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Abstract

We characterize international stochastic discount factors (SDFs) in incomplete mar-
kets under various forms of market segmentation. Using 40 years of data on a cross-
section of different countries, we estimate model-free SDFs and factorize them into
permanent and transitory components. We find that large permanent SDF compo-
nents help to reconcile the low exchange rate volatility, the exchange rate cyclicality,
and the forward premium anomaly. However, under integrated markets, this entails
highly volatile and very similar international SDFs. In contrast, segmented markets
can generate less volatile and more dissimilar SDFs. We then theoretically study
SDFs in segmented markets using a simple model with constrained financiers who
intermediate households’ demand for international assets. Empirically, we document
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The simplest canonical models in international finance are at odds with many salient features

of exchange rates and international asset prices. These can be summarized in three asset

pricing puzzles: the low exchange rate volatility documented by Obstfeld and Rogoff (2001) and

Brandt, Cochrane, and Santa-Clara (2006), the counter-cyclicality puzzle of Kollmann (1991)

and Backus and Smith (1993), and the forward premium anomaly of Hansen and Hodrick (1980)

and Fama (1984).

These puzzles spawned a large literature. One strand of the literature assumes integrated

complete markets under various specifications of preferences and consumption dynamics. An-

other strand of the literature argues that some form of incompleteness may be useful to accom-

modate the puzzling features of exchange rates. Recently, however, Lustig and Verdelhan (2016)

conclude that, even under incomplete spanning, the three puzzles cannot be jointly explained

in an international consumption CAPM setting.1

In complete and integrated markets, the rate of appreciation of the real exchange rate (X)

equals the ratio of the foreign (Mf ) and domestic (Md) stochastic discount factors (SDFs):

X = Mf/Md, i.e., the asset market view of exchange rates holds. Therefore, the common

understanding in international financial economics is that under a departure from market com-

pleteness, the exchange rate is in general different from this ratio. Such a deviation from the

asset market view can be captured by a multiplicative stochastic wedge as in Backus, Foresi,

and Telmer (2001). In this paper, we show that the asset market view can also hold in in-

complete markets. Departures from the asset market view can be achieved via international

market segmentation, which we document is key to quantitatively address salient features of

international asset returns.

To this end, we propose a parsimonious model-free approach to characterize theoretically

and to measure empirically the relations between international SDFs, exchange rate puzzles

and the deviations from the asset market view of exchange rates. We develop our theory for

1The complete market assumption is used in the habit model of Stathopoulos (2017) to generate sizable
currency risk premia. Similarly, Colacito and Croce (2013) employ recursive preferences with highly correlated
international martingale components in a two-country complete market setting. Farhi and Gabaix (2016) rely on
a complete market economy with time-additive preferences and a time-varying probability of rare consumption
disasters. Gabaix and Maggiori (2015) provide a theory of exchange rate determination based on capital flows
in financial markets with heterogenous trading technologies, while Chien, Lustig, and Naknoi (2015) propose a
two-country stochastic growth model with segmented financial markets that generates smooth exchange rates
and highly volatile stochastic discount factors.



economies where domestic and foreign investors have access to short- and long-term bonds,

and aggregate equity. In order to characterize international SDFs without committing to a

particular asset pricing model, we estimate different projections of international SDFs on the

space of tradable returns for domestic and foreign investors.

Given the multitude of SDFs pricing returns in incomplete markets, we explore minimum

dispersion SDFs, which minimize different notions of variability, e.g., the Hansen and Jagan-

nathan (1991) SDF when we minimize the SDF variance or minimum entropy SDF projections.

We prove that minimum entropy SDFs always imply the validity of the asset market view when-

ever foreign and domestic investors trade the same set of assets in integrated markets, i.e., when

markets are symmetric. This finding is important, because it implies that a Backus, Foresi,

and Telmer (2001)–type stochastic wedge only arises with respect to any other minimum dis-

persion SDF, including the tradable minimum variance SDFs. Using the latter SDFs, we show

that exchange rate wedges are always interpretable as a measure of the amount of untradable

exchange rate risk in integrated international financial markets. Therefore, in order to break

the strong link between international SDFs and exchange rates, we also allow for international

market segmentation when studying the exchange rate puzzles.

More specifically, we examine the implications of different deviations from market symmetry,

from highly segmented domestic and foreign markets to fully integrated markets, in which

(risk-free) short- and long-term bonds and stocks are traded internationally. This allows us to

quantify the trade-offs between a larger domestic and foreign SDF dispersion necessary to price

a wider set of returns, the three exchange rate puzzles, and a deviation from the asset view.

For our empirical analysis, we adopt the insights of Bansal and Lehmann (1997), Alvarez and

Jermann (2005) and Hansen and Scheinkman (2009), in order to factorize international SDFs

into a permanent and a transient component using long-term bonds.

We study eight benchmark currencies, namely the US dollar, the British pound, the Swiss

franc, the Japanese yen, the euro (Deutsche mark before the introduction of the euro), the

Australian dollar, the Canadian dollar, and the New Zealand dollar. The resulting seven

exchange rates are expressed with respect to the US dollar as the domestic currency and the

sample period spans January 1975 to December 2015. We summarize our empirical findings as

follows.
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We first document that our main empirical results are all consistent across the various

choices of SDF projections used. Permanent (martingale) components of domestic and foreign

SDFs across markets are highly volatile, irrespective of the degree of market segmentation,

to the point that they actually dominate the overall SDF variability. The co-movement of

permanent SDF components and long-term bond returns is positive, in order to match the

typically negative local risk premia of long-term bonds. These features are consistent with

previous evidence for the US market in, e.g., Alvarez and Jermann (2005).

In a setting where equity and long-term bond markets are segmented and investors are

allowed to trade internationally only the riskless short-term bonds, we find the ensuing minimum

dispersion SDFs to jointly address the three exchange rate puzzles. The low exchange rate

volatility is explained by means of a volatile wedge between exchange rates and the ratio of

foreign and domestic SDFs. The cyclicality puzzle is addressed because cross-country differences

in transient SDF components are only weakly related to exchange rate returns. Carry trade

premia are also in line with those observed in the data, because the international pricing

constraints on risk-free bonds effectively force domestic and foreign SDFs to correctly reproduce

the cross-section of currency risk premia. Moreover, the SDFs in this setting exhibit on average

volatilities slightly higher than the local Sharpe ratios, whereas the correlation between domestic

and foreign SDFs is far from perfect, ranging from 12% to 65%, giving rise to large deviations

from the asset market view.

Under fully integrated international bonds and stock markets, we show that the three ex-

change rate puzzles are again all explained. However, the resulting SDF dispersions are sig-

nificantly larger than under integrated short-term bond markets alone. At the same time, the

correlations between international SDF projections are nearly perfect and the deviations from

the asset market view uniformly small. These features are necessary in order to match the

cross-sections of international equity premia and long-term bond risk premia together with the

low exchange rate volatility. Compared to the integrated short-term bond markets case, the

increase in minimum variance SDFs dispersion is on average 30%, where the highest variances

are observed for the funding currencies. These large SDF dispersions suggest that it may be dif-

ficult to explain exchange rate puzzles in a structural model with fully integrated international

bond and equity markets.
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Our empirical analysis reveals that international market segmentation is the key economic

driver of quantitatively relevant deviations from the asset market view, both under complete

and incomplete markets. Therefore, market segmentation is also central for understanding

different degrees of co-movement or similarity between international SDFs. To measure SDF

similarity in our incomplete markets setting, we propose a novel SDF similarity index. This

index complements existing measures of SDF co-dependence, such as Brandt, Cochrane, and

Santa-Clara (2006) and Chabi-Yo and Colacito (2017). In the data, we find that SDF similarity

is maximal for symmetrically integrated markets, while in presence of market asymmetries,

SDF similarity is greatly reduced. To compare our results with other similarity measures, we

calculate Chabi-Yo and Colacito (2017) SDF co-entropies using our model-free SDFs, without

assuming the validity of the asset market view. Consistent with our similarity measures, we

find that while co-movement of SDFs is only roughly 50% in asymmetric market settings, SDF

co-movement is virtually perfect as one moves towards symmetric markets.

Finally, in quest of relating our model-free SDFs to economic fundamentals, we propose

a stylized version of the Gabaix and Maggiori (2015) model which studies an economy with

segmented short-term bond markets, in which households’ asset demand is met by financial

intermediaries. In such a setting, intermediaries’ stochastic discount factor is shown to be

linear in their wealth. Motivated by this framework, we relate our model-free SDFs to different

proxies of financial constraints and financial intermediaries wealth, such as the VIX, a model-

free implied volatility index extracted from S&P500 options, and the intermediaries capital

ratio of He, Kelly, and Manela (2017). Depending on the market setting, we find that proxies

of financial constraints and intermediaries’ wealth alone can explain up to 50% of the variation

of our model-free SDFs.

After a literature review, the rest of the paper is organized as follows. Section 1 provides the

theoretical framework for our model-free selection of minimum dispersion SDFs in international

financial markets. Section 2 describes our data and our main empirical findings, under various

benchmark assumptions about the degree of international market segmentation. In section 3

we propose a segmented market model where financiers intermediate households’ demand for

international assets. Section 4 is devoted to robustness checks regarding the SDF factorization

into short- and long-term components. Section 5 concludes. An online appendix contains
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further results omitted in the paper.

Literature Review: Our paper contributes to the literature that studies the ability of

market incompleteness to address various puzzles in international finance. Bakshi, Cerrato,

and Crosby (2015) and Lustig and Verdelhan (2016) study preference-free SDFs in incomplete

markets to address the weak link between exchange rates and macroeconomic fundamentals.

The former impose “good deal” bounds on international SDFs to examine economies with a low

amount of risk sharing and economically motivated pricing errors. Lustig and Verdelhan (2016)

introduce a stochastic wedge between foreign and domestic SDFs and conclude that incomplete

markets cannot jointly address the three exchange rate puzzles under a Consumption-CAPM

framework. Adopting a minimum-dispersion SDF approach, we borrow from Almeida and

Garcia (2012) and characterize the properties of international SDFs, without introducing any

particular distributional assumption, while allowing them to be factorized into transient and

permanent components. We demonstrate that long-run SDF components are key to reconcile

stylized exchange rate facts in incomplete markets, especially the Backus-Smith puzzle. We

further highlight theoretically the distinct economic roles of minimum entropy and minimum

variance SDFs with respect to the asset market view. Similarly, we quantify empirically the

trade-offs between SDF dispersion, SDF similarity, and market segmentation in international

financial economies.

Another strand of literature studies structural models of exchange rate determination under

different assumptions about market segmentation. Chien, Lustig, and Naknoi (2015) show that

while limited stock market participation can reconcile highly correlated international SDFs with

a low correlation in consumption growth, it is less successful in addressing the Backus and Smith

puzzle. Alvarez, Atkeson, and Kehoe (2009) explain the Backus and Smith puzzle in a general

equilibrium model with financial frictions and endogenous market participation. Gabaix and

Maggiori (2015) study the disconnect puzzle and violations of UIP in a setting where specialized

financiers intermediate households’ asset demands in segmented markets. We contribute to this

literature by jointly addressing the three exchange rate puzzles with a model-free approach and

by quantifying empirically the large SDF dispersion and similarity trade-offs implied by settings

with fully integrated versus segmented international financial markets. Theoretically, we prove

that the asset market view always holds for symmetric markets with respect to minimum
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entropy SDFs. A key economic implication of this feature is that exchange rate wedges can

always be factorized into tradable and untradable exchange rate risk components in incomplete

markets. We document empirically that all minimum dispersion SDFs in symmetric markets

are very similar and almost perfectly co-moving. At the same time, given a particular market

segmentation structure, we are able to quantify the resulting degree of SDF similarity and co-

dependence that may need to be generated by structural models assuming segmented markets.

Maurer and Tran (2016) construct minimum variance SDF projections on excess returns

in incomplete continuous-time models, showing that the asset market view holds if and only

if exchange rate risks can be disentangled in symmetric domestic and foreign asset markets,

i.e. only in the absence of jump risk. Our approach is different and explicitly considers various

model-free SDFs projections in discrete time. This allows us to show that the asset market view

always holds for minimum entropy SDFs in symmetric economies, irrespective of the degree of

market incompleteness and without making any additional assumptions on the distribution of

asset returns. Similarly, considering different admissible SDF projections is key to decompose

exchange rate risks into tradable and untradable risks from the perspective of domestic and

foreign investors.

Empirically, the SDF factorization in permanent and transient components has been em-

ployed previously in various studies of international asset pricing, assuming the validity of the

asset market view. Chabi-Yo and Colacito (2017) make use of co-entropies to characterize the

horizon properties of SDFs co-movement. Lustig, Stathopoulos, and Verdelhan (2016) explore

international long-term bond premia and conclude that the bond return parity condition holds

when nominal exchange rates are stationary. The large co-movement of permanent components

in these studies is a direct consequence of the assumed validity of the asset market view. Indeed,

we demonstrate that regardless of the underlying degree of market incompleteness, an almost

perfect co-movement of permanent SDF components emerges in all our symmetric international

economies. While we document that the underlying SDF dispersion in symmetric settings may

be difficult to explain using structural models with integrated (complete or incomplete) markets,

we also quantify the SDF dispersion and similarity trade-offs in segmented market settings.
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1 Preference-Free SDFs in International Markets

In this section, we introduce our model-free methodology for identifying minimum dispersion

SDFs in incomplete domestic and foreign financial markets. One motivation for using minimum

dispersion SDFs relies on the fact that they can be understood as optimal SDF projections gen-

erated by traded asset returns which also naturally bound the welfare attainable by marginal

investors. In this sense, minimum dispersion SDFs constrain the best deals accessible to do-

mestic and foreign investors. Moreover, minimum dispersion SDFs directly imply model-free

constraints on the distribution of asset returns, such as asset pricing bounds on expected (log)

returns and Sharpe ratios. These constraints need to be satisfied by any admissible interna-

tional asset pricing model. We focus on three types of SDFs which are obtained by minimizing

the SDF entropy, variance, and Hellinger divergence.

We denote by Md and Mf generic domestic and foreign SDFs that price a vector of returns

Rd and Rf from the perspective of domestic and foreign investors, i.e., in the domestic and

foreign currency, respectively. Moreover, we denote by X the gross exchange rate return, where

the exchange rate is defined as the domestic currency price of one unit of the foreign currency.

In the following, we generally work with real SDFs, returns, and exchange rates. Whenever we

use nominal exchange rates, we state this explicitly. We first introduce two key concepts that

are central to our work.

Definition 1. (i) International financial markets are called symmetric whenever span(Rd) =
span(RfX), where span(Rd) (span(RfX)) is the linear span of portfolio returns generated by
domestic returns (foreign returns converted in domestic currency). (ii) The asset market
view of exchange rates is said to hold with respect to SDFs Md and Mf if and only if

X = Mf/Md .

By definition, symmetric financial markets are integrated international financial markets,

in which each foreign return is tradable by domestic investors through exchange rate markets,

and vice versa. Consistent with this representation, we interpret a deviation from market

symmetry as a particular form of market segmentation. One implication of market symmetry

is that whenever domestic and foreign markets are complete, the asset market view of exchange

rates holds. In this setting, there exists a unique SDF that can be expressed in different currency

units by a simple change of numéraire via the exchange rate return. In other words, in complete
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and symmetric markets, domestic and foreign SDFs are numéraire invariant.

In incomplete or partially segmented markets, a deviation from the asset market view can

arise, rendering the relation between domestic and foreign SDFs generally more complex. In

principle, such a breakdown of the asset market view can be a pervasive feature that makes

minimum dispersion SDFs not numéraire invariant in such settings. We show, however, that

minimum entropy SDFs preserve their numéraire invariance even under incomplete markets,

implying that the asset market view always holds under market symmetry for these SDFs. This

property does not hold for any other minimum dispersion SDF. Therefore, symmetric market

settings are a natural benchmark to measure deviations from the asset market view in our

context.

Intuitively, a deviation from the asset market view is intrinsically related to varying the

co-movement and similarity properties of international SDFs, which are necessary to explain

the low exchange rate volatility. In order to quantify the trade-offs between a deviation from

the asset market view, the amount of international SDF dispersion and the degree of SDF

similarity in presence of market segmentation, we introduce a new family of model-free SDF

similarity indices. These indices attain their maximum when domestic and foreign SDFs are

identical and naturally complement existing indices of SDF co-movement in the literature.

1.1 Minimum-Dispersion SDFs

As is well known, stochastic discount factors can be thought of as investors’ marginal utility of

wealth. Using a preference-free approach, we study the properties of these SDFs in incomplete

and possibly segmented markets by restricting the set of assets that investors can trade.

