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Abstract

In this paper we extract latent factors from a large cross-section of commodity prices, including

fuel and non-fuel commodities. We decompose each commodity price series into a global (or

common) component, block-speci�c components and a purely idiosyncratic shock. We �nd

that the bulk of the �uctuations in commodity prices is well summarized by a single global

factor. This global factor is closely related to �uctuations in global economic activity and its

importance in explaining variations in commodity prices has increased since the beginning of

the 2000s, especially for oil.
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1 Introduction

Primary commodities, in the form of raw or partially processed goods, have been tradition-

ally case examples of traded goods across borders and account for a signi�cant share of in-

ternational trade. Despite the secular decline in commodity-intensive sectors in advanced

economies, primary commodities continue to have a central role in transportation, manufac-

turing processes, and in the food supply. The fast economic expansion of China and a number

of other emerging market economies has also contributed to a rapid increase in the demand

for industrial commodities since the beginning of the new millennium.

Most primary commodities are bought and sold around the globe in well-organized mar-

kets where physical and derivative trading take place. Like stock exchanges, commodity

exchanges feature institutional and regulatory frameworks that ensure valuable protection to

commodities traders and a high level of market liquidity. This is re�ected by the fact that

purely �nancial transactions currently outpace transactions in which physical delivery actually

occurs.

As far as �nancial asset returns are concerned, it has been long recognized that they

are characterized by a high degree of co-movement (see, for a recent survey, Connor and

Korajczyk, 2010). This feature is at the heart of the asset pricing theory and implies that a

few underlying factors explain the bulk of the �uctuations in asset returns. Recently, Miranda-

Agrippino and Rey (2015) also �nd evidence of international co-movement in the returns of

a large panel of risky assets. A few research studies, as well as more informal narratives,

indicate that international commodity prices also exhibit commonalities. The presence of

strong co-movement among prices of a broad range of seemingly unrelated commodities might

seem puzzling, given that there are many speci�c factors a�ecting supply and demand in each

market. Pindyck and Rotemberg (1990) described the phenomenon as �excess co-movement�

among commodity prices.

In this paper, we analyst the degree of co-movement in international commodity returns

by studying a broad range of commodities that are representative of the global market. To do

so, we estimate a dynamic factor model with a block structure to decompose each commodity

price series into a global (or common) component, block-speci�c components related to speci�c

commodity markets and a purely idiosyncratic shock. The distinction between global, local

and idiosyncratic components allows for the presence of shocks of di�erent nature, having

distinct consequences on the cross-correlation between commodity prices.

We �nd that there is a single global factor driving the bulk of commodity price �uctuations.

The global factor is persistent and follows the major expansion and contraction phases in the

international business cycle with the largest declines following recession periods. It is also

strongly related to measures of economic activity, which suggests a close link to demand

determinants. This is further corroborated by the fact that the global factor has homogenous

e�ects on all markets and hence limited e�ects on relative prices. Since the start of the new
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millennium, the relevance of the global factor has increased, especially for oil.

We compute model-based historical decompositions of commodity price changes and we

�nd that the global factor accounts for a larger fraction of commodity price �uctuations

in episodes typically associated with changes in global economic activity, such as the world

economic expansion that started around 2003 and the steep contraction during the Great Re-

cession. By contrast, block components explain most of the �uctuations in commodity prices

during episodes conventionally associated with supply or other commodity-speci�c shocks.

For oil prices, we found that fuel-speci�c factors are the main underlying sources of oil price

changes that occurred before the 2000s, such as the collapse of OPEC in 1986 and the Persian

Gulf War of 1990-1991. The structural analysis in Kilian and Murphy (2014) and Kilian and

Lee (2014) support this result, showing that oil-speci�c demand shocks and exogenous shifts

in supply were a more important determinant of the price of oil before the 2000s.

In order to verify the robustness of the modeling strategy, we perform an out-of-sample

validation of the model. Overall, we found that our factor model performs well in forecasting

commodity prices and aggregate indices of commodities at short horizons. In particular,

the predictive performance of the global factor is higher for the group of commodities for

which the historical variance explained by the global factor is larger, such as food and metals.

These results are in line with studies of the oil market which have also found evidence that

proxies of global demand have predictive power for oil prices (see, Baumeister and Kilian,

2012). Similarly, changes in commodity price indices, in particular industrial raw materials,

have been proved to improve the forecast of the price of oil, as these indices are more likely

to capture shifts in the global demand for industrial commodities (see, Alquist, Kilian and

Vigfusson, 2013). In this respect, our factor-based forecast is a re�nement of these earlier

approaches. The out-of-sample exercise also shows that for some commodities, notably crude

oil, the predictive content of the global factor increased during the Great Recession.

Our paper is not the �rst to study the co-movement in commodity prices (see, e.g. Alquist

and Coibion, 2014; Byrne et al., 2011; West and Wong, 2014; Chen et al., 2014). These other

works di�er from ours, however, in two ways. First, these papers studied commodity prices

in levels instead of returns, focusing on the co-movement at low frequencies. Second, they

did not analyze simultaneously all commodity markets and looked at only selected groups of

commodities.

The importance of global demand has been extensively documented in the context of the

oil market (see, e.g. Barsky and Kilian, 2002; Kilian, 2009; Peersman and Van Robays,

2009; Bodenstein, Guerrieri and Kilian, 2012; Lippi and Nobili, 2012; Aastveit, Bjorland and

Thorsrud, 2015). Our paper shows that the association with global economic activity is even

stronger when looking at the common factors underlying all the commodities.

The rest of the paper proceeds as follows. Section 2 presents the empirical analysis, the

global factor and studies the sources of commodity price �uctuations. Section 3 looks at the
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predictability and the local forecasting performance of the model. Section 4 concludes.

2 Empirical analysis

2.1 Data

Our dataset consists of the spot prices of 52 internationally traded commodities from dif-

ferent categories: food, beverages, agricultural raw materials, metals and fuel commodities.

The source of our data is the International Monetary Fund (IMF) primary commodity price

database. We use log changes of monthly averages of daily prices for a sample from January

1980 to December 2015.1 The composition of the IMF dataset has been designed to repre-

sent the world economy, hence it includes the most relevant commodities in terms of trade

values. Details are reported in appendix. Table 1 summarizes the structure of the database,

and reports for each category the respective weights, which are the commodity trade values

as a proportion of the world trade in primary commodities as reported in the UN Comtrade

database. Commodities consist of two main blocks: 45 non-fuel commodities and 7 fuel com-

modities, covering 36.9% and 63.1% of the world trade in commodities. The non-fuel block

includes 28 food and beverages commodities and 17 industrial inputs, whose shares in the

world trade in commodities are 18.5% and 18.4%, respectively. The fuel block includes 3 dif-

ferent types of crude oil, which account for more than 50% of the world trade in commodities

and 4 other less important fuel commodities. The IMF also constructs 10 price indices as

weighted averages of individual commodity prices: one overall index which includes the entire

set of commodities, and several sub-indices covering the categories described above.

