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1 Introduction

Can financial markets aggregate information dispersed among traders? Are financial
markets perfectly competitive so that traders can achieve their target inventories? Is
there any relationship between information aggregation and competition? To address
these questions, we study a model of a double auction among finitely many traders
who are all rational, strategic, risk averse, and informed about the value of a risky as-
set. Traders trade both to speculate on their private information and to hedge their
endowments.

Toprovide insights into thequestionsabove,wedevelopconcretemeasuresof com-
petition and informational efficiency. We measure competition by the ratio between
the quantity a trader optimally trades and the hypothetical quantity the trader would
have traded if he were a price taker. Wemeasure informational efficiency by the preci-
sion of information a trader learns from the price as a fraction of the precision of all in-
formation available in themarket. We find that the strategic incentives of traders, who
trade off speculating on their information against hedging their endowments, prevent
financial markets from achieving both full informational efficiency and perfect com-
petition simultaneously, even with infinitely many traders.

Ourmodel builds on Kyle (1989), in which traders with constant absolute risk aver-
sion (CARA) preferences compete in demand schedules. We remove noise traders and
instead assume traders receive both deterministic and random endowments, follow-
ing the competitivemodel of Diamond and Verrecchia (1981). We allow the asset value
to contain residual uncertainty, about which no trader receives any information.

The private information and endowments may be conditionally correlated pro-
vided that their pairwise correlations are the same on average, similar to the concept
of “equicommonality” that Rostek and Weretka (2012) use to generalize the model of
Vives (2011). Traders then can be considered to be divided into groups so that the pri-
vate signals are identical within each group and conditionally independent across dif-
ferent groups, since the distribution of the correlations does not affect equilibrium; we
refer to the number of traders in each group and the number of groups as the industrial
organization parameters.

There are six main results in the paper. Our first main result is that competition in
equilibrium depends only on the two industrial organization parameters and on in-
formational efficiency. This implies informational efficiency fully captures the effects
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that the other exogenous parameters, private information, endowments, and residual
uncertainty, have on competition.

Our second main result is that competition and informational efficiency are in-
versely related. As intuition suggests, competition increaseswhen therearemore traders
in each group and when there are more groups. More surprisingly, holding the two
industrial organization parameters constant, competition decreases in informational
efficiency; any changes in private information, endowments, and residual uncertainty
that increase informational efficiency would decrease competition, and vice versa.

This inverse relationship between competition and informational efficiency results
from the traders’ strategic incentives: (1) Prices aremade informative by traders incor-
porating their private information into the price. (2) From the traders’ perspective,
incorporating their information into the price simply means incurring trading costs.
(3) To avoid incurring large trading costs, traders restrict the quantities they trade, sac-
rificing the opportunity to hedge endowments.

Furthermore, increasing the industrial organization parameters—which always in-
creases competition—does not make the price more informationally efficient. Intu-
itively, informational efficiency isdeterminedby the importanceof the speculativemo-
tive relative to the hedgingmotive. While more competitionmakes traders trademore
aggressively overall, it does not strengthen the traders’motive to speculative on private
information relative to theirmotive to hedge risky endowments. Thus, the inverse rela-
tionship between competition and informational efficiency remains unchangedwhen
the industrial organization parameters are also allowed to vary.

Our thirdmain result, which follows from this inverse relationship, is that obtaining
perfect competition with infinitely many traders depends on the industrial organiza-
tion parameters and informational efficiency. If the number of traders in each group
sharing identical signals approaches infinity, perfect competition obtains if and only if
theprice isnot fully informationally efficient. If thenumber of traders in eachgroup re-
mains finite as the number of groups approaches infinity, perfect competition obtains
if and only if the price reveals to traders a zero fraction of the available information,
with informational efficiency approaching zero.

Therefore, the market may remain imperfectly competitive with infinitely many
traders even when random endowments create gains from risk sharing. Moreover, if
the market is perfectly competitive, the price cannot be fully informationally efficient.
Perfect competition and efficient information aggregation cannot be achieved at the
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same time.
All threemain results arepossiblebecauseournewmeasureof competitionallowsa

complete and clean characterization of competition. After describing themain results,
we validate our measure by comparing it with other measures.

The next three results concern the case when strategic incentives prevent equilib-
rium from existing because the price would aggregate information too efficiently. Our
fourth main result is introducing the new concept of a vanishing noise equilibrium.
Taking advantage of the property that noise traders are willing to incur whatever losses
are necessary to support equilibrium, we add noise trading to the environment and
take a limit as the variance of noise trading vanishes; we call this a vanishing noise
equilibrium. In the spirit of the trembling hand perfect equilibrium, we interpret van-
ishingnoise as small perturbations to the trading environment.� Although the variance
of noise trading and so the expected losses of noise traders vanish, a vanishing noise
equilibrium always exist.

The intuition is that adding vanishing noise when equilibrium does not exist with-
out noise trading makes the price sufficiently inefficient in aggregating information.
Our fifthmain result is that in this equilibrium there is no trade, with themarket being
noncompetitive, and each trader moves the price halfway toward his valuation, with
the price incorporating half of traders’ marginal information. This contrasts with the
model of Milgrom and Stokey (1982), in which the no trade equilibrium price reveals
information that swamps all private signals.

A vanishing noise equilibrium allows us to examine the well-known paradox in the
model of Grossman and Stiglitz (1980), in which the market is exogenously assumed
perfectly competitive. The paradox is that traders have no incentive to acquire private
information if the pricewould reveal their information. But if traders donot acquire in-
formation, thepricewouldnot reveal that information,which thenwouldmake traders
want to acquire information. Traders, therefore, can neither acquire nor not acquire
private information.

Our sixth, and final, main result is that in our model the price becomes fully infor-
mationally efficient if and only if there is no trade and the number of traders in each
group sharing identical signals approaches infinity. Importantly, informational effi-
ciency continues to increase with more traders because the market remains noncom-

�In a competitive rational expectations equilibriummodel, Anderson and Sonnenschein (1985) add
random variations in demand to allow linear least squares estimation of the parameters.
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petitive and so each trader continues to move the price, incorporating his marginal
information into the price.

Thus, when the price is fully informationally efficient, the market is noncompeti-
tive and there is no trade. Traders would not acquire information simply because they
cannot trade on it. If they do not acquire information, there is no adverse selection,
which will allow traders to hedge their endowments and share risk better. There is no
paradox. To sumup, theGrossman-Stiglitz paradox arises fromassuming perfect com-
petition when it is inappropriate.

All sixmain results highlight the importance ofmeasuring andunderstanding com-
petition and information correctly. We next compare ourmeasures of competition and
informational efficiency with the existing measures in the literature to show that our
measures are appropriate for studying information aggregation and competition in fi-
nancial markets.

Ourmeasure of competition is different from the price impact parameter fromKyle
(1985),whichmeasures thechange in theassetprice in response toan informed trader’s
buying one more share. Our measure of competition appropriately weighs the impor-
tance of price impact relative to the disutility associatedwith the risk aversion and risk-
iness of the asset. This reflects the way real-world asset managers deal with trading
costs in financial markets. By measuring how closely traders can reach their target in-
ventories, our measure of competition quantifies the concept of liquidity.

Traditionalmeasures of competition from the industrial organization literature are
not applicable to our double auction setting. For example, the Lerner index, which is
the difference between the price and the marginal cost divided by the price, is not ap-
plicable because there is no concept of themarginal cost in ourmodel. To corroborate
ourmeasure of competition, we apply ourmeasure to Cournot competition with sym-
metric information. We then show our measure of competition is consistent with the
Lerner index and with the Herfindahl index normalized by the price elasticity of the
demand.

Informational efficiency is different from the concept of a fully revealing price and
from the concept of a privately revealing price. A fully revealing price refers to the
price from which traders can learn the value perfectly, extracting infinite precision.
We choose informational efficiency for our measure for three reasons. First, a fully
revealing price is restrictive in that it requires infinite precision to be available in the
market. Traders in financial markets may not produce infinite precision, even in ag-
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gregate. Second, even when infinite precision is available in the limit, a fully revealing
price does notmeasure how efficiently the price aggregates available information. Un-
derstanding efficiency in information aggregation is useful because information is a
scarce good in financial markets. Lastly, as discussed above, informational efficiency
fully captures the effects of private information, endowment shocks, and residual un-
certainty on competition.

A privately revealing price is the price from which traders infer all that they could
hypothetically learn fromobserving all signals about correlatedprivate values. Inmod-
els with one signal, Vives (2011) and Rostek and Weretka (2012) show that the price is
privately revealing if and only if the correlations between two traders’ values are the
same across all pairs.

Informational efficiencyexclusively concerns informationabout the liquidationvalue
of a risky asset, which is common across all traders, while the concept of a privately re-
vealing price concerns information about traders’ correlated private values. We think
that the informational roleoffinancialmarkets in thebroader economyoperates through
providing information about a common value, which benefits both participants and
nonparticipants in trading. Furthermore, there is a long tradition in the finance litera-
ture of emphasizing speculation and hedging as two distinct motives for trading. It is
then reasonable to imagine that traders receive their information about the asset value
separately from endowment shocks. Therefore, focusing on the information about a
common value is appropriate in our model of speculation and hedging.

Inmodelswitheach trader receivingone signal, Vives (2011) andRostekandWeretka
(2012) show the price is privately revealing if and only if the correlations are identical
across all pairs.

In our model traders receive two signals about the liquidation value and endow-
ments. Our model does not prevent the price from being privately revealing. In any
given equilibrium we can construct a composite signal, which is a linear combination
of the private information and endowment shocks. The optimal demand schedule and
the equilibrium price can be expressed in terms of the composite signals. Equilibrium
would remain the same if we replace two signals with a composite signal. Then the
price always reveals the average of the composite signals, like in models with one sig-
nal. The price, therefore, would be privately revealing of composite signals if and only
if the correlations between two composite signals are the same across all pairs.

The key difference between ourmodel with two signals andmodels with one signal
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is, therefore, not whether the price is privately revealing but what the signals that the
price reveals are. Unlike inmodels with one signal, the composite signals in ourmodel
are endogenous. The relative weights between private information and endowment
shocks in composite signals are determined by informational efficiency, reflecting the
importance of the traders’ speculative motive relative to the hedging motive.

In this sense, our composite signalshaveanelementof “confounding.” In themodel
of Bergemann, Heumann and Morris (2015), the signal is a combination of the aggre-
gate and the idiosyncratic components. They show that confouding between the two
components given by their relative weights in the signal are important for the equi-
librium price impact, their measure of market power. In their model, confounding is
exogenous and affects how similar the signals are to one another. In our model, the
relative weights are determined endogenously and can vary independently of the sim-
ilarity of the signals.

Vives (2014) shows that traders have incentives to acquire private information even
when the price is privately revealing. Although a trader can perfectly learn about the
other signals from the price, he cannot perfectly learn his private value because his
value is imperfectly correlatedwith the other traders’ values. Thus, he shows that there
is no Grossman and Stilglitz paradox when traders’ values are imperfectly correlated.
We show that the paradox does not arise when traders’ values are perfectly correlated
and equilibrium is sustained by vanishing noise trading.

Our result onperfect competition isdifferent fromthemodels that assumequadratic
storage costs. Vives (2011) shows that themarket becomes perfectly competitive in the
limit as the number of traders approaches infinity if the correlation between traders’
values is less than one. Rostek andWeretka (2015) show that the market becomes per-
fectly competitive in the limit as the number of traders approaches infinity if the aver-
age of the correlations is bounded away from one.

Their results on perfect competition are consistent with the result from our model
with exponential utility and residual uncertainty. Themarket becomes perfectly com-
petitive in the limit as the number of traders approaches infinity if there is any en-
dowment shock that keeps the correlation between traders’ values strictly below one.
Adding residual uncertainty or using quadratic preferencesmakes the hedgingmotive
dominate the speculativemotive when infinitelymany traders bring new information.
This drives informational efficiency to zero and results in perfect competition.

