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1 Introduction

Asset values fluctuate widely around measures of economic fundamentals. Some of this variation

is concentrated at high frequencies, as is apparent from the daily volatility in the stock market.

One might reasonably attribute the origins of this variation to market “noise”around a more

stable economic state. But what if a significant fraction of this variation is attributable to

lower frequency, decades-long shifts in these relative relationships? Such a phenomenon, were

it to exist, could not be readily attributed to short-term volatility in the stock market, but

would instead raise questions about the role of structural changes in the macroeconomy that

govern how far and how persistently asset values can deviate from their historical relationship

to measures of fundamental value.

This paper presents empirical evidence of just such a lower frequency phenomenon. Our

analysis builds a novel set of statistical facts on how asset values, macroeconomic aggregates,

short-term interest rates, and risk premia have comoved over longer periods of time in post-war

U.S. data. Broadly speaking, these findings may be delineated into four distinct categories:

1. Asset valuations: The U.S. economy is characterized by large, longer-term regime shifts

in asset values relative to measures of broad-based macroeconomic prosperity.

2. Macroeconomic fundamentals: Regimes in which asset values are persistently high relative

to macroeconomic fundamentals cannot be understood as the outcome of good news about

the macroeconomy. On the contrary, prolonged periods of high asset valuations coincide

with persistently weak economic growth and persistently high macroeconomic volatility.

The converse is true for low valuation regimes.

3. Monetary policy: Regimes in which asset valuations are persistently high are associated

with persistently low values for the real federal funds rate, and vice versa for low valuation

regimes. High asset valuation regimes are also characterized by evidence of less monetary

policy activism toward inflation and greater activism toward output growth.

4. Risk premia: Low policy rate/high asset valuation regimes coincide with lower equity

market risk premia.

To establish these statistical facts, we begin by documenting evidence of infrequent but

stationary shifts, or “regimes,”in the mean of the consumption-wealth variable cayt of Lettau

and Ludvigson (2001) (LL hereafter), one of the broadest asset valuation metrics available

relative to macroeconomic fundamentals. This variable is an estimated asset market valuation

ratio that uses data on total household net worth (asset wealth, a) and two key macroeconomic

fundamentals: consumer spending, c, and labor income, y. We find evidence of economically
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large, long-lasting regime shifts in the mean of cayt, and explicitly account for this variation

by estimating a Markov-switching version of the variable, denoted cayMS
t . We refer to this

asset valuation variable interchangeably as a “wealth ratio,”since it measures how high or low

household wealth is relative to its long-run historical relationship with consumption and labor

income.

The sample is divided into three clear subperiods characterized by two estimated regimes for

the mean of cayt: a low asset valuation regime that prevails in a middle subperiod of the post-war

era, from 1976:Q2 to 2001:Q2, and a high asset valuation regime that prevails in two subperiods

at the beginning and end of our sample, namely 1952:Q1-1976:Q1, and the post-millennial

period 2001:Q3-2013:Q3. Though persistent, the fluctuations captured by our estimated regime

switches are not permanent. In addition, five other stock market valuation ratios exhibit similar

high-low-high valuation patterns over the same subperiods that characterize the cayMS
t regimes

and at frequencies that roughly line up with the persistence of those regimes.

Because the stock market is the most volatile component of household net worth, much of

the variation in cayt is driven by transitory fluctuations in the stock market component of at
around the more stable ct and yt. Thus cayt has traditionally been a strong predictor of excess

stock market returns. We show that the forecasting power of cayMS
t for future stock market

returns is superior to that of cayt, even if no forward-looking data are used in the construction

of cayMS
t . Predictions are improved because adjustments for infrequent switches in the mean

imply that forecasts do not mix data across regimes characterized by very different structural

relationships between cayt and future asset returns.

We then direct our attention to the main question of the study, namely what these infrequent

asset valuation regime shifts may represent about the macroeconomy. We therefore estimate

a Markov-switching vector autoregression (MS-VAR) in macroeconomic data: output growth,

inflation, investment growth, research-and-development (R&D) growth, and the federal funds

rate. To allow for structural change, the parameters of the MS-VAR are permitted to potentially

undergo structural shifts. Importantly, however, we force these changes to coincide with the

periods corresponding to the shifts identified from our estimates of cayMS, while allowing the

parameters characterizing the different regimes as well as the transition matrix to be freely

estimated. We then use the estimates from the MS-VAR to compute conditional forward

looking moments of the macro variables that take into account the possibility of regime changes

in cayMS. In doing so, we find evidence of strikingly large breaks in the conditional expected

value of the 5- and 10-year-ahead real federal funds rate that coincide with the breaks in the

mean of cayMS. Low wealth ratios (low asset valuations or high cay) are associated with an

expectation of persistently high values for the real federal funds rate, while high wealth ratios

(high asset valuations or low cay) are associated with an expectation of persistently low values.

The post-millennial period in particular, one characterized by high asset valuations according
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to a number of indicators, is marked by forecasts of prolonged (but not permanent) low values

for the real federal funds rate, in contrast to the middle subperiod where asset valuations are

low and conditional expected policy rates are high. We further find that one measure of the

stance of monetary policy—namely the long-run response of the nominal federal funds rate to a

permanent change in inflation or output growth—differs markedly across the low and high asset

valuation regimes, as explained below.

One might reasonably attribute high asset valuations to more favorable prospects for eco-

nomic growth and/or lower uncertainty about that growth. But this is not what we find. Indeed,

the high asset valuation subperiods are times of relative weakness in GDP growth, investment

growth, and R&D growth, and relatively high macroeconomic volatility. These findings run

counter to the idea that high asset valuations associated with a persistently low interest rate

environment are the result of a positive outlook for economic growth, or lower uncertainty about

that growth. Evidence from a second MS-VAR indicates that the high valuation subperiods

are also associated with forecasts of persistent declines in the labor share. The one exception

to these findings of broad-based economic weakness during high asset valuation regimes is the

stock market itself: high asset valuation subperiods are characterized by forecasts of higher

dividend growth on publicly traded shares.

These findings raise a question: why are persistent shifts in the Central Bank’s conditional

expected policy rate associated with such pronounced low frequency shifts in asset valuations?

One answer is simply that the results reflect corresponding regime shifts in discount rates, and

indeed our evidence is consistent with this interpretation. But even if we restrict attention to

interpretations based on changing discount rates, theories differ on why discount rates change

with policy rates. Some theories tie low and declining discount rates entirely to the behavior

of the short-term interest rate with no role for monetary policy, as in the recent strand of

models for which the risk-free interest rate is presumed to be driven endogenously downward

by shocks that increase the fraction of wealth held by more risk averse or more pessimistic

investors (e.g., Barro and Mollerus (2014); Caballero and Farhi (2014); Hall (2016)). In these

theories, risk premia rise as the risk-free rate declines, implying that asset valuations can only

be higher if the decline in the risk-free rate exceeds the rise in risk premia. By contrast, other

theories imply that shifts downward in the risk-free rate coincide with shifts downward in risk

premia, as in those models that can be broadly characterized as having a “reaching for yield”

channel (e.g., Rajan (2006); Rajan (2013); Drechsler, Savov, and Schnabl (2014); Piazzesi and

Schneider (2015); Acharya and Naqvi (2016)). These theories often ascribe a role for monetary

policy, as we discuss further below.

The contradictory implications for risk premia under these two frameworks provides a

testable implication. We present evidence from equity markets that the low interest rate regimes

we document coincide with lower risk premia, consistent with reaching for yield. Specifically,
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we find that, in a switch from a high to low interest rate regime, the estimated present dis-

counted value of the stream of all future risk premia on the aggregate stock market, as well as

that of several other equity portfolios, simultaneously fall to lower levels. Moreover, the risk

premia and the book-market ratios (adjusted for expected earnings) of evidently riskier, higher

Sharpe ratio portfolios, such as those that go long in value stocks or stocks that have recently

appreciated the most, fall more than those of evidently less risky, lower Sharpe ratio portfolios,

such as those that go long in growth stocks or stocks that have recently appreciated the least.

Finally, we find that the estimated risk premia on all of these equity portfolios (including the

market) reach lows or near-lows early in the post-2000 period and, after a brief spike upward

in the 2007-08 financial crisis, again in the post-2009 period when interest rates entered the

zero-lower-bound range. Our findings for stock market returns in this regard are reminiscent of

recent evidence of reaching for yield in the Treasury market (e.g., Hanson and Stein (2015)), by

U.S. prime money funds (e.g., Di Maggio and Kacperczyk (2015)), and by U.S. corporate bond

mutual funds (Choi and Kronlund (2015)). The evidence in these papers pertains to heavily

intermediated asset classes. By contrast, our evidence pertains to equity market portfolios, an

asset class ostensibly held by retail investors and households, as well as intermediaries.

We take the federal funds rate to be a core tool of conventional monetary policy over which

the Federal Reserve has direct control, one with the benefit that it is readily observed over

most of the post-war period. Implicit in our use of the term “monetary policy”with regard to

this tool is the assumption that the Central Bank can, by altering its systematic policy stance,

affect expected real rates for extended periods of time even if it cannot do so forever. Consistent

with this hypothesis, we find that the VAR-implied Taylor rule differs significantly across the

two regimes, with the high interest rate/low asset valuation regime characterized by a funds

rate that is more responsive to inflation, and the low interest rate/high asset valuation regime

characterized by a funds rate that is more responsive to output growth. The results here,

spanning three clear subperiods over 50 years, suggest that persistent interest rate policies

aimed at achieving specific macroeconomic objectives may have unplanned consequences for

asset valuations and risk premia.

Of course real interest rates can fluctuate for reasons that have nothing to do with monetary

policy, such as from a movement in the so-called natural rate of interest. We argue below that

our findings on asset valuations, risk premia, and policy rates are not readily explained as the

outcome of fluctuations in the natural rate alone, or (equivalently) as the result of a policy rate

that perfectly tracks the natural rate over time. Shocks that move the natural rate to low or

negative values are unlikely to be associated with high asset valuations and low risk premia,

as we find. And independent estimates of the natural rate support the hypothesis that the

funds rate was set at a relatively restrictive level (on average above the natural rate) in our low

valuation regime while being conversely accommodative (on average below the natural rate) in
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the high valuation regimes.

In contrast to explanations for recent low interest rates that rely on the behavior of the nat-

ural rate and are hard to reconcile with our findings, researchers have offered intermediary-based

macro-finance theories of risk-taking behavior prompted by very accommodative or unconven-

tional monetary policies that would be broadly consistent with them (see for example, Diamond

and Rajan (2012); Farhi and Tirole (2012); Rajan (2013); Stein (2013)). These theories are

closely related to those referenced above that have a reaching for yield component.

A growing empirical literature documents a linkage between monetary policymaking activ-

ities and financial returns in high frequency data, using either formal event studies and daily

data (Cook (1989); Bernanke and Kuttner (2005); Gürkaynak, Sack, and Swanson (2005)) or by

studying the timing of when premia in the aggregate stock market are earned in weeks related to

FOMC-cycle time (Lucca and Moench (2015); Cieslak, Morse, and Vissing-Jorgensen (2015)) or

by directly forecasting weekly stock returns using weekly observations on federal funds futures

implied rates (Neuhierl and Weber (2016)). These higher frequency analyses contrast with the

focus of this paper, which to the best of our knowledge presents the first formal statistical

evidence that low frequency structural shifts in equity market return premia and asset values

strongly associated with low frequency fluctuations in the primary policy instrument under

direct control of the central monetary authority.

The rest of the paper is organized as follows. The next section discusses the empirical

model and the estimation of a Markov-switching cayt. Section 3 presents results from this

estimation, including evidence of breaks in the mean of cay and a comparison of the forecasting

power of cayMS and cay for U.S. stock market returns. Section 4 turns to the key economic

question of what macroeconomic forces might be associated with the regime shifts in cayt,

focusing first on the connection to the real federal funds rate and evidence of shifts in the

monetary policy stance. This section also discusses how our findings relate to narratives about

monetary policy and the natural rate of interest. The last part of this section discusses evidence

on macroeconomic fundamentals. Section 5 investigates whether the high asset valuation/low

interest rate regimes are characterized by lower risk premia in equity market assets, i.e., on

evidence pertaining to reaching for yield. Section 6 briefly remarks on the behavior of other

stock market valuation ratios over our estimated regime subperiods and Section 7 concludes.

A large amount of additional material, test results, and a detailed data description have been

placed in an Appendix for online publication.

2 Econometric Model of cayMS

The variable studied by LL, denoted cayt, is a stationary linear combination of log consumer

spending, ct, log asset wealth, at, and log labor income, yt, all measured on an aggregate basis.
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Under assumptions described in LL and elaborated on in Lettau and Ludvigson (2010), cayt
may be interpreted as a proxy for the log consumption- aggregate (human and non-human asset)

wealth ratio, and its relationship with future growth rates of at (highly correlated with stock

market returns in quarterly data) and/or future growth rates of ct and yt can be motivated from

an aggregated household budget constraint. Specifically, if labor income is the dividend paid

to human capital, one can derive an approximate expression linking ct, at, and yt to expected

future returns to asset wealth, consumption growth, and labor income growth:

cayt ≡ ct − γaat − γyyt ≈ α + Et
∞∑
i=1

ρiw ((1− ν) ra,t+i −∆ct+i + ν∆yt+1+i) ,

where ν is the steady state ratio of human wealth to asset wealth and ra,t is the log return to asset

wealth. Theory typically implies that ct, a t, and yt should be cointegrated, or that cayt should

be covariance stationary. Note that Etra,t+i can be tautologically decomposed into the sum
of a risk premium component and risk-free rate component, i.e., Etra,t+i ≡ Et (ra,t+i − ft+i) +

Etft+i, where ft is the risk-free rate. Historically, almost all of the short to medium frequency

variation in the traditional measure of cayt on the left-hand-side has been driven not by future

consumption, labor income growth or risk-free rates, but by the risk-premium.

In the years since the 2001 paper was published, the statistical properties of the estimated

cayt series have shifted in some fundamental ways.1 Notably, the measured value of cayt has

become more persistent over time, resulting in forecasting power for stock market returns

increasingly concentrated at longer horizons and making it diffi cult, according to some statistical

tests, to distinguish cayt from a unit root process. Mechanically, the reason for this has to do

with the persistently high asset valuations of the post-millennial period, which have resulted

in observations on cayt that have remained well below the variable’s pre-2000 mean even in

the aftermath of two large stock market crashes and one large housing market crash. Similar

findings have been documented for other stock market valuation ratios long used as predictor

variables for stock returns, including price-dividend or price-earnings ratios.2 Despite these

findings, a literal unit root interpretation for these variables is unappealing because it implies

that stock prices or asset values could wander arbitrarily far frommeasures of fundamental value

indefinitely.3 An arguably more appealing interpretation is that there are instead infrequent

shifts in certain moments of the stationary distribution that—when not taken into account—make

distinguishing a stationary from a unit root variable diffi cult in a small sample.
1This is in part due to changes in the way the relevant data series are constructed.
2The near-unit root statistical properties of these ratios and their implications for return forecasting have

been the subject of empirical work by Lewellen (2004), Campbell and Thompson (2008), Lettau, Ludvigson,
and Wachter (2008), Lettau and Van Nieuwerburgh (2008), van Binsbergen and Koijen (2010), and Koijen and
Van Nieuwerburgh (2011).

3This is unappealing even with presumed departures from conventional notions of market effi ciency. Even
theories that postulate “bubbles” almost always imply that the bubble will eventually burst, restoring a pre-
bubble relationship between prices and fundamentals.
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This section describes an econometric model of regime switches in the mean of cayt. In the

standard estimation without regime shifts in any parameters, the stationary linear combination

of ct, a t, and yt may be written

ct = α + γaat + γyyt + εt, (1)

where the parameters to be estimated are α, γa, and γy. The residual εt is the stationary linear

combination of these data, referred to as the cointegrating residual. In this paper, we estimate

a Markov-switching version of this cointegrating relationship, analogously written as

ct = αξαt + βaat + βyyt + et,

where the notation αξαt indicates that the value of the constant depends on the existence of a la-

tent state variable, ξαt , presumed to follow a two-state Markov-switching process with transition

matrix Hα. The constant term αξαt can therefore assume one of two discrete values, α1 or α2.

The choice of two regimes is not crucial, but provides an easily interpretable way to organize

the data, into a low and a high valuation regime. The parameters βa and βy are analogous to

γa and γy in the fixed coeffi cient regression (1). The residual et is again a stationary variable

by assumption.

Let zt be a 3 × 1 vector of data on ct, at, and yt, and k leads and k lags of ∆at and ∆yt

and let Zt = (zt, zt−1, ...,z1) be a vector containing all observations obtained through date t.

To estimate the parameters of this stationary linear combination we modify the standard fixed

coeffi cient dynamic least squares regression (DLS—Stock and Watson (1993)) regression to allow

for shifts in the intercept αξαt :

ct = αξαt + βaat + βyyt +
k∑

i=−k

ba,i∆at+i +
k∑

i=−k

by,i∆yt+i + σεt (2)

where εt ∼ N (0, 1) .4 The parameters of the econometric model include the cointegrating para-

meters and additional slope coeffi cients β =
(
βa, βy, b

)′
, where b = (ba,−k, .., ba,k, by,−k, .., by,k)

′,

the two intercept values α1 and α2, the standard deviation of the residual σ, and the tran-

sition probabilities contained in the matrix Hα. Collect these parameters into a vector θ =(
β, αξαt , σ,H

α
)′
.

Absent regime changes, cay is defined as:

cayFCt = ct − (α + γaat + γyyt) (3)

where the superscript “FC”stands for “fixed coeffi cients”because the constant α is fixed over

time. The variable cayFCt is the same as that defined in LL where it was denoted cayt. The

4The DLS regression controls for leads and lags of the right-hand-side variables to adjust for the ineffi ciencies
attributable to regressor endogeneity that arise in finite samples.
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parameters θ of the time-series model for cayFCt include the cointegrating parameters γa and

γy, the additional slope coeffi cients on the leads and lags in the DLS regression, and the single

intercept value α.

Let T be the sample size used in the estimation, accounting for leads and lags in the

regression. The sequence ξα,T = {ξα1 , ..., ξαT} of regimes in place at each point is generally
unobservable and needs to be inferred together with the other parameters of the model. But

the two values for αξαt may be weighted by their state probabilities at each point in time. For

this purpose, we consider two estimates of the state probabilities distinguished as filtered or

smoothed probabilities. Let P (ξαt = i|Zt;θ) ≡ πit|t denote the probability that ξ
α
t = i, for

i = 1, 2, based on data obtained through date t and knowledge of the parameters θ. We

refer to these as filtered probabilities. Smoothed probabilities reflect the information that can

be extracted from the whole sample: P (ξαt = i|ZT ;θ) ≡ πit|T .
5 These measures of the regime

probabilities may be used to construct two versions of a Markov-switching cay, based on using

either smoothed or filtered probabilities. As a benchmark, we use the smoothed probabilities

for our baseline estimate and denote it cayMS
t . When we use filtered probabilities, we use the

notation cayMSfilt
t . Thus, cayMS

t is computed one of two ways:

cayMSfilt
t = ct −

(∑2
i=1 π

i
t|tαi + βaat + βyyt

)
. (4)

cayMS
t = ct −

(∑2
i=1 π

i
t|Tαi + βaat + βyyt

)
. (5)

The econometric model (2) considers regime switches only in the intercept parameter. (The

Appendix discusses alternative specifications in which σ is also subject to regime switches.)

We do not consider models with breaks in the slope coeffi cients. If there is no single linear

combination of the variables that is stationary, the rationale behind cayt as a stationary valu-

ation ratio breaks down entirely.6 The specification for cayMS
t maintains the hypothesis that a

stationary linear combination of ct, at, and yt exists, just as cayFCt . The difference is that, with

cayMS
t , some of the variation in the cointegrating residual of cayFCt is being explicitly captured

by regime switches in the mean.