2.2 Model and estimation

The model used here is an approximate dynamic factor model for large cross-sections. This

model provides a parsimonious representation of the dynamic co-variation among a set of

random variables. Consider an n-dimensional vector of commodity returns xt = (x1t, ..., xnt)
′.

Under the assumption that xt has a factor representation, each series xit is the sum of the com-

mon component - capturing the bulk of cross-sectional co-movements - and an idiosyncratic

component re�ecting speci�c shocks or measurement errors:

xit = µi + λi,1f1,t + ...+ λi,rfr,t + eit (1)

where f1,t, ..., fr,t are common pervasive factors a�ecting all commodities; λi,1, ..., λi,r are

the factor loadings measuring the e�ect of each common factors to commodity i; if λi is

1A few series start only in the 1990s. Maximum likelihood estimates can be adopted to deal with missing data
(see, Banbura and Modugno, 2014).
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similar across commodities, then ft has a limited impact on relative prices. The residual eit

is the idiosyncratic component which is assumed to be weakly correlated across commodities

and uncorrelated with the common factors. We model the common factors as following an

autoregressive process of �nite order:

A (L) ft = ut (2)

where ft = (f1,t, ..., fr,t)
′
, A (L)= I −A1L− . . . ApL

p is an (r × r) �lter of �nite length p
with roots outside the unit circle, and ut is Gaussian white noise: ut ∼ i.i.dN (0, Ir).

The idiosyncratic errors are modeled with a block factor structure aiming at capturing in

a parsimonious way the correlation withing groups of similar commodities. Speci�cally, the

error eit is decomposed into a component driven by factors that are speci�c to groups or blocks

of commodities and a purely idiosyncratic component:

eit =
K∑
j=1

γijgjt + vit (3)

γij

6= 0 if i ∈ j

= 0 otherwise

where gjt is an rb-dimensional vector of block factors; γij are block factor loadings and vit

is the purely idiosyncratic disturbance. The block factors gjt and the purely idiosyncratic

component vit are assumed to follow an autoregressive process of �nite order:

gjt = φjgjt−1 + wjt (4)

vit = ρivit−1 + εit (5)

with wjt∼i.i.dN (0, 1) and εit∼i.i.dN
(
0, σ2i

)
.

We have assumed that the block factors are uncorrelated. This implies that while commodities

in the same market can be correlated because of complementarities or common technology

shocks, commodity-speci�c shocks cannot spill over to other commodity markets. This is a

strong assumption, which we make in order to maintain the model parsimonious and insure

identi�cation. However, estimates are robust to the possibility that market-speci�c shocks

might spill over, provided that the transmission is limited and does not have pervasive e�ects

(see Doz et al., 2012). This assumption is supported by Baumeister and Kilian (2014) who

found evidence of negligible spill over e�ects from oil price shocks to non-fuel commodity
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prices. The estimates have also been shown to be robust to non-gaussianity. In this respect,

the estimator is a quasi-maximum likelihood estimator in the sense of White (1982).

Principal components are obtained as a special case of our estimates, under the following

assumptions:


γij = 0, ∀i, j

ρi = 0,∀i

σ2i = σ̄,∀i

The presence of complementarities between commodities in the same category indicate the

possibility of signi�cant local correlations. The unbalanced structure of the dataset as de-

scribed in the previous section and the presence of strong correlation within categories are

two important aspects for the estimation of the common factors. Simple methods, such as

principal components, tend to give more weight to categories in the panel that are over-

represented. Under these conditions, factors can be poorly estimated (Boivin and Ng, 2006)

and the number of factors can be mis-speci�ed (Luciani, 2014). To mitigate this problem and

minimize the correlation between idiosyncratic components, one might consider to carefully

select commodities before estimation (Alquist and Coibion, 2015). Alternatively, as done in

this paper, one can explicitly model the local correlation in specifying the factor model.

Maximum likelihood estimation is implemented using the Expectation Maximization (EM)

algorithm as in Doz et al. (2012). The algorithm consists of two steps. In the �rst step

(the M-step), the algorithm is initialized by computing principal components, and the model

parameters are estimated by an OLS regression that treats the principal components as if they

were the true common factors. This is a reasonable initialization since principal components

have been proved to be an asymptotically consistent estimator of the true common factors

when the cross-section dimension is large (see, Forni et al., 2000; Stock and Watson, 2002a,b;

Bai, 2003). Once we have estimated parameters, the second step updates the estimate of the

common factors by using the Kalman smoother. If we stop here, we get the two-step estimates

of the common factors studied by Doz et al. (2011). Maximum likelihood is obtained by

iterating the two steps until convergence, at each step taking into account the uncertainty

related to the fact that factors are estimated.

A growing body of research has applied the quasi-maximum likelihood estimator to extract

common factors from large cross-sections for a variety of empirical applications. For instance,

this method has become a popular tool for now-casting (see, Banbura, Giannone and Reichlin,

2011; Banbura, Giannone, Modugno and Reichlin, 2013; Luciani, 2014). Banbura, Giannone

and Lenza (2015) applied this approach to perform conditional forecasts and scenario anal-

ysis; Brave and Butters (2011) constructed a high-frequency indicator of national �nancial

conditions published by the Federal Reserve Bank of Chicago. This method has also been
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used for structural analysis, as was done, for example, in Reis and Watson (2010) and Luciani

(2015).

2.3 How many factors?

We begin our analysis by estimating common and block-speci�c components using likelihood-

based methods described in the previous section. The factor estimates are computed using

the commodity returns in xt which exclude the higher-level aggregates represented by the

commodity indices. In this way, we avoid introducing - by construction - collinearity in the

panel data given that commodity indices are linear combinations of commodity prices.

We determine the number of blocks to include in the model by following the structure of

our database. In macro-econometrics, data are typically organized either by country, sectoral

origin or economic concept. Therefore the empirical literature on factor models has mostly

looked at the composition of the data set for guidance on the extraction of the blocks. For

instance, Forni and Reichlin (2001) distinguish between European and national components

to study the potential degree of output stabilization deriving from national policies; using

Bayesian estimation methods, Kose, Otrok, and Whiteman (2003) study the sources of the

international business cycle by extracting world, country and regional components; Banbura,

Giannone and Reichlin (2011) use blocks of nominal and real variables for the purpose of now-

casting real economic activity; Miranda-Agrippino and Rey (2015) decompose �uctuations

in risky assets into global, regional and asset-speci�c components. Like those authors, we

extract local factors that re�ect the composition of the panel data which in our case is based

on di�erent commodities categories. Therefore, we extract two main block factors (non-fuel

and fuel), two sub-block factors (food and beverages and industrial inputs) and �nally, �ve

group factors (food, beverages, agricultural raw materials, metals and oil) (Table 1).

To determine the optimal number of common factors from the observed data, we take

into account the trade-o� between the goodness-of-�t and the loss in parsimony that arises

from increasing the number of factors. To do so, we use a modi�ed version of the information

criterion in Bai and Ng (2002). They derive a penalty function to select the optimal number

of factors in approximate factor models when factors are estimated by principal components.

