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Abstract

We study the identification and estimation of panel data structural dynamic logit models with
a nonparametric specification of the joint distribution of time-invariant unobserved heterogeneity
and observable state variables, i.e., a fixed-effects structural dynamic logit model. We consider
multinomial models with two endogenous state variables: the lagged decision variable, and the
duration in the last choice. This class of models includes as particular cases important economic
applications such as models of market entry-exit, occupational choice, machine replacement,
inventory and investment decisions, or demand of differentiated storable products. The main
challenge is to find a suffi cient statistic that (i) controls for the contribution of the fixed-effect
not only to current utility but also to the continuation values in the forward-looking decision,
and (ii) still leaves information on the parameters of interest. We characterize the minimum
suffi cient statistics for the structural parameters. Based on our identification results, we propose
a Conditional Maximum Likelihood estimator. We apply this estimator to the bus engine
replacement data in Rust (1987) and to the consumer scanner data on demand of a differentiated
storable product in Erdem, Imai, and Keane (2003).
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1 Introduction

Persistent unobserved heterogeneity is pervasive in the empirical analysis using panel data of indi-

viduals, households, or firms. A key econometric issue in dynamic panel data models of economic

behavior consists of distinguishing between state dependence (“true dynamics”) and spurious dy-

namics due to unobserved heterogeneity (Heckman, 1981).1 There are two general approaches to

deal with this issue: random effects and fixed effects models/methods. Random-effects models im-

pose restrictions on the distribution of unobserved heterogeneity (e.g., parametric, finite mixture),

and on the joint distribution of these unobservables and the initial conditions of the observable

explanatory variables. In contrast, fixed-effects methods are very attractive because they are fully

nonparametric in the specification of the joint distribution of unobserved heterogeneity and exoge-

nous or predetermined explanatory variables. Fixed effects are more robust than random effects

methods.

There are different methods within the class fixed-effects estimators. From a conceptual point

of view, the dummy variables estimator is the simplest of these methods: fixed effects are treated

as any other parameter and are estimated jointly with the parameters of interest. Unfortunately,

due to the incidental parameters problem, in most nonlinear panel data models this estimator of

the structural parameters is inconsistent when the number of time periods is fixed (Neyman and

Scott, 1948, Lancaster, 2000). Bias reduction methods, both analytical and simulation-based, have

been proposed to deal with this problem (Hahn and Newey, 2004, Hahn and Kuersteiner, 2011).

A different type of fixed effects methods is based on a transformation of the model that eliminates

the fixed effects. For nonlinear panel data models, Manski’s maximum score estimator of the panel

data static binary choice model is an important example (Manksi, 1987). However, this estimator

is not consistent in the dynamic binary choice model. Finally, other type of fixed effects methods

is based on the derivation of suffi cient statistics for the fixed effects and of a conditional maximum

likelihood estimator of the structural parameters. This approach was pioneered by Andersen (1970)

and extended by Chamberlain (1980). This paper focuses on the fixed effects - suffi cient statistics

approach and studies its applicability to dynamic discrete choice models where agents are forward-

looking and maximize the expected and discounted value of the stream of current and future

utilities. In this paper, we denote these models as structural.2

1See Arellano and Honoré (2001), and Arellano and Bonhomme (2012, 2017) for surveys on the econometrics of
nonlinear panel data models.

2 In contrast, we denote as non-structural to those dynamic models where agents are myopic (not forward-looking).
Admittedly, the myopic model could be also structural.
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Unfortunately, there is a wide class of nonlinear panel data models where it is not possible

to derive suffi cient statistics for the fixed effects. For instance, in the context of binary choice

models, Chamberlain (1993, 2010) shows that a necessary and suffi cient condition to have suffi cient

statistics for the fixed effects is that the distribution of the time-varying unobservable is logistic.3

Similarly, these suffi cient statistics do not exist in discrete choice models where the indexes that

define the model are not additively separable between the fixed effects and the observable explana-

tory variables. This has important implications for structural dynamic discrete choice models. In

these models, even if the fixed effect is additively separable in the one-period utility function, the

solution of the structural model implies that this unobserved variable appears in the continuation

value function interacting non-additively with the observable state variables. This interaction be-

tween the fixed-effect and the endogenous state variables typically makes suffi cient-statistics for the

fixed effects unfeasible.