The vectors of domestic and foreign returns priced by Md and Mf are Rd = (Rd0, . . . , RdKd
)′

and Rf = (Rf0, . . . , RfKf
)′, where Rd0 and Rf0 denote the risk-free returns in the domestic and

foreign markets. In our empirical analysis, we take the United States (US) as the domestic

market and the United Kingdom (UK), Switzerland (CH), Japan (JP ), the European Union

(EU), Australia (AU), Canada (CA) or New Zealand (NZ) as the foreign markets.2 For each

market i = d, f , we study the minimum-dispersion SDF that solves for parameter αi ∈ R\{1}
2Prior to the introduction of the Euro, we take Germany in its place.
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the following optimization problem:

min
Mi

1

αi(αi − 1)
logE[Mαi

i ] ,

s.t. E[MiRi] = 1 ; Mi > 0 .

(1)

The pricing restriction E[MiRi] = 1 in equation (1), where 1 is a (Ki + 1)× 1 vector of ones,

ensures that the SDF satisfies the given pricing constraints, while the positivity constraint

Mi > 0 ensures that it is indeed an admissible SDF.3 The formulation in equation (1) depends

on parameter αi, which subsumes various SDF choices in incomplete markets economies. More

specifically, different values of αi assign different weights to the higher-order moments of the

asset return distribution. For example, for αi = 2, we recover the well-known minimum variance

bounds of Hansen and Jagannathan (1991), while αi = 0 (αi = 0.5) corresponds to entropy

(Hellinger) bounds. The latter two also allow us to study the robustness of our findings with

respect to the higher-order moments of the asset return distribution. In line with Almeida

and Garcia (2012), among others, the minimum-entropy (αi = 0) SDF delivers a tight upper

bound on the maximal expected log return with respect to the available traded assets, while

the minimum-variance (αi = 2) SDF delivers a tight upper bound on the maximal Sharpe ratio.

More generally, every minimum dispersion SDF corresponds to a different set of tight con-

straints on the moments of traded asset returns. Since asset returns are observable but SDFs

are not, we can conveniently restate the minimum objective function in equation (1) into the

maximum objective function in the following dual portfolio problem (see, e.g., Orlowski, Sali,

and Trojani (2016), Proposition 4):

max
λi
− 1

αi
logE

[
R
αi/(αi−1)
λi

]
,

s.t. Rλi > 0 ,

(2)

where Rλi =
∑Ki

k=1 λikRik + (1−
∑Ki

k=1 λik)Ri0 and λik denotes the portfolio weight of asset k

in market i = d, f . The first-order conditions (FOCs) associated with optimization problem (2)

3In case the risk-free return Ri0 is traded, an equivalent formulation of problem (1) is:

min
Mi

1

αi(αi − 1)
logE[(Mi/E[Mi])

αi ] ,

s.t. E[MiRi] = 1 ; Mi > 0 .
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read:

E
[
R
−1/(1−αi)
λ∗i

(Rik −Ri0)
]

= 0. (3)

Using the optimal return Rλ∗i
in equation (2), we can now solve for the minimum dispersion

SDF, M∗
i , explicitly.

Proposition 1. The minimum dispersion SDF in international financial markets is given by:

M∗
i = R

−1/(1−αi)
λ∗i

/E[R
−αi/(1−αi)
λ∗i

], (4)

where Rλ∗i
is the optimal portfolio return which solves the optimization problem in (2). More-

over, due to the duality relation between problems (1) and (2), we have:

1

αi(αi − 1)
logE[M∗αi

i ] = − 1

αi
logE[R

αi/(αi−1)
λ∗i

]. (5)

Proof: See Appendix.

Using different values of parameter αi, we easily obtain different minimum dispersion SDFs

via equation (5), denoted by M∗
i (αi).

Example 1. (i) For αi = 0, the minimum entropy SDF is given by:

M∗
i (0) = R−1λ∗i

.

(ii) The minimum Hellinger SDF is obtained for αi = 1/2:

M∗
i (1/2) = R−2λ∗i

/E(R−1λ∗i ).

(iii) Finally, for αi = 2 we retrieve the minimum variance SDF:

M∗
i (2) = Rλ∗i

/E(R2
λ∗i

).

Based on these SDFs, we obtain the following bound for the distribution of any traded

return Rλi :
4

1

αi(αi − 1)
logE[Mαi

i ] ≥ − 1

αi
logE[R

αi/(αi−1)
λi

] . (6)

4When there is no duality gap between the primal and dual solutions, i.e. for the optimal portfolio return
Rλ∗

i
, we retrieve equation (5).
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Setting αi = 0 and αi = 2, we obtain the well-known entropy and variance bounds. Additionally,

we also consider αi = 1/2, which yields the Hellinger bound:5

logE
[
M

1/2
i

]
≤

logE[R−1λi ]

2
. (7)

In the following, we explore the link between deviations from the asset market view and min-

imum dispersion SDFs under various forms of departure from market symmetry. We achieve

this by adjusting the vector of traded returns Rd and Rf to reflect different degrees of financial

market segmentation, from settings of fully segmented markets to economies where domestic

investors can trade foreign bonds and stocks by resorting to exchange rate markets.

1.2 SDF Components and Exchange Rate Wedges

Alvarez and Jermann (2005), Hansen and Scheinkman (2009), and Hansen (2012) show that

SDF processes may be factorized into permanent and transitory components. The permanent

component is a martingale which is used to characterize pricing over long investment horizons.

The transitory component is related to the return on a discount bond of (asymptotically)

long maturity. We factorize international SDFs into martingale (permanent) and transient

components6

Mi = MP
i M

T
i . (8)

Theoretically, MP
i is identifiable by the martingale normalization E[MP

i ] = 1, while the tran-

sient component can be written as the inverse of the return of the infinite maturity bond,

i.e., MT
i := 1/Ri∞. In this setting, the normalization of the permanent component is ensured

by requiring the return on the infinite maturity bond to be priced by SDF Mi = MP
i /Ri∞.

Equivalently, Ri∞ is defined as one of the components of return vector Ri in problem (1).

5Kitamura, Otsu, and Evdokimov (2013) emphasize the optimal robustness features of Hellinger-type dis-
persion measures. We later show that Hellinger bounds naturally induce tight constraints on the first moment
of transitory SDF components.

6There are two important issues here. First, in general the decomposition in Alvarez and Jermann (2005)
is not unique. However, the decomposition is unique under additional stochastic stability assumptions. The
complete theoretical framework characterizing existence and uniqueness of the factorization is treated in Hansen
and Scheinkman (2009) and Qin and Linetsky (2017), among others. Second, in the data we do not observe an
infinite maturity bond return. While in the main text we approximate this return by the return of a long-term
bond of finite maturity, in Section 4 we compute non-parametric estimates of permanent components using
the sieve approach in Christensen (2017), which is based on the Hansen and Scheinkman (2009) eigenvalue
decomposition. We find that both approaches lead to virtually identical results.
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Tradability of Ri∞ obviously impacts the form of minimum dispersion SDFs and increases the

SDF variability.

Since inequality (7) is valid for any traded return, we obtain the following tight constraint

on the expected transient SDF component:

logE
[
(M∗

i (1/2))1/2
]
≤ logE[R−1i∞]

2
. (9)

Therefore, the Hellinger minimum dispersion SDF directly reveals information about the av-

erage size of transient SDF components and vice-versa. In the following sections, we apply

factorization (8) to quantify in a model-free way the relative importance of international tran-

sient and persistent SDF components for explaining salient features of exchange rates.

A useful property of minimum dispersion problem (1) is that it can flexibly incorporate

different forms of deviations from market symmetry, simply by adjusting the tradable returns

Rd and Rf from the perspective of domestic and foreign investors. It is well-known that

whenever international markets are complete, domestic and foreign SDFs are uniquely defined.

As a consequence, all minimum dispersion SDFs are identical. In this framework, whenever

international financial markets are symmetric, consistently with the Euler equation pricing

restrictions, the exchange rate return is uniquely given by the ratio of the foreign and domestic

SDFs, i.e., the asset market view as stated in Definition 1 holds. In incomplete markets,

differences between minimum dispersion SDFs can arise. Such a deviation can be parameterized

by a wedge η between exchange rate returns and the ratio of foreign and domestic SDFs (see,

e.g., Backus, Foresi, and Telmer (2001)):

Mf

Md

exp(η) = X . (10)

By construction, η = 0 in integrated and complete markets. Moreover, from expression (8)

exchange rate wedges and persistent international SDF components are related via the following

factorization:

MP
f

MP
d

Rd∞

Rf∞
exp(η) = X. (11)

Intuitively, when we extend the set of tradable assets from the perspective of domestic or foreign

investors, the set of pricing constraints in problem (1) widens, the dispersion of optimal SDFs
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increases, and the size of the wedge usually shrinks as markets tend to exhibit a lesser degree

of segmentation. Crucially, we show in the next section that whenever domestic and foreign

investors share the same set of assets in symmetric international markets, the wedge always

vanishes with respect to the minimum entropy SDFs.

1.3 Minimum Dispersion SDFs, Changes of Numéraire and Asset Market View

Within our international markets environment, it is natural to expect that the properties of

various minimum dispersion SDFs can be sensitive to a change of numéraire. Therefore, we

now explore the effect of a change of numéraire on international minimum dispersion SDFs.

We then link the properties of minimum dispersion SDFs under a change of numéraire to the

asset market view of exchange rates.

Given a foreign SDF Mf for return vector Rf , it is always the case that M e
d := Mf (1/X) is

a SDF for the domestic currency-converted return vector Re
d := RfX. Symmetrically, M e

f :=

MdX is a SDF for the foreign currency-converted return vector Re
f := Rd(1/X). Therefore,

Mf (Md) is a foreign (domestic) SDF for return vector Rf (Rd) if and only if M e
d (M e

f ) is a

SDF for domestic- (foreign-) currency return vector Re
d (Re

f ). In other words, the numéraire

transformation N f
d : (Md,Rd) 7−→ (M e

f ,R
e
f ) defines again a SDF when changing the numéraire

from domestic to foreign-currency returns. Similarly, N d
f : (Mf ,Rf ) 7−→ (M e

d ,R
e
d) defines a

new SDF under a change of numéraire from foreign to domestic-currency returns.

These numéraire transformations do not preserve in general the minimum dispersion prop-

erty of a SDF, e.g., if M∗
d is a minimum dispersion SDF for return vector Rd then in general

it does not follow that M∗e
f is a minimum dispersion SDF for Re

f . However, there exist mar-

ket structures and dispersion measures for which the SDF minimum dispersion property is

numéraire invariant. One obvious such situation emerges under complete markets. Indeed, in

this case, domestic and foreign SDFs are uniquely defined and identical to the optimal SDFs

under any dispersion criterion. Hence, it follows that M∗e
d (M∗e

f ) is a uniquely defined SDF for

return vector Re
d (Re

f ) and it is therefore also the minimum dispersion SDF.

As the complete market assumption is too restrictive for our analysis, we now address general

properties of numéraire invariant minimum dispersion SDFs in incomplete markets.
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1.3.1 Minimum Entropy SDFs and Numéraire Invariance

Without any additional assumption, there always exists a single numéraire invariant minimum

dispersion SDF, the minimum entropy SDF (αi = 0). From equation (5), this SDF takes the

form M∗
i (0) = R−1λ∗i

, with optimal portfolio weights λ∗i that uniquely solves for k = 1, . . . , Ki

the first-order conditions of optimization problem (2):

E[R−1λ∗i (Rik −Ri0)] = 0 . (12)

Therefore, M∗e
f (0) := R−1λ∗d

X = (Re
λ∗f

)−1, where Re
λ∗f

= Rλ∗d
(1/X) is a foreign return, solving for

k = 1, . . . , Kd the first-order conditions

E[(Re
λf

)−1(Re
fk −Re

f0)] = 0 . (13)

Similarly, M∗e
d (0) := R−1λ∗f

(1/X) = (Re
λ∗d

)−1, where Re
λ∗d

:= Rλ∗f
X is a domestic portfolio return,

solves for k = 1, . . . , Kf the first order conditions:

E[(Re
λd

)−1(Re
dk −Re

d0)] = 0 . (14)

From these relations, we obtain the following numéraire invariance property.

Proposition 2. [Numéraire Invariance of Minimum Entropy SDFs] Let either i = d, j = f or

i = f , j = d. R−1λ∗i , with optimal weights λ∗i uniquely solving the moment conditions (12), is a

minimum entropy SDF for return vector Ri if and only if (Re
λ∗j

)−1, with optimal weights uniquely

solving the moment conditions (13) or (14), is a minimum entropy SDF for the exchange rate-

converted return vector Re
j.

Proof: See Appendix.

Due to the functional form of minimum entropy SDFs, the optimal weights in portfolio

returns Rλ∗i
and Re

λ∗j
are identical, i.e., λ∗i = λ∗j . In this sense, minimum entropy SDFs M∗

i and

M e
j
∗ are consistent with the idea of perfect sharing of the financial risks that are reflected in

portfolios of returns Ri and Re
j in domestic and foreign currencies. However, without additional

assumptions, this risk sharing is not attainable by portfolios of traded returns, because minimum

entropy SDFs are nonlinear transformations of asset returns. Moreover, note that while the

numéraire invariance in Proposition 2 has been stated with respect to a change of numéraire
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associated with the exchange rate return X, it actually holds for any other well-defined change

of numéraire, such as, a change of numéraire from real to nominal SDFs and returns.

As under the numéraire invariance in Proposition 2 we have in general X = M∗
f (0)/M∗

d
e(0),

the asset market view of exchange rates holds for minimum entropy SDFs associated with

domestic and foreign return vectors Rd and Re
f . Therefore, given a set of domestic traded

returns, we can always embed the asset market view in a corresponding international economy

using minimum entropy SDFs. This is not true for other minimum dispersion SDFs, as their

international counterparts will not entail minimum dispersion, since they are not numéraire

invariant.

Corollary 1. Let international financial markets be symmetric but incomplete and αd = αf =:
α. It then follows:

(i) The asset market view of exchange rates holds with respect to minimum entropy SDFs
(α = 0): X = M∗

f (0)/M∗
d (0).

(ii) The asset market view of exchange rates does not hold with respect to minimum dispersion
SDFs different from minimum entropy SDFs: X 6= M∗

f (α)/M∗
d (α) for α 6= 0.

Minimum entropy SDFs are the only minimum dispersion SDFs consistent with the asset

market view in symmetric markets under no additional assumption on the market structure.

This implies that M∗
i (0) = M∗e

i (0), for i = d, f . Moreover, as these SDFs are given by the same

transformation of a common linear combination of returns in domestic and foreign currency,

they are consistent with the idea of a perfect sharing of these financial risks in integrated

international markets.

1.3.2 Minimum Variance SDFs and Numéraire Invariance

The only minimum dispersion SDF that is tradable with portfolios of asset returns is the

minimum variance SDF (αi = 2). From equation (5), minimum variance SDFs take the form

M∗
i = Rλ∗i

/E[R2
λ∗i

], with portfolio weights λ∗i that uniquely solve for k = 1, . . . , Ki the first-order

conditions in optimization problem (2):

E[Rλ∗i
(Rik −Ri0)] = 0 . (15)

It is an immediate consequence of these first-order conditions that minimum variance SDFs are

in general not numéraire invariant. Indeed, if M∗
f (2) = Rλ∗f

/E[R2
λ∗f

] is the foreign minimum
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variance SDF, then M∗e
d (2) := M∗

f (2)(1/X) cannot be written as a linear combination of returns

in vector Re
d. Therefore, it is not in general a minimum variance SDF for Re

d. Symmetric

arguments show that M∗e
f (2) := M∗

d (2)X is not in general the minimum variance SDF for Re
f .

1.4 Minimum Dispersion SDFs and Untradable Exchange Rate Risks

One implication of the previous findings is that minimum variance SDFs are not generally

consistent with the asset market view of exchange rates. This implies that in general, M∗
d (2) 6=

M∗e
d (2) and M∗

f (2) 6= M∗e
f (2). The origins of this violation are further understood by exploiting

the numéraire invariance of minimum entropy SDFs in Proposition 2.

Corollary 2. (i) The real exchange rate can always be decomposed as follows:

X =
M∗

f (2)

M e
d
∗(2)
·

1 + [M∗
f (0)−M∗

f (2)]/M∗
f (2)

1 + [M∗
d
e(0)−M∗

d
e(2)]/M∗

d
e(2)

, (16)

=
M∗

f
e(2)

Md
∗(2)

·
1 + [M∗

f
e(0)−M∗

f
e(2)]/M∗

f
e(2)

1 + [M∗
d (0)−M∗

d (2)]/M∗
d (2)

. (17)

(ii) In symmetric markets, the following exchange rate decomposition holds:

X =
M∗

f (2)

M∗
d (2)

·
1 + [M∗

f (0)−M∗
f (2)]/M∗

f (2)

1 + [M∗
d (0)−M∗

d (2)]/M∗
d (2)

, (18)

=
Rλ∗d

(2)

Rλ∗f
(2)
·

1 + [Rλ∗d
(0)−Rλ∗d

(2)]/Rλ∗d
(2)

1 + [Rλ∗f
(0)−Rλ∗f

(2)]/Rλ∗f
(2)

, (19)

where Rλ∗i
(αi) denotes the optimal portfolio return under dispersion parameter αi in optimiza-

tion problem (2).