Nevertheless, their statistical approach can be extended to any consistent estimator of the

factors provided that the penalty function is derived from the correct convergence rate.

For the quasi-maximum likelihood estimator used in this paper, Doz et al. (2012) show

that the convergence rate for the factor estimates is given by C∗2nT = min
{√

T , (n/(log(n))
}
.

Hence, a modi�ed version of the Bai and Ng (2002) information criterion (IC) is given by:

IC∗(r) = log(V (r, F(r))) + rg(n, T ), g(n, T ) = ((log(C∗2nT ))/(C∗2nT ))

where r is the number of common factors, T is the number of sample observations, F(r) denotes
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the estimated factors, V (r, F(r)) is the sum of squared idiosyncratic components divided by nT

and g(n, T ) represents the penalty function for over-�tting.2 For our panel data, the statistics

in Table 3 indicates that the model with one common factor provides the smallest value for

the IC statistic. From here on, we will refer to this single common factor in commodity prices

as the global factor.

2.4 Empirical results

The global factor

The global factor estimated over the full sample is shown in Figure 1 along with the IMF

global index of commodity prices. The latter is a linear combination of commodity prices with

weights given by trade values. While cross-sectional averages, such as the IMF index, tend to

approximate well the global factor in the case of limited cross-correlation among idiosyncratic

disturbances (see, Forni and Reichlin, 1998), in practical applications, simple averages may

have a substantial component of noise arising from the idiosyncratic component. As Figure

1 illustrates, the global factor and the IMF broad index of commodity prices resemble each

other,3 but their second-order properties appear to be di�erent. A visual inspection of the

two series suggests that while the broad index of commodity prices is characterized by swift

�uctuations, for instance those associated with the oil price shocks in the early 1990s, the

global factor is a smoother and more persistent series.

Particular attention should clearly be paid to what the global factor captures. A natural

conjecture is that, as a pervasive shock a�ecting a large cross-section of commodity prices,

the global factor might be capturing shifts in the demand for commodities associated with

the global business cycle. In fact, as the global economy expands, so does demand for a broad

group of commodities, directly via the impact on industrial commodities and indirectly via

general equilibrium e�ects. Barsky and Kilian (2002) argued that broad-based variations in

commodity prices are consistent with the evidence of a shift in demand driven by macroeco-

nomic conditions. If so, one would expect the global factor to have homogenous e�ects on

all commodity markets and therefore, limited e�ects on relative prices. This is con�rmed by

the evidence in Figure 2 that shows that the factor loadings associated with the global factor

are mostly positive. Because stronger economic activity is associated with higher commodity

prices, it is not surprising that the global factor is also strongly correlated with indicators

of global real economic activity. To illustrate this, Figure 3 compares the global factor with

the Kilian's index of global real economic activity (Kilian, 2009). Kilian's index, based on

percentage changes of dry cargo ocean freight rates, has been developed to capture shifts in

the demand for industrial commodities associated with periods of high and low real economic

2The information criterion has been recently applied to the quasi-maximum likelihood estimator by Coroneo et
al (2016).

3The correlation coe�cient between the two series is 0.63.
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activity. To make the comparison meaningful, we expressed the global factor in year-on-year

growth rates. As Figure 3 shows, the two indices are positively correlated and follow the

major expansion and contraction phases in the international business cycle over the period

considered with the largest declines following recessions. For example, both measures capture

the fast macroeconomic expansion that characterized the world economy and, in particular

some emerging market economies, from 2003 to 2007. Moreover, both of the them declined

in the second half of 2014, suggesting a weakening in global economic activity which is then

re�ected in the subsequent decline in the price of oil. Likewise, Figure 4 shows that the global

factor is also strongly correlated with monthly indicators of industrial production. As noted

by Kilian (2017), the common factors or broad-based indices of commodity prices are actually

leading indicators with respect to global industrial production, which makes the global factor

a suitable real-time indicator of to estimate aggregate demand pressures in structural models.

To gauge the extent to which the global factor is related to �uctuations in oil prices, Figure

5 shows the global factor with the growth rate of the price of Brent crude oil together with

estimates of global demand and supply of oil. Three observations can be made. First, the

correlation between the global factor and oil prices is only mildly positive over the full sample

although it has increased substantially since the last decade. Second, both the global factor

and the price of oil are positively correlated with measures of world consumption of oil. Third,

the spikes in the price of oil that coincided with some exogenous events in the oil market (the

Persian Gulf War and the Venezuela crisis and the Iraq invasion in 2003), are not associated

with similar variations in the global factor. Rather, these price spikes appear to be associated

with important negative changes in the supply of oil.

As a robustness check, we estimate the model using real commodity prices (i.e. de�ated

by the US CPI). The global factor (as shown in Figure 6) does not appear to be particularly

sensitive to this transformation. This result might re�ect the fact that our sample does not

include high-in�ation periods, such as the Great in�ation of the 1970s.

Sources of commodity price �uctuations

In this section we study the relative importance of global and block-speci�c factors in explain-

ing commodity price �uctuations (tables 4 and 5). For expository purposes, we also compute

a model-based variance decomposition for the commodity indices in our dataset.4The global

factor explains more than two-thirds of the variations of the index in the index of non-fuel

commodities. This stems from the fact that a large fraction of the variance of food com-

modities and metals is captured by the global factor. In particular, the global factor explains

almost half of the variations in soybean and soybean oil, 40 percent of sun�ower oil and

4Let yt be an m-dimensional vector of commodity indices and W be a given (m× n) matrix of weights used to
compute the indices. Then, the variance-covariance matrix of yt is Σy = WΛΣfΛ′W ′+WΣeW ′ where Σf and Σe

are the variance-covariance matrices of the factors and idiosyncratic components, respectively.
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about one-third of copper and palm oil price variations. The strong common component in

the price of these commodities and in particular copper, explains why researchers have used

changes in the price of copper or in a broad index of non-fuel commodity prices to isolate

global demand components (Kilian and Lewis, 2011; Hamilton, 2014). By contrast, the bulk

of the �uctuations in beverages, agricultural raw materials and fuel prices is mostly captured

by block-speci�c factors. Nevertheless, the global factor explains about 20 percent of energy

and oil price �uctuations. Given the large weight attributed to oil prices in the IMF index,

the fuel-speci�c factor explains most of the variance of the overall IMF index of commodity

prices while one-third of its �uctuations are driven by the global factor.

To check the robustness of these results, we include a second global factor in the model.

The results shown in Figure 7 and 8 indicate that the second common factor explains only a

very small share of the variance of commodity prices on average. This fraction is small enough

to reinforce the evidence provided by the IC statistic about the presence of a single global

factor.

