà et al., 2016 and Kuvshinov and Zimmermann, 2016). Our estimates remain robust. Moreover, additional robustness checks on both expanding country sample and differentiations of exchange rate regimes, commodity exporters, IMF-supported programs, and official external (Paris Club) restructurings show the validity of our baseline results.

In addition to the emerging literature on the approach to debt restructurings discussed earlier, this paper also contributes to the empirical literature on trade costs of sovereign defaults.<sup>3</sup> On official external debt (bilateral debt), both Rose (2005) and Martinez and Sandleris (2011) find that debt renegotiation (Paris Club restructurings) over 1948–2007 are associated with a significant decline in sovereign debtors' overall trade. On private external debt, Zymek (2012) shows that defaults trigger a severe reduction in sovereign debtors' exports in financially dependent industries. Similarly, Kuvshinov and Zimmermann (2016) document defaulting countries experience gross trade collapses in tandem with severe GDP contractions.<sup>4</sup> Our paper differs from these studies in that we find asymmetric impacts across the three types of restructuring approaches discussed above.

Our empirical findings on trade around restructurings is also related to growing literature on trade collapse during the 2008–2009 global financial crisis. Among recent studies, using either firm-level or sector-level data, Amiti and Weinsten (2011), Alessandria et al., (2010) and Chor and Manova (2012) find that trade was negatively affected through a contraction of

<sup>&</sup>lt;sup>3</sup> Gu (2015) theoretically explains the pro-cyclicality of imports, exports and terms of trade around sovereign defaults.

<sup>&</sup>lt;sup>4</sup> Zymek (2012) uses industry-level export data in a sample of 100 countries over 1970–2007 (with 61 default episodes). Kuvshinov and Zimmermann (2016) use a panel of 117 countries with 88 external defaults over 1970–2010.

trade credits, while with a disaggregated data on the US imports and exports, Levchenko et al., (2010) argue that vertical linkages across countries amplify the decline in trade.

In contrast, using monthly aggregate US import data, Novy and Taylor (2014) emphasize a channel of inventory adjustments.<sup>5</sup>

The remainder of the paper is organized as follows. Section 2 documents the stylized facts related to the response of trade to different restructurings. Section 3 describes the data and our empirical strategies. Section 4 reports the baseline results. Section 5 deals with endogeneity, while Section 6 presents additional robustness checks. Finally, Section 7 discusses some policy implications and concludes.

### II. NEW STYLIZED FACTS ON TRADE DYNAMICS AROUND DEBT RESTRUCTURINGS

# A. Classification of Restructuring Approaches

Throughout the paper, we focus on private external debt restructurings. Of 179 debt restructurings, 131 episodes accompany at least one official external (Paris Club) debt restructuring over the periods from 2 years prior to the start of restructurings to 2 years after the end of restructurings. In contrast, 48 episodes are not associated with any external official debt restructurings. With a single exception, Paris Club restructurings were accompanied by an IMF-supported program.

Asonuma and Trebesch (2016) define classifications of restructurings on private external debt as follows:

- "Strictly preemptive" restructurings are those which are implemented with no missed payments at all (no legal default).
- "Weakly preemptive" restructurings are those in which some payments are missed, but only temporarily and after the start of formal or informal negotiations with creditor representatives (no unilateral default).
- "Post-default restructurings" are all other cases, in which payments are missed unilaterally and without the agreement of creditor representatives (unilateral default prior to negotiations).

<sup>&</sup>lt;sup>5</sup> On related studies, see also Asmundson et al. (2011), Eaton et al. (2013), and Greenland et al. (2014).

<sup>&</sup>lt;sup>6</sup> Section VI.B explores how the trade dynamics respond differently whether the country has an official external debt (Paris Club) restructuring or an IMF-supported program.

As highlighted above, our definition hinges on whether the country misses any scheduled payments. The classification of the nature of the restructuring strategy can only be made after its completion.

Using a wide range of data sources on missed payments by governments vis-à-vis private external creditors and on processes of debt restructurings, Asonuma and Trebesch (2016) code 179 debt restructurings and identify:<sup>7,8</sup>

- 23 strictly preemptive restructurings in 13 countries
- 45 weakly preemptive restructurings in 26 countries
- 111 post-default restructurings in 60 countries.

Figure 1 reports trends of exports and imports (relative to GDP) for Ecuador, a post-default restructuring, and Uruguay, a strictly preemptive restructuring. These episodes were chosen because they are fairly representative of the experience of countries following those restructuring strategies. Vertical solid lines and dashed lines indicate start years and end years of restructurings, respectively. Ecuador experienced three weakly preemptive restructurings overlapping in 1982–1985 and three post-default restructurings (1986–1995, 1999–2000, and 2008–2009). In the most recent post-default restructurings (1999–2000 and 2008–2009), both exports and imports substantially declined around the restructurings. In contrast, Uruguay experienced five non-overlapping preemptive restructurings in 1983, 1985–1986, 1987–1988, 1989–1991 and 2003. In these preemptive restructurings, neither exports nor imports were severely influenced. Prior to its 2003 restructuring, Uruguay experienced a large drop in imports because of spillovers from Argentina's debt restructuring initiated in end-2001. This comparison reveals a striking difference in the evolution of both exports and imports between these two cases.

<sup>&</sup>lt;sup>7</sup> See Asonuma and Trebesch (2016) for detailed data sources.

<sup>&</sup>lt;sup>8</sup> Appendix I.2 provides classifications of countries experiencing post-default, weakly preemptive and strictly preemptive restructurings, respectively.

<sup>&</sup>lt;sup>9</sup> See Appendix II for additional 4 country cases.

9



Figure 1: Trade Dynamics around Debt Restructurings

Sources: Asonuma and Trebesch (2016), IMF DOT (exports, imports) and World Bank World Development Indicators (US-dollar denominated GDP).

# **B.** New Stylized Facts on Trade Dynamics

While the comparison of the experiences of Ecuador and Uruguay is informative, it still has an idiosyncratic component by relying on the comparison of two countries. Figure 2 generalizes the comparison by drawing on data from all countries that restructured to illustrate the average experience of exports and imports under the three types of restructurings. The vertical dotted line indicates the start of the restructuring (time 0). Both the exports-to-GDP and imports-to-GDP ratios are normalized at the pre-restructuring level (time -1) indicated by the red horizontal lines. The duration of the renegotiation varies substantially across strategies: 5.1, 1.0 and 0.7 years on average for post-default, weakly preemptive and post-default restructurings, respectively. The time scale of the charts is chosen accordingly. Imports in countries with post-default restructurings experience a substantial decline for a prolonged period (over 3 years on average, A-left panel). Similarly, countries experiencing weakly preemptive restructurings suffer a decline in imports, albeit milder than that in post-default restructurings (A-center panel). In contrast, strictly preemptive restructurings are not associated with any decline in imports (A-right panel).

Turning to exports, post-default restructurings contribute to a severe and protracted drop in exports (2–3 percent over 3 years, B-left panel). In contrast, countries experiencing both weakly and strictly preemptive restructurings do not experience a contraction in exports (B-center and right panel).

<sup>10</sup> See Benjamin and Wright (2009), Sturzenegger and Zettelmeyer (2006, 2008), Reinhart and Rogoff (2009, 2011), Cruces and Trebesch (2013), Asonuma and Joo (2016) for stylized facts around sovereign debt restructurings. See also Tomz and Wright (2013) for a survey.

10



Figure 2: Exports and Imports around Debt Restructurings



Sources: Asonuma and Trebesch (2016, restructurings), IMF DOT (exports, imports), WB World Development Indicators (US dollar-denominated GDP)

Figure 3 is analogous to Figure 2, but reports the dynamics of GDP, investment and the real exchange rate (against the US dollar). As shown in Asonuma and Trebesch (2016), GDP experiences a sizable drop in the run-up to a post-default restructuring. <sup>11</sup> The drop continues following the restructuring, and GDP remains below its pre-crisis levels for several years. A much smaller drop takes place in the run-up to a weakly preemptive restructuring, and it only takes one year for GDP to recover to its pre-crisis level. In contrast, strictly preemptive restructurings are associated with more resilient growth before and after the restructuring.

-

<sup>&</sup>lt;sup>11</sup> See also De Paoli (2009), Sturzenegger (2004), Levy-Yeyati and Panizza (2011), Tomz and Wright (2007), Trebesch and Zabel (2014) for output costs for defaults.

Panel B in Figure 3 reports the results for investment, which follow a similar pattern to that of GDP. Investment experiences a deep and prolonged decline in the context of post-default restructurings, a milder and short-lived decline in weakly preemptive restructurings, while investment remains resilient and accelerates following a strictly preemptive restructuring. Finally, panel C in Figure 3 reports the results for the real exchange rate. Similarly to the findings in Asonuma (2016), the real exchange rate depreciates substantially in the run-up to post-default and weakly preemptive restructurings, and continues to depreciate afterwards. But there is a reduction in the pace of depreciation following weakly preemptive restructurings, and the overall magnitude of the depreciation is also smaller. In contrast, the real exchange rate remains more stable, and appreciates following strictly pre-emptive restructurings.

(A) GDP (real, level) Post-default Weakly preemptive Strictly preemptive 05 95 95 025 025 GDP (real, log level) -.025 0 .025 0 -.025-.025 9 .05 2 1 2 3 Years after shock 2 0 Years after shock Years after shock (B) Investment (gross capital formation, flow) Post-default Weakly preemptive Strictly preemptive ന 3 1.2 Investment တ တ တ  $\infty$ φ  $\infty$ 1 2 3 Years after shock -1 5 2 Years after shock Years after shock

Figure 3: GDP, Investment, and Exchange Rates around Debt Restructurings



(C) Real Exchange Rate against the US dollar

Sources: Asonuma and Trebesch (2016, restructurings), IMF IFS (real exchange rate), IMF DOT (exports, imports), WB World Development Indicators (GDP, Investment).

The results illustrated above can be summarized into the following stylized facts:

- Stylized fact 1: Imports decline substantially in post-default restructurings, less severely in weakly preemptive restructurings, and are not affected in strictly preemptive cases.
- Stylized fact 2: Exports drop substantially in the post-default restructurings, but are not affected in weakly or strictly preemptive restructurings.
- Stylized fact 3: GDP and investment decline substantially and the exchange rate depreciates sharply in post-default restructurings, with a much milder adverse effect in weakly preemptive restructurings, and largely no effect in strictly preemptive cases.

#### III. DATA AND EMPIRICAL STRATEGIES

## A. Data

Our data has an annual frequency in order to have as large a country coverage as possible. The aggregate nominal trade (both export and import) value data are from the IMF Direction of Trade (DOT) database. We deflate the nominal trade data using the annual U.S. GDP deflator from the World Bank World Development Indicators (WDI). Our approach of using trade value data rather than trade quantity data—conventional in the literature (e.g., Rose, 2005, Martinez and Sandleris, 2011, Zymek, 2012—is guided by two rationales: First using trade quantity data strictly limits our country coverage, particularly among low income countries (LIC) experiencing restructurings. Second, Gopinath et al., (2012) find that a decline in US international trade was exclusively driven by a drop of trade quantity rather

than a drop in trade prices. Hence, conducting the analysis with trade values does not raise concerns because changes in trade values tend to be driven by changes in trade quantity, not by changes in trade prices.

Debt restructuring variables are from Asonuma and Trebesch (2016) which classifies restructurings as post-default, weakly preemptive and strictly preemptive, and also provides the duration of all 179 restructuring episodes over 1978–2010. In their database, the start of a restructuring process is defined as the default month and/or month in which a distressed restructuring is announced, and the end of a restructuring is defined as the month of the final agreement and/or the implantation of the debt exchange.

Our set of control variables include real GDP growth, real exchange rate depreciation, growth rate of investment, change in the terms of trade, the cyclical component of the log of real GDP per capita, population, import prices and export prices, and dummies for a floating exchange rate regime and for commodity exporters. Appendix A summarizes data sources of these explanatory variables.

Our sample covers the period 1970–2007. Our decision to exclude the period from 2008 onwards is driven by two reasons; first, and more importantly, international trade experienced a structural break which completely changed trade dynamic patterns due to the Great Trade collapse in 2008–2009. Applying a financial crisis dummy is not enough to meaningfully extract information from those years. Second, in our context, there are only two debt restructurings which were initiated after 2008: Seychelles 2008–2010 and Ecuador 2008–2009. Given the data availability constraint for other control variables, Seychelles 2008–2010 would have already been dropped from our sample.

The sample covers 69 countries that have experienced at least one debt restructuring over the specified horizon for our benchmark. Since we divide restructurings into three separate categories, each of the three dummies would become very rare in a sample that includes countries that never experienced a restructuring (which would bring the total to 122 countries), making our estimates less precise and possibly biasing them. Our approach of focusing on countries experiencing a specific event is in line with Jordà and Taylor (2016), in the context of studying fiscal austerity. In order to have our results comparable with previous studies (Zymek, 2012 and Kuvshinov and Zimmermann, 2016), we report estimation results with a full country coverage including non-restructuring countries in Section 6.1.

Table 1 summarizes import and export growth in the universe of restructurings and their classifications. Panel A shows post-default restructurings experience a large decline in imports at the start of restructurings and experience low import growth during that entire

process. In contrast, weakly preemptive episodes witness a milder fall in import growth at the start of the restructuring, followed by a rapid recovery (one year).

Panel B also indicates that for post-default restructurings, exports drop sharply at the onset of restructurings and continue to be subdued over a prolonged period, while for weakly preemptive cases, exports decline sharply only at the beginning of restructurings and quickly recover to their pre-restructuring levels. As expected, these are consistent with Figure 2 in Section 2.2.

**Table 1. Summary Statistics** 

Panel A:  $(Import_{t-1} - Import_{t-1}) / GDP_{t-1}$ 

|                                                     | Obs   | Mean  | Std. Dev. | Min    | Max   |
|-----------------------------------------------------|-------|-------|-----------|--------|-------|
| At starting year of debt restructurings             |       |       |           |        |       |
| Post-default                                        | 80    | -2.25 | 5.15      | -29.11 | 9.88  |
| Weakly preemptive                                   | 39    | -1.40 | 4.28      | -22.27 | 2.23  |
| Strictly preemptive                                 | 18    | 0.20  | 1.75      | -4.18  | 3.71  |
| During debt restructurings                          |       |       |           |        |       |
| Post-default (until 3 years from the starting year) | 285   | -0.64 | 4.72      | -29.11 | 11.04 |
| Weakly preemptive                                   | 84    | 0.13  | 4.12      | -22.27 | 21.92 |
| Strictly preemptive                                 | 23    | 1.12  | 1.94      | -4.18  | 5.64  |
| Other datasets                                      |       |       |           |        |       |
| Banking crisis (Laeven and Valencia, 2012)          | 45    | 0.03  | 3.84      | -11.55 | 11.04 |
| Sovereign crisis (Laeven and Valencia, 2012)        | 84    | -1.76 | 5.22      | -22.27 | 11.04 |
| Sovereign defaults (Standard and Poor's, 2006)      | 81    | -1.60 | 5.14      | -24.02 | 13.22 |
| All observations                                    | 2,043 | 1.16  | 5.48      | -37.44 | 65.92 |

Panel B:  $(Export_{t-1} - Export_{t-1})/GDP_{t-1}$ 

|                                                     | Obs   | Mean  | Std. Dev. | Min    | Max    |
|-----------------------------------------------------|-------|-------|-----------|--------|--------|
| At starting year of debt restructurings             |       |       |           |        |        |
| Post-default                                        | 80    | -0.85 | 4.79      | -22.65 | 10.60  |
| Weakly preemptive                                   | 39    | -0.18 | 3.06      | -12.47 | 8.74   |
| Strictly preemptive                                 | 18    | 0.86  | 1.94      | -1.54  | 5.45   |
| During debt restructurings                          |       |       |           |        |        |
| Post-default (until 3 years from the starting year) | 285   | -0.06 | 4.59      | -22.65 | 27.34  |
| Weakly preemptive                                   | 84    | 0.14  | 2.94      | -12.47 | 12.16  |
| Strictly preemptive                                 | 23    | 0.53  | 2.31      | -5.23  | 5.45   |
| Other datasets                                      |       |       |           |        |        |
| Banking crisis (Laeven and Valencia, 2012)          | 45    | 0.59  | 3.82      | -10.04 | 20.20  |
| Sovereign crisis (Laeven and Valencia, 2012)        | 84    | -0.91 | 7.25      | -25.71 | 37.87  |
| Sovereign defaults (Standard and Poor's, 2006)      | 81    | -0.91 | 5.24      | -25.71 | 8.65   |
| All observations                                    | 2,043 | 0.76  | 5.61      | -49.56 | 109.88 |

Sources: Asonuma and Trebesch (2016, debt restructurings), Laeven and Valencia (2012, banking and sovereign crisis), Standard and Poor's (2006, sovereign defaults), IMF DOT (exports, imports), WB World Development Indicators (US dollar-denominated GDP).

*Notes*: Observations are from 61 countries experienced at least one debt restructuring episode and the sample period is 1970–2007. The impact of post-default on trade during debt restructurings only looks at its effect up to three years after start of the debt restructurings.

# **B.** Conventional Panel Regression Approach

First, we explore the direct period-specific impact of different restructuring strategies "unconditional" on the sovereigns' restructuring status in the previous period, i.e., independent from whether the country initiated restructurings in the previous period and negotiations have continued. During the restructuring process, some factors such as GDP, investments and the real exchange rate are significantly influenced by the sovereigns' restructuring strategies as seen in Figure 3. Use of the information set including these factors available in the current period enables us to control for contemporaneous effects of these factors on the current exports and imports. In addition, including lagged event dummies controls for the influence of the sovereigns' restructuring status in the previous periods. The advantage of the conventional panel approach lies on capturing "direct" contemporaneous or lagged effects of the event dummies (restructurings in our case) on the current trade. In our context, the choice of the conventional panel approach also yields estimates that can be compared to those in the literature (Zymek, 2012) and also provide an assessment for the robustness of our complementary local projection estimates.

Our baseline specification follows closely Amiti and Weinstein (2011) and Levchenko et al., (2010) using the change in import/export values normalized by GDP as a dependent variable:<sup>12</sup>

$$100*\frac{Import_{c,t} - Import_{c,t-1}}{GDP_{c,t-1}} = \beta_0^m + DR_{c,t}\beta_1^m + X_{c,t}\beta_2^m + \varepsilon_{c,t}^m$$
 (1)

$$100*\frac{Export_{c,t} - Export_{c,t-1}}{GDP_{c,t-1}} = \beta_0^x + DR_{c,t}\beta_1^x + X_{c,t}\beta_2^x + \varepsilon_{c,t}^x$$
 (2)

where  $100*(Import_{c,t}-Import_{c,t-1})/GDP_{c,t-1}$  and  $100*(Export_{c,t}-Export_{c,t-1})/GDP_{c,t-1}$  are the percentage changes in import values and export values of country c at year t normalized by the previous level of GDP, respectively;  $\beta_0^m$  (and  $\beta_0^x$ ) is a constant term;  $DR_{c,t}$  is a vector of debt restructuring dummies including the post-default restructuring dummy, the weakly preemptive debt restructuring dummy and the strictly preemptive restructuring dummy;  $\beta_1^m$  (and  $\beta_1^x$ ) is a vector of coefficients of debt restructuring dummies to be estimated;  $X_{c,t}$  is a set of control variables;  $\beta_2^m$  (and  $\beta_2^x$ ) is a vector of coefficients on

(continued...)

<sup>&</sup>lt;sup>12</sup> Amiti and Weinstein (2011) and Levchenko et al. (2010) employ the percentage change in imports and exports as a dependent variable. However, we employ the percentage change in imports and exports scaled by GDP in order to control heterogeneity of variables across countries and have our estimates comparable with those in local projections.

control variables to be estimated; and  $\mathcal{E}_{c,t}^m$  (and  $\mathcal{E}_{c,t}^x$ ) is the error term. Since our specification follows the first differencing estimator model—all dependent variables and explanatory variables (except for the dummies for floating exchange rate regime and commodity exporters) are in percentage changes—, neither of fixed effects nor time effects are included in our baseline specification.<sup>13</sup>

Our interest lies on  $\beta_1^m$  and  $\beta_1^x$ , a vector of coefficients on restructurings which represents the average difference (in percentage points) in import value growth rates (export value growth rates) between observations that are experiencing a restructuring and those that are not. The choice of control variables follows closely Rose (2005), Levchenko et al., (2010) and Zymek (2012). First, we control for real GDP growth, real exchange rate depreciation, growth rate of investment together with change in the terms of trade since dynamics of these factors differ across restructuring strategies (Figure 3 in Section 2.2) and are mutually linked with sovereigns' restructuring choice. Second, impacts of restructurings differ between a floating and a fixed exchange rate regime, and between commodity exporters and non-commodity exporters; countries with a fixed regime suffer a larger decline in gross trade as they lack automatic stabilizer mechanism of exchange rates. Similarly, non-commodity exports experience larger trade collapses because they do not have large market shares (constant demands) at the global market.

An alternative approach is to use the log of import values or export values (levels) as a dependent variable following a traditional specification of the gravity model literature (Rose 2005, Martinez and Sandleis, 2011, Zymek, 2012). <sup>14</sup> Our main results are robust to this alternative definition.

# C. Local Projection Approach

Our next step is to quantify *overall* effects (direct and indirect effects) of restructurings under the premise that events influence trade over a period of time. As mentioned above, exports and imports are influenced not only directly but also indirectly through the effects on other outcomes (GDP, investment, real exchange rate and terms of trade) which are affected by the sovereigns' restructuring choice. The local projection estimation method initially proposed by Jordà (2005) can capture the overall (direct and indirect) effects of events over the horizon in *cumulative* terms from their onset.

The baseline specification equation is along the lines of Jordà and Taylor (2016), Jordà et al., (2013, 2016), and Kuvshinov and Zimmermann (2016):

<sup>&</sup>lt;sup>13</sup> See for instance Wooldridge (2012).

<sup>&</sup>lt;sup>14</sup> See also Abiad et al., (2014), Chor and Manova (2012), and Greenland et al., (2014).

$$100*\frac{Import_{i,t+h} - Import_{i,t-1}}{GDP_{i,t-1}} = \alpha_i^{m,h} + \Lambda^{m,h}DR_{i,t} + \mathbf{X}_{i,t-1}^m \boldsymbol{\beta}_{-1}^{m,h} + \mathbf{X}_{i,t-2}^m \boldsymbol{\beta}_{-2}^{m,h} + \varepsilon_{i,t+h}^m$$
(3)

$$100*\frac{Export_{i,t+h} - Export_{i,t-1}}{GDP_{i,t-1}} = \alpha_i^{x,h} + \Lambda^{x,h}DR_{i,t} + \mathbf{X}_{i,t-1}^x \boldsymbol{\beta}_{-1}^{x,h} + \mathbf{X}_{i,t-2}^x \boldsymbol{\beta}_{-2}^{x,h} + \varepsilon_{i,t+h}^x$$
(4)

for h=0,1,...,9. We describes the notation for equation (3) here and similar notations apply to variables in equations (4).  $(Import_{c,t+h}-Import_{c,t-1})/GDP_{c,t-1}$  is the cumulative change from time t-1 to t+h in 100 times the import values of country i, respectively,  $\alpha_i^{m,h}$  are country fixed effects, and  $DR_{i,t}$  is a set of debt restructuring dummies that takes 1 if one particular debt restructuring takes place in year t in country i.  $\mathbf{X}_{i,t-1}^m$  and  $\mathbf{X}_{i,t-2}^m$  are vectors of control variables including the GDP growth rate, log of population, openness measured by (Export + Import)/GDP, and the price level of imports (exports for regression for export growth), and the cyclical component of log of real GDP per capita from an Hodrick-Prescott (HP) filtered trend estimated with a smoothing parameter of 100, for year h=-1 and -2, respectively. We only include the cyclical component of log of real GDP per capita from year h=-1.  $\mathcal{E}_{i,t+h}^m$  is the error term. Following Jordà (2005) and Jordà and Taylor (2016), we include fixed effects which account for variation in the degree of trade arrangements with partner countries and other macroeconomic differences across countries.

#### IV. BASELINE RESULTS

## A. Conventional Panel Regression

Table 2 reports results of conventional panel regressions for a sample of 69 countries with at least one restructuring over 1970–2007. For both panel (A) and (B), column (1) shows results of a bare-bones model with dummies for the three restructuring approaches for the current, lagged, and 2-year lagged start of restructurings. In column (6), we add a full set of conventional controls explained above, and column (7) also includes a country-specific fixed effect. Column (8) uses a simple restructuring dummy applied to all restructurings. For a comparison with previous study (Zymek, 2012), column (9) indicates results using a sovereign default dummy based on Standard and Poor's dataset.

On imports, reflecting baseline results (column 6), countries with post-default restructurings experience a severe and prolonged decline in imports (1.7 percent over first 3 years on average). Weakly preemptive restructurings are associated with a less severe and shorter drop in imports (0.8 percent over first 2 years on average). In contrast, strictly preemptive restructurings witness a sizable but only contemporaneous fall in imports (0.7 percent only at the onset of restructurings). If we do not differentiate restructuring strategies (column 8), average negative effects on imports are 1.2 percent over the first 2 years. With specific focus

to sovereign default episodes (column 9), imports decline by 1.7 percent over the first 2 years on average, close to those for post-default restructurings.

On exports, baseline results in column (6) indicate a severe drop at the start of post-default restructurings (1.8 percent) but a quick recovery in the following year. On the contrary, neither weakly nor strictly preemptive restructurings suffer a significant decline in exports even at the beginning of the restructurings. Treating restructurings uniformly in column (8) results in an average drop in exports of 1.2 percent in the start year. As reported in column (9), sovereign defaults are associated with a 2.1-percent drop in exports, close to that of post-default restructurings. This suggests that what the previous literature on sovereign defaults (Zymek, 2012) measures for export decline stems from post-default restructurings.

As expected, including country-specific fixed effects does not influence the benchmark results (column 7 in panels A and B). For the case of a large country sample including non-restructuring countries (total 122 countries), we confirm that our baseline results remain robust in Section 6.1.