Without residual uncertainty, however, the market may remain imperfectly com-
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petitive with infinitely many traders and endowment shocks. This result is unique to
models with exponential utility and does not arise in models with quadratic storage
costs.

Whether financial markets can aggregate dispersed information has been studied
by many economists. The rational expectations equilibrium (REE), in which the mar-
ket is perfectly competitive and the price is fully revealing, has had a profound im-
pact on economic theory. Widely usedREEmodels, however, exogenously assumeper-
fect competition, lacking a strategic foundation. Reny and Perry (2006) and references
therein provided a strategic foundation for REE in various market settings. Ostrovsky
(2012)provideda sufficient condition for informationaggregation inadynamic trading
model building onKyle (1985). We contribute to this literature by clearly characterizing
the trade-off between competition and informational efficiency. Our result, however,
does not preclude REE. REE with the less than perfectly informationally efficient price
may be strategically founded in our model.

Palfrey and Srivastava (1986), Blume and Easley (1990), McLean and Postlewaite
(2002), andMcLean, Peck and Postlewaite (2005) study the effect of information asym-
metry on competition in general equilibrium models. They emphasize the effect of
the exogenous distribution of signals (“informational smallness” or “informational ir-
relevance”) on competition. In our paper competition is determined not only by the
exogenous parameters M and N but also by endogenous informational efficiency.

The plan for this paper is as follows. Section 2 describes the setup of the model
and defines an equilibrium. Section 3 characterizes an equilibrium. Section 4 presents
measures of information and competition. Section 5 analyzes how information and
competition vary in equilibrium. Section 6 provides a necessary and sufficient condi-
tion for perfect competition, which allows a mapping between strategic equilibrium
and rational expectations equilibrium. Section 7 introduces a vanishing noise equi-
librium and discusses its implications for the Grossman-Stiglitz paradox and no trade
theorem. Section 8 concludes.

2 Setup

There is one round of trading in which traders exchange a risky asset against a safe
asset whose return is normalized to one. There are L informed traders with L > 1. Each
trader has exponential utility with constant risk aversion parameter A.
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The liquidation value of the risky asset is

v +æV y, where v ª N

°

0,æ2

V

¢

and y ª N

°

0,æ2

Y

¢

. (1)

Each trader receives two private signals before trading. First, trader l receives pri-
vate information about v given by

il = ø1/2

I

µ

v

æV

∂

+el , where el ª N(0,1) . (2)

No trader receives any information about y . If æ2

Y > 0, the liquidation value contains
residual uncertainty. The precision parameter øI is a ratio of the variance of the signal
to the variance of the noise. The noise variables e

1

, . . . ,eL are independently distributed
from v and y .

Second, trader l receives an endowment of the risky asset. The endowment is a sum
of deterministic and random endowments

¯sl + sl ª N

°

¯sl ,æ2

S

¢

and
PL

l=1

¯sl

L
= ¯s (3)

The randomendowments s
1

, . . . , sL are independentlydistributed from v , y , and e
1

, . . . ,eL.
Adopting the concept of “equicommonality” that Rostek andWeretka (2012) define

in the model with one signal to the model with two signals, we assume that the errors
in private information and endowment shocks have the same correlation on average:�

Ω :=
P

l 0 6=l corr (el ,el 0)

L°1

=
P

l 0 6=l corr (sl , sl 0)

L°1

, where
°1

L°1

< Ω ∑ 1 and for all l .

(4)
As we shall see, each trader trades against an anonymous residual supply sched-

ule. Thus, with a given average of deterministic endowments ¯s and a given average
correlation Ω, equilibrium does not depend on how the deterministic endowments ¯s

1

,
. . . , ¯sL are distributed, how the pairwise correlations of the errors in private informa-
tion corr (el ,el 0) are distributed, or how the pairwise correlations of the random en-
dowments corr (sl , sl 0) are distributed. We assume that the deterministic endowments

�The assumption that the average correlations are the same for the errors in private information
and endowment shocks helps us clearly show the relationship between competition and the similarity
of signals. Allowing the average correlations to be different for the errors in private information and
endowment shocks is left for future study.

8



and the pairwise correlations are arbitrarily given.
We assume that traders know their own deterministic endowment ¯sl , the average

of deterministic endowments ¯s, and the average correlation Ω, but do not know how
deterministic endowments or the pairwise correlations are distributed. Except for de-
terministic endowments and the pairwise correlations, the model is symmetric in that
the model looks the same from the perspective of every trader.

There are two dimensions of measurement: dollars and shares. The parameter æV

has a dimension of dollars-per-share, the parametersæS and ¯s
1

, . . . ,

¯sL have dimensions
of shares, the parameter A has dimensions of per-dollar. We assume A > 0 and æV > 0

and use A and æV as units to scale variables in dollars-per-share by æV and variables
in shares by (AæV )

°1. This scaling convention is used throughout the paper.

Trading. After observing his own private information il and random endowment sl ,
each trader l submits a demand schedule Xl

°

p
Ø

Ø il , sl
¢

. This notation means that Xl is
a function of the price p, and the function is measurable with respect to sl and il .

Let X denote the L vector of submitted demand functions whose l th element cor-
responds to Xl . An auctioneer aggregates all L functions to calculate a market clearing
price, denoted p (X ), which satisfies the market clearing condition

L
X

l=1

Xl
°

p
¢

= 0. (5)

If there is no market clearing price, then nobody trades (xl = 0 for all l ). If there are
many market clearing prices, then the auctioneer chooses the smallest price which
minimizes trading volume, with possible ties resolved by flipping a coin. Given the
matrix of submitted demand schedules, trader l realizes wealth

wl (X ) :=
°

v +æV y
¢

(sl + ¯sl )+
°

v +æV y °p (X )

¢

Xl
°

p (X )

¢

(6)

and achieves expected utility

ul (X ) := E

©

°exp(°Awl (X ))

™

. (7)

The equilibriumconcept is a BayesianNash equilibrium. An equilibrium is a vector
of demand schedules X such that (1) amarket clearingprice p(X ) is alwayswell defined
and (2) for all l = 1, . . . ,L, trader l chooses his demand schedule Xl to maximize his
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expected utility ul (X ), taking as given the demand schedules of the other L°1 traders.
A symmetric linear equilibrium is an equilibrium in which all traders choose the

same linear demand schedule

AæV Xl
°

p
Ø

Ø il , sl
¢

=ºC +º
0

AæV ¯s °º
1

AæV ¯sl °ºS AæV sl +ºI il °ºP
p

æV
, (8)

where the six endogenous parameters ºC , º0

, º
1

, ºS , ºI , and ºP define the same linear
function Xl for all l = 1, . . . ,L. The constant ºC can be shown to be zero in equilibrium
regardless of the values of other parameters. Without loss of generality, we assume
ºC = 0.

If ºP = 0, then every trader submits a totally inelastic demand schedule, and the
resulting aggregate demand is either identically zero or some random quantity which
is non-zero with probability one. Market clearing requires this aggregate demand to
be identically zero; this further requires each trader’s demand to be identically zero
(Xl ¥ 0, for all l ). In such a no-trade equilibrium, the market clearing price is not
uniquely determined since any price can support the allocation. Such an equilibrium
always exists. We call this a trivial no-trade equilibrium and exclude it from the follow-
ing analysis.

Our goal is to characterize existence and uniqueness of symmetric linear equilib-
ria. Discussing asymmetric equilibria or equilibria with non-linear strategies takes us
beyond the scope of this paper.

3 Equilibrium

The equilibriumsolutionproceeds infive stepsusing theno-regret pricing approach. A
trader (1) observes his residual supply schedule, (2) learns about other traders’ private
information from the intercept of this schedule, (3) finds the optimal quantity on his
residual supply schedule, (4) and implements this optimal quantity by submitting a
demandschedule,which (5) is the sameas thedemandschedules conjectured forother
traders.

Trader l conjectures and takes as given symmetric linear demand schedules for the
other traders, described by the six endogenous parameters ºC , º0

, º
1

, ºI , ºS and ºP

as in (8). Having ruled out trivial no-trade equilibria by assuming ºP 6= 0 as above, the
market clearing condition (5) implies that trader l has a well-defined residual supply
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schedule given by
p

æV
= pl

æV
+ 1

(L°1)ºP
AæV xl . (9)

The price pl , which would prevail if he did not trade (xl = 0), is defined by

pl

æV
=

P

l 0 6=l (º
0

AæV ¯s °º
1

AæV ¯sl 0 °ºS AæV sl 0 +ºI il 0)

(L°1)ºP
. (10)

Witheach trader tradingagainst ananonymous residual schedule (9), theprevailing
pricepl dependson theaverageof theendowments and theaverageofprivate informa-
tion of the other traders, but does not depend on how the deterministic endowments
or the pairwise correlations are distributed.

To describe how traders learn about the other traders’ private information from the
price, define ˆpl as

ˆpl

æV
:= pl

æV
° º

0

ºP
AæV ¯s + º

1

(L AæV ¯s ° AæV ¯sl )

(L°1)ºP
+Ω ºS

ºP
AæV sl . (11)

Then
ˆpl

æV
= ºI

ºP

P

l 0 6=l il 0

L°1

° ºS

ºP
AæV

µ

P

l 0 6=l sl 0

L°1

°Ωsl

∂

, (12)

whichmakes ˆpl a signal of the average private information of the other traders (
P

l 0 6=l il 0
L°1

)
withnoise fromrandomendowments. Subtracting thepredictedendowmentΩsl makes
the signalmore accurate. Trader l ’s information about v contained in

©

il , sl , pl
™

is sum-
marized by

©

il ,

ˆpl
™

.
Define ø§, the ratio of prior variance to posterior variances of v , as

ø§ :=
æ2

V

var
©

v
Ø

Ø il ,

ˆpl
™ =

æ2

V

var
©

v
Ø

Ø il , sl , pl
™

. (13)

The symmetry assumption makes ø§ common across all traders. Since the posterior
variance is at least as high as the prior variance and each trader observes his own signal
perfectly, the inequality ø§ ∏ 1+øI holds by definition.

Since traders do not have information about y , the posterior variance of the liqui-
dation value v +æV y is given by

var
©

v +æV y
Ø

Ø il ,

ˆpl
™

=
æ2

V

ø§
+æ2

Y . (14)
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Trader l ’s learning from the price is described by the following lemma. All proofs
are in the Appendix.

Lemma 1 (Learning From Prices.). Assume
°

1°Ω
¢

øIºI 6= 0. Then ø§ can be written

ø§ = 1+øI +
°

1°Ω
¢

(L°1)øI

1+ (L°1)Ω
', (15)

where the endogenous parameter ' is given by

1

'
= 1+

µ

AæVæSºS

ºI

∂

2

. (16)

The dimensionless endogenous parameter' is important. Wepostpone discussing
economic interpretations of ' until Section 4.1. When all private information is iden-
tical (Ω = 1), no trader has private information (øI = 0), or traders do not trade on their
private information (ºI = 0) so that

°

1°Ω
¢

øIºI = 0, then there is no learning from the
price; we set '= 0 by continuity in these cases.

Since all random variables are jointly normally distributed and trading strategies
are linear, the optimal trading strategy solves the quadratic maximization problem�

max

xl

Ω

E

©

wl (xl )

Ø

Ø pl , sl , il
™

° A

2

var
©

wl (xl )

Ø

Ø pl , sl , il
™

æ

. (17)

Using (9), this is in turn equivalent to

max

xl

√

E
©

v +æV y
Ø

Ø il ,

ˆpl
™

°pl °
Aæ2

V

ºP (L°1)

xl

!

xl °
A

2

(sl + ¯sl +xl )

2var
©

v +æV y
Ø

Ø il ,

ˆpl
™

.