Sub-sample analysis

The analysis over the full sample might mask some important changes that might have oc-

curred in the commodity markets, especially since the start of the commodity price boom in

mid-2003. To check that possibility, we conducted a model-based decomposition of the vari-

ance in all the commodity price indices over two sub-samples. We use 2003 as a break date in

line with the observed increase in commodity prices. The sub-sample analysis con�rms that

the global factor explains an important fraction of the variation of non-fuel commodities be-

fore 2003 whereas block-speci�c and idiosyncratic components account for the whole variation

in oil prices in the �rst sub-sample. This evidence suggests that commodity-speci�c shocks

were, on average, a more important determinant of the price of oil than global demand shocks

in the �rst part of the sample. The structural VAR analysis in Kilian and Murphy (2014)

supports this interpretation. Their work shows that key historical events in the oil market

over this period, such as the collapse of the OPEC cartel in 1986, the Persian Gulf war in

1990-91 and the Venezuela crisis in 2002, mostly re�ected shocks to the speculative demand

for oil together with supply shifts. The decomposition estimated over the second sub-sample

indicates that the importance of the global factor has increased remarkably since 2003 for oil

and metals for which the share of the variance explained by the global factor increased to 40

and 60 percent, respectively. As a result, the share of the variance of the IMF index that can

be attributed to the global factor has also increased from less than 10 percent to 60 percent

in the period starting in 2003.
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Historical decompositions of commodity price changes

As sustained changes in the global factor tend to be indicative of aggregate demand pressures,

our factor-structure approach, although it is not structural in nature, allows to disentangle

demand-driven commodity price �uctuations that are associated with the global business

cycle from those that are commodity-speci�c, such as supply-driven �uctuations. Commodity-

speci�c shocks are unlikely to spill over to other commodities and their e�ects are likely to be

con�ned to their speci�c market or to markets of commodities in their category. In our model

their e�ects will not show up in the common component but in the idiosyncratic and block-

speci�c factors. As discussed in previous sections, a clear advantage of the block structure is

that it obviates any need to carefully select the commodities that enter the factor model as

practiced in Alquist and Coibion (2014) and discussed in Kilian (2017). To keep the panel

balanced and avoid over-representation of some categories which could bias the estimates of

the factors toward some markets, Alquist and Coibion (2014) extract a common factor from

a restricted group of commodities that are supposedly unrelated. Rather than selecting the

variables before estimation, our approach uses a block structure to mitigate this issue.

In addition, local factors can be confused with global variations in the absence of a block

structure. To illustrate this, we compare the estimated global and block factors of our bench-

mark speci�cation (M1) with three common factors extracted from a factor model in which

the local correlation among idiosyncratic components (M2) is not modeled (Figure 10). The

�rst common factors of the two models are very much alike. The second common factor in

M2 is akin to the Non-Fuel block in M1. The third factor of M2 is highly correlated with the

fuel block in M1 and, to some extent, with the food and beverages sub-block.

In what follows we review a few key historical episodes of commodity price variation in

our sample through the lens of our model. The model allows the analysis of a large panel

of commodity prices, but for reasons of space we focus on an arbitrary and small number of

commodities with large trading volume. An important event in the commodity markets was

the run-up in commodity prices from 2003 to mid-2008. Numerous studies have found that the

fast economic expansion of China and other emerging market economies, caused the surge in

prices (see, Hamilton, 2009; Kilian and Hicks, 2013; Aarsveit et al., 2014). A decomposition

of the price of oil indicates that the cumulative e�ect of shifts in the global factor largely

explains the oil price surge after 2003, while the fuel-speci�c component had a smaller role

(Figure 11, top left panel). This result is consistent with estimates from empirical models

of the global oil market, which attributed the bulk of the cumulative increase in the price

of oil to global demand shocks (Kilian, 2009; Baumeister and Peersman, 2013; Kilian and

Murphy, 2014). Fuel-speci�c components were important to explain the increase in the price

of oil in the early 2000s, also in line with previous estimates. For non-fuel commodity prices,

the global factor is by far the most important determinant of the surge (Figure 11, top right

panel and bottom panels), suggesting that commodity prices responded to the same economic
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fundamentals in that period.5

We consider four historical episodes in the oil market (Figure 12). The �rst two are

the oil price decline that followed the collapse of the OPEC cartel in late 1985 and the oil

price spike that occurred in response to the Iraqi invasion of Kuwait in 1990. These can be

viewed as examples of price variations that are driven by factors speci�c to the oil market and

unrelated to changes in macroeconomic conditions. The historical decomposition shows that,

in both episodes, fuel-speci�c factors were the main underlying sources of oil price changes

that occurred before 2000, while the global factor clearly had no role (Figure 12, top panels).

This is consistent with evidence from structural models of the oil market that showed that

shifts in the inventory demand and in the supply of oil were the most important determinant

of the oil price in both episodes. The other two episodes, the price decline that started in

mid-2008 as a result of the contraction in world economic activity and the decline beginning

in the second half of 2014. The drop starting in mid-2008 is mostly explained by the global

factor (Figure 12, bottom left panel). There is also evidence that the oil-speci�c component

exerted further downward pressures on the price of oil since the end of 2008. Regarding the

decline from mid-2014 to end-2015, an initial assessment by Baumeister and Kilian (2016)

found that global demand was the main cause of the decline from June to December 2014.

We �nd that while the global factor explains most of the initial drop, cumulative changes in

the fuel-speci�c component explain most of the variations since the end of 2014. Thus, the

model attributes about one-third of the oil price fall from June 2014 to December 2015 to

the global factor (Figure 12, bottom right panel). The increasing relevance of fuel-speci�c

components since the end of 2014 coincides with the decision of OPEC in November 2014

to hold production unchanged in order to put downward pressure on prices. The empirical

�ndings in Ba�es et al. (2015) and Groen and Russo (2015) appear to be consistent with

ours.

3 Predictive content of the global factor

A growing empirical literature has used factor models estimated on panels of commodity

prices for forecasting purposes. Common factors have been used to forecast commodity prices

themselves (see, West and Wong, 2014; Poncela et al., 2015) or other macro-variables such

as in�ation (Gospodinov and Ng, 2013). Other empirical studies have investigated whether

macroeconomic and �nancial data have predictive power for commodity prices (see, Chen,

5A di�erent view expressed by some observers and by a few studies in the �nancial literature (e.g. Tang
and Xiong, 2012), has associated the across-the-board surge in commodity prices in 2003-2008 with the growing
participation of �nancial speculators in commodity markets at the beginning of the 2000s. A large body of research,
however, has provided compelling evidence that �nancial speculation did not have an e�ect on commodity prices
(e.g. Kilian and Murphy, 2014; Kilian and Lee, 2014; Juvenal and Petrella, 2014). For a survey of this literature,
the reader is referred to Fattouh, Kilian and Mahadeva (2013).
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Rogo� and Rossi, 2012; Groen and Pesenti, 2011). A strand of the literature focusing on

the price of oil has found that proxies of global demand have predictive power for commodity

prices (see, Baumeister and Kilian, 2012). Similarly, changes in the spot price of industrial raw

materials have been shown to improve the forecast of the price of oil, as those price changes

are more likely to capture shifts in the global demand for industrial commodities (see, Alquist,

Kilian and Vigfusson, 2013).