For non-structural (i.e., myopic) dynamic logit models, Chamberlain (1985) and Honoré and

Kyriazidou (2000) have derived suffi cient statistics for the fixed effects, and have proposed con-

sistent conditional maximum likelihood estimators. In contrast, all the methods and applications

for structural dynamic discrete choice models have considered random-effects models with a finite

mixture distribution, e.g., Keane and Wolpin (1997), Aguirregabiria and Mira (2007), Kasahara

and Shimotsu (2009), Arcidiacono and Miller (2011), among many others. This random-effects

approach imposes important restrictions: the number of points in the support of the unobserved

heterogeneity is finite and is typically reduced to a small number of points, and the dependence be-

tween unobserved heterogeneity and the initial conditions of the observable state variables includes

exclusion restrictions.

In this paper, we revisit the applicability of fixed-effects methods to the estimation of struc-

tural dynamic discrete choice models. We follow the suffi cient statistics approach to study the

identification of payoff function parameters in structural dynamic logit models with a fixed-effects

specification of the time-invariant unobserved heterogeneity. We consider multinomial models with

two different types of endogenous state variables: the lagged decision variable, and the duration

in the last choice. The main challenge for the derivation of suffi cient statistics is that, in general,

the continuation values of the forward-looking decision problem depend on both the fixed-effect

and the observable state variables in a non-additive way. Despite this property of the model, we

3Chamberlain (1993, 2010) considers the model where the time-varying unobservables are independently and
identically distributed. Magnac (2004) studies a two-period model where the two time-varying unobservables have a
general joint distribution.
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show that there are pairs of choice histories such that the ratio between the probabilities of the two

histories does not depend on the fixed effect but still depends on structural parameters, i.e., we

can derive suffi cient statistics for the fixed-effects. Based on our identification results, we propose

a conditional maximum likelihood estimator. We apply this estimator to the bus engine replace-

ment data in Rust (1987) and to the consumer scanner data on demand of a differentiated storable

product in Erdem, Imai, and Keane (2003).

Performing counterfactual experiments and comparative statistics are important motivations

in most applications of structural models. Though the fixed-effects approach delivers more robust

estimates of the structural parameters, only by itself does not provide estimates counterfactuals

and more generally of the marginal effects of parameters and state variables on choice probabilities.

The estimation of these marginal effects requires the identification of the distribution of the fixed-

effects. In our model, this distribution is only partially identified (see Chernozhukov et al., 2013).

We describe a method to obtain a set (interval) estimate for the distribution of fixed effects and for

the marginal effects and counterfactuals. We also show how to point-identify these objects under

the restriction that the distribution of the fixed-effects has a finite mixture structure.

This paper contributes to the literature on structural dynamic discrete choice models. The

structure of the payoff function and of the endogenous state variables that we consider in this

paper includes as particular cases important economic applications in the literature of dynamic

discrete choice structural models, such as models of market entry and exit either binary (Roberts

and Tybout, 1997, Aguirregabiria and Mira, 2007) or multinomial (Sweeting, 2013; Caliendo et al,

2015); occupational choice models (Miller, 1984; Keane and Wolpin, 1997); machine replacement

models (Rust, 1987; Das, 1992; Kennet, 1993; and Kasahara, 2009); inventory and investment

decision models (Aguirregabiria 1999; Ryan, 2013; Kalouptsidi, 2014); demand of differentiated

products with consumer brand switching costs (Erdem, Keane, and Sun, 2008) or storable products

(Erdem, Imai, and Keane, 2003; Hendel and Nevo, 2006); and dynamic pricing models with menu

costs (Willis, 2006), or with duration dependence due to inflation or other form of depreciation

(Slade, 1998; Aguirregabiria, 1999; Kano, 2013); among others.4 Our paper also contributes to the

literature on nonlinear dynamic panel data models by providing new identification results of fixed

effects dynamic logit models with duration dependence (Frederiksen, Honoré, and Hu, 2007).