(18)
This implies that, with ø§ given by (13), the first-order condition is

µ

2

ºP (L°1)

+ 1

ø§
+æ2

Y

∂

AæV xl = E

Ω

v

æV
+ y

Ø

Ø

Ø

Ø

il ,

ˆpl

æ

° pl

æV
°

µ

1

ø§
+æ2

Y

∂

AæV (sl + ¯sl ) , (19)

and the second-order condition is equivalent to

2

ºP (L°1)

+ 1

ø§
+æ2

Y > 0. (20)

�With a slight abuse of notation, wl (xl ) means wl (X ) defined in (6) where Xl (P ) = xl and Xl 0 (P ) is
fixed for all l 0 6= l .
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The best response demand schedule—which follows from the first order condition
and traders’ learning from the price—depends on the exogenous parameters L, A, æV ,
æY , Ω, øI , andæS ; the endogenous parametersº

0

,º
1

,ºI ,ºP ,ºS ; and ø§ (or equivalently
' using (15)). A linear symmetric equilibrium is found when the trader’s best response
can be implemented using the same demand schedule that the trader conjectures that
the other traders submit:

Theorem 1 (Characterization of Symmetric Linear Equilibrium). Suppose A > 0, æV >
0, and L > 2. If

°

1°Ω
¢

øI 6= 0, then the set of symmetric linear equilibria, excluding trivial
no-trade equilibria, is characterized by the set of all endogenous parameters' such that
(1) ' solves the cubic polynomial

1

'
°1 = (AæVæS)

2

øI

√

1+æ2

Y +æ2

Y øI

√

1+
√

1°Ω
Ω+ 1

L°1

!

'

!!

2

, (21)

and (2) ' satisfies

'<'soc :=
Ω+ 1

L°1

Ω+ 2

L°2

. (22)

If
°

1°Ω
¢

øI = 0, an equilibrium is characterized by '= 0.
With ø§ given by (15), the equilibrium demand schedule of trader l is given by

AæV Xl
°

p
Ø

Ø il , sl
¢

=
µ

L°2

L°1

∂µ

1° '
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∂
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∂
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A

,

(23)

and the market clearing price is given by

p

æV
=° AæV

ø§
°

1+ø§æ2

Y

¢

¯s

+ 1

ø§

µ

1+
°

1°Ω
¢

(L°1)

1+ (L°1)Ω
'

∂

√

ø1/2

I

PL
l=1

il

L
° AæV

ø§
°

1+ø§æ2

Y

¢

PL
l=1

sl

L

!

.

(24)

Equilibriumdemand schedules (23) and the resultingmarket clearing price (24) are
derived as functions of exogenous parameters and one endogenous variable ', which
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in turn is determined by (21) and (22), fully characterizing the set of symmetric linear
equilibria. The condition (22) follows from applying the second order condition (20)
and ruling out a trivial no-trade equilibrium (ºP 6= 0).

Substituting (22) into (21) yields the following necessary and sufficient conditions
for the existence and uniqueness of an equilibrium:

Theorem 2 (Existence and Uniqueness). Assume A > 0, æV > 0. Then there exists a
symmetric linear equilibrium, excluding trivial no-trade equilibria, if and only if L > 2

and at least one of the following two conditions holds: Either
°

1°ΩI
¢

øI = 0 or

LøI

1+ (L°1)Ω
< (L°2)(AæVæS)

2

µ

1+æ2

Y +æ2

Y

µ

LøI

2+ (L°2)Ω

∂∂

2

. (25)

If a symmetric linear equilibrium exists, it is unique.

Threeobservations canbemade from(25). First, without residualuncertainty (æY =
0), (25) simplifies to

L

1+ (L°1)Ω
øI < (L°2)(AæVæS)

2

, (26)

where the left side measures the amount of information and the right side measures
scaledendowment shocks. Thereare twomotives for trade, hedging randomanddeter-
ministic endowments and speculating on private information. Equation (26) implies
that for an equilibrium to exist, the hedging motive from random endowments—but
not deterministic endowments—must be sufficiently strong to overcome adverse se-
lection from the speculative motive related to economy-wide private information.

Second, increasingæY increases the right side of (25), increasing the set of other pa-
rameters that support existence of equilibrium. Intuitively, more residual uncertainty
both increases the hedging motive, because given endowments become riskier, and
decreases speculative motive, because it becomes riskier to speculate on a given pri-
vate signal.

Lastly, the effect of residual uncertainty interacts with private information. When
traders learnmore information about v , residual uncertainty becomes relatively more
important. So the effect of residual uncertainty becomes stronger when the precision
a trader extracts from the price ø§ increases. In contrast with the case without resid-
ual uncertainty, the existence of equilibriummay require traders to have more private
information.�

�Mathematically, this implies that with æY > 0, (25) becomes equivalent to øI > Æ or øI < Ø where Æ
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In (21), (22), (23), and (24), changing units of measurement has no real effect. This
implies if the dimensional exogenous variables A,æV ,æS , and ¯s

1

, . . . ,

¯sL, change in such
a way that the dimensionless products AæVæS and AæV ¯s

1

, . . . , AæV ¯sL do not change,
then ' and equilibrium properties described by ' do not change.�

4 Measuring Information and Competition

This section introduces our measures of informational efficiency and competition.

4.1 Measuring Information

In a symmetric linear equilibrium, the market clearing condition (5) implies

p

æV
=

µ

º
0

°º
1

ºP

∂

AæV ¯s ° ºS

ºP

PL
l=1

AæV sl

L
+ ºI

ºP

PL
l=1

il

L
. (27)

The information that a trader can learn from the price is at most the average of private
information 1

L

PL
l=1

il .
Let øE denote the precision obtained by observing average information 1

L

PL
l=1

il

(the right side of (26)):

øE :=
æ2

V

var
©

v
Ø

Ø il ,

1

L

PL
l=1

il
™

°1 = L

1+ (L°1)Ω
øI . (28)

Our measure of information is ', given by (15), which we call informational effi-
ciency. From (16),' lies between zero and one. As' varies from zero to one, ø§ mono-
tonically increases from 1+øI to 1+øE . Informational efficiency ' is the precision of
information a trader learns from the price (ø§ °1) as a fraction of the precision of the
available information (øE ).

Informational efficiency ' is determined by the strength of the traders’ motive to
speculate on their private information (ºI ) relative to their motive to hedge their risky

and Ø (Æ∏ Ø) are the solutions of the quadratic equation which results from replacing the inequality in
(25) with an equality if Ø> 0. If Ø∑ 0, (25) becomes equivalent to øI >Æ.

�This property is shared by many finance models. Fundamental model properties depend on the
ratio of the risks to be borne—æV æS—to dollar risk-bearing capacity A°1. For example, AæV æS can be-
come small either because risk bearing capacity increases (A becomes small) or because the risks to be
borne æV æS become small. Either way, the effect on equilibrium is the same.
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endowments (AæVæSºS). The price becomes more informationally efficient when the
speculative motive becomes more important relative to the hedging motive.

Full informational efficiency ('! 1) is different from the concept of a fully reveal-
ing price (ø§ !1). A fully revealing price (ø§ !1) does not imply a full informational
efficiency ('! 1), and vice versa. Wechoose' for ourmeasure of information for three
reasons. First, a fully revealing price is restrictive in that it requires infinite precision
to be available in the market (øE !1). Traders in financial markets may not produce
infinite precision, even in aggregate. Second, even when infinite precision is available
in the limit, a fully revealing price does not measure how efficiently the price aggre-
gates available information. Understanding efficiency in information aggregation is
useful because information is a scarce good in financial markets. Lastly, as we shall
see, informational efficiency fully captures the effects of private information, endow-
ment shocks, and residual uncertainty on competition.

In models with one signal, Vives (2011) and Rostek and Weretka (2012) show that
theprice is privately revealing if andonly if the correlationsbetween two traders’ values
are the same across all pairs. A privately revealing price is the price fromwhich traders
infer all that they couldhypothetically learn fromobserving all signals about correlated
private values.

In ourmodel, each trader receives two signals. This does not prevent the price from
beingprivately revealing. In anygivenequilibriumwecanconstruct a composite signal
yl defined by

yl := il °
ºS

ºI
AæV sl , implying yl = il °

µ

1°'
'

∂

1/2 sl

æS
. (29)

The optimal demand schedule (23) and the equilibrium price (24) can be expressed in
terms of the composite signals. Equilibrium would remain the same if we replace two
signals with a composite signal because receiving additional information about il or
sl would not change traders’ optimal demand schedule. Then the price always reveals
the average of the composite signals 1

L

PL
l=1

yl , like inmodelswith one signal. Theprice,
thus, would be privately revealing of composite signals if and only if the correlations
between two composite signals are the same across all pairs.

The key difference between ourmodel with two signals andmodels with one signal
is, therefore, not whether the price is privately revealing but what the signals that the
price reveals are. Unlike inmodels with one signal, the composite signals in ourmodel
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are endogenous. The relative weights between private information and endowment
shocks in composite signals are determined by informational efficiency ', reflecting
the importance of the traders’ speculative motive relative to the hedging motive.

Informational efficiencyexclusively concerns informationabout the liquidationvalue
of a risky asset, which is common across all traders, while the concept of a privately re-
vealing price concerns information about traders’ correlated private values. We think
that the informational roleoffinancialmarkets in thebroader economyoperates through
providing information about a common value, which benefits both participants and
nonparticipants in trading. Furthermore, there is a long tradition in the finance litera-
ture of emphasizing speculation and hedging as two distinct motives for trading. It is
then reasonable to imagine that traders receive their information about the asset value
separately from endowment shocks. Therefore, focusing on the information about a
common value is appropriate in our model of speculation and hedging.

Furthermore, thecomposite signal yl hasanelementof “confounding.” In themodel
of Bergemann, Heumann and Morris (2015), the signal is a combination of the aggre-
gate and the idiosyncratic components. They show that confouding between the two
components given by their relative weights in the signal are important for the equi-
librium price impact, their measure of market power. In their model, confounding is
exogenous and affects how similar the signals are to one another. In our model, the
relative weights are determined endogenously and can vary independently of the sim-
ilarity of the signals.

4.2 Measuring Competition

We start by comparing the quantity a trader chooses strategically in our BayesianNash
equilibrium with the hypothetical competitive quantity a trader would choose if he
ignored his own price impact while taking the strategies of other traders as given. If
trader l were a price taker, the first order condition (19) would change to

µ

1

ø§
+æ2

Y

∂

AæV xPT
l = E

Ω

v

æV
+ y

Ø

Ø

Ø

Ø

il ,

ˆpl

æ

° pl

æV
°

µ

1

ø§
+æ2

Y

∂

AæV (sl + ¯sl ) . (30)

Comparing the two first order conditions (19) and (30) reveals that the ratio of the
optimal strategic demand xl to the hypothetical price-taking demand xPT

l is a constant
that does not depend on realizations of private information or random endowments.
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Symmetry implies this constant is the same for all traders. We let ¬ denote this dimen-
sionless endogenous ratio, our measure of competition:

¬ := xl

xPT
l

for all l = 1, . . . ,L. (31)

As we shall see, ¬ lies between zero and one in equilibrium. The market is perfectly
competitive if and only if ¬! 1. As ¬ decreases, traders optimally reduce their quanti-
ties traded (or shade their bids), reflecting a less competitivemarket. In the limit¬! 0,
there is no trade.�

To see how ¬ is related to traditional measures of competition, consider Cournot
competition among n identical firms. Each firm can produce q units at a cost Æq2 for
Æ > 0. There is an industry demand curve with constant elasticity Q = (P/P

0

)

°e for
P

0

> 0 and e > 0. Then ¬, defined as the ratio the optimal quantity produced by each
firm to the hypothetical price-taking quantity, is given by

¬ := q§

qPT
=

µ

1° 1

en

∂µ

1° 1

n

∂

1

e

= (1°LI ) (1°H I )

1

e
, (32)

where LI denotes the Lerner index defined as
°

P °Marginal cost
¢

/P , H I denotes the
Herfindal index defined as

°

PN
n=1

q2

n

¢

/

°

PN
n=1

qn
¢

2, and e denotes the absolute value of
the price elasticity of demand defined as ° (dQ/Q)/(dP/P ). The detailed derivations
are in the Appendix A.