In this section we perform an out-of-sample validation of the model to verify the robustness

of our modeling strategy. Starting from January 2001, we compute out-of-sample forecasts of

commodity prices each month from February 2001 to December 2015 using a rolling window

of 20 years of past data. The h-step ahead forecasts for individual commodity prices are iter-

ated from the state-space representation using the Kalman �lter while forecasts for aggregate

commodity indices are computed as averages of the individual commodity price forecasts,

weighted by trade weights.6We �rst compute the sequence of di�erences in the out-of-sample

forecast errors, comparing the model with a naive benchmark (i.e. a constant growth model).

We then calculate the average loss di�erence as well as rolling average losses along the lines

of the �uctuation test in Giacomini and Rossi (2010). This test, which is useful for studying

the forecasting performance of a model in an unstable environment, is based on the di�erence

between the mean squared forecast error (MSFE) of the candidate model and the benchmark,

smoothed over time with a centered rolling window of �xed size. The statistical signi�cance

of the relative performance of the model against the benchmark is then tested at each point

in time using the Diebold and Mariano (1995) test of equal predictive accuracy.

The main results of the out-of-sample forecasting exercise are as follows. First, the model

performs well in predicting commodity prices and indices at short horizons. At h = 1, the

model outperforms the benchmark with gains in accuracy that range from 18% for the non-fuel

index to 12% for the fuel index (Table 6). The forecasts of disaggregated commodity prices

(Table 7) indicate that the model provides the largest gains in accuracy for food and metals

(for instance, copper (19%), rice (19%), poultry (46%), cotton (17%) and aluminum (12%)).

However, at h = 1, the reduction in the MSFE is also notable for oil prices for which gains

range between 9% and 12%. Second, the predictive performance deteriorates progressively

over longer horizons. At h = 12, we cannot reject the null hypothesis of equal predictive

performance between the model and the benchmark. Last, we �nd that the predictive ability

of the model has changed over time. The evolution of the rolling relative MSFE in Figure 13

indicates that the predictability of oil and other energy commodities increased markedly in the

second half of the period. Indeed, from 2007 to 2011, the MSFE of the factor model improved

substantially compared with the benchmark. However, given the high level of volatility, the

6For each series, the variable that is predicted is Xh
i,t+h = 100× ln(Xi,t+h/Xi,t). The model is parametrized as

in the previous sections, a single global factor, a single factor for block, sub-block and group of commodity prices
and one lag in the factor VAR. We also provide the forecasting results for a model speci�ed - as robustness check -
with two global factors.
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test cannot reject the null hypothesis of equal predictive accuracy. The �nding of a better

predictive performance during the Great Recession is consistent with previous results show-

ing that, for macroeconomic and �nancial variables, downturn periods are characterized by

increased co-movement (see, D'Agostino and Giannone, 2012).

4 Concluding remarks

We studied the co-movement in international commodity returns by analyzing a broad range

of commodities, that are representative of the global market. Our results indicate that co-

movement is not only as strong as documented by Pindyck and Rotemberg (1990) but it

has been also strengthening since the beginning of the 2000s. Contrary to earlier studies,

however, we �nd that the co-movement is neither excessive nor puzzling. Instead, it is driven

by a pervasive factor that is strongly related to measures of global economic activity, which

suggests that the factor is closely linked to demand determinants.
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Figure 1: The global factor
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Note: The �gure shows the estimated global factor (blue line) and the IMF index of commodity prices
(gray line).
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Figure 2: Factor loadings associated with the global factor

A
lu

m
in

iu
m

B
an

an
as

B
ar

le
y

B
ee

f
C

oa
l

C
oc

oa
C

of
fe

e 
A

.
C

of
fe

e 
R

.
R

ap
es

ee
d 

oi
l

C
op

pe
r

C
ot

to
n

F
is

h 
m

ea
l

P
ea

nu
ts

H
id

es
Ir

on
 o

re
La

m
b

Le
ad

S
of

t l
og

s
H

ar
d 

lo
gs

M
ai

ze
E

U
 N

at
ur

al
 G

as
JP

 N
at

ur
al

 G
as

U
S

 N
at

ur
al

 G
as

N
ic

ke
l

B
re

nt
 o

il
D

ub
ai

 o
il

W
T

I o
il

O
liv

e 
oi

l
O

ra
ng

es
P

al
m

 o
il

P
or

k
P

ou
ltr

y
R

ic
e

R
ub

be
r

S
al

m
on

H
ar

d 
S

aw
nw

oo
d

S
of

t S
aw

nw
oo

d
S

hr
im

ps
S

oy
be

an
 m

ea
l

S
oy

be
an

 O
il

S
oy

be
an

s
E

U
 S

ug
ar

 
S

ug
ar

 
U

S
 S

ug
ar

 
S

un
flo

w
er

 o
il

T
ea T
in

U
ra

ni
um

W
he

at
C

oa
rs

e 
w

oo
l

F
in

e 
w

oo
l

Z
in

c-0.1

0

0.1

0.2

0.3

0.4

0.5

21



Figure 3: The global factor and the Kilian's index of real economic activity
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Note: The �gure plots the global factor (blue line) and the Kilian (2009) index of real economic activity
(red line). The global factor is expressed in year-on-year growth rates.
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Figure 4: The global factor and industrial production indices
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Note: The �gure plots the estimated global factor (blue line) and measures of industrial production in
selected areas as provided by the CPB Netherlands Bureau for Economic Policy Analysis. All variables
are expressed in year-on-year growth rates.
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Figure 5: Oil and the Global Factor

Note: All variables are expressed in year-on-year growth rates. Estimates for the world oil consumption
are taken from Short-Term Energy Outlook of the Energy Information Administration (EIA) while the
world crude oil production is taken from the Monthly Energy Review of EIA. The vertical bars represent
periods of widespread economic slowdown. In particular, we include the early 1980s and 1990s recessions,
the Asian �nancial crisis of 1997�1998, the recession that followed the bursting of the dot-com bubble in
the 2000s, the Great Recession and, the euro area recession in 2011-2013.
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Figure 6: The global factor extracted from real commodity prices
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Note: The upper panel of the �gure reports the estimated global factor extracted from real com-
modity prices (US CPI de�ated). The lower panel compares the nominal and the real global factor
expressed in year-on-year growth rates.

25



Figure 7: Variance explained by the �rst two global factors
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Figure 8: Variance explained by the �rst two global factors
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Figure 9: Variance decomposition: sub-sample analysis
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Note: The �gure reports the variance decomposition of commodity price indices over two sub-samples.