The rest of the paper is organized as follows. Section 2 describes the class of models that we

4Note that most of the empirical applications cited above in this paragraph do not allow for time-invariant
unobserved heterogeneity. This is still a common approach in empirical applications. The exceptions, within the
cited papers, are Keane and Wolpin (1997), Erdem, Imai, and Keane (2003), Willis (2006), Aguirregabiria and Mira
(2007), and Erdem, Keane, and Sun (2008).
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study in this paper. Section 3 presents our identification results. Section 4 deals with estimation

and inference. In section 5, we illustrate our methods in the context of two empirical applications.

Section 6 summarizes and concludes.

2 Model

Time is discrete and indexed by t that belongs to {1, 2, ...,∞}.5 Agents are indexed by i. Every

period t, agent i chooses a value of the discrete variable yit ∈ Y = {0, 1, ..., J} to maximize her

expected and discounted intertemporal utility Et
[∑∞

j=0δ
j
i Ui,t+j(yi,t+j)

]
, where δi ∈ (0, 1) is agent

i’s time discount factor, and Uit(y) is her one-period utility if she chooses action y. This utility is

a function of four types of state variables which are known to the agent at period t:

Uit(y) = α (y, ηi, zit) + β (y,xit, zit) + εit(y). (1)

zit and xit are observable to the researcher, and εit and ηi are unobservable. The vector zit contains

exogenous state variables and it follows a Markov process with transition probability function

fz(zi,t+1|zit). The vector xit contains endogenous state variables. We describe below the nature of

these endogenous state variables and their transition rules. Both zit and xit have discrete supports

Z and X , respectively. The unobservable variables {εit(y) : y ∈ Y} are i.i.d. over (i, t, y) with an

extreme value type I distribution. The vector ηi represents time-invariant unobserved heterogeneity

from the point of view of the researcher. Let θi ≡ (ηi, δi) represent the unobserved heterogeneity

from individual i. The probability distribution of θi conditional on the history of observable state

variables {zit,xit : t = 1, 2, ...} is unrestricted and nonparametrically specified, i.e., fixed effects

model. Functions α (y, η, z) and β (y,x, z) are nonparametrically specified but they are bounded.

This specification is closely related to Rust model (Rust, 1987, 1994). In particular, the time-

varying unobservables εit(y) satisfy conditions of additive separability and conditional independence,

and they have a extreme value distribution. However, the model also relaxes some important con-

ditions in Rust model. The inclusion of the unobservable ηi, through the term α (y, ηi, zit), implies

relaxing Rust’s assumptions of additive separability and conditional independence of the unobserv-

ables. There is time-invariant unobserved heterogeneity that can interact, in an unrestricted way,

with the exogenous state variables zit and the choice yit. This specification of the utility function

represents a pretty general fixed effects, semiparametric logit model. Furthermore, the model allows

for unobserved heterogeneity in the discount factor δi.

5The time horizon of the decision problem is infinite.
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The assumption of additive separability between ηi and the endogenous state variables in xit

is key for the identification results and estimation methods in this paper. This condition does not

imply that the conditional-choice value functions, that describe the solution of the dynamic model,

are additive separability between ηi and xit. In general, the solution of the dynamic programming

problem implies a value function that is not additively separable in ηi and xit even when the utility

function is additive in these variables.

The model can accommodate two types of endogenous state variables that correspond to two

different types of state dependence, xit = (yi,t−1, dit): (a) dependence on the the lagged decision

variable, yi,t−1; and (b) duration dependence, where dit ∈ {1, 2, ...,∞} is the number of periods

since the last change in choice. The lagged decision has the obvious transition rule. The transition

rule for the duration variable is:

di,t+1 = fd(yit,xit) ≡ 1 {yit = yi,t−1} dit + 1 (2)

where 1{.} is the indicator function. We use the vector-valued function fx(y,xit) = [y , fd(y,xit)]

to represent in vector form the transition rules of the vector x of endogenous state variables.6

The term β (y,xit, zit) in the payoff function captures the dynamics, or structural state depen-

dence, in the model. We distinguish in this function two additive components that correspond to

the two forms of state dependence in the model:

β (y,xit, zit) = 1{y = yi,t−1} βd (y, dit, zit) + 1{y 6= yi,t−1} βy (y, yi,t−1, zit) (3)

Function βd (y, dit, zit) captures duration dependence. For instance, in an occupational choice

model, this term captures the return on earnings of job experience in the current occupation.