Conveniently, we can compute the various decompositions in Corollary 2 from asset returns

alone. Identity (18) clarifies that a deviation from the market view with respect to minimum

variance SDFs is determined by the ratio of the relative projection errors of foreign and do-

mestic minimum entropy SDFs on the space of foreign and domestic returns. Thus, a violation

of the asset market view for minimum variance SDFs is the result of particular unspanned

exchange rate risks, which are reproduced by the component of minimum entropy SDFs that

cannot be replicated using basic asset returns. Similarly, the market view holds with respect to

the minimum variance SDFs whenever minimum entropy SDFs are tradable in domestic and

foreign markets, simply because in this case minimum variance and minimum entropy SDFs

are identical.
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Recalling that Rλ∗i
(2) and Rλ∗i

(0) are the returns of maximum Sharpe ratio and maximum

growth portfolios in market i = d, f , Corollary 2 directly characterizes exchange rates also in

terms of the tradable risk return trade-offs in international financial markets. The exchange

rate return is larger when the domestic maximum Sharpe ratio return is higher than the foreign

maximum Sharpe ratio return. This effect is produced by the first quotient on the RHS of

equation (19) and can be interpreted as a tradable exchange rate effect due to the mean-variance

trade-off between domestic and foreign markets. The exchange rate return is also higher when

the excess return of the domestic maximal growth return relative to the maximum Sharpe ratio

return is larger than the corresponding foreign excess return. This effect is summarized by the

second quotient on the RHS of equation (19) and directly quantifies the risk-return trade-offs

between domestic and foreign markets due to the higher moments of returns.

1.5 SDFs Similarity and the Asset Market View

An important literature in international finance attempts to quantify the amount of SDF co-

movement in two countries, when the asset market view holds, based on various proxies of SDF

co-dependence. For example, Brandt, Cochrane, and Santa-Clara (2006) introduce an SDF

correlation index that is decreasing in the exchange rate variance.7 In a related vein, Chabi-Yo

and Colacito (2017) propose an index based on co-entropies, which incorporates higher-moment

dependence and is decreasing in exchange rate entropy. In contrast to this literature, we propose

a new class of SDF similarity indices, which are independent of assumptions about the validity

of the market view.

1.5.1 A Minimal SDF Similarity Index

We introduce a novel SDF similarity index for incomplete markets, which is independent of the

validity of the asset market view.

Definition 2. Our index of SDF similarity is defined as follows:

S(Md,Mf ) :=
E[min(Md,Mf )]

min(E[Md], E[Mf ])
. (20)

7Formally, this property holds for SDF correlations smaller than the minimum between the ratios of the two
SDF volatilities.
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By construction, S(Md,Mf ) = S(Mf ,Md), i.e., (20) is a symmetric similarity index. More-

over, 0 ≤ S(Md,Mf ) ≤ 1 and S(Md,Mf ) = 1 if and only if Md = Mf with probability one.8

Therefore, S(Md,Mf ) = 1 if and only if the exchange rate return is constant and equal to one,

while the two SDFs are more dissimilar when S(Md,Mf ) ↓ 0.

While similarity index S(Md,Mf ) is independent of the asset market view, it is directly

computable in real time from at-the-money currency option prices whenever the asset market

view indeed holds.

Proposition 3. If the asset market view of exchange rates holds, then

E[Md]− E[Md max(0, 1−X)]

min(E[Md], E[Mf ])
= S(Md,Mf ) =

E[Mf ]− E[Mf max(0, 1− (1/X))]

min(E[Md], E[Mf ])
, (21)

where max(0, 1 − X) (max(0, 1 − (1/X))) is the payoff of an at-the-money put option on the

spot exchange rate change X (1/X).

Proof: See Appendix.

It follows from Proposition 3 that whenever the asset market view holds, index (20) can be

directly computed from the price of a single domestic or foreign at-the-money put option on

the spot exchange rate return. This finding can be used empirically for various purposes. First,

it gives rise to a simple way of computing conditional similarity indices from option prices

alone, without relying on historical return data as other SDF similarity indices do.9 These

indices can provide insight into conditional SDF similarity patterns implied by the validity of

the asset market view, both in the time-series and across currencies. Second, the model-free

SDF similarity indices computed from options in Equation (21) can be taken as benchmarks

for the SDF similarities of models that assume validity of the asset market view. Whenever

SDFs are specified to price real exchange rates and returns, a change of numéraire from real to

nominal SDFs makes the model-implied similarity comparable to the similarity computed from

nominal exchange rate option prices.10

8In the trivial case where both Md and Mf are constants, the similarity index is equal to one.
9Appendix A discusses the differences between our SDF similarity index and others.

10Recall from Proposition 3 that this change of numéraire does not alter the optimal return structure under-
lying minimum entropy SDFs.
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1.5.2 Minimal Option-Implied SDF Similarity and Deviations from the Asset Market View

Whenever there is a deviation from the asset market view, the SDF numéraire invariance is

not preserved and an asymmetry in the pricing properties of domestic and foreign exchange

rate options emerges. In these settings, index S(Md,Mf ) cannot be computed from option

prices in general. However, under a market asymmetry we can still always compute following

option-implied similarity index:

S(Md,Mf ) := min(S(Md,M
e
f ), S(Mf ,M

e
d)) , (22)

where recall thatM e
f := MdX andM e

d := Mf (1/X). By construction, S(Md,Mf ) is a symmetric

similarity index such that 0 ≤ S(Md,Mf ) ≤ 1. Moreover, whenever the market view holds,

S(Md,Mf ) = S(Md,Mf ) indeed measures the similarity of Md and Mf . More generally, the

index equals one if and only if Md = MdX and Mf = Mf (1/X) with probability one, i.e.

the exchange rate return is constant and equal to one, whereas it shrinks as Md and MdX

or Mf and Mf (1/X) are more and more dissimilar. Thus, S(Md,Mf ) measures the minimal

similarity between domestic and foreign SDFs with respect to their numéraire invariant foreign

and domestic SDF counterparts, respectively.

As anticipated above and in contrast to index (20), similarity index (22) can always be

computed from two prices of a domestic and a foreign at-the-money put option on the spot

exchange rate return.

Proposition 4. Whenever the risk-free domestic and foreign returns Rf0X and Rd0(1/X) are

traded, it follows:

S(Md,Mf ) =
min (E[Md]− E[Md max(0, 1−X)], E[Mf ]− E[Mf max(0, 1− (1/X))])

min(E[Md], E[Mf ])
, (23)

where max(0, 1 − X) (max(0, 1 − (1/X))) is the payoff of an at-the-money put option on the

spot exchange rate change X (1/X).

Proof: See Appendix.

Proposition 4 provides a benchmark similarity index for domestic and foreign SDFs, which

is independent of the validity of the market view and can be computed from at-the-money
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exchange rate option prices. This finding can be used empirically for various purposes. For

instance, whenever the prices of domestic and foreign exchange rate at-the-money options are

both observable, a comparison of indices (20) and (22) provides direct evidence on the existence

of asset market view deviations, in terms of, e.g., their dynamic properties or their cross-

sectional patterns across currencies. One can then compare these deviations to those implied

by theoretical models, under the assumption that the asset market view holds or is violated.

In cases where option quotes are available only in the domestic or the foreign currency,

Propositions 3 and 4 show that in general, i.e., also in presence of deviations from the market

view, the index computed from one of the equalities in (21) is always an upper bound for the

similarity index S(Md,Mf ). As a consequence, we obtain a direct model-free diagnostics for

the model-implied similarity S(Md,Mf ) of any specification of domestic and foreign SDFs.

In our empirical analysis, we characterize the similarity S(Md,Mf ) of minimum dispersion

SDFs, under various forms of financial market segmentation, that are consistent with both the

three exchange rate puzzles and the observed option-implied similarity S(Md,Mf ).

2 Empirical Analysis

Using our model-free minimum-dispersion SDF approach, we can now characterize and quantify

key properties of international SDFs under different assumptions about the degree of segmen-

tation between domestic and foreign arbitrage-free financial markets. Full market integration

arises when investors have access symmetrically to all assets, both in domestic and foreign

markets: the risk-free return, the aggregate equity return, and the long-term bond return. We

regard this setting as a natural benchmark, as equity, bond, and exchange rate risk premia

are all matched by minimum dispersion SDFs under symmetric trading. In parallel, deviations

from the asset market view are either absent or small in this setting.

We seek to answer a number of key questions. First, how much dispersion is necessary for

SDFs to be able to match unconditional risk premia? Second, in order to successfully address all

three exchange rate puzzles, how are transient vs. permanent SDF components and exchange

rate wedges connected? Third, how much similarity of minimum dispersion SDFs does a given

market structure imply? Fourth, is the degree of SDF similarity compatible with the option-

implied similarity observed in the data? Studying these questions helps us to identify market
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structures that can be consistent not only with the well-known exchange rate puzzles, but also

with the degree of option-implied SDF similarity in the data.

2.1 Data

We use monthly data between January 1975 and December 2015 from Datastream. We compute

equity returns from the corresponding MSCI country indices’ prices and risk-free rates from

one-month LIBOR rates. In the main text, we follow Alvarez and Jermann (2005) and proxy

transient SDF components by the inverse of the bond return with the longest maturity available,

i.e., the ten-year (government) bonds in our case; see also Lustig, Stathopoulos, and Verdelhan

(2016).11 We study in Section 4 a different non-parametric setup to estimate the permanent

component of minimum dispersion SDFs, based on the approach in Christensen (2017). We find

that the permanent component identified using finite maturity bond returns is almost perfectly

correlated with the long-term component estimated non-parametrically.

We study eight benchmark currencies: the US dollar (USD), the British pound (GBP ),

the Swiss franc (CHF ), the Japanese yen (JPY ), the euro (EUR) (Deutsche mark (DM)

before the introduction of the euro), the Australian dollar (AUD), the Canadian dollar (CAD)

and the New Zealand dollar (NZD).12 The resulting seven exchange rates are expressed with

respect to the USD as the domestic currency. Finally, over-the-counter currency options data

is obtained from J. P. Morgan. Due to data limitations, our options sample starts in April 1993

and ends in April 2013. For every currency pair, we study one-month maturity at-the-money

plain-vanilla European put options, quoted versus the US dollar.

[Insert Table 1 here]

We provide in Table 1 summary statistics for the different time-series. Panel A reports bond

market summary statistics. We find that the CHF and the JPY feature low interest rates, in line

with the intuition that they act as funding currencies in the carry trade, whereas the remaining

11In order to study whether the ten-year bond return is a valid proxy for the (unobservable) infinite maturity
bond return, a modeling assumption is needed, e.g., a family of affine term structure models on countries’
yields. Lustig, Stathopoulos, and Verdelhan (2016) do not obtain significant differences between the yields of a
hypothetical infinite maturity bond and a ten-year bond in such a setting.

12Throughout the paper, the sample period ranges between January 1988 to December 2015 for New Zealand,
due to data availability on the long-term bonds.
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ones can be regarded as investment currencies. Cross-sectional differences across countries arise

with respect to unconditional long-term bond risk premia. To illustrate, (nominal) long-term

risk premia in all countries are negative, but while in Japan and Switzerland they are −0.3%

and −1.02%, respectively, in the remaining countries they range between −2.07% (EU) and

−6.06% (Australia). The fact that nominal returns on long-term bonds in local currencies are

negative has been documented also in Lustig, Stathopoulos, and Verdelhan (2016). There are

cross-sectional differences also with respect to unconditional equity premia, especially in the

case of Japan relative to all other countries, which exhibits a substantially lower average equity

premium of 3.49% per year. New Zealand features the lowest cross-sectional average equity

premia, but this is also an artifact of the restricted sample period. Switzerland displays the

lowest market volatility with 15.42%, while the Euro-zone has the largest one (20.08%). These

numbers imply a Sharpe ratio of 48% for Switzerland which is close to the one in the US and

a much lower Sharpe ratio for Japan, 19%.13 The unconditional average returns on exchange

rates against the US dollar also display cross-sectional variation. The highest (positive) average

return is obtained for the Swiss Franc (+2.96%), while the lowest (negative) average return

follows for the Australian dollar (−0.86%). The cross-section of unconditional exchange rate

volatilities does not exhibit significant variation, even though funding currencies, i.e., the Swiss

franc and the Japanese yen, feature a higher volatility (12.12% and 11.32%, respectively),

whereas the lowest is encountered for the Canadian dollar (6.78%). The last Panel reports

inflation statistics for the countries in our sample. The highest average inflation rates are

observed in New Zealand (5.57%) and in the UK (4.74%), while the lowest ones are those

for Japan (1.57%) and Switzerland (1.76%).14 In our empirical study, we deflate all domestic

returns and exchange rates by the corresponding domestic Consumer Price Index, in order to

obtain real returns and exchange rates.

The rich cross-sectional properties of international asset returns posit a challenge on do-

mestic and foreign SDFs, which need to be consistent with observed exchange rate regularities.

Using our model-free methodology, we quantify in the following sections the key trade-offs im-

plied by different degrees of financial market segmentation in explaining these salient features.

13Using the whole sample period in the case of New Zealand would yield a Sharpe ratio close to the Japanese
one.

14Note that the sample includes observations associated with The Great Inflation of the 1970s and early 1980s,
also known as stagflation, when markets in general exhibited large inflation rates.
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2.2 Unrestricted International Trading

We start our analysis with the least segmented market setting, in which investors can trade

without restrictions domestic and foreign short- and long-term bonds, and stocks. The tradable

vector of returns in market i = d, f reads Ri = (Ri0, Ri1, Ri∞, R
e
i0, R

e
i∞, R

e
i1)
′, where Re

d0,t+1 :=

Rf0,t+1Xt+1 (Re
f0,t+1 := Rd0,t+1(1/Xt+1)) is the domestic (foreign) currency return of the foreign

(domestic) risk free asset, Re
d∞,t+1 = Rf∞,t+1Xt+1 (Re

f∞,t+1 = Rd∞,t+1(1/Xt+1)) is the domestic

(foreign) currency return of the foreign (domestic) long-term bond, and Re
d1,t+1 := Rf1,t+1Xt+1

(Re
f1,t+1 := Rd1,t+1(1/Xt+1)) is the domestic (foreign) currency return of the foreign (domestic)

aggregate equity return. The estimated optimal portfolio return in market i = d, f is given by:

Rλ̂∗i ,t+1 = Ri0,t+1 + λ̂∗i1(Ri1,t+1 −Ri0,t+1) + λ̂∗i2(Ri∞,t+1 −Ri0,t+1)

+λ̂∗i3(R
e
i0,t+1 −Ri0,t+1) + λ̂∗i4(R

e
i∞,t+1 −Ri0,t+1) + λ̂∗i5(R

e
i1,t+1 −Ri0,t+1) . (24)

Based on these returns, the time series of estimated minimum dispersion SDFs is obtained in

closed-form from equation (5):

M̂∗
i,t+1 =

R
−1/(1−αi)

λ̂∗i ,t+1

Êi

[
R
−αi/(1−αi)

λ̂∗i ,t+1

] , (25)

where estimated portfolio weights in equation (24) are the unique solution of the exactly iden-

tified set of empirical moment conditions:

Êi

[
R
−1/(1−αi)

λ̂∗i
(Rik −Ri0)

]
= 0 , (26)

with k = 1, ..., Ki and Kd = Kf = 5 in this case. We estimate parameter vector λ̂∗i in

(26) using the exactly identified (generalized) method of moments. Note that as this setting

implies symmetrically traded international returns, the market view of exchange rates holds by

construction for the minimum entropy SDFs.15

15There are two additional market structures in which we can construct symmetrically traded international
returns, namely when investors can trade the domestic and foreign risk-free bonds only, or when they can invest
in both risk-free and long-term bonds domestically and abroad. As these frameworks are rather restrictive, the
results are not reported here and are available upon request.
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2.2.1 Minimum dispersion SDFs

Since the domestic and foreign risk-free rate, bond return, and equity return are all priced

by domestic and foreign minimum dispersion SDFs, the risk premia of these returns are all

matched by construction. In particular, the currency risk premia are also exactly matched

and the forward premium anomaly is implicitly incorporated by the pricing properties of min-

imum dispersion SDFs. We report the summary statistics of minimum dispersion SDFs under

unrestricted trading in Table 2 for each bilateral pair vis-à-vis the US.

As expected, since the risk free return Ri0 is priced by the minimum dispersion SDF M∗
i ,

average minimum dispersion SDFs are virtually the same across different dispersion measures.

The sample volatilities, on the other hand, display more dispersion across different values of αi

and are the lowest for αi = 2, by construction. The US NZ pair features the lowest volatilities

(0.6 and 0.53, respectively), while the US CH pair has the highest volatility (0.87 and 0.83).

One important first finding is that each of these volatilities exceeds by a large amount the equity

Sharpe ratios in Table 1, which indicates a clearly tightened Hansen-Jagannathan bound under

an unrestricted international trading.

[Insert Table 2 here]

To understand in more detail the properties driving the SDF dispersion, we decompose the

SDFs into their transitory and permanent components. There are two interesting observations.