The share of the variance explained by the global factor is captured by the blue bar. The gray bar is the

percentage of the variance explained by block-speci�c and idiosyncratic components. The �rst sub-sample

goes from Jan. 1981 to Dec. 2002; the second goes from Jan. 2003 to Dec. 2015.
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Figure 10: Block factors and weak common factors
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mark speci�cation (M1) with the �rst three common factors extracted from a factor model that does not
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Figure 11: Historical decompositions of commodity prices
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Note: The �gure reports the historical decomposition of the price for a selected group of energy, metal

and food commodities, showing the cumulative e�ects at each point in time of global (blue), block-speci�c

(red) and idiosyncratic (gray) shocks from January 2000 to July 2008.
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Figure 12: Historical decompositions of the price of oil in selected episodes
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historical episodes of large oil price variations.
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Figure 13: Time-varying predictability
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benchmark, smoothed over time with a centered rolling window spanning 4 years. A negative number
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bands are represented by the shaded area and are derived from testing the null hypothesis of equal
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Table 1: Structure of the database

Global Blocks Sub-blocks Groups N. Series Share (in %)

All commodities 52

Non-Fuel 45

36.9

Food & Beverages 28

18.5

Food 24

16.7

Beverages 4

1.8

Industrial Inputs 17

18.4

Agricultural Raw Materials 9

7.7

Metals 8

10.7

Energy 7 63.1

Oil 3

53.6
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Table 2: Data description

Mnemonic Unit description IMF global commodity index
2002-2004 weights

PALLFNF Index All Commodity Price Index, 2005 = 100, includes both Fuel and Non-Fuel 100.0
PNFUEL Index Non-Fuel Price Index, 2005 = 100, Food and Beverages and Industrial Inputs 36.9
PFANDB Index Food and Beverage Price Index, 2005 = 100, Food and Beverage 18.5
PFOOD Index Food Price Index, 2005 = 100, Cereal, Vegetable Oils, Meat, Seafood, Sugar, Bananas, Oranges 16.7
PBEVE Index Beverage Price Index, 2005 = 100, Co�ee, Tea, Cocoa 1.8
PINDU Index Industrial Inputs Price Index, 2005 = 100, Agricultural Raw Materials and Metals 18.4
PRAWM Index Agricultural Raw Materials Index, 2005 = 100, Timber, Cotton, Wool, Rubber, Hides 7.7
PMETA Index Metals Price Index, 2005 = 100, Copper, Aluminium, Iron Ore, Tin, Nickel, Zinc, Lead,Uranium 10.7
PNRG Index Fuel (Energy) Index, 2005 = 100, Crude oil , Natural Gas, Coal 63.1
POILAPSP Index Crude Oil (petroleum), Price index, 2005 = 100, simple average of Brent, WTI, Dubai Fateh 53.6
PALUM USD Aluminium, 99.5% minimum purity, LME spot price, CIF UK ports, USD per metric ton 3.9
PBANSOP USD Bananas, Central American and Ecuador, FOB U.S. Ports, USD per metric ton 0.4
PBARL USD Barley, Canadian no.1 Western Barley, spot price, USD per metric ton 0.3
PBEEF USD Beef, Australian and New Zealand 85% lean fores, CIF U.S. import price, US cents per pound 1.4
PCOALAU USD Coal, Australian thermal coal, 12,000- btu/pound, FOB Newcastle/Port Kembla, USD(metric ton) 2.6
PCOCO USD Cocoa beans, Int. Cocoa Org. cash price, CIF US and European ports, USD per metric ton 0.7
PCOFFOTM USD Co�ee, Other Mild Arabicas, Int. Co�ee Org. NY cash price, US cents per pound 0.5
PCOFFROB USD Co�ee, Robusta, Int. Co�ee Org. NY cash price, US cents per pound 0.4
PROIL USD Rapeseed oil, crude, fob Rotterdam, USD per metric ton 0.3
PCOPP USD Copper, grade A cathode, LME spot price, CIF European ports, USD per metric ton 2.8
PCOTTIND USD Cotton,Outlook 'A Index', Middling 1-3/32 inch staple, CIF Liverpool, US cents per pound 0.7
PFISH USD Fishmeal, Peru Fish meal/pellets 65% protein, CIF, USD per metric ton 0.2
PGNUTS USD Groundnuts (peanuts), 40/50 , cif Argentina, USD per metric ton 0.2
PHIDE USD Hides, Heavy native steers, over 53 pounds, wholesale price, US, Chicago, US cents per pound 2.6
PIORECR USD China import Iron Ore Fines 62% FE spot (CFR Tianjin port), US dollars per metric ton 1.3
PLAMB USD Lamb, frozen carcass Smith�eld London, US cents per pound 0.3
PLEAD USD Lead, 99.97% pure, LME spot price, CIF European Ports, USD per metric ton 0.2
PLOGORE USD Soft Logs, Average Export price from the U.S. for Douglas Fir, USD per cubic meter 0.4
PLOGSK USD Hard Logs, Best quality Malaysian meranti, import price Japan, USD per cubic meter 0.4
PMAIZMT USD Maize (corn), U.S. No.2 Yellow, FOB Gulf of Mexico, U.S. price, USD per metric ton 1.0
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PNGASEU USD Natural Gas, Russian Natural Gas border price in Germany, USD per thousands of cubic meters of gas 3.2
PNGASJP USD Natural Gas, Indonesian Lique�ed Natural Gas in Japan, USD per cubic meter of liquid 1.9
PNGASUS USD Natural Gas, Henry Hub terminal in Louisiana, USD per thousands of cubic meters of gas 1.9
PNICK USD Nickel, melting grade, LME spot price, CIF European ports, USD per metric ton 1.1
POILBRE USD Crude Oil (petroleum), Dated Brent, light blend 38 API, fob U.K., USD per barrel 17.9
POILDUB USD Oil; Dubai, medium, Fateh 32 API, fob Dubai Crude Oil, Dubai Fateh Fateh 32 API, USD per barrel 17.9
POILWTI USD Crude Oil (petroleum), West Texas Intermediate 40 API, Midland Texas, USD per barrel 17.9
POLVOIL USD Olive Oil, extra virgin less than 1% free fatty acid, ex-tanker price U.K., USD per metric ton 0.3
PORANG USD Oranges, miscellaneous oranges CIF French import price, USD per metric ton 0.5
PPOIL USD Palm oil, Malaysia Palm Oil Futures (�rst contract forward) 4-5 percent FFA, USD per metric ton 0.7
PPORK USD Swine (pork), 51-52% lean Hogs, U.S. price, US cents per pound 1.1
PPOULT USD Poultry (chicken), Whole bird price, Ready-to-cook, whole, iced, Georgia, US cents per pound 0.9
PRICENPQ USD Rice, 5 percent broken milled white rice, Thailand nominal price quote, USD per metric ton 0.6
PRUBB USD Rubber, Singapore Commodity Exchange, No. 3 Rubber Smoked Sheets, 1st contract, US cents-pound 0.5
PSALM USD Fish (salmon), Farm Bred Norwegian Salmon, export price, USD per kilogram 2.5
PSAWMAL USD Hard Sawnwood, Dark Red Meranti, select and better quality, C&F U.K port, USD per cubic meter 0.8
PSAWORE USD Soft Sawnwood, average export price of Douglas Fir, U.S. Price, USD per cubic meter 1.8
PSHRI USD Shrimp, No.1 shell-on headless, 26-30 count per pound, Mexican origin, NY port, US cents-pound 0.7
PSMEA USD Soybean Meal, Chicago Soybean Meal Futures Minimum 48 percent protein, USD per metric ton 0.8
PSOIL USD Soybean Oil, Chicago Soybean Oil Futures exchange approved grades, USD per metric ton 0.4
PSOYB USD Soybeans, U.S. soybeans, Chicago Soybean futures contract No. 2 yellow and par, USD per metric ton 1.2
PSUGAEEC USD Sugar, European import price, CIF Europe, US cents per pound 0.2
PSUGAISA USD Sugar, Free Market, CSCE contract n.11, US cents a pound 0.6
PSUGAUSA USD Sugar, U.S. import price, contract no.14 nearest futures position, US cents a pound 0.1
PSUNO USD Sun�ower oil, Sun�ower Oil, US export price from Gulf of Mexico, USD per metric ton 0.2
PTEA USD Tea, Mombasa, Kenya, Auction Price, US cents per kg, From July 1998, Best Pekoe Fannings 0.3
PTIN USD Tin, standard grade, LME spot price, USD per metric ton 0.2
PURAN USD Uranium, NUEXCO, Restricted Price, Nuexco exchange spot, USD per pound 0.5
PWHEAMT USD Wheat, No.1 Hard Red Winter, ordinary protein, FOB Gulf of Mexico, USD per metric ton 1.7
PWOOLC USD Wool, coarse, 23 micron, Australian Wool Exchange spot quote, US cents per kilogram 0.3
PWOOLF USD Wool, �ne, 19 micron, Australian Wool Exchange spot quote, US cents per kilogram 0.2
PZINC USD Zinc, high grade 98 percent pure, USD per metric ton 0.6
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Table 3: Model Selection