This point is made explicit by rewriting the above expressions for cayFCt and cayMS
t to be

inclusive of the intercept term, i.e.,

cayMS
t +

∑2
i=1 π

i
t|Tαi = ct − βaat − βyyt︸ ︷︷ ︸

inv. wealth ratio

(6)

cayFCt + α = ct − γaat − γyyt. (7)

5In using the DLS regression (2) to estimate cointegrating parameters, we lose 6 leads and 6 lags. The
Appendix on computing cayMS explains how we filter the data to obtain esitmates of the regime probabilities
over the whole sample.

6Allowing breaks in the slope coeffi cients of cay would be tantamount to freely estimating a linear relation
between log dividends and log prices and then allowing the coeffi cients of this relation to shift over time. There
is no reason expect this estimated relation to be a stationary random variable.
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The right-hand-side of both equations is presumed stationary. In each case, the intercept term

may be interpreted as the mean of a (different) stationary linear combination of ct, at, and

yt. To the extent that shifts in the intercept term αi are driven by a stationary but persistent

regime changes, cayMS
t will then be less persistent than cayFCt . This is because some of the low

frequency fluctuations of the right-hand-side of (6) are captured by the shifts in the intercept,

while the low frequency fluctuations of the right-hand-side of (7) must be entirely captured by

cayFCt .

In either case, the stationary linear combinations ct, at, and yt may be interpreted as log

inverse asset valuation ratios or inverse wealth ratios, akin to a log dividend-price ratio as

opposed to log price-dividend ratio. Since, in population, cayMS
t and cayFCt are mean zero

random variables, the intercept terms give the mean of these inverse asset valuation ratios.7 A

high αi corresponds to a low mean valuation ratio, since the residual ct − βaat − βyyt is high
whenever the value of wealth at is low relative to the implied linear combination of ct and yt. We

refer to the log inverse asset valuation ratio on the right-hand-side of (6) interchangeably as the

inverse wealth ratio, or equivalently define the (log) wealth ratio as −
[
cayMS

t +
∑2

i=1 π
i
t|Tαi

]
.

We use Bayesian methods with flat priors to evaluate the regression parameters in (2) over

the period 1952:Q1-2013:Q3 using six leads and lags. We first search for the posterior mode

using a maximization algorithm. The posterior of the model and the corresponding regime

probabilities πit|t and π
i
t|T are obtained by computing the likelihood using the Hamilton filter

(Hamilton (1994)), and combining it with priors. Since we use flat priors, the posterior coincides

with the likelihood. Our estimate of cayMS
t is based on the posterior mode of the parameter

vector θ and the corresponding regime probabilities. Uncertainty about the parameters, or

about any transformation of the model parameters, are characterized using a Gibbs sampling

algorithm. The full statement of the procedure and sampling algorithm is given in the Appendix.

2.1 Shifts in the Mean of the Wealth Ratio

Table 1 reports the parameter estimates, while Figure 1 reports the probability of regime 1 for

the Markov-switching intercept αξαt based on the posterior mode parameter estimates. Model

comparison tests based on the BIC criterion show that cayMS
t describes the data far better

than a model with fixed coeffi cients and no switches in the constant. These results are presented

in the “Model Comparison”section, Appendix 6, of the Appendix.

The sample is divided into three clear subperiods characterized by the two regimes for α.

Regime 1 is a high α regime with the posterior mode point estimate equal to α̂1 = 0.9186. The

low α regime 2 posterior mode estimate is α̂2 = 0.8808. A high α regime for cay corresponds to

7In a finite sample, cayMS
t and cayFCt are not necessarily mean zero because of the leads and lags of the first

differences included in the DLS regression used to correct for finite sample biases. In population these variables
are mean-zero by definition.
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a low valuation ratio for the stock market, analogous to a low price-dividend ratio. We therefore

refer to high α regime 1 as the low asset valuation regime, and low α regime 2 as the high asset

valuation regime. Figure 1 shows that the low asset valuation regime prevails for a prolonged

period of time from 1976:Q2 to 2001:Q2, during which the smoothed probability that α = α̂1

is remains close to unity. By contrast, the pre-1976 and post-2001 subsamples are high asset

valuation regimes, where the probability that α = α1 is virtually 0. These correspond to the

subperiods 1952:Q1-1976:Q1, and 2001:Q3-2013:Q3, respectively.

Table 1 reports estimates of the difference α̂1 − α̂2, along with percentiles of the posterior

distribution for α̂1 − α̂2. The 90% credible set for α̂1 − α̂2 is non-zero and positive, indicating

that the difference between the means in the inverse wealth ratio across the regimes is positive

and statistically significant. The two regimes are stationary but persistent, as by the estimated

diagonal elements of the transition matrix Hα, also reported in Table 1. To give a visual

impression of the properties of these regimes, Figure 2 plots cayMS
t +

∑2
i=1 π

i
t|Tαi over time,

which is the estimated Markov-switching cay from (5) inclusive of the intercept. Also plotted

as horizontal lines are the values α̂1 and α̂2 that arise in each regime over the sample. The

figure shows that this inverse valuation variable fluctuates around two distinct means in three

separate periods of the sample, a low mean in the early part of the sample, a high mean in the

middle, and a low mean again in the last part of the sample.

It is notable that the mode values for the cointegration parameters are βa = 0.26 and

βy = 0.62 and comparable with those obtained by LL using a fixed coeffi cient regression in

the sample 1952:4-1998:3 (those values were γ̂a = 0.31 and γ̂y = 0.59). Table 1 reports the

parameter estimates for the fixed coeffi cient cointegrating relation over the extended sample

used in this paper, where γ̂a = 0.12 and γ̂y = 0.78. Bearing in mind that deviations from

the cointegrating relation are typically driven by persistent but transitory movements in at

rather than ct or yt (Lettau and Ludvigson (2004), Lettau and Ludvigson (2013)), these results

suggest that the fixed-coeffi cient estimates of cayt based on more recent data have attempted

to “compensate”for increasingly persistent deviations in at from its cointegrating relation with

ct and yt, by progressively reducing the weight on at and increasing the weight on yt. The

instability in these point estimates is largely eliminated by allowing for discrete shifts in the

mean of cay.

The role of growing persistence in cayFCt is illustrated in Figure 3, which plots cayFCt along

with cayMS
t as defined in (3) and (5), respectively. (Unlike Figure 2, these values subtract the

estimated α or probability-weighted α, respectively.) The two vertical bars mark the beginning

and the end of the time span during which the high α regime was most likely to be in place,

according to the smoothed probability estimates. cayFCt exhibits persistent deviations from

zero, especially during the last subperiod 2001:Q3-2013:Q3, which coincides with the second

appearance in our sample of the high asset valuation regime. It is evident from Figure 3 that
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cayMS
t does not exhibit such persistent deviations from its demeaned value of zero. The reason

is that the persistent deviations are instead captured by low-frequency regime changes in the

constant of the cointegrating relation. The visual impression cayMS
t is less persistent than cayFCt

is corroborated by several formal statistical tests that are reported in the online Appendix.

2.2 Forecasts of Excess Stock Market Returns

The variable cay has been used as a stock market forecasting variable because most of its

variation has been driven historically by transitory fluctuations in a around more stable values

for c and y. Thus when a is high relative to c and y, that signals lower values for future excess

returns, rather than higher values for c and/or y. This section presents evidence that adjusting

for these regimes shifts improves the forecasting power of cay for stock returns.

Table 2 reports the results of long-horizon forecasts of log returns on the CRSP value-

weighted stock market index in excess of a three month Treasury bill rate. The table compares

the forecasting power of cayFCt , and cayMSfilt
t , based on filtered probabilities and cayMS

t , based

on smoothed probabilities. The top panel reports full sample forecasts. The bottom panel

reports the results of forecasts based on fully recursive estimates of these measures using data

only up to time t, denoted cayFCrec and cayMSrec, respectively.8 These variables are then used to

forecast returns over the entire subsample from 1981:Q1-2013:Q3. The recursive estimates use

no forward looking data to estimate any of the parameters, including the regime probabilities,

regimes values, or transition probabilities. In both panels we report the coeffi cient estimates on

the regressor, the Newey and West (1987) corrected t-statistic, and the adjusted R2 statistic.

The top panel shows that all measures of cay estimated over the full sample have statistically

significant forecasting power for future excess stock market returns over horizons ranging from

one to 16 quarters. But the coeffi cients, t-statistics and R2 values are all larger using the

Markov-switching versions cayMSfilt
t and cayMS

t than they are for cayFCt . The comparison is

more stark if we compare recursively estimated values of cay to full sample values. The full

sample estimate of cayFCt explains 21% of the 16 quarter-ahead log excess stock market return

in the subsample 1981:Q1-2013Q3, while cayMSrec
t explains 42%. Moreover, in this sub-sample,

cayFCt has little forecasting power for excess returns at all but the longest horizon, whereas

cayMSrec
t has much stronger forecasting power.

Table 2 shows that cayFCrect also has stronger predictive power than cayFCt over this sub-

sample. But this is because, by recursively estimating the parameters in cayFCt , we allow them

to change every period. For this reason, a recursively estimated fixed-coeffi cient model can

8The recursive estimates are obtained as follows. First, all parameters θ for each model are estimated in
an initial period using data available from 1952:Q1 through 1980:Q4. All parameters are then reestimated
recursively on data from 1952:Q1-1981:Q1, 1952:Q1-1981:Q2, and so on, until the final recursive estimate of
cay is obtained based on data over the full sample 1952:Q1-2013:Q3. These variables are then used to forecast
returns over the entire subsample from 1981:Q1-2013:Q3.
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“compete”with the Markov-switching model, which explicitly models shifts in the parameter.

This finding hardly provides support for the hypothesis that the fixed-coeffi cient model is a

better description of the data than the Markov-switching model. (Indeed, this hypothesis is

explicitly rejected by a comparison based on the BIC criterion of these models, as documented

in the Appendix.) On the contrary, this finding may be taken as additional evidence of the

instability in the fixed-coeffi cient parameters. If there were no such instability, cayFCrect would

be identically equal to cayFCt .

Table 3 reports mean-square forecast errors (MSEs) from out-of-sample forecasts.9 All

versions of cay also have lower lower MSEs than a simple autoregressive forecasting model or a

model that uses only the (constant) sample mean of excess returns as a predictor. Among those

versions that are estimated using the full sample, the two Markov-switching versions, cayMSfilt
t ,

and cayMS
t , are much better predictors than the fixed-mean version cayFCt , having MSEs that

are almost 50% smaller for 16-quarter return forecasts. The recursively estimated versions

cayFCrect and cayMSrec
t have about the same predictive power over most horizons, although the

Markov-switching cay offers a slight improvement over the fixed-mean cay at the longest (16

quarter) horizon. Because these recursive versions are estimated over short subsamples, the

estimates of parameters are much noisier than they are for the full-sample versions, so it is not

surprising that they have higher MSEs. For this reason, it is notable that cayMSrec
t preforms

as well (and slightly better at long horizons) as cayFCrect , given that the former has many more

parameters that require estimation over short subsamples of our quarterly dataset. Postwar

samples of the size currently available are, however, much larger than the repeated subsamples

used to construct the recursive estimates for this exercise. Going forward, such samples should

provide less noisy estimates of cayMS
t parameters.

3 What’s Behind the Shifts in Asset Valuation?

For the rest of this paper, we search for empirical explanations from the macroeconomy for the

breaks observed in cay. For example, perhaps the high valuation periods reflect an optimistic

statistical outlook for economic growth or lower macroeconomic uncertainty. To address this

question, we require a methodology to investigate what might be different in the macroeconomic

data across the previously estimated regime subperiods for cay.

We approach this problem by estimating a Markov-switching vector-autoregression (MS-

VAR) on macroeconomic data, allowing the parameters of the VAR to potentially undergo

structural breaks during the periods that correspond to the shifts identified in our estimates

9The forecasting relation is estimated in an initial period using data available from 1952:Q1 through 1980:Q4.
Forecasts over the next h quarters are computed and forecast errors stored. The forecasting relation is then
reestimated in rolling subsamples moving forward, (i.e., over the period 1952:Q1 through 1981:Q1), and forecasts
and forecast errors are computed over the next h periods. This process is repeated until the end of the sample.
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for cayMS.10 That is, we impose the formerly estimated regime sequence for cay on the VAR.

Importantly, however, we allow the parameters characterizing the different regimes, as well as

the transition matrix, to be freely estimated. We denote the MS-VAR transition matrixHA in

order to distinguish it from the cayMS transition matrix Hα. Note that the objective here is

not to estimate independent regimes for the variables in the MS-VAR and see if they align with

the previously estimated breaks in cay. Instead, the objective is to establish what, if anything,

is different in the MS-VAR variables across the two previously estimated asset valuation regimes

that could help explain the breaks in the mean of cay. We therefore deliberately “tie our hands”

by forcing the regime sequence for the MS-VAR to correspond to breaks in cay. Note that there

is no implication in this procedure that the macro variables must necessarily show evidence of

structural change. Because the parameters of the MS-VAR and the transition matrix are freely

estimated, the conditional moments of the macro variables in the MS-VAR are freely estimated

and could in principle show no shift across the asset valuation regimes.

All MS-VARs estimated in this section and the next are implemented using Bayesian meth-

ods with flat priors, while uncertainty about the parameters is characterized by Gibbs sampling.

The Appendix provides estimation details.11

We consider the following MS-VAR model with n variables and m = 2 regimes:

Zt = cξt + A1,ξtZt−1 + A2,ξtZt−2 + Vξtεt, εt ∼ N (0, I) (8)

where Zt is an n × 1 vector of variables, cξt is an n × 1 vector of constants, Al,ξt for l = 1, 2

is an n × n matrix of coeffi cients, VξtV ′ξt is an n × n covariance matrix for the n × 1 vector of

shocks εt. The process ξt controls the regime that is in place at time t and assumes two values,

1 and 2, based on the regime sequence identified in our estimates for cayMS.

In our baseline macro MS-VAR, the vector Zt includes five variables at quarterly frequency:

GDP growth, inflation, investment growth, R&D growth, and the effective federal funds rate

(FFR). Inflation is defined as the year-to-year differences of the logarithm of the GDP price

deflator. GDP growth, investment growth, and R&D growth are defined as the year-to-year

differences of the logarithm of real GDP per capita, real investment per capita, real R&D per

capita, respectively. The quarterly FFR is obtained by taking the average of monthly figures

of the effective federal funds rate. In a secondary macro MS-VAR, the vector Zt includes five

variables at quarterly frequency: GDP growth, inflation, the change in the labor compensation

share of GDP (“labor share”for short), aggregate dividend growth for all firms traded on NYSE,

NASDAQ and AMEX, and the effective federal funds rate. The Data Appendix provides a

10To impose the formerly estimated regime sequence, we choose the particular regime sequence ξ̂
α,T

=

{ξ̂
α

1 , ..., ξ̂
α

T } that is most likely to have occurred, given our estimated posterior mode parameter values for
θ . See the Appendix for details.
11Bayesian methods are used because they offer significant computational advantages in characterizing un-

certainty about parameter transformations such as risk-premia.
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detailed description of our data and sources. The sample for this estimation spans the period

1955:Q3-2013:Q3.12

We are interested in knowing the conditional expectation and the conditional standard

deviation of each variable in the MS-VAR as well as for the implied real interest rate (RIR),

defined as the difference between the FFR and one-step-ahead inflation expectations. For each

variable zt ∈ Zt, the conditional expectation and conditional standard deviation are given

by Et (zt+s) and sdt (zt+s) =
√
Vt (zt+s) =

√
Et [zt+s − Et (zt+s)]

2, where Et (·) ≡ E (·|It) and It
denotes the information available at time t. We assume that It includes knowledge of the regime
in place at time t, the data up to time t, Zt, and the VAR parameters for each regime. Both

statistics are computed from the MS-VAR parameters and transition matrix HA, taking into

account that future regimes are unknown and that there exists an entire posterior distribution of

VAR parameters and transition matrixHA, translating into posterior distributions for Et (zt+s)

and sdt (zt+s). The statistic sdt (zt+s) can be considered a measure of economic uncertainty, as

implied by the MS-VAR. (Details on how these are calculated are presented in the Appendix.)

Inflation expectations are computed using the MS-VAR estimates, therefore RIR is not included

directly in the MS-VAR but derived ex-post based on the MS-VAR estimates. We discuss the

results of this estimation in subsections, beginning with a focus on monetary policy and moving

on to the results for macroeconomic fundamentals across our estimated regimes.

3.1 Asset Valuations and the Federal Funds Rate

Figure 4 reports the 5- and 10-year-ahead conditional expected values of each variable in the

baseline MS-VAR plus the RIR. The figure reports the median and 68% credible sets from the

posterior distribution of these conditional expectations.

We begin by inspecting the behavior of the real FFR (RIR) displayed in the far right-hand

column of Figure 4. There are distinct interest rate regimes over the post-war sample. In

particular, the right-most column shows striking evidence of structural change in the 5—and

10-year-ahead conditional expected values of the RIR that coincide with the regime sequence

estimated for the mean of cay. The occurrence of the low asset valuation regime in the middle

subsample from 1976:Q2-2001:Q2, coincides with a sharply higher expected value for the real

federal funds rate, while the periods of high asset valuation at the beginning (1955:Q3-1976:Q1)

and end (2001:Q3-2013:Q3) of our sample coincide with expectations of much lower real interest

rates. The differences across subsamples are strongly statistically significant according to the

68% posterior credible sets for the conditional expected values. It is worth emphasizing that,

because the MS-VAR parameters are freely estimated, the estimation could have found no

evidence of structural change in the expected real interest rate across these subsamples and/or

12The beginning of the sample is three years later than the sample used to estimate cay because the federal
funds rate data is only available starting in 1955:Q3.
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that changes occur in variables other than the expected real interest rate. That the estimated

regime shifts show up prominently in the conditional expected value of the funds rate five to

ten years ahead illustrates the extent to which low frequency shifts in the mean of cay coincide

with a persistent low or high interest rate environment, rather than transitory movements in

these rates.

Figure 4 shows that there is no clear pattern with inflation across the regimes. Thus the

breaks in the expected real interest rate five or ten years ahead appear mostly attributable to

breaks in the conditional expected value of the nominal interest rate, which the Federal Reserve

directly influences. Of course the Federal Reserve may also have considerable influence over

expected inflation. But movements in expected inflation do not line up as well with the regime

sequence for breaks in the mean of cay as do movements in the expected nominal interest rate:

in the first subperiod, corresponding to the first instance of the high asset valuation regime,

expected inflation was low and then high, while in the second subperiod, corresponding to the

low asset valuation regime, inflation was high and then low, where it remained throughout

the entire span of the third subperiod corresponding to the second instance of the high asset

valuation regime.

Figure 4 also illustrates that there is no evidence that the High Valuation regime is associated

with a more favorable outlook for growth. If anything, the growth rates of investment, R&D,

and GDP all move down when entering the High Valuation regime. Thus, the High Valuation

regime cannot be easily explained in light of a more favorable macroeconomic outlook.