First, the largest part of the SDF dispersion is generated by the permanent component, re-

gardless of the country or dispersion measure considered. This is in line with the US evidence

in Alvarez and Jermann (2005). Second, the correlation between US and foreign SDFs are

virtually perfect, which is a first broad indication of a very high SDF similarity. For example,

the lowest correlation between SDFs is for the US and NZ pair, of 97.9%.

2.2.2 Exchange Rate Volatilities and Wedges

The large SDF co-movement under fully integrated markets is directly related to the low ex-

change rate volatility puzzle in Brandt, Cochrane, and Santa-Clara (2006), who show that when
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the asset market view holds, international SDFs need to be almost perfectly correlated to match

the low exchange rate volatility.

In our incomplete market setting, the large SDF correlation is related to the properties of

the permanent SDF components. This seemingly perfect co-movement can be understood by

rearranging terms in equation (11), to get the following identity:

Xt+1
Rf∞,t+1

Rd∞,t+1

=
MP

f,t+1

MP
d,t+1

eηt+1 . (27)

As the variability of the LHS of equation (27) in the data is rather low, identity (27) can hold

either under a low variability of both the ratio of permanent SDF components and the wedge,

under a strong negative co-movement between the ratio of permanent SDF components and

the wedge, or under a combination of these effects. A direct implication of these properties is

that under the market view (i.e., ηt+1 = 0), permanent components need to be almost perfectly

positively related. In contrast, in a setting where the market view is not satisfied, a trade-off

between the co-movement of the permanent SDF components and the long-run cyclicality of

exchange rate wedges emerges.

It follows that the high SDF dispersions in Table 2 can be empirically consistent with

identity (27) only in presence of a sufficiently large wedge dispersion or when permanent SDF

components are strongly positively correlated. To study this trade-off in detail, we compute

wedge summary statistics consistent with identity (27):

Xt+1 exp(−ηt+1) =
R

1/(1−αd)

λ̂∗d,t+1
R
−1/(1−αf )

λ̂∗f ,t+1

Êd

[
R
−αd/(1−αd)

λ̂∗d,t+1

]−1
Êf

[
R
−αf/(1−αf )

λ̂∗f ,t+1

] . (28)

where the optimal returns are given in equation (24). Table 3 reports the wedge properties

for minimum variance and minimum Hellinger SDFs alone, because the one resulting from

minimum entropy SDFs vanishes by construction (see Corollary 1).

[Insert Table 3 here]

Consistent with the above intuition, we obtain a small wedge dispersion in all cases, which

is an order of magnitude smaller than the domestic and foreign SDF dispersions. The wedge
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dispersions implied by minimum Hellinger divergence SDFs are also very small, which is a

consequence of the fact that these SDFs are those most related to the minimum entropy SDFs.

Finally, while the wedge dispersions implied by minimum variance SDFs are larger and in a

few cases comparable to the volatility of exchange rates, they still are an order of magnitude

smaller than the dispersions of miminum variance SDFs.16

Since the wedge dispersion contributes only mildly to the SDF dispersions, we focus next

on the co-movement between martingale components. Table 4 reports the average correlations

across different exchange rate pairs, showing that there is almost perfect co-movement across all

currency pairs. Therefore, we anticipate that in fully integrated markets, minimum dispersion

SDFs are very similar and highly disperse, mainly due to their very similar and highly disperse

permanent components.

[Insert Table 4 here]

2.2.3 Backus-Smith (1993) Puzzle

As the setting with fully integrated markets can incorporate both the forward premium anomaly

and the low exchange rate volatility, we focus in this section on the exchange rate cyclicality

by means of Backus and Smith (1993)-type regressions:

mf,t+1 −md,t+1 = δ + βxt+1 + ut+1,

mU
f,t+1 −mU

d,t+1 = δU + βUxt+1 + uUt+1,

for U = T, P , where we regress both the log difference between foreign and domestic SDFs and

their transient and permanent components on the log exchange rate return xt+1.

When the asset market view holds, the population point estimate from these regressions

based on the overall SDFs is exactly one. This case emerges for the minimum entropy SDFs

under fully integrated markets. More generally, when risk-free returns are traded internation-

ally, Lustig and Verdelhan (2016) show that the same finding holds also under a deviation from

16Lustig and Verdelhan (2016) show that in order to match the low exchange rate volatility puzzle using
equation (10), the wedge needs to covary positively (negatively) with the domestic (foreign) SDF, i.e., it needs
to be pro-cyclical. Given the very low wedge dispersion, the cyclicality properties are not particularly insightful
in the fully integrated market setting and we do not report them here to save space.
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the market view. Therefore, we expect similar results also for minimum variance and minimum

Hellinger divergence SDFs. Finally, since the SDF variability in Table 2 is dominated by the

permanent component, we anticipate analogous implications for regressions using the persistent

SDF components.

[Insert Table 5 here]

Table 5 reports Backus-Smith (1993) estimated coefficients for the various country pairs.

For all dispersion measures, the regressions with mf,t+1 −md,t+1 and mP
f,t+1 −mP

d,t+1 produce

estimated coefficients that are positive, highly significant, and close to one, with estimates based

on the permanent component that are almost indistinguishable from the total SDF estimates.

Turning to the regressions with transitory SDF components, we obtain estimated coefficients

that are statistically not different from zero. Hence, we conclude that also the cyclicality puzzle

can be explained in a setting of fully integrated markets, by a transitory component that is

largely unrelated to exchange rate changes.

In summary, the fully integrated, but incomplete, market setting is consistent with the three

exchange rate puzzles and with small or inexistent deviations from the asset market view. In this

framework, martingale SDF components across countries are highly volatile and almost perfectly

correlated, which is an indication of a large SDF similarity, while differences in transient SDF

components are disconnected from exchange rate variations. The large SDF dispersion of fully

integrated market settings is potentially a challenge for existing asset pricing models assuming

the validity of the asset market view. We explore further the trade-offs between SDF dispersion,

SDF similarity and deviations from the asset market view, by studying model-free minimum

dispersion SDFs incorporating some form of market segmentation. A natural benchmark in

this respect is a setting in which investors are allowed to trade internationally only short-term

bonds.

2.3 Domestic Investors Trade Foreign Risk-Free Bonds

To lower the SDF dispersion, we now allow investors to trade internationally only the risk-free

bonds. Hence, the vector of tradable real gross returns in the domestic (US) market reads

Rd = (Rd0, Rd1, Rd∞, R
e
d0)
′, where Re

d0,t+1 := Rf0,t+1Xt+1 is the domestic currency return of the
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foreign risk free asset. Similarly, the vector of tradable real gross returns in the foreign market

reads Rf = (Rf0, Rf1, Rf∞, R
e
f0)
′, where Re

f0,t+1 := Rd0,t+1(1/Xt+1) is the foreign currency

return of the domestic risk free asset. Besides matching the risk premia on the domestic

returns, minimum dispersion SDFs are still forced to match the risk premia on returns Re
d0

and Re
f0. Therefore, they exactly match the exchange rate risk premium in the data, implicitly

incorporating the forward premium anomaly.

Compared to the full integration case, the estimation of minimum dispersion SDFs in this

economy is based on a reduced number of moment conditions, as the equity and long-term bonds

are not traded internationally anymore, i.e., Kd = Kf = 3 in the set of moment conditions (26).

Hence, the estimated optimal portfolio return in market i = d, f reads:

Rλ̂∗i ,t+1 = Ri0,t+1 + λ̂∗i1(Ri1,t+1 −Ri0,t+1) + λ̂∗i2(Ri∞,t+1 −Ri0,t+1) + λ̂∗i3(R
e
i0,t+1 −Ri0,t+1) .

The closed-form expression for the estimated minimum dispersion SDF follows as in the full

integration case by plugging this optimal return into equation (25).

2.3.1 Minimum Dispersion SDFs

Table 6 documents how the smaller set of tradable assets affects the properties of minimum

dispersion SDFs. Due to the reduced set of pricing restriction on returns, the variability of

minimum dispersion SDF decreases considerably, relative to the full integration case, across all

currency pairs. For instance, the SDF variability in Switzerland drops by 40%, in Japan by

50%, and equivalently for New Zealand.

[Insert Table 6 here]

Similar to the full integration case, permanent SDF components are in all cases very volatile

and positively correlated with the long-term bond return. Because of the lower dispersion of

the permanent SDF components, these correlations are larger in absolute value, in order to

match the negative long-term bond risk premia in local currencies.17 More importantly, the

17The correlation between the transient and permanent SDF components for an SDF M can be expressed as:

Corr(MT ,MP ) =
E[M ]− E[MT ]√

Var(MT )
√

Var(MP )
. (29)
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correlation between US and foreign SDFs is on average much lower than in the fully integrated

market setting and much more volatile across currency pairs: the largest correlation is only 65%

for the USD/EUR pair (αd = αf = 0), while the smallest one is as low as 12% (αd = αf = 0) for

the USD/GBP pair. This evidence reflects more dissimilar domestic and foreign SDFs linked

to economically relevant asset market view deviations across currencies.

2.3.2 Exchange Rate Volatility and Wedges

Intuitively, the presence of more pronounced asset market view deviations in the setting with

internationally traded risk-free bonds alone suggests a larger exchange rate wedge variability.

Table 7 reports summary wedge statistics that support this intuition. Overall, we obtain wedges

that are similarly volatile as minimum dispersion SDFs, with non-trivial higher moments that

reflect the non-normality of exchange rate returns in a way that depends on the choice of

minimum dispersion SDFs in incomplete markets.18

[Insert Tables 7 and 8 here]

Because of these deviations from the asset market view, the wedge now displays a non-

trivial cyclicality with respect to the minimum dispersion SDFs. This is depicted in Table 8,

where we observe a pro-cyclicality that is explained by a pronounced positive (negative) wedge

correlation with the permanent components of domestic (foreign) SDFs. The co-movement

with the transient component is instead typically weaker and of opposite sign.

In summary, the economy with internationally traded risk-free bonds alone can incorporate

both the forward premium anomaly and the low exchange rate volatility, by means of a volatile

exchange rate wedge and rather weakly correlated domestic and foreign SDFs.

When the distribution of the transient SDF component is fixed by an observable proxy, the numerator is also
fixed and the correlation increases in absolute value whenever the volatility of the permanent SDF component
decreases.

18Especially for UK, CH and AU markets, we obtain wedges with fatter tails and opposite signs for skewness
under parameter choices αi = 2 and αi = 0, 0.5, respectively. This last feature is a consequence of the fact
that the minimum variance SDF does not capture the higher moment features linked to extreme exchange rate
movements as strongly as the other two minimum dispersion SDFs.
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2.3.3 Backus-Smith (1993) Puzzle

In line with the evidence in the last section, SDFs incorporating martingale components can

support the low co-movement of cross-sectional differences in consumption growth and exchange

rate returns, i.e., the exchange rate cyclicality properties. Table 9 quantifies these relations

by reporting the point estimates of Backus-Smith (1993)-type regressions of log differences in

minimum dispersion SDFs and martingale SDF components on real log exchange rate returns.19

Recalling the findings in Lustig and Verdelhan (2016), the population point estimate from

these regressions for the overall SDFs is exactly one also under a deviation from the market view,

whenever risk-free returns are traded internationally. Given the large fraction of permanent SDF

variability in Table 6, similar implications have to hold also for regressions using the persistent

SDF components in a setting with internationally traded risk-free bonds alone.

Table 9 shows that indeed all point estimates in the Backus-Smith (1993)-type regressions

are significantly different from 0 and never significantly different from the target value of one.

[Insert Table 9 here]

In summary, the market setting with internationally traded risk-free bonds alone is con-

sistent with the three exchange rate puzzles and with large deviations from the asset market

view. In this setup, martingale SDF components across countries are volatile and only weakly

correlated, while differences in transient SDF components are disconnected from exchange rate

variations.

2.4 International Long-term Bond and Equity Risk Premia

The clearly distinct properties of minimum dispersion SDFs in Sections 2.2 and 2.3 can be

understood economically in terms of the different sets of assets assumed to be traded interna-

tionally under each setting. While both frameworks lead to a potential “resolution” of the three

exchange rate puzzles, the different amounts of asymmetry have very different implications for

asset prices internationally.

19We do not report the regression of log differences in transitory SDF components since estimates remain the
same, regardless of the degree of market segmentation and the dispersion measure used.
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Figure 1 reports the cross-sections of (real) international long-term bond and equity risk

premia in the data, together with the risk premia implied by minimum entropy SDFs for the

economy with internationally traded risk-free bonds alone. This economy is not constrained to

price the cross-sections of international long term bond and equity returns.

[Insert Figure 1 and 2 here]

In our sample, international bond risk premia in USD are monotonically decreasing in the

average interest rate differential, except for the New Zealand dollar. While the bond risk premia

implied by USD minimum entropy SDFs are similarly monotonic, they also systematically

overstate the actual risk premia in the data, especially for investment currencies. Analogously,

the foreign currency minimum entropy risk premia of US bonds systematically overstate the

risk premia in the data, especially for funding currencies. Interestingly, the minimum entropy

bond risk premia in Figure 1 follow to a good extent the pattern of minimum entropy currency

risk premia reported in Figure 2, which by construction exactly match the currency risk premia

in the data. However, the actual long-term bond risk premia in Panel A of Figure 1 decrease

faster as the interest rate differential increases. Finally, the economy with internationally traded

risk-free bonds alone implies international average equity premia that are underestimated by

minimum entropy risk premia, with large biases arising especially for CH, JP, UK and US

international equity premia.

In summary, these differences in international asset risk premia under symmetric and par-

tially segmented markets are related to the very different dispersion and co-movement properties

of minimum dispersion SDFs in the presence of deviations from the asset market view.

2.5 SDF Similarity and Option-Implied Similarity

The different co-movement properties of international minimum dispersion SDFs under seg-

mented and integrated markets point to different SDF similarity properties in these two set-

tings. Therefore, quantifying the SDF similarity properties of integrated vs. segmented market

settings can help to clarify empirically the hidden implications of structural models with dif-

ferent market segmentation structures. To this end, we first implement equation (23) using

currency options.
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2.5.1 Option-Implied Similarity

Figure 3 plots the time-series of option-implied SDF similarity indices S(Md,Mf ), using in all

cases the USD as the domestic currency, while Table 10 reports similarity summary statistics.20

[Insert Figure 3 here]

We find that option-implied similarity indices across currencies feature a large degree of co-

movement and are on average near to their upper bound of one. Moreover, they exhibit inter-

esting time-varying patterns with a tendency to simultaneously decrease in periods of global

financial market turmoil. The decrease in similarity during periods of crisis is a natural conse-

quence of the progressively more expensive at-the-money put exchange rate options; see again

Proposition 3. These options offer protection against a depreciation of the foreign currency

relative to the USD. Consistent with the evidence in Figure 3, the average option-implied SDF

similarity across countries in Table 10 (Panel A) is about 0.988 and the cross-sectional standard

deviation is very low.

2.5.2 Minimum Dispersion SDF Similarity

It is useful to compare the degree of option-implied SDF similarity to the similarity induced

by model-free minimum entropy SDFs. To this end, recall that option-implied similarity in-

dex S(Md,Mf ) is comparable to SDF-based similarity index S(Md,Mf ) only when the asset

market view holds. In order to obtain SDF-based similarity indices corresponding to the nom-

inal option-implied indices, we first convert real minimum dispersion SDFs to nominal SDFs,

by deflating real SDFs by the corresponding inflation rate.21 We report the resulting SDF-

based indices S(Md,Mf ) and S(Md,Mf ) in Table 10 (Panel B) both for the integrated and the

segmented market settings of the previous sections.

[Insert Table 10 here]

20To take unconditional expectations as in equation (23), we can either average the values of S(Md,Mf )
directly or we can take averages for each component in the expression. Both yield very similar numbers.

21In the data, we find that SDF similarities computed from real and nominal SDFs are virtually identical.
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We find that across all currencies, SDF-based indices S(Md,Mf ) match very closely the corre-

sponding option-implied similarities in the data, independent of the assumed market segmenta-

tion settings. This evidence suggests that all minimum dispersion SDFs fit unconditionally quite

accurately the put option prices underlying the expression for index S(Md,Mf ) in Proposition

4.

In the market setting with unrestricted trading, the SDF similarity index S(Md,Mf ) closely

follows index S(Md,Mf ), because of small deviations from the asset market view under sym-

metric markets. In contrast, the SDF similarity index S(Md,Mf ) under internationally traded

risk-free bonds alone is clearly lower, of about 0.941 on average across countries and dispersion

measures. In summary, the unconditional option-implied similarity is reproduced quite well

both by the integrated and the segmented market setting, which imply very different SDF-

similarities.

Our minimum dispersion SDFs also allow us to compute indices of international SDF sim-

ilarity without imposing the validity of the asset market view. We focus for brevity on the

co-entropy-based index of Chabi-Yo and Colacito (2017):

ρMf ,Md
= 1− L[Mf/Md]

L[Mf ] + L[Md]
, (30)

where L[x] ≡ log(E[x])− E[log(x)] defines the entropy of a positive random variable x. Sum-

mary statistics for various minimum dispersion SDFs are reported in Table 11.