Competition ¬ decreases in market power measured by the Lerner index and in
market power measured by the Herfindahl index normalized by the absolute value of
the price elasticity of demand. In the limit n !1, the market becomes perfectly com-
petitive (¬! 1) with LI ! 0, and H I ! 0.

Competition ¬ is also a measure of liquidity, or the demand for immediacy. From
(19), trader l would not want to trade any more (xl = 0) if and only if he reached his
target inventory sT I

l given by

sT I
l :=

E

©

v +æV y
Ø

Ø pl , il , sl
™

°pl

Aæ2

V

°

1/ø§+æ2

Y

¢

, implying xPT
l = sT I

l ° (sl + ¯sl ) . (33)

So ¬, defined by (31), measures how closely traders reach their target inventories after

�If traders were risk neutral, there could be trades when ¬! 0 since xPT !1. This does not happen
when A is bounded away from zero.

18



trading. Unless ¬! 1, traders choose not to reach their target inventories, retaining
further need to trade. In contrast to the view of Grossman and Miller (1988) that liq-
uidity is determined by the supply and demand for immediacy, where customers are
willing to pay anyprice thatmarketmakers charge for immediate executionof their de-
sired quantities, traders in our model demand immediacy if and only if the market is
perfectly competitive. Understanding this relationship between competition and liq-
uidity, therefore, has a practical implication for better market designs.

Another measure of market power is the price impact parameter ∏ in Kyle (1985),
or the analogous parameter ∏I in Kyle (1989). The price impact parameter ∏ is defined
as the changes in the price of the risky asset in response to an informed trader’s buying
one more share. Then ¬ can be expressed in terms of ∏:

¬=
Aæ2

V

°

1

ø§ +æ
2

Y

¢

2∏+ Aæ2

V

°

1

ø§ +æ
2

Y

¢

. (34)

Competition ¬ appropriately weighs the importance of price impact relative to the
disutility associated with risk aversion and riskiness of the asset. This captures the
way in which real-world asset managers deal with trading costs. Traders trading less
risky assets are more constrained by price impact than traders trading riskier assets.
Thinking of risk tolerance 1/A as assets under management, large asset managers are
intuitively more constrained by price impact than small asset managers.�

5 Information and Competition in Equilibrium

This section studies how the two endogenous parameters, informational efficiency '
and competition ¬, are related when the exogenous parameters vary.

The number of traders L and the average correlation parameter Ω defined by (4) af-
fect both the similarity among the signals and the amount of available information (øE )
at the same time. If Ω = 0, each private information is unique. As Ω increases from zero
to one, private information becomemore repetitive across traders and identical when
Ω! 1. As Ω decreases from zero to ° 1

L°1

, private information become more different

�It is easy to see how risk tolerance maps into assets under management. For a small mean µ and
small variance æ2, the competitive demand function for a log-utility investor with wealthW is approxi-
matelyWµ/æ2. When this is compared to theCARA-normal competitive demandµ/

°

Aæ2

¢

, the demands
are the same whenW = 1/A.
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across traders.
To clarify the economic effects of these different channels, we define M and N by

M := 1+ (L°1)Ω 2 (0,L] and N := L

M
2 [1,1) . (35)

Then M captures the effect of varying L and Ω on the similarity of the signals and N

captures the effect on the amount of information, with (28) implying øE = NøI .
Since equilibrium outcomes do not depend on the distribution of pairwise corre-

lations but only on the average of the correlations, the traders can be considered to be
divided into N groupswith M traders in each group, with private information perfectly
correlated within groups but conditionally independently distributed across groups.
We thus informally refer to N as the number of groups with uniquely different infor-
mation and M as the number of traders with the same information in each group; of
course, this intuition is strictly valid onlywhenM andN happen tobepositive integers.
We call M and N industrial organization parameters since they reflect the exogenous
competitiveness of the environment.

Traders can be also considered to be divided into groups according to endowment
shocks. The assumption that private information and random endowments have the
same average conditional correlation (4) implies the information groups and the en-
dowments groups may be different provided that the number of traders in each infor-
mation and endowments group is same.

The characterization of equilibrium using (36) and (37) in Theorem 1 is easily ex-
pressed in terms of M , N , and ':

Theorem 3. Suppose N 6= 1. An equilibrium is characterized by ' that uniquely solves

1

'
°1 = (AæVæS)

2

øI

°

1+æ2

Y +æ2

Y

°

1+ (N °1)'
¢

øI
¢

2 (36)

and satisfies the inequality

'<'soc =
M N °2

M N °2+N
. (37)

Competition ¬, defined by (31), is given by

¬=
µ

1+2

µ

1+ (N °1)'

M N °2° (M N °2+N )'

∂∂°1

2 (0,1) . (38)
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Competition ¬ is a function of the industrial organization parametersM andN and
informational efficiency '. This implies that ' fully captures the effects of the other
exogenous parameters (øI , AæVæS , and æY ) on competition.

As a function of M , N , and ', the value of ¬ in (38) satisfies

@¬

@M
> 0,

@¬

@N
> 0, and

@¬

@'
< 0. (39)

Intuitively, holding ' constant, increasing the number of traders competing with the
same information M or the number of groups competing with different information N

makes the market more competitive.
Surprisingly, holding M and N constant, competition decreases in informational

efficiency. This implies that any changes in the parameters øI , AæVæS , and æY that
increase 'must decrease ¬.

The economic intuition for this result is as follows: (1) Prices are made informative
by traders incorporating their private information into the price. (2) From a traders’
perspective,makingpricesmore informativemeans incurring greater trading costs. (3)
To avoid incurring large trading costs, a traders restrict the quantities they trade, just
like firms exercising market power restrict the quantity they produce to raise prices in
a product market.

Rewriting the residual supply curve in (9) in terms of ¬ illustrates this intuition:

p °pl =
1°¬

2

µ

E
©

v
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Ø il , pl , sl
™

°
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1
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+æ2

Y

∂

Aæ2

V (sl + ¯sl )°pl

∂

. (40)

The per-share trading cost on the left hand side is proportional to the difference be-
tween the trader’s valuation of the asset based on his private information and endow-
ments and the prevailing price pl . The extent to which each trader incorporates his in-
formation into the price, by moving the price from pl toward his valuation, decreases
in competition.

We now allow the industrial organization parametersM andN to vary. We consider
two separate cases for the comparative statics analysis of M and N .

Constant Individual Characteristics First, we assume the individual trader’s risk
aversion A, private information øI , and endowment shocks æ2

S are constant as M , N ,
or both vary. This assumption is relevant for studying the implications of new traders
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bringing their information, endowment shocks, and risk bearing capacity to the mar-
ket.

From (36), we have

d'

d M
= 0 and

d'

d N
∑ 0 with equality if and only if æY = 0. (41)

Increasing M or N , while always increasing competition, does not make prices more
efficient in aggregating private information.

Without residual uncertainty (æY = 0), informational efficiency is the ratio between
private information and endowment shocks ( øI

(AæV æS )

2

). The industrial organization pa-
rameters have no effect on '. While increasing M or N makes traders trade more ag-
gressively, the proportion by which traders shade their trading, as a function of M and
N , is the same for private information and endowment shocks because they are gov-
erned by the same optimal exercise of market power.

With residual uncertainty (æY > 0), informational efficiency decreases N . Resid-
ual uncertainty strengthens the hedging motive and weakens the speculative motive.
As the amount of available information (øE ) increases with more traders bringing new
information, the total precision traders extract from the price (ø§) also increases. As
traders learnmore about the non-residual component of the liquidation value v , resid-
ual uncertainty becomes more important. Informational efficiency, which is deter-
mined by the ratio between the speculative and the hedging motives, thus decreases.

As N increases, the amount of available information øE automatically increases.
Even when informational efficiency decreases in N with residual uncertainty, the total
precision traders extract from the price ø§ increases in N because traders’ improved
learning about v is what causes informational efficiency to decrease in the first place.�
This implies that, regardless of residual uncertainty, the price becomes fully revealing
in the limit as N approaches infinity:

ø§ !1 as N !1. (42)

In this limit, the price may aggregate information inefficiently. With residual uncer-
tainty, the price reveals a zero fraction of the available information ('! 0).

�Equation (36) is equivalent to 1

' °1 = (AæV æS )

2

øI

°

1+æ2

Y ø
§¢

2, where ø§ decreases in 'with æ2

Y > 0.
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ConstantMarket Characteristics Second, we assume themarket risk aversion AE =
A

M N , market private information øE = NøI , andmarket endowment shockß2

S = M 2Næ2

S

are constant as M , N , or both vary. The choice for AE follows from assuming expo-
nential utility.� The choice for ß2

S follows from assuming that traders can be divided
intoN groupswithM traderswithin each group according to their endowment shocks.
This assumption is relevant for studying the implications of industrial organization in
a given market, such as coalitions of traders forming or alliances breaking down.

In terms of AE , ß2

S , and øE , (36) can be expressed as

1

'
°1 = N 2

(AEæVßS)

2

øE

µ

1+æ2

Y +æ2

Y

µ

1+ (N °1)'

N

∂

øE

∂

2

. (43)

Again, increasing M or N , while always increasing competition, does not make prices
more efficient in aggregating private information.

From (43), informational efficiency does not depend on M and decreases in N re-
gardless of residual uncertainty. Increasing M makes each tradermore risk averse pro-
portionally to his decreasing endowment shocks, while private information is unaf-
fected. This keeps constant the ratio between the hedging and the speculativemotives.
Increasing N , on the other hand, reduces each trader’s private information and in-
creaseshis risk aversionmore thanproportionally tohisdecreasingendowment shocks.
The hedging motive, therefore, becomes more important relative to the speculative
motive, and so informational efficiency decreases.

This implies, regardless of the amount of available information øE , traders learn
nothing from the price in the limit as N approaches infinity:

'! 0 and ø§ ! 1 as N !1. (44)

When a given stock of information is divided acrossmany traders, the private informa-
tion dispersed in the economy completely evaporates.

Summarizing, competition, as a function of M , N , and' decreases in'. Increasing
M or N , while always increasing competition, does not increase '. In this sense, the
two endogenous variables ' and ¬ are inversely related.

�With exponential utility, or more generally with hyperbolic absolute risk aversion (HARA) prefer-
ences, the inverse of risk aversion is linear in wealth. This means when you combine two agents with
the same risk aversion into one, the risk aversion should exactly halve.
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6 Perfect Competition.

This section provides necessary and sufficient conditions under which the market be-
comes perfectly competitive. The results provide strategic foundations for the com-
petitive model of Diamond and Verrecchia (1981).

From (38) themarket is not perfectly competitive (¬< 1) if M and N are both finite.
Thus, perfect competition (¬! 1) implies eitherM !1orN !1. In the limitM !1,
weobtainperfect competitionas longas equilibriumexistswith'< 1, since'soc in (37)
approaches one. As N approaches infinity while M remains finite, we have

¬!
M

°

1°'
¢

°'
M

°

1°'
¢

+'
, implying ¬! 1 if and only if '! 0. (45)

Whethermarkets become perfectly competitive asmore traders compete with one an-
other depends on how similar the signals are to one another and how information-
ally efficient the price is. If M remains finite because the signals are sufficiently dif-
ferent from one another, the rather restrictive condition '! 0, meaning the specula-
tive motive must become unimportant relative to the hedging motive, is necessary to
achieve perfect competition. Information asymmetry affects competition in this non-
trivial manner.

From the comparative statics analysis in Section 5, we know informational effi-
ciency depends on N if and only if there is residual uncertainty or a constant stock
of risk aversion, private information, and endowment shocks is divided among many
traders, in which case ' ! 0 as N approaches infinity. If there is no residual uncer-
tainty, the individual trader characteristics are constant, and the endowment shocks
satisfy æ2

S > øI

M A2æ2

V
so that an equilibrium exists, then as N approaches infinity,

¬!
(AæV æS )

2

øI
° 1

M

(AæV æS )

2

øI
+ 1

M

∑ 1 with equality if and only if M !1. (46)

The market remains imperfectly competitive if M is finite. The finitely many traders
in each group maintain their market power even though their private information be-
comes small compared to the available information with øI

øE
! 0.