Function βy (y, yi,t−1, zit) represents switching costs. In an occupational choice model, this term

represents the cost of switching from occupation yi,t−1 to occupation y. Without loss of generality,

we set βy(y, y, zit) = 0, i.e., the switching cost of no-switching is zero.7 We also make two assump-

tions on function βd (y, d, zit) that play an important role in some of our identification results. First,

we assume that there is not duration dependence in choice alternative y = 0, i.e., βd (0, d, zit) = 0

for any value of d. Second, we assume that there is a finite value, d∗ <∞, for the duration variable
6Note that these endogenous state variables follow deterministic transition rules. This property of the model

plays an important role in our identification results, and more specifically in our ability to control for unobserved
heterogeneity in the continuation values of the optimal dynamic decision. We discuss this issue in section 3, as well
as the possibility of extending our results to models with endogenous state variables that follow stochastic transition
rules.

7Given the payoff function in equation (3), the parameter βy(y, y) is completely irrelevant for an individual’s
optimal decision. When yit = yi,t−1 = y, we have that β (y,xit) = βd (y, dit) + 0 such that the term βy (y, y) never
enters in the relevant payoff function. Therefore, βy (y, y) can be normalized to zero without loss of generality.
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such that the marginal return of duration is zero for values greater that d∗:

βd (y, d, z) = βd (y, d∗, z) for any d ≥ d∗ (4)

For the moment, we assume that the researcher knows the value of d∗. Later we show that the

value of d∗ is identified from the data.

Assumption 1 summarizes all our conditions on the model. For the rest of the paper, we assume

that this assumption holds.

ASSUMPTION 1. (A) The time horizon is infinite and δi ∈ (0, 1). (B) The utility function has

the form given by equations (1) and (3), and functions α (y, η, z), βd (y, d, z), and βy(y, y−1, z) are

bounded. (C) βy(y, y, z) = 0; βd (0, d, z) = 0; and there is a finite value of duration, d∗ < ∞,

such that βd (y, d, z) = βd (y, d∗, z) for any d ≥ d∗. (D) {εit(y) : y ∈ Y} are i.i.d. over (i, t, y)

with a extreme value type I distribution. (E) zit has discrete and finite support Z and follows a

time-homogeneous Markov process. (F) The probability distribution of θi ≡ (ηi, δi) conditional on

{zit,xit : t = 1, 2, ...} is nonparametrically specified and completely unrestricted. �

The following are some examples of models within this class.

(a) Market entry-exit models. In the simpler version, there is only one market, and the choice

variable is binary and represents a firm’s decision of being active in the market (yit = 1) or not

(yit = 0), e.g., Dunne et al. (2013). The only endogenous state variable is the lagged decision,

yi,t−1. The parameter −βy (1, 0) represents the cost of entry in the market. Similarly, the parameter

−βy (0, 1) represents the cost of exit from the market. An extension of the basic entry model includes

as an endogenous state variable the number of periods of experience since last entry in the market,

dit, that follows the transition rule di,t+1 = yit dit + 1. The parameter βd (1, d) represents the effect

of market experience on the firm’s profit (Roberts and Tybout, 1997). The model can be extended

to J markets, and then the two endogenous state variables are the index of the market where the

firm was active at the last period (yi,t−1) and the number of periods of experience in the current

market (dit). The parameter βy (y, y−1) represents the cost of switching from market y−1 to market

y (Sweeting, 2013; Caliendo et al, 2015).

(b) Occupational choice models. A worker chooses between J occupations and the choice alternative

of not working (y = 0). There are costs of switching occupations. This implies that a worker’s

occupation at previous period, yit−1, is a state variable of the model. The parameter βy (y, y−1)

is the cost of switching from occupation y−1 to occupation y. There is (passive) learning that

increases productivity in the current occupation. Therefore, duration in the current occupation,
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dit, is a state variable (Miller, 1984; Keane and Wolpin, 1997). Parameter βd (y, d) represents the

return of experience on the worker’s utility (e.g., on earnings).