Figure 5 gives a visual impression of the stark inverse relation between these persistent

changes in the real FFR and asset valuations. The figure plots the “wealth ratio”(the inverse

of cayMS without removing the Markov-switching constant), along with the ten-year-ahead

conditional expected value of the real federal funds rate implied by the baseline MS-VAR, on

separate scales. The red dashed line in the figure shows the most likely value of the unconditional

mean of the wealth ratio in each regime (given by the inverse of the regime-probability weighted

average of α1 and α2). There are clear regime shifts in wealth ratios that move from high to

low to high over the post-war sample, coinciding with a low-high-low expected value for the

long-run real federal funds rate. Regime shifts in the expected federal funds rate are large,

ranging from about 1% in the high asset valuation/low interest rate regimes, to 3% in the low

asset valuation/high interest rate regime.13

Figure 6 superimposes the five- and ten-year-ahead expected real FFR implied by the base-

line MS-VAR on the graph along with the actual (quarterly) real FFR, equal to the quarterly

13Lustig, Van Nieuwerburgh, and Verdelhan (2013) find that their measure of human wealth returns vary
substantially with interest rates, so that when it is aggregated with nonhuman wealth its ratio to consumption
varies with bond market rates. This is quite different than cayt (despite the fact that the motivation for the
latter begins with an expression for the log consumption-wealth ratio), which is dominated by fluctuations in
the stock market and forecastable varition in excess stock market returns.
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nominal FFR minus the one-step-ahead expected inflation rate implied by the VAR. The actual

real quarterly FFR is of interest because it is clearly under the direct control of the Central

Bank. For comparison, the dashed line computes the real FFR using survey expectations of

inflation, equal to the nominal FFR minus the median forecast of CPI inflation one quarter

ahead from the Survey of Professional Forecasters (this series starts in 1983).14 It is evident

from Figure 6 that there have been persistent shifts in the mean of the quarterly real funds

rate that caused it to fluctuate around very different levels across our regimes, with low values

in the early and late subperiods and high values in the middle subperiod. The low-high-low

pattern in the MS-VAR estimates of the five- and ten-year ahead conditional expected values

for the real funds rate are merely a reflection of these persistent mean shifts in the quarterly real

funds rate. What is interesting is that, even though the shocks associated with the persistently

low interest rate policies in the early and late subperiods were undoubtedly different, the two

subperiods are nonetheless characterized by similar outcomes for asset valuations and (as we

show later) risk premia.

3.2 Systematic Monetary Policy

When we refer to the role of monetary policy in this paper, we are referring to secular changes in

the stance of systematic monetary policy, not to a monetary policy “shock,”i.e. an innovation

in a Taylor-type policy rule (Taylor (1993)).This is relevant because such innovations do not

appear to have long-lasting effects on real interest rates, while in theory shifts in the stance of

monetary policy can have more long-lasting effects.15 Instead, we are interested in the Central

Bank’s systematic reactions to economic fluctuations, part of its deliberate policymaking, that

are more likely to be relevant for our lower frequency findings. Shifts in systematic monetary

policy could occur, for example as part of the Central Bank’judgement over how long and how

extensively to accommodate a persistent economic disturbance. These shifts are an important

discretionary tool of the monetary authority, especially when there is significant uncertainty or

disagreement about the economic outlook.

In order to gain further understanding of the role played by monetary policy in these interest

rate regimes, we compute the VAR-implied Taylor rule across the two regimes. Specifically, we

compute the long term response of the (nominal) FFR to a permanent change in inflation

and output growth conditional on being in a certain regime. Following Primiceri (2005) and

14The survey forecast is extremely volatile, thus we subtract off a four quarter moving average of the median
forecast of one-quarter-ahead inflation.
15Christiano, Eichenbaum, and Evans (2005) estimate that Taylor-rule innovations have short-run effects on

real interest rates. But shifts in the monetary policy stance, i.e., changes in the weights on inflation or output
growth or changes in the inflation or output target, have been found to have much more long-lasting and larger
effects on the real interest rate than an innovation in a Taylor-type rule in DSGE models (Rudebusch and
Swanson (2012); Kliem, Meyer-Gohde, and Moyen (2017)).
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Sims and Zha (2006), we use this approach to characterize the stance of monetary policy in

each regime, specifically the degree of activism in the systematic monetary policy responses to

macroeconomic objectives. The goal is to compare these stances across regimes.

Consider the MS-VAR equation describing the behavior of the FFR. Equation (8) describes

the reduced-form VAR, but here we focus on the implied structural-form. Zeroing in on the

terms relevant for the responses of the FFR to inflation and output growth (i.e., setting all

other terms to zero), the structural-form equation for the FFR is:

FFRt = ψ0,π,ξt
πt + ψ1,π,ξt

πt−1 + ψ2,π,ξt
πt−2

+ψ0,∆GDP,ξt
∆GDPt + ψ1,∆GDP,ξt

∆GDPt−1 + ψ2,∆GDP,ξt
∆GDPt−2

+ψ1,FFR,ξt
FFRt−1 + ψ2,FFR,ξt

FFRt−2 + ωFFR,t (9)

where the parameters ψ·,π,ξt and ψ·,∆GDP,ξt capture the contemporaneous and lagged response

of the FFR to inflation and output growth, ψ1,FFR,ξt
and ψ2,FFR,ξt

control the persistence in the

response of the FFR, and ωFFR,t is a structural monetary policy shock. The expression (9) can

be interpreted as a Taylor rule (Taylor (1993)) in which the FFR today depends on inflation,

real activity, and past values of the FFR. The coeffi cients in (9) are obtained by multiplying

the parameters obtained for the reduced-form MS-VAR (8) by an estimated rotation matrix

that orthogonalizes the innovations.16 The Appendix provides a detailed mapping between the

VAR coeffi cients and the structural Taylor rule presented here.

This framework may be used to study the long run responses of the FFR to increases in

inflation or output growth. Specifically, suppose that the inflation rate increases permanently

by 1%. Then the long term response of the FFR under regime ξt is given by:

LRπ,ξt =
[
1−

∑2
j=1 ψj,FFR,ξt

]−1∑2
j=0 ψj,π,ξt .

Similarly, if we are interested in the long run response of the FFR to a permanent 1% increase

in output growth, we have:

LR∆GDP,ξt =
[
1−

∑2
j=1 ψj,FFR,ξt

]−1∑2
j=0 ψj,∆GDP,ξt .

Table 4 reports the results for the long term responses of the FFR to inflation and output

growth. The table reports the median and 68% posterior credible sets from the posterior

distribution of the long term responses. The median values show that, no matter which regime,

a permanent increase in inflation or GDP growth increases the FFR in the long run. But

under the low valuation/high real interest rate regime, the long term response of the FFR to an

16We estimate our baseline VAR and use a Cholesky identification scheme to pin down the contemporaneous
effects of inflation on the FFR, under the assumption that the FFR can react contemporaneously to all other
variables in the VAR, while the other variables react with a lag to movements in the FFR. This identification
assumption is quite common in the structural VAR analysis. See the Appendix for further discussion.
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increase in inflation is substantially larger than under the high valuation/low real interest rate

regime. The opposite is true for the long term response of the FFR to output growth across

the regimes. In other words, under the low valuation regime, the Federal Reserve seems to

be more concerned with inflation stabilization, while under the high valuation regime it seems

more concerned with output stabilization. According to the 68% credible sets, these differences

across regimes are strongly statistically significant for inflation, but not for output growth.

3.3 Monetary Policy Narratives

The regime periods described above coincide with well worn narratives about monetary policy

that are related to the unique personalities, perspectives, and circumstances of the leaders who

chaired the Federal Reserve Board at the time. These narratives are labeled in quotation on

Figure 6.

The first manifestation of the high asset valuation regime is in the subperiod from 1952:Q1-

1976:Q1 and coincides with the run-up of inflation in the 1960s and 1970s, accommodative

monetary policy, and low real interest rates. Economists have provided several possible ex-

planations for why monetary policy failed to react aggressively to inflation during those years.

However, they generally tend to agree that this was a period of high uncertainty and possibly

passive monetary policy (Clarida, Gali, and Gertler (2000); Lubik and Schorfheide (2004); Sims

and Zha (2006); Bianchi (2013)). We refer to this as the “Burns Accommodation,”after Arthur

Burns who chaired the Federal Reserve Board over much of this subperiod.

The occurrence of the low asset valuation regime, in the middle subperiod from 1976:Q2-

2001:Q2, is associated with the so-called Great Inflation. The beginning of this subperiod

precedes Volcker’s appointment as Chairman of the Federal Reserve in August 1979 and the

disinflation that followed by three years. However, Sims and Zha (2006) estimate a structural

MS-VAR and find evidence of a change in the conduct of monetary policy from less to more

active on inflation toward the end of 1977, in line with the break date estimated here. Real

interest rates increased significantly during the “Volcker disinflation”and remained high for a

prolonged period of time, well after inflation came down. For example, by the third quarter

of 1984 inflation had declined to 3.4% from where it previously stood in double digits, yet the

nominal funds rate remained 11.4%. The persistently high values of the real federal funds rate

in the late 1970s and into 1980s were arguably engineered to build credibility for lower infla-

tion, while the opposite goal—building credibility for higher inflation (or faster growth)—might

be labeled an objective of the post-millennial period especially after the Great Recession. The

assumption that the Central Bank can (and in some cases should) attempt to influence real

rates for extended periods underlies the rationale and primary objective of forward guidance,

which is to re-anchor expectations over the extended future around a new future path for infla-
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tion and therefore real rates (e.g., Eggertsson and Woodford (2003)). There is some evidence

that expectations of inflation may in fact be slow to anchor around a new level. Rossi and

Sekhposyan (2016) find that Fed Greenbook and other professional survey forecasts of inflation

were persistently biased downward in the 1970s and persistently biased upward in the 1980s

and 1990s.17 This is consistent with the narrative that Volcker, and later Greenspan, may have

felt compelled to keep real rates high for an extended period because expectations of long-run

inflation were slow to come down even after inflation itself did.

The second occurrence of the high asset valuation regime in the subperiod 2001:Q3-2013:Q3

starts with the end of the information technology (IT) boom and the beginning of the Federal

Reserve’s accommodative response to the recession that followed. But the steady downward

march in real policy rates that then took hold began three years earlier with the so-called

“Greenspan Put,”a perceived attempt of Chairman Greenspan to prop up securities markets

after the collapse of Long Term Capital Management in 1998 by lowering interest rates and

(allegedly) resulting in a perception of put protection on asset prices. Indeed, some have

argued that monetary policy underwent a regime shift after the end of the IT boom (Campbell,

Pflueger, and Viceira (2014)) and/or that interest rates were held “too low for too long”(Taylor

(2007)) in response to the LTCM collapse, the IT bust, and the aftermath of 9/11. Asset

values quickly recovered in 2002, and after a brief but dramatic decline in the financial crisis of

2007-2009, resumed their upward march in 2009.

The period of high equity valuations persists today with rates on or near the zero lower bound

(ZLB), coinciding with the explicit forward guidance “low-for-long”policies under Chairman

Bernanke that promised in 2011 to keep interest rates at ultra low levels for an extended period

of time, possibly longer than that warranted by a 2% inflation objective.

It is worth noting that the three distinct cay regimes we estimate are remarkably close to the

three distinct monetary policy regimes estimated by Campbell, Pflueger, and Viceira (2014),

who use a completely different approach. Instead of identifying the break dates by using a

cointegration relation in cay, they estimate break dates in the parameters of an estimated

Taylor rule. Their first subperiod covers the period 1960:Q2-1977:Q1, the middle period is

1977:Q2-2000:Q4, and the last subperiod 2001:Q1 to the end of their sample 2011:Q4. They

find that these regimes line up closely with shifts in estimated bond market betas. Although

our focus is on regime shifts in an asset valuation ratio, cay, taken together, the results are

suggestive of an important role for the Federal Reserve in driving persistent movements in

equity and interest rate behavior.

17Figure 6 shows that the VAR estimate of the RIR and the estimate based on one-quarter-ahead concensus
inflation forecast from the SPF are fairly similar, while Rossi’s evidence of bias is for longer periods of time, e.g.,
ten years. These two findings can be reconciled by noting that small but persistent deviations from rational
forecasts cumulate over time.
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3.4 What About the Natural Rate?

Particularly since the financial crisis of 2007-2009, much attention has been given to the so-called

natural rate of interest, a model-specific theoretical construct that gives a value for the short

rate that would be consistent with a frictionless environment and full employment in the absence

of monetary policy. One idea is that the immediate aftermath of the crisis was characterized by

low and negative values for the natural rate that were partly the outcome of adverse liquidity

shocks in short-term credit markets that resulted in an increase in the convenience yield on safe

assets (e.g., Kurlat (2013); Bigio (2015); Del Negro, Eggertsson, Ferrero, and Kiyotaki (2017)).

Other factors that could lead to low or negative values for the natural rate economic models

are adverse shocks to productivity and/or uncertainty. These are all plausible characteristics

of the financial crisis and its immediate aftermath. We argue here, however, that it is more

challenging to explain our findings on asset valuations and policy rates over longer periods of

time as the outcome of fluctuations in the natural rate alone, or (equivalently) as the result

of a policy rate that perfectly tracks the natural rate over time. We make this argument for

several reasons.

First, although macroeconomic theories on the endogenous determination of the natural

rate don’t typically derive implications for asset prices or risk premia, it is doubtful that the

forces that drive the natural rate to be low or negative in these models, i.e., adverse liquidity,

productivity, or uncertainty shocks, would be a natural impetus for high asset valuations and

low risk premia, as we find. To the contrary, in asset pricing models without an explicit

monetary policy, these shocks are a source of high risk premia and low or at best modest asset

valuations.

Second, the adverse shocks that may have accompanied the financial crisis and given rise

to low natural rates have long since dissipated, yet the real federal funds rate has remained

strongly situated in negative territory well after this time, suggesting that the natural rate may

have since risen above the policy rate.18 But such a deviation between the natural rate and the

policy rate, were it to exist, would be entirely consistent with the U.S. Central Bank’s explicit

policy of forward guidance in the post-crisis period, which is a commitment to hold the short

rate at or near zero well into the future, beyond the time when it would ordinarily be appropriate

according to the parameters of previously estimated systematic policy rules. This interpretation

is consistent with our finding that the federal funds rate exhibits more responsiveness to output

and less to inflation in the high asset valuation subsamples that include the post-crisis period

than in the low valuation subperiod.

Third, estimates of the natural rate vary depending on the model, but often imply values for

the natural rate that deviate persistently from the observed real policy rate, even over longer

18Rajan (2013) questions whether the natural rate is strongly and persistently negative in the post-crisis
period.
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horizons. We obtained recent estimates of the natural rate from Del Negro, Giannone, Giannoni,

and Tambalotti (2017) (DGGT) computed from a large-scale, quantitative DSGE model and

find that, on average, the quarterly real funds rate was 24 basis points above the quarterly

natural rate in the low valuation subperiod, while it was 36 basis points below in the high

valuation subperiods. This suggests that monetary policy was more hawkish in low valuation

than in high valuation subperiods. Figure 7 further plots the actual quarterly real funds rate

against the DGGT estimate of the 10-year-ahead (forward) natural rate from the DSGE model,

and the DGGT model-free estimate of the steady state natural rate from a VAR. These series

are both slower-moving or smoothed components of the highly volatile quarterly natural rate

estimates. We would expect that over the extended years of our subperiods, deviations between

these smoothed series and the quarterly funds rate would average to close to zero. But this is

not what we find. The figure shows that the funds rate was typically well above the natural

rate over most of the low valuation subperiod, but well below during the two high valuation

subperiods, and almost entirely so in the post-millennial period.

3.5 Asset Market Regimes and Macro Fundamentals

Apart from monetary policy, one might reasonably attribute high asset valuations to more

favorable prospects for economic growth and/or lower uncertainty about that growth. Returning

to Figure 4, however, we find no evidence that the low frequency shifts to high asset valuation

regimes are associated with higher expected economic growth, or vice versa; indeed the opposite

is true. The high asset valuation subperiods at the beginning and end of our sample are

associated with lower expected GDP growth five and ten years ahead than is the low asset

valuation subperiod in the middle of the sample. High asset valuation regimes are also marked

by significantly lower expected R&D growth, and weaker investment growth. Figure 8 shows

the analogous results for the secondary MS-VAR, which includes the change in the labor share

and stock market dividend growth, in place of investment and R&D growth. The latter figure

shows that the high asset valuation subperiods are associated with an expectation of persistent

declines in the labor share, whereas the low asset valuation subperiod is characterized by the

expectation of a stable labor share. Thus, the boom periods for asset values are associated

with broad-based economic weakness and deteriorating payouts to workers. In an interesting

exception to this pattern, there is some evidence that fundamentals for shareholders improve

in the form of faster dividend growth, though the credible sets for this result are wide.

In theory, higher asset valuations could be the result of lower expected economic uncertainty

(e.g., Lettau, Ludvigson, and Wachter (2008)). Figure 9 reports the median and 68% credible

sets of the conditional standard of each variable in the MS-VAR plus RIR. The conditional

standard deviation represents a statistical measure of uncertainty. The result in Figure 9 shows
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that macroeconomic uncertainty is higher rather than lower in subperiods of the high asset

valuation regime as compared to the subperiod of the low asset valuation regime. This is true

for uncertainty about GDP growth, inflation, investment growth, and R&D growth. According

to this evidence, infrequent shifts to high mean wealth ratios cannot be explained by lower

macroeconomic uncertainty. Note that the opposite finding holds for the nominal and real

federal funds rate volatility, which is higher in the low asset valuation/high interest rate middle

subperiod. The finding that macro and fed funds rate uncertainty vary inversely across the

regimes is consistent with a more active role of the Federal Reserve in stabilizing inflation in the

middle subperiod. As the Federal Reserve is expected to respond more aggressively to counter

higher inflation and/or a lower output gap, macroeconomic volatility is reduced, whereas the

volatility of the FFR can increase. Still, this observation provides no support for the hypothesis

that the high asset valuation regimes were the product of low economic uncertainty.

Table 5 reports, for the baseline MS-VAR, the means and standard deviations of the real

interest rate, GDP growth, R&D growth, and investment growth, conditional on being in a par-

ticular regime i. Table 6 reports the same output for the secondary MS-VAR that investigates

the change in the labor share and dividend growth. For each draw from the posterior distrib-

ution of the MS-VAR parameters, we compute means and standard deviations conditional on

being in regime i (see the Appendix for the precise calculation). This procedure gives an entire

posterior distribution that we then summarize with the median and 68% posterior credible sets,

reported in the Tables. We refer to these as conditional steady state values for the moments.

The two regimes present a clear difference for the means and standard deviations of many

variables. The high asset valuation regime is characterized by sharply lower mean real policy

rates and lower uncertainty about those rates, while the opposite is true for the low asset val-

uation regime. By contrast, Tables 5 and 6 together show that the high asset valuation regime

is characterized by lower mean economic growth, lower mean investment growth, lower mean

R&D growth, declines in the labor share, faster dividend growth, and higher uncertainty about

all of these variables. In contrast to the high valuation subperiods, the low valuation subperiod

is marked by increases in the labor share. Differences in the volatility measures across regimes

tend to have wide credible sets, however, indicating a large degree of uncertainty over shifts in

volatility. But there is no evidence that volatility of fundamentals was significantly lower in the

high asset valuation subperiods, as one might expect. Because the conditional steady states do

not depend on the estimated transition matrix, they show that the main conclusions are robust

to estimation error on the transition matrix.

We close this section by noting that some classic theories of rational bubbles suggest that

higher policy rates can lead to higher asset values (e.g., Galí (2014)). The evidence here

is inconsistent with this story, since high wealth ratios are associated with low policy rates

rather than high. An alternative explanation, consistent with the evidence here, is that any
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change in the expected short-term real interest rate will always have some effect on asset values

because it changes the “fundamental”value of the asset. If prices are sticky and the Federal

Reserve reduces the nominal interest rate, changes in monetary policy may reduce the rate at

which investor’s discount future payouts by reducing the real “risk-free”rate component of the

discount rate, thereby increasing asset values. This effect would also be present in bubbles of

the resale-option variant, since unlike the classic rational bubble, the resale-option bubble is

proportional to fundamental value (e.g., Harrison and Kreps (1978); Scheinkman and Xiong

(2003)). Regardless of whether a bubble of this form is present or not, asset valuations would

be further increased if the risk premium component of the discount rate falls simultaneously

with the risk-free rate because investors’willingness to tolerate risk is for some reason inversely

related to the long-run expected value of the Federal Reserve’s core policy instrument, consistent

with a “reaching for yield”channel. We present tests of this hypothesis next.