Consistent with the previous results, SDF co-entropies are close to being perfect whenever

international financial markets are symmetric, i.e., when the asset market view holds with

respect to minimum entropy SDFs and when deviations from it are small under the remaining

minimum dispersion SDFs. In these settings, co-entropies across countries are never less than

95%. A different picture emerges in the segmented markets case. Co-entropies are particularly

low for the funding currencies, with values below 33% and 20% for Switzerland and Japan,

respectively.

[Insert Table 11 here]

In summary, various settings of integrated and segmented markets give rise to minimum dis-

persion SDFs compatible with the three exchange rate puzzles. However, these SDFs have
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very different implications for the amount of deviation from the asset market view and for the

maximal Sharpe ratios attainable by domestic and foreign investors when optimally trading the

minimum variance SDFs. In integrated markets, the large Sharpe ratios obtained by trading

minimum variance SDFs that price international assets symmetrically, may be interpreted as

the optimal risk return trade-offs attainable only by a subset of sophisticated financial inter-

mediaries. We discuss such an interpretation in more detail in the next section.

3 Financial Intermediaries’ SDFs

With our model-free SDFs at hand, one natural question is: Whose SDF are we measuring?

As a first illustration, we plot in Figure 4 scatter plots between our minimum entropy SDFs

(in logs) and log consumption growth for each of the eight countries. Not very surprisingly, we

find the correlation between the two series to be close to zero or mildly negative.

A growing empirical research documents the importance of financial intermediaries for asset

prices (see, e.g., Adrian, Etula, and Muir (2014) and He, Kelly, and Manela (2017), among

others).22 The role of these intermediaries seems particularly important in markets that feature

complex financial assets, such as credit default swaps, sovereign bonds, and FX (see, e.g.,

Haddad and Muir (2017)). In the following, we link our model-free SDFs to various measures

of financial intermediaries’ wealth and constraints. To motivate this analysis, we first plot, in

the upper panel of Figure 5, the twelve-month moving averages of our USD minimum-entropy

SDFs across the various exchange rate parities in our sample.23

All USD SDFs across exchange rate parities are positively correlated and tend to spike

together during crisis periods corresponding to major stock market events, such as the Black

Monday in October 1987 or the Lehman Brother default in August 2008 (top panel). In the

bottom panel, we plot the average US SDF together with the intermediary capital ratio from

He, Kelly, and Manela (2017). This ratio is defined as the aggregate value of market equity

divided by the sum of the aggregate market equity and the aggregate book debt of primary

dealers who serve as counterparties of the Federal Reserve Bank of New York. The two series

22These papers study the intermediary Euler equation by means of empirical proxies of intermediaries’
marginal utility and find that these proxies are able to explain the cross-section of different expected returns.

23For brevity, we only plot USD SDFs for the symmetric market setting. The corresponding foreign SDFs
look very similar.
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in the figure highlight a negative comovement between the levels of the capital ratio and the

USD SDFs. We analyze the relationship between minimum dispersion SDFs and intermediaries

capital ratios in more detail below.

[ Insert Figures 4 and 5 here.]

In the following, we study a simple model of financial intermediation in segmented markets.

We borrow from Gabaix and Maggiori (2015), where domestic and foreign households can only

trade their own local short-term bond and do not have direct access to sovereign bonds. The

role of financiers is to intermediate the market for sovereign bonds and thereby provide access

to the FX carry trade.24

The economy consists of two countries, each populated by a unit mass of households and

having its own currency. Households in each country can trade a one-period risk-free bond that

is denominated in their respective local currency.25 Denote by Rdt and Rft the risk-free interest

rates in the United States and the foreign country at time t. Without loss of generality, assume

that Rdt is smaller than Rft. The exchange rate St is defined as the quantity of dollars that

can be bought at time t by one unit of the foreign currency. Therefore, the gross exchange rate

return in USD between period t and t+ 1 is Xt+1 = St+1/St.

Households in each country have a downward-sloping demand for assets denominated in

the other country’s currency. Such demand may arise due to various reasons, such as trade

or portfolio flows. In addition to households, the economy is populated by a unit mass of

identical risk-neutral financiers, who can trade in the domestic bonds of both countries. Hence,

while markets are segmented for households, they are symmetric for the financier. As such, the

financiers act as intermediaries between investors in the two countries by taking the other side

of their currency demands, at a profit. The representative financier enters the market with no

capital of her own and takes at time t a long position of −Qt/St units of the foreign currency,

24In line with our empirical analysis, one could also assume that financial intermediaries trade not just short-
but also long-term bonds as well as equities. None of our results would change if we increase the set of tradable
assets. To keep the notation simple, we follow Gabaix and Maggiori (2015) and allow for trade in short-term
bonds only.

25Segmented money and bond markets are also the subject in Alvarez, Atkeson, and Kehoe (2002), where
segmentation arises endogenously due to some fixed cost of trading. The assumption that some markets are
segmented and can only be accessed by households via an intermediary is akin to He and Krishnamurthy (2013).
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funded by a short position of Qt units of dollars. She unwinds this position at the end of period

t+ 1. Consequently, her USD profit at time t+ 1 is

Vt+1 = (RftXt+1 −Rdt)Qt. (31)

A direct implication of equation (31) is that whenever Et[RftXt+1−Rdt] > 0, i.e., the Uncovered

Interest rate Parity condition is violated, the representative financier wants to take infinitely

large positions Qt, unless some friction limits her ability to do so.

Intermediation frictions are modelled by assuming that the representative financier is sub-

ject to a Value-at-Risk constraint, in which the likelihood of making a negative profit cannot

exceed some small threshold 0 < ct << 1.26 The representative financier thus faces following

optimization problem at time t:

max
Qt

Et[Vt+1]

s.t. Pt(Vt+1 ≤ −εt) ≤ ct,

(32)

where εt is the Value-at-Risk of next period financier’s wealth for confidence level ct.

The Value-at-Risk constraint effectively limits the “risk-bearing capacity” of the financiers.

When ct is close to 1, the representative financier is essentially unconstrained and can take

arbitrarily large currency positions. When ct is small, the Value-at-Risk constraint binds and

the financier is restricted in her risk bearing capacity. Such a constraint is tighter in states of

higher conditional risk, e.g., due to an increase in the anticipated volatility of exchange rate

returns. In this sense, the Value-at-Risk constraint induces a downward-sloping demand curve

for risk-taking by the financiers.27

In this setting, the financial intermediary SDF is a linear function of the intermediary’s

wealth.28 This relationship motivates us to explain our model-free SDFs using proxies for the

26Adrian and Shin (2014) show that Value-at-Risk constraints similar to the one in this model can emerge as
a result of a standard contracting framework with risk-shifting moral hazard.

27Gabaix and Maggiori (2015) consider an alternative specification with a different constraint, in which the
financiers are subject to a limited commitment friction that intensifies with the complexity of their balance
sheets. Since both the Value-at-Risk constraint and the limited commitment constraint of Gabaix and Maggiori
induce a downward-sloping demand for risk-taking by the financiers, they have similar implications for exchange
rates and currency excess returns.

28Gabaix and Maggiori (2015) show that the financial intermediary SDF takes the form:

Mt+1 = 1− Φ(Vt+1), (33)
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tightness of intermediaries’ Value-at-Risk constraints and intermediaries’ capital. For the former

we use as proxy the VIX, a model-free implied volatility index of S&P500 options, whereas as a

proxy of intermediaries’ capital, we use the intermediary capital ratio of He, Kelly, and Manela

(2017).29

Table 12 reports point estimates and t−statistics of linear regressions of our model-free

SDFs under symmetric markets on changes in intermediaries’ Value-at-Risk constraint and

capital proxies. The upper panel collects the results for the US SDFs, while the lower panel

reports results for the foreign SDFs. Consistent with the theoretical predictions, we find that

all point estimates for the Value-at-Risk constraint proxy are positive and that those for the

capital ratio are negative. The Value-at-Risk constraint is significant for all regressions except

for the foreign New Zealand SDF. The capital ratio proxy is also significant in six SDF settings.

With the exception of the USD-NZD currency pair, the explanatory power of these regressions

is also quite large, with regression R2s ranging from about 10% for USDJPY to about 45% for

USDGBP.

[Insert Table 12 here]

Overall, this evidence is consistent with the intuition that the large dispersions of some

model-free SDFs in symmetrically integrated bond and stock markets may be interpreted as

a higher risk compensation available only to a subset of specialized intermediaries, which are

subject to various forms of limits-to-arbitrage, captured by proxies of Value-at-Risk constraints

and financial intermediaries’ wealth.

4 Robustness of Long-Run SDF Factorizations

In our empirical analysis, we factorize minimum dispersion SDFs into transitory and permanent

components, using as a proxy for the unobservable return of infinite maturity bonds the long,

but finite-horizon bond return. While this is of course an approximation, note that this SDF

where Φ is a linear operator.
29The VIX has been used as a proxy of global intermediaries’ leverage constraints in the work of Miranda-

Agrippino and Rey (2015) or Bruno and Shin (2015), among many others.
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decomposition can impact our main analysis only in terms of the exchange rate cyclicality pat-

terns and the corresponding Backus and Smith (1993) regression results. Given the dominating

role of martingale components in minimum dispersion SDFs, it is unlikely that this approxima-

tion error can substantially change our findings. Indeed, model-based evidence from estimated

affine term structure models tends to support this intuition.30 To address these issues, we fol-

low Christensen (2017) and estimate non-parametrically the solution of the Perron-Frobenius

eigenfunction problem that uniquely characterizes the long-run SDF factorization in Hansen

and Scheinkman (2009). We defer exhaustive estimation details to the Online Appendix.

We report in Figure 6 the time-series of the estimated permanent SDF components identi-

fied with the approach in Section 2.2, together with those estimated with the non-parametric

methodology.31

[Insert Figure 6 here]

The two series exhibit similar time series properties, with large common spikes during crises and

recession periods, and are almost perfectly correlated.32 While the unconditional dispersion of

the two permanent components is similar and generates in both cases the largest fraction of the

overall SDF volatility, the non-parametric component has a consistently slightly lower volatility

than the overall SDF volatility. This implies a positive risk premium for the infinite maturity

bond return resulting from the non-parametric SDF factorization.33 Given the dominating role

of permanent SDF components under both approaches, these findings imply overall unchanged

exchange rate cyclicality patterns and Backus and Smith (1993) regression results, using either

of the two proxies for the permanent SDF components.34

30See again Lustig, Stathopoulos, and Verdelhan (2016), who do not obtain large differences between the
yields of a hypothetical infinite maturity bond and a ten-year bond in such settings.

31For the sake of brevity, we only report results for two different currency pairs. The results look virtually
the same for all other currency pairs.

32Correlations between permanent components under the two approaches are 0.96, 0.98, 0.98, 0.98, 0.98,
0.95 and 0.95 for the USDGBP, USDCHF, USDJPY, USDEUR, USDAUD, USDCAD and USDNZD pairs,
respectively.

33This finding for the sign of the risk premium of infinite maturity bond returns is consistent with the empirical
evidence in Bakshi and Chabi-Yo (2012). The volatilities of the non-parametric permanent SDF components
are reported in Table OA-1 of the Online Appendix.

34Detailed results are available from the authors upon request.
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5 Conclusion

In this paper, we estimate model-free minimum dispersion SDFs to understand the asset pricing

implications of different degrees of market segmentation in international financial markets. Since

markets are incomplete and there exists many different SDFs, we explore various SDFs that

minimize different measures of SDF dispersion: variance, entropy and Hellinger divergence. At

the same time, we allow for a factorization of international SDFs into permanent (martingale)

and transient components and for the potential presence of a stochastic wedge between exchange

rates and the ratio of foreign and domestic SDFs.

If markets are complete, the asset market view of exchange rate holds and the change

in real exchange rates is equal to the ratio of foreign and domestic SDFs. In incomplete

markets, there can be deviations from the asset market view which are captured by a wedge.

Theoretically, we show that minimum entropy SDFs always imply the validity of the market

view of exchange rates in symmetric international markets, irrespective of the degree of market

incompleteness. Moreover, we show that stochastic wedges capture the amount of untraded

risk in these economies. Finally, we propose a novel approach to quantify the similarity of

international SDFs, which extends well-known similarity indices to incomplete and possibly

segmented markets.

Using a cross-section of developed countries, we document the following novel findings.

In order to jointly explain the exchange rate puzzles, the international SDFs have to exhibit

large permanent components. While we find that permanent SDF components induce in all

cases the largest fraction of SDF dispersion, we document that they are necessary to imply

an exchange rate cyclicality that is compatible with the Backus and Smith (1993) puzzle, i.e.,

the small or negative correlation between international consumption growth differentials and

exchange rate changes. We then show that international minimum dispersion SDFs jointly

explain the three exchange rate puzzles whenever domestic and foreign risk-free bonds can be

traded internationally.

To quantify the implications of different degrees of market segmentation, we explore two

benchmark cases. First, we consider the SDFs of sophisticated financial agents that can access

all assets in the economy: short- and long-term bonds, as well as equity indices. In the second
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case, we study the SDFs of less sophisticated investors, who can trade internationally only

the short-term bond. We document that while both these incomplete market settings are able

to address the exchange rate puzzles, in the former the SDF dispersions and similarities are

substantially larger. In contrast, introducing a mild form of market segmentation produces

significantly lower SDFs dispersions and similarities.

We finally motivate the emergence of SDFs with structurally different properties under seg-

mented markets, using a simple model where some specialized financiers intermediate house-

holds’ demand for international assets. In the model, financial intermediaries are subject to

limits to arbitrage generated by Value-at-Risk constraints and their SDFs directly depend on

the financial intermediaries wealth. Empirically, we find strong links between model-free in-

ternational SDFs and proxies of Value-at-Risk constraints or financial intermediaries capital,

which can explain up to 50% of the SDF time-series variation. This evidence is compatible

with the intuition that the large dispersions of some SDFs in symmetrically integrated mar-

kets may reflect a higher risk compensation available only to a subset of sophisticated financial

intermediaries, who face different limits-to-arbitrage constraints.
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Appendix A Relation to other SDF Similarity Indices

The normalizing constant min(E[Md], E[Mf ]) in the denominator of index (20) ensures both an upper
bound of one and the model-free index representation in Proposition 3, which is based on the price of
an at-the-money put on the spot exchange rate. Another natural approach can directly normalize the
SDFs in definition (20), which gives the similarity index:

S(Md/E[Md],Mf/E[Mf ]) := E[min(Md/E[Md],Mf/E[Mf ])] . (A-1)

This index preserves all key properties of index (20), but it is not computable from the prices of
options on spot exchange rates. It can be computed from the price of a single at-the-money put on
the forward exchange rate, whenever option quotes on forward exchange rates are available.35

A relevant computation issue arises for the power similarity indices introduced in Orlowski, Sali,
and Trojani (2016):

Sα(Md,Mf ) :=
E[Mα

dM
1−α
f ]

E[Md]αE[Mf ]1−α
, (A-2)

where α ∈ (0, 1) parameterizes the index family. This family includes for α = 1/2 the Hellinger
similarity index proposed in Bakshi, Gao, and Panayotov (2017).36 A key property of these indices
is that under the asset market view they can be in principle computed from option information
alone, whenever a continuum of out-of-the money exchange rate options with arbitrary strike price
K > 0 is traded, i.e., under a complete exchange rate option market.37 Unfortunately, the intrinsic
incompleteness of exchange rate option markets makes such a computation of similarity index (A-2)
very challenging. However, due to the following inequality:

S(Md,Mf )
min(E[Md], E[Mf ])

E[Md]αE[Mf ]1−α
≤ Sα(Md,Mf ) , (A-3)

we can always compute with Proposition 3 a lower bound for similarity index (A-2), using the price
of a single at-the-money put on the spot exchange rate.38

35The following relations between the two indices hold: 0 ≤ S(Md/E[Md],Mf/E[Md]) ≤ S(Md,Mf ) ≤ 1.
Moreover, under validity of the asset market view, the same arguments as in the proof of Proposition 3 yield:

E[min(Md/E[Md],Mf/E[Mf ])] = 1− 1

E[Md]
E[Md max(0, 1−XE[Md]/E[Mf ])] .

36Note that:

S1/2(Md,Mf ) = E[(Md/E[Md])
1/2(Mf/E[Mf ])1/2] = 1−

E
[
((Md/E[Md])

1/2 − (Mf/E[Mf ])1/2)2
]

2
.

The expectation on the RHS corresponds to Bakshi, Gao, and Panayotov (2017)’s Hellinger distance.
37Using standard replication formulas for nonlinear payoffs, this result follows from the identity:

Sα(Md,Mf ) =
1

E[Md]αE[Mf ]1−α
E[MdX

1−α] .

38The bound follows from the inequality xαy1−α ≥ min(x, y) for α ∈ (0, 1).
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Appendix A.1 Similarity in Benchmark Models

The index S(Md,Mf ) measures similarity, rather than SDF co-movement or risk sharing. In the
following, we illustrate this using some well-known benchmark models.