(c) Machine replacement models. The choice variable is binary and it represents the decision of

keeping a machine (yit = 1) or replacing it (yit = 0). The only endogenous state variable is the

number of periods since the last replacement, dit, i.e., the machine age. The evolution of the

machine age is di,t+1 = yit dit + 1. The parameter βd (1, d) represents the effect of age on the firm’s

profit, e.g., productivity declines and maintenance costs increase with age (Rust, 1987; Das, 1992;

Kennet, 1993; and Kasahara, 2009).8 More generally, the class of models in this paper includes

binary choice models of investment in capital, inventory, or capacity (Aguirregabiria 1999; Ryan,

2013; Kalouptsidi, 2014), as long as the depreciation of the stock is deterministic.

(d) Dynamic demand of differentiated products. A differentiated product has J varieties and a

consumer chooses which one, if any, to purchase (no purchase is represented by y = 0). Brand

switching costs imply that the brand in the last purchase is a state variable (Erdem, Keane, and

Sun, 2008). For storable products, the duration since last purchase, dit, represents (or proxies) the

consumer’s level of inventory that is an endogenous state variable (Erdem, Imai, and Keane, 2003;

Hendel and Nevo, 2006). The parameter βd (y, d) captures the effect of inventory on the consumer’s

utility, and parameter βy (y, y−d) represents brand switching costs.

(e) Menu costs models of pricing. A firm sells a product and chooses its price to maximize in-

tertemporal profits. Let pit be the nominal log-price, and pit − π t is the real log-price, where π

is the inflation rate in the economy. Every period the firm decides whether to keep its nominal

price (yit = 0) or to adjust the nominal price (yit = 1) such that the real price becomes equal to a

constant r∗ (i.e., the nominal price becomes r∗ + π t). Therefore, the real log-price at any period t

can be represented as r∗− π dit, where dit represents the duration since the last price change. The

firm’s profit has two components: a variable profit that depends of the real price, r∗ − π dit; and

a fixed menu cost that is paid only if the firm changes its nominal price. Duration since last price

change is an endogenous state variable because inflation erodes the nominal price (Slade, 1998;

Aguirregabiria, 1999; Willis, 2006; Kano, 2013). �

We now derive the optimal decision rule and the conditional choice probabilities in this model.

Agent i chooses yit to maximize its expected and discounted intertemporal utility. In our model,

8 In some versions of this model, such as Rust (1987), the endogenous state variable represents cumulative usage
of the machine and it can follows a stochastic transition rule. In this paper, we do not study the identification of
that model. We discuss this issue in section 3.
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with infinite horizon and time-homogeneous utility and transition probability functions, Black-

well’s Theorem establishes that the value function and the optimal decision rule are time-invariant

(Blackwell, 1965). The optimal choice at period t can be represented as:

yit = arg max
y∈Y

{
α (y, ηi, zit) + β (y,xit) + εit(y) + δi Ezi,t+1|zit [Vθi (fx(y,xit), zi,t+1)]

}
(5)

where Vθi (x, z) is the integrated (or smoothed) value function for agent type θi, as defined by Rust

(1994).9 The operator Ezi,t+1|zit [.] represents the expectation over the distribution of the exogenous

state variables zi,t+1 conditional to zit. The extreme value type 1 distribution of the unobservables

ε implies the following Bellman equation for the integrated value function:

Vθi (xit, zit) = ln

∑
y∈Y

exp
{
α (y, ηi, zit) + β (y,xit) + δi Ezi,t+1|zit [Vθi (fx(y,xit), zi,t+1)]

} (6)

And the conditional choice probability (CCP) function has the following form:

Pθi (y | xit, zit) =
exp { α (y, ηi, zit) + β (y,xit) + vθi(fx(y,xit), zit) }∑

j∈Y
exp { α (j, ηi, zit) + β (j,xit) + vθi(fx(j,xit), zit) } (7)

where vθi(fx(y,xit), zit) represents the continuation value δi Ezi,t+1|zit [Vθi (fx(y,xit), zi,t+1)].