**Table 2: Conventional Panel Regression Results, OLS** 

Panel A: Imports

|                                                    |           | Pan       | el A: Imp | orts      |           |           |           |           |           |  |  |
|----------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|
| Import growth rate, $100*(Import_{t-1})/GDP_{t-1}$ |           |           |           |           |           |           |           |           |           |  |  |
|                                                    | (1)       | (2)       | (3)       | (4)       | (5)       | (6)       | (7)       | (8)       | (9)       |  |  |
| Post-default (lag 0)                               | -3.233*** | -2.663*** | -3.181*** | -3.166*** | -3.162*** | -2.486*** | -2.467*** |           |           |  |  |
|                                                    | (0.64)    | (0.70)    | (0.66)    | (0.63)    | (0.62)    | (0.68)    | (0.62)    |           |           |  |  |
| Post-default (lag 1)                               | -1.364*** | -1.106**  | -1.331*** | -1.328*** | -1.354*** | -1.052**  | -1.098*   |           |           |  |  |
|                                                    | (0.46)    | (0.46)    | (0.47)    | (0.45)    | (0.45)    | (0.45)    | (0.58)    |           |           |  |  |
| Post-default (lag 2)                               | -1.632*   | -1.489*   | -1.648*   | -1.614*   | -1.635*   | -1.465*   | -1.526*   |           |           |  |  |
|                                                    | (0.85)    | (0.85)    | (0.85)    | (0.84)    | (0.85)    | (0.84)    | (0.85)    |           |           |  |  |
| Weakly preemptive (lag 0)                          | -1.745*** | -1.199*** | -1.702*** | -1.690*** | -1.639*** | -0.986*** | -1.096*** |           |           |  |  |
|                                                    | (0.39)    | (0.38)    | (0.41)    | (0.39)    | (0.39)    | (0.38)    | (0.35)    |           |           |  |  |
| Weakly preemptive (lag 1)                          | -0.923*** | -0.779*** | -0.923*** | -0.911*** | -0.840**  | -0.650**  | -0.741*** |           |           |  |  |
|                                                    | (0.33)    | (0.28)    | (0.33)    | (0.32)    | (0.33)    | (0.28)    | (0.27)    |           |           |  |  |
| Weakly preemptive (lag 2)                          | 0.148     | -0.202    | 0.129     | 0.131     | 0.144     | -0.240    | -0.266    |           |           |  |  |
|                                                    | (0.41)    | (0.44)    | (0.41)    | (0.41)    | (0.41)    | (0.43)    | (0.50)    |           |           |  |  |
| Strictly preemptive (lag 0)                        | -0.931**  | -0.660*   | -0.931**  | -0.918**  | -1.017**  | -0.745*   | -0.711**  |           |           |  |  |
|                                                    | (0.44)    | (0.34)    | (0.44)    | (0.43)    | (0.47)    | (0.40)    | (0.33)    |           |           |  |  |
| Stirctly preemptive (lag 1)                        | 1.033     | 1.008*    | 1.017     | 0.973     | 1.003     | 0.917     | 0.906     |           |           |  |  |
|                                                    | (0.71)    | (0.59)    | (0.70)    | (0.70)    | (0.70)    | (0.56)    | (0.57)    |           |           |  |  |
| Strictly preemptive (lag 2)                        | 0.900**   | 0.672     | 0.881**   | 0.869**   | 0.985**   | 0.747*    | 0.726**   |           |           |  |  |
|                                                    | (0.43)    | (0.43)    | (0.43)    | (0.43)    | (0.44)    | (0.42)    | (0.31)    |           |           |  |  |
| Any types of debt restructurings (Lag 0)           |           |           |           |           |           |           |           | -1.688*** |           |  |  |
|                                                    |           |           |           |           |           |           |           | (0.44)    |           |  |  |
| Any types of debt restructurings (Lag 1)           |           |           |           |           |           |           |           | -0.579*   |           |  |  |
|                                                    |           |           |           |           |           |           |           | (0.31)    |           |  |  |
| Any types of debt restructurings (Lag 2)           |           |           |           |           |           |           |           | -0.715    |           |  |  |
|                                                    |           |           |           |           |           |           |           | (0.52)    |           |  |  |
| Sovereign default S&P (Lag 0)                      |           |           |           |           |           |           |           |           | -1.782*** |  |  |
|                                                    |           |           |           |           |           |           |           |           | (0.66)    |  |  |
| Sovereign default S&P (Lag 1)                      |           |           |           |           |           |           |           |           | -1.740*** |  |  |
|                                                    |           |           |           |           |           |           |           |           | (0.54)    |  |  |
| Sovereign default S&P (Lag 2)                      |           |           |           |           |           |           |           |           | -0.697    |  |  |
|                                                    |           |           |           |           |           |           |           |           | (0.73)    |  |  |
|                                                    |           |           |           |           |           |           |           |           |           |  |  |
| GDP growth rate                                    |           | 0.158***  |           |           |           | 0.168***  | 0.171**   | 0.170***  | 0.169***  |  |  |
|                                                    |           | (0.05)    |           |           |           | (0.05)    | (0.07)    | (0.05)    | (0.05)    |  |  |
| Real exchage rate, rate of change                  |           |           | -0.003    |           |           | 0.001     | 0.002     | 0.000     | 0.001     |  |  |
|                                                    |           |           | (0.01)    |           |           | (0.01)    | (0.01)    | (0.01)    | (0.01)    |  |  |
| Investment growth rate                             |           |           |           | 0.005     |           | 0.004     | 0.004     | 0.004     | 0.004     |  |  |
|                                                    |           |           |           | (0.00)    |           | (0.00)    | (0.00)    | (0.00)    | (0.00)    |  |  |
| Terms of trade, rate of change                     |           |           |           |           | 0.0501*** | 0.0663*** | 0.0672*** | 0.0657*** | 0.0651**  |  |  |
|                                                    |           |           |           |           | (0.01)    | (0.01)    | (0.02)    | (0.01)    | (0.01)    |  |  |
| Floating exchange rate regime dummy                | 2.321**   | 2.493***  | 2.316**   | 2.305**   | 2.220**   | 2.357***  | 1.736**   | 2.204**   | 2.086**   |  |  |
|                                                    | (0.94)    | (0.89)    | (0.94)    | (0.94)    | (0.97)    | (0.90)    | (0.78)    | (0.89)    | (0.90)    |  |  |
| Commodity exporter dummy                           | -0.549*   | -0.512*   | -0.540*   | -0.512*   | -0.536*   | -0.461    | 0.274     | -0.492*   | -0.527*   |  |  |
|                                                    | (0.29)    | (0.29)    | (0.29)    | (0.29)    | (0.29)    | (0.28)    | (0.20)    | (0.29)    | (0.29)    |  |  |
| Country fixed effect                               | No        | No        | No        | No        | No        | No        | Yes       | No        | No        |  |  |
| R-squared                                          | 0.034     | 0.093     | 0.035     | 0.04      | 0.043     | 0.113     | 0.109     | 0.108     | 0.107     |  |  |
| _                                                  |           |           |           |           | 47        |           |           |           |           |  |  |
| Number of countries                                | 47        | 47        | 47        | 47        | 47        | 47        | 47        | 47        | 47        |  |  |

*Notes*: All regressions include a constant term. Robust standard errors, clustered at the country-level, are in parentheses. The number of observations are set so that all regressions (except (8) and (9)) include the same number of observations. Countries that experienced at least one debt restructuring event are included in the sample. The sample period is from 1970 to 2007. The debt restructuring dummies (post-default, weakly preemptive, strictly preemptive and any restructuring) are based on the data from Asonuma and Trebesch (2016). The dummy for sovereign defaults is from Standard and Poor's (2006). \*\*\*, \*\* and \* indicate that the corresponding coefficients are statistically significant at 1%, 5%, and 10% level, respectively.

Table 2: Conventional Panel Regression Results, OLS (continued)

Panel B: Exports

|                                          |         | Panei    | B: Expo  |          |            | _        |           |          |          |
|------------------------------------------|---------|----------|----------|----------|------------|----------|-----------|----------|----------|
|                                          |         |          |          |          | 100*(Expor |          |           |          |          |
|                                          | (1)     | (2)      | (3)      | (4)      | (5)        | (6)      | (7)       | (8)      | (9)      |
| Post-default (lag 0)                     |         | -0.942   | -2.662** | -1.912** | -2.023**   | -1.770*  | -1.841*   |          |          |
|                                          | (0.84)  | (0.93)   | (1.14)   | (0.84)   | (0.84)     | (1.01)   | (1.00)    |          |          |
| Post-default (lag 1)                     | 0.569   | 1.016    | 0.097    | 0.578    | 0.555      | 0.505    | 0.374     |          |          |
|                                          | (0.94)  | (0.90)   | (1.09)   | (0.94)   | (0.94)     | (0.97)   | (0.96)    |          |          |
| Post-default (lag 2)                     | -0.866* | -0.618   | -0.647   | -0.861*  | -0.862*    | -0.370   | -0.505    |          |          |
|                                          | (0.52)  | (0.55)   | (0.55)   | (0.52)   | (0.51)     | (0.58)   | (0.78)    |          |          |
| Weakly preemptive (lag 0)                | -0.959  | -0.014   | -1.575   | -0.946   | -1.100     | -0.741   | -0.903    |          |          |
|                                          | (0.72)  | (0.79)   | (0.98)   | (0.72)   | (0.73)     | (0.84)   | (0.77)    |          |          |
| Weakly preemptive (lag 1)                | 0.076   | 0.325    | 0.080    | 0.079    | -0.036     | 0.274    | 0.146     |          |          |
|                                          | (0.64)  | (0.67)   | (0.60)   | (0.64)   | (0.63)     | (0.60)   | (0.71)    |          |          |
| Weakly preemptive (lag 2)                | -0.748  | -1.354*  | -0.467   | -0.752   | -0.743     | -1.053   | -1.131**  |          |          |
|                                          | (0.63)  | (0.72)   | (0.67)   | (0.63)   | (0.64)     | (0.68)   | (0.56)    |          |          |
| Strictly preemptive (lag 0)              | -0.175  | 0.295    | -0.172   | -0.172   | -0.059     | 0.367    | 0.381     |          |          |
|                                          | (0.54)  | (0.66)   | (0.58)   | (0.55)   | (0.63)     | (0.70)   | (0.77)    |          |          |
| Stirctly preemptive (lag 1)              | -0.160  | -0.202   | 0.067    | -0.174   | -0.119     | 0.052    | 0.048     |          |          |
|                                          | (0.43)  | (0.55)   | (0.44)   | (0.44)   | (0.45)     | (0.52)   | (0.63)    |          |          |
| Strictly preemptive (lag 2)              | -0.137  | -0.531   | 0.148    | -0.144   | -0.251     | -0.293   | -0.332    |          |          |
|                                          | (0.60)  | (0.65)   | (0.64)   | (0.60)   | (0.60)     | (0.65)   | (0.54)    |          |          |
| Any types of debt restructurings (Lag 0) |         |          |          |          |            |          |           | -1.213*  |          |
|                                          |         |          |          |          |            |          |           | (0.69)   |          |
| Any types of debt restructurings (Lag 1) |         |          |          |          |            |          |           | 0.384    |          |
|                                          |         |          |          |          |            |          |           | (0.57)   |          |
| Any types of debt restructurings (Lag 2) |         |          |          |          |            |          |           | -0.542   |          |
|                                          |         |          |          |          |            |          |           | (0.43)   |          |
| Sovereign default S&P (Lag 0)            |         |          |          |          |            |          |           |          | -2.051** |
|                                          |         |          |          |          |            |          |           |          | (1.00)   |
| Sovereign default S&P (Lag 1)            |         |          |          |          |            |          |           |          | -0.585   |
|                                          |         |          |          |          |            |          |           |          | (0.86)   |
| Sovereign default S&P (Lag 2)            |         |          |          |          |            |          |           |          | -0.110   |
|                                          |         |          |          |          |            |          |           |          | (0.47)   |
|                                          |         |          |          |          |            |          |           |          |          |
| GDP growth rate                          |         | 0.274*** |          |          |            | 0.276*** | 0.287***  | 0.277*** | 0.275*** |
| -                                        |         | (0.08)   |          |          |            | (0.07)   | (0.09)    | (0.07)   | (0.07)   |
| Real exchage rate, rate of change        |         |          | 0.047    |          |            | 0.051    | 0.052     | 0.051    | 0.052    |
|                                          |         |          | (0.04)   |          |            | (0.04)   | (0.04)    | (0.04)   | (0.04)   |
| Investment growth rate                   |         |          | , ,      | 0.001    |            | 0.00117* | 0.001     | 0.00115* | 0.001    |
| <u> </u>                                 |         |          |          | (0.00)   |            | (0.00)   | (0.00)    | (0.00)   | (0.00)   |
| Terms of trade, rate of change           |         |          |          | , ,      | -0.0674*** | -0.036   | -0.0362** | -0.037   | -0.0379* |
| <i>g</i> .                               |         |          |          |          | (0.02)     | (0.02)   | (0.02)    | (0.02)   | (0.02)   |
| Floating exchange rate regime dummy      | 0.459   | 0.756    | 0.534    | 0.455    | 0.594      | 0.909    | 1.063     | 0.878    | 0.766    |
| 6 · · · · 6 · · · · · · · · · · · · · ·  | (0.62)  | (0.82)   | (0.60)   | (0.62)   | (0.60)     | (0.80)   | (1.09)    | (0.80)   | (0.78)   |
| Commodity exporter dummy                 | -0.070  | -0.005   | -0.200   | -0.061   | -0.087     | -0.146   | 0.054     | -0.245   | -0.238   |
| commonly experter dummy                  | (0.32)  | (0.32)   | (0.30)   | (0.32)   | (0.32)     | (0.30)   | (0.29)    | (0.30)   | (0.30)   |
| Country fixed effect                     | No      | No       | No       | No       | No         | No       | Yes       | No       | No       |
| R-squared                                | 0.005   | 0.118    | 0.036    | 0.006    | 0.016      | 0.159    | 0.167     | 0.158    | 0.159    |
| Number of countries                      | 47      | 47       | 47       | 47       | 47         | 47       | 47        | 47       | 47       |
| Observations                             | 1,298   | 1,298    | 1,298    | 1,298    | 1,298      | 1,298    | 1,298     | 1,274    | 1,274    |
| Ousei vations                            | 1,270   | 1,270    | 1,270    | 1,270    | 1,270      | 1,270    | 1,270     | 1,4/7    | 1,4      |

*Notes*: All regressions include a constant term. Robust standard errors, clustered at the country-level, are in parentheses. The number of observations are set so that all regressions (except (8) and (9)) include the same number of observations. Countries that experienced at least one debt restructuring event are included in the sample. The sample period is from 1970 to 2007. The debt restructuring dummies (post-default, weakly preemptive, strictly preemptive and any restructuring) are based on the data from Asonuma and Trebesch (2016). The dummy for sovereign defaults is from Standard and Poor's (2006). \*\*\*, \*\* and \* indicate that the corresponding coefficients are statistically significant at 1%, 5%, and 10% level, respectively.

# **B.** Local Projection Estimation

Figure 4 reports the cumulative responses calculated using equation (3) and (4) for imports and exports, respectively. Both imports and exports are in percentage change from the prerestructuring level (at t-1). Based on estimation results in Table 3, the solid lines in red,
yellow and blue indicate the point estimates and the thinner and thicker bands are 90% and
95% confidence intervals, respectively. For responses to each restructuring (top row of
Figure 4) imports decline sharply for the first 3 years from the onset of post-default
restructuring (from t-0 to t+2) and remain subdued until the 8<sup>th</sup> year since the start of year
(t+7). Weakly preemptive restructurings experience a less severe decline in imports over the
first 3 years from the start (from t-0 to t+2) and recover gradually from the 5<sup>th</sup> year onwards
(t+4). On the contrary, imports for strictly preemptive restructurings decline only gradually
over the first 4 years.

On exports, post-default restructurings suffer a moderate decline over the first 4 years, but a more severe decline over the following 5 years. In contrast, both weakly and strictly preemptive restructurings experience moderate declines in exports over the first 4–5 years. Our estimated responses of both imports and exports on post-default restructurings are similar to those in Kuvshinov and Zimmermann (2016). This confirms that finding of sovereign defaults in the existing literature (e.g. Kuvshinov and Zimmermann, 2016) are clearly driven by post-default restructurings.

Table 3 reports the local projection coefficients and robust standard errors in parentheses. The first three rows report average responses of imports (exports) in each type of restructuring and the last three rows indicate tests for differences in restructuring coefficients among three types. The statistical test results on imports indicate significant differences among restructuring strategies: impacts over the 1<sup>st</sup> and 2<sup>nd</sup> years differ between post-default and weakly preemptive restructurings. The impacts on imports is remarkably different between weakly and strictly preemptive cases over the 3<sup>rd</sup>–5<sup>th</sup> year. However, there are no statistically significant difference for the results on exports across the three types of restructuring. Robustness check for different exchange rate regimes and commodity v.s. non-commodity exporters are discussed in Section 6.2.



Figure 4: Conditional Cumulative Change from the Start of Restructurings, OLS

Notes: The figure plots local projections of 100 times  $(Import_{t+h} - Import_{t-1})/GDP_{t-1}$  and 100 times  $(Export_{t+h} - Export_{t-1})/GDP_{t-1}$  where h indicates years after the start of debt restructurings. The figure is based on the estimation results presented in Table 3. The solid lines in red, yellow and blue indicate the point estimates for post-default, weakly preemptive, and strictly preemptive respectively. The thinner and thicker bands are 90% and 95% confidence intervals, respectively.

Table 3: Local Projection Results under Baseline Model, OLS

|                                                |                     | Pa           | anel A:      | Imports      | ;             |                |                |              |               |                  |
|------------------------------------------------|---------------------|--------------|--------------|--------------|---------------|----------------|----------------|--------------|---------------|------------------|
| Dep. var. is 100 times the cur                 | nulative ch         | ange in the  | import value | from year    | t - 1 to year | t + h scale    | d by real G    | DP at year t | - 1           |                  |
|                                                | h = 0               | h = 1        | h = 2        | h = 3        | h = 4         | h = 5          | h = 6          | h = 7        | h = 8         | h = 9            |
| Post-default                                   | -2.948***           | -4.416***    | -6.347***    | -6.272***    | -6.242***     | -6.267***      | -6.744***      | -7.233***    | -5.134*       | -5.762**         |
|                                                | (0.53)              | (0.64)       | (0.98)       | (1.00)       | (1.05)        | (1.30)         | (1.82)         | (1.95)       | (2.57)        | (2.33)           |
| Weakly preemptive                              | -1.877***           | -2.640***    | -3.367***    | -4.641***    | -5.937***     | -5.384***      | -4.877***      | -3.687**     | -2.930**      | -1.360           |
|                                                | (0.43)              | (0.65)       | (0.75)       | (0.88)       | (1.26)        | (1.22)         | (1.42)         | (1.63)       | (1.41)        | (1.59)           |
| Strictly preemptive                            | -1.831***           | -1.727*      | -1.564       | -0.533       | -1.532        | -0.292         | -1.066         | 0.451        | 0.901         | 1.623            |
|                                                | (0.45)              | (0.93)       | (1.06)       | (1.47)       | (1.90)        | (2.14)         | (1.94)         | (2.35)       | (2.06)        | (2.79)           |
|                                                | •                   | •            |              | •            |               | ent variable ( |                |              |               |                  |
| Control variables =                            |                     |              |              | = -1, -2), % | change in in  | vestment (h =  | = -1, -2), % c | hange in the | real exchange | e rate ( $h = -$ |
| <u> </u>                                       | 1, -2), and columns | ountry fixed | effects      |              |               |                |                |              |               |                  |
| R-squared                                      | 0.083               | 0.123        | 0.173        | 0.187        | 0.206         | 0.222          | 0.253          | 0.324        | 0.382         | 0.413            |
| Number of countries                            | 47                  | 47           | 46           | 46           | 45            | 44             | 44             | 44           | 44            | 43               |
| Observations                                   | 1,178               | 1,134        | 1,088        | 1,043        | 998           | 953            | 909            | 865          | 821           | 777              |
| Differences in debt restructuring coefficients |                     |              |              |              |               |                |                |              |               |                  |
| Post-default - Weakly preemptive               | -1.072              | -1.777**     | -2.980***    | -1.631       | -0.305        | -0.883         | -1.867         | -3.546       | -2.204        | -4.402           |
|                                                | (0.68)              | (0.85)       | (1.10)       | (1.10)       | (1.44)        | (1.65)         | (2.03)         | (2.32)       | (2.65)        | (2.73)           |
| Post-default - Strictly preemptive             | -1.117              | -2.689**     | -4.783***    | -5.739***    | -4.711**      | -5.976***      | -5.678**       | -7.684***    | -6.035**      | -7.385**         |
|                                                | (0.69)              | (1.09)       | (1.48)       | (1.81)       | (1.96)        | (2.10)         | (2.17)         | (2.56)       | (2.61)        | (3.46)           |
| Weakly preemptive - Strictly preemptive        | -0.046              | -0.912       | -1.803       | -4.109**     | -4.406**      | -5.092**       | -3.811         | -4.138       | -3.83         | -2.983           |
|                                                | (0.53)              | (1.04)       | (1.18)       | (1.55)       | (2.19)        | (2.46)         | (2.45)         | (2.87)       | (2.35)        | (2.91)           |

Panel B: Exports

| Dep. var. is 100 times the co                  | ımulative c | hange in th  | e export val | ue from year | r <i>t</i> - 1 to yea | ar t + h sca | led by real (  | GDP at year  | t - 1          |               |
|------------------------------------------------|-------------|--------------|--------------|--------------|-----------------------|--------------|----------------|--------------|----------------|---------------|
|                                                | h = 0       | h = 1        | h = 2        | h = 3        | h = 4                 | h = 5        | h = 6          | h = 7        | h = 8          | h = 9         |
| Post-default                                   | -2.868**    | -2.220*      | -2.992***    | -3.994***    | -2.591*               | -5.095**     | -6.927*        | -8.178       | -9.768         | -8.968        |
|                                                | (1.35)      | (1.13)       | (0.84)       | (1.33)       | (1.48)                | (2.32)       | (4.04)         | (5.35)       | (5.95)         | (5.48)        |
| Weakly preemptive                              | -2.279**    | -2.484**     | -3.348***    | -4.389***    | -4.629***             | -6.101***    | -6.879***      | -6.113***    | -5.279***      | -3.081*       |
|                                                | (0.87)      | (1.09)       | (1.08)       | (1.14)       | (1.10)                | (1.47)       | (1.83)         | (1.80)       | (1.63)         | (1.57)        |
| Strictly preemptive                            | -1.146      | -2.344*      | -2.858*      | -2.993       | -4.047**              | -3.197       | -3.843         | -4.789*      | -3.880         | -0.997        |
|                                                | (0.89)      | (1.39)       | (1.65)       | (1.96)       | (2.00)                | (2.08)       | (2.48)         | (2.68)       | (2.52)         | (1.70)        |
|                                                |             |              |              |              |                       |              |                |              | = -1, -2), pop |               |
| Control variables                              |             |              |              | = -1, -2), % | change in in          | vestment (h  | = -1, -2), % c | hange in the | real exchange  | rate $(h = -$ |
|                                                |             | ountry fixed |              |              |                       |              |                |              |                |               |
| R-squared                                      | 0.118       | 0.159        | 0.186        | 0.216        | 0.213                 | 0.221        | 0.247          | 0.267        | 0.302          | 0.36          |
| Number of countries                            | 47          | 47           | 46           | 46           | 45                    | 44           | 44             | 44           | 44             | 43            |
| Observations                                   | 1,178       | 1,134        | 1,088        | 1,043        | 998                   | 953          | 909            | 865          | 821            | 777           |
| Differences in debt restructuring coefficients |             |              |              |              |                       |              |                |              |                |               |
| Post-default - Weakly preemptive               | -0.589      | 0.263        | 0.356        | 0.394        | 2.038                 | 1.006        | -0.048         | -2.065       | -4.489         | -5.887        |
|                                                | (1.16)      | (1.04)       | (1.23)       | (1.55)       | (1.49)                | (1.90)       | (3.07)         | (4.11)       | (4.83)         | (5.29)        |
| Post-default - Strictly preemptive             | -1.722      | 0.123        | -0.135       | -1.001       | 1.456                 | -1.899       | -3.085         | -3.389       | -5.888         | -7.971        |
|                                                | (1.28)      | (1.21)       | (1.53)       | (2.20)       | (2.10)                | (1.94)       | (2.80)         | (3.57)       | (4.17)         | (5.21)        |
| Weakly preemptive - Strictly preemptive        | -1.133      | -0.14        | -0.49        | -1.395       | -0.583                | -2.905*      | -3.036         | -1.324       | -1.398         | -2.083        |
|                                                | (0.91)      | (1.22)       | (1.33)       | (1.51)       | (1.49)                | (1.71)       | (1.96)         | (1.92)       | (1.95)         | (2.05)        |

*Notes*: The table shows estimated local projections of 100 times  $(Import_{t+h} - Import_{t-1})/GDP_{t-1}$  for Panel A and 100 times  $(Export_{t+h} - Export_{t-1})/GDP_{t-1}$  for Panel B where h indicates years after the start of debt restructurings. Robust standard errors, clustered at country-level, are in parentheses. \*\*\*, \*\* and \* indicate that corresponding coefficients are statistically significant at 1% level, 5% level, and 10% level, respectively.

Figure 5 is analogous to Figure 4, but reports the cumulative responses of net exports, investment and GDP, respectively. For post-default and weakly preemptive restructurings, net exports improve over several years since the start of the episode (panel A-left and center). This is consistent with Figure 3 where the decline in imports is larger than that in exports. On investment, both post-default and weakly preemptive restructurings are associated with a prolonged decline, with a sharper drop over the first 2 years for post-default cases (panel B-left and center). Lastly, post-default restructurings experience a more severe decline in GDP than weakly preemptive restructurings (panel C-left and center). This is in line with finding in the literature (Asonuma and Trebesch, 2016) and Figure 2. The dynamics of net exports, investment and GDP for post-default restructurings are consistent with previous findings on impacts of sovereign defaults (Kuvshinov and Zimmermann, 2016, Furceri and Zdzienicka, 2012). Table 4 indicates local projection results for these variables in the same presentation format as in Table 3.

24



Figure 5: Local Projections on Other Variables, OLS

Notes: Panels A, B and C plot local projections of 100 times  $(NetExport_{t+h} - NetExport_{t-1})/GDP_{t-1}$ , 100 times  $(Investment_{t+h} - Investment_{t-1})/GDP_{t-1}$ , and 100 times  $(GDP_{t+h} - GDP_{t-1})/GDP_{t-1}$ , respectively, where h indicates years after the start of debt restructurings. The figure is based on the estimation results presented in Table 4. See note in Figure 4 for presentation for point estimates and confidence intervals.

Table 4: Local Projections for Other Variables under Baseline Model, OLS

Part A: Net exports

| Dep. var. is 100 times | Dep. var. is 100 times the cumulative change in the net export value from year $t-1$ to year $t+h$ scaled by real GDP at year $t-1$ |               |                |                  |                |                |                 |               |                |               |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|------------------|----------------|----------------|-----------------|---------------|----------------|---------------|
|                        | h = 0                                                                                                                               | h = 1         | h = 2          | h = 3            | h = 4          | h = 5          | h = 6           | h = 7         | h = 8          | h = 9         |
| Post-default           | 1.226                                                                                                                               | 3.002***      | 3.681***       | 3.248***         | 3.398***       | 1.799          | 1.055           | 0.412         | -1.621         | -1.205        |
|                        | (0.82)                                                                                                                              | (0.75)        | (0.94)         | (0.98)           | (1.14)         | (1.31)         | (1.72)          | (1.94)        | (2.03)         | (2.23)        |
| Weakly preemptive      | 2.071***                                                                                                                            | 1.234         | 1.202          | 0.863            | 0.0391         | -1.457         | 0.559           | -0.928        | 0.273          | 0.929         |
|                        | (0.68)                                                                                                                              | (0.77)        | (1.02)         | (1.93)           | (2.31)         | (2.26)         | (2.66)          | (3.50)        | (3.80)         | (3.52)        |
| Strictly preemptive    | 1.736**                                                                                                                             | 1.822***      | 1.928**        | 1.747**          | 2.127**        | 1.354          | 0.411           | -0.801        | -0.785         | -1.541        |
|                        | (0.76)                                                                                                                              | (0.56)        | (0.78)         | (0.73)           | (1.05)         | (1.03)         | (1.15)          | (1.28)        | (1.11)         | (1.03)        |
| Control variables      | Cyclical con                                                                                                                        | nponent of lo | g GDP per ca   | apita at $h = -$ | 1, the depende | ent variable ( | (h = -1, -2), c | openness (h = | = -1, -2), pop | oulation (h = |
| Control variables      | -1, -2), terms                                                                                                                      | s of trade (h | = -1, -2), and | country fixe     | d effects      |                |                 |               |                |               |
| R-squared              | 0.115                                                                                                                               | 0.138         | 0.157          | 0.171            | 0.144          | 0.163          | 0.186           | 0.205         | 0.218          | 0.225         |
| Number of countries    | 59                                                                                                                                  | 59            | 59             | 59               | 59             | 59             | 59              | 59            | 59             | 58            |
| Observations           | 1,860                                                                                                                               | 1,801         | 1,742          | 1,683            | 1,624          | 1,565          | 1,506           | 1,447         | 1,388          | 1,329         |

### Part B: Investment

| Dep. var. is 10     | Dep. var. is 100 times the cumulative change in investment from year $t-1$ to year $t+h$ scaled by real GDP at year $t-1$ |               |                |                  |               |                |                 |               |                |                 |
|---------------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------|------------------|---------------|----------------|-----------------|---------------|----------------|-----------------|
|                     | h = 0                                                                                                                     | h = 1         | h = 2          | h = 3            | h = 4         | h = 5          | <i>h</i> = 6    | h = 7         | h = 8          | h = 9           |
| Post-default        | -2.919***                                                                                                                 | -4.770***     | -4.568***      | -3.865***        | -4.169***     | -3.540***      | -3.688***       | -4.051***     | -3.251***      | -3.111**        |
|                     | (0.72)                                                                                                                    | (0.76)        | (0.66)         | (0.69)           | (0.62)        | (0.76)         | (0.93)          | (1.05)        | (1.11)         | (1.27)          |
| Weakly preemptive   | -1.451***                                                                                                                 | -2.175***     | -2.155**       | -1.514           | -1.330        | 0.555          | 0.358           | 1.344         | 1.332          | 4.055           |
|                     | (0.29)                                                                                                                    | (0.55)        | (0.85)         | (1.41)           | (1.39)        | (2.10)         | (2.69)          | (3.19)        | (3.02)         | (3.07)          |
| Strictly preemptive | -2.423**                                                                                                                  | -3.114***     | -3.487***      | -3.637***        | -3.443**      | -3.266**       | -1.583          | -1.430        | -1.330         | -0.940          |
|                     | (0.92)                                                                                                                    | (1.08)        | (1.09)         | (1.21)           | (1.42)        | (1.53)         | (1.88)          | (1.99)        | (1.89)         | (1.98)          |
| Control variables   | Cyclical con                                                                                                              | nponent of lo | g GDP per ca   | apita at $h = -$ | 1, the depend | ent variable ( | (h = -1, -2), o | openness (h = | = -1, -2), pop | ulation ( $h =$ |
| Collifor variables  | -1, -2), terms                                                                                                            | s of trade (h | = -1, -2), and | country fixe     | d effects     |                |                 |               |                |                 |
| R-squared           | 0.097                                                                                                                     | 0.178         | 0.214          | 0.236            | 0.221         | 0.206          | 0.214           | 0.253         | 0.257          | 0.263           |
| Number of countries | 59                                                                                                                        | 59            | 59             | 59               | 59            | 59             | 59              | 59            | 59             | 58              |
| Observations        | 1,860                                                                                                                     | 1,801         | 1,742          | 1,683            | 1,624         | 1,565          | 1,506           | 1,447         | 1,388          | 1,329           |

# Part C: GDP

| Dep. var. is        | Dep. var. is 100 times the cumulative change in GDP from year $t-1$ to year $t+h$ scaled by real GDP at year $t-1$ |                 |                |                  |               |                 |                        |              |                |                  |
|---------------------|--------------------------------------------------------------------------------------------------------------------|-----------------|----------------|------------------|---------------|-----------------|------------------------|--------------|----------------|------------------|
|                     | h = 0                                                                                                              | h = 1           | h = 2          | h = 3            | h = 4         | h = 5           | h = 6                  | h = 7        | h = 8          | h = 9            |
| Post-default        | -2.262***                                                                                                          | -3.761***       | -4.625***      | -4.703***        | -4.490***     | -7.018***       | -6.963***              | -7.650***    | -6.896***      | -8.297***        |
|                     | (0.72)                                                                                                             | (1.10)          | (1.20)         | (1.36)           | (1.45)        | (2.29)          | (2.19)                 | (1.92)       | (2.09)         | (2.43)           |
| Weakly preemptive   | -1.432**                                                                                                           | -2.407**        | -1.675         | -1.4             | -2.865        | -0.197          | -0.773                 | 3.051        | 4.696          | 7.639            |
|                     | (0.64)                                                                                                             | (1.02)          | (1.64)         | (2.71)           | (3.72)        | (4.60)          | (5.45)                 | (5.69)       | (6.06)         | (8.16)           |
| Strictly preemptive | -2.321***                                                                                                          | -1.969*         | -1.671         | -2.172           | -2.302        | -3.319          | -3.513                 | -2.933       | -3.165         | -2.409           |
|                     | (0.83)                                                                                                             | (1.14)          | (1.46)         | (1.59)           | (2.17)        | (2.69)          | (2.84)                 | (3.26)       | (3.06)         | (3.22)           |
| Control variables   | Cyclical con                                                                                                       | nponent of lo   | g GDP per ca   | apita at $h = -$ | 1, the depend | lent variable ( | $(h = -1, -2), \alpha$ | penness (h = | = -1, -2), pop | oulation ( $h =$ |
| Collifor variables  | -1, -2), terms                                                                                                     | s of trade (h : | = -1, -2), and | country fixe     | d effects     |                 |                        |              |                |                  |
| R-squared           | 1,663                                                                                                              | 1,605           | 1,547          | 1,489            | 1,431         | 1,373           | 1,315                  | 1,257        | 1,199          | 1,141            |
| Number of countries | 0.216                                                                                                              | 0.328           | 0.36           | 0.364            | 0.343         | 0.335           | 0.335                  | 0.325        | 0.318          | 0.304            |
| Observations        | 58                                                                                                                 | 58              | 58             | 58               | 58            | 58              | 58                     | 58           | 58             | 55               |

Notes: Panels A, B and C show local projections of 100 times  $(NetExport_{t+h} - NetExport_{t-1})/GDP_{t-1}$ , 100 times  $(Investment_{t+h} - Investment_{t-1})/GDP_{t-1}$ , and 100 times  $(GDP_{t+h} - GDP_{t-1})/GDP_{t-1}$ , respectively, where h indicates years after the start of debt restructurings. Regressions include the same control variables from Table 3. \*\*\*, \*\* and \* indicate that corresponding coefficients are statistically significant at 1% level, 5% level, and 10% level, respectively.