Number of global factors
r = 1 r = 2 r = 3 r = 4 r = 5

IC∗ 11.77 11.92 12.07 12.26 12.41

log(V ) 11.57 11.53 11.48 11.47 11.43
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Table 4: Variance decomposition of commodity indices

Indices Global Non Fuel Food- Food Bev. Ind. Agric. Metals Fuel Oil Idiosyncratic

Bev. Inputs Raw Mat.

All Commodities 34.1 0.2 0.1 0 0 0 0 0.2 62.7 0 2.6
Non-Fuel 68.6 3.1 1.7 0.1 0.5 0 0.8 3.7 0 0 21.3
Food and Beverages 58.0 0 6.7 0.4 1.8 0 0 0 0 0 33.2
Food 55.4 0.1 8.6 0.4 0 0 0 0 0 0 35.6
Beverages 9.3 1.0 1.0 0 50.4 0 0 0 0 0 38.4
Industrial Inputs 48.4 7.9 0 0 0 0.7 2.0 9.2 0 0 31.8
Agricultural Raw Materials 10.5 1.4 0 0 0 31.2 8.3 0 0 0 48.6
Metals 43.2 7.5 0 0 0 5.2 0 13.8 0 0 30.3
Energy 19.9 0 0 0 0 0 0 0 78.1 0 2.0
Oil 17.7 0 0 0 0 0 0 0 81.2 0 1.1

Note: The table reports the model-based variance decomposition of commodity indices estimated over the sample January 1981 - December 2015.
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Table 5: Variance decomposition of commodity prices

Commodity prices Global Non-Fuel Food- Food Bev. Ind. Agric. Metals Fuel Oil Idiosyncratic

Bev. Inputs Raw Mat.

Aluminium 23.6 7.4 - - - 3.4 - 0.5 - - 65.1

Bananas 0.4 0.3 1 1.2 - - - - - - 96.9

Barley 21.6 0.1 8 0.01 - - - - - - 70.0

Beef 0.8 1 0.5 0.4 - - - - - - 97.7

Coal 16.7 - - - - - - - 0.5 - 82.8

Cocoa 4.4 0.3 2.4 - 4.0 - - - - - 88.9

Co�ee Arabica 5.2 0.7 0.1 - 67.3 - - - - - 26.7

Co�ee Robusta 6.4 0.5 0.1 - 70.1 - - - - - 22.9

Rapeseed Oil 15.2 0.2 0.01 0.04 - - - - - - 84.5

Copper 30.8 9.4 - - - 1.4 - 6.2 - - 52.2

Cotton 13.7 0.4 - - - 0.2 2.1 - - - 83.6

Fish meal 4.3 1 4.1 2.7 - - - - - - 87.9

Peanuts 1.1 0.8 20.3 8.0 - - - - - - 69.8

Hides 3.7 0.6 - - - 15.2 32.2 - - - 48.3

Iron ore 2.6 11.1 - - - 3.3 - 77.0 - - 6.0

Lamb 6.7 1.1 9.3 0.2 - - - - - - 82.7

Lead 18.9 3.9 - - - 1.3 - 1.7 - - 74.3

Soft logs 1.1 0 - - - 3.3 1.1 - - - 94.2

Hard logs 0.7 0 - - - 54.1 4.3 - - - 40.9

Maize 23.0 0.9 21 0.4 - - - - - - 55.0

EU Natural gas 0.0 - - - - - - - 5.7 - 94.3

JP Natural gas 1.3 - - - - - - - 0.4 - 98.3

US Natural gas 1.6 - - - - - - - 1.0 - 97.4

Nickel 19.2 10.1 - - - 1.8 - 0.8 - - 68.1

Brent oil 17.0 - - - - - - - 78.1 0.4 4.5

Dubai oil 17.6 - - - - - - - 77.0 2.0 3.3

WTI oil 16.1 - - - - - - - 77.2 5 1.3

Olive oil 2.7 2.8 10.1 0.4 - - - - - - 84.0

Oranges 0.6 0 1 0.8 - - - - - - 97.6

Palm oil 28.7 0.3 2.3 0.05 - - - - - - 68.6

Pork 0.4 0.01 0.2 0.0 - - - - - - 99.4

Poultry 0.0 1 3 0.9 - - - - - - 95.8

Rice 2.7 1.6 3.4 0.02 - - - - - - 92.4

Rubber 22.1 2.8 - - - 0.01 0.7 - - - 74.4

Salmon 6.0 1.5 2.8 0.06 - - - - - - 89.7

Hard Sawnwood 2.7 0.1 - - - 47.1 3.4 - - - 46.7

Soft Sawnwood 0.0 0.0 - - - 3.1 0.9 - - - 96.0

Shrimp 0.4 0.0 0.1 23.8 - - - - - - 75.8

Soybean meal 28.6 0.3 38 0.1 - - - - - - 33.2

Soybean oil 45.9 1.0 13 0.0 - - - - - - 39.6

Soybeans 48.7 0.8 38 0.2 - - - - - - 12.2

EU sugar 10.1 2.7 8.4 0.2 - - - - - - 78.5

Sugar 4.6 0.0 1 0.9 - - - - - - 93.8

US sugar 3.1 0 0.8 1.3 - - - - - - 94.8

Sun�ower oil 40.1 43 9.9 0.1 - - - - - - 6.5

Tea 0.9 0.4 0.3 - 1 - - - - - 97.6

Tin 21.9 2.0 - - - 0.4 - 2.0 - - 73.7

Uranium 1.8 0.0 - - - 0.01 - 1.1 - - 97.1

Wheat 17.1 0.2 10.1 0.5 - - - - - - 72.0

Coarse wool 13.0 4.1 - - - 1.0 2.1 - - - 79.9

Fine wool 10.4 3 - - - 0.0 4.7 - - - 81.9

Zinc 18.6 10.7 - - - 3.1 - 3.0 - - 64.6

Note: The table reports the model-based variance decomposition of commodity prices estimated over the sample