3 Identification

3.1 Preliminaries

The researcher has a panel dataset of N individuals over T periods of time, {yit, xit , zit : i =

1, 2, ..., N ; t = 1, 2, ..., T}. We consider microeconometric applications where N is large and T

is small. More precisely, our identification results and the asymptotic properties of the proposed

estimators assume that N goes to infinity and T is small and fixed.10 Sections 3.1 to 3.3 deal with

the identification of the component of the utility function that represents dependence with respect

to the endogenous state variables, i.e., functions βy (y, y−1) and βd (y, d). In section 3.4., we study

the identification of the distribution of time-invariant unobserved heterogeneity, θi.

For the rest of this section, we omit the individual subindex i in most of the expression, and

instead we use θ as an index in those functions that depend on the time-invariant unobserved

heterogeneity, i.e., αθ (y, z) and vθ (x, z).
9The integrated value function is defined as the integral of the value function.over the distribution of the i.i.d.

unobservable state variables ε.
10Note that T represents the number of periods with data on the decision variable and the state variables for all

the individuals. The set of observable state variables includes the endogenous state variables yi,t−1 and dit. Knowing
the values of these state variables at the initial period t = 1 (i.e., yi0 and di1) may require data on the individual’s
choices for periods before t = 1. Therefore, the time dimension T may not correspond to the actual time dimension
of the required panel dataset.
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Let yT = {y1, y2, ..., yT } and zT = {z1, z2, ..., zT } be an individual’s observed history of choices

and exogenous state variables, respectively. The model implies that:

P
(
yT | x1, zT , θ

)
=

T∏
t=1

exp { αθ (yt, zt) + β (yt,xt) + vθ (fx(yt,xt), zt) }∑
j∈Y

exp { αθ (j, zt) + β (j,xt) + vθ (fx(j,xt), zt) }
(8)

Following Andersen (1970), Chamberlain (1980, 1985), and Honoré and Kyriazidou (2000), we look

for a statistic, s, that is a deterministic function of the choice history yT and that satisfies two

conditions:11

(i) s is a suffi cient statistic for θ, i.e.,
P(yT |x1,zT ,θ)
P(s|x1,zT ,θ) does not depend on θ.

(ii) P
(
yT |x1, zT , s

)
still depends on (some of) the parameters of interest β (y,x).

The derivation of this suffi cient statistic should deal with two issues that do not appear in the

previous literature on suffi cient statistics for fixed effects in non-structural (or myopic) nonlinear

panel data models. First, we consider models with two types endogenous state variables, and

in particular with duration dependence. Second, and more substantially, we should take into

account that the fixed effect enters in the continuation value function, vθ. This implies that we

need a suffi cient statistic not only for the fixed effect θ but also for the continuation values. This is

challenging because, in general, these continuation values depend on the endogenous state variables.

However, we cannot control for (or condition on) the value of the state variables because this

implies controlling also for β (y,x) such that condition (ii) would not hold. Therefore, we need to

find conditions under which it is possible to control for the continuation values without controlling

for the current value of the endogenous state variables. In other words, we need conditions under

which the continuation value does not depend on current state variables once we condition on

current choices.

Let YT be the set of all the possible choice histories of length T . And let A and B be two choice

histories in YT . Without loss of generality (see section 3.3 below), we consider suffi cient statistics

with the form s = 1{yT ∈ A ∪ B}. Therefore, the probability P
(
yT |x1, zT , θ

)
/P
(
yT |x1, zT , θ

)
ratio in condition (i) above can be represented as P

(
A|x1, zT , θ

)
/P
(
A ∪B|x1, zT , θ

)
. Taking into

account that A and B are mutually exclusive events such that P (A ∪B) = P (A) + P (B), we can

represent conditions (i) and (ii) above as:

11A more standard definition of suffi cient statistic in condition (i) is P
(
yT |x1, zT , θ, s

)
= P

(
yT |x1, zT , s

)
. Note

that, by Bayes’rule and taking into account that s is a deterministic function of yT , we have that condition (i) and
condition P

(
yT |x1, zT , θ, s

)
= P

(
yT |x1, zT , s

)
are equivalent.
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(i∗) P
(
A|x1, zT , θ

)
/P
(
B|x1, zT , θ

)
does not depend on θ.

(ii∗) P
(
A|x1, zT , θ

)
/P
(
B|x1, zT , θ

)
depends on the parameters of interest β (y,x).