#### V. DEALING WITH ENDOGENEITY

# A. Endogeneity Issue

Our baseline Ordinary Least Square (OLS) estimation is unbiased provided observations with events are randomly selected from a large pool of observations with and without events. However, this might not necessarily be the case for restructurings: countries currently experiencing restructurings are different from those that are not in many aspects. In addition, debt restructuring strategies including preemptive v.s. post-default are presumably an endogenous optimal choice made by the sovereign debtors (Asonuma and Trebesch, 2016). In such cases, baseline OLS estimation results could potentially be driven by some other characteristics of countries at the time of their restructurings rather than a "pure effect" of debt restructurings.

First, we explore whether there are statistical differences in various macroeconomic variables between observations with and without restructuring approaches by conducting a diagnostic test, reported in Table 5. Each column reports the result from a regression specifying one particular variable as the dependent variable. Columns (1)–(4) show test results for restructuring dummies coded as 1 for all years during restructurings, while columns (5)–(8) show those for restructuring dummies coded as 1 only at the start of restructurings.

Columns (1)–(4) suggest that there are significant differences in the public debt-to-GDP ratio, credit ratings—data from the *Institutional Investor* magazine—, and GDP growth rates between observations during post-default restructurings and other observations, and also between weakly preemptive restructurings and other observations. In contrast, we do not see any striking differences in these macroeconomic variables during strictly preemptive restructurings. A similar pattern emerges in Columns (5)–(8) where the dummies apply only to start year of the restructuring.

Table 5: Difference between Treatment and Control Sub-samples

| Dependent variable                                                        | log<br>debt/GDP<br>ratio | log private<br>credit/GDP<br>ratio | log<br>country's<br>credit<br>rating | GDP<br>growth rate | log<br>debt/GDP<br>ratio | log private<br>credit/GDP<br>ratio | log<br>country's<br>credit<br>rating | GDP<br>growth rate |
|---------------------------------------------------------------------------|--------------------------|------------------------------------|--------------------------------------|--------------------|--------------------------|------------------------------------|--------------------------------------|--------------------|
|                                                                           | (1)                      | (2)                                | (3)                                  | (4)                | (5)                      | (6)                                | (7)                                  | (8)                |
| Post-default dummy (takes 1 during restructuring until completion)        | 0.413***                 | -0.152***                          | -0.441***                            | -1.901***          |                          |                                    |                                      |                    |
|                                                                           | (0.06)                   | (0.06)                             | (0.05)                               | (0.45)             |                          |                                    |                                      |                    |
| Weakly preemptive dummy (takes 1 during restructuring until completion)   | 0.274***                 | 0.007                              | -0.238***                            | -1.379**           |                          |                                    |                                      |                    |
|                                                                           | (0.09)                   | (0.11)                             | (0.07)                               | (0.53)             |                          |                                    |                                      |                    |
| Strictly preemptive dummy (takes 1 during restructuring until completion) | 0.129                    | -0.028                             | -0.082                               | 1.565**            |                          |                                    |                                      |                    |
|                                                                           | (0.11)                   | (0.11)                             | (0.08)                               | (0.71)             |                          |                                    |                                      |                    |
| Post-default dummy (takes 1 at start years of restructuring)              |                          |                                    |                                      |                    | 0.163***                 | 0.112*                             | -0.060                               | -3.593***          |
|                                                                           |                          |                                    |                                      |                    | (0.06)                   | (0.06)                             | (0.05)                               | (0.81)             |
| Weakly preemptive dummy (takes 1 at start years of restructuring)         |                          |                                    |                                      |                    | 0.266***                 | 0.044                              | -0.166**                             | -2.852***          |
|                                                                           |                          |                                    |                                      |                    | (0.09)                   | (0.09)                             | (0.07)                               | (1.02)             |
| Strictly preemptive dummy (takes 1 at start years of restructuring)       |                          |                                    |                                      |                    | 0.067                    | 0.100                              | -0.104                               | 2.479*             |
|                                                                           |                          |                                    |                                      |                    | (0.13)                   | (0.14)                             | (0.08)                               | (1.31)             |
| Observations                                                              | 1,563                    | 1,645                              | 1,566                                | 2,885              | 1,563                    | 1,645                              | 1,566                                | 2,885              |
| Number of countries                                                       | 61                       | 63                                 | 63                                   | 63                 | 61                       | 63                                 | 63                                   | 63                 |
| R-squared                                                                 | 0.119                    | 0.018                              | 0.27                                 | 0.011              | 0.016                    | 0.004                              | 0.014                                | 0.011              |

*Notes*: All regressions include a constant term and country fixed effects. Robust-standard errors, clustered at country-level, are in parentheses. The dependent variables are in log scale except for the GDP growth rate. Therefore, the reported coefficients approximate percentage difference from the rest of the sample. Sample countries are restricted to countries that have ever experienced debt restructuring(s). Sample period is from 1970 to 2007 with some years missing for some countries. See the main text for data sources. \*\*\*, \*\* and \* indicate that corresponding coefficients are statistically significant at 1% level, 5% level, and 10% level, respectively.

Next, we apply a logit estimation to predict the likelihood of each restructuring event. Our dependent variables in Panels A, B and C, respectively are dummies for post-default, weakly and strictly preemptive restructurings which take 1 over the entire restructuring duration. The first four rows report estimated coefficients and robust standard errors, and the fifth row reports the area under ROC (Receiver Operating Characteristic) curve. If the area under the ROC curve is close to 1, this indicates that the regressors have perfect classification power. If it is close to 0.5, the regressors have no classification power. For predicting post-default restructuring, applying all the four relevant variables results in an area under ROC of 0.93 indicating these variables have high classification power (column 5 in Panel A). Similarly, for predicting weakly preemptive and strictly preemptive restructurings reported in Panels B and C, including all the four relevant variables yields an area under the ROC of 0.80 and 0.77 respectively. This also indicates that these variables have high classification power (column 5 in Panel B and C).

In tandem with these findings, Figure 6 displays kernel density estimates of the probability of treatment on both treatment and control groups—in this case, observations with restructurings and those otherwise. In an ideal randomized control trial, the distribution of propensity score for treat and control groups would be uniform and identical. Probabilities of being treated for the control observations are clustered around zero generating a left-skewed distribution. This suggests these observations are indeed less likely to be treated (i.e., less likely to experience debt restructurings). In contrast, the probability of being treated is

normally distributed with a mean of around 0.4. This indicates that the treated observations are indeed more likely to experience debt restructurings.

**Table 6. Predicting Restructuring Events, Logit Estimation (Marginal Effects)** 

| Panel A: Post-               | default (ta | kes 1 during | restructurii  | ng)       |           |
|------------------------------|-------------|--------------|---------------|-----------|-----------|
|                              | (1)         | (2)          | (3)           | (4)       | (5)       |
| log debt/GDP ratio           | 2.629***    |              |               |           | 1.326***  |
|                              | (0.240)     |              |               |           | (0.336)   |
| log private credit/GDP ratio |             | -0.0356***   | :             |           | 0.019     |
|                              |             | (0.007)      |               |           | (0.012)   |
| log country's credit rating  |             |              | -0.296***     |           | -0.290*** |
|                              |             |              | (0.023)       |           | (0.027)   |
| GDP growth rate              |             |              |               | -0.048*** | -0.037*   |
|                              |             |              |               | (0.009)   | (0.020)   |
| Area under the ROC curve     | 0.83        | 0.77         | 0.92          | 0.75      | 0.93      |
| Observations                 | 1,198       | 1,297        | 1,225         | 2,473     | 1,051     |
| Pseudo R-squared             | 0.281       | 0.173        | 0.466         | 0.133     | 0.500     |
| Panel B: Weakly j            | araamntiva  | (tokos 1 du  | ring rostruct | urina)    |           |
| Tanci B. Weakiy              | (1)         | (2)          | (3)           | (4)       | (5)       |
| log debt/GDP ratio           |             | (-)          | (5)           | (.)       | 0.735     |
| 118 1111 011 11111           | (0.403)     |              |               |           | (0.483)   |
| log private credit/GDP ratio | (01.00)     | -0.009       |               |           | -0.004    |
|                              |             | (0.009)      |               |           | (0.010)   |
| log country's credit rating  |             | (/           | -0.110***     |           | -0.079*** |
|                              |             |              | (0.017)       |           | (0.019)   |
| GDP growth rate              |             |              | , ,           | 0.006     | -0.019    |
| C                            |             |              |               | (0.011)   | (0.033)   |
| Area under the ROC curve     | 0.77        | 0.68         | 0.82          | 0.58      | 0.80      |
| Observations                 | 647         | 653          | 576           | 4,861     | 527       |
| Pseudo R-squared             | 0.136       | 0.041        | 0.184         | 0.008     | 0.167     |
| Panel C: Strictly p          | reemntive   | (takes 1 dur | ring restruct | uring)    |           |
| Tuner C. Strictly            | (1)         | (2)          | (3)           | (4)       | (5)       |
| log debt/GDP ratio           |             | (-)          | (5)           | ( ' /     | 0.835     |
|                              | (0.801)     |              |               |           | (1.050)   |
| log private credit/GDP ratio | (/          | -0.006       |               |           | 0.008     |
| i                            |             | (0.014)      |               |           | (0.020)   |
| log country's credit rating  |             | (            | -0.124***     |           | -0.088*   |
| 5                            |             |              | (0.034)       |           | (0.047)   |
| GDP growth rate              |             |              | ` - /         | 0.017     | -0.004    |
| 2                            |             |              |               | (0.011)   | (0.067)   |
| Area under the ROC curve     | 0.74        | 0.67         | 0.79          | 0.62      | 0.77      |
| Observations                 | 233         | 239          | 240           | 4,739     | 203       |
| Pseudo R-squared             | 0.135       | 0.063        | 0.193         | 0.025     | 0.181     |
|                              |             |              |               |           |           |

*Notes*: Area under the ROC curve represents the predicting power of regressors regarding the binary independent variable. The measure takes a value between 0.5 and 1, which implies zero and perfect predicting power, respectively. All regressions include a constant term and country fixed effects). Robust-standard errors, clustered at the country-level, are in parentheses. The regressors are in log scale except for the GDP growth rate. Sample countries are restricted to countries that have experienced debt restructuring(s). Sample period is from 1970 to 2007 with some years missing for some countries. See the main text for data sources. \*\*\*, \*\* and \* indicate that corresponding coefficients are statistically significant at 1% level, 5% level, and 10% level, respectively.



Figure 6: Estimated Probability of Treatment

*Notes*: The propensity score is estimated in a probit model. The dependent variable is a dummy equal to 1 if there is any kind of debt restructurings for all years until completion. Regressors include the debt/GDP ratio, private credit/GDP ratio, credit ratings, and GDP growth rate. The figure shows the predicted probability of treatment with a solid line for the treatment observations and with a dashed line for the control observations.

# B. Instrument Variable (IV) Estimation Approach

For the conventional panel regressions, we apply a traditional Instrument Variable (IV) estimation approach. The requirement of a large number of instruments to control restructuring dummies including lagged ones makes it difficult for us to estimate the specification including the multiple restructuring dummies simultaneously. Instead, we separately run regressions with the estimated dummy variable specific to each restructuring strategy. Two reasons justify this approach: first, and most importantly, the three types of restructuring are orthogonal to each other, i.e. one debt restructuring falls into only one of three categories. Each restructuring episode is specific to the debt instruments affected and is not related with debt covered in other restructuring cases. Each type of restructuring choices is predicted by the similar determinants with different estimated coefficients (Table 6). Second, we use the same sample of observations (864) and the estimated coefficients reflect the impact of each restructuring strategy relative to the symmetric sample mean. Our set of instruments include public debt-to-GDP ratio, private credit-to-GDP ratio, countries' credit ratings, GDP growth rate, and other control variables employed in the second-stage regression. Validity of these instruments are confirmed by logit regression results (Table 6).

Table 7 reports IV panel regression results of import and export growth on debt restructurings for 1970–2007 with the same sample of 61 countries. For both imports and exports, columns (1)–(3) show results for each restructuring strategy, while column (4) uses a simple restructuring dummy applied to all three types of restructuring. Column (5) reports

results using a sovereign default dummy from Standard and Poor's for comparison with findings from previous studies (Zymek, 2012).

For imports, the results reported in columns (1)–(5) are in line with our OLS results (Table 2); both post-default and weakly preemptive restructurings are associated with a severe decline in imports with longer periods for post-default cases. Similar results are obtained when we use a common dummy for all three types of restructuring, as well as a dummy based on sovereign defaults.

The IV results for exports are also similar to the OLS results; exports drop sharply only for post-default restructurings. Our results for the common dummy for all three types of restructurings as well as for the dummy based on sovereign defaults are also found to be robust.

**Table 7: Conventional Panel Regression Results, IV** 

|                                     |              |                      | ort growth ort, -Import, |                                            |                             | Export growth rate, $100*(Export_{t-1} - Export_{t-1})/GDP_{t-1}$ |                      |                     |                                            |                             |  |
|-------------------------------------|--------------|----------------------|--------------------------|--------------------------------------------|-----------------------------|-------------------------------------------------------------------|----------------------|---------------------|--------------------------------------------|-----------------------------|--|
| Variable                            | Post-default | Weakly<br>preemptive | Strictly preemptive      | All types of<br>debt<br>restructurin<br>gs | Sovereign<br>default<br>S&P | Post-default                                                      | Weakly<br>preemptive | Strictly preemptive | All types of<br>debt<br>restructurin<br>gs | Sovereign<br>default<br>S&P |  |
|                                     | (1)          | (2)                  | (3)                      | (4)                                        | (5)                         | (6)                                                               | (7)                  | (8)                 | (9)                                        | (10)                        |  |
| Variable (lag 0)                    | -3.980***    | -3.534**             | 0.585                    | -3.369***                                  | -10.759***                  | -3.563*                                                           | -1.357               | -1.330              | -3.765***                                  | -5.215*                     |  |
|                                     | (1.42)       | (1.63)               | (3.91)                   | (1.26)                                     | (2.13)                      | (1.84)                                                            | (2.11)               | (5.08)              | (1.63)                                     | (2.78)                      |  |
| Variable (lag 1)                    | -1.738**     | -1.721               | 0.81                     | -1.416**                                   | -1.997**                    | 2.631                                                             | -0.357               | 1.035               | -1.547**                                   | 4.661*                      |  |
|                                     | (0.85)       | (1.14)               | (1.47)                   | (0.66)                                     | (0.81)                      | (1.81)                                                            | (1.90)               | (4.98)              | (0.85)                                     | (2.71)                      |  |
| Variable (lag 2)                    | -0.345       | -1.524               | 0.938                    | -0.500                                     | -1.561                      | 2.685                                                             | 0.257                | 0.896               | -1.236                                     | 4.976*                      |  |
|                                     | (0.86)       | (1.08)               | (1.42)                   | (0.65)                                     | (0.80)                      | (1.74)                                                            | (2.02)               | (5.34)              | (0.84)                                     | (2.76)                      |  |
| GDP growth rate                     | 0.196***     | 0.199***             | 0.202***                 | 0.190***                                   | 0.175***                    | 0.340***                                                          | 0.344***             | 0.346***            | 0.331***                                   | 0.334***                    |  |
|                                     | (0.02)       | (0.02)               | (0.02)                   | (0.02)                                     | (0.02)                      | (0.03)                                                            | (0.03)               | (0.03)              | (0.03)                                     | (0.03)                      |  |
| Real exchange rate, rate of change  | -0.007       | -0.011               | -0.013                   | -0.005                                     | 0.003                       | 0.116***                                                          | 0.111***             | 0.111***            | 0.119***                                   | 0.118***                    |  |
|                                     | (0.01)       | (0.01)               | (0.01)                   | (0.01)                                     | (0.01)                      | (0.01)                                                            | (0.01)               | (0.01)              | (0.01)                                     | (0.01)                      |  |
| Investment growth                   | 0.002        | 0.003                | 0.003                    | 0.002                                      | 0.002                       | 0.002                                                             | 0.002                | 0.002               | 0.002                                      | 0.001                       |  |
|                                     | (0.00)       | (0.00)               | (0.00)                   | (0.00)                                     | (0.00)                      | (0.00)                                                            | (0.00)               | (0.00)              | (0.00)                                     | (0.00)                      |  |
| Terms of trade, rate of change      | 0.106***     | 0.106***             | 0.115***                 | 0.097***                                   | 0.079***                    | -0.118***                                                         | -0.110***            | -0.107***           | -0.129***                                  | -0.123***                   |  |
|                                     | (0.03)       | (0.03)               | (0.03)                   | (0.03)                                     | (0.03)                      | (0.03)                                                            | (0.03)               | (0.03)              | (0.03)                                     | (0.03)                      |  |
| Floating exchange rate regime dummy | 0.671*       | 0.746*               | 0.739*                   | 0.811**                                    | 0.715*                      | -0.020                                                            | 0.051                | 0.078               | 0.109                                      | 0.041                       |  |
|                                     | (0.39)       | (0.40)               | (0.40)                   | (0.40)                                     | (0.42)                      | (0.51)                                                            | (0.51)               | (0.52)              | (0.51)                                     | (0.51)                      |  |
| Commdity exporter dummy             | -1.465***    | -1.501***            | -1.496***                | -1.428***                                  | -1.042**                    | -0.678                                                            | -0.686               | -0.660              | -0.638                                     | -0.487                      |  |
|                                     | (0.46)       | (0.46)               | (0.46)                   | (0.46)                                     | (0.49)                      | (0.59)                                                            | (0.60)               | (0.60)              | (0.59)                                     | (0.60)                      |  |
| Country fixed effect                | No           | No                   | No                       | No                                         | No                          | No                                                                | No                   | No                  | No                                         | No                          |  |
| Year fixed effect                   | No           | No                   | No                       | No                                         | No                          | No                                                                | No                   | No                  | No                                         | No                          |  |
| Observations                        | 864          | 864                  | 864                      | 864                                        | 864                         | 864                                                               | 864                  | 864                 | 864                                        | 864                         |  |

*Notes*: All regressions include a constant term. Robust standard errors, clustered at the country-level, are in parentheses. Instruments include public debt-to-GDP ratio, private credit-to-GDP ratio, credit rating, one-year lag of these variables, and number of debt restructurings in the past ten years. The number of observations are set so that all regressions include the same number of observations. Countries that experienced at least one debt restructuring events are included in the sample. The sample period is from 1970 to 2007. The debt restructuring dummies are based on the classifications from Asonuma and Trebesch (2016) and the sovereign default dummy is based on the data from Standard and Poor's (2006). \*\*\*, \*\* and \* indicate that the corresponding coefficients are statistically significant at 1%, 5%, and 10% level, respectively. Larger negative impacts of sovereign defaults on start year (year 0) are due to a difference in sample of observations (due to required instruments) associated with application of IV estimation.

# C. Local Projections

For the local projection estimates, we deal with the endogeneity issues by applying the Augmented Inverse Probability Weighted (hereafter AIPW) estimator. Instead of introducing multiple dummies for the endogenous types of restructuring, we apply a uniform dummy variable taking unity when a country implements any type of debt restructurings. Our approach is justified by the estimation results of a multinomial logit model which is conducted to assess whether instruments have enough classification power on the three types of debt restructurings. We consider three model specifications: 15

- 1. *Three-type model*: treating post-default, weakly preemptive and strictly preemptive as different types of events
- 2. *Two-type model*: treating weakly and strictly preemptive restructurings as the same type of event and post-default restructurings as a second type of event
- 3. *One-type model*: treating all types of debt restructuring events as the same type of event (restructuring events)

Table 8 shows that the one-type model has a best fit among the three models. We contrast the performance of these three models based on the Akaike Information Criterion (hereafter AIC) and the Bayesian Information Criterion (hereafter BIC). These two measures quantify the degree of fitness of three models and the smallest statistics implies the best fit of the model. The one-type model with AIC and BIC of 763 and 792 outperforms both the two-and three-type models. This can be reconciled with Asonuma and Trebesch (2016)'s finding that preemptive restructurings are significantly more likely when macroeconomic fundamentals have deteriorated over the past years and when default risk is high. Despite the tendency of post-defaults being triggered by unexpected bad shocks, once they occur, macroeconomic fundamentals deteriorate severely and quickly.

<sup>&</sup>lt;sup>15</sup> A two-type model of treating post-default and strictly preemptive restructurings as the same type of event is excluded from the list because there exists no similarity between post-default and strictly preemptive restructurings which clearly differentiates from weakly preemptive episodes.

**Table 8: Predicting Debt Restructuring Events, Multinomial Logit** 

|                              | Th           | ree-type mo          | del                 | Two-tyj      | pe model                       | One-type model                                          |  |  |
|------------------------------|--------------|----------------------|---------------------|--------------|--------------------------------|---------------------------------------------------------|--|--|
|                              | Post-default | Weakly<br>preemptive | Strictly preemptive | Post-default | Weakly and strictly preemptive | Post-default, weakly preemptive and strictly preemptive |  |  |
| log debt-GDP ratio           | 0.606**      | 0.417                | 0.51                | 0.600**      | 0.440*                         | 0.528***                                                |  |  |
|                              | (0.24)       | (0.30)               | (0.40)              | (0.24)       | (0.24)                         | (0.18)                                                  |  |  |
| log private credit-GDP ratio | 0.157        | 0.243                | 1.243***            | 0.158        | 0.583**                        | 0.358**                                                 |  |  |
|                              | (0.22)       | (0.29)               | (0.41)              | (0.22)       | (0.24)                         | (0.17)                                                  |  |  |
| log country's credit rating  | -0.301       | 0.264                | -1.202**            | -0.304       | -0.272                         | -0.284                                                  |  |  |
|                              | (0.36)       | (0.49)               | (0.56)              | (0.36)       | (0.37)                         | (0.27)                                                  |  |  |
| GDP growth rate              | -0.109***    | -0.122***            | -0.0436             | -0.109***    | -0.102***                      | -0.105***                                               |  |  |
|                              | (0.02)       | (0.03)               | (0.06)              | (0.02)       | (0.03)                         | (0.02)                                                  |  |  |
| Observations                 |              | 2,372                |                     | 2,3          | 372                            | 2,372                                                   |  |  |
| Pseudo R-sq.                 | 0.068        |                      |                     | 0.0          | 065                            | 0.070                                                   |  |  |
| AIC                          |              | 965.57               | •                   | 903          | 3.62                           | 763.73                                                  |  |  |
| BIC                          |              | 1052.14              |                     | 96           | 1.34                           | 792.59                                                  |  |  |

*Notes*: All regressions include a constant term. Standard errors are in parentheses. The restructuring dummies take 1 at the start year of restructurings. Sample period is from 1970 to 2007 with some missing period for some countries. Sample countries are no longer restricted to countries that have ever experienced debt restructuring(s). See the main text for data sources. \*\*\*, \*\* and \* indicate that corresponding coefficients are statistically significant at 1% level, 5% level, and 10% level, respectively.

We proceed in two steps to obtain the AIPW estimator.<sup>16</sup> In the first step, the model estimates the policy propensity score in the sample, which corresponds to the probability that a debt restructuring event occurs. Reflecting the best fit of one-type model, we apply a probit model treating uniformly any type of restructuring strategies shown as follows:

$$P\{DebtRest\}_{i,t} = \Phi(\mathbf{Z}_{i,t}^m, \mathbf{Z}_{i,t-1}^m, \mathbf{\alpha})$$
(5)

where  $P\{DebtRest\}_{i,t}$  is the probability that a debt restructuring event occurs in country i in year t;  $\mathbf{Z}_{i,t}^m$  is a vector of contemporaneous instruments including public debt-to-GDP ratio, private credit-to-GDP ratio, countries' credit ratings, GDP growth rate, and other control variables employed in the second-stage regression. To denote a difference in the set of controls variables used in the second stage for imports and exports,  $\mathbf{Z}_{i,t}^m$  includes a superscript m indicating "imports."  $\mathbf{Z}_{i,t-1}^m$  is a vector of lagged instruments. Finally,  $\alpha$  indicates the vector of coefficients to be estimated.

<sup>&</sup>lt;sup>16</sup> For the sake of conciseness, we only explain the procedure to estimate the average treatment effect of debt restructurings on imports here. The same procedure is adopted to estimate the average treatment effect on exports and the other variables.

In the second step, we correct for bias in our sample by using the inverse of the estimated propensity score obtained in the first stage. This adjustment generates a hypothetical situation where debt restructuring events occur randomly contrary to the real world where restructurings are triggered by some common features. By assigning a weight, i.e., the inverse of the estimated propensity score,  $1/\hat{P}\{DebtRest\}_{i,t}$ , the share of observations that are less likely associated with restructurings (for instance, those with a low debt-to-GDP ratio and high GDP growth rate) accounts for a large portion in the AIPW estimates.

With the AIPW estimates obtained through this bias correction process, we interpret the estimated coefficients as the average treatment effect. This corresponds to a difference in average debt restructuring effects between observations that actually experience debt restructurings and those that do not experience. To acquire the average effect for the treatment and control groups, we estimate local projections similar to (3) in Section 4.2:

$$100*\frac{Import_{i,t+h} - Import_{i,t-1}}{GDP_{i,t-1}} = \alpha_i^h + \Lambda^{h,Post} D_{i,t}^{Post} + \Lambda^{h,Weak} D_{i,t}^{Weak} + \Lambda^{h,Strict} D_{i,t}^{Strict} + \mathbf{X}_{i,t-1}^m \mathbf{\beta}_{-1}^h + \mathbf{X}_{i,t-2}^m \mathbf{\beta}_{-2}^h + \varepsilon_{i,t+h}$$

$$(6)$$

for h=0,1,...,9, where  $D_{i,t}^{Post}$ ,  $D_{i,t}^{Weak}$  and  $D_{i,t}^{Strict}$  are dummy variables taking unity if there is a post-default, weakly preemptive, and strictly debt restructuring at year t in country i, respectively.  $\Lambda^{h,Post}$ ,  $\Lambda^{h,Weak}$  and  $\Lambda^{h,Strict}$  are coefficients to be estimated. Other variables and coefficients are the same as equation (3). We denote the predicted dependent variable as

$$\hat{M}_{i,t+h} = \hat{\alpha}_{i}^{h} + \hat{\Lambda}^{h,Post} D_{i,t}^{Post} + \hat{\Lambda}^{h,Weak} D_{i,t}^{Weak} + \hat{\Lambda}^{h,Strict} D_{i,t}^{Strict} + \mathbf{X}_{i,t-1}^{m} \hat{\mathbf{\beta}}_{-1}^{h} + \mathbf{X}_{i,t-2}^{m} \hat{\mathbf{\beta}}_{-2}^{h}$$
(7)

for h = 0, 1, ..., 9, where a hat indicates an estimated coefficient or a prediction and  $\hat{M}_{i,t+h}$  denotes the predicted dependent variable from equation (6). Following Jordà et al., (2016) and Kuvshinov and Zimmermann (2016), we use a larger set of control variables for probit regression in the first stage (equation 4) than for the local projection in the second stage (equation 5). That is,  $\mathbf{X}_{i,t}^m \subset \mathbf{Z}_{i,t}^m$ . We assume that the set of exogenous variables included in the second stage (local projection) satisfies the exclusion restriction and take an advantage of using exogenous variations in these variables to estimate the policy propensity score in the first stage (probit regression).