Theorem 4. The market becomes perfectly competitive as infinitely many traders with
risk aversion A, private information øI , and endowment shock æS enter the market if
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and only if at least one of the following conditions holds:
(i) the variance of endowment shockæ2

S is nonzero and the number of traders in each
group M = 1+ (L°1)Ω goes to infinity.

(ii) the variance of residual risk æ2

Y is nonzero.
Themarket becomesperfectly competitive as the given stockofmarket-wide riskaver-

sion AE , private information øE , and endowment shock ßS is divided among infinitely
many traders if and only if the variance of the market endowment shock ß2

S is nonzero.

In a model with quadratic storage costs, Vives (2011) shows that the market be-
comes perfectly competitive in the limit as the number of traders approaches infinity
if the correlation between traders’ values is less than one. In a model with quadratic
storage costs and equicommonality, Rostek and Weretka (2015) show that the market
becomes perfectly competitive in the limit as the number of traders approaches infin-
ity if the average correlation is bounded away from one.

Their results on perfect competition are consistent with the result from our model
with exponential utility and residual uncertainty. Themarket becomes perfectly com-
petitive in the limit as the number of traders approaches infinity if there is any endow-
ment shock that keeps the correlation between traders’ values strictly below one.

Tocompare the implicationsofquadratic storage costswith that of exponential util-
ity, we solve our model with exponential utility replaced with quadratic storage costs
but everything else remaining the same. The utility maximization problem (17) be-
comes

max

xl

n

E
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°

v +æV y °p
¢
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2
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2

Ø

Ø

Ø
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, (47)

where the constant µ> 0 is themarginal cost of holding inventory. Then the first order
condition becomes equivalent to that with exponential utility in (19) when A =æV = 1

and 1

ø§ +æ
2

Y are replaced by µ.
Then equilibrium with the quadratic storage costs can be simply characterized by

informational efficiency ' that solves

1

'
°1 =

µ2æ2

S

øI

°

1+øI +
°

1+ (N °1)'
¢

øI
¢

2 (48)

and satisfies the existence condition (37). Equation (48) follows from substituting A =
æV = 1 and 1

ø§ +æ
2

Y =µ into (36).
Assuming quadratic storage costs, therefore, affects how informational efficiency
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depends on the exogenous parameters. Comparing (48) with (36) shows that informa-
tional efficiency with quadratic storage costs is, in fact, qualitatively identical to infor-
mational efficiency with exponential utility and residual uncertainty.

Assuming quadratic storage costs, however, does not affect the relationship be-
tween competition and informational efficiency. Our measure of competition is still
the same function of M , N , and '. So our measures of competition and informational
efficiency capture the relationship between the two concepts inmodels with quadratic
storage costs as equallywell as inmodelswith exponential utility. This explainswhy the
results frommodelswith quadratic storage costs on perfect competition correspond to
the result from our model with exponential utility and residual uncertainty.

Perfect Risk Sharing Traders hedge their deterministic and random endowments.
From (56), the coefficients º

1

for the deterministic endowments (°AæV ¯sl ) and ºS for
random endowments (°AæV sl ) in the equilibrium demand schedule are given by

º
1

= ºS

1°' and ºS =
µ

M N °2

M N °1

∂µ

1° '

'soc

∂

. (49)

Informational efficiency restricts the extent to which traders can hedge deterministic
endowments as well as random endowments. Traders typically hedge their determin-
istic endowments more than they hedge their random endowments (º

1

∏ºs). The ex-
tent to which they can hedge their endowments decreases in informational efficiency.
Traders perfectly hedge their endowment (º

1

=ºS ! 1) if and only if informational ef-
ficiency ' approaches zero and the number of total traders M N approaches infinity.
Therefore, perfect risk sharing is a sufficient condition, but not a necessary condition,
for perfect competition.

Mapping to Rational Expectations Equilibrium Models. In the rational expecta-
tions equilibrium models of Grossman and Stiglitz (1980), Hellwig (1980), and Dia-
mond and Verrecchia (1981), traders rationally learn other traders’ information from
prices but they do not trade strategically. They take prices as given, even though their
trading affects the price. This “schizophrenia” problem, articulated by Hellwig (1980),
is addressed in our model in which all traders trade strategically.

In themodel of Diamond and Verrecchia (1981) price-taking traders trade with dif-
ferent private information (øI > 0) and different endowment shocks (æ2

S > 0). Each
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trader has unique information and endowment shocks are independent across traders.
There is no residual uncertainty (æ2

Y = 0) andnodeterministic endowments (with ¯sl = 0

for all l ). Replacing each trader in their model with a group of M traders in our model
and taking the limit M !1 in (36) and (38) result in

'=
√

1+
AæVæ

2

S

øI

!°1

< 1 and ¬! 1. (50)

The market becomes perfectly competitive, consistently with their assumption that
traders are price takers. With' and ø§ being independent ofM , thismeans the price in
themodel of Diamond andVerrecchia (1981)would be the same as that in our strategic
model with arbitrary M in (24).�� This means the competitiveness of the market is not
reflected in the price. M , and thus competition affects the quantities traded in (23). In
this setting, information is in the price; competition is in the quantity.

While' remains strictly belowone, theprice canbemade fully revealing in the limit
as N also approaches infinity. As new traders bring new information to the market,
the total precision a trader extracts from the price ø§ approaches infinity. This implies
REE with perfect competition and fully revealing price, but not with full informational
efficiency, may be a limit of an equilibrium in our strategic model as both M and N

approach infinity.
In the models of Grossman and Stiglitz (1980) and Hellwig (1980), traders do not

have the hedging motive but trade with noise traders who trade exogenously. We dis-
cuss the models in the next section where we introduce noise trading to the model.

7 Equilibriumwith Vanishing Noise

A symmetric linear equilibrium does not exist when
°

1°Ω
¢

øI = 0 or (25) fails to be sat-
isfied in Theorem 2. While informal intuition may suggest that there is no trade when
equilibrium fails to exist, nonexistence does not imply no trade but instead represents
failure of the model to make a prediction about the equilibrium outcome. We address
this modeling issue by introducing an equilibriumwith vanishing noise and using it to
provide precise intuition for the paradox of Grossman and Stiglitz (1980) and for the
no-trade theorem of Milgrom and Stokey (1982).

��Note that in (24) the price does not directly depend on M since (

1°Ω
)

(L°1)

1+(L°1)Ω simplifies to N °1.
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7.1 Exogenous Noise Trading

We first generalize the model by adding exogenous noise traders who demand a com-
pletely inelastic random quantity z distributed N

°

0,ß2

Z

¢

with ß2

Z > 0. An equilibrium
with exogenous noise trading is defined in the same way as an equilibriumwithout ex-
ogenous noise trading. The only change is that the exogenous noise trading is added to
the market clearing condition. The equilibrium is specified by the original exogenous
parameters A, æV , æS , øI , æY , M , N , and ¯s

1

, . . . , ¯sM N (with ¯s given by 1

M N

PM N
l=1

¯sl ) plus
an additional exogenous parameter ß2

Z defining the variance of zero-mean exogenous
noise trading.

Here we have replaced the original exogenous parameters L and Ω with the equiva-
lent exogenous parameters M = 1+ (L°1)Ω and N = L/M from (35). In terms of M and
N , the values of'soc is given by (37) and ø§ from (15) is given by ø§ = 1+øI +(N °1)øI'.

Lemma 2 (Equilibrium with Exogenous Noise Trading). Suppose A > 0, æV > 0, øI > 0,
and M N > 2. A symmetric linear equilibrium with non-zero exogenous noise trading,
ß2

Z > 0, always exists and is unique. The unique equilibrium is characterized by the en-
dogenous parameter ' that is the unique solution to

1

'
°1 = (AæVæS)

2

øI

°

1+æ2

Y +æ2

Y øI
°

1+ (N °1)'
¢¢

2

+ (AæVßZ )

2

øI M 2

(N °1)

µ

M N °1

M N °2

∂

2

µ

'soc
'soc°'

∂

2

°

1+æ2

Y +æ2

Y øI
°

1+ (N °1)'
¢¢

2

.

(51)

The market clearing price is given by

p

æV
=°

°

1+ø§æ2

Y

¢

ø§
AæV ¯s +

°

1+ (N °1)'
¢

ø§
ø1/2

I

PM N
l=1

il

M N

°
°

1+ (N °1)'
¢°

1+ø§æ2

Y

¢

ø§

√

PM N
l=1

AæV sl

M N
°

µ

M N °1

M N °2

∂µ

'soc
'soc°'

∂

AæV z

M N

!

.

(52)

As functions of equilibrium ', the demand schedule for any trader l and competition ¬
are given by (23) and (38), respectively.

Exogenous noise trading, widely used as a modeling device in the finance litera-
ture, is sometimes justified as a shortcut that proxies for various trading needs such
as hedging endowments. Exogenous noise trading and endowment shocks are similar
in that they are independent of the liquidation value of the asset, mitigating adverse
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selection created by information asymmetry.
They are, however, different in that endogenous hedging is sensitive to its effects

on the price while noise trading is completely inelastic. Unlike endowment shocks,
with which equilibriummay not exist because' does not stay below'soc, any positive
amount of noise trading (ß2

Z > 0) guarantees the existence of equilibrium since the
coefficient of ß2

Z in the second line of (51) explodes to infinity as ' increases to 'soc.
Intuitively, noise traders are willing to incur whatever losses are necessary so that

they can trade the exogenous quantity z. In this sense, noise traders are similar to
the “schizophrenic” price takers in themodel of Grossman and Stiglitz (1980) and cus-
tomers in the model of Grossman and Miller (1988). They are willing to pay any cost
to trade their desired quantities immediately. This inability or unwillingness to adjust
quantities to limit price impact distinguishes noise traders from strategic traders with
hedging demands. How strategic traders adjust the quantities they trade is how we
measure competitionwith ¬. If themarket is not perfectly competitive (¬< 1), hedgers
never trade the entire quantities they desire while noise traders pay whatever trading
losses to do so.

Instead of relying on the losses of exogenous noise trading to support equilibrium,
we propose a “vanishing noise equilibrium,” which takes a limit as exogenous noise
trading vanishes. In the spirit of trembling hand perfect equilibrium, we interpret van-
ishing noise as small perturbations to the trading environment. Our approach differs
from trembling hand perfection by using exogenous perturbations rather than pertur-
bations of the players’ actions.

Let
≥

ß2

Z ,k

¥1

k=1

denote a sequence of positive real numbers with limk!1ß
2

Z ,k = 0.
Then there is a sequence of unique linear symmetric equilibrium for models specified
by fixed exogenous parameters A, æV , æS , øI , æY , M , N , and ¯s

1

, . . . , ¯sM N and changing
exogenous noise trading zk = ßZ ,k u with u ª N(0,1). For all k, let Xk , p (Xk ), and 'k

denote the equilibrium demand schedules, prices, and informational efficiency char-
acterized by Lemma 2.

Theorem 5. Suppose A > 0, æV > 0, øI > 0, and M N > 2. In a model with exogenous
noise trading zk , the equilibrium informational efficiency, price, and demand schedules
of all traders satisfy the following well-defined limits when ß2

Z ,k ! 0 as k !1. Define
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'soc by (37) and define '0

as the unique solution to

1

'
0

°1 = (AæVæS)

2

øI

°

1+æ2

Y +æ2

Y øI
°

1+ (N °1)'
0

¢¢

2

. (53)

Then informational efficiency 'k satisfies the limit

'k !'= min

Ω

'
0

,'soc =
M N °2

M N °2+N

æ

. (54)

The price satisfies the limit

pk

æV
!°

µ

1

ø§
+æ2

Y

∂

AæV ¯s +
°

1+ (N °1)'
¢

ø§

√

ø1/2

I

PM N
l=1

il

M N
°

°

1+ø§æ2

Y

¢

PM N
l=1

AæV sl

M N

!