Lognormal SDFs and Exchange Rates. Whenever (Md, X) and (Mf , 1/X) are jointly lognormal,
similarity can be directly computed from the Black and Scholes (1973)–Garman and Kohlhagen (1983)
model-implied prices of the corresponding at-the-money put options:

E[Md max(0, 1−X)] = E[Md]N (−d2)− E[Mf ]N (−d1) =: BSd(σx) , (A-4)

E[Mf max(0, 1− (1/X))] = E[Mf ]N (d1)− E[Md]N (d2) =: BSf (σx) , (A-5)

where

d1 :=
− log(E[Md]/E[Mf ]) + σ2

x
2

σx
; d2 :=

− log(E[Md]/E[Mf ])− σ2
x
2

σx
, (A-6)

with σx the volatility of log exchange rate returns. Hence, S(Md,Mf ) is maximal (minimal) for σx ↓ 0
(σx ↑ ∞). Given the identity of physical and implied volatilities under joint log-normality, these
arbitrage-free settings are unlikely to generate simultaneously a low exchange rate volatility and a low
option-implied SDF similarity. For example, such settings include jointly lognormal specifications of
domestic and foreign SDFs under the asset market view.

Rare Disasters. One way to break the link between the realized and implied volatilities is to introduce
time-varying rare disasters. We borrow from Farhi and Gabaix (2016) who model an economy with
traded and nontraded goods in complete international financial markets. In this model, a disaster may
happen in the world consumption of the tradeable good with probability pt. The exogenous SDF in
units of the world numéraire, is given as follows: if no disaster happens in t + 1, M∗t+1 = exp(−R),
for a parameter R > 0 which is related to the subjective discount rate and the expected growth rate
of the tradable good. If a disaster happens, then M∗t+1 = exp(−R)B−γt+1, where Bt+1 > 0 models the
size of world disasters and γ is the coefficient of relative risk aversion. A key parameter in Farhi and
Gabaix (2016) is a country’s resilience to disasters, defined by:

Hit := Hi∗ + Ĥit := ptE
D
t [B−γt+1Fit+1 − 1], (A-7)

where Fit+1 is the future country’s recovery rate and EDt [·] denotes the expectation conditional on
a disaster state.39 Thus, a relatively safe country has a high resilience Hit, while a relatively risky
country has a low resilience. The stochastic discount factor for the nontraded good in country i
depends on the time-varying resilience component Ĥit. It is given by:

Mit+1 = M∗t+1 ·
ωit+1

ωit
· rei + φHi + Ĥit+1

rei + φHi + Ĥit

, (A-8)

where rei is the sum of the country’s “steady state” interest rate for Ĥit = 0 and a constant investment
depreciation rate λ, φHi is the resilience speed of mean reversion and ωit the country’s i export
productivity. The price of a put option on the exchange rate follows from the asset market view and
the joint lognormality of red + φHd

+ Ĥdt+1, ref + φHf
+ Ĥft+1 conditional on a no disaster state.40

Therefore, the similarity index (22) is available in closed-form.

39By definition, Hi∗ and Ĥit are the constant and the time-varying components of a country’s i resilience.
40See also Proposition 6 in Farhi and Gabaix (2016).
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Proposition 5. In the Farhi and Gabaix (2016) model, the similarity index (22) is given by:

St(Md,Mf ) = S(Md,Mf ) =
Et[Md,t+1]− Et[Md,t+1 max(0, 1−Xt+1)]

min(Et[Md,t+1], Et[Mf,t+1])
, (A-9)

where the price of the domestic at-the-money put on the exchange rate is given by:

Et[Md,t+1 max(0, 1−Xt+1)] = (1− pt)BSd(σx)

+ptE
D
t

[
Gd,tFd,t+1 max

(
0, 1−

Ff,t+1Gf,t
Fd,t+1Gd,t

)]
, (A-10)

with

Gi,t = exp(gωi)
rei + φHi + 1+Hi∗

1+Hit
exp(−φHi)Ĥit

rei + φHi + Ĥit

, (A-11)

and gωi the constant growth rate of country i’s productivity in no-disaster states.

Proof: See Appendix.

The first term on the RHS of equation (A-10) is the Black and Scholes (1973)–Garman and
Kohlhagen (1983) price of a put option, weighted by the probability of no disaster. The second term is
the put price conditional on a common disaster in domestic and foreign productivity, weighted by the
probability of a world disaster. This term reflects the price for ensuring a large depreciation of foreign
versus domestic non-traded goods, due to a larger decrease in foreign productivity when disasters
occur. This component can create a disconnect between the minimal similarity index in Proposition 4
and the exchange rate volatility σx, which may be useful to induce low option-implied SDF similarities
together with low exchange rate volatilities encountered in the data.

We can use the calibration parameters in Farhi and Gabaix (2016) to illustrate the range of
similarity indices attainable in this model. We set gωd

= gωf
= 0, σx ∈ [0.09, 0.13], pt ∈ [0.02, 0.04]

and consider for simplicity the case where resilience in both countries is at its time-invariant level, i.e.,
Hit = Hi∗ (i = d, f), so that Gd,t = Gf,t = 1. Conditional on a disaster event, log recovery rates across

countries are IID normally distributed, lnFit+1 ∼ IIN (−
σ2
Fi
2 , σ

2
Fi

), with calibrated standard deviation
σFi = 0.16. Therefore,

Et[Fd,t+1 max (0, 1− Ff,t+1/Fd,t+1)] = N (σFi/
√

2)−N (−σFi/
√

2) , (A-12)

and the similarity index in Proposition 5 follows in closed-form. To gauge the effect of world disasters
on the similarity index, we plot in Figure A-1 (left panel) the model-implied similarity index in
Proposition 5 as a function of the disaster probability (p) and the volatility of exchange rates (σx).
We notice that, on average, the similarity is around 0.88. As expected, when we increase the volatility
of exchange rates (σx) or increase the probability of rare disasters (p), the similarity falls. This is
explained by the fact that the price of the put option in the right panel of Figure A-1 concomitantly
increases when the probability of world disasters (the volatility of exchange rates) increases.
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Figure A-1. SDF Similarity in the Farhi and Gabaix (2016) model
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The left panel plots the similarity index given in Proposition 5 as a function of exchange rate volatility
(σx) and the disaster probability (p). The right panel plots the price of the at-the-money put option
also as a function of the exchange rate volatility and the disaster probability. Calibrated values are as
in Farhi and Gabaix (2016).

Appendix B Proofs and Derivations

Proof of Proposition 1. We study for any αi ∈ R\{1} the following minimum divergence problem:41

min
Mi

1

αi (αi − 1)
logE[Mαi

i ],

subject to E(MiRi) = 1 and Mi > 0. The Lagrange function is given by

L(Mi, λi, νi) =
logE[Mαi

i ]

αi (αi − 1)
+ µi0E[MiRi0 − 1] +

Ki∑
k=1

µikE[Mi (Rik −Ri0)] + νiMi,

with µi ∈ RKi+1 the vector of multipliers for the pricing constraints and νi the multiplier for the
positivity constraint. As the optimal SDF needs to be strictly positive, νi vanishes almost surely and
the first order conditions read:

Mαi
i

αi − 1
= Mi

(
µi0Ri0 +

Ki∑
k=1

µik (Rik −Ri0)

)
=: Miµi0Rλi ,

where we applied the renormalization λi := µik/µi0, k = 0, . . . ,Ki. Taking expectations yields

E[Mαi
i ] = (αi − 1)µi0. (A-13)

41The case αi = 1 can be treated separately in a similar way, but we do not consider it here as it is not
necessary for the dispersion measures used in the main text.
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Using (A-13) and plugging into the first order conditions, it follows

Mi = ((αi − 1)µi0Rλi)
1/(αi−1) .

Therefore, the optimal SDF M∗i and optimal return Rλ∗i are such that

logE[(M∗i )αi ] = logE[R
αi/(αi−1)
λ∗i

]1−αi .

In summary, we get the following inequality:

logE[Mαi
i ]

αi (αi − 1)
≥ −

logE[M∗αi
i ]

αi (αi − 1)
= − 1

αi
logE[R

αi/(αi−1)
λ∗i

] , (A-14)

which shows that the convexity bound implied by the optimal portfolio return Rλ∗i is tight. The
optimal SDF is given by

M∗i = R
1/(αi−1)
λ∗i

/E[R
αi/(αi−1)
λ∗i

],

with

Rλ∗i = Ri0 +

Ki∑
k=1

λ∗ik (Rik −Ri0) > 0,

such that for any k = 1, . . . ,Ki

E[R
1/(αi−1)
λ∗i

(Rik −Ri0)] = 0.

Equivalently, the bound of the RHS of inequality (A-14) is obtained by solving the following maxi-
mization problem:

max
λi
− 1

αi
logE[R

αi/(αi−1)
λi

]

such that

Rλi =

Ki∑
k=1

λik (Rik −Ri0) +Ri0 > 0.

Indeed, this optimization problem is globally strictly concave and the first order conditions for k =
1, . . . ,Ki are:

0 =
∂ logE[R

αi/(αi−1)
λi

]

∂λi
|λi=λ∗i = E[R

1/(αi−1)
λ∗i

(Rik −Ri0)]. (A-15)

Since (A-15) is identical to the pricing constraints for λi in the solution of the primal SDF optimization
problem, the bounds are tight. This concludes the proof.

Proof of Proposition 2. As (Reλ∗f
)−1 solves the moment conditions (13), it is the minimum entropy

SDF for return vector Re
f . Hence, if (Rλ∗d)−1 is the minimimum entropy SDF for return vector Rd,

i.e., it solves the moment condition (12), then (Reλ∗f
)−1 is the minimum entropy SDF for return vector

Re
f . Symmetric arguments show that M∗ed = (Reλ∗d

)−1 is the minimum entropy SDF for return vector

Re
d whenever M∗f is the minimum entropy SDF for return vector Rf . This concludes the proof.

Proof of Proposition 3. Let the asset market view hold, i.e., X = Mf/Md. It then follows:

E[min(Md,Mf )] = E[Md min(1, X)] = E[Md]− E[Md(1−min(1, X))] .
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Moreover,

E[Md(1−min(1, X))] = E[Md(1 + max(−1,−X))] = E[Md max(0, 1−X)] .

The second equality in the statement of the proposition follows by symmetry. This concludes the
proof.

Proof of Proposition 4. By definition, we have:

S(Md,MdX) =
E[Md min(1, X)]

min(E[Md], E[MdX])
. (A-16)

Whenever the domestic return Red0 := Rf0X is priced, it follows:

1 = Et[Md,t+1R
e
d0,t+1] ⇐⇒

1

Rf0,t+1
= Et[Md,t+1Xt+1] , (A-17)

as Rf0,t+1 is the foreign risk-free rate. Taking unconditional expectations, we obtain E[MdX] =
E[1/Rf0] = E[Mf ]. Therefore,

S(Md,MdX) =
E[Md min(1, X)]

min(E[Md], E[MdX])
=
E[Md]− E[Md min(0, 1−X)]

min(E[Md], E[Mf ])
,

with the same arguments as in the proof of Proposition 3. By applying an identical approach with
the foreign return Re0f := R0d(1/X), we obtain:

S(Mf ,Mf (1/X)) =
E[Mf ]− E[Mf min(0, 1− (1/X))]

min(E[Md], E[Mf ])
.

This concludes the proof.

Proof of Proposition 5. Given the underlying market completeness, the asset market view holds and
the exchange rate return is given by:

Xt+1 =
Mf,t+1

Md,t+1
=
ωft+1/ωft
ωdt+1/ωdt

·

ref+φHf
+Ĥft+1

ref+φHf
+Ĥft

red+φHd
+Ĥdt+1

red+φHd
+Ĥdt

. (A-18)

If follows that conditional on a disaster the exchange rate is:

Xt+1 =
Mf,t+1

Md,t+1
= exp(gωf

− gωd
)
Fft+1

Fdt+1
·

ref+φHf
+

1+Hf∗
1+Hft

exp(−φHf
)Ĥft

ref+φHf
+Ĥft

red+φHd
+

1+Hd∗
1+Hdt

exp(−φHd
)Ĥdt

red+φHd
+Ĥdt

, (A-19)

where gωi is a constant productivity growth of country i in no-disaster times. Similarly, conditional
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on no disasters, the exchange rate is:

Xt+1 = exp(gωf
− gωd

)

ref+φHf
+Ĥft+1

ref+φHf
+Ĥft

red+φHd
+Ĥdt+1

red+φHd
+Ĥdt

, (A-20)

which is lognormally distributed, as it is the ratio of two jointly lognormal variables. If follows that
conditional on a no disaster event Md and X are jointly lognormal and we can apply the Black and
Scholes (1973)–Garman and Kohlhagen (1983) formula. In summary, we obtain

E[Md,t+1 max(0, 1−Xt+1)] = (1− pt)BSd(σx) + ptE
D
t [Md,t+1 max(0, 1−Xt+1)] ,

where EDt [·] denotes expectations conditional on a disaster event. The explicit computation of the
expectation on the RHS yields

EDt [Md,t+1 max(0, 1−Xt+1)] = Et

[
Gd,tFd,t+1 max

(
0, 1−

Gf,dFf,t+1

Gd,tFd,t+1

)]
,

where

Gi,t = exp(gωi) ·
rei + φHi + 1+Hi∗

1+Hit
exp(−φHi)Ĥit

rei + φHi + Ĥit

. (A-21)

This concludes the proof.
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Appendix C Tables

Table 1

Data Summary Statistics

The table provides descriptive statistics for nominal domestic returns, exchange rates and CPI inflation
for Switzerland, the Euro-zone (Germany before the introduction of the euro), the United Kingdom,
Japan, the US, Australia, Canada and New Zealand. The sample period spans January 1975 to
December 2015 (January 1988 to December 2015 for New Zealand) and the sampling frequency is
monthly. Returns and inflation rates are annualized and displayed in percentages. In Panel A we
report the annualized average returns for one-month risk-free bonds and ten-year government bonds.
Panel B reports mean excess returns on equity, their volatility and the corresponding Sharpe ratios,
computed as the ratio between the excess return and the return standard deviation. Panel C reports
the annualized mean and standard deviation of exchange rates returns with respect to the US dollar.
Panel D reports the average CPI inflation and its standard deviation.

CHF EUR GBP JPY USD AUD CAD NZD

Panel A: Bonds

1M 2.81 4.33 7.39 2.61 5.36 8.25 6.31 6.68
10Y 1.79 2.26 3.23 2.31 1.91 2.19 2.04 3.94

Panel B: Excess stock returns

Mean 7.39 6.89 6.23 3.49 7.08 5.71 5.15 0.84
Std 15.42 20.08 16.99 18.31 15.71 17.76 16.77 18.23
SR 48 34 37 19 45 32 31 5

Panel C: Exchange rates

Mean 2.96 0.03 -0.65 2.85 -0.86 -0.48 0.76
Std 12.12 10.56 10.20 11.32 10.93 6.78 11.92

Panel D: Inflation

Mean 1.76 2.22 4.74 1.57 3.69 4.83 3.71 5.57
Std 1.24 1.60 2.12 1.78 1.28 1.22 1.45 1.71
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Table 2

Properties of SDFs (Unrestricted Trading)

The table reports joint sample moments of the SDF and its components. Panel A reports
statistics with respect to the minimum-entropy SDFs (αi = 0), Panel B for Hellinger SDFs
(αi = 0.5) and Panel C for minimum variance SDFs (αi = 2), i = d, f , j = d, f , i 6= j. The
SDFs are derived when international trading is unrestricted, i.e. the financial markets are fully
integrated. There is an US domestic SDF for each bilateral trade. We use monthly data from
January 1975 to December 2015.