The average treatment effect of debt restructurings on imports for *h* year-horizon is computed as follows:

$$ATE^{m}(\Lambda^{h,Type}) = \frac{1}{N_{DebtRest}^{Type}} \sum_{i} \sum_{t} \frac{\hat{M}_{i,t+h} D_{i,t}^{Type}}{\hat{P}\{DebtRest\}_{i,t}} - \frac{1}{N_{NonDebtRest}^{Type}} \sum_{i} \sum_{t} \frac{\hat{M}_{i,t+h} (1 - D_{i,t}^{Type})}{1 - \hat{P}\{DebtRest\}_{i,t}}$$
(8)

for  $Type = \{Post\ default,\ Weakly\ preemptive,\ Strictly\ Preemptive\}$ , where  $N_{DebtRest}^{Type}$  and  $N_{NonDebtRest}^{Type}$  indicate the number of observations experiencing debt restructurings and the number of observations without debt restructurings, respectively, for each type of debt restructurings;  $\hat{P}\{DebtRest\}_{i,t}$  is the estimated probability of debt restructuring events for any types of debt restructurings;  $\hat{M}_{i,t+h}$  is the predicted dependent variable from the second stage (local projection); and  $D_{i,t}^{Type}$  is the debt restructuring dummy for  $Type = \{Post\ default,\ Weakly\ preemptive,\ Strictly\ Preemptive\}$ .

Table 9 reports the results from the AIPW estimator, which confirm our benchmark results. As in the baseline (OLS) case, imports decline remarkably over a prolonged period after post-default restructurings. Both weakly preemptive and strictly preemptive restructurings experience a decline in imports over the first two years. On exports, post-default restructurings lead to a sizable and protracted decline, while neither weakly nor strictly preemptive restructurings experience a significant decline. Figure 7 reports cumulative responses showing a similar pattern for the dynamics as in Figure 4.<sup>17</sup>

Table 9: Local Projections with Baseline Specification, AIPW

Part A: Imports

Dep. var. is 100 times the cumulative change in the import value from year t-1 to year t+h scaled by real GDP at year t-1h = 0h = 2h = 4h = 5h = 6h = 7h = 8h = 9Post-default -5.407\*\*\* -7.312\*\*\* -7.709\*\*\* -4.791\*\*\* -2.397 -4.395\*\* -2.239-1.307 -4.106\* -2.311 (0.96)(1.52)(2.04)(1.88)(2.31)(2.57)(2.85)(2.71)(2.69)(2.43)Weakly preemptive -1.979\*\* -2.215\* -2.108 -1.442 -2.553 -0.901 0.511 2.379 1.040 2.171 (0.99)(1.57)(2.10)(1.94)(2.36)(2.48)(2.62)(2.90)(2.96)(3.30)Strictly preemptive -2.847\*\*\* -2.309\* -2.383 -1.143 0.245 3.766 4.327 5.418 0.200 2.520

Cyclical component of log GDP per capita at h = -1, the dependent variable (h = -1, -2), openness (h = -1, -2), population (h = -1, -2), the import price index (h = -1, -2), % change in investment (h = -1, -2), % change in the real exchange rate (h = -1, -2),

(2.34)

(2.46)

(2.58)

(2.87)

(2.92)

(3.27)

|                       | and country | y fixed effects |     |     |     |     |     |     |     |     |
|-----------------------|-------------|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Number of countri     | es 39       | 39              | 38  | 38  | 37  | 36  | 35  | 35  | 34  | 33  |
| Number of observation | ns 813      | 777             | 740 | 703 | 665 | 628 | 592 | 557 | 525 | 493 |

(1.92)

(2.09)

(1.56)

<sup>&</sup>lt;sup>17</sup> Results from the AIPW estimator for other variables are reported in Table A.2. in Appendix III.

Part B: Exports

| Dep. var. is 100 time | Dep. var. is 100 times the cumulative change in the export value from year $t - 1$ to year $t + h$ scaled by real GDP at year $t - 1$ |                |            |                 |               |              |            |              |                |              |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|-----------------|---------------|--------------|------------|--------------|----------------|--------------|--|--|--|
|                       | h = 0                                                                                                                                 | h = 1          | h = 2      | h = 3           | h = 4         | h = 5        | h = 6      | h = 7        | h = 8          | h = 9        |  |  |  |
| Post-default          | -3.641***                                                                                                                             | -3.134***      | -4.083**   | -4.026          | -3.877        | -4.718       | -4.653     | -4.248       | -3.523         | -4.257       |  |  |  |
|                       | (1.31)                                                                                                                                | (1.74)         | (2.46)     | (3.65)          | (4.40)        | (4.51)       | (4.61)     | (5.04)       | (4.66)         | (4.36)       |  |  |  |
| Weakly preemptive     | -0.561                                                                                                                                | -0.194         | -0.779     | -1.839          | -2.926        | -2.662       | -3.205     | -1.563       | -1.272         | -1.438       |  |  |  |
|                       | (1.30)                                                                                                                                | (1.73)         | (2.47)     | (3.65)          | (4.41)        | (4.56)       | (4.71)     | (5.09)       | (4.73)         | (4.84)       |  |  |  |
| Strictly preemptive   | 0.168                                                                                                                                 | -0.322         | -0.774     | -1.521          | -2.337        | -1.230       | 1.421      | -0.019       | -0.311         | 4.989        |  |  |  |
|                       | (1.29)                                                                                                                                | (1.71)         | (2.45)     | (3.63)          | (4.40)        | (4.54)       | (4.70)     | (5.08)       | (4.70)         | (4.79)       |  |  |  |
| •                     | Cyclical con                                                                                                                          | nponent of los | GDP per ca | pita at $h = -$ | 1. the depend | ent variable | h = -1, -2 | penness (h = | = -1, -2), por | ulation (h = |  |  |  |

Cyclical component of log GDP per capita at h = -1, the dependent variable (h = -1, -2), openness (h = -1, -2), population (h = -1, -2), the export price index (h = -1, -2), % change in investment (h = -1, -2), % change in the real exchange rate (h = -1, -2),

| ar                     | na country | у пхеа епестя |     |     |     |     |     |     |     |     |
|------------------------|------------|---------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Number of countries    | 39         | 39            | 38  | 38  | 37  | 36  | 35  | 35  | 34  | 33  |
| Number of observations | 813        | 777           | 740 | 703 | 665 | 628 | 592 | 557 | 525 | 493 |

Notes: The table shows estimated local projections of 100 times  $(Import_{t+h} - Import_{t-1})/GDP_{t-1}$  for Panel A and 100 times  $(Export_{t+h} - Export_{t-1})/GDP_{t-1}$  for Panel B where h indicates years after debt restructurings. Regressions include the same control variables from Table 3: cyclical components of log GDP per capita, lags of import (or export) growth, openness, population, import (export) price index, % change in investment, % change in the real exchange rates and country fixed effects. Robust standard errors, clustered at the country-level, are in parentheses. Sample countries are restricted to those that have experienced debt restructuring(s). Sample period is from 1970 to 2007 with some missing period for some countries. In the first stage, the dummy variable equal to 1 for any type of debt restructuring event is regressed on the public-debt GDP ratio, the private credit-GDP ratio, and the countries' ratings on risks. Then estimated propensities are employed as weights in the second stage. See the main text for the data sources. \*\*\*, \*\* and \* indicate that corresponding coefficients are statistically significant at 1% level, 5% level, and 10% level, respectively.

Figure 7: Local Projections with Baseline Specification, AIPW



Notes: The figure plots local projections of 100 times  $(Import_{t+h} - Import_{t-1})/GDP_{t-1}$  and 100 times  $(Export_{t+h} - Export_{t-1})/GDP_{t-1}$  where h indicates years after debt restructurings. The solid line indicates the point estimates and the thinner band and the thicker band are 90% and 95% confidence intervals, respectively. The figure is based on the result presented in Table 9. See note in Figure 4 for presentation for point estimates and confidence intervals.

#### VI. ROBUSTNESS CHECK

# A. Expanding Sample of Observations

First, we conduct an exercise to expand our sample by including countries without debt restructurings. Previous studies on sovereign defaults use a wider coverage of countries including those that have never defaulted: on defaults on private external debt, Zymek (2012) and Kuvshinov and Zimmermann (2016) use a sample of 100 countries and 114 countries, respectively. We set our sample to follow as close as possible the conventional approach in these studies. We exclude high income countries where the Purchasing Power Parity (PPP) adjusted GDP per capita higher than the 80 percentile of the entire sample in 2000 since we do not have any restructuring episodes for advanced economies. That leaves 122 countries in the sample, a similar number to that in Zymek (2012) and Kuvshinov and Zimmermann (2016).

Table 10 reports the results for the conventional panel regressions. The baseline results remain robust in this larger sample of countries that includes non-restructuring countries. Adding observations without restructuring episodes where restructuring dummies are set to zero does not virtually change the estimated coefficients.

For the local projection estimates we exclude the real exchange rate and investment from the control variables in order to prevent a sizable reduction in observations due to limited coverage of these variables in the larger sample. The results are reported in Table 11, and are quantitatively similar to those in Table 3, confirming the robustness of our baseline results.

<sup>&</sup>lt;sup>18</sup> A similar approach has been adopted for official external debt restructurings: Rose (2005) and Martinez and Sandleis (2011) apply the sample of 150 countries and 217 countries including those without restructuring experience, respectively.

Table 10: Conventional Model with Expanded Sample, OLS

Panel A: Imports

|                                          | Гс               | Import o            | rowth rate,         | 100*(Impor          | t Import            | \/CDB           |             |
|------------------------------------------|------------------|---------------------|---------------------|---------------------|---------------------|-----------------|-------------|
|                                          | (1)              |                     |                     | ` .                 |                     | (6)             | (7)         |
| Post-default (lag 0)                     | (1)              | (2)<br>-2.942***    | (3)<br>-3.443***    | (4)<br>-2.763***    | (5)<br>-2.791***    | (0)             | (7)         |
| Post-default (lag 0)                     | (0.63)           |                     |                     | (0.64)              | (0.59)              |                 |             |
| Post-default (lag 1)                     |                  | (0.67)              | (0.61)              |                     | -1.277**            |                 |             |
| Fost-default (lag 1)                     | (0.42)           | (0.43)              | (0.43)              | (0.44)              | (0.49)              |                 |             |
| Post-default (lag 2)                     | . ,              | -1.703**            | -1.631**            | -1.717***           | -1.702**            |                 |             |
| Post-default (lag 2)                     |                  |                     |                     |                     |                     |                 |             |
| Weakly preemptive (lag 0)                | (0.66)           | (0.66)<br>-2.444*** | (0.66)<br>-2.689*** | (0.66)<br>-2.261*** | (0.68)<br>-2.232*** |                 |             |
| weakiy preemptive (lag 0)                |                  |                     |                     |                     |                     |                 |             |
| Weakly preemptive (lag 1)                | (0.74)<br>-0.112 | (0.77)<br>0.027     | (0.72)<br>0.015     | (0.75)<br>0.173     | (0.81)<br>0.216     |                 |             |
| weakiy preemptive (lag 1)                |                  |                     |                     |                     |                     |                 |             |
| Weekly manamative (leg 2)                | (0.67)<br>-0.441 | (0.65)<br>-0.767    | (0.66)<br>-0.436    | (0.64)<br>-0.770    | (0.75)<br>-0.678    |                 |             |
| Weakly preemptive (lag 2)                | (0.56)           |                     |                     |                     |                     |                 |             |
| Strictles are strict (1 0)               | , ,              | (0.57)              | (0.55)              | (0.56)              | (0.59)              |                 |             |
| Strictly preemptive (lag 0)              |                  | -0.849**            | -1.367***           | -0.992**            | -1.073***           |                 |             |
|                                          | (0.48)           | (0.41)              | (0.50)              | (0.43)              | (0.36)              |                 |             |
| Stirctly preemptive (lag 1)              | 0.988*           | 1.283**             | 0.963*              | 1.263**             | 1.166**             |                 |             |
|                                          | (0.56)           | (0.50)              | (0.54)              | (0.49)              | (0.48)              |                 |             |
| Strictly preemptive (lag 2)              | -0.578           | -0.500              | -0.443              | -0.347              | -0.451              |                 |             |
|                                          | (0.78)           | (0.80)              | (0.79)              | (0.80)              | (0.91)              | 2 20 6 11 11 11 |             |
| Any types of debt restructurings (Lag 0) |                  |                     |                     |                     |                     | -2.306***       |             |
|                                          |                  |                     |                     |                     |                     | (0.46)          |             |
| Any types of debt restructurings (Lag 1) |                  |                     |                     |                     |                     | -0.473          |             |
|                                          |                  |                     |                     |                     |                     | (0.35)          |             |
| Any types of debt restructurings (Lag 2) |                  |                     |                     |                     |                     | -1.200***       |             |
|                                          |                  |                     |                     |                     |                     | (0.47)          | • 404 5 5 5 |
| Sovereign default S&P (Lag 0)            |                  |                     |                     |                     |                     |                 | -2.401***   |
|                                          |                  |                     |                     |                     |                     |                 | (0.57)      |
| Sovereign default S&P (Lag 1)            |                  |                     |                     |                     |                     |                 | -1.914***   |
|                                          |                  |                     |                     |                     |                     |                 | (0.52)      |
| Sovereign default S&P (Lag 2)            |                  |                     |                     |                     |                     |                 | -0.939*     |
|                                          |                  |                     |                     |                     |                     |                 | (0.57)      |
|                                          |                  |                     |                     |                     |                     |                 |             |
| GDP growth rate                          |                  | 0.143***            |                     | 0.147***            | 0.138***            | 0.147***        | 0.147***    |
|                                          |                  | (0.05)              |                     | (0.05)              | (0.05)              | (0.05)          | (0.05)      |
| Terms of trade, rate of change           |                  |                     |                     |                     |                     | 0.0817***       |             |
|                                          |                  |                     | (0.02)              | (0.02)              | (0.02)              | (0.02)          | (0.02)      |
| Floating exchange rate regime dummy      | 0.346            | 0.195               | 0.322               | 0.164               | 0.624               | 0.074           | -0.027      |
|                                          | (0.81)           | (0.84)              | (0.80)              | (0.82)              | (0.63)              | (0.82)          | (0.81)      |
| Commodity exporter dummy                 | -0.160           | -0.109              | -0.159              | -0.106              | 0.295               | -0.123          | -0.130      |
|                                          | (0.29)           | (0.30)              | (0.29)              | (0.30)              | (0.36)              | (0.30)          | (0.30)      |
| Country fixed effect                     | No               | No                  | No                  | No                  | Yes                 | No              | No          |
| R-squared                                | 0.006            | 0.034               | 0.012               | 0.042               | 0.039               | 0.041           | 0.04        |
| Number of countries                      | 118              | 118                 | 118                 | 118                 | 118                 | 118             | 118         |
| Observations                             | 3,936            | 3,936               | 3,936               | 3,936               | 3,936               | 3,839           | 3,839       |

*Notes*: All regressions include a constant term. Robust standard errors, clustered at the country-level, are in parentheses. The number of observations are set so that all regressions (except (6) and (7)) include the same number of observations. The sample period is from 1970 to 2007. The debt restructuring dummies (post-default, weakly preemptive, strictly preemptive, and any restructuring) are based on the data from Asonuma and Trebesch (2016). The dummy for sovereign defaults is from Standard and Poor's (2006). \*\*\*, \*\* and \* indicate that the corresponding coefficients are statistically significant at 1%, 5%, and 10% level, respectively.

Table 10: Conventional Model with Expanded Sample, OLS (Cont.)

Panel B: Exports

|                                          | Pan     | iei B: Exp |             |            |            |            |           |
|------------------------------------------|---------|------------|-------------|------------|------------|------------|-----------|
|                                          |         |            | rowth rate, |            |            |            |           |
|                                          | (1)     | (2)        | (3)         | (4)        | (5)        | (6)        | (7)       |
| Post-default (lag 0)                     |         | -0.550     | -1.630***   | -0.650     | -0.593     |            |           |
|                                          | (0.49)  | (0.50)     | (0.49)      | (0.50)     | (0.58)     |            |           |
| Post-default (lag 1)                     | -0.539  | -0.134     | -0.564      | -0.158     | -0.077     |            |           |
|                                          | (0.57)  | (0.57)     | (0.57)      | (0.57)     | (0.62)     |            |           |
| Post-default (lag 2)                     | -0.763* | -0.887**   | -0.754*     | -0.878**   | -0.762*    |            |           |
|                                          | (0.41)  | (0.44)     | (0.40)      | (0.43)     | (0.39)     |            |           |
| Weakly preemptive (lag 0)                |         | -0.510     | -1.229**    | -0.612     | -0.572     |            |           |
|                                          | (0.54)  | (0.59)     | (0.55)      | (0.59)     | (0.59)     |            |           |
| Weakly preemptive (lag 1)                | -0.138  | 0.070      | -0.238      | -0.011     | 0.059      |            |           |
|                                          | (0.51)  | (0.53)     | (0.50)      | (0.52)     | (0.60)     |            |           |
| Weakly preemptive (lag 2)                | -0.789  | -1.277**   | -0.794      | -1.275**   | -1.167**   |            |           |
|                                          | (0.48)  | (0.54)     | (0.49)      | (0.54)     | (0.50)     |            |           |
| Strictly preemptive (lag 0)              | -0.049  | 0.519      | 0.059       | 0.599      | 0.709      |            |           |
|                                          | (0.47)  | (0.54)     | (0.54)      | (0.59)     | (0.60)     |            |           |
| Stirctly preemptive (lag 1)              | -0.479  | -0.038     | -0.459      | -0.027     | 0.094      |            |           |
|                                          | (0.50)  | (0.55)     | (0.52)      | (0.55)     | (0.46)     |            |           |
| Strictly preemptive (lag 2)              | -1.100  | -0.983     | -1.206*     | -1.068     | -0.917**   |            |           |
|                                          | (0.67)  | (0.66)     | (0.66)      | (0.66)     | (0.45)     |            |           |
| Any types of debt restructurings (Lag 0) |         |            |             |            |            | -0.507     |           |
|                                          |         |            |             |            |            | (0.37)     |           |
| Any types of debt restructurings (Lag 1) |         |            |             |            |            | -0.099     |           |
|                                          |         |            |             |            |            | (0.38)     |           |
| Any types of debt restructurings (Lag 2) |         |            |             |            |            | -1.016***  |           |
|                                          |         |            |             |            |            | (0.33)     |           |
| Sovereign default S&P (Lag 0)            |         |            |             |            |            |            | -1.542*** |
|                                          |         |            |             |            |            |            | (0.58)    |
| Sovereign default S&P (Lag 1)            |         |            |             |            |            |            | -0.602    |
|                                          |         |            |             |            |            |            | (0.42)    |
| Sovereign default S&P (Lag 2)            |         |            |             |            |            |            | -0.477    |
|                                          |         |            |             |            |            |            | (0.39)    |
| GDP growth rate                          |         | 0.213***   |             | 0.211***   | 0.201**    | 0.211***   | 0.210***  |
|                                          |         | (0.06)     |             | (0.06)     | (0.09)     | (0.06)     | (0.06)    |
| Terms of trade, rate of change           |         |            | -0.0581***  | -0.0460*** | -0.0449*** | -0.0473*** | -0.0474** |
|                                          |         |            | (0.01)      | (0.01)     | (0.01)     | (0.01)     | (0.01)    |
| Floating exchange rate regime dummy      | -0.265  | -0.491     | -0.246      | -0.473     | 0.031      | -0.491     | -0.544    |
|                                          | (0.45)  | (0.56)     | (0.44)      | (0.56)     | (0.49)     | (0.56)     | (0.55)    |
| Commodity exporter dummy                 | 0.437*  | 0.513**    | 0.436*      | 0.512**    | 0.467      | 0.450*     | 0.453**   |
|                                          | (0.23)  | (0.23)     | (0.23)      | (0.23)     | (0.34)     | (0.23)     | (0.23)    |
| Country fixed effect                     | No      | No         | No          | No         | Yes        | No         | No        |
| R-squared                                | 0.002   | 0.102      | 0.009       | 0.106      | 0.099      | 0.106      | 0.106     |
| Number of countries                      | 118     | 118        | 118         | 118        | 118        | 118        | 118       |
| Observations                             | 3,936   | 3,936      | 3,936       | 3,936      | 3,936      | 3,839      | 3,839     |

*Notes*: All regressions include a constant term. Robust standard errors, clustered at the country-level, are in parentheses. The number of observations are set so that all regressions (except (6) and (7)) include the same number of observations. The sample period is from 1970 to 2007. The debt restructuring dummies (post-default, weakly preemptive, strictly preemptive, and any restructuring) are based on the data from Asonuma and Trebesch (2016). The dummy for sovereign defaults is from Standard and Poor's (2006). \*\*\*, \*\* and \* indicate that the corresponding coefficients are statistically significant at 1%, 5%, and 10% level, respectively.

Table 11: Local Projections with Expanded Sample, OLS

(1) Imports

| 5 1 100 1 1                                                                                                                |                                                              |                                                    | · ·                                                | 0                                                |                                         | ,                                         |                                  |                                  | 4                                |                                  |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|-----------------------------------------|-------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Dep. var. is 100 times the cum                                                                                             |                                                              |                                                    | •                                                  | •                                                | •                                       |                                           | •                                | •                                |                                  |                                  |
|                                                                                                                            | h = 0                                                        | h = 1                                              | h=2                                                | h = 3                                            | h=4                                     | h = 5                                     | h = 6                            | h = 7                            | h = 8                            | h = 9                            |
| Post-default                                                                                                               |                                                              |                                                    |                                                    |                                                  |                                         | -7.539***                                 |                                  |                                  | -9.850***                        | -10.86**                         |
|                                                                                                                            | (0.59)                                                       | (0.75)                                             | (1.07)                                             | (1.18)                                           | (1.63)                                  | (2.05)                                    | (3.18)                           | (3.09)                           | (3.46)                           | (4.94)                           |
| Weakly preemptive                                                                                                          | -2.749***                                                    | -3.450***                                          | -4.750***                                          |                                                  | -4.991***                               |                                           | -5.690***                        | -5.951**                         | -6.598**                         | -2.909                           |
|                                                                                                                            | (0.85)                                                       | (0.66)                                             | (1.13)                                             | (1.13)                                           | (1.22)                                  | (1.42)                                    | (2.14)                           | (2.61)                           | (2.96)                           | (2.09)                           |
| Strictly preemptive                                                                                                        | -1.419***                                                    | -0.951                                             | -1.377                                             | -0.905                                           | -1.104                                  | 1.713                                     | -0.839                           | -0.19                            | -1.899                           | -1.194                           |
|                                                                                                                            | (0.32)                                                       | (0.80)                                             | (1.50)                                             | (2.00)                                           | (1.13)                                  | (1.85)                                    | (1.69)                           | (2.01)                           | (2.51)                           | (2.27)                           |
|                                                                                                                            |                                                              | nponent of log                                     |                                                    |                                                  |                                         |                                           | h = -1, -2), c                   | openness (h =                    | -1, -2), pop                     | ulation ( $h =$                  |
| Control variables                                                                                                          | -1, -2), the ii                                              | mport price in                                     | dex(h = -1,                                        | -2), and cour                                    | ntry fixed eff                          | ects                                      |                                  |                                  |                                  |                                  |
| R-squared                                                                                                                  | 0.106                                                        | 0.122                                              | 0.168                                              | 0.171                                            | 0.193                                   | 0.208                                     | 0.26                             | 0.301                            | 0.335                            | 0.367                            |
| Number of countries                                                                                                        | 118                                                          | 118                                                | 118                                                | 118                                              | 118                                     | 118                                       | 118                              | 118                              | 118                              | 117                              |
| Observations                                                                                                               | 3,585                                                        | 3,467                                              | 3,349                                              | 3,231                                            | 3,113                                   | 2,995                                     | 2,877                            | 2,759                            | 2,641                            | 2,523                            |
| Differences in debt restructuring coefficients                                                                             |                                                              |                                                    |                                                    |                                                  |                                         |                                           |                                  |                                  |                                  |                                  |
| Post-default - Weakly preemptive                                                                                           | -0.592                                                       | -1.780*                                            | -1.938                                             | -2.146                                           | -2.377                                  | -2.278                                    | -4.174                           | -4.309                           | -3.252                           | -7.948                           |
|                                                                                                                            | (1.00)                                                       | (0.98)                                             | (1.45)                                             | (1.40)                                           | (1.98)                                  | (2.61)                                    | (3.53)                           | (3.09)                           | (3.39)                           | (4.95)                           |
| Post-default - Strictly preemptive                                                                                         | -1.922***                                                    | -4.279***                                          | -5.310***                                          | -6.370***                                        | -6.264***                               | -9.253***                                 | -9.025**                         | -10.07***                        | -7.952*                          | -9.663*                          |
|                                                                                                                            | (0.62)                                                       | (1.07)                                             | (1.90)                                             | (2.44)                                           | (1.64)                                  | (2.75)                                    | (3.76)                           | (3.86)                           | (4.32)                           | (5.35)                           |
| Weakly preemptive - Strictly preemptive                                                                                    | -1.33                                                        | -2.499***                                          | -3.373**                                           | -4.224**                                         | -3.887**                                | -6.974**                                  | -4.851*                          | -5.761*                          | -4.699                           | -1.716                           |
|                                                                                                                            | (0.83)                                                       | (0.93)                                             | (1.57)                                             | (2.00)                                           | (1.51)                                  | (2.28)                                    | (2.63)                           | (3.21)                           | (3.75)                           | (2.83)                           |
| Dep. var. is 100 times the cun                                                                                             |                                                              | ange in the e                                      |                                                    | from year                                        |                                         |                                           |                                  |                                  |                                  |                                  |
|                                                                                                                            | h = 0                                                        | h = 1                                              | h=2                                                | h = 3                                            | h = 4                                   | h = 5                                     | h = 6                            | h = 7                            | h = 8                            | h = 9                            |
| Post-default                                                                                                               | -0.841*                                                      | -0.774                                             | -0.885                                             | -0.736                                           | -0.635                                  | -2.009                                    | -3.678                           | -5.117*                          | -7.821*                          | -11.11*                          |
|                                                                                                                            | (0.46)                                                       | (0.64)                                             | (0.86)                                             | (1.16)                                           | (1.47)                                  | (1.71)                                    | (2.23)                           | (3.07)                           | (4.27)                           | (6.21)                           |
| Weakly preemptive                                                                                                          | -1.116**                                                     | -1.387**                                           |                                                    | -2.314***                                        | -2.139*                                 | -2.352                                    | -3.581**                         |                                  | -6.362*                          | -7.714                           |
|                                                                                                                            | (0.51)                                                       | (0.57)                                             | (0.74)                                             | (0.87)                                           | (1.12)                                  | (1.57)                                    | (1.58)                           | (2.10)                           | (3.63)                           | (5.36)                           |
| Strictly preemptive                                                                                                        |                                                              | -0.184                                             | -0.845                                             | -0.946                                           | -1.416                                  | 0.366                                     | 1.517                            | 1.183                            | 0.0889                           | 0.865                            |
|                                                                                                                            | (0.56)                                                       | (0.81)                                             | (0.66)                                             | (1.17)                                           | (1.82)                                  | (2.02)                                    | (2.74)                           | (3.36)                           | (3.27)                           | (4.68)                           |
| Control variables                                                                                                          |                                                              | mponent of lo                                      |                                                    |                                                  | -1, the depen<br>intry fixed ef         |                                           | (h = -1, -2),                    | openness (h                      | = -1, -2), po                    | pulation (h                      |
|                                                                                                                            | 1, 2), the                                                   | 1 1                                                |                                                    |                                                  |                                         |                                           |                                  |                                  |                                  |                                  |
| R-squared                                                                                                                  | 0.043                                                        | 0.109                                              | 0.207                                              | 0.286                                            | 0.251                                   | 0.228                                     | 0.253                            | 0.282                            | 0.296                            | 0.298                            |
| R-squared                                                                                                                  |                                                              | 0.109                                              |                                                    | 0.286                                            | 0.251<br>118                            | 0.228<br>118                              | 0.253<br>118                     | 0.282<br>118                     | 0.296<br>118                     | 0.298<br>117                     |
|                                                                                                                            | 0.043<br>118                                                 | 0.109<br>118                                       | 0.207<br>118                                       | 0.286<br>118                                     | 118                                     | 118                                       | 118                              | 118                              | 118                              | 117                              |
| R-squared<br>Number of countries<br>Observations                                                                           | 0.043                                                        | 0.109                                              | 0.207                                              | 0.286                                            |                                         |                                           |                                  |                                  |                                  |                                  |
| R-squared<br>Number of countries<br>Observations                                                                           | 0.043<br>118<br>3,585                                        | 0.109<br>118                                       | 0.207<br>118                                       | 0.286<br>118                                     | 118                                     | 118                                       | 118                              | 118                              | 118                              | 117<br>2,523                     |
| R-squared Number of countries Observations Differences in debt restructuring coefficients                                  | 0.043<br>118<br>3,585<br>0.275                               | 0.109<br>118<br>3,467<br>0.614                     | 0.207<br>118<br>3,349                              | 0.286<br>118<br>3,231                            | 118<br>3,113<br>1.504                   | 118<br>2,995<br>0.343                     | 118<br>2,877<br>-0.096           | 118<br>2,759<br>-0.526           | 118<br>2,641<br>-1.459           | 117<br>2,523<br>-3.397           |
| R-squared Number of countries Observations Differences in debt restructuring coefficients Post-default - Weakly preemptive | 0.043<br>118<br>3,585<br>0.275<br>(0.60)                     | 0.109<br>118<br>3,467<br>0.614<br>(0.76)           | 0.207<br>118<br>3,349<br>1.273<br>(1.19)           | 0.286<br>118<br>3,231<br>1.578<br>(1.51)         | 118<br>3,113<br>1.504<br>(1.87)         | 118<br>2,995<br>0.343<br>(2.48)           | 118<br>2,877<br>-0.096<br>(2.78) | 118<br>2,759<br>-0.526<br>(3.49) | 118<br>2,641<br>-1.459<br>(4.65) | 117<br>2,523<br>-3.397<br>(5.91) |
| R-squared<br>Number of countries<br>Observations<br>Differences in debt restructuring coefficients                         | 0.043<br>118<br>3,585<br>0.275<br>(0.60)<br>-0.893           | 0.109<br>118<br>3,467<br>0.614<br>(0.76)<br>-0.589 | 0.207<br>118<br>3,349<br>1.273<br>(1.19)<br>-0.041 | 0.286<br>118<br>3,231<br>1.578<br>(1.51)<br>0.21 | 118<br>3,113<br>1.504<br>(1.87)<br>0.78 | 118<br>2,995<br>0.343<br>(2.48)<br>-2.374 | -0.096<br>(2.78)<br>-5.195       | -0.526<br>(3.49)<br>-6.299       | -1.459<br>(4.65)<br>-7.91        | -3.397<br>(5.91)<br>-11.976      |
| R-squared Number of countries Observations Differences in debt restructuring coefficients Post-default - Weakly preemptive | 0.043<br>118<br>3,585<br>0.275<br>(0.60)<br>-0.893<br>(0.63) | 0.109<br>118<br>3,467<br>0.614<br>(0.76)           | 0.207<br>118<br>3,349<br>1.273<br>(1.19)           | 0.286<br>118<br>3,231<br>1.578<br>(1.51)         | 118<br>3,113<br>1.504<br>(1.87)         | 118<br>2,995<br>0.343<br>(2.48)           | 118<br>2,877<br>-0.096<br>(2.78) | 118<br>2,759<br>-0.526<br>(3.49) | 118<br>2,641<br>-1.459<br>(4.65) | 117<br>2,523<br>-3.397           |

*Notes*: The table shows estimated local projections of 100 times  $(Import_{t+h} - Import_{t-1})/GDP_{t-1}$  for Panel A and 100 times  $(Export_{t+h} - Export_{t-1})/GDP_{t-1}$  for Panel B where h indicates years after a debt restructuring. Regressions include the similar set of control variables in Table 3: lagged cyclical components of log GDP per capita, lags of import (or export) growth, openness, population, the import (export) price index, and country fixed effects. Robust standard errors, clustered at country-level, are in parentheses. \*\*\*, \*\* and \* indicate that corresponding coefficients are statistically significant at 1% level, 5% level, and 10% level, respectively.