°
°

1+ (N °1)'
¢

ø§
(N °1)

1/2

N

µ

1°'
'

øI ° A2æ2

Væ
2

S

°

1+ø§æ2

Y

¢

2

∂

1/2

u.

(55)

Quantities traded satisfy the limit
µ

M N °1

M N °2

∂µ

'soc
'soc°'k

∂

AæV Xl ,k
°

p
Ø

Ø il , sl
¢

!° AæV ¯s

1+ (N °1)'
° AæV (

¯sl ° ¯s)

1°' ° AæV sl +
1

1+ø§æ2

Y

µ

ø1/2

I il °
ø§

1+ (N °1)'

p

æV

∂

.

(56)

A vanishing noise equilibrium is defined as strategies limk!1 Xl ,k for all l given by
(56) and prices limk!1 pk given by (55), with informational efficiency ' = limk!1'k

characterized by (54). Competition ¬ in a vanishing noise equilibrium is given by (38).
Theorem 5 covers two distinct cases, depending on whether an equilibrium would

exist without any exogenous noise trading. First, when ' = '
0

< 'soc holds, an equi-
librium already exists without exogenous noise trading (Theorem 1), in which case the
limit with vanishing exogenous noise trading is this equilibrium. There is always finite
trading volume, and the vanishing noise trading has no effect on prices. In this case,
the square root expression in second line of (55) is exactly zero because it corresponds
to '

0

solving (53).
We next discuss the second case when ' = 'soc ∑ '

0

holds, and so an equilibrium
does not exist without exogenous noise trading.
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7.2 No-Trade Theorem.

When ' = 'soc ∑ '
0

holds, there is no trade since Xl = limk!1 Xl ,k = 0 for all l from
(56). While the at-the-limit-strategies Xl

°

p
¢

¥ 0 themselves define a trivial no-trade
equilibrium in which there is no well-defined price, there is trading “along the way to
the limit”, and such trading is proportional to the difference 'k °'soc. This allows the
price to be well-defined in the limit.

Informational Efficiency in No-Trade Equilibrium. Vanishing noise trading sup-
ports an equilibriumby keeping the price sufficiently uninformativewith'='soc. The
price has “noise” in the second line in (55). When the inequality is strict ('soc <'0

), this
noise is nonzero even in the limit as exogenous noise trading vanishes.

The intuition is that the price impact of noise trading goes to infinity at a specific
speed as noise tradingß2

Z vanishes. According to (52), the price impact of noise trading
∏Z—the per-share price change in response to per-share noise trading—is defined by

∏Z :=
µ

M N °1

M N °2

∂µ

'soc
'soc°'

∂

°

1+ (N °1)'
¢°

1+ø§æ2

Y

¢

AæV

M Nø§
. (57)

This per-share trading cost of noise trading ∏Z explodes to infinity as 'k !'soc, con-
sistent with the idea that noise traders incur whatever trading losses are necessary to
support equilibrium.

As noise trading vanishes (ßZ ! 0), informational efficiency ' approaches 'soc
from (54). From (51) the noise in the price created by noise trading has variance

var {∏Z z} =∏2

Zß
2

Z ! øI (N °1)

°

NøI + M N°2+N
M N°1

¢

2

µ

1

'soc
° 1

'
0

∂

. (58)

Thenoise createdbynoise trading∏2

Zß
2

Z to converge to a constant that is nonzero if and
only if the inequality ('soc ∑'0

) is strict because the price impact ∏Z goes to infinity at
the same rate as the noise trading ßZ vanishes.

This also implies that the expected dollar losses of noise traders E {z ·∏Z z} = ∏Zß
2

Z

vanish as noise trading vanishes. Thus, the vanishing noise equilibrium introduced in
Theorem 5 does not rely on noise traders’ suffering nonzero trading losses.

Milgrom and Stokey (1982) show that theremay be no trade when traders have pri-
vate information in environments with more general preferences and distributions of
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randomvariables.�� They also argue that in such a no-trade equilibrium, the price nev-
ertheless fully aggregates information so that each trader’s private signal is “swamped”
by information contained in the price. They do not provide a specific mechanism for
determining equilibrium prices. Which price should we choose when any price would
clear the market in a trivial no-trade equilibrium?

Our model requires the market-clearing equilibrium price to be uniquely defined
by thewell-definedmechanismof aggregatingdemand schedules. The vanishingnoise
equilibriumuniquely pins down the price evenwhen there is no trade in the limit. This
approach is essential for understanding the somewhat counterintuitive result that the
price can be noisy evenwhen there is no noise in (58). Contrary toMilgrom and Stokey
(1982), traders’ private signalsmay not be “swamped” by information contained in the
price when traders exercise market power strategically. With informational efficiency
' = 'soc being less than one, a fraction 1°' of their private information is not incor-
porated in the price.

Combining (38) with (54), there is no trade in equilibrium if and only if the value of
'

0

that uniquely solves (53) satisfies

'
0

∏'='soc =
M N °2

M N °2+N
. (59)

Informational efficiency increases in both M and N and themarket is noncompetitive
(¬ = 0). Some readers might find it counterintuitive that prices can reveal any infor-
mation when there is no trade. The intuition for this is that traders choose not to trade
because prices incorporate so much of their information.

Recall that in (40), the extent to which traders trade toward their target inventory is
inversely related to the extent to which traders move the price toward their valuation.
Traders choose to not trade if and only if they move the price halfway toward their
valuations. If each trader has unique information with M = 1, this intuition implies
that informational efficiency' satisfies 'º 1/2 for large enough N (or, more precisely,
' = 1

2

°

1° 1

N°1

¢

). If more traders share the same information with M increasing to 2,
3, . . . , each trader still incorporates half of his marginal information. Since the trader’s
marginal information becomes smaller as M increases, informational efficiency ' in-
creases to approximately 2/3, 3/4, 4/5, . . ..

��Tirole (1982) considers both static and dynamic settings. Dow, Madrigal and da Costa Werlang
(1990) emphasize market completeness and common knowledge. Morris (1994) shows there may be
no trade with heterogeneous priors.
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Theoutcomeof this oligopolistic competition amongM traders resembles quantity
competition in a Cournot equilibrium in which each firm tries to maximize its profit
by supplying only the half of its residual demand. As the number of firms increases
in quantity Cournot competition, each firm becomes a smaller fraction of the market,
and the total quantity produced increases to fractions 2/3, 3/4,. . . , of the quantity with
perfect competition. Of course, the important distinction here is that informational
efficiency' continues to increase in M because themarket remains perfectly noncom-
petitive. If themarket were becoming perfectly competitive, themarginal traderwould
stop incorporating his information into the price and so'would be independent of M

as shown in Section 5.
One example of (59) being satisfied occurs when M is finite and there is no residual

uncertainty æ2

Y = 0. In this case, even with some endowment shock æ2

S 2
µ

0,

øI

M A2æ2

V

∂

,
there is no trade even as the number of groups N approaches infinity. Positive endow-
ment shocks and infinitely many traders are not only insufficient for achieving perfect
competition but also insufficient for creating any trade.

Ex-ante gains from trade. Another difference between our model and that of Mil-
grom and Stokey (1982) is that we allow initial allocations to be not Pareto optimal. Re-
call the initial endowments have deterministic components ¯sl as well as random com-
ponents sl for all l in (3). If trader l ’s mean endowment ¯sl is not equal to the aggregate
mean endowment ¯s, he knows that the allocations are not Pareto optimal because all
traders are risk averse. It is common knowledge among all traders whose deterministic
endowments are not the same as ¯s that there are ex-ante gains from trade.

The deterministic endowments ¯s
1

, . . . ,

¯sM N affect the levels of the price and the de-
mand schedules in Theorem 5. First, the average deterministic endowment ¯s lowers
the level of the price from (55) in Theorem 5. The average deterministic endowments
cannot behedged away and, thus, risk averse traders need to be compensated for hold-
ing the asset. Second, both the individual deterministic endowments ¯sl and the aver-
age deterministic endowments ¯s affect the level of the trader’s demand schedule. From
(56) a trader’s demand schedule shifts down with ¯sl since traders hedge them at least
partly. It shifts up with ¯s since the aggregate risk cannot be hedged.

The deterministic endowments have no effect on equilibrium informational effi-
ciency ' or competition ¬. Since deterministic endowments do not affect whether
there is no trade, traders may not participate in any trade at all despite large poten-
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tial gains from trade to equalize inventories across traders. The economic intuition
for the failure of the market to realize ex-ante gains from trade is reminiscent of the
lemons problem in the model of Akerlof (1970), in which the seller has private infor-
mation and the buyer does not. We show that the lemons problem can remain when
all traders have private information.

The equilibrium in demand schedules is attractive because all traders are treated
symmetrically and limit orders are protected. These are properties of well-functioning
markets which organized exchanges and their regulators strive to implement. From
theperspectiveofwelfare economics, themainweaknessof the equilibrium indemand
schedules is thatmodest adverse selectioncanmake tradebreakdownevenwhen there
are large gains from trade due to large non-stochastic initial endowments. Whether
there are better tradingmechanisms for internalizing gains from trade is an interesting
issue and left for future study.��

7.3 The Grossman–Stiglitz Paradox

Ourmodel assumes the quality of private information and the variance of endowment
shocks are the same across all traders, while themodel of Grossman and Stiglitz (1980)
assumes informed and uninformed traders differ in the quality of their information.
To compare our model with theirs, we replace the informed and uninformed in their
modelwith twogroupsof symmetrically informed traders (N = 2)withdifferent private
signals to capture their strategic interactions. Similarly, themodel ofHellwig (1980) can
be approximated by our model with N groups of traders.

In theirmodels, there is exogenousnoise trading (ß2

Z > 0) butnoendowment shocks
(æ2

S = 0) andno residual uncertainty (æ2

Y = 0). With givenmarket-wide exogenousnoise
trading ß2

Z > 0 and æ2

S = æ2

Y = 0 in our model, informational efficiency ' solves (51),

��Liu andWang (2016) examine amodel inwhich dealersmake profits by buying at the bid and selling
at the offer while customers are not allowed to trade with one another. The monopolistic spread profits
earned by dealers may allow trade to occur. Duffie and Zhu (Forthcoming) study a workup process that
allows traders to trade at fixed prices which do not necessarily clear the market. Glode and Opp (2016)
study the welfare effects of trading with intermediation chains. Malamud and Rostek (2016) study the
welfare effects of decentralized exchanges when traders have heterogeneous risk aversion. Also, Bond
and Eraslan (2010) show that allowing the liquidation value of the asset to depend on the action of the
final owner of the asset can generate trades.
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which simplifies to
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øE (N °1)
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M N °1

M N °2

∂

2

µ

'soc
'soc°'
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(60)

using the market-wide risk aversion AE = A
M N and information øE = NøI .

With given ß2

Z > 0, replacing each trader in their models with a group of M traders
with the same information and taking the limit M !1 results in

°

1°'
¢

3

'
= N 3

(AEæVßZ )

2

øE (N °1)

, implying lim

M!1
'< 1. (61)

Since '< 1 is sufficient for achieving perfect competition as M approaches infinity in
(38) fromTheorem3, themarket becomes perfectly competitive with ¬! 1, consistent
with the price-taking assumption in the competitive models of Grossman and Stiglitz
(1980) and Hellwig (1980). Importantly, perfect competition is obtained because the
marginal information of each trader is not being incorporated into the price, which
also explains why informational efficiency remains strictly below one.

The paradox of Grossman and Stiglitz (1980) involves taking a limit as the exoge-
nous noise trading vanishes. Taking the limit ß2

Z ! 0 in (61), the prices become fully
informationally efficient with ' ! 1. Then traders have no incentive to acquire pri-
vate information since their information is completely incorporated into the price. If
traders do not acquire private information, the information is not revealed in the price.
Then traders have an incentive to acquire information. Traders, therefore, can neither
acquire nor not acquire private information; this is the paradox.