4 Reaching for Yield?

We have found that while persistently low policy rates are associated with high asset valuations,

this is not because they signal strong economic growth, favorable changes in inflation, or low

uncertainty. This suggests that persistent changes in monetary policy affect asset valuations

not because they have long-lasting effects on macroeconomic fundamentals, but because they

change the rate at which investor’s discount future payouts (in a manner that is independent of

uncertainty about the aggregate economy). This could occur simply because the Central Bank

influences the riskless real interest rate, a component of the discount rate. But if a switch from

a high to low interest rate regime prompts investors to take on more risk, to “reach for yield,”

then the risk premium component of the discount rate would also fall, further stimulating

risky asset values relative to economic fundamentals. The reverse would occur in a shift from

persistently low expected rates to high. We refer to this general idea as the reaching for yield

hypothesis, or RFY for brevity.19

Note that a change in discount rates driven by the risk-free rate alone influences all assets

in the same way, regardless of their riskiness. By contrast, RFY implies that investors shift

portfolio allocations toward riskier/higher return assets in low interest rate environments. Thus

a change in discount rates accompanied by RFY will have effects that differ across assets, de-

pending on the riskiness of the asset. As interest rates move from high to low, RFY implies a

greater increase in the market value, relative to fundamentals, of higher return/higher Sharpe

ratio assets than it does for lower return/lower Sharpe ratio assets. Equivalently, risk premia

19In what follows we use the terms “risk”premia and “return”premia interchangeably to refer to the expected
return on an asset in excess of the risk-free rate. We remain agnostic as to whether the observed premia are
attributable to genuine covariance with systematic risk factors or mispricing, or both.
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should fall more for riskier assets. We investigate this possibility here, using data on individual

stock market portfolios that exhibit large cross-sectional variation in return premia. An exten-

sion of the approach is also used to study the behavior of the risk premium on the aggregate

stock market, as explained below.

To motivate this analysis, we carry out a log-linearization that follows Vuolteenaho (2000)

and constructs earnings from book-market and return data using clean surplus accounting. Let

Bt denote book value and Mt denote market value, and let the logarithm of the book-market

ratio log (Bt/Mt) be denoted θt. Vuolteenaho (2000) shows that θt of an asset or portfolio can

be decomposed as:

θt =
∑∞

j=0 ρ
jEtrt+1+j +

∑∞
j=0 ρ

jEtft+1+j −
∑∞

j=0 ρ
jEte∗t+1+j (10)

where ρ < 1 is a parameter, and rt+1+j, ft+1+j, and e∗t+1+j stand for log excess return, log risk-

free rate, and log earnings, respectively.20 In other words, the logarithm of the book-market

ratio θt depends on the present discounted value (PDV) of expected excess returns (risk premia),

expected risk-free rates, and expected earnings.

Given two portfolios x and y, the spread in their book-market ratios, θx,t− θy,t, is given by:

θx,t − θy,t︸ ︷︷ ︸
Spread in BM ratios

=
∑∞

j=0 ρ
jEt (rx,t+1+j − ry,t+1+j)︸ ︷︷ ︸

PDV of spread in risk premia

−
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
PDV of spread in expected earnings

Note that the risk-free rate has no affect on this spread, since all portfolios are affected in

the same way by the risk-free rate. Instead only the risk premium differential and expected

earnings differential affect the book-market spread. Since RFY pertains only to the return

premium differential, we adjust the book-market spread for the spread in expected earnings to

isolate the return premium differential:

θx,t − θy,t +
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
Spread in BM ratios adjusted for earnings ≡θ̃x,t−θ̃y,t

=
∑∞

j=0 ρ
jEt (rx,t+1+j − ry,t+1+j)︸ ︷︷ ︸

PDV of the spread in risk premia

(11)

The above expression shows that the spread in book-market ratios adjusted for expected future

earnings is equal to the PDV of the spread in expected excess returns, or risk premia.

Denote the adjusted (for expected earnings) book-market ratio for portfolio x in regime i

with a tilde as

θ̃
i

x,t ≡ θix,t +
∑∞

j=0 ρ
jEte∗ix,t+1+j.

Let x denote a high return premia portfolio while y denotes a low return premia portfolio.

Reaching for yield implies that, in a shift from a high (i = 1) to low (i = 2) interest rate

20Specifically, e∗ is the log of 1 plus the earnings-book ratio, adjusted for approximation error. See Vuolteenaho
(2000).
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regime, the adjusted book-market ratio of x should fall more than y, implying
(
θ̃

1

x,t − θ̃
2

x,t

)
−(

θ̃
1

y,t − θ̃
2

y,t

)
> 0, or that the difference-in-difference of adjusted book-market ratios should be

positive across regimes: (
θ̃

1

x,t − θ̃
1

y,t

)
−
(
θ̃

2

x,t − θ̃
2

y,t

)
> 0. (12)

Thus RFY implies that the spread in the adjusted book-market ratios between the high re-

turn/high risk portfolio and the low return/low risk portfolio should be greater in regime 1

than in regime 2. Equivalently, in a switch from a high to low interest rate regime, the PDV of

risk premia on the high return premium portfolio should fall more than that of the low return

premium portfolio.

4.1 Risk Premia Spreads on Equity Portfolios

To assess empirically whether the spread in adjusted book-market ratios between assets with

different risk/return profiles is statistically different across the two regimes, we again estimate

a MS-VAR, now using stock market data rather than macro data. Just as in the previous

section, we impose the formerly estimated regime sequence for cay on the portfolio MS-VAR,

but the parameters characterizing the different regimes, as well as the transition matrix, are

freely estimated. The reasoning for doing so is the same as given above for the macro MS-VAR:

we are interested in knowing whether the previously documented regime sequence for cay is

characterized by evidence of RFY. This requires that we impose the previously estimated regime

sequence, but since the MS-VAR parameters are freely estimated, the empirical procedure is

free to find no evidence of structural change across these subsamples if indeed there is none.

MS-VARs can be used to estimate the difference-in-difference (12) for any two stock portfolios

with different average return premia, or it can be used to directly compute the PDV of risk

premia
∑∞

j=0 ρ
jEtrt+1+j for any one asset such the aggregate stock market portfolio. We do

both exercises here.

We first present results on how the difference-in-difference has behaved over time and across

our regimes using data on individual stock market portfolios that exhibit large cross-sectional

variation in return premia. Specifically, we use the equity return data available from Kenneth

French’s Dartmouth website on portfolios formed from double-sorting all stocks in the AMEX,

NYSE, NASDAQ into categories on the basis of five size categories and five BM categories,

and alternatively single-sorting into 10 momentum categories based on recent past return per-

formance.21 We then use CRSP/Compustat to construct the BM ratios of the corresponding

portfolios. It is well known that high BM portfolios earn much higher average returns than low

BM portfolios, exhibiting the so-called value-spread, especially in the small size quintiles. Along

the momentum dimension, recent past winner stocks earn much higher returns than recent past

21http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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losers. These statistical facts are evident from Table 7, which reports sample statistics for

returns on two value spread portfolios—those long in the extreme value portfolio (highest BM

ratio) and short in the extreme growth portfolio (lowest BM ratio) while being in the smallest

and second smallest size quintile. The same is reported for a momentum spread portfolio—the

portfolio that is long in the extreme winner portfolio (M10) and short in the extreme loser port-

folio (M1). The annualized Sharpe ratio for the smallest value spread portfolio is 0.62 with an

annualized mean return of 10%. Similarly, the momentum spread portfolio has an annualized

Sharpe ratio of 0.64 and annualized mean return of over 15%. Both of these strategies have

much higher annualized Sharpe ratios and average return premia than the CRSP value-weighted

stock market return in excess of the three-month Treasury bill return, where the corresponding

numbers are 0.33 and 0.59, respectively.

We estimate a MS-VAR for the former three equity spread-portfolios along with other data

that are predictor variables for the returns on these portfolios, chosen on the basis of an Akaike

Information Criterion (AIC) selection procedure. The variables included in the MS-VAR are:

(a) the momentum return spread, i.e., the difference between the excess return of the extreme

winner (M10) portfolio and the excess return of the extreme loser (M1) portfolio; (b) the value

return spread (S1), i.e., the difference between the excess return of the small (size 1) high

BM portfolio and the excess return of the small (size 1) low BM portfolio; (c) the value return

spread (S2), i.e., the difference between the excess return of the size 2 high BM portfolio and the

excess return of the small size 2 low BM portfolio; (d) the momentum BM spread: the difference

between the logarithm of the BM ratio of the M10 and M1 portfolios; (e) the value BM spread

(S1): The difference between the logarithm of the BM ratio of the small (size quintile 1) high

book-market portfolio and the logarithm of the BM ratio of the small (size 1) low book-market

portfolio; (f) the value BM spread (S2): the difference between the logarithm of the BM ratio

of the size quintile 2 high book-market portfolio and the logarithm of the BM ratio of the size

2 low book-market portfolio; (g) the real FFR (FFR minus inflation); (h) the excess return on

the small value portfolio.22 The sample for this estimation is 1964:Q1-2013:Q4.23

Our objective is exploit the heterogeneity across these portfolios to isolate the effects of the

22The BM spreads are included because they represent the natural valuation ratios for the portfolio return
spreads that we are trying to predict (Cohen, Polk, and Vuolteenaho (2003)). The real FFR and the excess
return on the small value portfolio are selected based on the Akaike Information Criterion (AIC) among a
set of possible additional regressors. The five Fama/French factors (Fama and French (2015)) are considered
as possible additional regressors, but not selected based on the AIC. We note that our value spread returns
behave similarly to the HML factor of Fama and Fench. The Online Appendix provides additional details on
the variable selection procedure.
The data on BM ratios for individual portfolios are constructed from CRSP and Compustat exactly as the

Fama-French portfolio returns are constructed. We mimic the selection and breakpoints of this construction
and compute the book-market ratio of each portfolio.
23This is shorter than the one previously used for cayMS and the macro VAR because reliable data for

book-market ratios are not available prior to 1964:Q1.
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previously estimated regime changes in the mean of cay on the adjusted BM ratios of different

portfolios. To do so, we begin by computing the regime average values of the adjusted BM

spreads between the high and low return premia portfolios, θ̃
i

xy ≡ θ̃
i

x − θ̃
i

y, for each regime i.

The regime average value of θ̃
i

xy is defined to be the expected value of θ̃xy,t, conditional on being

in regime i today and on the variables of the VAR being equal to their conditional steady state

mean values for regime i. (The Appendix gives formal expressions for the regime average, and

explains how they are computed from the MS-VAR parameters.) For each draw of the VAR

parameters from the posterior distribution of these parameters, we compute the median and

68% credible sets for θ̃
i

xy, which are reported in Table 8. The high (x) and low (y) return premia

portfolios along the BM dimension are always the extreme value (highest BM) and the extreme

growth portfolio (lowest BM), respectively, in each size category. Likewise, the high and low

return premia portfolios along the momentum dimension are always the extreme winner (M10)

and extreme loser portfolio (M1). The third row reports the analogous values for the regime

average of the difference-in-difference of adjusted book-market ratios between the high and low

return premia portfolios across the two regimes, i.e., the difference
(
θ̃

1

x,t − θ̃
1

y,t

)
−
(
θ̃

2

x,t − θ̃
2

y,t

)
, as

implied by the VAR estimates. The last row reports the posterior probability that risk premia

decline in low interest rate regime, computed as the percentage of draws from the posterior

distribution of regime averages for which risk premia are lower in regime 2 than in regime 1.

To interpret the table, keep in mind that regime 1 is the low asset valuation/high interest rate

regime, while regime 2 is the high asset valuation/low interest rate regime.

Table 8 shows that the adjusted BM spreads θ̃
i

xy between the high and low return premia

portfolios are positive in both regime 1 and regime 2. This is not surprising because portfolios

that have higher risk premia should have lower market values relative to their book values,

holding fixed expected earnings. As equation (11) shows, this simply indicates that the osten-

sively riskier portfolio has a higher PDV return premium on average, regardless of the regime.

Importantly, however, the table shows that these spreads are greater in regime 1 (low asset valu-

ations/high interest rates) than in regime 2 (high asset valuations/low interest rates). Thus the

difference-in-difference across regimes is always positive. This implies that, in a shift from high

to low interest rate regime, the adjusted book-market ratios of high return/high risk portfolios

fall more than do those of low return/low risk portfolios. Put differently, the return premia

of evidently riskier/higher return assets decline more in environments with persistently high

aggregate wealth ratios and low interest rates than do less risky/lower return assets.

The third row of Table 8 also reports the 68% posterior credible intervals in parentheses for

the difference-in-difference. For the BM spreads, although the median value for the diff-in-diff

is always positive, the 68% posterior credible intervals include negative values. This is not true

of the momentum spread W-L or the excess market return (discussed below) where the credible
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sets are narrow and include only positive values. However, because the distribution of the diff-

in-diff displays substantial negative skewness, the posterior probability assigned to a decline in

premia during low interest rate regimes is nonetheless quite high in all cases: 88%, 64%, and

70%, for the Momentum spread, the S1 BM spread, and the S2 BM spread, respectively.

These results are supportive of a channel that implies an increased appetite for risk-taking

in low interest rate environments. The case of momentum in particular deserves emphasis. The

results indicate that the spread in adjusted BM spread between the winner and loser portfolios

is nearly one and a half times as high in the high interest rate regime than in the low interest rate

regime, suggesting quantitatively large shifts toward greater risk-taking in the low interest rate

subperiods. Momentum investing is known to be among the most volatile equity investment

strategies studied, one that is subject to infrequent but extreme crashes in times of crisis or

panic (Daniel and Moskowitz (2013)).

We also estimate the PDV of risk premia as it evolves over the sample, rather than an

average value conditional on a regime. These values are estimated as the time t VAR fore-

casts, i.e. conditional expected values, of the PDV on the right-hand-side of (11).24 Given the

posterior distribution of the VAR parameters, these forecasts have their own posterior distri-

bution. Figure 10 reports the median values of these forecasts as solid (blue) lines, while the

regime averages are indicated by the dashed (red) lines. Although the risk premia are volatile,

it is clear that they fluctuate around a lower value in the high asset valuation/low interest

rate regime than they do in the low asset valuation/high interest rate regime. The portfolio

strategies estimated risk premia reach lows or near-lows in the post-millennial period, during

the second occurrence of the high asset valuation/low interest rate regime, after shooting up

briefly in the aftermath of the financial crisis of 2007-2008. Estimated risk premia then return

to low levels in the post-crisis ZLB period.

4.2 The Risk Premium on the Aggregate Stock Market

We follow a similar procedure to investigate how the risk premium on the overall stock market

has evolved over the sample. To do so, we form an estimate of
∑∞

j=0 ρ
jEtrt+1+j for the aggregate

stock market from a MS-VAR specification that includes the following variables: (a) the market

excess return, computed as the difference in the CRSP value-weighted stock market return

(including dividend redistributions) and the three-month Treasury bill rate; (b) the inverse

valuation ratio based on cayMS; (c) the small stock value spread (log-difference in the book

to market ratio of the S1 value and S1 growth portfolio); (d) the SMB factor from Fama

and French; (e) the HML factor from Fama and French. The inverse valuation ratio is included

24The expectation Et (·) ≡ E (·|It), computed as above where It includes knowledge of the regime in place at
time t, Zt, and the VAR parameters for each regime.
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because we have already shown that cayMS strongly predicts future stock market returns.25 The

small stock value spread and the SMB and HML Fama-French factors are included because they

improve the AIC criterion.26

The estimated evolution of the PDV of the market risk premium is displayed in the first

panel of Figure 10. It is substantially lower in the high asset valuation/low interest rate regime

than in the low asset valuation/high interest rate regime, and reaches lows or near-lows in the

post-2000 period and the post-crisis period with interest rates in the ZLB range. The premium

exhibits a sharp increase during the years corresponding to the financial crisis, but it declines

again subsequent to the crisis.

Returning to Table 8, the first column reports the regime average value for the PDV of the

market premium across the two regimes (first and second row,) the distribution of the difference

between the premia across regimes (third row,) and the probability that the PDV of the market

risk premium falls in the low interest rate regime (last row.) The PDV of the expected market

excess return is estimated to be positive in both regimes, but is substantially larger under the

low valuation/high interest rate regime (around 1.5 times larger). This difference is statistically

significant, as suggested by the credible sets reported in the third row. Accordingly, the last

row shows that the posterior probability that premia decline when moving to the high valuation

regime is large (85%.)

In summary, the results in this section suggest that low interest rate regimes are associated

with low risk premia in equity markets, supportive of reaching for yield theories. The findings

underscore the challenges for theories that explain persistently low interest rate environments

with shocks that shift in the composition of wealth toward more risk averse or more pessimistic

investors (e.g., Barro and Mollerus (2014); Caballero and Farhi (2014); Hall (2016)), which

under standard calibrations imply that low interest rates coincide with higher rather than

lower risk premia, contrary to what we find. The findings above suggest that, not only are risk

premia lower conditional on being in a low interest rate regime, but the estimated historical

variation in these premia reach lows or near-lows in the post-millennial period and again at the

onset of the ZLB period.

25Recall that the inverse valuation ratio adds back the Markov-switching constant, which provides information
on the low frequency swings in the risk premium. Accounting for these very low frequency swings was less
important for the previous short-horizon forecasting exercise. But it is potentially valuable for estimating the
infinite PDV of expected future return premia when used in a predictive VAR that takes into account the
probability of eventually switching out of a regime.
26Campbell and Vuolteenaho (2004) first reported the forecasting power of the small stock value spread for

the market return. The specification of this VAR differs from that used above to estimate adjusted BM spreads
across portfolios, for two reasons. First, in practice the two sets of variables call for different predictors. Second,
specifying a single VAR for both the spreads and the market premium would require including a large number
of variables with a consequent significant loss in terms of precision of the estimates.
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5 Other Valuation Ratios

This section briefly comments on the behavior of other stock market valuation ratios over our

sample. Many such ratios, e.g., price-dividend ratios for the aggregate stock market, or price-

payout ratios, appear to differ from cay in that they exhibit trends. For example, price-dividend

ratios drift up over the post-war period. The methods employed here are not well suited to

explaining non-stationary trends, although we view this phenomenon as an interesting area

for future research. For the purposes of this paper, we could address this crudely by simply

removing a trend before analyzing the data. Instead of simply removing the lowest frequency

components, however, we use a band-pass filter to remove both the highest and lowest frequency

components of each series, examining frequencies that correspond to cycles between 10 and 50

years, or “medium-term”components. These frequencies roughly coincide with the persistence

of our previously estimated regimes for cayMS and so form a natural basis for comparison with

those results.

Figure 11 plots the medium-term components of five different stock market valuation ratios,

overlaying the cayMS regime subperiods on the figure, with the low cay-valuation subperiod

indicated in gray shading and the high valuation subperiods at the beginning and end of our

sample indicated in white shading. The five valuation ratios plotted are a CRSP value-weighted

stock price-dividend ratio on a portfolio that does not reinvest dividends, the Flow of Funds

(FOF) price-payout ratio, the FOF price-dividend ratio, Shiller’s price-earnings ratio27, and

the value-weighted price-dividend ratio for all firms in NYSE, NASDAQ, and AMEX from a

COMPUSTAT/CRSP merge. The figure shows that the medium-term components of these five

other valuation ratios exhibit similar high-low-high valuation patterns over the same subperiods

that characterize the high-low-high cayMS
t valuation regimes. Moreover, the average values of

these series in each regime differ noticeably, especially for the price-dividend and price-payout

ratios. The results presented here are consistent with Bianchi, Ilut, and Schneider (2017), who

also find evidence of low frequency fluctuations in the price-dividend ratio in an estimated

business cycle model with endogenous financial asset supply and ambiguity-averse investors.