# B. Exchange Rate Regimes, Commodity Exporters, IMF-supported Program, and Paris Club Restructurings

In this subsection we check how the trade dynamics respond under the three different restructuring strategies once we take into account differences in the exchange rate regime, whether the exports consist mainly of commodities, and lastly whether the country has an IMF-supported program or an official debt (Paris Club) restructuring. In principle, the absence of the exchange rate's automatic stabilizer role under a fixed regime should amplify the vulnerability to the adverse effects on trade following a restructuring. The composition of exports should also affect the response, as commodity exports may be less sensitive to financial constraints than non-commodity exports (or may not be as easily absorbed by the domestic market as other non-commodity goods that are exported). Under an IMF-supported program, the availability of official (multilateral) financing can mitigate some of the adverse effects on trade (both exports and imports). Similarly, with official debt being restructured through Paris Club deals, receipts of new financing from bilateral creditors can also moderate the negative influence on both exports and imports.

In Panel A of Table 12, we report results when the dummies for each of the three types of restructuring are interacted with dummies for floating vs fixed exchange rate regimes (please note that changes in exchange rate regime during the restructuring period are relatively infrequent). The results indicate that countries under a fixed regime suffer a larger and more protracted decline in imports for both post-default and weakly preemptive restructurings than those under a floating regime. However, in most cases the difference is not statistically significant. The pattern is more mixed in the case of exports, where countries under a fixed regime experience a larger negative impact under post-default and strictly preemptive restructurings, but a smaller impact under weakly preemptive ones. For countries that succeed in maintaining a fixed regime during restructurings, shocks may be more benign and the countries may sustain high credibility for a fixed regime.

Panel B of Table 12 interacts the three restructuring dummies with a dummy for whether the country is a commodity exporter (following the IMF's World Economic Outlook classification). Commodity exporters are countries where most of their exports are primary products. We expect the decline in exports to be milder for commodity exporters because of more inelastic supply. As expected, exports tend to decline less following a restructuring among commodity exporters. The difference is particularly significant for weakly preemptive debt restructurings, where the decline among commodity exporters is 3–4 percent lower than that for non-commodity exporters.

Similarly, Panel C of Table 12 classifies observations into those with an IMF-supported program prior or during the debt restructuring and those without one. <sup>19</sup> For exports, a decline following a post-default restructuring is substantially mitigated under a program. The result may suggest that a country does not face as severe a financial constraint under an IMF-supported program, which leads to a milder decline of exports (see, for example, Amiti and Weinstein, 2011 and Ahn et al., 2011, for the role of trade finance in international trade).

Panel D of Table 12 follows the same approach by classifying observations into those with Paris Club deals with official (bilateral) creditors before or during the private debt restructuring and those without Paris Club debt renegotiation. <sup>20</sup> Paris Club restructurings are accompanied by subsequent IMF-supported programs (with a single exception in our sample). Therefore, we expect a similar result as Panel C. Indeed, the result is similar to Panel C: for exports, a decline following a post-default restructuring is significantly moderated by the Paris Club restructurings. The result from Panels C and D suggest that relying on either IMF-supported program or Paris Club Official debt renegotiation (or both) help countries to avoid a substantial decline in exports.

<sup>19</sup> The dummy for IMF-supported programs is set to 1 if a country reaches an agreement with an IMF-supported program within three years before and after the private debt restructuring, and set to 0 otherwise.

<sup>&</sup>lt;sup>20</sup> The dummy for Paris Club restructurings is set to 1 if a country reaches an agreement with the Paris Club creditors within three years before and after the private debt restructuring, and set to 0 otherwise.

Table 12. Local Projections for Exchange Rate Regimes, Commodity Exporters, IMF-supported Programs, and Paris Club Restructurings, OLS

#### Panel A: Exchange Rate Regimes

| ( | (1 | ) | 1 | m | a | O | rts |
|---|----|---|---|---|---|---|-----|
|   |    |   |   |   |   |   |     |

| Dep. var. is 100 times the cumulati                                                                      | ve change i               | n the import                         | value from                 | vear t - 1 to             | vear t + h         | scaled by r                        | eal GDP at        | vear t - 1          |                    |                    |
|----------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------|----------------------------|---------------------------|--------------------|------------------------------------|-------------------|---------------------|--------------------|--------------------|
| •                                                                                                        | h = 0                     | h = 1                                | h = 2                      | h = 3                     | h = 4              | h = 5                              | h = 6             | h = 7               | h = 8              | h = 9              |
| Post-default, Floating regime                                                                            | -3.267***                 | -4.494***                            | -4.754**                   | -4.313*                   | -3.909*            | -5.201                             | -6.641            | -9.508              | -11.600            | -14.96*            |
|                                                                                                          | (1.19)                    | (1.20)                               | (2.13)                     | (2.54)                    | (2.18)             | (3.49)                             | (6.06)            | (6.55)              | (7.82)             | (8.04)             |
| Post-default, Fixed regime                                                                               | -2.833***                 | -4.330***                            | -7.105***                  | -7.271***                 | -7.010***          | -6.476***                          | -6.620***         | -6.467***           | -3.771***          | -4.239**           |
|                                                                                                          | (0.58)                    | (0.79)                               | (1.32)                     | (1.29)                    | (1.32)             | (1.36)                             | (1.34)            | (1.32)              | (1.39)             | (1.42)             |
| Weakly preemptive, Floating regime                                                                       | -2.799***                 | -2.923**                             | -3.446*                    | -3.266*                   | -5.407*            | 4.899                              | -4.497            | -2.444              | -1.620             | 2.699              |
|                                                                                                          | (0.86)                    | (1.15)                               | (1.83)                     | (1.81)                    | (3.05)             | (3.66)                             | (4.66)            | (4.50)              | (3.67)             | (2.24)             |
| Weakly preemptive, Fixed regime                                                                          | -1.805***                 | -2.819***                            | -3.723***                  | -5.281***                 | -6.697***          | -6.224***                          | -5.758***         | 4.707***            | -3.916***          | -2.681*            |
|                                                                                                          | (0.49)                    | (0.72)                               | (0.81)                     | (0.89)                    | (1.36)             | (1.29)                             | (1.35)            | (1.50)              | (1.33)             | (1.41)             |
| Strictly preemptive, Floating regime                                                                     | -1.593***                 | -1.369                               | -0.985                     | 1.629                     | 2.484              | 4.792                              | 1.787             | 1.201               | 2.064              | 0.442              |
| ,,,,                                                                                                     | (0.42)                    | (0.89)                               | (0.77)                     | (1.44)                    | (1.70)             | (3.26)                             | (1.75)            | (3.77)              | (3.52)             | (6.06)             |
| Strictly preemptive, Fixed regime                                                                        | . ,                       | -2.049                               | -2.049                     | -2.277                    | -5.413**           | 4.441*                             | -3.050            | -0.094              | 0.126              | 2.656              |
| ,                                                                                                        | (0.66)                    | (1.48)                               | (1.75)                     | (2.22)                    | (2.36)             | (2.41)                             | (2.91)            | (3.13)              | (2.54)             | (1.72)             |
|                                                                                                          |                           |                                      |                            | apita at h = -            |                    |                                    |                   |                     |                    |                    |
| Control variables                                                                                        |                           | e import price<br>ntry fixed effe    |                            | 1, -2), % cha             | nge in invest      | ment ( $h = -1$                    | , -2), % chan     | ge in the real      | exchange rat       | e(h = -1, -1)      |
| R-squared                                                                                                | 0.083                     | 0.123                                | 0.174                      | 0.189                     | 0.208              | 0.223                              | 0.253             | 0.325               | 0.385              | 0.419              |
| Number of countries                                                                                      | 47                        | 47                                   | 46                         | 46                        | 45                 | 44                                 | 44                | 44                  | 44                 | 43                 |
| Observations                                                                                             | 1,178                     | 1,134                                | 1,088                      | 1,043                     | 998                | 953                                | 909               | 865                 | 821                | 777                |
| Differences in debt restructuring coefficients                                                           | -                         | -                                    |                            |                           |                    |                                    |                   |                     |                    |                    |
| Post-default (Fixed regime minus Floating regime)                                                        | 0.421                     | 0.103                                | -2.096                     | -2.577                    | -3.056             | -1.381                             | -0.143            | 2.914               | 8.179              | 11.330             |
|                                                                                                          | (1.36)                    | (1.55)                               | (2.61)                     | (2.84)                    | (2.64)             | (3.75)                             | (6.09)            | (6.52)              | (7.54)             | (8.14)             |
| Weakly preemptive (Fixed regime minus Floating regime)                                                   | 1.167                     | 0.356                                | 0.097                      | -1.790                    | -0.753             | -0.733                             | -0.537            | -1.611              | -1.683             | -5.221**           |
| ,, , , , , , , , , , , , , , , , , , , ,                                                                 | (0.96)                    | (1.17)                               | (1.86)                     | (1.89)                    | (3.22)             | (3.91)                             | (4.83)            | (4.63)              | (3.74)             | (2.46)             |
| Strictly preemptive (Fixed regime minus Floating regime)                                                 | -0.455                    | -0.661                               | -1.039                     | -3.895                    | -7.842***          | -9.176**                           | 4.764             | -1.222              | -1.858             | 2.258              |
|                                                                                                          | (0.70)                    | (1.68)                               | (1.84)                     | (2.51)                    | (2.88)             | (4.06)                             | (3.43)            | (4.94)              | (4.34)             | (6.42)             |
| Dep. var. is 100 times the cumulati                                                                      | h = 0                     | $\frac{n \text{ the export}}{h = 1}$ | value from $h = 2$         | year t - 1 to $h = 3$     | y = x + h<br>h = 4 | $\frac{\text{scaled by r}}{h = 5}$ |                   | year t - 1<br>h = 7 | h = 8              | h = 9              |
| Post-default, Floating regime                                                                            | -2.249                    | -1.367                               | -1.162                     | -1.519                    | -1.635             | -5.206                             | h = 6 -10.900     | -16.830             | -24.140            | -28.600            |
| Post-default, Ploating regime                                                                            |                           |                                      |                            |                           |                    |                                    |                   |                     |                    |                    |
| Don't defeute Timed assisses                                                                             | (2.04)                    | (2.33)                               | (1.86)                     | (2.03)                    | (2.27)             | (5.00)<br>-4.799**                 | (9.82)            | (15.08)             | (17.81)            | (17.72)            |
| Post-default, Fixed regime                                                                               | -2.831**<br>(1.33)        | -2.306**<br>(0.88)                   | -3.468***<br>(0.92)        | 4.643*** (1.60)           | -2.796*<br>(1.63)  | (2.12)                             | -5.455*<br>(2.92) | -5.553*<br>(2.89)   | -5.824**<br>(2.39) | -4.661**<br>(1.96) |
|                                                                                                          |                           | . ,                                  |                            |                           | . ,                |                                    |                   |                     |                    |                    |
| Weakly preemptive, Floating regime                                                                       | -3.199**                  | -5.210**                             | -5.714***                  | -6.211***                 | -6.221***          | -8.171**                           | -9.334**          | -6.816*             | -6.057             | -2.961             |
|                                                                                                          | (1.42)                    | (2.03)                               | (1.91)                     | (2.28)                    | (2.21)             | (3.71)                             | (4.11)            | (3.84)              | (4.14)             | (4.53)             |
| Weakly preemptive, Fixed regime                                                                          |                           | -2.154**                             | -3.028***                  |                           | 4.527***           | -6.364***                          | -7.059***         | -6.599***           | -5.869***          | -4.092**           |
|                                                                                                          | (0.83)                    | (0.99)                               | (1.03)                     | (1.05)                    | (1.05)             | (1.50)                             | (1.85)            | (1.77)              | (1.55)             | (1.50)             |
| Strictly preemptive, Floating regime                                                                     | -0.358                    | -0.454                               | -1.238                     | -0.237                    | -2.220             | -1.444                             | -2.514*           | -2.690              | -1.904             | -2.879             |
|                                                                                                          | (0.98)                    | (1.13)                               | (1.24)                     | (1.73)                    | (1.82)             | (1.52)                             | (1.32)            | (1.69)              | (1.98)             | (2.95)             |
| Strictly preemptive, Fixed regime                                                                        | -1.819                    | -3.987**                             | -4.247*                    | -5.301**                  | -5.861**           | 4.710                              | -4.766            | -6.160*             | -5.114             | 0.355              |
|                                                                                                          | (1.14)                    | (1.67)                               | (2.22)                     | (2.33)                    | (2.63)             | (2.95)                             | (3.46)            | (3.58)              | (3.33)             | (1.88)             |
|                                                                                                          |                           |                                      |                            | apita at h = -            |                    |                                    |                   |                     |                    |                    |
| Control variables                                                                                        |                           |                                      |                            | 1, -2), % cha             | ng e in investi    | ment(h = -1)                       | , -2), % chan     | ge in the real      | ex change rat      | e(h = -1, -1)      |
| R-squared                                                                                                | 2), and cour<br>0.118     | ntry fixed effe<br>0.16              | 0.187                      | 0.217                     | 0.214              | 0.221                              | 0.248             | 0.271               | 0.311              | 0.376              |
| Number of countries                                                                                      | 47                        | 47                                   | 46                         | 46                        | 45                 | 44                                 | 0.248<br>44       | 44                  | 44                 | 43                 |
| Observations                                                                                             | 1,178                     | 1,134                                | 1,088                      | 1,043                     | 998                | 953                                | 909               | 865                 | 821                | 777                |
| Differences in debt restructuring coefficients                                                           | 1,170                     | 1,124                                | 1,000                      | 1,0-13                    | 220                | 222                                | 303               | 003                 | 021                | ,,,                |
|                                                                                                          |                           | 1 101                                | -2.399                     | -3.245                    | -1.247             | 0.152                              | 5.179             | 11.080              | 18.200             | 24.210             |
|                                                                                                          | -0.214                    |                                      |                            | -5.245                    | -1.24/             | 0.132                              | 2.179             | 11.000              | 10.200             |                    |
| Post-default (Fixed regime minus Floating regime)                                                        | -0.814                    | -1.121                               |                            |                           | (2.68)             | (4.05)                             | (0.16)            | (13.08)             | (16.55)            | (16.83)            |
| Post-default (Fixed regime minus Floating regime)                                                        | (1.81)                    | (1.82)                               | (2.05)                     | (2.68)                    | (2.68)             | (4.95)                             | (9.16)            | (13.98)             | (16.55)            |                    |
|                                                                                                          | (1.81)<br>1.161           | (1.82)<br>3.442*                     | (2.05)<br>3.021*           | (2.68)<br>2.315           | 2.013              | 2.624                              | 3.140             | 0.892               | 1.063              | (16.83)<br>0.016   |
| Post-default (Fixed regime minus Floating regime) Weakly preemptive (Fixed regime minus Floating regime) | (1.81)<br>1.161<br>(1.27) | (1.82)<br>3.442*<br>(1.73)           | (2.05)<br>3.021*<br>(1.70) | (2.68)<br>2.315<br>(2.00) | 2.013<br>(2.01)    | 2.624<br>(3.59)                    | 3.140<br>(3.76)   | 0.892<br>(3.40)     | 1.063<br>(3.90)    | 0.016<br>(4.66)    |
| Post-default (Fixed regime minus Floating regime)                                                        | (1.81)<br>1.161           | (1.82)<br>3.442*                     | (2.05)<br>3.021*           | (2.68)<br>2.315           | 2.013              | 2.624                              | 3.140             | 0.892               | 1.063              | 0.016              |

Notes: h indicates years after a debt restructuring. Robust standard errors, clustered at country-level, are in parentheses. Sample countries are restricted to countries that have experienced at least one debt restructuring. Sample period is from 1970 to 2007 with some years missing for some countries. See the main text for the data sources. Countries are classified to floating and fixed exchange rate regimes based on Ilzetzki, Reinhart and Rogoff (2015). Countries with "De factor peg," "Crawling peg," "Moving band," and "Managed floating" are classified as countries with fixed exchange rate regimes. \*\*\*, \*\* and \* indicate that corresponding coefficients are statistically significant at 1% level, 5% level, and 10% level, respectively.