As in Honoré and Kyriazidou (2000), our suffi cient statistics include the condition that the

exogenous state variables, z, remains constant over several periods. We make this assumption

explicit in our Propositions on identification, and we explain in section 4 how to deal with this

condition in the implementation of the conditional maximum likelihood estimator. However, for

notational simplicity, we omit z as an argument in most of the expressions for the rest of this

section.

The presentation of our identification results tries to emphasize both the links and extensions

with previous results in the literature. For this reason, we start with section 3.2 that presents

our suffi cient statistics in the binary choice model, that is the model more extensively studied

in the literature of nonlinear dynamic panel data. Section 3.3 presents suffi cient statistics for

multinomial logit models. In these two sections, we provide examples of suffi cient statistics that

identify structural parameters but we do not characterize all the suffi cient statistics that have

information on the structural parameters. This important for effi cient estimation. In section 3.4,

we derive the set of all the suffi cient statistics with information on the structural parameters.

Notation (statistics). It is convenient to define the statistic S(y) that represents the number of

times that choice alternative y is visited in the choice history yT , i.e., S(y) ≡
∑T

t=1 1{yt = y}. The

statistic S(y,n) represents the number of times that the pattern of n consecutive values of choice

alternative y is observed in the history (y0,y
T ), e.g., S(y,2) ≡

∑T
t=1 1{yt−1 = yt = y}; S(y,3) ≡∑T

t=2 1{yt−2 = yt−1 = yt = y}; and so on. Similarly, the statistic S(y,n)(−yT ) has the same definition

S(y,n) but it applies to the choice history (y0, y1, ..., yT−1), i.e., excluding the last choice, yT .

3.2 Binary choice models

Consider the binary choice version of the model characterized by Assumption 1. The optimal

decision rule in this model is:

yt = 1


αθ(1)− αθ(0) + β(1, yt−1, dt)− β(0, yt−1, dt)

+vθ (fx(1, yt−1, dt))− vθ (fx(0, yt−1, dt)) + εt(1)− εt(0) ≥ 0

 (9)

We now present suffi cient statistics for the fixed effect θ in different versions of this model, starting

with the myopic model without duration dependence that has been studied by Chamberlain (1985)

and Honoré and Kyriazidou (2000).
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3.2.1 Myopic dynamic logit without duration dependence

Consider the model in equation (9) under the restrictions of myopic behavior (i.e., δ = 0) and no

duration dependence (i.e., βd(y, d) = 0). These restrictions imply that the difference in contin-

uation values, vθ (fx(1, yt−1, dt)) − vθ (fx(0, yt−1, dt)), becomes zero, and the term β(1, yt−1, dt) −

β(0, yt−1, dt) becomes equal to βy(1, 0)−yt−1 [βy(1, 0) + βy(0, 1)]. We can present this model using

the more standard representation yt = 1{α̃θ + β̃y yt−1+ ε̃t ≥ 0}, with α̃θ ≡ αθ(1)−αθ(0) +βy(1, 0),

β̃y ≡ −βy(1, 0) − βy(0, 1), and ε̃t ≡ εt(1) − εt(0). In a model of market entry-exit, the parameter

β̃y represents the sum of the costs of entry and exit, or equivalently the sunk cost of entry. This is

an important structural parameter.

Remember that S(y) represents the number of times that choice alternative y is visited in the

choice history yT , and S(y,n) is the number of times that choice alternative y is visited n consecutive

times over the history (y0,y
T ). For the binary choice model, we have that S(1) =

∑T
t=1yt, S

(0) =

T−S(1), and S(1,2) =
∑T

t=1yt−1yt. Define also the function σθ(yt−1) ≡ ln
(

1 + exp
{
α̃θ + β̃yyt−1

})
.