US UK US CH US JP US EU US AU US CA US NZ
Panel A: α = 0 (minimum entropy)

E[Mi] 0.982 0.973 0.982 0.990 0.982 0.991 0.982 0.980 0.982 0.966 0.982 0.973 0.982 0.956
Std(Mi) 0.841 0.872 0.979 0.926 0.740 0.694 0.690 0.681 0.919 0.951 0.726 0.720 0.639 0.557
Std(MT

i ) 0.120 0.122 0.120 0.061 0.120 0.091 0.120 0.068 0.120 0.107 0.120 0.111 0.120 0.091
Std(MP

i ) 0.917 0.948 1.048 0.951 0.814 0.707 0.774 0.725 1.029 1.065 0.823 0.827 0.681 0.625√
Entropy(Mi) 0.684 0.703 0.795 0.753 0.687 0.636 0.604 0.585 0.732 0.702 0.618 0.616 0.581 0.519

corr(MT
i ,MP

i ) -0.454 -0.498 -0.407 -0.233 -0.519 -0.155 -0.549 -0.502 -0.411 -0.636 -0.506 -0.607 -0.317 -0.634
corr(Mi,Mj) 0.992 0.989 0.989 0.985 0.992 0.994 0.981

Panel B: α = 0.5 (Hellinger)

E[Mi] 0.982 0.973 0.982 0.990 0.982 0.991 0.982 0.980 0.982 0.966 0.982 0.973 0.982 0.956
Std(Mi) 0.784 0.805 0.925 0.880 0.720 0.677 0.661 0.647 0.823 0.843 0.688 0.682 0.620 0.547
Std(MT

i ) 0.120 0.122 0.120 0.061 0.120 0.091 0.120 0.068 0.120 0.107 0.120 0.111 0.120 0.091
Std(MP

i ) 0.856 0.882 0.991 0.903 0.791 0.688 0.741 0.687 0.908 0.943 0.775 0.779 0.657 0.612√
Hellinger(Mi) 0.706 0.725 0.823 0.780 0.695 0.646 0.599 0.599 0.752 0.768 0.634 0.631 0.590 0.526

corr(MT
i ,MP

i ) -0.483 -0.534 -0.428 -0.243 -0.531 -0.152 -0.570 -0.524 -0.461 -0.716 -0.533 -0.641 -0.324 -0.646
corr(Mi,Mj) 0.990 0.989 0.989 0.984 0.990 0.994 0.980

Panel C: α = 2 (minimum variance)

E[Mi] 0.982 0.973 0.982 0.990 0.982 0.991 0.982 0.980 0.982 0.966 0.982 0.973 0.982 0.956
Std(Mi) 0.739 0.754 0.873 0.834 0.699 0.658 0.639 0.622 0.776 0.791 0.659 0.655 0.600 0.535
Std(MT

i ) 0.120 0.122 0.120 0.061 0.120 0.091 0.120 0.068 0.120 0.107 0.120 0.111 0.120 0.091
Std(MP

i ) 0.803 0.824 0.930 0.853 0.763 0.670 0.711 0.659 0.839 0.874 0.733 0.735 0.632 0.595
corr(MT

i ,MP
i ) -0.517 -0.587 -0.455 -0.268 -0.552 -0.169 -0.597 -0.564 -0.500 -0.775 -0.566 -0.683 -0.340 -0.665

corr(Mi,Mj) 0.989 0.988 0.989 0.984 0.988 0.993 0.979
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Table 3

Wedge Summary Statistics (Unrestricted Trading)

This table reports the annualized mean, standard deviation, skewness and kurtosis of the
wedge η, for α ∈ {0.5, 2}. The domestic currency is the US dollar. The wedge is ηt+1 =

log
(
Xt+1Md,t+1

Mf,t+1

)
. The minimum dispersion SDFs account for the fact that domestic investors

can trade any foreign asset.

α = 0.5 α = 2
E[η] Std(η) Sk(η) K(η) E[η] Std(η) Sk(η) K(η)

UK 0.000 0.022 -0.395 6.336 -0.007 0.059 -0.259 11.62
CH -0.001 0.026 -1.277 8.426 -0.019 0.120 -6.146 68.40
JP 0.000 0.023 -1.286 7.608 -0.009 0.083 -4.483 36.18
EU 0.000 0.021 -0.065 5.814 0.000 0.064 -1.130 11.47
AU 0.000 0.019 0.424 8.003 0.005 0.075 2.110 24.82
CA 0.000 0.013 -0.488 6.080 -0.001 0.034 -0.538 5.772
NZ -0.001 0.023 -2.695 17.23 -0.031 0.216 -15.61 268.3

Table 4

Correlation of Permanent SDF Components Across Exchange Rate Parities
This table reports the correlation between permanent components of domestic and foreign SDFs. The
domestic SDF is the US one, whereas the foreign SDFs are those for the UK, CH, JP, EU, AU, CA and
NZ. Standard errors are computed using a circular block bootstrap of size 10 with 10, 000 simulations
and reported in square brackets. Label ∗∗∗ denotes significance at the 1% level.

UK CH JP EU AU CA NZ

corr(MP
d ,MP

f )

α = 0 0.972∗∗∗ 0.984∗∗∗ 0.981∗∗∗ 0.978∗∗∗ 0.987∗∗∗ 0.976∗∗∗ 0.968∗∗∗

[0.019] [0.007] [0.004] [0.007] [0.006] [0.005] [0.006]
α = 0.5 0.969∗∗∗ 0.984∗∗∗ 0.980∗∗∗ 0.976∗∗∗ 0.984∗∗∗ 0.975∗∗∗ 0.968∗∗∗

[0.013] [0.004] [0.004] [0.006] [0.005] [0.005] [0.005]
α = 2 0.968∗∗∗ 0.982∗∗∗ 0.977∗∗∗ 0.974∗∗∗ 0.980∗∗∗ 0.973∗∗∗ 0.965∗∗∗

[0.009] [0.003] [0.004] [0.006] [0.005] [0.004] [0.005]
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Table 5

Backus-Smith (1993)-Type Regressions (Unrestricted Trading)

This table reports the point estimates of a linear regression of the log difference between foreign and domestic
SDFs on the log real exchange rate return: mf,t+1 −md,t+1 = δ+ βxt+1 + ut+1, where small-cap letters denote
quantities in logs. We additionally report point estimates of a linear regression of the log difference of each
component of the SDF on the log change in the real exchange rate: mU

f,t+1 −mU
d,t+1 = δU + βUxt+1 + uUt+1,

where U = P, T for permanent and transitory components, respectively. Standard errors are reported in square
brackets. Label ∗∗∗ highlights significance at the 1% level.

Panel A: US/UK Panel B: US/CH
α = 0 α = 0.5 α = 2 α = 0 α = 0.5 α = 2

β 1.000∗∗∗ 1.060∗∗∗ 1.022∗∗∗ 1.000∗∗∗ 1.079∗∗∗ 1.233∗∗∗

[0.000] [0.009] [0.0261] [0.000] [0.009] [0.043]
βP 1.085∗∗∗ 1.145∗∗∗ 1.065∗∗∗ 0.951∗∗∗ 1.030∗∗∗ 1.183∗∗∗

[0.068] [0.067] [0.0742] [0.044] [0.045] [0.064]
βT -0.084 -0.084 -0.084 0.049 0.049 0.049

[0.068] [0.068] [0.068] [0.044] [0.044] [0.044]

Panel C: US/JP Panel D: US/EU
α = 0 α = 0.5 α = 2 α = 0 α = 0.5 α = 2

β 1.000∗∗∗ 1.056∗∗∗ 1.107∗∗∗ 1.000∗∗∗ 1.050∗∗∗ 1.055∗∗∗

[0.000] [0.009] [0.033] [0.000] [0.008] [0.027]
βP 1.083∗∗∗ 1.139∗∗∗ 1.189∗∗∗ 0.956∗∗∗ 1.006∗∗∗ 1.011∗∗∗

[0.053] [0.053] [0.065] [0.046] [0.046] [0.056]
βT -0.083 -0.083 -0.083 0.044 0.044 0.044

[0.053] [0.053] [0.053] [0.046] [0.046] [0.046]

Panel E: US/AU Panel F: US/CA
α = 0 α = 0.5 α = 2 α = 0 α = 0.5 α = 2

β 1.000∗∗∗ 1.042∗∗∗ 1.117∗∗∗ 1.000∗∗∗ 1.044∗∗∗ 1.031∗∗∗

[0.000] [0.007] [0.029] [0.000] [0.008] [0.022]
βP 1.005∗∗∗ 1.047∗∗∗ 1.122∗∗∗ 1.027∗∗∗ 1.072∗∗∗ 1.059∗∗∗

[0.049] [0.049] [0.059] [0.089] [0.090] [0.093]
βT -0.005 -0.005 -0.005 -0.028 -0.028 -0.028

[0.049] [0.049] [0.049] [0.089] [0.089] [0.089]

Panel G: US/NZ
α = 0 α = 0.5 α = 2

β 1.000∗∗∗ 1.055∗∗∗ 1.409∗∗∗

[0.000] [0.009] [0.095]
βP 1.006∗∗∗ 1.061∗∗∗ 1.415∗∗∗

[0.038] [0.038] [0.098]
βT -0.006 -0.006 -0.006

[0.037] [0.037] [0.037]
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Table 6

Properties of SDFs (Trading in Foreign Short-Term Bonds)

The table reports joint sample moments of the SDF and its components. Panel A reports
statistics with respect to the minimum-entropy SDFs (αi = 0), Panel B for Hellinger SDFs
(αi = 0.5) and Panel C for minimum variance SDFs (αi = 2), i = d, f , j = d, f , i 6= j. There
is an US domestic SDF for each bilateral trade. We use monthly data from January 1975 to
December 2015.

US UK US CH US JP US EU US AU US CA US NZ
Panel A: α = 0 (minimum entropy)

E[Mi] 0.982 0.973 0.982 0.990 0.982 0.991 0.982 0.979 0.982 0.966 0.983 0.973 0.983 0.956
Std(Mi) 0.611 0.723 0.769 0.674 0.722 0.364 0.645 0.487 0.603 0.821 0.634 0.514 0.539 0.380
Std(MT

i ) 0.120 0.122 0.120 0.061 0.120 0.091 0.120 0.068 0.120 0.107 0.120 0.111 0.120 0.091
Std(MP

i ) 0.707 0.824 0.843 0.698 0.800 0.379 0.732 0.535 0.702 0.931 0.729 0.641 0.585 0.466√
Entropy(Mi) 0.520 0.550 0.659 0.598 0.666 0.362 0.575 0.461 0.515 0.702 0.533 0.457 0.486 0.359

corr(MT
i ,MP

i ) -0.586 -0.567 -0.503 -0.310 -0.527 -0.280 -0.578 -0.680 -0.593 -0.726 -0.566 -0.781 -0.372 -0.846
corr(Mi,Mj) 0.122 0.374 0.460 0.646 0.585 0.396 0.536

Panel B: α = 0.5 (Hellinger)

E[Mi] 0.983 0.973 0.983 0.990 0.982 0.991 0.982 0.980 0.982 0.966 0.982 0.973 0.982 0.956
Std(Mi) 0.577 0.631 0.730 0.650 0.702 0.363 0.625 0.479 0.572 0.762 0.592 0.494 0.525 0.372
Std(MT

i ) 0.120 0.122 0.120 0.061 0.120 0.091 0.120 0.068 0.120 0.107 0.120 0.111 0.120 0.091
Std(MP

i ) 0.668 0.728 0.803 0.673 0.776 0.377 0.709 0.527 0.664 0.864 0.682 0.612 0.567 0.457√
Hellinger(Mi) 0.533 0.568 0.676 0.610 0.674 0.363 0.587 0.466 0.528 0.717 0.547 0.466 0.496 0.363

corr(MT
i ,MP

i ) -0.617 -0.640 -0.526 -0.318 -0.540 -0.272 -0.593 -0.683 -0.623 -0.780 -0.602 -0.814 -0.377 -0.862
corr(Mi,Mj) 0.154 0.351 0.469 0.627 0.538 0.430 0.523

Panel C: α = 2 (minimum variance)

E[Mi] 0.983 0.973 0.982 0.990 0.982 0.991 0.982 0.980 0.982 0.966 0.982 0.973 0.982 0.956
Std(Mi) 0.555 0.581 0.699 0.630 0.681 0.359 0.608 0.471 0.551 0.728 0.568 0.474 0.512 0.366
Std(MT

i ) 0.120 0.122 0.120 0.061 0.120 0.091 0.120 0.068 0.120 0.107 0.120 0.111 0.120 0.091
Std(MP

i ) 0.637 0.666 0.766 0.651 0.747 0.376 0.684 0.518 0.634 0.816 0.648 0.579 0.549 0.446
corr(MT

i ,MP
i ) -0.652 -0.719 -0.554 -0.340 -0.564 -0.301 -0.617 -0.716 -0.656 -0.829 -0.638 -0.866 -0.393 -0.886

corr(Mi,Mj) 0.166 0.276 0.492 0.586 0.480 0.451 0.503
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Table 7

Wedge Summary Statistics (Trading in Foreign Short-Term Bonds)

The table reports sample mean, standard deviation, skewness and kurtosis of the wedge in Equation
(10) (ηt+1 = log((Md,t+1Xt+1)/Mf,t+1)), for dispersion measures α = 0, 0.5, 2. The optimal derived
SDFs account for the fact that domestic investors can trade the short-term foreign risk-free bond.

α = 0 α = 0.5 α = 2
E[η] Std(η) Sk(η) K(η) E[η] Std(η) Sk(η) K(η) E[η] Std(η) Sk(η) K(η)

UK 0.003 0.636 -0.646 13.55 0.005 0.665 -0.207 6.847 0.042 0.814 1.074 9.239
CH -0.006 0.682 -0.367 6.270 -0.007 0.713 -0.174 4.647 -0.021 0.826 -0.019 3.724
JP -0.123 0.545 1.446 8.938 -0.124 0.554 1.053 6.713 -0.149 0.612 -0.259 5.417
EU -0.048 0.439 0.265 4.026 -0.048 0.455 0.058 3.629 -0.059 0.517 -0.554 5.011
AU 0.104 0.581 -0.181 5.573 0.106 0.614 0.050 4.898 0.129 0.716 1.051 6.714
CA -0.036 0.490 0.148 9.963 -0.036 0.507 0.093 5.655 -0.040 0.561 0.305 5.082
NZ -0.020 0.413 0.362 4.556 -0.021 0.419 0.265 4.045 -0.029 0.442 0.178 3.834

Table 8

Correlation Between Wedge and SDFs (Trading in Foreign Short-Term Bonds)

This table reports the correlation between the wedge η, the (log) domestic and foreign minimum

entropy SDFs (α = 0), as well as the log permanent and transient components of minimum entropy

SDFs. Log SDFs are denoted by mi := logMi and log SDF components by mU
i := logMU

i (i = d, f

and U = T, P ). Standard errors (SE) are computed using a circular block bootstrap of size 10 with

10000 simulations and reported in square brackets. ∗∗∗ denotes significance at the 1% level.

corr(η,mi) SE corr(η,mP
i ) SE corr(η,mT

i ) SE

US 0.658∗∗∗ [0.039] 0.651∗∗∗ [0.039] -0.356∗∗∗ [0.049]
UK -0.617∗∗∗ [0.052] -0.602∗∗∗ [0.057] 0.338∗∗∗ [0.053]

US 0.541∗∗∗ [0.026] 0.569∗∗∗ [0.029] -0.431∗∗∗ [0.038]
CH -0.594∗∗∗ [0.051] -0.585∗∗∗ [0.053] 0.077 [0.054]

US 0.728∗∗∗ [0.039] 0.759∗∗∗ [0.042] -0.532∗∗∗ [0.058]
JP -0.201∗∗∗ [0.054] -0.200∗∗∗ [0.056] -0.029 [0.061]

US 0.552∗∗∗ [0.047] 0.546∗∗∗ [0.050] -0.273∗∗∗ [0.058]
EU -0.296∗∗∗ [0.084] -0.324∗∗∗ [0.909] 0.402∗∗∗ [0.052]

US 0.257∗∗∗ [0.062] 0.204∗∗∗ [0.065] 0.087 [0.057]
AU -0.685∗∗∗ [0.049] -0.714∗∗∗ [0.044] 0.756∗∗∗ [0.030]

US 0.606∗∗∗ [0.077] 0.605∗∗∗ [0.076] -0.342∗∗∗ [0.055]
CA -0.426∗∗∗ [0.120] -0.470∗∗∗ [0.111] 0.565∗∗∗ [0.069]

US 0.523∗∗∗ [0.031] 0.441∗∗∗ [0.040] 0.278∗∗∗ [0.039]
NZ -0.465∗∗∗ [0.075] -0.508∗∗∗ [0.071] 0.606∗∗∗ [0.057]
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Table 9

Backus-Smith (1993)-Type Regressions
(Trading in Foreign Short-Term Bonds)

This table reports the point estimates of a linear regression of the log difference between foreign and domestic
SDFs on the log real exchange rate return: mf,t+1−md,t+1 = δ+β xt+1 +ut+1, where small-cap letters denote
quantities in logs. We additionally report point estimates of a linear regression of the log difference of the
permanent component of the SDF on the log real exchange rate return: mP

f,t+1−mP
d,t+1 = δP +βPxt+1 +uPt+1.

Standard errors are reported in square brackets. Labels ∗∗ and ∗∗∗ highlight significance at the 5% and 1% level,
respectively.