**Panel B: Commodity Exporters** 

(1) Imports

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            | (1)                                                                                                                 | Impor                                                                                       |                                                                                                                   |                                                                                          |                                                                                        | Lann                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Dep. var. is 100 times the cumulat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | h = 0                                                                                                                                      | h = 1                                                                                                               | $\frac{\text{t value fron}}{h=2}$                                                           | $\frac{1 \text{ year } t - 1}{h = 3}$                                                                             | _                                                                                        |                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h _ 0                                                                                                          | h = 9                                                                                                      |
| Post-default, Non-commodity exporters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                            | -4.543***                                                                                                           | -6.598***                                                                                   | -6.550***                                                                                                         | h = 4 $-6.436***$                                                                        | h = 5 $-6.406***$                                                                      | h = 6 -7.195***                                                                                        | h = 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h = 8<br>-4.964*                                                                                               | -5.595**                                                                                                   |
| r ost-derault, ivon-commodity exporters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.53)                                                                                                                                     | (0.71)                                                                                                              | (1.06)                                                                                      | (1.12)                                                                                                            | (1.12)                                                                                   | (1.44)                                                                                 | (2.01)                                                                                                 | (2.19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2.85)                                                                                                         | (2.69)                                                                                                     |
| Post-default, Commodity exporters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                            | -3.517**                                                                                                            | -4.613**                                                                                    | -4.376***                                                                                                         |                                                                                          | -5.365**                                                                               | -3.774                                                                                                 | -6.163*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -6.172***                                                                                                      | -6.768***                                                                                                  |
| 1 ost-uclauit, Commounty exporters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (2.00)                                                                                                                                     | (1.32)                                                                                                              | (2.16)                                                                                      | (1.11)                                                                                                            | (1.80)                                                                                   | (2.27)                                                                                 | (2.29)                                                                                                 | (3.60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2.27)                                                                                                         | (1.91)                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                                                                     |                                                                                             |                                                                                                                   |                                                                                          |                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                            |
| Weakly preemptive, Non-commodity exporters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.107***                                                                                                                                  | -2.736***                                                                                                           | -3.606***                                                                                   | -4.690***                                                                                                         | -5.899***                                                                                | -5.557***                                                                              | -4.792***                                                                                              | -3.331*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2.259                                                                                                         | -0.390                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.45)                                                                                                                                     | (0.71)                                                                                                              | (0.81)                                                                                      | (0.98)                                                                                                            | (1.41)                                                                                   | (1.40)                                                                                 | (1.63)                                                                                                 | (1.88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.56)                                                                                                         | (1.63)                                                                                                     |
| Weakly preemptive, Commodity exporters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                            | -2.023***                                                                                                           |                                                                                             | -4.303***                                                                                                         |                                                                                          | -4.396***                                                                              | -5.255***                                                                                              | -5.603***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -6.563***                                                                                                      | -6.439**                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.19)                                                                                                                                     | (0.53)                                                                                                              | (0.63)                                                                                      | (1.00)                                                                                                            | (1.98)                                                                                   | (1.33)                                                                                 | (1.74)                                                                                                 | (1.57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.18)                                                                                                         | (2.99)                                                                                                     |
| Strictly preemptive, Non-commodity exporters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.010***                                                                                                                                  | -2.211**                                                                                                            | -2.137**                                                                                    | -0.829                                                                                                            | -1.558                                                                                   | -0.026                                                                                 | -0.750                                                                                                 | 0.725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.969                                                                                                          | 1.845                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.46)                                                                                                                                     | (0.90)                                                                                                              | (1.02)                                                                                      | (1.57)                                                                                                            | (2.07)                                                                                   | (2.34)                                                                                 | (2.07)                                                                                                 | (2.58)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2.35)                                                                                                         | (3.23)                                                                                                     |
| Strictly preemptive, Commodity exporters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.047                                                                                                                                      | 3.737***                                                                                                            | 4.757***                                                                                    | 2.760**                                                                                                           | -1.234                                                                                   | -2.950***                                                                              | -3.682***                                                                                              | -1.527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.925                                                                                                          | 0.655                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.35)                                                                                                                                     | (0.65)                                                                                                              | (0.80)                                                                                      | (1.10)                                                                                                            | (1.13)                                                                                   | (0.97)                                                                                 | (1.00)                                                                                                 | (1.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.46)                                                                                                         | (1.24)                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                                                                     |                                                                                             |                                                                                                                   | 1, the depend                                                                            |                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                            |
| Control variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                            | import price<br>try fixed effe                                                                                      |                                                                                             | -1, -2), % cha                                                                                                    | ange in invest                                                                           | ment ( $h = -1$                                                                        | , -2), % chan                                                                                          | ge in the real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | exchange rat                                                                                                   | te $(h = -1, -$                                                                                            |
| R-squared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                            | 0.124                                                                                                               | 0.174                                                                                       | 0.188                                                                                                             | 0.206                                                                                    | 0.222                                                                                  | 0.253                                                                                                  | 0.325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.383                                                                                                          | 0.414                                                                                                      |
| Number of countries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47                                                                                                                                         | 47                                                                                                                  | 46                                                                                          | 46                                                                                                                | 45                                                                                       | 44                                                                                     | 44                                                                                                     | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44                                                                                                             | 43                                                                                                         |
| Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,178                                                                                                                                      | 1,134                                                                                                               | 1,088                                                                                       | 1,043                                                                                                             | 998                                                                                      | 953                                                                                    | 909                                                                                                    | 865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 821                                                                                                            | 777                                                                                                        |
| Differences in debt restructuring coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                            |                                                                                                                     |                                                                                             |                                                                                                                   |                                                                                          |                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                            |
| Post-default (Commodity minus Non-commodity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                            | 1.027                                                                                                               | 1.985                                                                                       | 2.174                                                                                                             | 1.492                                                                                    | 1.041                                                                                  | 3.421                                                                                                  | 1.242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.207                                                                                                         | -1.173                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2.08)                                                                                                                                     | (1.49)                                                                                                              | (2.39)                                                                                      | (1.56)                                                                                                            | (1.95)                                                                                   | (2.65)                                                                                 | (2.93)                                                                                                 | (4.26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3.05)                                                                                                         | (3.26)                                                                                                     |
| Weakly preemptive (Commodity minus Non-commodity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                            | 0.714                                                                                                               | 1.655*                                                                                      | 0.387                                                                                                             | -0.222                                                                                   | 1.161                                                                                  | -0.463                                                                                                 | -2.272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -4.304**                                                                                                       | -6.049*                                                                                                    |
| Colindary Colonia Provide National Provide Pro | (0.51)                                                                                                                                     | (0.71)                                                                                                              | (0.85)                                                                                      | (1.20)                                                                                                            | (2.31)                                                                                   | (1.84)                                                                                 | (2.32)                                                                                                 | (2.44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.89)                                                                                                         | (3.35)                                                                                                     |
| Strictly preemptive (Commodity minus Non-commodity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.52)                                                                                                                                     | 5.948***<br>(1.05)                                                                                                  | 6.894***<br>(1.27)                                                                          | 3.590*<br>(1.82)                                                                                                  | 0.324<br>(2.25)                                                                          | -2.924<br>(2.52)                                                                       | -2.932<br>(2.15)                                                                                       | -2.252<br>(2.84)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.044<br>(3.07)                                                                                               | -1.191<br>(3.69)                                                                                           |
| Dep. var. is 100 times the cumulat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ive change                                                                                                                                 | in the expor                                                                                                        | t value fron                                                                                | n year <i>t</i> - 1 t                                                                                             | to year $t + h$                                                                          | scaled by                                                                              | real GDP at                                                                                            | year t - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h = 0                                                                                                                                      | h = 1                                                                                                               | h = 2                                                                                       | h = 3                                                                                                             | h = 4                                                                                    | h = 5                                                                                  | h = 6                                                                                                  | h = 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h = 8                                                                                                          | h = 9                                                                                                      |
| Post-default, Non-commodity exporters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                            | -2.159*                                                                                                             | -3.115***                                                                                   | -4.191***                                                                                                         | -2.415                                                                                   | -5.436**                                                                               | -7.490*                                                                                                | -8.707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10.540                                                                                                        | -9.620                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1.41)                                                                                                                                     | (1.07)                                                                                                              | (0.89)                                                                                      | (1.48)                                                                                                            | (1.62)                                                                                   | (2.52)                                                                                 | (4.40)                                                                                                 | (5.91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (6.59)                                                                                                         | (6.27)                                                                                                     |
| Post-default, Commodity exporters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.944                                                                                                                                     | -2.615                                                                                                              | -2.208                                                                                      | -2.713                                                                                                            | -3.760**                                                                                 | -2.896                                                                                 | -3.265                                                                                                 | -4.917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -5.062                                                                                                         | -5.090**                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1.80)                                                                                                                                     | (2.24)                                                                                                              | (1.66)                                                                                      | (1.68)                                                                                                            | (1.85)                                                                                   | (2.08)                                                                                 | (2.89)                                                                                                 | (3.08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3.28)                                                                                                         | (1.96)                                                                                                     |
| Weakly preemptive, Non-commodity exporters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.501**                                                                                                                                   | -2.926**                                                                                                            | -3.868***                                                                                   | -4.992***                                                                                                         | -5.047***                                                                                | -6.891***                                                                              | -7.861***                                                                                              | -6.895***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -5.902***                                                                                                      | -3.798**                                                                                                   |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.99)                                                                                                                                     | (1.21)                                                                                                              | (1.20)                                                                                      | (1.23)                                                                                                            | (1.22)                                                                                   | (1.57)                                                                                 | (2.00)                                                                                                 | (2.03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.92)                                                                                                         | (1.83)                                                                                                     |
| Weakly preemptive, Commodity exporters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                            | 0.129                                                                                                               | -0.375                                                                                      | -0.936                                                                                                            |                                                                                          | -1.607***                                                                              | -1.310                                                                                                 | -1.696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.770                                                                                                         | 0.784                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.42)                                                                                                                                     | (0.67)                                                                                                              | (0.55)                                                                                      | (0.67)                                                                                                            | (0.55)                                                                                   | (0.58)                                                                                 | (0.92)                                                                                                 | (1.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.11)                                                                                                         | (1.48)                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                                                                     |                                                                                             |                                                                                                                   |                                                                                          |                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                                                                     |                                                                                             |                                                                                                                   |                                                                                          |                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                            |
| Strictly preemptive, Non-commodity exporters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.535*                                                                                                                                    | -2.648*                                                                                                             | -2.937*                                                                                     | -3.220                                                                                                            | -4.070*                                                                                  | -3.355                                                                                 | -4.356                                                                                                 | -5.010*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -4.291                                                                                                         | -1.453                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.86)                                                                                                                                     | (1.46)                                                                                                              | (1.73)                                                                                      | (2.06)                                                                                                            | (2.11)                                                                                   | (2.19)                                                                                 | (2.61)                                                                                                 | (2.93)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -4.291<br>(2.88)                                                                                               | (1.95)                                                                                                     |
| Strictly preemptive, Non-commodity exporters  Strictly preemptive, Commodity exporters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.86)                                                                                                                                     |                                                                                                                     |                                                                                             |                                                                                                                   |                                                                                          |                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                            |
| Strictly preemptive, Commodity exporters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.86)<br>3.175***<br>(0.57)                                                                                                               | (1.46)<br>0.808<br>(0.81)                                                                                           | (1.73)<br>-2.377**<br>(1.10)                                                                | (2.06)<br>-0.932<br>(1.43)                                                                                        | (2.11)<br>-4.145**<br>(1.56)                                                             | (2.19)<br>-2.391<br>(1.85)                                                             | (2.61)<br>-0.298<br>(2.11)                                                                             | (2.93)<br>-3.670*<br>(1.92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2.88)<br>-0.966<br>(2.18)                                                                                     | (1.95)<br>1.932<br>(2.82)                                                                                  |
| Strictly preemptive, Commodity exporters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.86)<br>3.175***<br>(0.57)<br>Cyclical con                                                                                               | (1.46)<br>0.808<br>(0.81)<br>ponent of log                                                                          | (1.73)<br>-2.377**<br>(1.10)<br>g GDP per ca                                                | (2.06)<br>-0.932<br>(1.43)<br>upita at $h = -1$                                                                   | (2.11)<br>-4.145**<br>(1.56)<br>1, the dependent                                         | (2.19)<br>-2.391<br>(1.85)<br>ent variable (                                           | (2.61) $-0.298$ $(2.11)$ $h = -1, -2), 0$                                                              | (2.93)<br>-3.670*<br>(1.92)<br>openness (h =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2.88)<br>-0.966<br>(2.18)<br>= -1, -2), pop                                                                   | (1.95)<br>1.932<br>(2.82)<br>ulation (h                                                                    |
| Strictly preemptive, Commodity exporters  Control variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.86)<br>3.175***<br>(0.57)<br>Cyclical con<br>= -1, -2), the                                                                             | (1.46)<br>0.808<br>(0.81)<br>ponent of log                                                                          | (1.73)<br>-2.377**<br>(1.10)<br>g GDP per ca<br>index (h = -                                | (2.06)<br>-0.932<br>(1.43)<br>upita at $h = -1$                                                                   | (2.11)<br>-4.145**<br>(1.56)<br>1, the dependent                                         | (2.19)<br>-2.391<br>(1.85)<br>ent variable (                                           | (2.61) $-0.298$ $(2.11)$ $h = -1, -2), 0$                                                              | (2.93)<br>-3.670*<br>(1.92)<br>openness (h =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2.88)<br>-0.966<br>(2.18)<br>= -1, -2), pop                                                                   | (1.95)<br>1.932<br>(2.82)<br>ulation (h                                                                    |
| Strictly preemptive, Commodity exporters  Control variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.86)<br>3.175***<br>(0.57)<br>Cyclical con<br>= -1, -2), the                                                                             | (1.46)<br>0.808<br>(0.81)<br>aponent of log<br>export price                                                         | (1.73)<br>-2.377**<br>(1.10)<br>g GDP per ca<br>index (h = -                                | (2.06)<br>-0.932<br>(1.43)<br>upita at $h = -1$                                                                   | (2.11)<br>-4.145**<br>(1.56)<br>1, the dependent                                         | (2.19)<br>-2.391<br>(1.85)<br>ent variable (                                           | (2.61) $-0.298$ $(2.11)$ $h = -1, -2), 0$                                                              | (2.93)<br>-3.670*<br>(1.92)<br>openness (h =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2.88)<br>-0.966<br>(2.18)<br>= -1, -2), pop                                                                   | (1.95)<br>1.932<br>(2.82)<br>ulation (h                                                                    |
| Strictly preemptive, Commodity exporters  Control variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.86)<br>3.175***<br>(0.57)<br>Cyclical con<br>= -1, -2), the<br>2), and coun                                                             | (1.46)<br>0.808<br>(0.81)<br>ponent of log<br>export price<br>try fixed effective                                   | (1.73) -2.377** (1.10) g GDP per ca index (h = - cts                                        | (2.06)<br>-0.932<br>(1.43)<br>spita at $h = -1$<br>1, -2), % char                                                 | (2.11) -4.145** (1.56) 1, the dependinge in investr                                      | (2.19) -2.391 (1.85) ent variable ( ment (h = -1,                                      | (2.61)<br>-0.298<br>(2.11)<br>h = -1, -2), or<br>-2), % change                                         | (2.93)<br>-3.670*<br>(1.92)<br>openness (h = e in the real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (2.88)<br>-0.966<br>(2.18)<br>= -1, -2), pop<br>exchange rate                                                  | (1.95)<br>1.932<br>(2.82)<br>relation (h                                                                   |
| Strictly preemptive, Commodity exporters  Control variables  R-squared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.86)<br>3.175***<br>(0.57)<br>Cyclical con<br>= -1, -2), the<br>2), and coun<br>0.118                                                    | (1.46)<br>0.808<br>(0.81)<br>apponent of log<br>export price<br>try fixed effect<br>0.16                            | (1.73) $-2.377**$ (1.10) g GDP per calcidex (h = -cts) $0.187$                              | (2.06)<br>-0.932<br>(1.43)<br>apita at h = -1<br>1, -2), % chair                                                  | (2.11) -4.145** (1.56) 1, the dependinge in investr                                      | (2.19) -2.391 (1.85) ent variable ( ment (h = -1,                                      | (2.61)<br>-0.298<br>(2.11)<br>h = -1, -2), 6<br>-2), % change<br>0.248                                 | (2.93) -3.670* (1.92) -3.670* (1.92) -3.670* (1.92) -4.670* (1.92) -5.670* (1.92) -6.70* (1.92) -6.70* (1.92) -7.70* (1.92) -7.70* (1.92) -7.70* (1.92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2.88)<br>-0.966<br>(2.18)<br>= -1, -2), pop<br>exchange rate                                                  | (1.95)<br>1.932<br>(2.82)<br>vulation ( $h$<br>e ( $h$ = -1, -                                             |
| Strictly preemptive, Commodity exporters  Control variables  R-squared Number of countries Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.86) 3.175*** (0.57) Cyclical con = -1, -2), the 2), and coun 0.118 47                                                                   | (1.46) 0.808 (0.81) exponent of log export price try fixed effect 0.16 47                                           | (1.73) -2.377** (1.10) g GDP per caindex (h = -cts) 0.187 46                                | (2.06) -0.932 (1.43) upita at h = -1, -2), % characteristics 0.217 46                                             | (2.11) -4.145** (1.56) 1, the dependinge in investr  0.214 45                            | (2.19) -2.391 (1.85) ent variable ( ment $(h = -1, \frac{0.222}{44})$                  | (2.61)<br>-0.298<br>(2.11)<br>h = -1, -2), c<br>-2), % change<br>0.248<br>44                           | (2.93) -3.670* (1.92) expenses (h = expense in the real  0.268 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2.88) -0.966 (2.18) =-1, -2), pop exchange rate  0.302 44                                                     | (1.95)<br>1.932<br>(2.82)<br>Fullation ( $h$<br>e ( $h$ = -1, -                                            |
| Strictly preemptive, Commodity exporters  Control variables  R-squared Number of countries Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.86) 3.175*** (0.57) Cyclical con = -1, -2), the 2), and coun 0.118 47                                                                   | (1.46) 0.808 (0.81) exponent of log export price try fixed effect 0.16 47                                           | (1.73) -2.377** (1.10) g GDP per caindex (h = -cts) 0.187 46                                | (2.06) -0.932 (1.43) upita at h = -1, -2), % characteristics 0.217 46                                             | (2.11) -4.145** (1.56) 1, the dependinge in investr  0.214 45                            | (2.19) -2.391 (1.85) ent variable ( ment $(h = -1, \frac{0.222}{44})$                  | (2.61)<br>-0.298<br>(2.11)<br>h = -1, -2), c<br>-2), % change<br>0.248<br>44                           | (2.93) -3.670* (1.92) expenses (h = expense in the real  0.268 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2.88) -0.966 (2.18) =-1, -2), pop exchange rate  0.302 44                                                     | (1.95)<br>1.932<br>(2.82)<br>Fullation ( $h$<br>e ( $h$ = -1, -                                            |
| Strictly preemptive, Commodity exporters  Control variables  R-squared Number of countries Observations  Differences in debt restructuring coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.86) 3.175*** (0.57) Cyclical con = -1, -2), the 2), and coun 0.118 47 1,178                                                             | (1.46)<br>0.808<br>(0.81)<br>poponent of log<br>export price<br>try fixed effer<br>0.16<br>47<br>1,134              | (1.73) -2.377** (1.10) g GDP per caindex (h = -cts) 0.187 46 1,088                          | (2.06) $-0.932$ (1.43) apita at $h = -1$ 1, -2), % chan  0.217 46 1,043                                           | (2.11) -4.145** (1.56) 1, the dependinge in investr  0.214 45 998                        | (2.19) -2.391 (1.85) ent variable ( nent $(h = -1, 0.222)$ 44 953                      | (2.61)<br>-0.298<br>(2.11)<br>h = -1, -2), c<br>-2), % chang<br>0.248<br>44<br>909                     | (2.93) -3.670* (1.92) -3.670* (1.92) -3.670* (1.92) -3.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) -4.670* (1.92) | (2.88)<br>-0.966<br>(2.18)<br>= -1, -2), pop<br>exchange rate<br>0.302<br>44<br>821                            | (1.95)<br>1.932<br>(2.82)<br>culation (h<br>e (h = -1, -1)<br>0.361<br>43<br>777                           |
| Strictly preemptive, Commodity exporters  Control variables  R-squared Number of countries Observations Differences in debt restructuring coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.86) 3.175*** (0.57) Cyclical con = -1, -2), the 2), and coun 0.118 47 1,178                                                             | (1.46)<br>0.808<br>(0.81)<br>reponent of log<br>export price<br>try fixed effect<br>0.16<br>47<br>1,134             | (1.73) -2.377** (1.10) g GDP per ca index (h = -cts) 0.187 46 1,088                         | (2.06) $-0.932$ (1.43) upita at $h = -1$ 1, -2), % chan  0.217 46 1,043                                           | (2.11) -4.145** (1.56) 1, the dependinge in investr  0.214 45 998                        | (2.19) -2.391 (1.85) ent variable ( nent (h = -1,  0.222 44 953  2.540                 | (2.61)<br>-0.298<br>(2.11)<br>h = -1, -2), c<br>-2), % chang<br>0.248<br>44<br>909                     | (2.93) -3.670* (1.92) -3.670* (1.92) -3.670* (1.92) -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3.670* -3 | (2.88)<br>-0.966<br>(2.18)<br>= -1, -2), pop<br>exchange rate<br>0.302<br>44<br>821<br>5.477                   | (1.95)<br>1.932<br>(2.82)<br>Pulation ( $h$<br>e ( $h$ = -1, -<br>0.361<br>43<br>777                       |
| Strictly preemptive, Commodity exporters  Control variables  R-squared Number of countries Observations  Differences in debt restructuring coefficients Post-default (Commodity minus Non-commodity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.86) 3.175*** (0.57)  Cyclical con = -1, -2), the 2), and coun  0.118 47 1,178  1.060 (1.73)                                             | (1.46) 0.808 (0.81) exponent of log export price try fixed effect 0.16 47 1,134 -0.456 (1.81)                       | (1.73) -2.377** (1.10) g GDP per cr index (h = - cts  0.187 46 1,088  0.907 (1.77)          | (2.06)<br>-0.932<br>(1.43)<br>upita at h = -1, -2), % char<br>0.217<br>46<br>1,043<br>1.478<br>(2.11)             | (2.11) -4.145** (1.56) 1, the dependinge in investr  0.214 45 998 -1.345 (2.20)          | (2.19) -2.391 (1.85) ent variable ( nent $(h = -1, $ 0.222 44 953  2.540 (2.48)        | (2.61)<br>-0.298<br>(2.11)<br>h = -1, -2), 6<br>-2), % change<br>0.248<br>44<br>909<br>4.225<br>(3.80) | (2.93) -3.670* (1.92) penness (h = e in the real  0.268 44 865  3.790 (4.84)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2.88) -0.966 (2.18) =-1, -2), pop exchange rate  0.302 44 821  5.477 (5.46)                                   | (1.95)<br>1.932<br>(2.82)<br>ulation (h<br>e (h = -1, -<br>0.361<br>43<br>777<br>4.530<br>(5.79)           |
| Strictly preemptive, Commodity exporters  Control variables  R-squared Number of countries Observations  Differences in debt restructuring coefficients Post-default (Commodity minus Non-commodity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.86)<br>3.175***<br>(0.57)<br>Cyclical con<br>=-1,-2), the<br>2), and coun<br>0.118<br>47<br>1,178<br>1.060<br>(1.73)<br>1.575<br>(1.00) | (1.46)<br>0.808<br>(0.81)<br>export price<br>try fixed effer<br>0.16<br>47<br>1,134<br>-0.456<br>(1.81)<br>3.054*** | (1.73) -2.377** (1.10) g GDP per cc index (h = - cts  0.187 46 1,088  0.907 (1.77) 3.493*** | (2.06)<br>-0.932<br>(1.43)<br>upita at h = -1, -2), % chan<br>0.217<br>46<br>1.043<br>1.478<br>(2.11)<br>4.055*** | (2.11) -4.145** (1.56) 1, the dependinge in investr  0.214 45 998  -1.345 (2.20) 2.725** | (2.19) -2.391 (1.85) ent variable ( nent (h = -1,  0.222 44 953  2.540 (2.48) 5.283*** | (2.61)<br>-0.298<br>(2.11)<br>h = -1, -2), chang<br>0.248<br>44<br>909<br>4.225<br>(3.80)<br>6.550***  | (2.93) -3.670* (1.92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2.88)<br>-0.966<br>(2.18)<br>=-1, -2), pop<br>exchange rate<br>0.302<br>44<br>821<br>5.477<br>(5.46)<br>4.132 | (1.95)<br>1.932<br>(2.82)<br>whation (h<br>2 (h = -1, -<br>0.361<br>43<br>777<br>4.530<br>(5.79)<br>4.583* |

Notes: h indicates years after a debt restructuring. Robust standard errors, clustered at country-level, are in parentheses. Sample countries are restricted to countries that have experienced at least one debt restructuring. Sample period is from 1970 to 2007 with some missing period for some countries. See the main text for the data sources. Countries are classified to commodity exporters and non-commodity exporters based on the data on the IMF World Economic Outlook (IMF, 2012). \*\*\*, \*\* and \* indicate that corresponding coefficients are statistically significant at 1% level, 5% level, and 10% level, respectively.

**Panel C: IMF-supported Programs** 

(1) Imports Dep. var. is 100 times the cumulative change in the import value from year t - 1 to year t + h scaled by real GDP at year t - 1

| Dep. var. is 100 times the cumula                                | ative chang      | ge in the imp           | ort value fr | om year t -             | <ul> <li>1 to year t</li> </ul> | + h scaled          | by real GD          | P at year $t$ - | - 1             |              |
|------------------------------------------------------------------|------------------|-------------------------|--------------|-------------------------|---------------------------------|---------------------|---------------------|-----------------|-----------------|--------------|
|                                                                  | h = 0            | h = 1                   | h = 2        | h = 3                   | h = 4                           | h = 5               | h = 6               | h = 7           | h = 8           | h = 9        |
| Post-default, with IMF-supported program                         | -3.847***        | -5.356***               | -7.341***    | -7.534***               | -7.003***                       | -7.647***           | -8.771***           | -9.152***       | -6.911**        | -7.474**     |
|                                                                  | (0.57)           | (0.75)                  | (1.09)       | (1.30)                  | (0.86)                          | (1.57)              | (1.83)              | (2.30)          | (2.91)          | (3.16)       |
| Post-default, without IMF-supported program                      | -2.723***        | -4.317***               | -6.657***    | -6.538***               | -6.316***                       | -5.804***           | -6.370***           | -6.955***       | -4.782***       | -6.194***    |
|                                                                  | (0.57)           | (0.78)                  | (1.33)       | (1.36)                  | (1.33)                          | (1.43)              | (1.60)              | (1.47)          | (1.72)          | (2.00)       |
|                                                                  | ` ′              | ` ′                     | ` ,          | ` ′                     | ` ′                             | ` ′                 | ` ,                 | ` ′             | ` ′             | ` ′          |
| Weekly preemptive, with IMF-supported program                    | -2.604***        | -3.126***               | -3.435***    | -4.836***               | -5.467***                       | -5.538***           | -5.447***           | -4.377***       | -3.524***       | -2.280       |
| weeling preemptive, with him supported program                   | (0.38)           | (0.39)                  | (0.56)       | (0.67)                  | (0.78)                          | (0.92)              | (0.92)              | (0.93)          | (1.11)          | (1.88)       |
| Weekly preemptive, without IMF-supported program                 | . ,              |                         |              |                         |                                 |                     | -4.604**            | -3.421          | -3.073*         | -1.426       |
| vectory preemptave, vanious in a supported program               | (0.44)           | (0.60)                  | (0.83)       | (0.87)                  | (1.52)                          | (1.59)              | (1.87)              | (2.09)          | (1.77)          | (1.46)       |
|                                                                  | (0.44)           | (0.00)                  | (0.03)       | (0.07)                  | (1.52)                          | (1.57)              | (1.07)              | (2.07)          | (1.//)          | (1.40)       |
| Strictly preemptive, with IMF-supported program                  | -2.537           | -3.106                  | -2.470       | -4.226                  | -7.272                          | -7.166**            | -6.802***           | -4.780**        | -0.882          | 3.098        |
| Strictly preemptive, with fivir-supported program                | (1.74)           | (4.76)                  | (4.90)       | (4.86)                  | (4.36)                          | (3.01)              | (2.22)              | (2.13)          | (0.84)          | (2.56)       |
| Strictly preemptive, without IMF-supported program               |                  | -1.039                  | -0.707       | 0.618                   | -0.006                          | 1.253               | 0.281               | 1.503           | 1.029           | 1.697        |
| strictly preemptive, without INF-supported program               |                  |                         |              |                         |                                 |                     |                     |                 |                 |              |
|                                                                  | (0.37)           | (0.69)<br>nponent of lo | (0.81)       | (1.09)                  | (1.41)                          | (1.82)              | (1.43)              | (2.17)          | (2.01)          | (2.81)       |
| Control variables                                                | •                |                         |              |                         |                                 |                     |                     |                 |                 |              |
|                                                                  |                  | try fixed effe          |              | -1, -2 <i>)</i> , 70 CH | ange in mives                   | sument (n = -       | 1, -2), 70 CHA      | nge m me rea    | ai excitatige i | ate (n = -1, |
| R-squared                                                        | 0.067            | 0.102                   | 0.156        | 0.172                   | 0.186                           | 0.199               | 0.22                | 0.275           | 0.331           | 0.365        |
| Number of countries                                              | 47               | 47                      | 46           | 46                      | 45                              | 44                  | 44                  | 44              | 44              | 44           |
| Observations                                                     | 1,206            | 1,160                   | 1,114        | 1,069                   | 1,023                           | 978                 | 934                 | 890             | 846             | 802          |
| Differences in debt restructuring coefficients                   | 1,200            | 1,100                   | 1,114        | 1,009                   | 1,023                           | 7/0                 | 734                 | 070             | 040             | 002          |
| Post-default (Without IMF minus with IMF)                        | 1 202            | 0.000                   | 1 112        | 1 270                   | 0.525                           | 1.502               | 2 602               | 2 /21           | 2.027           | 1.494        |
| Post-default (Without IMF minus with IMF)                        | 1.303            | 0.900                   | 1.112        | 1.278                   | 0.535                           | 1.592               | 2.683               | 2.431           | 2.037           |              |
| W. I                                                             | (0.92)           | (1.29)                  | (1.92)       | (2.07)                  | (1.95)                          | (2.36)              | (2.28)              | (2.26)          | (2.47)          | (2.93)       |
| Weekly preemptive (Without IMF minus with IMF)                   | 0.653            | -0.073                  | -0.496       | 0.016                   | -0.645                          | 0.457               | 1.048               | 1.203           | 0.600           | 0.975        |
|                                                                  | (0.46)           | (0.68)                  | (1.00)       | (0.96)                  | (1.58)                          | (1.78)              | (1.88)              | (2.06)          | (1.67)          | (1.54)       |
| Strictly preemptive (Without IMF minus with IMF)                 | 0.791            | 1.653                   | 1.314        | 4.700                   | 7.433                           | 8.941**             | 7.624***            | 6.730**         | 2.049           | -1.205       |
|                                                                  | (1.73)           | (4.79)                  | (4.96)       | (5.00)                  | (4.62)                          | (3.58)              | (2.60)              | (3.14)          | (2.48)          | (4.20)       |
|                                                                  |                  |                         |              |                         |                                 |                     |                     |                 |                 |              |
|                                                                  |                  | (                       | 2) Expo      | orts                    |                                 |                     |                     |                 |                 |              |
| Dep. var. is 100 times the cumul                                 | ative chang      |                         | <u> </u>     |                         | 1 to year t                     | + h scaled          | hy real GDI         | at vear t -     | 1               |              |
| Dep. var. is 100 times the cumur                                 | h = 0            | h = 1                   | h = 2        | h = 3                   | h = 4                           | h = 5               | h = 6               | h = 7           | h = 8           | h = 9        |
| Post-default, with IMF-supported program                         | -1.107           | -0.499                  | -1.913**     | -2.217**                | -1.428                          | -2.806              | -3.364              | -4.974          | -7.029          | -8.021       |
| Tost-default, with fivir-supported program                       |                  | (0.77)                  |              |                         |                                 |                     |                     |                 |                 | (6.02)       |
| Don't defined, with out DME annual days and                      | (1.16)           | -2.357***               | (0.83)       | (1.06)<br>-5.143***     | (2.34)                          | (2.94)<br>-6.537*** | (3.91)<br>-7.762*** | (4.89)          | (5.61)          | -8.174*      |
| Post-default, without IMF-supported program                      |                  |                         |              |                         |                                 |                     |                     | -8.323**        | -8.310**        |              |
|                                                                  | (1.37)           | (0.53)                  | (0.87)       | (1.38)                  | (0.86)                          | (2.14)              | (2.78)              | (3.50)          | (3.77)          | (4.27)       |
|                                                                  | 4.00             |                         |              |                         |                                 |                     | 4.0.40.1.1.1        |                 |                 |              |
| Weekly preemptive, with IMF-supported program                    |                  |                         | -2.070*      | -3.852***               |                                 |                     | -4.968***           | -4.882***       | -5.450***       | -2.549**     |
|                                                                  | (0.53)           | (0.86)                  | (1.11)       | (1.21)                  | (1.20)                          | (1.40)              | (1.48)              | (1.53)          | (1.36)          | (1.17)       |
| Weekly preemptive, without IMF-supported program                 |                  | -2.068***               | -3.423***    | -4.372***               | -3.993***                       | -5.392***           | -5.964***           | -4.864***       | -4.297***       | -4.130***    |
|                                                                  | (0.79)           | (0.59)                  | (0.81)       | (0.72)                  | (0.72)                          | (1.03)              | (1.17)              | (1.16)          | (1.20)          | (1.43)       |
|                                                                  |                  |                         |              |                         |                                 |                     |                     |                 |                 |              |
| Strictly preemptive, with IMF-supported program                  | -0.233           | -3.162                  | -4.069**     | -4.111*                 | -6.349***                       | -5.215***           | -2.930*             | -6.188***       | -3.915**        | 1.468        |
|                                                                  | (2.71)           | (3.11)                  | (1.53)       | (2.37)                  | (1.43)                          | (1.89)              | (1.64)              | (1.41)          | (1.85)          | (1.76)       |
| Strictly preemptive, without IMF-supported program               | -0.801           | -1.677                  | -2.298       | -2.382                  | -3.385*                         | -2.717              | -3.633              | -4.575*         | -3.643          | -1.380       |
|                                                                  | (0.91)           | (1.34)                  | (1.50)       | (1.96)                  | (1.89)                          | (1.84)              | (2.25)              | (2.49)          | (2.42)          | (1.52)       |
|                                                                  |                  | mponent of le           |              |                         |                                 |                     |                     |                 |                 |              |
| Control variables                                                | -                | -                       | -            | -                       | -                               |                     |                     | -               | -               | -            |
|                                                                  | 2), and cour     | ntry fixed eff          | ects         |                         |                                 |                     |                     |                 |                 |              |
| R-squared                                                        | 0.085            | 0.118                   | 0.164        | 0.191                   | 0.167                           | 0.176               | 0.21                | 0.229           | 0.253           | 0.283        |
| Number of countries                                              | 47               | 47                      | 46           | 46                      | 45                              | 44                  | 44                  | 44              | 44              | 44           |
| Observations                                                     | 1,206            | 1,160                   | 1,114        | 1,069                   | 1,023                           | 978                 | 934                 | 890             | 846             | 802          |
| Differences in debt restructuring coefficients                   |                  |                         |              |                         |                                 |                     |                     |                 |                 |              |
| Post-default (Without IMF minus with IMF)                        | -2.398           | -2.334**                | -1.974       | -3.684*                 | -3.019                          | -5.002              | -5.814              | -5.175          | -3.367          | -1.504       |
| - ser essent ( ser essent in | (2.34)           | (1.03)                  | (1.36)       | (1.97)                  | (2.33)                          | (3.72)              | (3.90)              | (4.09)          | (3.51)          | (3.74)       |
| Weekly preemptive (Without IMF minus with IMF)                   | 0.134            | -0.530                  | -1.627       | -0.589                  | 0.269                           | -1.111              | -1.091              | -0.018          | 1.218           | -1.562       |
| "Teckly preemptive ("Titilout livil" lillings with livil")       | (0.91)           | (0.78)                  |              | (0.94)                  |                                 | (1.60)              |                     |                 |                 |              |
| Strictly procentive (Without BAE minus with BAE)                 |                  |                         | (1.01)       |                         | (1.01)                          |                     | (1.64)              | (1.87)          | (1.71)          | (1.69)       |
| Strictly preemptive (Without IMF minus with IMF)                 | -0.967<br>(2.71) | 1.246                   | 1.793        | 1.598                   | 3.091                           | 2.499               | -1.007              | 1.651           | 0.047           | -3.108       |
|                                                                  |                  | (3.10)                  | (1.51)       | (2.76)                  | (2.06)                          | (2.24)              | (2.30)              | (2.79)          | (3.55)          | (2.81)       |

Notes: h indicates years after a debt restructuring. Robust standard errors, clustered at country-level, are in parentheses. Sample countries are restricted to countries that have experienced at least one debt restructuring. Sample period is from 1970 to 2007 with some missing period for some countries. See the main text for the data sources. Countries are classified to those with IMF-supported programs and without IMF-supported programs based on various IMF Staff Reports. \*\*\*, \*\* and \* indicate that corresponding coefficients are statistically significant at 1% level, 5% level, and 10% level, respectively.