6 Conclusion

This paper documents a novel set of statistical facts on how asset values, macroeconomic

aggregates, short-term interest rates, and risk premia have comoved over longer periods of time

in post-war U.S. data. We present evidence of infrequent shifts, or regimes, in the mean of

the consumption-wealth variable cayt, an asset market valuation ratio driven by fluctuations

in stock market wealth relative to economic fundamentals. Evidence from a Markov-Switching

27http://www.multpl.com/shiller-pe/
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VAR shows that these low frequency swings in post-war asset valuation are strongly associated

with low frequency mean shifts in the Federal Reserve’s primary policy interest rate, with low

VAR forecasts for the real federal funds rate associated with high asset valuations, and vice

versa. High asset valuation regimes are also characterized by evidence of less monetary policy

activism toward inflation and greater activism toward output growth.

At the same time, we find no evidence that the estimated structural shifts to high asset

valuation regimes and persistently low policy rates are associated with rational optimism about

the future in the form of expectations for stronger long-run economic growth or lower uncer-

tainty about that growth. Indeed, high valuation regimes, including the post-millennial period,

are marked by economic weakness in GDP growth, investment growth, and R&D growth, along

with declines in the labor compensation share of GDP. The one exception to this evidence of

declining expected prosperity in high valuation regimes is the stock market itself, where there

is some evidence that the fundamentals for shareholders improve.

Finally, we present evidence that the high valuation/low interest rate regimes are marked

by significantly lower equity market risk premia, consistent with the hypothesis that investors’

willingness to tolerate risk in equity markets rises when the long-run expected value of the real

federal funds rate is low. The magnitude of this effect is especially pronounced for some of the

most volatile equity investment strategies subject to infrequent but extreme crashes, such as

those based on leveraged momentum investing.
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Tables and Figures

Parameter Estimates: cayMS

Mode Mean 5% 95%
α1 0.9186 0.9153 0.8853 0.9460
α2 0.8808 0.8767 0.8467 0.9077

α1 − α2 0.0378 0.0385 0.0358 0.0413
βa 0.2606 0.2679 0.2505 0.2852
βy 0.6156 0.6071 0.5873 0.6270
σ 0.0080 0.0087 0.0080 0.0094
Hα

11 0.9900 0.9901 0.9705 0.9995
Hα

22 0.9925 0.9923 0.9771 0.9996
Parameter Estimates: cayFC

α γa γy
0.8706
(0.0345)

0.1246
(0.0150)

0.7815
(0.0168)

Table 1: Parameter estimates. The top panel reports posterior modes, means, and 90% error
bands of the parameters of the Markov-switching cointegrating relation. Flat priors are used
on all parameters of the model. The lower panel reports parameter estimates for the fixed
coeffi cient cointegrating relation. Standard errors are in parantheses. The sample is quarterly
and spans the period 1952:Q1 to 2013:Q3.



Long Horizon Forecasting Regressions: Stock Returns

h-period regression:
∑h
i=1(rt+i − rf,t+i) = k + γ zt + εt,t+h

Horizon h (in quarters)

zt = 1 4 8 12 16

Full sample

cayFC 0.60 2.26 4.16 5.68 7.42
(2.00) (2.21) (2.47) (2.73) (3.71)
[0.01] [0.05] [0.10] [0.14] [0.20]

cayMSfilt 1.54 6.38 11.60 13.56 13.61
(4.07) (5.22) (6.53) (6.03) (6.18)
[0.04] [0.18] [0.35] [0.37] [0.34]

cayMS 1.49 6.83 11.88 13.79 13.78
(3.86) (6.08) (6.63) (6.11) (6.25)
[0.04] [0.21] [0.36] [0.38] [0.34]

Sub-sample 1981Q1-2013Q3, recursive

cayFC 0.17 1.00 2.48 3.96 6.39
(0.48) (0.83) (1.04) (1.18) (1.82)
[-0.01] [0.00] [0.03] [0.06] [0.11]

cayFCrec 0.30 1.67 4.04 6.16 8.10
(0.97) (1.65) (2.29) (2.79) (4.17)
[ 0.00] [0.04] [0.16] [0.27] [0.41]

cayMSrec 0.41 2.13 6.01 8.65 10.33
(1.10) (1.92) (2.73) (3.51) (5.17)
[ 0.00] [0.04] [0.21] [0.31] [0.37]

Table 2: This tables reports the results from regressions of of h-period-ahead CRSP-VW
returns in excess of a 3-month Treasury-bill rate, rf,t, on the variable listed in the first column.
cayFC is the fixed-coeffi cient consumption-wealth ratio; cayMSfilt denotes the Markov-switching
version of cay using filtered probabilities and cayMS denotes the benchmark Markov-switching
cay using smoothed probabilities. The bottom panel reports results from regressions using
recursively estimated versions of cay, in which all parameters are estimated using data up
to time t rather than using the full sample. The models are first estimated on data from
1952Q1-1970Q1. We then recursively add observations and reestimate the cay variables over
expanding sub-samples using data only up to the end of that subsample, continuing in this
way until the end of the sample, 2013:Q3. Results are reported for the subsample since 1980.
cayFCrec denotes the fixed coeffi cient cay estimated recursively, while cayMSrec denotes the
Markov-switching cay estimated recursively using smoothed probabilities. For each regression,
the table reports OLS estimates of the regressors, Newey-West (1987) corrected t-statistics (in
parentheses), and adjusted R2 statistics in square brackets. Significant coeffi cients based on a
t-test at the 5% significance level are highlighted in bold face. The full sample is quarterly and
spans the period 1952:Q1 to 2013:Q3.



Out-Of-Sample Forecasts
h-period regression:

∑h
i=1(rt+i − rf,t+i) = k + γ zt + εt,t+h

Horizon h (in quarters)

zt = 1 4 8 12 16
Mean-squared errors

const 0.75 3.08 5.48 7.92 9.73
r − rf 0.71 2.99 5.32 7.67 9.36
cayFC 0.71 2.90 4.67 6.74 7.36
cayMSfilt 0.70 2.47 2.64 3.01 3.72
cayMS 0.70 2.35 2.53 2.92 3.68
cayFCrec 0.72 2.87 4.38 5.72 6.61
cayMSrec 0.71 2.86 4.49 5.75 6.14

Table 3: This tables reports the mean-squared forecast errors from out-of-sample h-period-
ahead forecasts of CRSP-VW returns in excess of a 3-month Treasury-bill rate using 60-quarter
rolling subsamples. The single predictor variable in each regression is listed in the first column.
The forecasting regression is first estimated on data from 1952Q1-1980Q1, and forecasts are
made over the next h periods. We then repeat this forecasting regression using data from the
next 60 quarters of the sample, continuing in this way until the end of the sample, 2013:Q3.
Mean-square-errors are reported for the subsample since 1980. cayFC is the fixed-coeffi cient
consumption-wealth ratio, cayMSfilt and cayMS are the Markov-switching cay variables using
filtered and smoothed probabilities, respectively, cayFCrec is the recursively estimated cay with
fixed coeffi cients, and cayMSrec is the recursively estimated Markov-switching cay. The recursive
estimates use data only up to time t. The full sample is quarterly and spans the period 1952:Q1
to 2013:Q3.



Long term responses of the FFR
Low Val. regime High Val. regime Difference

Inflation 2.0048
(1.6016,2.8005)

1.1379
(0.9317,1.3437)

0.8750
(0.4117,1.7192)

Output growth 1.0178
(−0.0079,2.2248)

1.6423
(1.1801,2.1968)

−0.6972
(−1.8892,0.6878)

Table 4: Long-term responses to a permanent 1% increase in inflation or GDP growth. This
table reports the median and (in parentheses) the 68% posterior credible sets of the long term
response of the FFR to inflation and GDP growth conditional on being in a certain regime.
The last column reports the distribution for the difference in the long term responses between
the low and high asset valuation regimes. The sample spans the period 1955:Q3-2013:Q3.



Summary statistics for macroeconomic variables
Real Interest Rate GDP growth

Low Val. High Val. Diff. Low Val. High Val. Diff.
Mean 3.6729

(2.9927,4.4366)
0.5638

(0.0130,1.1454)
3.1015

(2.1029,4.2184)
2.2999

(1.6115,3.1994)
1.4221

(0.8696,1.9632)
0.9271

(−0.1140,2.1806)

SD 2.4376
(2.0175,3.1353)

1.8229
(1.5487,2.3100)

0.5890
(−0.0194,1.3029)

2.3076
(1.9831,2.8225)

2.8846
(2.5168,3.4306)

−0.5746
(−1.1672,0.0702)

R&D growth Investment growth
Low Val. High Val. Diff. Low Val. High Val. Diff.

Mean 5.5476
(4.6201,6.7832)

2.9990
(1.7074,4.2863)

2.6316
(0.7845,4.7214)

2.2859
(0.0796,5.0458)

0.9770
(−0.8985,2.8737)

1.4307
(−1.8616,5.1755)

SD 4.0985
(3.4764,5.0801)

5.0998
(4.3961,6.2689)

−0.9623
(−2.2973,0.1982)

8.6720
(7.5000,10.4987)

11.1561
(9.8214,13.0066)

−2.4246
(−4.5976,−0.2669)

Table 5: Conditional Steady States. This table reports the median and (in parentheses) 68%
posterior credible sets of the conditional mean and standard deviation for the real interest rate,
GDP growth, R&D growth, and investment growth based on the VAR estimates conditional
on staying in each regime.The sample spans the period 1955:Q3-2013:Q3.



Summary statistics for dividend growth and change in labor share
Dividend growth Change in labor share

Low Val. High Val. Diff. Low Val. High Val. Diff.
Mean 1.5739

(0.4942,2.5969)
2.8996

(0.3542,5.2595)
−1.3408

(−4.2040,1.6341)
0.0329

(−0.0658,0.1517)
−0.1486

(−0.2613,−0.0530)
0.1905

(0.0378,0.3672)

SD 6.0888
(5.5313,6.8447)

11.2397
(10.0984,12.8371)

−5.0828
(−6.8857,−3.7131)

0.5433
(0.4669,0.6590)

0.5851
(0.5112,0.6972)

−0.0427
(−0.1773,0.0935)

Real Interest Rate GDP growth
Low Val. High Val. Diff. Low Val. High Val. Diff.

Mean 3.4943
(2.8508,4.1097)

0.5483
(0.0534,1.0554)

2.9438
(2.0050,3.8169)

2.3679
(1.7477,3.2405)

1.3870
(0.8918,1.8921)

1.0310
(0.1498,2.1705)

SD 2.3287
(1.9513,2.9377)

1.7667
(1.5048,2.1925)

0.5594
(−0.0185,1.1956)

2.2431
(1.9302,2.7608)

2.8104
(2.4868,3.3197)

−0.5584
(−1.1388,0.0508)

Table 6: Conditional Steady States. This table reports the median and (in parentheses) 68%
posterior credible sets of the conditional mean and standard deviation for dividend growth,
change in the labor share, the real interest rate, and GDP growth based on the VAR estimates
conditional on staying in each regime. The sample spans the period 1955:Q3-2013:Q3.



Annualized Sharpe Ratios and Mean Returns
Portfolio SR Mean Portfolio SR Mean
Market 0.3335 0.0585 V-G (S1) 0.6225 0.1047
W-L 0.6446 0.1588 V-G (S2) 0.3807 0.0637

Table 7: The table reports annualized Sharpe ratios, "SR," and mean returns, "Mean," for the
stock market and different portfolios. The Sharpe ratio is defined to be the unconditional mean
return divided by the standard deviation of the portfolio return. The long-short portfolios "V-
G" are the value-growth portfolios in a given size quintile, S1=smallest, S2= second smallest.
long-short portfolios "W-L" are the winner-loser portfolio. For each size category, the return
of the V-G portfolio portfolio return is the difference between the return on the extreme value
(highest BM ratio) and the return of the extreme growth portfolio (lowest BM ratio). The
return of the W-L portfolio return is the difference in returns between the extreme winner
(M10) and the extreme loser (M1). All returns are computed at quarterly frequencies but the
Sharpe ratios and mean returns are reported in annualized units. The sample spans the period
1964:Q1-2013:Q3.



Breaks in Market Premium and Book-Market Ratio Spreads
Market W-L Val-Gr (S1) Val-Gr (S2)

Regime 1 1.6722
(0.9171,2.4646)

4.2409
(2.8893,5.5322)

2.5508
(1.4115,3.6787)

1.5403
(0.4540,2.6152)

Regime 2 1.0920
(0.3629,1.8055)

2.9978
(0.9953,4.5221)

2.2642
(1.2361,3.1899)

1.1466,
(0.0289,2.1074)

Diff-in-Diff 0.5331
(0.0270,1.1670)

1.1962
(0.2072,2.7763)

0.2677
(−0.5071,1.2286)

0.3772,
(−0.3803,1.4059)

Prob. decline 0.85 0.88 0.64 0.70

Table 8: The first two rows report the conditional steady states for the present discounted
value of market excess returns and the spread in adjusted (for expected earnings) book-market
ratios between the high and low return premia portfolios in each regime. The columns labeled
"Val-Gr" report the spreads for portfolios sorted along the book-market dimension, in a given
size category (extreme value minus extreme growth). The columns labeled "W-L" report the
spreads for portfolios sorted along the recent past return performance dimension (extreme
winner minus extreme loser). The row labeled "Diff-in-Diff" reports the difference between
these spreads across the two wealth ratio/interest rate regimes. The numbers in each cell
are the median values of the statistic from the posterior distribution while in parentheses we
report 68% posterior credible sets. The last row reports the probability that premia decline
when moving from the low valuation regime to the high valuation regime. These probabilities
are obtained by computing the fraction of draws from the posterior distribution for which the
premia under the high valuation regime are lower than the premia under the low valuation
regime.
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Figure 1: Smoothed probability of a low asset valuation regime for the Markov-switching cointegrating relation. The sample is
quarterly and spans the period 1952:Q1 to 2013:Q3.
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Figure 2: The Markov-switching estimated cayMS is plotted without removing the constant. The red dashed lines are the values
of α1 and α2, which correspond to the most likely mean values in each regime. The sample is quarterly and spans the period
1952:Q1 to 2013:Q3.
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Figure 3: Markov-switching and fixed coeffi cients cay. The sample is quarterly and spans the period 1952:Q1 to 2013:Q3.
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Figure 4: Conditional expectations from baseline MS-VAR. The figure reports the conditional expectations based on
the baseline MS-VAR at different horizons taking into account the possibility of regime changes. The sample spans 1955:Q3 to
2013:Q3.
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Figure 5: Wealth Ratio and federal funds rate. The wealth ratio (solid blue line, left axis) is plotted together with the conditional
expectation of the ten-year-ahead real federal funds rate from the baseline MS-VAR (black dashed line, right axis). The wealth
ratio is defined as the log inverse of cayMS without removing the Markov-switching constant. The red dashed line represents the
log inverse of the regime-probability weighted average of the constants α1 and α2. The sample is quarterly and spans the period
1955:Q4 to 2013:Q3.
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Figure 6: Real Federal Funds Rate. The figure reports the evolution of the Real FFR over time together with the 5-year-ahead
and 10-year-ahead expectations as implied by the baseline MS-VAR. Expectations are computed taking into account the possibility
of regime changes. The sample spans 1955:Q3 to 2013:Q3.
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Figure 7: Real Federal Funds Rate versus r*. The figure reports the evolution of the Real FFR over time together with the
expected 10-year-ahead from the baseline MS-VAR, and the 10-year-ahead forward r∗ from the DSGE model and VAR estimate of
the low frequency component of r∗, both from Del Negro, Giannone, Giannoni, and Tambalotti (2017). The sample spans 1955:Q3
to 2013:Q3.
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Figure 8: Dividend growth and labor share. The figure reports the conditional expectations for dividend growth, change in
the labor share, GDP growth, and the real FFR. The expectations are based on a MS-VAR taking into account the possibility of
regime changes. The sample spans 1955:Q3-2013:Q3.
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Figure 9: Uncertainty based on MS-VAR. The figure reports the conditional standard deviations at different horizons based
on the MS-VAR taking into account the possibility of regime changes. The sample spans 1955:Q3-2013:Q3.
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Figure 10: Evolution of Risk Premia. The figure reports the evolution of the PDV of risk premia for the stock market and
three different spread portfolios. The blue solid line reports the evolution of the risk premia over time, while the red dashed line
corresponds to the conditional steady state of the PDV based on the regime in place. Both are computed by taking into account
the possibility of regime changes. The sample spans the period 1964:Q1-2013:Q3.
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Figure 11: This figure presents the evolution of alternative valuation ratios at medium-term frequencies corresponding to cycles
between 10 and 50 years. The sample spans 1955:Q3-2013:Q3.



Appendix for Online Publication

Data Appendix

This appendix describes the data used in this study.

CONSUMPTION

Consumption is measured as either total personal consumption expenditure or expenditure

on nondurables and services, excluding shoes and clothing. The quarterly data are seasonally

adjusted at annual rates, in billions of chain-weighted 2005 dollars. The components are chain-

weighted together, and this series is scaled up so that the sample mean matches the sample mean

of total personal consumption expenditures. Our source is the U.S. Department of Commerce,

Bureau of Economic Analysis.

LABOR INCOME

Labor income is defined as wages and salaries + transfer payments + employer contri-

butions for employee pensions and insurance - employee contributions for social insurance -

taxes. Taxes are defined as [ wages and salaries/(wages and salaries + proprietors’income with

IVA and CCADJ + rental income + personal dividends + personal interest income)] times

personal current taxes, where IVA is inventory valuation and CCADJ is capital consumption

adjustments. The quarterly data are in current dollars. Our source is the Bureau of Economic

Analysis.

POPULATION

A measure of population is created by dividing real total disposable income by real per

capita disposable income. Our source is the Bureau of Economic Analysis.

WEALTH

Total wealth is household net worth in billions of current dollars, measured at the end of

the period. A break-down of net worth into its major components is given in the table be-

low. Stock market wealth includes direct household holdings, mutual fund holdings, holdings of

private and public pension plans, personal trusts, and insurance companies. Nonstock wealth

includes tangible/real estate wealth, nonstock financial assets (all deposits, open market paper,

U.S. Treasuries and Agency securities, municipal securities, corporate and foreign bonds and

mortgages), and also includes ownership of privately traded companies in noncorporate equity,

and other. Subtracted off are liabilities, including mortgage loans and loans made under home

equity lines of credit and secured by junior liens, installment consumer debt and other. Wealth

is measured at the end of the period. A timing convention for wealth is needed because the

level of consumption is a flow during the quarter rather than a point-in-time estimate as is

wealth (consumption data are time-averaged). If we think of a given quarter’s consumption

data as measuring spending at the beginning of the quarter, then wealth for the quarter should
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be measured at the beginning of the period. If we think of the consumption data as measuring

spending at the end of the quarter, then wealth for the quarter should be measured at the end of

the period. None of our main findings discussed below (estimates of the cointegrating parame-

ters, error-correction specification, or permanent-transitory decomposition) are sensitive to this

timing convention. Given our finding that most of the variation in wealth is not associated with

consumption, this timing convention is conservative in that the use of end-of-period wealth pro-

duces a higher contemporaneous correlation between consumption growth and wealth growth.