In our strategic trading model, this paradox does not arise. Taking the limit ß2

Z ! 0

in (60) results in a no trade equilibrium with ¬! 0 and informational efficiency ' is
given by (59). Regardless of informational efficiency, traders do not have any incentive
to acquire costly information because they will not be able to trade on it. This does
not create a paradox. In fact, if traders do not acquire information, there is no infor-
mation asymmetry and øI ='= 0. This will allow traders to hedge their deterministic
endowments. If the number of traders approaches infinity, the market becomes per-
fectly competitive with ¬! 1 from (38). Traders can share their risk by equalizing their
endowments since º

0

=º
1

! 1 in (49).
The two different results can be summarized as taking limits in different orders.

Grossman and Stiglitz (1980), by assuming perfect competition exogenously, implicitly

35



take the limit M !1, while our strategic trading model takes the limit ß2

Z ! 0 first:

lim

M!1
¬= 1 for all ß2

Z > 0 and lim

ß2

Z!0

¬= 0 for all M . (62)

By first assuming M to be infinity, their approach neglects the delicate interaction be-
tween information and competition. With vanishing noise and no endowment shock,
themarket does not become perfectly competitive. In fact, themarket remaining non-
competitive is why the price becomes fully informationally efficient as M approaches
infinity. Therefore the perfect competition assumption is not strategically appropriate
in this setting when noise trading vanishes.

The fact that different results are obtained when limits are taken in different orders
implies that different results are also possible when a double limit is taken with both
ß2

Z ! 0 and M ! 1. This result that competition in the limiting economy crucially
depends on the order in which limits are taken is not unique to rational expectations
equilibriummodels. Below we show a similar result is also obtained in Cournot com-
petition with a linear demand curve. This example highlights the importance of un-
derstanding andmeasuring competition correctly.

ConsiderCournot competition amongn identical firms.�� There is a linear industry
demand curve with Q = ±°P/P

0

for constants P
0

> 0 and ± > 0. Each firm produces
q units at a cost Æ

2

q2 for Æ > 0. Then it is well known that both the equilibrium price
and the marginal cost approach zero in the limit n !1. The details are derived in the
Appendix A. The conventional wisdom is that, therefore, themarket becomes perfectly
competitive in the limit n !1.

Our measure of competition ¬, defined as the ratio the optimal quantity produced
by each firm to the hypothetical price-taking quantity produced, is given by

¬ := q§

qPT
= Æ

Æ+2P
0

= nØ

nØ+2P
0

, (63)

where the industry production cost is given by Ø
2

q2 with Ø= Æ
n so that Ø

2

q2 = n Æ
2

° q
n

¢

2.
If the firm’s production cost parameter Æ stays constant as the number of firms n

varies, competition¬ is independent of the number of firms. ¬ in (63) can be expressed
in terms of the Lerner index (LI ), the Herfindal index (H I ), and the absolute value of

��We thank an anonymous referee for suggesting the Cournot competition example.
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the price elasticity of demand (e)��:

1°¬
1+¬ = LI = 1

e
H I = P

0

Æ+P
0

= P
0

nØ+P
0

. (64)

The market becomes perfectly competitive with ¬! 1 if and only if the market power
measuredby theLerner index,which is the sameas theHerfindahl indexnormalizedby
the absolute value of the elasticity, approaches zero. With the linear demand curve, un-
like the constant elasticity demand, the demand becomes completely inelastic as the
price approaches zero. This enables firms to limit their quantities and charge higher
prices, keeping the relative markup constant. Because of the elasticity, in contrast to
the conventional wisdom, the market does not become perfectly competitive in the
limit n !1.

If, instead, the industry’s production cost parameterØ stays constant as thenumber
of firms n varies, competition now depends on n in (63) and in (64). With the constant
industry production cost Ø > 0, the equilibrium price does not approach zero in the
limit n !1. Similar to the Grossman–Stiglitz case, the order in which limits are taken
is crucial in determining competition ¬. From (63), we have

lim

n!1
¬= 1 for all Ø> 0 and lim

Ø!0

¬= 0 for all n ∏ 1. (65)

With a linear demand curve, vanishing marginal cost with Ø! 0 implies e ! 1

n . As the
number of firms approaches infinity n !1, the demand becomes infinitely inelastic,
keeping themarket from becoming competitive. As in the Grossman–Stiglitz example,
this intuition is lost if the limit n ! 1 is taken first.�� These examples demonstrate
that measuring and understanding competition correctly is an essential issue in eco-
nomics.

��Recall the measures are defined as LI := (P °MC )/P , H I :=
°

PN
n=1

q2

n

¢

/

°

PN
n=1

qn
¢

2, and e :=
° (dQ/Q)/(dP/P ).
��We can interpret the paradox of Diamond (1971) in a sequential searchmodel as taking limits in two

different orders. Hismodel assumesfirmspostwages, which is equivalent to implicitly taking the limit as
firmshave all the bargainingpower andworkers none. Then taking the limit as the search cost ofworkers
vanish implies that the firms still extract all the rents. This is considered a paradox because without any
search cost, firms would have Bertrand competition. As is well known, this result is overturned when
the wage is determined by bargaining.
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8 Conclusion

By examining the properties of an equilibrium in amodel of speculation and hedging,
we have found that financialmarkets cannot achieve both full informational efficiency
and perfect competition simultaneously, even with infinitely many traders. Our mea-
sure of competition, definedby the ratio between thequantity a trader optimally trades
and the hypothetical quantity the trader would have traded if hewere a price taker, has
been shown useful for providing clear intuitions for the relationship between informa-
tion and competition. The result that traders choose not to trade even when there are
large gains from trade by equalizing their deterministic endowments indicates that an
equilibrium in demand schedules does not efficiently internalize gains from trade. It
is an interesting question for future research whether other trading mechanisms can
achieve greater gains from trade than the single-price double auction analyzed in this
paper.
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A Cournot Competition Examples

Cournot Competition with Constant Elasticity Demand Curve. Consider the fol-
lowing example of Cournot competition. There are n identical firms that can each pro-
duce q units at a cost Æq± for Æ> 0 and ±> 1. There is an industry demand curve with
constant elasticityQ = (P/P

0

)

°e for constants P
0

> 0 and e > 0. Then taking as given the
quantity produced by the n °1 other firms Q

0

, firm n chooses to produce the optimal
quantity q§ that solves

max

q
P

0

h

°

q +Q
0

¢°1/e ·q °Æq±
i

. (66)

In a symmetric equilibrium,Q
0

= (n °1) q§ can be substituted into the first order con-
dition to obtain the equilibrium price P§:

P§
µ

1° 1

en

∂

=Æ±
°

q§¢±°1

. (67)

In industrial organization, the degree of monopoly power is often measured by the
Lerner index, given by

LI := P °MC

P
= 1°

Æ±
°

q§¢±°1

P§ = 1

en
, (68)

or the Herfindal-Hirschman index, given by symmetry by

H I :=
N
X

n=1

√

qn
PN

n=1

qn

!

2

= 1

n
. (69)

To find ¬, defined by (31), first find the price Pn that would prevail if firm n’s pro-
duced quantity were zero. The constant elasticity demand schedule implies that Pn =
P§ °

1° 1

n

¢° 1

e . A price taker would choose to produce qPT so that the marginal cost
equals Pn :

P§
µ

1° 1

n

∂° 1

e

=Æ±q±°1

PT . (70)

Comparing (67) and (70) yields

¬ := q§

qPT
=

√

µ

1° 1

en

∂µ

1° 1

n

∂

1

e

!

1

±°1

=
≥

(1°LI ) (1°H I )

1

e

¥

1

±°1

. (71)
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As n !1, the market becomes perfectly competitive with ¬! 1, LI ! 0, and H I ! 0.

CournotCompetitionwithLinearDemandCurve. Therearen identical firms,which
can each produce q units at a cost Æ

2

q2 for Æ> 0. The industry production cost is given
by Ø

2

q2 with Ø= Æ
n . There is a linear industry demand curve withQ = ±°P/P

0

for con-
stants P

0

> 0 and ±> 0. Taking as given the quantity produced by n°1 firmsQ
0

, firm n

chooses to produce the optimal quantity q§ that solves

max

q

h

P
0

°

±°Q
0

°q
¢

·q ° Æ

2

q2

i

. (72)

In a symmetric equilibrium,Q
0

= (n °1) q§ can be substituted into the first order con-
dition to obtain the equilibrium quantityQ§ and price P§:

q§ = P
0

±

Æ+P
0

(n +1)

and P§ = P
0

± (Æ+P
0

)

Æ+P
0

(n +1)

. (73)

The Lerner index LI and the Herfindal-Hirschman index H I are given by

LI := P °MC

P
= P

0

Æ+P
0

and H I = 1

n
. (74)

The price elasticity of demand is °e, with e > 0 given by

e =°dQ/Q

dP/P
= Æ+P

0

nP
0

. (75)

To find ¬, defined by (31), first find the price Pn , that would prevail if firm n’s pro-
duced quantity were zero. The linear demand schedule implies that Pn and the price
taker’s quantity qPT are given by

Pn = P
0

± (Æ+2P
0

)

Æ+P
0

(n +1)

and qPT = P
0

± (Æ+2P
0

)

Æ (Æ+P
0

(n +1))

, (76)

which yields

¬ := q§

qPT
= Æ

Æ+2P
0

= nØ

nØ+2P
0

. (77)

This implies our measure of competition ¬ satisfies

1°¬
1+¬ = LI = 1

e
H I = P

0

Æ+P
0

= P
0

nØ+P
0

. (78)
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B Proofs

Proof of Lemma 1. Information that trader l can learn from
©

pl , il , sl
™

is equivalent
to information that he can learn from

©

ˆpl , il
™

. The variables v
æV
, il , and

ˆpl
æV

are jointly
normally distributed as

0

B

B

@

v
æV

il
p̂l
æV

1

C

C

A

ª N

0

B

B

@

0

B

B

@

0

0

0

1

C

C

A

,

0

B

B

@

1 ø1/2

I
ºI
ºP
ø1/2

I

ø1/2

I 1+øI
ºI
ºP

°

øI +Ω
¢

ºI
ºP
ø1/2

I
ºI
ºP

°

øI +Ω
¢

var
n

ˆpl
æV

o

1

C

C

A

1

C

C

A

, (79)

where var
n

ˆpl
æV

o

is given by

var
Ω

ˆpl

æV

æ

=
µ

ºI

ºP

∂

2

µ

øI +var
Ω

P

l 0 6=l el 0

L°1

æ∂

+
µ

AæV ºS

ºP

∂

2

var
Ω

P

l 0 6=l sl 0

L°1

°Ωsl

æ

=
µ

ºI

ºP

∂

2

µ

øI +
1+ (L°2)Ω

L°1

∂

+
µ

ºS

ºP
AæVæS

∂

2

°

1°Ω
¢°

1+ (L°1)Ω
¢

L°1

.

(80)

By the projection theorem we have

E

Ω

v

æV

Ø

Ø

Ø

Ø

il ,

ˆpl

æV

æ

=

ø1/2

I

√

1

ºI
ºP

!T

·
√

var
n

ˆpl
æV

o

° ºI
ºP

°

øI +Ω
¢

° ºI
ºP

°

øI +Ω
¢

1+øI

!

·
√

il
ˆpl
æV

!