Panel D: Paris Club Restructurings

(1) Imports

| Dep. var. is 100 times the cumulative cl                                                                                                                                                                                                                                     | nange in the                                                                                            | import valu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ue from yea                                                                                                                                                                                         | r <i>t</i> - 1 to ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ar t + h sca                                                                                   | led by real                                                                                  | GDP at yea                                                                              | r t - l                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                              | h = 0                                                                                                   | h = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h = 2                                                                                                                                                                                               | h = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h = 4                                                                                          | h = 5                                                                                        | h = 6                                                                                   | h = 7                                                                                          | h = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Post-default, with Paris Club                                                                                                                                                                                                                                                | -3.893***                                                                                               | -5.028***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -5.196***                                                                                                                                                                                           | -5.497***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5.712***                                                                                      | -7.669***                                                                                    | -9.249***                                                                               | -9.221***                                                                                      | -7.126***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -6.597**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                              | (0.89)                                                                                                  | (0.88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.64)                                                                                                                                                                                              | (1.37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.10)                                                                                         | (1.22)                                                                                       | (1.62)                                                                                  | (1.93)                                                                                         | (2.50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Post-default, without Paris Club                                                                                                                                                                                                                                             | -2.903***                                                                                               | -4.833***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -7.318***                                                                                                                                                                                           | -7.356***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -7.080***                                                                                      | -6.509***                                                                                    | -6.701***                                                                               | -7.449***                                                                                      | -5.441**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -6.806**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                              | (0.60)                                                                                                  | (0.81)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.36)                                                                                                                                                                                              | (1.30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.30)                                                                                         | (1.55)                                                                                       | (1.88)                                                                                  | (2.10)                                                                                         | (2.36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2.56)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Weekly preemptive, with Paris Club                                                                                                                                                                                                                                           | -2 020***                                                                                               | _3 327***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _3 2/15***                                                                                                                                                                                          | _// 5//1***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -5.651***                                                                                      | _5 155***                                                                                    | -5.398***                                                                               | -4.816***                                                                                      | -4.249***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.889*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| weekly preemptive, with I alis club                                                                                                                                                                                                                                          | (0.54)                                                                                                  | (0.37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.71)                                                                                                                                                                                              | (0.64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.14)                                                                                         | (0.96)                                                                                       | (1.14)                                                                                  | (1.26)                                                                                         | (1.43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Weekly preemptive, without Paris Club                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -5.892***                                                                                      |                                                                                              | -4.403**                                                                                |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| weekly preemptive, without Fairs Club                                                                                                                                                                                                                                        | (0.43)                                                                                                  | (0.60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.80)                                                                                                                                                                                              | (0.87)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.45)                                                                                         | (1.58)                                                                                       | (1.83)                                                                                  | -2.987<br>(2.06)                                                                               | -2.639<br>(1.68)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.685<br>(1.37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                              | (0110)                                                                                                  | (0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.00)                                                                                                                                                                                              | (0.0.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (-1.10)                                                                                        | (-100)                                                                                       | (2100)                                                                                  | (=100)                                                                                         | (-100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (===,)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Strictly preemptive, with Paris Club                                                                                                                                                                                                                                         |                                                                                                         | 0.0572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.622                                                                                                                                                                                               | 0.362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -6.019                                                                                         | -7.642                                                                                       | -4.975                                                                                  | -1.538                                                                                         | -1.743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                              | (1.05)                                                                                                  | (0.88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.49)                                                                                                                                                                                              | (2.71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (5.03)                                                                                         | (6.18)                                                                                       | (7.15)                                                                                  | (7.41)                                                                                         | (8.34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2.64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Strictly preemptive, without Paris Club                                                                                                                                                                                                                                      | -1.879***                                                                                               | -2.042**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.758                                                                                                                                                                                              | -0.389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.632                                                                                         | 0.949                                                                                        | -0.156                                                                                  | 0.947                                                                                          | 1.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                              | (0.47)                                                                                                  | (1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.07)                                                                                                                                                                                              | (1.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.82)                                                                                         | (2.05)                                                                                       | (1.69)                                                                                  | (2.31)                                                                                         | (1.95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2.64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Control variables                                                                                                                                                                                                                                                            |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1, the depen                                                                                  |                                                                                              |                                                                                         |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Control variables                                                                                                                                                                                                                                                            |                                                                                                         | try fixed effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     | -1, -2), 70 CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ange in inves                                                                                  | tilicit (n = -                                                                               | 1, -2), 70 CHai                                                                         | ilge ili tile rea                                                                              | ii excitatige i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ate (n = -1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| R-squared                                                                                                                                                                                                                                                                    | 0.066                                                                                                   | 0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.157                                                                                                                                                                                               | 0.172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.185                                                                                          | 0.198                                                                                        | 0.219                                                                                   | 0.274                                                                                          | 0.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Number of countries                                                                                                                                                                                                                                                          | 47                                                                                                      | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46                                                                                                                                                                                                  | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45                                                                                             | 44                                                                                           | 44                                                                                      | 44                                                                                             | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Observations                                                                                                                                                                                                                                                                 | 1,206                                                                                                   | 1,160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,114                                                                                                                                                                                               | 1,069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,023                                                                                          | 978                                                                                          | 934                                                                                     | 890                                                                                            | 846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Differences in debt restructuring coefficients                                                                                                                                                                                                                               |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |                                                                                              |                                                                                         |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Post-default (Without Paris Club minus with Paris Club)                                                                                                                                                                                                                      |                                                                                                         | 0.195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2.122                                                                                                                                                                                              | -1.859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.368                                                                                         | 1.161                                                                                        | 2.547                                                                                   | 1.772                                                                                          | 1.685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                              | (1.10)                                                                                                  | (1.30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2.39)                                                                                                                                                                                              | (2.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.91)                                                                                         | (2.05)                                                                                       | (2.02)                                                                                  | (2.30)                                                                                         | (2.17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2.47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Weekly preemptive (Without Paris Club minus with Paris Club)                                                                                                                                                                                                                 | -0.214                                                                                                  | 0.214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.717                                                                                                                                                                                              | -0.369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.241                                                                                         | -0.002                                                                                       | 0.994                                                                                   | 1.829                                                                                          | 1.610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.204*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                              | (0.66)                                                                                                  | (0.64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.05)                                                                                                                                                                                              | (0.97)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.67)                                                                                         | (1.75)                                                                                       | (1.88)                                                                                  | (2.08)                                                                                         | (1.77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.85)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Strictly preemptive (Without Paris Club minus with Paris Club)                                                                                                                                                                                                               | -0.034                                                                                                  | -2.100*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2.380                                                                                                                                                                                              | -0.751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.387                                                                                          | 8.592                                                                                        | 4.819                                                                                   | 2.485                                                                                          | 2.837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                              | (1.05)                                                                                                  | (1.23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.75)                                                                                                                                                                                              | (2.91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (5.32)                                                                                         | (6.50)                                                                                       | (7.36)                                                                                  | (7.79)                                                                                         | (8.59)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dep. var. is 100 times the cumulative cl                                                                                                                                                                                                                                     | nange in the $h = 0$                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{\text{cports}}{h = 2}$                                                                                                                                                                       | $\frac{r t - 1 \text{ to ye}}{h = 3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{\operatorname{ar} t + h \operatorname{sca}}{h = 4}$                                     | $\frac{\text{led by real}}{h = 5}$                                                           | GDP at yea $h = 6$                                                                      | $\frac{r t - 1}{h = 7}$                                                                        | h = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Post-default, with Paris Club                                                                                                                                                                                                                                                |                                                                                                         | 1.657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.623                                                                                                                                                                                               | 0.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.172                                                                                         | -4.418                                                                                       | -4.798                                                                                  | -6.373                                                                                         | -9.234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -9.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fost-default, with Fairs Club                                                                                                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |                                                                                              |                                                                                         |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dead of Code and the Class                                                                                                                                                                                                                                                   | (0.54)                                                                                                  | (2.28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2.26)                                                                                                                                                                                              | (2.70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (3.19)                                                                                         | (3.93)                                                                                       | (5.37)                                                                                  | (5.87)                                                                                         | (6.98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (7.55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Post-default, without Paris Club                                                                                                                                                                                                                                             | -2.556*<br>(1.31)                                                                                       | -2.934***<br>(0.85)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1.02)                                                                                                                                                                                              | (1.40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3.662***<br>(1.06)                                                                            | -5.767**<br>(2.19)                                                                           | -6.965**<br>(3.03)                                                                      | -8.040*<br>(4.17)                                                                              | -8.559*<br>(4.47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -8.375<br>(5.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                              | (1.51)                                                                                                  | (0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.02)                                                                                                                                                                                              | (1.40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.00)                                                                                         | (2.19)                                                                                       | (3.03)                                                                                  | (4.17)                                                                                         | (4.47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Weekly preemptive, with Paris Club                                                                                                                                                                                                                                           | -1.859***                                                                                               | -1.284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.460                                                                                                                                                                                              | -3.623***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.318***                                                                                      | -4.322**                                                                                     | -4.465***                                                                               | -4.633***                                                                                      | -5.267***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.359***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                              | (0.48)                                                                                                  | (0.95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.24)                                                                                                                                                                                              | (1.21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.23)                                                                                         | (1.63)                                                                                       | (1.59)                                                                                  | (1.58)                                                                                         | (1.40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Weekly preemptive, without Paris Club                                                                                                                                                                                                                                        | -1.911**                                                                                                | -2.250***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.767***                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.060***                                                                                      | -5.319***                                                                                    |                                                                                         | -4.934***                                                                                      | -4.379***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.560**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| • • • •                                                                                                                                                                                                                                                                      | (0.79)                                                                                                  | (0.63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.85)                                                                                                                                                                                              | (0.92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.88)                                                                                         | (1.13)                                                                                       | (1.26)                                                                                  | (1.23)                                                                                         | (1.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                              |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |                                                                                              |                                                                                         |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                              | 4 600                                                                                                   | 2 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 600                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                | 0.000                                                                                        | 44.050                                                                                  | 12.110                                                                                         | 12.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Strictly preemptive, with Paris Club                                                                                                                                                                                                                                         | -1.690                                                                                                  | -3.391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -4.639                                                                                                                                                                                              | -6.582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -6.623                                                                                         | -9.092                                                                                       | -11.270                                                                                 | -12.440                                                                                        | -13.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                              | (1.25)                                                                                                  | (2.71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3.76)                                                                                                                                                                                              | (4.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (7.59)                                                                                         | (9.35)                                                                                       | (12.14)                                                                                 | (15.03)                                                                                        | (16.35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.048<br>(1.43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Strictly preemptive, with Paris Club  Strictly preemptive, without Paris Club                                                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3.76)<br>-2.204*                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |                                                                                              |                                                                                         |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Strictly preemptive, without Paris Club                                                                                                                                                                                                                                      | (1.25)<br>-0.917<br>(0.95)                                                                              | (2.71)<br>-1.880<br>(1.33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3.76)<br>-2.204*<br>(1.19)                                                                                                                                                                         | (4.45)<br>-2.049<br>(1.62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (7.59)<br>-3.488**<br>(1.53)                                                                   | (9.35)<br>-2.531**<br>(1.25)                                                                 | (12.14)<br>-2.935**<br>(1.22)                                                           | (15.03)<br>-4.015***<br>(1.25)                                                                 | (16.35)<br>-2.751**<br>(1.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.048<br>(1.43)<br>-1.048<br>(1.43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Strictly preemptive, without Paris Club                                                                                                                                                                                                                                      | (1.25)<br>-0.917<br>(0.95)<br>Cyclical con                                                              | (2.71)<br>-1.880<br>(1.33)<br>apponent of lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (3.76)<br>-2.204*<br>(1.19)<br>g GDP per c                                                                                                                                                          | (4.45) $-2.049$ $(1.62)$ apita at $h = -6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (7.59)<br>-3.488**<br>(1.53)<br>-1, the depend                                                 | (9.35)<br>-2.531**<br>(1.25)<br>dent variable                                                | (12.14)<br>-2.935**<br>(1.22)<br>(h = -1, -2),                                          | (15.03)<br>-4.015***<br>(1.25)<br>openness (h                                                  | (16.35)<br>-2.751**<br>(1.05)<br>= -1, -2), po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.048<br>(1.43)<br>-1.048<br>(1.43)<br>opulation ( <i>I</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Strictly preemptive, without Paris Club  Control variables                                                                                                                                                                                                                   | (1.25)<br>-0.917<br>(0.95)<br>Cyclical con<br>= -1, -2), the                                            | (2.71)<br>-1.880<br>(1.33)<br>apponent of lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (3.76)<br>-2.204*<br>(1.19)<br>g GDP per coindex (h = -                                                                                                                                             | (4.45) $-2.049$ $(1.62)$ apita at $h = -6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (7.59)<br>-3.488**<br>(1.53)<br>-1, the depend                                                 | (9.35)<br>-2.531**<br>(1.25)<br>dent variable                                                | (12.14)<br>-2.935**<br>(1.22)<br>(h = -1, -2),                                          | (15.03)<br>-4.015***<br>(1.25)<br>openness (h                                                  | (16.35)<br>-2.751**<br>(1.05)<br>= -1, -2), po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.048<br>(1.43)<br>-1.048<br>(1.43)<br>opulation ( <i>I</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Strictly preemptive, without Paris Club  Control variables                                                                                                                                                                                                                   | (1.25)<br>-0.917<br>(0.95)<br>Cyclical con<br>= -1, -2), the<br>2), and coun                            | (2.71) -1.880 (1.33) exponent of lot export price try fixed effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (3.76)<br>-2.204*<br>(1.19)<br>g GDP per coindex (h = -ccts                                                                                                                                         | (4.45)<br>-2.049<br>(1.62)<br>apita at h = -1, -2), % cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (7.59) -3.488** (1.53) -1, the dependence in invest                                            | (9.35) -2.531** (1.25) dent variable ment (h = -1                                            | (12.14) -2.935** (1.22) (h = -1, -2), , -2), % char                                     | (15.03) -4.015*** (1.25) openness (h nge in the rea                                            | (16.35)<br>-2.751**<br>(1.05)<br>= -1, -2), poll exchange ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.048<br>(1.43)<br>-1.048<br>(1.43)<br>opulation ( <i>l</i><br>ate ( <i>h</i> = -1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Strictly preemptive, without Paris Club  Control variables  R-squared                                                                                                                                                                                                        | (1.25)<br>-0.917<br>(0.95)<br>Cyclical con<br>= -1, -2), the<br>2), and coun<br>0.084                   | (2.71) -1.880 (1.33) apponent of lot export price try fixed effer 0.119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3.76)<br>-2.204*<br>(1.19)<br>g GDP per c<br>index (h = -cts)<br>0.166                                                                                                                             | (4.45)<br>-2.049<br>(1.62)<br>apita at h = -1, -2), % characteristics of the control of | (7.59) -3.488** (1.53) -1, the dependence in invest                                            | (9.35) -2.531** (1.25) dent variable thement (h = -1) 0.174                                  | (12.14) -2.935** (1.22) (h = -1, -2), , -2), % char                                     | (15.03) -4.015*** (1.25) openness (h nge in the rea                                            | (16.35)<br>-2.751**<br>(1.05)<br>= -1, -2), po<br>ll exchange ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.048<br>(1.43)<br>-1.048<br>(1.43)<br>opulation (h<br>ate (h = -1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Strictly preemptive, without Paris Club  Control variables  R-squared Number of countries                                                                                                                                                                                    | (1.25) -0.917 (0.95) Cyclical con = -1, -2), the 2), and coun 0.084 47                                  | (2.71) -1.880 (1.33) exponent of love export price try fixed effective fixed e | (3.76) -2.204* (1.19) g GDP per cindex (h = -cts) 0.166 46                                                                                                                                          | (4.45) -2.049 (1.62) apita at h = -1, -2), % cha  0.192 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (7.59) -3.488** (1.53) -1, the dependinge in invest  0.167 45                                  | (9.35) -2.531** (1.25) dent variable timent (h = -1) 0.174 44                                | (12.14) -2.935** (1.22) (h = -1, -2), , -2), % char  0.208 44                           | (15.03) -4.015*** (1.25) openness (h age in the rea  0.228 44                                  | (16.35) -2.751** (1.05) = -1, -2), pol exchange ra  0.253 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.048<br>(1.43)<br>-1.048<br>(1.43)<br>opulation ( <i>l</i><br>ate ( <i>h</i> = -1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Strictly preemptive, without Paris Club  Control variables  R-squared Number of countries Observations                                                                                                                                                                       | (1.25)<br>-0.917<br>(0.95)<br>Cyclical con<br>= -1, -2), the<br>2), and coun<br>0.084                   | (2.71) -1.880 (1.33) apponent of lot export price try fixed effer 0.119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3.76)<br>-2.204*<br>(1.19)<br>g GDP per c<br>index (h = -cts)<br>0.166                                                                                                                             | (4.45)<br>-2.049<br>(1.62)<br>apita at h = -1, -2), % characteristics of the control of | (7.59) -3.488** (1.53) -1, the dependence in invest                                            | (9.35) -2.531** (1.25) dent variable thement (h = -1) 0.174                                  | (12.14) -2.935** (1.22) (h = -1, -2), , -2), % char                                     | (15.03) -4.015*** (1.25) openness (h nge in the rea                                            | (16.35)<br>-2.751**<br>(1.05)<br>= -1, -2), po<br>ll exchange ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.048<br>(1.43)<br>-1.048<br>(1.43)<br>opulation (h<br>ate (h = -1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Strictly preemptive, without Paris Club  Control variables  R-squared Number of countries Observations  Offerences in debt restructuring coefficients                                                                                                                        | (1.25) -0.917 (0.95) Cyclical con = -1, -2), the 2), and coun 0.084 47 1,206                            | (2.71) -1.880 (1.33) -1.880 (1.33) -1.890 -1.190 -1.190 -1.160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3.76) -2.204* (1.19) g GDP per c. index (h = - cts  0.166 46 1,114                                                                                                                                 | (4.45) -2.049 (1.62) apita at h = -1, -2), % cha  0.192 46 1,069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (7.59) -3.488** (1.53) -1, the dependence in invest  0.167 45 1,023                            | (9.35) -2.531** (1.25) dent variable ment (h = -1)  0.174 44 978                             | (12.14) -2.935** (1.22) (h = -1, -2), , -2), % char  0.208 44 934                       | (15.03) -4.015*** (1.25) openness (h nge in the rea  0.228 44 890                              | (16.35) -2.751** (1.05) = -1, -2), poly lexchange rational exchange rational exchang | -1.048 (1.43)<br>-1.048 (1.43)<br>opulation ( <i>i</i> ate ( <i>h</i> = -1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Strictly preemptive, without Paris Club  Control variables  R-squared Number of countries Observations                                                                                                                                                                       | (1.25) -0.917 (0.95) Cyclical con = -1, -2), the 2), and coun 0.084 47 1,206                            | (2.71) -1.880 (1.33) reponent of lose export price try fixed effective fixed e | (3.76) -2.204* (1.19) g GDP per c. index (h = -cts) 0.166 46 1,114                                                                                                                                  | (4.45) -2.049 (1.62) apita at h = -1, -2), % cha  0.192 46 1,069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (7.59) -3.488** (1.53) -1, the dependence in invest 0.167 45 1,023                             | (9.35) -2.531** (1.25) dent variable ment (h = -1) 0.174 44 978                              | (12.14) -2.935** (1.22) (h = -1, -2), , -2), % char  0.208 44 934 -2.167                | (15.03) -4.015*** (1.25) openness (h nge in the rea  0.228 44 890 -1.667                       | (16.35) -2.751** (1.05) = -1, -2), po l exchange ra  0.253 44 846  0.675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.048<br>(1.43)<br>-1.048<br>(1.43)<br>opulation (ate (h = -1, 0.283<br>44<br>802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Strictly preemptive, without Paris Club  Control variables  R-squared Number of countries Observations  Observations  Post-default (Without Paris Club minus with Paris Club)                                                                                                | (1.25) -0.917 (0.95)  Cyclical con = -1, -2), the 2), and coun  0.084 47 1,206  -0.735 (1.28)           | (2.71) -1.880 (1.33) apponent of lot export price try fixed effer 0.119 47 1,160 -4.591 (2.81)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3.76) -2.204* (1.19) g GDP per c index (h = - cts  0.166 46 1,114  -4.848* (2.81)                                                                                                                  | (4.45) -2.049 (1.62) apita at h = -1, -2), % cha  0.192 46 1,069  -5.755* (3.27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (7.59) -3.488** (1.53) -1, the depending in invest  0.167 45 1,023  -2.490 (2.82)              | (9.35) -2.531** (1.25) dent variable timent (h = -1) 0.174 44 978 -1.349 (3.67)              | (12.14) -2.935** (1.22) (h = -1, -2), , -2), % char  0.208 44 934  -2.167 (4.12)        | (15.03) -4.015*** (1.25) openness (h age in the rea  0.228 44 890  -1.667 (3.59)               | (16.35) -2.751** (1.05) = -1, -2), pt l exchange re  0.253 44 846  0.675 (3.67)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.048 (1.43) -1.048 (1.43) opulation ( <i>t</i> ate ( <i>h</i> = -1, 0.283 44 802 1.416 (3.62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Strictly preemptive, without Paris Club  Control variables  R-squared Number of countries Observations  Offerences in debt restructuring coefficients                                                                                                                        | (1.25) -0.917 (0.95)  Cyclical con = -1, -2), the 2), and coun 0.084 47 1,206  -0.735 (1.28) -0.052     | (2.71) -1.880 (1.33) uponent of lo export price try fixed effe 0.119 47 1,160 -4.591 (2.81) -0.967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (3.76) -2.204* (1.19) g GDP per c index (h = - cts  0.166 46 1,114  -4.848* (2.81) -2.308*                                                                                                          | (4.45)<br>-2.049<br>(1.62)<br>apita at h =<br>-1, -2), % cha<br>0.192<br>46<br>1,069<br>-5.755*<br>(3.27)<br>-0.824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (7.59) -3.488** (1.53) -1, the dependinge in invest  0.167 -45 1,023  -2.490 (2.82) 0.258      | (9.35) -2.531** (1.25) dent variable ment (h = -1)  0.174 44 978  -1.349 (3.67) -0.997       | (12.14) -2.935** (1.22) (h = -1, -2), , -2), % char  0.208 44 934  -2.167 (4.12) -1.669 | (15.03) -4.015*** (1.25) openness (h age in the rea  0.228 44 890 -1.667 (3.59) -0.302         | (16.35) -2.751** (1.05) =-1,-2), pt l exchange re  0.253 44 846  0.675 (3.67) 0.888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.048 (1.43) -1.048 (1.43) opulation ( <i>i</i> ate ( <i>h</i> = -1, 0.283 44 802 1.416 (3.62) -0.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Strictly preemptive, without Paris Club  Control variables  R-squared Number of countries Observations  Differences in debt restructuring coefficients Post-default (Without Paris Club minus with Paris Club)  Weekly preemptive (Without Paris Club minus with Paris Club) | (1.25) -0.917 (0.95) Cyclical con =-1, -2), the 2), and coun 0.084 47 1,206 -0.735 (1.28) -0.052 (0.86) | (2.71) -1.880 (1.33) uponent of lo export price try fixed effe 0.119 47 1,160 -4.591 (2.81) -0.967 (0.94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} (3.76) \\ -2.204* \\ (1.19) \\ \text{g GDP per c} \\ \text{index } (h = -\text{cts}) \\ \hline 0.166 \\ 46 \\ 1.114 \\ \hline -4.848* \\ (2.81) \\ -2.308* \\ (1.30) \end{array}$ | (4.45) -2.049 (1.62) apita at h = 1, -2), % chi  0.192 46 1,069 -5.755* (3.27) -0.824 (1.21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (7.59) -3.488** (1.53) -1, the depending in invest  0.167 45 1,023  -2.490 (2.82) 0.258 (1.17) | (9.35) -2.531** (1.25) dent variable ment (h = -1  0.174 44 978  -1.349 (3.67) -0.997 (1.89) | (12.14) -2.935** (1.22) (h = -1, -2), % char  0.208 44 934  -2.167 (4.12) -1.669 (1.94) | (15.03) -4.015*** (1.25) openness (h gge in the rea  0.228 44 890  -1.667 (3.59) -0.302 (1.97) | (16.35) -2.751** (1.05) = -1, -2), pc 1 exchange ra  0.253 44 846  0.675 (3.67) 0.888 (1.73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.048 (1.43) -1.048 (1.43) opulation (1.43) opulation (1.43) opulation (1.44) opulation (1 |
| Strictly preemptive, without Paris Club  Control variables  R-squared Number of countries Observations  Differences in debt restructuring coefficients  Post-default (Without Paris Club minus with Paris Club)                                                              | (1.25) -0.917 (0.95)  Cyclical con = -1, -2), the 2), and coun 0.084 47 1,206  -0.735 (1.28) -0.052     | (2.71) -1.880 (1.33) uponent of lo export price try fixed effe 0.119 47 1,160 -4.591 (2.81) -0.967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (3.76) -2.204* (1.19) g GDP per c index (h = - cts  0.166 46 1,114  -4.848* (2.81) -2.308*                                                                                                          | (4.45)<br>-2.049<br>(1.62)<br>apita at h = -1, -2), % char<br>0.192<br>46<br>1,069<br>-5.755*<br>(3.27)<br>-0.824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (7.59) -3.488** (1.53) -1, the dependinge in invest  0.167 -45 1,023  -2.490 (2.82) 0.258      | (9.35) -2.531** (1.25) dent variable ment (h = -1)  0.174 44 978  -1.349 (3.67) -0.997       | (12.14) -2.935** (1.22) (h = -1, -2), , -2), % char  0.208 44 934  -2.167 (4.12) -1.669 | (15.03) -4.015*** (1.25) openness (h age in the rea  0.228 44 890 -1.667 (3.59) -0.302         | (16.35) -2.751** (1.05) =-1,-2), pt l exchange re  0.253 44 846  0.675 (3.67) 0.888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.048<br>(1.43)<br>-1.048<br>(1.43)<br>oppulation (h<br>ate (h = -1,<br>0.283<br>44<br>802<br>1.416<br>(3.62)<br>-0.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

*Notes: h* indicates years after a debt restructuring. Robust standard errors, clustered at country-level, are in parentheses. Sample countries are restricted to countries that have experienced at least one debt restructuring. Sample period is from 1970 to 2007 with some missing period for some countries. See the main text for the data sources. Countries are classified to those with Paris Club restructurings and without Paris Club restructurings based on Das et al. (2012). \*\*\*, \*\* and \* indicate that corresponding coefficients are statistically significant at 1% level, 5% level, and 10% level, respectively.

#### VII. CONCLUSION

The current paper shows that debt restructurings that take place after the country stops making payments to creditors (post-default) are associated with larger declines in exports and imports than those where the restructuring takes place preemptively, without missing payments (or only temporarily missing them). While not the main focus of this paper, we also show that post-default restructurings are associated with sharper and more prolonged declines in GDP, investment and the real exchange rate. The results are supported by panel regressions and local projections estimates, and remain robust across a range of specifications and strategies to deal with endogeneity.

An important policy implication from our findings is that a country's choice of how to restructure its debt can be as consequential as the choice of whether or not to restructure. This adds to a growing body of evidence that cooperative, market-friendly restructurings are associated with better outcomes than less cooperative and more confrontational ones. In fact, many of our specifications suggest that countries that succeed in restructuring without missing payments to creditors are largely able to avoid, or at least attenuate, the costs associated with restructuring. Moreover, results indicate that missing a payment to creditors, even temporarily and while in the midst of an ongoing negotiation, can already lead to significant losses to the debtor in terms of trade and other key outcomes. In practice, countries can face several constraints regarding this choice of how to restructure. For example, they may be hit by the sudden realization of a shock, or in a multiple-equilibria context realize that the "bad" equilibrium just materialized. Depending on the magnitude of these shocks, they may not be able to continue servicing their debt without some immediate relief. Our findings also have implications for the design of official financing—is found to mitigate the adverse impacts following a post-default restructuring on exports—, suggesting that where feasible, long-run costs can be attenuated if this financing (and creditor cooperation) allows countries to restructure without missing payments. It also highlights the costs that countries can face for trying to delay adjustment (and requests for official support) until a default becomes inevitable. These should be important considerations in the design of future debt restructuring strategies, particularly among countries that are more open and reliant on international trade.

# Appendix I. Data

# I.1. Data Sources

| Variable                                                                    | Data source                                                |
|-----------------------------------------------------------------------------|------------------------------------------------------------|
| Aggregate trade data                                                        | IMF Direction of Trade Statistics                          |
| <ul> <li>Private external debt restructuring events and duration</li> </ul> | Asonuma and Trebesch (2016)                                |
| Export price level                                                          | PWT 8.0 (Feenstra et al., 2015)                            |
| Import price level                                                          | PWT 8.0 (Feenstra et al., 2015)                            |
| Terms of trade                                                              | PWT 8.0 (Feenstra et al., 2015)                            |
| <ul> <li>Population</li> </ul>                                              | WDI (World Bank, 2016a)                                    |
| • Openness                                                                  | Authors' calculation based on the data from PWT 8.0        |
| Net exports                                                                 | PWT 8.0 (Feenstra et al., 2015)                            |
| • Investment                                                                | PWT 8.0 (Feenstra et al., 2015)                            |
| Real exchange rate                                                          | IMF International Financial Statistics                     |
| Real GDP                                                                    | PWT 8.0 (Feenstra et al., 2015)                            |
| Real GDP per capita, PPP adjusted                                           | PWT 6.3 (Heston et al., 2009)                              |
| Real GDP growth rate                                                        | Authors' calculation based on the data from PWT 8.0        |
| Cyclical component of real GDP per capita                                   | Authors' calculation based on the data from PWT 8.0        |
| GDP deflator (US)                                                           | WDI (World Bank, 2015a)                                    |
| Exchange rate regime classification                                         | Ilzetzki, Reinhart and Rogoff (2015)                       |
| Commodity exporter classification                                           | IMF (2012) World Economic Outlook                          |
| <ul> <li>Sovereign default S&amp;P data</li> </ul>                          | Standard and Poor's (2006)                                 |
| Financial crisis data                                                       | Laeven and Valencia (2012)                                 |
| Public debt-GDP ratio                                                       | Global Financial Development Database (World Bank, 2016b)  |
| Private credit-GDP ratio                                                    | A IMF Historical Public Debt Database (Abbas et al., 2010) |
| Countries' credit ratings                                                   | the Institutional Investor Magazine                        |
| IMF-supported programs                                                      | Various IMF Staff Reports                                  |
| Official external (Paris Club) debt<br>restructurings                       | Das et al., (2012) and Paris Club.                         |

*Notes*: PWT and WDI stand for the Penn World Table from Feenstra et al., (2015) and the World Development Indicators, respectively.