January 1981 - December 2015.
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Table 6: Out-of-sample forecasting performance

h=1 h=12

RMSE Relative MSE RMSE Relative MSE

Indices Benchmark r=1 r=2 Benchmark r=1 r=2

All commodities 5.22 0.84* 0.85* 24.98 1.05 1.06
Non-fuel 3.06 0.82** 0.84* 15.21 1.11 1.11
Food and Beverages 3.19 0.85** 0.85** 14.27 1.09** 1.09**
Food 3.30 0.85** 0.85** 14.64 1.11*** 1.11***
Beverages 4.19 0.97 0.96 17.67 1.04 1.04
Industrial Inputs 3.92 0.83** 0.86 20.65 1.01 1.01
Agricultural Raw Materials 3.12 0.81** 0.81** 14.71 0.98* 0.98
Metals 5.05 0.88 0.95 26.15 1.04 1.04
Energy 7.33 0.88 0.89 32.57 1.05 1.05
Oil 8.55 0.88 0.89 35.68 1.01 1.01

Note: The table shows the root mean forecast error (RMSE) of a benchmark model, i.e. a constant growth
model and the MSE of the candidate forecasting model relative to the benchmark. A ratio smaller than 1
indicates that the factor model forecasts are on average more accurate. (*), (**) and (***) indicate rejection
of the null of equal predictive accuracy at the 10%, 5% and 1% level based on the Diebold and Mariano (1995)
statistic. The model estimation is rolling using a �xed window of 20 years and the estimation starts in 2001:1.
The evaluation period goes from 2001:2 to 2015:12. As robustness check, the table also displays the relative
MSE for a model speci�cation with two global factors.
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Table 7: Out-of-sample forecasting performance

h=1 h=12

RMSE Relative MSE RMSE Relative MSE

Commodity prices Benchmark r=1 r=2 Benchmark r=1 r=2

Aluminium 5.14 0.89 0.88 22.10 1.03 1.03

Bananas 11.61 0.99 1.00 22.69 1.00 1.00

Barley 6.49 0.89 * 0.90 27.69 1.01 1.01

Beef 4.52 0.94 * 0.94 * 16.08 1.00 1.00

Coal 7.06 0.85 * 0.85 * 37.41 1.02 1.02

Cocoa 6.05 0.98 0.98 23.34 1.04 1.04

Co�ee Arabica 6.51 0.99 0.99 28.24 0.98 0.98

Co�ee Robusta 5.91 0.98 0.98 26.51 0.97** 0.97**

Rapeseed Oil 5.75 0.84 ** 0.85 ** 27.12 0.98 0.98

Copper 7.05 0.82 * 0.81 * 32.63 1.05 1.05

Cotton 6.32 0.83 ** 0.83 ** 32.30 0.98 * 0.98 *

Fish meal 4.88 0.88 *** 0.87 *** 22.02 1.04 1.05

Peanuts 4.91 1.09 1.10 27.16 1.06 1.06

Hides 6.87 0.94 0.95 25.77 1.04 1.04

Iron ore 8.77 1.88 *** 3.78 *** 35.50 3.12 *** 3.12 ***

Lamb 3.44 0.88 ** 0.87 ** 17.87 1.00 1.00

Lead 7.99 0.96 0.96 36.88 1.03 1.03

Soft logs 6.64 0.86 ** 0.86 ** 13.24 1.02 1.02

Hard logs 3.15 0.88 *** 0.88 *** 14.86 1.00 1.00

Maize 6.30 0.96 0.97 27.03 1.02 1.03

EU Natural gas 6.41 1.26 1.38 ** 34.63 1.44 1.47

JP Natural gas 7.13 0.98 0.98 29.33 1.00 1.00

US Natural gas 13.22 1.00 1.00 44.65 1.01 1.01

Nickel 8.99 0.92 0.91 42.67 1.05 1.05

Brent oil 8.97 0.90 0.91 36.18 1.00 1.01

Dubai oil 8.48 0.87 0.88 35.38 1.01 1.01

WTI oil 8.78 0.89 0.90 36.07 1.01 1.02

Olive oil 4.19 0.90 ** 0.90 ** 18.33 1.03 1.03

Oranges 12.05 0.96 0.97 23.08 1.13 *** 1.13 ***

Palm oil 7.83 0.92 0.92 32.21 1.04 1.04

Pork 9.14 0.98 0.98 23.38 0.99 0.99

Poultry 1.27 0.54 *** 0.54 *** 6.32 0.96 0.96

Rice 5.92 0.81 0.81 25.86 1.01 1.01

Rubber 8.27 0.89 * 0.90 * 37.20 1.00 1.00

Salmon 7.03 0.92 0.93 22.26 1.04 1.04

Hard Sawnwood 2.12 0.99 1.00 8.13 1.05** 1.05 *

Soft Sawnwood 5.72 0.91 0.91 10.04 0.96** 0.96 **

Shrimp 5.00 0.98 0.99 20.98 1.00 1.00

Soybean meal 7.10 0.93 0.92 * 25.04 1.05 1.05

Soybean oil 6.06 0.91 0.91 27.67 1.02 1.02

Soybeans 6.51 0.91 * 0.90 * 26.61 1.03 1.03

EU sugar 2.15 0.86 0.86 * 9.67 1.06* 1.06 *

Sugar 7.71 0.97 0.97 30.31 1.04 1.04

US sugar 3.53 0.88 ** 0.88 ** 17.71 0.97 0.97

Sun�ower oil 9.31 0.88 0.88 38.76 1.19 1.19

Tea 7.08 0.99 0.99 19.23 1.05 1.05

Tin 6.73 0.88** 0.88 ** 33.83 1.00 1.00

Uranium 6.55 0.90 0.90 38.87 0.98 0.98

Wheat 7.41 0.96 0.96 29.83 1.05** 1.05 *

Coarse wool 5.80 0.91* 0.91 * 28.39 1.03 1.03

Fine wool 6.06 0.91** 0.91 ** 25.82 1.04 1.04

Zinc 6.84 0.92 0.92 36.65 1.01 1.01

Note: The table shows the root mean forecast error (RMSE) of a benchmark model, i.e. a constant growth
model and the MSE of the candidate forecasting model relative to the benchmark. A ratio smaller than 1
indicates that the factor model forecasts are on average more accurate. (*), (**) and (***) indicate rejection
of the null of equal predictive accuracy at the 10%, 5% and 1% level based on the Diebold and Mariano (1995)
statistic. The model estimation is rolling using a �xed window of 20 years and the estimation starts in 2001:1.
The evaluation period goes from 2001:2 to 2015:12. As robustness check, the table also displays the relative
MSE for a model speci�cation with two global factors.
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