(1+øI )var
n

ˆpl
æV

o

°
≥

ºI
ºP

¥

2

°

øI +Ω
¢

2

=
ø1/2

I

µµ
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n

ˆpl
æV

o

°
≥

ºI
ºP

¥

2

°

øI +Ω
¢

∂

il + ºI
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1°Ω
¢
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æV

∂
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n

ˆpl
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o

°
≥

ºI
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øI +Ω
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,

(81)

and
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Ω

v

æV

Ø

Ø

Ø

Ø

il ,

ˆpl

æV

æ

= 1°

øI

√

1

ºI
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·
√
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° ºI
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øI +Ω
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° ºI
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(82)
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Substituting (80) and (82) into (13) yields

ø§ = 1+øI +

≥

ºI
ºP

¥

2

°

1°Ω
¢

2

var
n

ˆpl
æV

o

°
≥

ºI
ºP

¥

2

°

øI +Ω2

¢

øI . (83)

Then substitute (15) and (80) into (83) to obtain (16).
Using (83), we can express var

n

ˆpl
æV

o

in terms of ø§ as

var
Ω

ˆpl

æV

æ

=
µ

ºI

ºP

∂

2

√

øI +Ω2 +
øI

°

1°Ω
¢

2

ø§°1°øI

!

, (84)

which can be substituted into (81) to obtain

E

Ω

v +æV y

æV

Ø

Ø

Ø

Ø

il ,

ˆpl

æ

= øI °Ω (ø§°1)

ø§ø1/2

I

°

1°Ω
¢ il +

ºP
ºI

(ø§°1°øI )

ø§ø1/2

I

°

1°Ω
¢

ˆpl

æV
. (85)

since E
©

y
™

= E
©

y
Ø

Ø

ˆpl , il
™

= 0.

Proof of Theorem1. Substituting the conditional expectation (85) into the first order
condition (19) allows the optimal quantity demand xl to be written as

µ

2

ºP (L°1)

+ 1

ø§
+æ2

Y

∂

AæV Xl =
øI °Ω (ø§°1)

ø§ø1/2

I

°

1°Ω
¢ il °

µ

1

ø§
+æ2

Y

∂

AæV (sl + ¯sl )

+
ºP
ºI

(ø§°1°øI )

ø§ø1/2

I

°

1°Ω
¢

ˆpl

æV
° pl

æV
.

(86)

Substituting the residual supply curve (9) and the definition of ˆpl (11) allows the
optimal quantity demanded xm,n in (86) to be implemented with a demand schedule
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Xl given by
√

1+æ2

Y ø
§+ ø§

ºP (L°1)

+ (ø§°1°øI )
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I

°

1°Ω
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= (ø§°1°øI )

ø1/2

I

°
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∂
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√

1+æ2

Y ø
§+ (ø§°1°øI )

(L°1)ø1/2

I

°
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º
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I

°

1°Ω
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√
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I

°
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¢
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!

p

æV
°

√
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§°

ΩºS
ºI

(ø§°1°øI )

ø1/2

I

°

1°Ω
¢

!

AæV sl .

(87)

A linear symmetric equilibrium is found by equating a trader’s best response (87) to
the strategy the trader conjectures (º

0

, º
1

, ºS , ºI , and ºP ) that others are playing. This
implies that

ºP

ºI
=
ø§°

ºP
ºI

(

ø§°1°øI )

ø1/2

I (

1°Ω
)

øI°ΩI (ø§°1)

ø1/2

I (

1°Ω
)

=
ø§ø°1/2

I

1+ (

1°Ω
)

(L°1)

1+(L°1)Ω '
, (88)

ºS

ºI
=

1+æ2

Y ø
§°

Ω
ºS
ºI

(

ø§°1°øI )

ø1/2

I (

1°Ω
)

øI°Ω(ø§°1)

ø1/2

I (

1°Ω
)

=
°

1+æ2

Y ø
§¢

ø°1/2

I , (89)

º
1

ºI
=

1+æ2

Y ø
§+ (

ø§°1°øI )

(L°1)ø1/2

I (

1°Ω
)

º
1

ºI

øI°Ω(ø§°1)

ø1/2

I (

1°Ω
)

=
°

1+æ2

Y ø
§¢

ø°1/2

I

1°' , (90)

º
0

ºI
=

(

ø§°1°øI )

ø1/2

I (

1°Ω
)

≥

°º
0

ºI
+

° L
L°1

¢ º
1

ºI

¥

øI°Ω(ø§°1)

ø1/2

I (

1°Ω
)

=

0

@

1° 1°'
1+ (L°1)

(

1°Ω
)

1+(L°1)Ω '

1

A

º
1

ºI
, (91)

and

ºI =
øI°Ω(

ø§°1

)

ø1/2

I (

1°Ω
)

1+æ2

Y ø
§+ ø§

ºP (L°1)

+ (ø§°1°øI )

(L°1)ø1/2

I (

1°Ω
)

ºI

=
L°2

L°1

µ

1° Ω+ 2

L°2

Ω+ 1

L°1

'

∂

°

1+æ2

Y ø
§¢

ø°1/2

I

, (92)

where the second equality in (92) follows (88).
Substituting (88) to (92) into (8) yields (23). Substituting (23) into the market clear-

ing condition (5) and rearranging yields (24).
To exclude trivial no-trade equilibrium, we require L > 1 and (L°1)ºP 6= 0. Using
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(88) and (92), this implies

L > 2 and ' 6=
Ω+ 1

L°1

Ω+ 2

L°2

. (93)

Substituting (88) and (92) into the second order condition (20) yields

µ

1

L°2

∂

0

B

B

@

1+ 1°Ω
Ω+ 1

L°1

'

1° Ω+ 2

L°2

Ω+ 1

L°1

'

1

C

C

A

>°1

2

, (94)

which, combined with (93), is equivalent to (22). To see this, first note that (94) im-
plies that if (22) doesn’t hold, (94) and (93) imply that 1 <

µ

Ω

Ω+ 1

L°1

∂

', which cannot hold
because '∑ 1.

Finally, (22) implies that ºI = 0 if and only if øI = 0. Then assuming
°

1°Ω
¢

øI 6= 0,
substituting (89) and (92) into (16) yields (21). If

°

1°Ω
¢

øI = 0, ' is set to zero and this
satisfies (22).

Proof of Theorem 2. Proving this corollary is accomplished by analyzing the two
equations (21) and (22) determining the endogenous parameter'. If

°

1°Ω
¢

øI = 0,' is
set to zero, which satisfies (22).

Suppose
°

1°Ω
¢

øI 6= 0. The left hand side of (21) is monotonically deceasing for all
' 2 [0,1] with it approaching to infinity as ' approaches zero. The right hand side of
(21) is monotonically increasing for all ' 2 [0,1]. Therefore, a symmetric linear equi-
librium is unique, if it exists. The unique solution to (21) exists and satisfies (22) if and
only if the left hand side of (21) is strictly less than the right hand side of (21) when '
equals 'soc, which can be written as (25) using (28).

Proof of Theorem 3. From the two first order conditions (19) and (30), ¬, defined by
(31), is given by

¬=
√

1+ 2ø§

ºP (L°1)

°

1+æ2

Y ø
§¢

!°1

. (95)

Substituting equilibrium values of ø§ and ºP from (15) and (23) respectively into (95)
and rewriting in terms of M and N using (35) yield (38).
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Proof of Theorem4. From the discussion in themain text of the paper, perfect com-
petition is achieved if and only if ' < 1 if M !1 and '! 0 if M <1 and N !1 in
(45). With æ2

S > 0, ' < 1 from . In Section (5), we have shown that '! 0 in the limit
N !1 if and only if residual uncertainty æ2

Y > 0 or the market characteristics, AE , ß2

S ,
and øE are constant in (44).

Proof of Lemma 2. Proving this lemma is similar to proving Theorem 1 with two ex-
ceptions. First, the market clearing condition (5) should be replaced with

L
X

l=1

Xl
°

p
¢

+ z = 0. (96)

Second, learning from prices in (16) should have additional noise from ß2

Z .
Equation (96) implies the price pl , that would prevail if his traded quantity were

zero (xl = 0) in (10) is now replaced by

pl

æV
=

P

l 0 6=l (ºC +º
0

AæV ¯s °º
1

AæV ¯sl 0 °ºS AæV sl 0 +ºI il 0)+ AæV z

(L°1)ºP
, (97)

which means ˆpl , defined by (11), now has an additional term as

ˆpl

æV
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ºP

P
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L°1
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ºP
AæV

µ

P

l 0 6=l sl 0
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∂
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Then var
n

ˆpl
æV

o

also increases by new noise trading as
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Ω
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=
µ

ºI
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∂

2

µ
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∂
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∂

2

°

1°Ω
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¢

L°1

+
µ
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(L°1)ºP

∂

2

.

(99)

Substituting and (99) into (83) to obtain

1

'
°1 =

µ

ºS

ºI
AæVæS

∂

2

+ 1

°

1°Ω
¢°

Ω+ 1

L°1

¢

µ

AæVßZ

(L°1)ºI

∂

2

. (100)

Exogenous noise trading only affects the optimal strategy and equilibriumdemand
schedules only through'. Thismeans theoptimal demand schedules are givenby (23).
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Substituting ºS
ºI
and ºI from (23) into (100) yields

1

'
°1 =

°

1+ø§æ2

Y

¢

2

0

B

@

(AæVæS)

2

øI
+ (AæVßZ )

2

°

1°Ω
¢°

Ω+ 1

L°1

¢

≥

1° '
'soc

¥

2

(L°2)

2øI

1

C

A

. (101)

Substituting ø§ from (15) and M and N , given by (35) into (101) yields (51).
With ß2

Z > 0, the right hand side of (51) approaches infinity as ' approaches 'soc
and the left hand side of (51) approaches infinity as ' approaches zero. By the Inter-
mediate Value Theorem, there is a' 2

°

0,'soc
¢

that solves (51). Since the left hand side
of (51) is strictly decreasing in' and the right hand side of (51) is increasing in' for all
' 2

£

0,'soc
§

, the solution to (51) is unique. Therefore, there exists a unique symmetric
linear equilibrium characterized by '.

Substituting (23) into the market clearing condition (96) yields

p

æV
=°

°

1+ø§æ2

Y

¢

AæV ¯s

ø§
+

°

1+ø§æ2

Y

¢

≥

1+ (

1°ΩI )

(L°1)

1+(L°1)ΩI
'

¥

ø§
°L°2

L°1

¢

≥

1° '
'soc

¥ AæV z

+ 1

ø§

µ

1+
°

1°ΩI
¢

(L°1)

1+ (L°1)ΩI
'

∂µ

ø1/2

I

P

il

L
°

°

1+ø§æ2

Y

¢

P

AæV sl

L

∂

.

(102)

Again, substituting ø§ from (15) and M and N , given by (35) into (101) yields (51).

Proof of Theorem 5. If ' < 'soc, then the coefficient of ß2

Z in (51) is finite and (51)
is continuous in æ2

Z and '. The limit of (51) as ß2

Z approaches zero is (53) and ' = '
0

solves (53). Since (51) is continuous in ' and 'k is a unique solution to (51) in
°

0,'soc
¢

for all k, by the Implicit Function Theorem, 'k !'
0

as k !1 if '
0

<'soc.
If 'soc <'0

, then 'k does not approach '0

since 'k <'soc for all k. This means

lim

k!1

1

'k
°1° (AæVæS)

2

øI

°

1+æ2

Y +æ2

Y øI
°

1+ (N °1)'k
¢¢

2 > 0. (103)

Substituting (103) into (51) implies

lim

k!1

(AæVßZ )

2

M 2

(N °1)øI

µ

M N °1

M N °2

∂

2

µ

'soc
'soc°'k

∂

2

> 0. (104)
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Therefore, as k !1, 'k !'soc and

(AæVßZ )

2

M 2

(N °1)øI

µ

M N °1

M N °2

∂

2

µ

'soc
'soc°'k

∂

2

!
µ

1

'
°1

∂

°

1+æ2

Y ø
§¢°2 ° (AæVæS)

2

øI
> 0. (105)

where the inequality follows '
0

>'soc.
Finally, if '

0

='soc, (105) approaches zero. So '='
0

='soc solves the limit of (51)
asæ2

Z approaches zero,which is (53). By the Implicit FunctionTheorem,'k !'
0

='soc
as k !1. This proves (54).

Using (54), taking a limit to (52) as k !1 and substituting (105) yields pk ! p in
(55). Taking a limit to (23) and substituting (35) yields Xl ,k ! Xl in (56).
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