Panel A: US/UK Panel B: US/CH
α = 0 α = 0.5 α = 2 α = 0 α = 0.5 α = 2

β 0.801∗∗∗ 0.918∗∗∗ 1.0683∗∗∗ 0.709∗∗∗ 0.849∗∗∗ 1.059∗∗∗

[0.274] [0.287] [0.352] [0.253] [0.265] [0.307]
βP 0.886∗∗∗ 1.003∗∗∗ 1.153∗∗∗ 0.660∗∗ 0.799∗∗∗ 1.009∗∗∗

[0.316] [0.329] [0.391] [0.276] [0.288] [0.329]

Panel C: US/JP Panel D: US/EU
α = 0 α = 0.5 α = 2 α = 0 α = 0.5 α = 2

β 0.937∗∗∗ 1.003∗∗∗ 1.114∗∗∗ 0.935∗∗∗ 0.975∗∗∗ 0.994∗∗∗

[0.229] [0.222] [0.245] [0.184] [0.191] [0.217]
βP 1.019∗∗∗ 1.086∗∗∗ 1.197∗∗∗ 0.892∗∗∗ 0.931∗∗∗ 0.949∗∗∗

[0.249] [0.253] [0.276] [0.213] [0.219] [0.245]

Panel E: US/AU Panel F: US/CA
α = 0 α = 0.5 α = 2 α = 0 α = 0.5 α = 2

β 0.981∗∗∗ 1.031∗∗∗ 1.087∗∗∗ 0.974∗∗∗ 1.039∗∗∗ 1.062∗∗∗

[0.231] [0.244] [0.284] [0.312] [0.323] [0.357]
βP 0.986∗∗∗ 1.037∗∗∗ 1.093∗∗∗ 1.002∗∗∗ 1.067∗∗∗ 1.089∗∗

[0.262] [0.275] [0.315] [0.383] [0.395] [0.429]

Panel G: US/NZ
α = 0 α = 0.5 α = 2

β 0.875∗∗∗ 0.933∗∗∗ 1.045∗∗∗

[0.186] [0.189] [0.199]
βP 0.881∗∗∗ 0.939∗∗∗ 1.051∗∗∗

[0.202] [0.205] [0.215]
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Table 10

SDF Similarity Summary Statistics

Panel A provides descriptive statistics for SDF similarity measures computed from equation (20).
Data starts in April 1993 and ends in April 2013. Panel B reports the average for the SDF similarity
as implied by unrestricted international trading (I) and when international trading is restricted to
short-term bonds (II). Minimum entropy, Hellinger and variance are obtained for α = 0, α = 0.5 and
α = 2, respectively. AU = Australia, NZ = New Zealand, JP = Japan, CH = Switzerland, UK =
United Kingdom, CA = Canada, EU = Eurozone. The US is always the domestic country.

UK CH JP EU AU CA NZ

Panel A : Option-Implied SDF Similarity Index

Mean 0.990 0.987 0.987 0.989 0.987 0.991 0.987
Std 0.003 0.003 0.004 0.004 0.005 0.004 0.005
Skewness -2.624 -1.412 -1.753 -1.501 -2.810 -2.198 -1.388
Kurtosis 13.85 7.449 8.982 8.143 17.39 10.21 7.321

Panel B : Nominal Minimum Dispersion SDF Similarity Index

I : Unrestricted International Trading

α = 0
S(Md,Mf ) 0.991 0.987 0.989 0.988 0.987 0.991 0.987
S̄(Md,Mf ) 0.991 0.987 0.989 0.988 0.987 0.991 0.987

α = 0.5
S(Md,Mf ) 0.990 0.987 0.988 0.988 0.986 0.985 0.987
S̄(Md,Mf ) 0.991 0.987 0.989 0.988 0.986 0.992 0.987

α = 2
S(Md,Mf ) 0.990 0.986 0.989 0.988 0.986 0.990 0.987
S̄(Md,Mf ) 0.991 0.987 0.988 0.987 0.986 0.991 0.986

II : International Trading in Short-Term Bonds Only

α = 0
S(Md,Mf ) 0.952 0.928 0.945 0.971 0.961 0.973 0.949
S̄(Md,Mf ) 0.991 0.987 0.988 0.988 0.986 0.991 0.987

α = 0.5
S(Md,Mf ) 0.951 0.926 0.945 0.970 0.960 0.972 0.947
S̄(Md,Mf ) 0.991 0.987 0.988 0.988 0.986 0.993 0.985

α = 2
S(Md,Mf ) 0.950 0.921 0.944 0.970 0.959 0.971 0.947
S̄(Md,Mf ) 0.991 0.987 0.988 0.988 0.986 0.991 0.986
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Table 11

International Co-Entropies

The table reports the values of co-entropy as in Chabi-Yo and Colacito (2017), defined as ρMf ,Md
= 1−

L[Mf/Md]
L[Mf ]+L[Md]

, with L[x] ≡ log(E[x])−E[log(x)] being the entropy of the positive random variable x. We

provide estimates using the minimum dispersion SDFs derived when international trading is restricted
to short-term bonds (asymmetry) and when international trading is unrestricted (symmetry). Data
starts in April 1993 and ends in April 2013. Minimum entropy, Hellinger and variance are obtained
for α = 0, α = 0.5 and α = 2, respectively. AU = Australia, NZ = New Zealand, JP = Japan, CH =
Switzerland, UK = United Kingdom, CA = Canada, EU = Eurozone. The US is always the domestic
country.

UK CH JP EU AU CA NZ

α = 0 Asymmetry 0.351 0.415 0.239 0.740 0.748 0.816 0.493
Symmetry 0.983 0.988 0.980 0.962 0.979 0.982 0.982

α = 0.5 Asymmetry 0.328 0.390 0.228 0.727 0.735 0.806 0.479
Symmetry 0.980 0.986 0.978 0.958 0.976 0.977 0.979

α = 2 Asymmetry 0.295 0.327 0.197 0.710 0.717 0.794 0.471
Symmetry 0.977 0.982 0.952 0.955 0.964 0.975 0.817

59



Table 12

SDFs, Value-at-Risk Constraints and Financial Intermediary Wealth under
Integrated Markets

The table reports estimated coefficients from regressing minimum entropy SDFs derived in
Section 2.2 on changes in financial intermediary wealth by He, Kelly, and Manela (2017) and
changes in VIX.

M i
t+1 = αi + βik ∆intermediary wealtht+1 + βiv ∆VIXt+1 + εit+1,

where i = d, f denotes domestic and foreign quantities. T-stats are computed using a circular
block bootstrap of size 10 with 10, 000 simulations and reported in parenthesis.

USDGBP USDCHF USDJPY USDEUR USDAUD USDCAD USDNZD

α 1.550 2.086 0.744 1.169 1.116 0.697 0.799
(11.08) (8.57) (3.27) (7.59) (4.15) (5.48) (1.44)

βk -0.949 -1.587 -0.054 -0.437 -0.559 -0.153 -0.101
(-6.31) (-5.63) (-0.12) (-2.43) (-1.60) (-0.72) (-0.12)

βv 0.395 0.497 0.306 0.264 0.438 0.450 0.298
(5.43) (3.03) (5.17) (2.36) (2.96) (5.25) (3.56)

R-Squared 0.46 0.35 0.09 0.24 0.20 0.31 0.04

GBPUSD CHFUSD JPYUSD EURUSD AUDUSD CADUSD NZDUSD

α 1.552 2.125 0.776 1.104 0.916 0.751 0.824
(12.05) (9.41) (4.05) (10.19) (3.79) (6.89) (1.71)

βk -0.903 -1.578 -0.087 -0.354 -0.335 -0.140 -0.044
(-7.09) (-6.12) (-0.39) (-2.42) (-1.04) (-0.86) (-0.02)

βv 0.347 0.450 0.308 0.247 0.412 0.383 0.215
(5.67) (3.30) (5.11) (2.87) (3.22) (5.29) (0.22)

R-Squared 0.45 0.37 0.11 0.27 0.20 0.29 0.03
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Appendix D Figures

Figure 1. International long-term bond and equity risk premia (αi = 0)
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(a) Panel A: Domestic investor
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(b) Panel B: Foreign investor
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(c) Panel C: Domestic investor
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(d) Panel D: Foreign investor

The figure plots for i = d, f various observed international risk premia against the average interest
rate differential, computed as the difference between foreign and domestic nominal one-month LIBOR
rates. The top panels plot the long-term bond risk premia E[Rei∞,t+1] − E[Ri0,t+1] and the risk
premia−cov(Mi,t+1/E[Mi,t+1], R

e
i∞,t+1−Ri0,t+1) under the minimum entropy SDF. The bottom panels

plot the observed international equity premium E[Rei1,t+1] − E[Ri0,t+1] and the equity risk premia
−cov(Mi,t+1/E[Mi,t+1], (R

e
i1,t+1 −Ri0,t+1)) under the minimum entropy SDF Mi,t+1. Panels A and C

report risk premia for domestic investors (i = d); Panel B and D for foreign investors (i = f). The
domestic currency is the USD, while the foreign currencies are the GBP, the CHF, the JPY, the EUR,
the AUD, the CAD and the NZD. Data is monthly and runs from January 1975 to December 2015,
except for New Zealand, for which the sample starts in January 1988.
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Figure 2. Currency risk premia (αi = 0)
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(a) Panel A: Domestic investor
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(b) Panel B: Foreign investor

The figure plots for i = d, f the observed exchange rate risk premium E[Rei0,t+1] − E[Ri0,t+1] and
the risk premium −cov(Mi,t+1/E[Mi,t+1], R

e
i0,t+1 − Ri0,t+1) under the minimum entropy SDF Mi,t+1

against the average interest rate differential. Panel A reports the currency risk premium for the
domestic investor (i = d), whereas Panel B for the foreign one (i = f). The domestic currency is the
USD, while the foreign currencies are the GBP, the CHF, the JPY, the EUR, the AUD, the CAD and
the NZD. Data is monthly and runs from January 1975 to December 2015, except for New Zealand,
for which the sample starts in January 1988.
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Figure 3. Option-Implied SDF Similarity
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The figure plots option-implied SDF similarity measures from equation (21). Data is monthly and
starts in January 1996 and ends in December 2013. AU = Australia, NZ = New Zealand, JP = Japan,
CH = Switzerland, UK = United Kingdom, CA = Canada, EU = Eurozone. The US is always the
domestic country. Gray shaded areas highlight recessions as defined by the NBER.
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Figure 4. Log SDFs and log consumption growth
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This figure plots (log) minimum entropy SDFs for the eight countries (y-axis) together with (log)
consumption growth (x-axis) and the fitted least-square line. Data is quarterly and runs from January
1975 to December 2015, except for New Zealand, for which the sample starts in January 1988.
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Figure 6. Time-series minimum dispersion and nonparametric permanent components
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This figure plots the time-series of the minimum entropy permanent component (upper panel) and
the nonparametric estimates of the permanent component (lower panel). The left panel depicts the
domestic permanent components for the USDGBP currency pair, whereas the right panel illustrates
the domestic permanent components of the USDCHF pair. Data is monthly and runs from January
1975 to December 2015. Gray shaded areas highlight recessions as defined by the NBER.
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Online Appendix to “Model-Free International
SDFs”

Not for Publication

Appendix OA-1 Non-parametric Estimates of SDF Components

In this section, we discuss the SDF factorization into transitory and permanent components. The
seminal work of Hansen and Scheinkman (2009) characterizes SDFs decompositions in Markovian
environments with a Perron-Frobenius eigenfunction problem. The permanent and transitory compo-
nents are constructed from a given SDF process, the Perron-Frobenius eigenfunction and its eigenvalue.
The eigenvalue determines the average yield on long-horizon payoffs and the eigenfunction character-
izes the dependence of the prices on the Markov state. Sufficient conditions for existence of such an
eigenfunction are provided in Hansen and Scheinkman (2009). Moreover, under an additional ergod-
icity assumption, the SDF factorization is unique and boils down to the factorization in Alvarez and
Jermann (2005), which decomposes the SDF into discounting at the rate of return on the zero-coupon
bond of asymptotically long maturity (the long bond) and a further risk adjustment via the martingale
component.

We follow Christensen (2017) and estimate the solution to the Perron-Frobenius eigenfunction
problem in Hansen and Scheinkman (2009) from time-series data on state variables and a given SDF
process. For simplicity, we consider as a state variable the return on the long maturity bond and as
a benchmark SDF the minimum entropy SDF estimated in Section 2.2. By deriving the eigenvalue
and eigenfunction, we can reconstruct the time-series of the estimated non-parametric permanent and
transitory components and compare them to our estimates based on the return of long, but finite
horizon bond returns.

The estimation procedure builds upon a sieve approach, in which the infinite-dimensional eigen-
function problem is approximated by a low-dimensional matrix eigenvector problem. We use Hermite
polynomials as basis functions and choose the smoothing parameter, i.e., the degree of the polynomial,
k, equal to five. Under some regularity conditions, the solution to the eigenfunction and eigenvalue
problem is unique and pinned down by the basis functions. We refer the interested reader to Chris-
tensen (2017) for the complete set of derivations and proofs. Here, bk ∈ L2 are the basis functions
for the state variable X, m(·) denotes the SDF, ρ is the largest real eigenvalue and ck is a vector in
Rk such that the eigenfunction φ satisfies φk(x) = bk(x)′ck. The sample counterparts of the matrices
Gk and Mk are obtained by substituting the expected values with the sample averages, for a given
time-series of the state variable {X0, X1, . . . , Xn} and a given SDF process. In our case, the state
variable is the return on the ten-year maturity bond and the SDF is given by the minimum entropy
projection derived in Section 2.2.

Finally, given the eigenvector ρ and eigenfunction φ that solve the Perron-Frobenius problem, the
permanent and transient components from time t to t+ τ are given by:

MP
t+τ

MP
t

= ρ−τ
Mt+τ

Mt

φ(Xt+τ )

φ(Xt)
,

MT
t+τ

MT
t

= ρτ
φ(Xt)

φ(Xt+τ )
. (A-1)

We summarize in Table OA-1 the properties of the non-parametric estimates of the permanent and
transient components for the domestic minimum entropy SDFs. Consistent with our previous evi-
dence, we find that the permanent component accounts for most of the variability of the overall SDF,
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whereas the transient component accounts for a much smaller fraction, which on average is close to
the annualized volatility of our proxy for the long-term bond. These findings are supplemented by the
almost perfect correlation between our permanent components and the corresponding non-parametric
estimates. Such high correlations are illustrated by the scatter plots in Figure OA-1.

Table OA-1

Properties of SDFs components (Nonparametric estimates)

The table reports the annualized volatility of the nonparametric estimates of the domestic minimum-
entropy SDF components (αd = 0). We use monthly data from January 1975 to December 2015.

USDGBP USDCHF USDJPY USDEUR USDAUD USDCAD USDNZD

Std(MP
d ) 0.786 0.970 0.725 0.683 0.907 0.660 0.601

Std(MT
d ) 0.126 0.065 0.057 0.039 0.143 0.140 0.112

Figure OA-1. Minimum dispersion vs. nonparametric permanent SDF components
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This figure plots the correlation between the nonparametric estimate of the permanent component
(x-axis) and the minimum entropy permanent component (y-axis). Data is monthly and runs from
January 1975 to December 2015.
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Appendix OA-2 Financial Intermediary Wealth in Segmented Markets

The main text presents results where we regress model-free SDFs on proxies of intermediary wealth
where the SDFs are estimated from symmetric markets. In this section, we present regression results
when SDFs are estimated in segmented markets (see Section 2.3 in the main paper) in Table OA-2.
Estimated coefficients are in line with those presented in the main paper (see Table 12). In particular,
we find that higher changes in VIX load significantly and positively on SDFs while intermediary wealth
loads negatively. We notice, however, slightly smaller R2 compared to the symmetric trading case.

Table OA-2

SDFs, Value-at-Risk Constraints and Financial Intermediary Wealth under
Segmented Markets

The table reports estimated coefficients from regressing minimum entropy SDFs derived in
Section 2.3 on changes in financial intermediary wealth by He, Kelly, and Manela (2017) and
changes in VIX:

M i
t+1 = αi + βik ∆intermediary wealtht+1 + βiv ∆VIXt+1 + εit+1,

where i = d, f denotes domestic and foreign quantities. T-statistics are computed using a
circular block bootstrap of size 10 with 10, 000 simulations and reported in parenthesis.

USDGBP USDCHF USDJPY USDEUR USDAUD USDCAD USDNZD

α 0.810 0.642 0.658 1.131 1.270 0.746 0.768
(6.32) (3.49) (3.08) (8.98) (6.76) (5.87) (4.40)

βk -0.239 -0.280 -0.038 -0.404 -0.695 -0.150 -0.199
(-1.35) (-1.05) (-0.02) (-2.48) (-2.91) (-0.89) (-0.80)

βv 0.423 0.630 0.374 0.269 0.420 0.399 0.425
(5.95) (3.65) (9.75) (3.71) (4.00) (5.68) (5.16)

R-Squared 0.36 0.37 0.20 0.27 0.32 0.33 0.29

GBPUSD CHFUSD JPYUSD EURUSD AUDUSD CADUSD NZDUSD

α 1.842 2.539 1.194 0.969 0.955 0.756 0.689
(15.06) (13.18) (10.70) (11.02) (5.01) (6.87) (2.39)

βk -0.896 -1.589 -0.125 -0.171 -0.294 -0.147 0.099
(-8.06) (-9.13) (-1.48) (-1.97) (-1.48) (-0.90) (0.43)

βv 0.052 0.051 -0.068 0.198 0.332 0.386 0.206
(1.79) (0.58) (-1.58) (4.07) (5.55) (5.23) (3.64)

R-Squared 0.42 0.32 0.02 0.23 0.19 0.29 0.05
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