Our source is the Board of Governors of the Federal Reserve System. A complete description

of these data may be found at http://www.federalreserve.gov/releases/Z1/Current/.

CRSP PRICE-DIVIDEND RATIO

The stock price is measured using the Center for Research on Securities Pricing (CRSP)

value-weighted stock market index covering stocks on the NASDAQ, AMEX, and NYSE. The

data are monthly. The stock market price is the price of a portfolio that does not reinvest

dividends. The CRSP dataset consists of vwretx(t) = (Pt/Pt−1)− 1, the return on a portfolio

that doesn’t pay dividends, and vwretdt = (Pt +Dt) /Pt − 1, the return on a portfolio that

does pay dividends. The stock price index we use is the price P x
t of a portfolio that does not

reinvest dividends, which can be computed iteratively as

P x
t+1 = P x

t (1 + vwretxt+1) ,

where P x
0 = 1. Dividends on this portfolio that does not reinvest are computed as

Dt = P x
t−1 (vwretdt − vwretxt) .

The above give monthly returns, dividends and prices. The annual log return is the sum of the

12 monthly log returns over the year. We create annual log dividend growth rates by summing

the log differences over the 12 months in the year: dt+12 − dt = dt+12 − dt+11 + dt+11 − dt+10 +

· · · + dt+1 − dt. The annual log price-dividend ratio is created by summing dividends in levels
over the year to obtain an annual dividend in levels, DA

t , where t denotes a year hear. The

annual observation on P x
t is taken to be the last monthly price observation of the year, P

Ax
t .

The annual log price-dividend ratio is ln
(
PAx
t /DA

t

)
. Note that this value for dividend growth

is only used to compute the CRSP price-dividend ratio on this hypothetical portfolio. When

we investigate the behavior of stock market dividend growth in the MS-VAR, we use actual

dividend data from all firms on NYSE, NASDAQ, and AMEX. See the data description for

MS-VARs below.

FLOW OF FUNDS EQUITY PAYOUT, DIVIDENDS, PRICE

Flow of Funds payout is measured as “Net dividends plus net repurchases”and is computed

using the Flow of Funds Table F.103 (nonfinancial corporate business sector) by subtracting Net

Equity Issuance (FA103164103) from Net Dividends (FA106121075). We define net repurchases
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to be repurchases net of share issuance, so net repurchases is the negative of net equity issuance.

Net dividends consists of payments in cash or other assets, excluding the corporation’s own

stock, made by corporations located in the United States and abroad to stockholders who

are U.S. residents. The payments are netted against dividends received by U.S. corporations,

thereby providing a measure of the dividends paid by U.S. corporations to other sectors. The

price used for FOF price-dividend and price-payout ratios is “Equity,”the flow of funds measure

of equities (LM103164103).

PRICE DEFLATOR FOR CONSUMPTION AND ASSET WEALTH

The nominal after-tax labor income and wealth data are deflated by the personal consump-

tion expenditure chain-type deflator (2005=100), seasonally adjusted. In principle, one would

like a measure of the price deflator for total flow consumption here. Since this variable is

unobservable, we use the total expenditure deflator as a proxy. Our source is the Bureau of

Economic Analysis.

DATA FOR MS-VARs

In the baseline MS-VAR, we use five observables: real R&D per capita growth, real in-

vestment per capita growth, real GDP per capita growth, annualized quarterly inflation, the

federal funds rate. Our data sources are the NIPA tables constructed by the Bureau of Economic

Analysis and the St. Louis Fed. Real GDP per capita is obtained by dividing nominal GDP

(NIPA 1.1.5, line 1) by the GDP deflator (NIPA 1.1.4, line 1) and population. Consumption is

defined as the sum of personal consumption expenditures on non-durable goods (NIPA 1.1.5,

line 5) and services (NIPA 1.1.5, line 6). The series for nominal investment in physical capital

is the sum of gross private domestic investment (NIPA 1.1.5, line 7) and personal consump-

tion expenditure in durables (NIPA 1.1.5, line 4) minus intellectual property products (NIPA

1.1.5, line 12). Both series are then divided by the GDP deflator and population. Nominal

R&D investment coincides with the series of intellectual property products (NIPA 1.1.5, line

12). The series is then divided by GDP deflator and population. Inflation is measured as the

annual log-difference in the GDP deflator. The effective FFR is downloaded from the St. Louis

Fed website, while all the other series are extracted from the NIPA tables constructed by the

Bureau of Economic Analysis. The sample spans 1954:Q3 to 2013:Q3.

In the secondary MS-VAR that includes dividend growth and the change in the labor share,

we compute dividends for all firms on NYSE, NASDAQ and AMEX using a merge of the

Compustat Annual Industrial Database and the CRSP Monthly Stock Database, following

the approach presented in Larrain and Yogo (2008). The labor share is defined as wages and

salaries + employer contributions for employee pensions and insurance - employee contributions

for social insurance. The quarterly data are in current dollars. Our source for these variables

is the Bureau of Economic Analysis. Dividend growth is defined as the year-to-year change in

log-dividends. The change in the labor share is computed by taking the year-to-year difference
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in the annual mean of the labor share. These two variables are combined in the VAR with real

GDP per capita growth, annualized quarterly inflation, and the effective federal funds rate.

Gibbs Sampling Algorithm

This appendix describes the Bayesian methods used to characterize uncertainty in the parame-

ters of the regression (2). To simplify notation, we denote the vector containing all variables

whose coeffi cients are allowed to vary over time xM,t, while xF,t is used to denote the vector

containing all the variables whose coeffi cients are kept constant. We then obtain:

ct = αξαt xM,t + βxF,t + σεt

where, in our case, β =
[
βa, βy, ba,−k, ..., ba,+k, by,−k, ..., by,+k

]
and the vector xM,t is unidimen-

sional and always equal to 1.

Suppose the Gibbs sampling algorithm has reached the r−th iteration. We then have draws
for βr, αξαt ,r, σr, H

α
r , and ξ

α,T
r , where ξα,Tr = {ξα1,r, ξα2,r,...,ξαT,r} denotes a draw for the whole

regime sequence. The sampling algorithm is described as follows.

1. Sampling βr+1: Given αξαt ,r, σr, and ξ
α,T
r we transform the data:

c̃t =
ct − αξαt ,rxM,t

σr
= β

xF,t
σr

+ εt = βx̃t + εt.

The above is a regression with fixed coeffi cients β and standardized residual shocks.

Standard Bayesian methods may be used to draw the coeffi cients of the regression. We

assume a Normal conjugate prior β ∼ N (Bβ,0, Vβ,0)), so that the conditional (on αξαt ,r,

σr, and ξ
α,T
r ) posterior distribution is given by

βr+1 ∼ N (Bβ,T , Vβ,T )

with Vβ,T =
(
V −1
β,0 + X̃ ′F X̃F

)−1

and Bβ,T = Vβ,T

[
V −1
β,0Bβ,0 + X̃ ′F C̃

]
, where C̃ and X̃F

collect all the observations for the transformed data and Bβ,0 and V −1
β,0 control the priors

for the fixed coeffi cients of the regression. With flat priors, Bβ,0 = 0 and V −1
β,0 = 0 and

Bβ,T and Vβ,T coincide with the maximum likelihood estimates, conditional on the other

parameters.

2. Sampling αi,r+1 for i = 1, 2: Given βr+1, σr, and ξ
α,T
r we transform the data:

c̃t =
ct − βr+1xF,t

σr
= αξαt

xM,t

σr
+ εt = αξαt x̃M,t + εt.

The above regression has standardized shocks and Markov-switching coeffi cients in the

transformed data. Using ξα,Tr we can group all the observations that pertain to the same
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regime i. Given the prior αi ∼ N (Bαi,0, Vαi,0)) for i = 1, 2 we use standard Bayesian

methods to draw αi from the conditional (on βr+1, σr, and ξ
α,T
r ) posterior distribution:

αi,r+1 ∼ N (Bαi,T , Vαi,T ) for i = 1, 2

where Vαi,T =
(
V −1
αi,0

+ X̃ ′M,iX̃M,i

)−1

andBαi,T = Vαi,T

[
V −1
αi,0

Bαi,0 + X̃ ′M,iC̃i

]
where C̃i and

X̃M,i collect all the observations for the transformed data for which regime i is in place.

The parameters Bαi,0 and V
−1
αi,0

control the priors for the MS coeffi cients of the regression:

αi ∼ N (Bαi,0, Vαi,0) for i = 1, 2. With flat priors, we have Bαi,0 = 0 and V −1
αi,0

= 0 and

Bαi,T and Vαi,T coincide with the maximum likelihood estimates, conditional on the other

parameters.

3. Sampling σr+1: Given βr+1, αξαt ,r+1, and ξα,Tr we can compute the residuals of the

regression:

c̃t = ct − βr+1xF,t − αξαt xM,t = σεt.

With the prior that σ has an inverse gamma distribution, σ ∼ IG (Q0, v0) , we use

Bayesian methods to draw σr+1 from the conditional (on βr+1, αξαt ,r+1, and ξ
α,T
r ) pos-

terior inverse gamma distribution:

σr+1 ∼ IG (QT , vT ) , vT = T + v0, QT = Q0 + E ′E

where E is a vector containing the residuals, T is the sample size, and Q0 and v0 control

the priors for the standard deviation of the innovations: σ ∼ IG (Q0, v0) . With flat

priors, we have Q0 = 0 and v0 = 0. The mean of a random variable with distribution

σ ∼ IG (QT , vT ) is QT/vT . With flat priors we have Q0 = 0 and v0 = 0, and the mean of

σ is therefore (E ′E) /T , which coincides with the standard maximum likelihood (MLE)

estimate of σ, conditional on the other parameters.

4. Sampling ξα,Tr+1: Given βr+1, αξαt ,r+1, and Hα
r we can obtain filtered probabilities for the

regimes, as described in Hamilton (1994). Following Kim and Nelson (1999) we then use

a Multi-Move Gibbs sampling to draw a regime sequence ξα,Tr+1.

5. Sampling Hα
r+1: Given the draws for the MS state variables ξ

α,T
r+1, the posterior for the

transition probabilities does not depend on other parameters of the model and follows a

Dirichlet distribution if we assume a prior Dirichlet distribution.28 For each column of

Hα
r+1 the posterior distribution is given by:

Hα
r+1(:, i) ∼ D(aαii + ηαii,r+1, a

α
ij + ηαij,r+1)

28The Dirichlet distribution is a generalization of the beta distribution that allows one to potentially consider

more than 2 regimes. See e.g., Sims and Zha (2006).
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where ηαij,r+1 denotes the number of transitions from state iα to state jα based on ξα,Tr+1,

while aαii and a
α
ij the corresponding priors. With flat priors, we have a

α
ii = 0 and aαij = 0.

6. If r + 1 < R, where R is the desired number of draws, go to step 1, otherwise stop.

These steps are repeated until convergence to the posterior distribution is reached. We check

convergence by using the Raftery-Lewis Diagnostics for each parameter in the chain. See section

below. We use the draws obtained with the Gibbs sampling algorithm to characterize parameter

uncertainty in Table 1. The Gibbs sampling algorithm is used to generate a distribution for the

difference between the two means in the same manner it is used to generate a distribution for

any parameter. For each draw from the joint distribution of the model parameters, we compute

the difference and store it. We may then compute means and/or medians, and error bands, as

for any other parameter of interest.

Convergence Checks

The 90% credible sets are obtained making 2,000,000 draws from the posterior using the Gibbs

sampling algorithm. One in every one thousand draws is retained. We check convergence

using the methods suggested by Raftery and Lewis (1992) and Geweke (1992). The results are

reported in Table A.1 and Table A.2, respectively. For Raftery and Lewis (1992) checks, we

target 90% credible sets, with a 1% accuracy to be achieved with a 95% minimum probability.

We initialize the Gibbs sampling algorithm making a draw around the posterior mode. Sims

and Zha (2006) point out that in Markov-switching models it is important to first find the

posterior mode and then use it as a starting point for the MCMC algorithm due to the fact

that the likelihood can have multiple peaks. The tables below pertain to convergence of the

Gibbs sampling algorithm.
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Variable Total(N) I-stat Variable Total(N) I-stat Variable Total(N) I-stat

α1 17413 9.541 ∆at+1 1799 0.986 ∆yt−4 1850 1.014

α2 16949 9.287 ∆yt+1 1812 0.993 ∆at+4 1793 0.982

βa 1918 1.051 ∆at−2 1830 1.003 ∆yt+4 1820 0.997

βy 1843 1.01 ∆yt−2 1801 0.987 ∆at−5 1797 0.985

σ 1797 0.985 ∆at+2 1886 1.033 ∆yt−5 1850 1.014

Hα
11 1826 1.001 ∆yt+2 1767 0.968 ∆at+5 1826 1.001

Hα
22 1820 0.997 ∆at−3 1858 1.018 ∆yt+5 1850 1.014

∆at 1823 0.999 ∆yt−3 1808 0.991 ∆at−6 1850 1.014

∆yt 1850 1.014 ∆at+3 1847 1.012 ∆yt−6 1826 1.001

∆at−1 1839 1.008 ∆yt+3 1820 0.997 ∆at+6 1839 1.008

∆yt−1 1866 1.022 ∆at−4 1830 1.003 ∆yt+6 1866 1.022

Table A.1: Raftery-Lewis Diagnostics for each parameter in the chain. The minimum number of draws

under the assumption of i.i.d. draws would be 1825. The sample is quarterly and spans the period 1952:Q1 to

2013:Q3.

Variable NSE RNE Variable NSE RNE Variable NSE RNE

α1 0.000131 1 ∆at+1 0.000263 1 ∆yt−4 0.000526 1

α2 0.000131 1 ∆yt+1 0.00053 1 ∆at+4 0.000256 1

βa 0.000074 1 ∆at−2 0.000261 1 ∆yt+4 0.000521 1

βy 0.000085 1 ∆yt−2 0.000572 1 ∆at−5 0.000264 1

σ 0 1 ∆at+2 0.000258 1 ∆yt−5 0.000524 1

Hα
11 0.000069 1 ∆yt+2 0.000547 1 ∆at+5 0.000252 1

Hα
22 0.000053 1 ∆at−3 0.000278 1 ∆yt+5 0.000534 1

∆at 0.000263 1 ∆yt−3 0.000632 1 ∆at−6 0.000275 1

∆yt 0.000529 1 ∆at+3 0.000255 1 ∆yt−6 0.000518 1

∆at−1 0.000252 1 ∆yt+3 0.000537 1 ∆at+6 0.000238 1

∆yt−1 0.000521 1 ∆at−4 0.000259 1 ∆yt+6 0.000525 1

Table A.2: The table reports the numerical standard error (NSE) and the relative numerical effi ciency

(RNE) computed based on Geweke (1992). Values for NSE close to zero and values for RSE close to 1 are

indicative of convergence. The sample is quarterly and spans the period 1952:Q1 to 2013:Q3.

Computing cayMS

Our estimate of cayMS
t is based on the posterior mode of the parameter vector θ and the

corresponding regime probabilities. The filtered probabilities reflect the probability of a regime
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conditional on the data up to time t, πt|t = p(ξαt |Y t;θ), for t = 1, ..., T , and are part of

the output obtained computing the likelihood function associated with the parameter draw

θ =
{
β, αξαt , σ,H

α
}
. They can be obtained using the following recursive algorithm:

πt|t =
πt|t−1 � ηt

1′
(
πt|t−1 � ηt

)
πt+1|t = Hαπt|t

where ηt is a vector whose j-th element contains the conditional density p(ct|ξαt = j, xM,t, xF,t;θ),

i.e.,

p(ct|ξαt = j, xM,t, xF,t;θ) =
1√

2πσ2
exp

(
−{ct − (αjxM,t + βxF,t)}2

2σ2

)
,

the symbol � denotes element by element multiplication, and 1 is a vector with all elements
equal to 1. To initialize the recursive calculation we need an assumption on the distribution of

ξα0 . We assume that the two regimes have equal probabilities: p(ξ
α
0 = 1) = .5 = p(ξα0 = 2).

The smoothed probabilities reflect all the information that can be extracted from the whole

data sample, πt|T = p(ξαt |Y T ;θ). The final term, πT |T is returned with the final step of the

filtering algorithm. Then, a recursive algorithm can be implemented to derive the other prob-

abilities:

πt|T = πt|t �
[
Hα′ (πt+1|T (÷) πt+1|t

)]
where (÷) denotes element by element division.

In using the DLS regression (2) to estimate cointegrating parameters, we lose 6 leads and

6 lags. For estimates of cayFCt , we take the estimated coeffi cients and we apply them to the

whole sample. To extend our estimates of cayMS
t over the full sample, we can likewise apply the

parameter estimates to the whole sample but we need an estimate of the regime probabilities

in the first 6 and last 6 observations of the full sample. For this we run the Hamilton filter

from period from −5 to T + 6 as follows. When starting at -5, we assume no lagged values are

available and the DLS regression omits all lags, but all leads are included. When at t = −4 we

assume only one lag is available and the DLS regression includes only one lag, and so on, until

we reach t = 0 when all lags are included. Proceeding forward when t = T + 1 is reached we

assume all lags are available and all leads except one are available, when t = T + 2, we assume

all lags and all leads but two are available, etc. Smoothed probabilities are then computed with

standard methods as they only involve the filtered probabilities and the transition matrix Hα.

Model Comparison

This section reports the results of tests that compare competing models for cayMS
t . We analyze

two alternative models and compare them to our two benchmark models for cay: cayMS in
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which only the constant is allowed to switch over time, and cayFC in which there is no Markov-

switching in any of the parameters. In the first alternative, we allow for Markov-switching in

heteroskedasticity as well as Markov-switching in the constant. In the second alternative, we

only allow for Markov-switching in only heteroskedasticity. We use the Bayesian information

criterion (BIC) to compare these different models. This is computed as:

BIC = −2(maxli) + k log(T )

where maxli is the maximized log-likelihood, k is the number of parameters, and T the sample

size. A model with a smaller BIC criterion is preferred to one with a larger criterion. The

BIC criterion rewards models with higher likelihoods but also penalizes models that have more

parameters.

Table A.3 reports the estimates for the key cay parameters and the BIC for each model.

The BIC is lowest by the model is the one that allows for switching in both heteroskedasticity

and the constant (MS α and MS σ). But our benchmark model with switches only in the

constant (MS α only) is preferred to the model that with switches only in heteroskedasticity

(MS σ only), and to the fixed coeffi cient model (FC). These results support the hypothesis of

shifts in the constant. And although the model with switching in both the constant and the

volatility is preferred, the estimates for the cointegrating vector and the timing of regimes are

essentially unchanged when introducing heteroskedasticity in our benchmark model. For this

reason, we choose the simpler model with only shifts in the constant as our benchmark model.

Model α1 α2 βa βy σ1 σ2 BIC

MS α and MS σ 0.9186 0.8810 0.2599 0.6162 0.0016 0.0105 −1472.0

MS α only 0.9186 0.8808 0.2606 0.6156 0.0080 −1390.3

MS σ only 0.8056 0.1275 0.7845 0.0029 0.0204 −1230.2

FC 0.8706 0.1246 0.7815 0.0158 −1202.2

Table A.3: The table reports the estimates for the cointegration parameters, the estimates for the volatilities,
and the Bayesian Information Criterion (BIC) for four different models. The BIC is used to compare the fit of

different models taking into account the number of parameters used in the estimates. MS α and MS σ: The

model allows for changes in the constant and heteroskedasticity. MS α only: Benchmark model with only

changes in the constant. MS σ only: The model allows for heteroskedasticity, but not changes in the constant.

FC: Standard fixed coeffi cient regression.

Persistence of cayMS versus cayFC

The column of Table A.4 reports the first-order autoregressive coeffi cient estimate for the two

versions of cay. The estimated autocorrelation coeffi cient for cayFCt is 0.94. The estimated
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first-order autocorrelation coeffi cient for cayMS
t is 0.81.