## I.2. Sample countries

The dataset includes only countries experienced debt restructurings. 60 countries experienced 111 episodes of post-default debt restructuring. The list of countries is as follows.

Albania, Argentina, Algeria, Bulgaria, Bosnia and Herzegovina, Bolivia, Brazil, Cote d'Ivoire, Cameroon, Zaire, Congo, Rep., Costa Rica, Cuba, Dominican Republic, Ecuador, Ethopia, Gabon, Guinea, Gambia, Guyana, Honduras, Croatia, Iraq, Jamaica, Jordàn, Kenya, Liberia, Morocco, Moldova, Madagascar, Macedonia (FYR), Mozambique, Mauritania, Malawi, Niger, Nigeria, Nicaragua, Pakistan, Panama, Panama, Peru, Philippines, Poland, Paraguay, Romania, Russian Federation, Sudan, Senegal, Sierra Leone, Serbia and Montenegro, Sao Tome and Principe, Slovenia, Seychelles, Togo, Turkey, Tanzania, Uganda, Venezuela, Vietnam, Yemen.

26 countries experienced 45 episodes of weakly preemptive debt restructuring. The list of countries is as follows.

Argentina, Belize, Brazil, Chile, Dominica, Ecuador, Grenada, Jamaica, Morocco, Mexico, Malawi, Niger, Panama, Peru, Philippines, Romania, Romania, Senegal, Trinidad and Tobago, Turkey, Ukraine, Uruguay, Venezuela, Yugoslavia, South Africa, and Nigeria.

13 countries experienced 23 episodes of strictly preemptive debt restructuring. The list of countries is as follows.

Algeria, Chile, Dominican Republic, Jamaica, Moldova, Mexico, Nicaragua, Pakistan, Peru, Ukraine, Uruguay, Yugoslavia, and South Africa.

#### I.3. Sample Events

Sample events of debt restructurings by types i.e., post-default, weakly preemptive and strictly preemptive are summarized in Table A1.

Table A1: Debt Restructuring Events (continues to the next page)

| No. | ISO | Covertery manua        |                                   | Debt restructuing events                      |                             |
|-----|-----|------------------------|-----------------------------------|-----------------------------------------------|-----------------------------|
| NO. | 150 | Country name           | Post-default                      | Weakly preemptive                             | Strictly preemptive         |
| 1   | ALB | Albania                | 1991-1995                         |                                               |                             |
| 2   | ARG | Argentina              | 1982-1985, 1988-1993, 2001-2005   | 1985-1987                                     |                             |
| 3   | BGR | Bulgaria               | 1990-1994                         |                                               |                             |
| 4   | BIH | Bosnia and Herzegovina | 1992-1997                         |                                               |                             |
| 5   | BLZ | Belize                 |                                   | 2006-2007                                     |                             |
| 6   | BOL | Bolivia                | 1980-1988, 1988-1993              |                                               |                             |
| 7   | BRA | Brazil                 | 1986-1988, 1989-1992, 1989-1994   | 1982-1983, 1983-1984, 1984-1986               |                             |
| 8   | CHL | Chile                  |                                   | 1983, 1983-1984, 1984-1986                    | 1986-1987, 1990             |
| 9   | CIV | Cote d'Ivoire          | 1983-1998, 2000-2010              |                                               |                             |
| 10  | CMR | Cameroon               | 1985-2003                         |                                               |                             |
| 11  | COD | Zaire (Congo, Demo.    | 1975-1980, 1982-1983, 1983-1984,  |                                               |                             |
|     |     | Rep.)                  | 1984-1985, 1985-1986, 1986-1987,  |                                               |                             |
|     |     |                        | 1987-1989                         |                                               |                             |
| 12  | COG | Congo, Rep.            | 1983-1988, 1988-2007              |                                               |                             |
| 13  | CRI | Costa Rica             | 1981-1983, 1984-1985, 1986-1990   |                                               |                             |
| 14  | CUB | Cuba                   | 1983, 1984, 1985                  |                                               |                             |
| 15  | DMA | Dominica               |                                   | 2003-2004                                     |                             |
| 16  | DOM | Dominican Republic     | 1982-1986, 1987-1994, 2004-2005   |                                               | 2004-2005                   |
|     |     |                        | (Bank debt)                       |                                               |                             |
| 17  |     | Algeria                | 1993-1996                         |                                               | 1990-1992                   |
| 18  | ECU | Ecuador                | 1986-1995, 1999-2000, 2008-2009   | 1982-1983, 1983-1984, 1984-1985               |                             |
| 19  | ETH | Ethiopia               | 1990-1996                         |                                               |                             |
| 20  | GAB | Gabon                  | 1986-1987, 1989-1994, 1989-1994   |                                               |                             |
| 21  | GIN | Guinea                 | 1985-1988, 1991-1998              |                                               |                             |
| 22  | GMB | Gambia,The             | 1984-1988                         |                                               |                             |
| 23  | GRD | Grenada                |                                   | 2004-2005                                     |                             |
| 24  | GUY | Guyana                 | 1982-1992, 1993-1999              |                                               |                             |
| 25  | HND | Honduras               | 1981-1989, 1990-2001              |                                               |                             |
| 26  | HRV | Croatia                | 1992-1996                         |                                               |                             |
| 27  | IRQ | Iraq                   | 1986-2006                         |                                               |                             |
| 28  | JAM | Jamaica                | 1990                              | 1986-1987                                     | 1977-1978, 1978-1979, 1980- |
|     |     |                        |                                   |                                               | 1981, 1983-1984, 1984-1985  |
| 29  | JOR | Jordan                 | 1989-1993                         |                                               |                             |
| 30  | KEN | Kenya                  | 1992-1998                         |                                               |                             |
| 31  | LBR | Liberia                | 1980-1982                         |                                               |                             |
| 32  |     | Morocco                | 1983-1986                         | 1985-1987, 1989-1990                          |                             |
| 33  |     | Moldova                | 2001-2004 (Gazprom debt)          |                                               | 2002 (Eurobond)             |
| 34  | MDG | Madagascar             | 1981, 1982-1984, 1985-1987, 1987- |                                               |                             |
|     |     |                        | 1990                              |                                               | 100= 1000                   |
| 35  | MEX | Mexico                 |                                   | 1982-1983, 1984-1985, 1986-1987,<br>1988-1990 | 1987-1988                   |
| 36  | MKD | Macedonia, FYR         | 1992-1997                         |                                               |                             |
| 37  | MOZ | Mozambique             | 1983-1991                         |                                               |                             |
| 38  | MRT | Mauritania             | 1992-1996                         |                                               |                             |
| 39  | MWI | Malawi                 | 1987-1988                         | 1982-1983                                     |                             |
| 40  | NER | Niger                  | 1986-1991                         | 1983-1984, 1984-1986                          |                             |

Notes: The data is from Asonuma and Trebesch (2016).

Table A1: Debt Restructuring Events (continued from the previous page)

| .,  | **** | G .                   |                                                   | Debt restructuing events                                | _                                                  |
|-----|------|-----------------------|---------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|
| No. | ISO  | Country name          | Post-default                                      | Weakly preemptive                                       | Strictly preemptive                                |
| 41  | NGA  | Nigeria               | 1982-1983 (x2), 1983-1984, 1986-                  | 1988-1989                                               |                                                    |
|     |      |                       | 1987, 1987-1988, 1989-1991                        |                                                         |                                                    |
| 42  | NIC  | Nicaragua             | 1978-1980, 1983-1984, 1985-1995                   |                                                         | 1981, 1982                                         |
| 43  | PAK  | Pakistan              | 1998-1999 (Bank debt)                             |                                                         | 1999 (Bonds)                                       |
| 44  | PAN  | Panama                | 1987-1994 (Bond exchange, add-on deal), 1987-1996 | 1984-1985                                               |                                                    |
| 45  | PER  | Peru                  | 1984-1997                                         | 1983                                                    | 1979-1980                                          |
| 46  | PHL  | Philippines           | 1983-1986                                         | 1983-1986, 1988-1990, 1990-1992                         |                                                    |
| 47  | POL  | Poland                | 1982, 1981-1982, 1982-1983, 1983-                 |                                                         |                                                    |
|     |      |                       | 1984, 1986, 1986-1988, 1988-1989,                 |                                                         |                                                    |
|     |      |                       | 1989-1994                                         |                                                         |                                                    |
| 48  | PRY  | Paraguay              | 1986-1993                                         |                                                         |                                                    |
| 49  | ROM  | Romania               | 1981-1982                                         | 1983, 1986                                              |                                                    |
| 50  | RUS  | Russian Federation    | 1991-1997, 1998-1999 (GKOs), 1998-                |                                                         |                                                    |
|     |      |                       | 2000 (London Club, PRINs & IANs),                 |                                                         |                                                    |
|     |      |                       | 1999-2000 (MinFin3)                               |                                                         |                                                    |
| 51  | SDN  | Sudan                 | 1975-1985                                         |                                                         |                                                    |
| 52  | SEN  | Senegal               | 1981-1984, 1992-1996                              | 1985, 1990                                              |                                                    |
| 53  | SLE  | Sierra Leone          | 1980-1995                                         |                                                         |                                                    |
| 54  |      | Serbia and Montenegro | 1992-2004                                         |                                                         |                                                    |
| 55  | STP  | Sao Tome and Principe | 1984-1994                                         |                                                         |                                                    |
| 56  | SVN  | Slovenia              | 1992-1996                                         |                                                         |                                                    |
| 57  | SYC  | Seychelles            | 2008-2010                                         |                                                         |                                                    |
| 58  | TGO  | Togo                  | 1987-1988, 1991-1997                              |                                                         |                                                    |
| 59  | TTO  | Trinidad and Tobago   |                                                   | 1988-1989                                               |                                                    |
| 60  | TUR  | Turkey                | 1976-1979 (x2)                                    | 1981, 1981-1982                                         |                                                    |
| 61  | TZA  | Tanzania              | 1981-2004, 1979-1993                              |                                                         |                                                    |
| 62  | UKR  | Ukraine               |                                                   | 1999 (ING debt/Merill Lynch), 2000<br>(Global exchange) | 1998 (OVDPs, non-residents),<br>1988 (Chasee loan) |
| 63  | URY  | Uruguay               |                                                   | 1983, 1985-1986                                         | 1987-1988, 1989-1991, 2003                         |
| 64  | VEN  | Venezuela, RB         | 1983-1986, 1989-1990                              | 1986-1987                                               |                                                    |
| 65  | VNM  | Vietnam               | 1982-1997                                         |                                                         |                                                    |
| 66  | YEM  | Yemen, Republic of    | 1983-2001                                         |                                                         |                                                    |
| 67  |      | Yugoslavia            |                                                   | 1983, 1984-1985, 1987-1988                              | 1983-1984                                          |
| 68  | ZAF  | South Africa          |                                                   | 1985-1987                                               | 1989, 1992-1993                                    |
| 69  | ZMB  | Zambia                | 1983-1994                                         |                                                         |                                                    |

Notes: The data is from Asonuma and Trebesch (2016).

## **Appendix II. Exports and Imports in Restructuring Countries**

Export/GDP and Import/GDP and Import

Figure A.1: Trade Dynamics around Preemptive Debt Restructuring

Figure A.2: Trade Dynamics around Post-Default Debt Restructuring

1980

1985

1990

1995

2000

1970

1980

1990



*Notes:* Solid red lines and dashed red lines indicate starting and ending years of post-default debt restructurings. Solid black lines and dashed black lines indicate starting and ending years of preemptive debt restructurings. *Sources:* Asonuma and Trebesch (2016, restructurings), IMF DOT (exports, imports) and World Bank World Development Indicators (US-dollar denominated GDP).

## Appendix III. Local Projections for Other Variables using AIPW Methods

Table A.2. reports results from the AIPW estimator for net exports, investment and GDP, respectively. The results confirm robustness of our benchmark results (Table 4) with dealing with endogeneity issues. Similar to baseline (OLS) case, net exports improve substantially after post-default restructurings over prolonged period. This is consistent with estimation results on imports and exports. On the contrary, countries with post-default restructurings suffer a severe and protracted decline in both investment and GDP.

Table A.2: Local Projections of Other Variables, AIPW

Panel A: Net exports

| Dep. var. is 100 times | Dep. var. is 100 times the cumulative change in the net export value from year $t - 1$ to year $t + h$ scaled by real GDP at year $t - 1$ |          |          |         |          |         |        |        |          |          |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|---------|----------|---------|--------|--------|----------|----------|--|--|
|                        | h = 0                                                                                                                                     | h = 1    | h = 2    | h = 3   | h = 4    | h = 5   | h = 6  | h = 7  | h = 8    | h = 9    |  |  |
| Post-default           | 0.380                                                                                                                                     | 2.350*** | 2.676*** | 2.611** | 3.510*** | 2.627** | 1.365  | -0.858 | -2.623** | -3.051** |  |  |
|                        | (0.78)                                                                                                                                    | (0.92)   | (1.14)   | (1.34)  | (1.33)   | (1.18)  | (1.43) | (1.58) | (1.44)   | (1.69)   |  |  |
| Weakly preemptive      | 1.025*                                                                                                                                    | 1.954**  | 1.365    | 2.012*  | 2.300**  | 1.908** | 2.072* | 1.367  | 1.505    | 0.950    |  |  |
|                        | (0.76)                                                                                                                                    | (0.91)   | (1.12)   | (1.30)  | (1.33)   | (1.15)  | (1.39) | (1.57) | (1.50)   | (1.69)   |  |  |
| Strictly preemptive    | 1.205*                                                                                                                                    | 0.639    | 1.203    | 0.004   | -0.827   | -0.992  | -0.826 | -2.51  | -0.675   | -1.124   |  |  |
|                        | (0.75)                                                                                                                                    | (0.88)   | (1.11)   | (1.30)  | (1.32)   | (1.14)  | (1.38) | (1.56) | (1.50)   | (1.68)   |  |  |
| Number of countries    | 47                                                                                                                                        | 47       | 47       | 47      | 47       | 47      | 46     | 46     | 45       | 44       |  |  |
| Observations           | 1077                                                                                                                                      | 1032     | 987      | 941     | 894      | 847     | 801    | 755    | 712      | 671      |  |  |

#### Panel B: Investment

| Dep. var. is 100    | Dep. var. is 100 times the cumulative change in investment from year $t-1$ to year $t+h$ scaled by real GDP at year $t-1$ |           |           |           |           |           |           |           |           |           |
|---------------------|---------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                     | h = 0                                                                                                                     | h = 1     | h=2       | h = 3     | h = 4     | h = 5     | h = 6     | h = 7     | h = 8     | h = 9     |
| Post-default        | -3.007***                                                                                                                 | -4.607*** | -4.652*** | -4.515*** | -4.422*** | -4.111*** | -5.510*** | -6.363*** | -6.107*** | -5.578*** |
|                     | (0.32)                                                                                                                    | (0.46)    | (0.55)    | (0.64)    | (0.76)    | (0.84)    | (0.93)    | (1.00)    | (0.98)    | (0.90)    |
| Weakly preemptive   | -1.045***                                                                                                                 | -1.654*** | -1.609*** | -1.757*** | -2.367*** | -3.553*** | -2.968*** | -3.924*** | -3.322*** | -1.363*   |
|                     | (0.32)                                                                                                                    | (0.49)    | (0.56)    | (0.65)    | (0.78)    | (0.86)    | (0.95)    | (1.01)    | (1.02)    | (0.93)    |
| Strictly preemptive | -0.192                                                                                                                    | -0.229    | 0.054     | 2.051***  | 2.107***  | 3.758***  | 5.465***  | 7.073***  | 1.774**   | 7.282***  |
|                     | (0.31)                                                                                                                    | (0.46)    | (0.55)    | (0.65)    | (0.76)    | (0.86)    | (0.96)    | (1.02)    | (1.00)    | (0.90)    |
| Number of countries | 47                                                                                                                        | 47        | 47        | 47        | 47        | 47        | 46        | 46        | 45        | 44        |
| Observations        | 1077                                                                                                                      | 1032      | 987       | 941       | 894       | 847       | 801       | 755       | 712       | 671       |

Panel C: GDP

| Dep. var. is 100 times the cumulative change in real GDP from year $t - 1$ to year $t + h$ scaled by real GDP at year $t - 1$ |           |           |           |           |           |           |           |           |           |           |
|-------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                                                                                                                               | h = 0     | h = 1     | h = 2     | h = 3     | h = 4     | h = 5     | h = 6     | h = 7     | h = 8     | h = 9     |
| Post-default                                                                                                                  | -1.048*** | -2.406*** | -2.533*** | -2.096*** | -2.257*** | -3.362*** | -3.446*** | -5.274*** | -4.858*** | -5.514*** |
|                                                                                                                               | (0.34)    | (0.46)    | (0.55)    | (0.72)    | (0.94)    | (1.17)    | (1.34)    | (1.53)    | (1.71)    | (1.72)    |
| Weakly preemptive                                                                                                             | -1.404*** | -0.324    | 0.748*    | 0.970*    | -0.309    | -1.686    | -0.748    | -1.533    | -0.645    | 1.173     |
|                                                                                                                               | (0.34)    | (0.45)    | (0.55)    | (0.73)    | (0.96)    | (1.17)    | (1.35)    | (1.53)    | (1.70)    | (1.72)    |
| Strictly preemptive                                                                                                           | -1.875*** | -3.301*** | -2.445*** | -0.665    | -2.036**  | -1.075    | 2.014*    | 3.348**   | -0.438    | 4.922***  |
|                                                                                                                               | (0.34)    | (0.43)    | (0.54)    | (0.72)    | (0.94)    | (1.14)    | (1.33)    | (1.52)    | (1.69)    | (1.67)    |
| Number of countries                                                                                                           | 47        | 47        | 47        | 47        | 47        | 47        | 46        | 46        | 45        | 42        |
| Observations                                                                                                                  | 1059      | 1014      | 969       | 923       | 876       | 829       | 783       | 737       | 694       | 653       |

Notes: Panels A, B and C show local projections of 100 times  $(NetExport_{t+h} - NetExport_{t-1})/GDP_{t-1}$ , 100 times  $(Investment_{t+h} - Investment_{t-1})/GDP_{t-1}$ , and 100 times  $(GDP_{t+h} - GDP_{t-1})/GDP_{t-1}$ , respectively, where h indicates years after the start of debt restructurings. The set of control variables is the same with Table 3: a constant term, country fixed effects, lags of import (or export) growth rates, lags of real GDP growth rates, and cyclical component of real GDP. Robust standard errors, clustered at country-level, are in parentheses. Sample countries are restricted to countries that have ever experienced debt restructuring(s). Sample period is from 1970 to 2007 with some missing period for some countries. See the main text for the data sources. \*\*\*, \*\* and \* indicate that corresponding coefficients are statistically significant at 1% level, 5% level, and 10% level, respectively.

#### REFERENCES

- Abbas, A.S.M., N. Belhocine, A. ElGanainy and M. Horton, 2010, "A Historical Public Debt Database," IMF Working Paper 10/245.
- Abiad, A., P. Mishra, and P. Topalova, 2014, "How Does Trade Evolve in the Aftermath of Financial Crises?" *IMF Economic Review* Vol. 62 (2): 213–247.
- Ahn, J., M. Amiti, and D. Weinstein (2011). "Trade Finance and the Great Trade Collapse," *American Economic Review Papers and Proceedings* 101 (3): 298–302.
- Alessandria, G., J. P. Kaboski, and V. Midrigan, 2010, "The Great Trade Collapse of 2008–09: An Inventory Adjustment?" *IMF Economic Review*, Vol. 58 (2): 254–294.
- Amiti, M., and D.E. Weinsten, 2011, "Exports and Financial Shocks," *Quarterly Journal of Economics*. Vol. 126 (4): 1841–1877.
- Asmundson, I., T. Dorsey, A. Khachatryan, I. Niculcea, and M. Saito, 2011, "Trade and Trade Finance in the 2008–09 Financial Crisis." IMF Working Paper 11/16.
- Asonuma, T., 2016, "Sovereign Defaults, External Debt and Real Exchange Rate Dynamics." IMF Working Paper 16/37.
- Asonuma, T., and H. Joo, 2016, "Sovereign Debt Restructurings: Delays in Negotiations and Risk Averse Creditors," Manuscript, IMF.
- Asonuma, T., and C. Trebesch, 2016, "Sovereign Debt Restructurings: Preemptive or Post-default." *Journal of European Economic Association*, Vol. 14 (1): 175–214.
- Benjamin, D., and M. Wright, 2009, "Recovery Before Redemption? A Theory of Delays in Sovereign Debt Renegotiations." manuscript, UCLA.
- Borensztein, E., and U. Panizza, 2009, "The Costs of Sovereign Default," *IMF Staff Papers*, Vol. 56 (4): 683–741.
- Chor, D., and K. Manova, 2012, "Off the Cliff and Back? Credit Conditions and International Trade During the Global Financial Crisis." *Journal of International Economics*, Vol. 87 (1): 117–133.
- Cruces, J., and C. Trebesch, 2013, "Sovereign Defaults: The Price of Haircuts," *American Economic Journal: Macroeconomics*, Vol. 5 (3): 85–117.
- Das, U., Papaioannou, M., and C. Trebesch, 2012, "Sovereign Debt Restructurings 1950–2010: Literature Survey, Data, and Stylized Facts," IMF Working Paper 12/203.
- De Paoli, B., G. Hoggarth and V. Saporta, 2009, "Output Costs of Sovereign Crises: Some Empirical Estimates," Bank of England Working Paper No. 362.

- Diaz-Cassou, J., Erce, A., and J. Vazquez-Zamora, 2008, "Recent Episodes of Sovereign Debt Restructurings. A Case-study Approach," Banco de Espana Occasional Paper 0804.
- Eaton, J., S. Kortum, B. Neiman and J. Romalis, 2013, "Trade and the Global Recession," Manuscript, Penn State, Yale, U. of Chicago and U. of Sydney.
- Erce, A., 2013, "Sovereign Debt Restructurings and the IMF: Implications for Future Official Interventions," Federal Reserve Bank of Dallas Working Paper 143.
- Feenstra, R. C., R. Inklaar, and M. P. Timmer (2015). "The Next Generation of the PennWorld Table," *American Economic Review* Vol.105 (10): pp. 3150–3182, available for download at <a href="https://www.ggdc.net/pwt">www.ggdc.net/pwt</a>,
- Finger, H., and M. Mecagni, 2007, "Sovereign Debt Restructuring and Debt Sustainability An Analysis of Recent Cross-Country Experience," IMF Occasional Paper No. 255.
- Furceri, D., and A. Zdzienicka, "How Costly Are Debt Crises?" *Journal of International Money and Finance*, Vol. 31 (4), 726–742.
- Greenland, A., M. Ion, and J. Lopresti, 2014, "Policy Uncertainty and the Margins of Trade," Manuscript, Elon University, University of Arizona, and The College of William and Mary.
- Gopinath, G., O. Itskhoki, and B. Neiman, 2012, "Trade Prices and the Global Trade Collapse of 2008-09," *IMF Economic Review*, Vol. 60 (3): 303–328.
- Gu, G. W. (2015). "A Tale of Two Countries: Sovereign Default, Trade, and Terms of Trade". Manuscript, UC Santa Cruz.
- Heston, A., R. Summers, and B. Aten (2009). Penn World Table Version 6.3. Income and Prices at the University of Pennsylvania: Center for International Comparisons of Production.
- Ilzetzki, E.O, C.M. Reinhart, and K. Rogoff, 2015, "Exchange Rate Arrangements into the 21st Century: Will the Anchor Currency Hold?" Manuscript, Harvard University.
- International Monetary Fund (IMF), 2012, *World Economic Outlook*. Washington D.C.: International Monetary Fund, April.

\_\_\_\_\_, 2016a, International Financial Statistics, 1948–2016.

| , 2013, Sovereign Debt Restructuring: Recent Developments and Implications for |
|--------------------------------------------------------------------------------|
| the Fund's Legal and Policy Framework, IMF Board Paper, April.                 |
|                                                                                |

- \_\_\_\_\_\_, 2016b, Direction of Trade Statistics, 1948–2016.
- Jordá, Ó., 2005, "Estimation and Inference of Impulse Responses by Local Projections." *American Economic Review* Vol. 95 (1): 161–182.
- Jordá, Ó., M. Schularick, and A. M. Taylor, 2013, "When Credit Bites Back." *Journal of Money, Credit and Banking* Vol. 45 (2): 3–28.
- \_\_\_\_\_\_, 2016, "Sovereigns versus Banks: Credit, Crises, and Consequences." *Journal of the European Economic Association* 14 (1): 45–79.
- Jordá, Ó., and A. M. Taylor, 2016, "The Time for Austerity: Estimating the Average Treatment Effect of Fiscal Policy." *The Economic Journal* Vol. 126 (590): 219–255.
- Kuvshinov, D., and K. Zimmermann, 2016, "Sovereign Going Bust: Estimating the Cost of Default," University of Bonn Discussion Paper 01/2016.
- Laeven, L., and F. Valencia, 2012, "Systemic Banking Crises Database: An Update," IMF Working Paper No.12/163.
- Levchenko, A. A., L.T. Lewis, and L.L. Tesar, 2010, "The Collapse of International Trade during the 2008-09 Crisis: In Search of the Smoking Gun," *IMF Economic Review*, Vol. 58 (2): 214–253.
- Levy-Yeyati, E. and U. Panizza, 2011, "The Elusive Costs of Sovereign Defaults," *Journal of Development Economics*, Vol. 94 (1): 95–105.
- Martinez, J. V. and G. Sandleris, 2011, "Is It Punishment? Sovereign Defaults and the Decline in Trade." *Journal of International Money and Finance* Vol. 30 (6): 909–930.
- Novy, D., and A. M. Taylor, 2014, "Trade and Uncertainty." NBER Working Paper No. 19941.
- Panizza, U., F. Sturzenegger, and J. Zettelmeyer, 2009, "The Economics and Law of Sovereign Debt and Default," *Journal of Economic Literature*, Vol. 47 (3): 651–698.
- Reinhart, C., and K. Rogoff, 2009, *This Time is Different: Eight Centuries of Financial Folly*, Princeton University Press.
- \_\_\_\_\_\_, 2011, "The Forgotten History of Domestic Debt," *Economic Journal*, Vol. 121 (552): 319–350.
- Rose, A. K., 2005, "One Reason Countries Pay Their Debts: Renegotiation and International Trade." *Journal of Development Economics*, Vol. 77 (1): 189–206.

- Sandleris, G., 2015, "The Costs of Sovereign Defaults: Theory and Empirical Evidence," Business School Working Papers 2015-02, Universidad Torcuato Di Tella.
- Standard and Poor's, 2006, "Default Study: Sovereign Defaults at 26-Year Low, To Show Little Change in 2007," September 18, 2006.
- Sturzenegger, F., 2004, "Tools for the Analysis of Debt Problems," *Journal of Restructuring Finance*, Vol. (1): 201–223.
- Sturzenegger, F., and J. Zettelmeyer, 2006, *Debt Defaults and Lessons from a Decade of Crises*, MIT Press.
- \_\_\_\_\_\_, 2008, "Haircuts: Estimating Investors Losses in Sovereign Debt Restructuring, 1998-2005," *Journal of International Money and Finance*, Vol. 27 (5): 780–805.
- Tomz, M., and M. L. J. Wright, 2007, "Do Countries Default in "Bad" Times?" *Journal of European Economic Association*, Vol. 5 (2-3), 352–360.
- \_\_\_\_\_\_, 2013, "Empirical Research on Sovereign Debt and Default," *Annual Review of Economics*, Vol. 5 (1): 247–272.
- Trebesch, C., and M. Zabel, 2014, "The Output Costs of Hard and Soft Sovereign Default," forthcoming in *European Economic Review*.
- Wooldridge, 2012, Econometric Analysis of Cross Section and Panel Data.
- World Bank (WB), 2016a, *Global Financial Development Database*. Washington D.C.: World Bank.
- \_\_\_\_\_\_, (2016b). World Development Indicators. Washington D.C.: World Bank.
- Zymek, R., 2012, "Sovereign Default, International Lending, and Trade." *IMF Economic Review* Vol. 60 (3): 365–394.