Cointegration Tests
Dickey—Fuller t-statistic Critical values

Persistence cay Lag = 1 Lag = 2 Lag = 3 Lag = 4 5% 10%

MS 0.8131 -4.7609 -4.4168 -4.4586 -4.7618 -3.80 -3.52

FC 0.9377 -2.2911 -2.1556 -1.8894 -1.6583 -3.80 -3.52

Table A.4: The first column reports the first-order autoregressive coeffi cient obtained regress-
ing cayt on its own lagged value and a constant. The next four columns report augmented

Dickey-Fuller t-statistics (ρ̂− 1)/σ̂ρ̂, where ρ̂ is the estimated value for the autoregressive coef-

fcient used to test the null hypothesis of no cointegration. This test is applied to estimates of

the cointegrating residual, cayt. We include up to four lags of the first difference of cayt. The

critical values for the test when applied to cointegrating residual are reported in the last two

columns and are taken from Phillips and Ouliaris (1990). The results for cayMS
t do not account

for sampling error in the estimated Markov-switching mean. The sample is quarterly and spans

the period 1952:Q1 to 2013:Q3.

Several other tests are employed to assess the degree of persistence in cayMS
t as compared

to cayFCt . First, we apply an augmented Dickey-Fuller t test to the estimated cointegrating

residuals. The test statistics and corresponding critical values are reported in Table A.4. Ac-

cording to this test, the null hypothesis of no cointegration is rejected for the cayMS
t in every

case, whereas the opposite is true for cayFCt .

Second, we examine low frequency averages or “cosine transformations”of cay to gauge its

persistence following Muller and Watson (2008) and Watson (2013). The cosine transformation

of cayMS
t displays a pattern much more consistent with an I (0) series than that of cayFCt .

Figure A.1 is based on weighted averages that summarize low-frequency variability in a series.

Specifically, following Muller and Watson (2008) and Watson (2013), the figure plots the “cosine

transformations”of each version of cay

fj =
T∑
t=1

cos
(
j(t− 0.5)πT−1

)
cayt for j = 1, ..., k.

As Muller and Watson (2008) show, the set of sample averages {fj}kj=1, capture the variability

in cay for periods greater than 2T/k, where T is the sample size. Thus, with T = 247 quarters,

the k = 12 points plotted in Figure A.1 summarize the variability in cay for periods greater

than 2 ∗ 247/12 = 41.1667 quarters, or approximately 10 years. Smaller values of j correspond

to lower frequencies, so values of fj plotted for small j (e.g., j = 1, 2, 3) give the variability

in cayt at low frequencies, while values of fj plotted for higher j (e.g., j = 10, 11, 12) give
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the variability in cayt at higher frequencies. A series that is integrated of order zero, I (0),

corresponding to covariance stationary, displays roughly the same variability (same value of

fj) at all frequencies j. By contrast, a series that is more persistent than I (0) displays higher

variability at low frequencies, resulting in higher values of fj for low j than for high j. Figure

A.1 shows that the cosine transformation of cayMS
t displays a pattern much more consistent

with an I (0) series than that of cayFCt , which shows a clear spike at j = 3, corresponding to a

period of roughly 41 years.

1 2 3 4 5 6 7 8 9 10 11 12

−0.05

0

0.05

0.1

0.15

0.2

−− j −−

CAYs − Cosine transformation

 

 

MS cay
FC cay

Figure A.1: Low frequency averages of cay. The figure plots the set of averages {fj}kj=1, which

capture the variability in cay for periods greater than 2T/k, where T is the sample size. Thus,

with T = 247 quarters, the k = 12 points plotted summarize the variability in cay for periods

greater than 2 ∗ 247/12 = 41.1667 quarters, approximately 10 years. The sample is quarterly

and spans the period 1952:Q1 to 2013:Q3.
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Third, we estimate fractionally integrated models for cayMS
t and cayFCt in which (1 −

L)dcay
(m)
t = ut, where L is the lag operator, ut is an I(0) process and m = cayMS

t , cayFCt .

In order to evaluate the likelihood for the fractionally integrated model we closely follow Muller

and Watson (2013). We in fact use a series of Matlab codes that are available on Mark Watson’s

webpage. The first step consists of computing the cosine transformation of cay:

fj = ιjTT
−1

T∑
t=1

√
2 cos

(
j(t− 0.5)πT−1

)
cayt for j = 1, ..., k.

where ιjT = (2T/ (jπ)) sin (jπ/ (2T )) . As explained in Muller and Watson (2013), this trans-

formation is useful to isolate variation in the sample at different frequencies. Specifically, fj
captures variation at frequency jπ/T . Mueller and Watson (2008, 2013) explain that working

with a subset of the cosine transformations implies truncating the information set. They pro-

vide two reasons for why this is a convenient approach. First, given that each variable is a

weighted average of the original data, a central limit allows to work with a limiting Gaussian

distribution. Second, such a choice implies robustness of the results: Low-frequency information

is used to study the low-frequency properties of the model. Given that we are mostly interested

in the low frequency properties of cay, we can work using a limited number of (low) frequencies.

We therefore choose k = 12.

We can then collect all the cosine transformations in a vectorXT,1:k and compute an invariant

transformation Xs
T,1:k = XT,1:k/

√
X ′T,1:kXT,1:k (notice that this implies that the results that will

follow are independent of scale factors). As explained in Muller and Watson (2013), the limiting

density for the invariant transformations is given by:

pXS (xs) =
1

2
Γ (k/2) π−k/2 |ΣX |−1/2 (xs′Σ−1

X xs
)−q/2

(A1)

where Xs = X1:k/
√
X ′1:kX1:k, ΣX = E (XsXs′) , and Γ is the gamma function.

We estimate a fractionally integrated model for cayt: (1− L)dcayt = ut, where L is the lag

operator and ut is an I(0) process and d is a parameter that is allowed to be fractional. The

fractional model implies a binomial series expansion in the lag operator:

(1− L)dcayt =

[∑∞
k=0

(
d

k

)
(−L)k

]
cayt

=

[∑∞
k=0

∏k−1
a=0 (d− a) (−L)k

k!

]
cayt

=

[
1− dL+

d (d− 1)

2!
L2 − ...

]
cayt

Note that when d = 1, the fractional integrated model implies that cayt has a unit root, cayt =

cayt−1 + ut, while for d = 0, cayt = ut, i.e. cayt is an I(0) process.
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We compute the covariance matrix ΣX (d) associated with different values of d in the frac-

tionally integrated model. The matrix ΣX (d) is obtained in two steps. First, we compute the

matrix of autocovariances Σ (d) associated with a fractionally integrated model. The (i, i+ h)

element of this matrix is given by the autocovariance γ (h):

Σ (d)(i,i+h) = γ (h) =
Γ (1− 2d)

Γ (1− d) Γ (d)

Γ (h+ d)

Γ (1 + h− d)

Second, we transform the autocovariance matrix Σ (d) in order to obtain the covariance matrix

for the cosine transformations: ΣX (d) = Ψ′Σ (d) Ψ where Ψ is a (T × k) matrix collecting all

the weights used for the cosine transformation:

Ψ(t,j) = ιjTT
−1

T∑
t=1

√
2 cos

(
j(t− 0.5)πT−1

)
Finally, we evaluate (A1) to obtain the likelihood for the different values of d given that ΣX (d)

is now a function of the parameter d of the fractionally integrated model. If cay(m)
t is I (0),

then d = 0. If it has a unit root, then d = 1, and non-integer values of d > 0 are fractionally

integrated series that are more persistent than I (0) but less persistent than I (1). Figure A.2

shows the estimated log likelihoods for (1− L)d cayMS
t and (1− L)d cayFCt as a function of d.

For cayMS
t , the likelihood peaks at d = 0, while for cayFCt , the likelihood rises with d > 0 and

peaks near d = 1.2.
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Low frequency log−likelihood values for (1−L)dcay

 

 

MS cay FC cay

Figure A.2: Low frequency log likelihood values for (1 − L)dcayt. The sample is quarterly

and spans the period 1952:Q1 to 2013:Q3.
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MS-VAR Estimation

In this appendix we provide details on the estimation of the MS-VAR 8. As stated above, we

take the regime sequence as given based on our estimates for the breaks in cayMS. Specifically, we

choose the particular regime sequence ξ̂
α,T

= {ξ̂α1 , ..., ξ̂
α

T} that is most likely to have occurred,
given our estimated posterior mode parameter values for θ . This sequence is computed as

follows. First, we run Hamilton’s filter to get the vector of filtered probabilities πt|t, t =

1, 2, ..., T . The Hamilton filter can be expressed iteratively as

πt|t =
πt|t−1 � ηt

1′
(
πt|t−1 � ηt

)
πt+1|t = Hαπt|t

where ηt is a vector whose j-th element contains the conditional density p(ct|ξαt = j, xM,t, xF,t;θ),

the symbol � denotes element by element multiplication, and 1 is a vector with all elements
equal to 1. The final term, πT |T is returned with the final step of the filtering algorithm. Then,

a recursive algorithm can be implemented to derive the other smoothed probabilities:

πt|T = πt|t �
[
Hα′ (πt+1|T (÷) πt+1|t

)]
where (÷) denotes element by element division. To choose the regime sequence most likely to

have occurred given our parameter estimates, consider the recursion in the next to last period

t = T − 1:

πT−1|T = πT−1|T−1 �
[
Hα′ (πT |T (÷) πT |T−1

)]
.

We first take πT |T from the Hamilton filter and choose the regime that is associated with the

largest probability, i.e., if πT |T = (.9, .1), where the first element corresponds to the proba-

bility of regime 1, we select ξ̂
α

T = 1, indicating that we are in regime 1 in period T. We now

update πT |T = (1, 0) and plug into the right-hand-side above along with the estimated filtered

probabilities for πT−1|T−1, πT |T−1 and estimated transition matrix H
α to get πT−1|T on the

left-hand-side. Now we repeat the same procedure by choosing the regime for T − 1 that has

the largest probability at T − 1, e.g., if πT−1|T = (.2, .8) we select ξ̂
α

T−1 = 2, indicating that we

are in regime 2 in period T − 1, we then update to πT−1|T = (0, 1), which is used again on the

right-hand-side now

πT−2|T = πT−2|T−2 �
[
Hα′ (πT−1|T (÷) πT−1|T−2

)]
.

We proceed in this manner until we have a regime sequence ξ̂
α,T

for the entire sample t =

1, 2, ..., T . Two aspects of this procedure are worth noting. First, it fails if the updated prob-

abilities are exactly (.5, .5). Mathematically this is virtually zero. Second, note that this
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procedure allows us to choose the most likely regime sequence by using the recursive formula

above to update the filtered probabilities sequentially from T to time t = 1. This allows us

to take into account the time dependence in the regime sequence as dictated by the transition

probabilities.

Taking regime sequence as given in this way, we need only estimate the transition matrix

and the parameters of the MS-VAR across the two regimes. The model is estimated by using

Bayesian methods with flat priors on all parameters. As a first step, we group all the observa-

tions that belong to the same regime. Conditional on a regime, we have a fixed coeffi cients VAR.

We can then follow standard procedures to make draws for the VAR parameters as follows.

Rewrite the VAR as

Y
T×n

= XAξt
(T×k)(k×n)

+ ε
T×n

, ξt = 1, 2

εt ∼ N
(
0,Σξt

)
where Y = [Z1,..., ZT ]′ , the t-th row of X is Xt =

[
1, Z ′t−1, Z

′
t−2

]
, Aξt =

[
cξt , A1,ξt , A2,ξt

]′
, the

t-th row of ε is εt, and where Σξt = VξtV
′
ξt
. If we specify a Normal-Wishart prior for Aξt and

Vξt:

Σ−1
ξt
∼ W

(
S−1

0 /v0, v0

)
vec
(
Aξt |Σξt

)
∼ N

(
vec (B0) ,Σξt ⊗N

−1
0

)
where E

(
Σ−1
ξt

)
= S−1

0 , the posterior distribution is still in the Normal-Wishart family and is

given by

Σ−1
ξt
∼ W

(
S−1
T /vT , vT

)
vec
(
Aξt |Σξt

)
∼ N

(
vec (BT ) ,Σξt ⊗N

−1
T

)
Using the estimated regime sequence ξα,T we can group all the observations that pertain to the

same regime i. Therefore the parameters of the posterior are computed as

vT = Ti + v0, NT = X ′iXi +N0

BT = N−1
T

(
N0B0 +X ′iXiB̂MLE

)
ST =

v0

vT
S0 +

Ti
vT

Σ̂MLE +
1

vT

(
B̂MLE − B̂0

)′
N0N

−1
T X ′iXi

(
B̂MLE − B̂0

)
B̂MLE = (X ′iXi)

−1
(X ′iYi) , Σ̂MLE =

1

Ti

(
Yi −XiB̂MLE

)′ (
Yi −XiB̂MLE

)
,

where Ti, Yi, Xi denote the number and sample of observations in regime i. We choose flat priors

(v0 = 0, N0 = 0) so the expressions above coincide with the MLE estimates using observations

in regime i:

vT = Ti, NT = X ′iXi, BT = B̂MLE, ST = Σ̂MLE.
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Armed with these parameters in each regime, we can make draws from the posterior distribu-

tions for Σ−1
ξt
and Aξt in regime i to characterize parameter uncertainty about these parameters.

Given that we condition the MS-VAR estimates on the most likely regime sequence ξ̂
α,T

for cayMS, it is still of interest to estimate the elements of the transition probability matrix

for the MS-VAR parameters, HA, conditional on this regime sequence. Note that HA can

be different from Hα because the former is based on a particular regime sequence ξ̂
α,T
, while

the latter reflects the entire posterior distribution for ξα,T . The estimated transition matrix

HA can in turn be used to compute expectations taking into account the possibility of regime

change (see the next subsection). Because we impose the regime sequence to be the same as

that estimated for cayMS, the posterior of HA only depends on ξα,T = ξ and does not depend

on other parameters of the model. The posterior has a Dirichlet distribution if we assume a

prior Dirichlet distribution.29 For each column of HA the posterior distribution is given by:

HA(:, i) ∼ D(aii + ηii,r+1, aij + ηij,r+1)

where ηij,r+1 denotes the number of transitions from regime i to regime j based on ξα,T , while

aii and aij the corresponding priors. With flat priors, we have aii = 0 and aij = 0. Armed with

this posterior distribution, we can characterize uncertainty about HA.

Conditional Expectations and Economic Uncertainty

In this appendix we explain how expectations and economic uncertainty are computed for

variables in the MS-VAR. More details can be found in Bianchi (2016). Consider the following

first-order MS-VAR:

Zt = cξt + AξtZt−1 + Vξtεt, εt ∼ N (0, I) (A2)

and suppose that we are interested in E0 (Zt) = E (Zt|I0) with I0 being the information set
available at time 0. Note that the first-order VAR is not restrictive because any VAR with

l > 1 lags can be rewritten as above by using the first-order companion form, and the methods

below applied to the companion form.

Let n be the number of variables in the VAR of the previous Appendix section. Let m be

the number of Markov-switching states. Define the mn× 1 column vector qt as:

qt
mn×1

=
[
q1′
t , ..., q

m′
t

]′
where the individual n × 1 vectors qit = E0

(
Zt1ξt=i

)
≡ E

(
Zt1ξt=i|I0

)
and 1ξt=i is an indicator

variable that is one when regime i is in place and zero otherwise. Note that:

qit = E0

(
Zt1ξt=i

)
= E0 (Zt|ξt = i)πit

29The Dirichlet distribution is a generalization of the beta distribution that allows one to potentially consider

more than 2 regimes. See e.g., Sims and Zha (2006).
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where πit = P0 (ξt = i) = P (ξt = i|I0). Therefore we can express µt = E0 (Zt) as:

µt = E0 (Zt) =
∑m

i=1 q
i
t = wqt

where the matrix w
n×mn

= [In, ..., In] is obtained placing side by side m n-dimensional identity

matrices. Then the following proposition holds:

Proposition 1 Consider a Markov-switching model whose law of motion can be described by
(A2) and define qit = E0

(
Zt1ξt=i

)
for i = 1...m. Then qjt = cjπ

j
t +
∑m

i=1Ajq
i
t−1hji.

It is then straightforward to compute expectations conditional on the information available

at a particular point in time. Suppose we are interested in µt+s|t ≡ Et (Zt+s), i.e. the expected

value for the vector Zt+s conditional on the information set available at time t. If we define:

qt+s|t =
[
q1′
t+s|t, ..., q

m′
t+s|t

]′
where qit+s|t = Et

(
Zt+s1ξt+s=i

)
= Et

(
Zt+s|ξt+s = i

)
πit+s|t, where π

i
t+s|t ≡ P

(
ξt+s = i|It

)
, we

have

µt+s|t = Et (Zt+s) = wqt+s|t, (A3)

where for s ≥ 1, qt+s|t evolves as:

qt+s|t = Cπt+s|t + Ωqt+s−1|t (A4)

πt+s|t = Hπt+s−1|t (A5)

with πt+s|t =
[
π1
t+s|t, ..., π

m
t+s|t

]′
, Ω = bdiag (A1, ..., Am) (H ⊗ In) , and C

mn×m
= bdiag (c1, ..., cm) ,

where e.g., c1 is the n× 1 vector of constants in regime 1, ⊗ represents the Kronecker product
and bdiag is a matrix operator that takes a sequence of matrices and use them to construct a

block diagonal matrix.

Similar formulas hold for the second moments. Before proceeding, let us define the vec-

torization operator ϕ (X) that takes the matrix X as an input and returns a column vector

stacking the columns of the matrix X on top of one another. We will also make use of the

following result: ϕ (X1X2X3) = (X ′3 ⊗X1)ϕ (X2).

Define the vector n2m× 1 column vector Qt as:

Qt =
[
Q1′
t , ..., Q

m′
t

]′
where the n2 × 1 vector Qi

t is given by Q
i
t = ϕ

[
E0

(
ZtZ

′
t1ξt=i

)]
. This implies that we can

compute the vectorized matrix of second moments Mt = ϕ [E0 (ZtZ
′
t)] as:

Mt = ϕ [E0 (ZtZ
′
t)] =

∑m
i=1Q

i
t = WQt

where the matrix W = [In2 , ..., In2 ] is obtained placing side by side m n2-dimensional identity

matrices. We can then state the following proposition:
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Proposition 2 Consider a Markov-switching model whose law of motion can be described by
(A2) and define Qi

t = ϕ
[
E0

(
ZtZ

′
t1ξt=i

)]
, qit = E0

[
Zt1ξt=i

]
, and πit = P0 (ξt = i) , for i = 1...m.

Then Qj
t =

[
ĉcj + V̂ V jϕ [Ik]

]
πjt +

∑m
i=1

[
ÂAjQ

i
t−1 + D̂ACjq

i
t−1

]
hji, where ĉcj = (cj ⊗ cj) ,

V̂ V j = (Vj ⊗ Vj) , ÂAj = (Aj ⊗ Aj) , and D̂ACj = (Aj ⊗ cj) + (cj ⊗ Aj) .

It is then straightforward to compute the evolution of second moments conditional on the

information available at a particular point in time. Suppose we are interested in Et
(
Zt+sZ

′
t+s

)
,

i.e. the second moment of the vector Zt+s conditional on the information available at time t.

If we define:

Qt+s|t =
[
Q1′
t+s|t, ..., Q

m′
t+s|t

]′
whereQi

t+s|t = ϕ
(
Et
(
Zt+sZ

′
t+s1ξt+s=i

))
= ϕ

(
Et
(
Zt+sZ

′
t+s|ξt+s = i

))
πit+s|t, we obtain ϕ

(
Et
(
Zt+sZ

′
t+s

))
=

WQt+s|t.Using matrix algebra we obtain:

Qt+s|t = ΞQt+s−1|t + D̂ACqt+s−1|t + V̂ cπt+s|t (A6)

qt+s|t = Cπt+s|t + Ωqt+s−1|t, πt+s|t = Hπt+s−1|t. (A7)

where

Ξ = bdiag(ÂA1, ..., ÂAm)(H ⊗ In2), V̂ c =
[
V̂ V + ĉc

]
, ĉc = bdiag(ĉc1, ..., ĉcm),

V̂ V = bdiag(V̂ V 1ϕ [Ik] , ..., V̂ V mϕ [Ik]), D̂AC = bdiag(D̂AC1, ..., D̂ACm)(H ⊗ In).

With the first and second moments at hand, it is then possible to compute the variance s

periods ahead conditional on the information available at time t:

ϕ [Vt (Zt+s)] = Mt+s|t − ϕ
[
µt+s|tµ

′
t+s|t

]
, (A8)

where Mt+s|t = ϕ
(
Et
(
Zt+sZ

′
t+s

))
=
∑m

i=1Q
i
t+s|t = WQt+s|t.

To report estimates of (A3) and (A8) we proceed as follows. Note that µt+s|t = Et (Zt+s) =

wqt+s|t and Mt+s|t depend only on qt+s|t and Qt+s|t. Furthermore we can express (A4)-(A5) and

(A6)-(A7) in a compact form as

Q̃t+s|t = Ξ̃sQ̃t|t where Ξ̃ =

 Ξ D̂AC V̂ cH
Ω CH

H

 , (A9)

where Q̃t+s|t =
[
Q′t+s|t, q

′
t+s|t, π

′
t+s|t

]′
. Armed with starting values Q̃t|t =

[
Q′t|t, q

′
t|t, π

′
t|t

]′
we

can then compute (A3) and (A8) using (A9). To obtain π′t|t recall that we assume that It
includes knowledge of the regime in place at time t, the data up to time t, Zt, and the VAR

parameters for each regime. Given that we assume knowledge of the current regime, πit|t ≡
P (ξt = i|It) can only assume two values, 0 or 1. As a result π′t|t will be (1, 0) or (0, 1). As a
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result, and given Zt ∈ It, q′t|t =
[
q1′

t|t, q
2′

t|t

]′
with qit|t ≡ Et (Zt|ξt = i) πit|t, will be [Z ′t · 1, Z ′t · 0]′

or [Z ′t · 0, Z ′t · 1]′. Analogously, Q′t|t =
[
Q1′
t|t, Q

2′
t|t

]′
with Qi

t|t ≡ ϕ (Et (ZtZ
′
t|ξt = i))πit|t will be[

ϕ (ZtZ
′
t · 1)′ , ϕ (ZtZ

′
t · 0)′

]′
or
[
ϕ (ZtZ

′
t · 0)′ , ϕ (ZtZ

′
t · 1)′

]′
.

Mean Square Stability

When estimating the MS-VAR we require the model to be mean square stable. Mean square

stability is defined as follows:

Definition 1 An n-dimensional process Zt is mean square stable if and only if there exists an
n-vector µ and an n2-vector M such that:

1) limt→∞ E0 [Zt] = µ

2) limt→∞ E0 [ZtZ
′
t] = M

for any initial Z0 and ξ0.

Mean-square-stability requires that first and second moments converge as the time horizon

goes to ∞. Under the assumptions that the Markov-switching process ξt is ergodic and that
the innovation process εt is asymptotically covariance stationary, Costa, Fragoso, and Marques

(2004) show that a multivariate Markov-switching model as the one described by (8)-(??) is
mean-square stable if and only if it is asymptotically covariance stationary. Both conditions

hold for the models studied in this paper and are usually verified in economic models.

Costa, Fragoso, and Marques (2004) show that in order to establish MSS of a process

such as the one described by (8)-(??), it is enough to check MSS stability of the correspondent
homogeneous process: Zt = AξtZt−1. In this case, formulas (??) and (A9) simplify substantially:
qt = Ωqt−1 and Qt = ΞQt−1. Let rσ (X) be the operator that given a square matrix X computes

its largest eigenvalue. We then have:

Proposition 3 A Markov-switching process whose law of motion can be described by (8)-(??)
is mean square stable if and only if rσ (Ξ) < 1.

Mean square stability allows us to compute finite measures of uncertainty as the time horizon

goes to infinity. Mean square stability also implies that shocks do not have permanent effects

on the variables included in the MSVAR.

Long Term Response of the FFR

Consider the following MS-VAR model with n variables and m = 2 regimes:

Zt = cξt + A1,ξtZt−1 + A2,ξtZt−2 + Vξtεt, εt ∼ N (0, I)
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where Zt is an n × 1 vector of variables, cξt is an n × 1 vector of constants, Al,ξt for l = 1, 2

is an n × n matrix of coeffi cients, VξtV ′ξt is an n × n covariance matrix for the n × 1 vector of

shocks εt. The process ξt controls the regime that is in place at time t and assumes two values,

1 and 2, based on the regime sequence identified in our estimates for cayMS.

In order to obtain the structural representation of the MS-VAR we are going to decompose

the covariance matrix VξtV
′
ξt
as B−1

0,ξt
WξtW

′
ξt
B−1

0,ξt
for each regime. The matrix B−1

0,ξt
captures

the contemporaneous relations among the variables of interest, while the matrix Wξt is the

covariance matrix for the structural disturbances. We use a Cholesky decomposition to identify

the contemporaneous response of the FFR to the other variables. This identifying assumption

implies that the Federal Reserve can react contemporaneously to all variables included in our

estimates, while the rest of the variables react with a lag. We do not attempt to identify other

shocks, so the triangular structure imposed on the remaining variables should be interpreted

as a normalization as opposed to an identifying restriction.

We then have:

Zt = cξt + A1,ξtZt−1 + A2,ξtZt−2 +B−1
0,ξt
Wξtεt, εt ∼ N (0, I) (A10)

B0,ξtZt = B0,ξtcξt +B0,ξtA1,ξtZt−1 +B0,ξtA2,ξtZt−2 +Wξtεt, εt ∼ N (0, I) (A11)

This can rewritten as:

B0,ξtZt = B0,ξtcξt +B1,ξtZt−1 +B2,ξtZt−2 + ωt, ωt ∼ N
(

0,WξtW
′
ξt

)
Suppose we are interested in the long term response of the FFR to inflation. We then

extract the relevant equation for the FFR and focus on the effects coming just from inflation:

FFRt = −B0,FFR,π,ξtπt +B1,FFR,π,ξtπt−1 +B2,FFR,π,ξtπt−2

+B1,FFR,ξtFFRt−1 +B2,FFR,ξtFFRt−2 + ωFFR,t

where the coeffi cient Bl,i,j,ξt gives the impact of variable i to the l-lagged variable j under regime

ξt. Note that −B0,FFR,FFR,ξt = 1. If inflation increases permanently by ∆π we have:

∆FFR = −B0,FFR,π,ξt∆π +B1,FFR,π,ξt∆π +B2,FFR,π,ξt∆π

+B1,FFR,ξt∆FFR +B2,FFR,ξt∆FFR

∆FFR =
−B0,FFR,π,ξt +B1,FFR,π,ξt +B2,FFR,π,ξt

1−B1,FFR,ξt +B2,FFR,ξt︸ ︷︷ ︸
LRFFR,π,ξt

∆π

To ease notation, in the main text, we define:

ψ0,x,ξt
≡ −B0,FFR,x,ξt , ψ1,x,ξt

≡ B1,FFR,x,ξt , ψ2,x,ξt
≡ B2,FFR,x,ξt

20



for x = π,∆GDP,FFR. Therefore, we obtain:

FFRt = ψ0,π,ξt
πt + ψ1,π,ξt

πt−1 + ψ2,π,ξt
πt−2

+ψ0,∆GDP,ξt
∆GDPt + ψ1,∆GDP,ξt

∆GDPt−1 + ψ2,∆GDP,ξt
∆GDPt−2

+ψ1,FFR,ξt
FFRt−1 + ψ2,FFR,ξt

FFRt−2 + ωFFR,t

Note that above −B0,FFR,FFR,ξt = ψ0,FFR,ξt
= 1.

Conditional Steady State

Consider a MS-VAR:

Zt = cξt + AξtZt−1 + Vξtεt

where Zt is a column vector containing n variables observable at time t and ξt = 1, ...,m, with

m the number of regimes, evolves following the transition matrix H. If the MS-VAR has more

than one lag, the companion form can be used to recast the model as illustrated above.

The conditional steady state for the mean corresponds to the expected value for the vector

Zt conditional on being in a particular regime. This is computed by imposing that a certain

regime is in place forever:

Ei (Zt) = µi = (In − Ai)−1 ci (A12)

where In is an identity matrix with the appropriate size. Note that unless the VAR coeffi cients

imply very slow moving dynamics, after a switch from regime j to regime i, the variables

of the VAR will converge (in expectation) to Ei (Zt) over a finite horizon. If there are no
further switches, we can then expect the variables to fluctuate around Ei (Zt). Therefore, the
conditional steady states for the mean can also be thought as the values to which the variables

converge if regime i is in place for a long enough period of time.

The conditional steady state for the standard deviation corresponds to the standard devi-

ation for the vector Zt conditional on being in a particular regime. The conditional standard

deviations for the elements in Zt are computed by taking the square root of the main diagonal

elements of the covariance matrix Vi (Zt) obtained imposing that a certain regime is in place
forever:

ϕ (Vi (Zt)) = (In2 − Ai ⊗ Ai)−1 ϕ
(
VξtV

′
ξt

)
(A13)

where In2 is an identity matrix with the appropriate size, ⊗ denotes the Kronecker product,
and the vectorization operator ϕ (X) takes a matrix X as an input and returns a column vector

stacking the columns of the matrix X on top of one another.
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Book-to-Market Ratio

We use the methods and assumptions of the previous subsection to obtain the present value

decomposition of the book to market ratio. Consider an MS-VAR:

Zt = cξt + AξtZt−1 + Vξtεt

where Zt is a column vector containing n variables observable at time t and ξt = 1, ...,m, with

m the number of regimes, evolves following the transition matrix H. If the MS-VAR has more

than one lag, the companion form can be used to recast the model as illustrated above.

Define the column vectors qt and πt:

qt =
[
q1′

t , ..., q
m′
t

]′
, qit = E0

(
Zt1ξt=i

)
, πt =

[
π1
t , ..., π

m
t

]′
,

where πit = P0 (ξt = i) and 1ξt=i is an indicator variable that is equal to 1 when regime i is in

place and zero otherwise. The law of motion for q̃t = [q′t, π
′
t]
′ is then given by[

qt
πt

]
︸ ︷︷ ︸

q̃t

=

[
Ω CH

H

]
︸ ︷︷ ︸

Ω̃

[
qt−1

πt−1

]

where πt = [π1,t, ..., πm,t]
′ , Ω = bdiag (A1, ..., Am)H, and C = bdiag (c1, ..., cm). Recall that:

E0 (Zt) =
m∑
i=1

qit = wqt, w =

In, ..., In︸ ︷︷ ︸
m


To compute the present value decomposition of the book-to-market ratio, define:

qit+s|t = Et
(
Zt+s1ξt+s=i

)
= E

(
Zt+s1ξt+s=i|It

)
1′x = [0, ...1, ...0, 0, 0]′, mn = m ∗ n

where It contains all the information that agents have at time t, including the probability of
being in one of the m regimes. Note that qit|t = Ztπ

i
t.

Now consider the formula from Vuolteenaho (1999):

θt =
∑∞

j=0 ρ
jEtrt+1+j +

∑∞
j=0 ρ

jEtft+1+j −
∑∞

j=0 ρ
jEte∗t+1+j

Given that our goal is to assess if assets with different risk profiles are affected differently by

the breaks in the long-term interest rates, we are going to focus on the difference between the

book-to-market ratios. Specifically, given two portfolios x and y, we are interested in how the

difference in their book-to-market ratios, θx,t − θy,t, varies across the two regimes:

θx,t − θy,t︸ ︷︷ ︸
Spread in BM ratios

=
∑∞

j=0 ρ
jEt (rx,t+1+j − ry,t+1+j)︸ ︷︷ ︸

PDV of the difference in expected excess returns

−
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
PDV of the difference in expected earnings
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If then we want to correct the spread in BM ratios by taking into account expected earnings,

we have:

θx,t − θy,t +
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
Spread in BM ratios corrected for earnings

=
∑∞

j=0 ρ
jEt (rx,t+1+j − ry,t+1+j)︸ ︷︷ ︸

PDV of the expected spread in excess returns

(A14)

The spread in excess returns, rxy,t ≡ rx,t − ry,t. Then the right hand side of (A14) can be
computed as:∑∞

j=0 ρ
jEt (rxy,t+1+j) =

∑∞
j=0 ρ

j1′rxywqt+1+j|t

= 1′rxyw (I − ρΩ)−1 [Ωqt|t + C (I − ρH)−1Hπt|t
]
.

Therefore, we have:

θ̃xy,t ≡ θ̃x,t − θ̃y,t +
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
Spread in BM ratios corrected for earnings

= 1′rxyw (I − ρΩ)−1 [Ωqt|t + C (I − ρH)−1Hπt|t
]

(A15)

where we have used θ̃xy,t to define the spread in BM ratios corrected for earnings.

Similar formulas are used to compute risk premia for the individual portfolios. The premium

for a portfolio z coincides with the present discounted value of its excess returns:

premiaz,t︸ ︷︷ ︸
Premia

≡
∑∞

j=0 ρ
jEt (rz,t+1+j)︸ ︷︷ ︸

PDV of excess returns

= 1′rzw (I − ρΩ)−1 [Ωqt|t + C (I − ρH)−1Hπt|t
]
, (A16)

where 1′rz is a vector used to extract the PDV of excess returns from a vector containing the

PDV of all variables included in the VAR.

Regime Average We also compute the regime average value of θ̃xy,t. The regime average is

defined as:

θ̃
i

xy ≡ 1′rxyw (I − ρΩ)−1 [Ωqi + C (I − ρH)−1Hπi
]

where πi = 1i and qi ≡ [0, ..., µi, ..., 0] is a column vector that contains the conditional steady

state of for the mean value of Zt conditional on being in regime i, i.e., Ei (Zt) = µi =

(In − Ai)−1 ci, and zero otherwise. Recall that the conditional steady state, µi, is a vector

that contains the expected value of Zt conditional on being in regime i. Therefore, the vector

captures the values to which the variables of the VAR converge if regime i is in place for a

prolonged period of time. Note that θ̃
i

xy is computed by conditioning on the economy being

initially at Zt = µi and in regime i, but taking into account that there might be regime changes

in the future. Therefore, we can also think about θ̃
i

xy as the expected value of the PDV of

excess returns, θ̃xy,t, conditioning on being in regime i today and on the variables of the VAR

being equal to the conditional steady state mean values for regime i. Formally:

θ̃
i

xy = E
(
θ̃xy,t|ξt = i, Zt = µi

)
. (A17)
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These are the values around which we expect θ̃xy,t to fluctuate as the VAR variables Zt fluctuate

around µi.

Similarly, we can compute the regime average value of risk premia for an individual portfolio

z, premiaz,t:

premia
i

z ≡ 1′rzw (I − ρΩ)−1 [Ωqi + C (I − ρH)−1Hπi
]
. (A18)

Formulas (A15), (A16), (A17), and (A18) are used in the paper to produce Figure 10 and

Tables 8 and ??. For each draw of the VAR parameters from the posterior distribution, we

compute the evolution of the PDV of the spread in excess returns over time between high

and low return premia portfolios, θ̃xy,t and individual portfolio premiaz,t, by using (A15) and

(A16). Thus, we obtain a posterior distribution for θ̃xy,t and premiaz,t. The medians of these

posterior distributions are reported as the blue solid lines in Figure 10. Similarly, for each draw

of the VAR coeffi cients, we compute θ̃
i

xy and the difference in the PDV between the two regimes

θ̃
1

xy − θ̃
2

xy. Thus, we obtain a posterior distribution for θ̃
i

xy and for the difference θ̃
1

xy − θ̃
2

xy. The

medians of the distribution of θ̃
i

xy and premia
i

z for i = 1, 2, are reported in Figure 10 (red

dashed line). Table 8 reports the median and the 68% posterior credible sets both for the

distribution of θ̃
i

xy, for i = 1, 2, and for the difference in these across regimes, θ̃
1

xy− θ̃
2

xy. Finally,

Table ?? reports the percentage of draws for which θ̃
1

xy− θ̃
2

xy > 0 and premia
1

z−premia
2

z > 0 as

the probability that risk premia are lower in the high asset valuation/low interest rate regime

than they are in the low asset valuation/high interest rate regime.

Variable Selection for VARs to Compute PDV of Risk Premia

We start with a series of fixed regressors that are relevant for predicting market excess returns

or the return of the spread portfolios. To limit the size of the MS-VAR, we then use the

Akaike information criterion (AIC) to decide whether to include some additional regressors.

Specifically, we compute the AIC for the equation(s) that correspond(s) to the return(s) that

we are trying to predict. We then choose the specification that minimizes the AIC.

Here are the details:

1. MS-VAR for the Market excess return:

Fixed regressors (all lagged): Market excess return, inverse valuation ratio based on cayMS.

The inverse valuation ratio is included because it represents a measure of asset valuation

that can predict future stock market returns. Note that given that we are conditioning to

the regime sequence obtained when estimating cayMS, the intercept for the corresponding

equation will adjust in a way to reflect the low frequency breaks identified above.
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Possible additional variables to be chosen for the estimation based on the AIC: Value

(small) spread (log-difference in the book to market ratio of the small value portfolios

and the book to market ratio of the small growth portfolios), Real FFR, term yield

spread, four of the five Fama and French factors (SMB, HML, RMW, CMA), cay (based

on PCE, available on Martin Lettau’s website.) Note that we do not include the market

excess return from Fama and French (MKTMINRF) as a possible additional regressor

because our dependant variable is the excess market return itself. Therefore, this variable

is automatically included in the MS-VAR.

Additional regressors selected based on the AIC: Value Spread, and SMB and HML factors

from Fama and French.

2. MS-VAR for (a) Momentum return spread: The difference between the excess return of the

extreme winner (M10) portfolio and the excess return of the extreme loser (M1) portfolio;

(b) Value return spread (S1): The difference between the excess return of the small (size

1) high BM portfolio and the excess return of the small (size 1) low BM portfolio; (c)

Value return spread (S2): The difference between the excess return of the size 2 high BM

portfolio and the excess return of the small size 2 low BM portfolio.

Fixed regressors (all lagged): (a) Momentum return spread; (b) Value return spread (S1);

(c) Value return spread (S2); (d) Momentum BM spread: The difference between the

logarithm of the BM ratio of the extreme winner (M10) portfolio and the logarithm of the

BM ratio of the extreme loser (M1) portfolio; (e) Value BM spread (S1): The difference

between the logarithm of the BM ratio of the small (size quintile 1) high book-market

portfolio and the logarithm of the BM ratio of the small (size 1) low book-market portfolio;

(f) Value BM spread (S2): The difference between the logarithm of the BM ratio of the

size quintile 2 high book-market portfolio and the logarithm of the BM ratio of the size

2 low book-market portfolio.

Possible additional variables to be chosen for the estimation based on the AIC: Real FFR

computed as the difference between FFR and Inflation, excess return of small growth

portfolio, excess return of small value portfolio, five Fama-French factors (SMB, HML,

RMW, CMA, MKTMINRF.)

Additional regressors selected based on the AIC: Real FFR and excess return of the small

value portfolio.

25