Using this notation, the log-probability of the choice history yT conditional on (y0, θ) is:

lnP
(
yT | y0, θ

)
=

T∑
t=1

yt

[
α̃θ + β̃yyt−1

]
− (1− yt−1) σθ(0)− yt−1 σθ(1)

= S(1)α̃θ + S(1,2)β̃y −
[
S(0) − y0 + yT

]
σθ(0)−

[
S(1) + y0 − yT

]
σθ(1)

(10)

Let A and B be two possible realizations of the choice history (y0,y
T ). We are interested in char-

acterizing the necessary and suffi cient conditions on histories A and B such that lnP (A | yA,0, θ)−

lnP (B | yB,0, θ): (i∗) does not depend on θ; and (ii∗) depends on β̃y. From equation (10), we have

that:
lnP (A|yA,0, θ)− lnP (B|yB,0, θ) =

[
S
(1)
A − S

(1)
B

]
[α̃θ + σθ(0)− σθ(1)]

+ [(yA,0 − yB,0)− (yA,T − yB,T )] [σθ(0)− σθ(1)] +
[
S
(1,2)
A − S(1,2)B

]
β̃y

(11)

Condition (i∗) requires that the first two terms are zero for any value of θ. It is clear that this

condition implies that {yA,0, yA,T , S(1)A } = {yB,0, yB,T , S(1)B }. Condition (ii∗) requires S
(1,2)
A 6= S

(1,2)
B .

That is, the pair of choice histories that define the suffi cient statistic have the same values for the

initial condition (y0), the last choice (yT ), and number of times that each alternative is chosen, and

they have different values for the number of times that alternative 1 is chosen at two consecutive

periods. For instance, with T = 3, an example of a pair of choice histories {y0, y1, y2, y3} satisfying

conditions (i∗) and (ii∗) is A = {0, 0, 1, 1} and B = {0, 1, 0, 1}.

Therefore, in the binary myopic model without duration dependence, the statistic s = {y0, yT , S(1)}

is a suffi cient statistic for θ in P
(
y(T ) | y0, θ

)
. Furthermore, there exit pairs of historiesA andB with
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sA = sB = s and S(1,2)A 6= S
(1,2)
B such that parameter β̃y is identified as β̃y = [lnP (A|s)− lnP (B|s)] /[

S
(1,2)
A − S(1,2)B

]
. This result was previously established by Chamberlain (1985).

3.2.2 Forward-looking dynamic logit without duration dependence

Consider a forward-looking version of the model in equation (9) but still without duration de-

pendence. As in the previous model, we have that αθ(1)− αθ(0)+ β(1, yt−1)− β(0, yt−1) can be

represented as α̃θ + β̃yyt−1, where α̃θ and β̃y have the same interpretation as before. Since the

model is of forward-looking behavior, now we have the continuation values vθ (fx(1, yt−1, dt)) −

vθ (fx(0, yt−1, dt)). Since there is not duration dependence, the only state variable is yt−1, and the

transition rule for this state variable is fy(y, yt−1) = y. Therefore, for this version of the model

we have that vθ (fx(1, yt−1, dt))− vθ (fx(0, yt−1, dt)) = vθ(1)− vθ(0) ≡ ṽθ, i.e., continuation values

depend on current choices but on the current state variable yt−1. This is a key property for the

derivation of suffi cient statistics in this model of forward-looking behavior. We can represent this

model using the expression, yt = 1{α̃θ + ṽθ + β̃y yt−1 + ε̃t ≥ 0}. The only difference between this

model and the myopic model is that now the fixed effect has two components: α̃θ that comes from

current profit, and ṽθ that comes from the continuation values. However, from the point of view of

fixed-effects estimation, the two models are observationally equivalent.

A key feature of this model, that determines the observational equivalence with the myopic

model, is the transition of the endogenous state variable, and in particular the property that the

state variable at period t + 1 depends on the choice at period t but not on the state variable

at period t, i.e., xt+1 = yt. Note that this property can be generalized to models where the

transition rule contains unobserved heterogeneity or/and observable exogenous state variables, i.e.,

xt+1 = fθ(yt, zt).

Based on this equivalence between the myopic and the forward-looking models without duration

dependence, Proposition 1 establishes necessary and suffi cient conditions for the identification of

β̃y in the structural (forward-looking) dynamic binary logit model.

PROPOSITION 1. In the forward-looking binary choice model without duration dependence: (a)

the statistic s = {y0, yT , S(1)} is the minimum suffi cient statistic for θ in P
(
yT | y0, θ

)
; and (b)

there exit pairs of histories, A and B, with sA = sB = s and S(1,2)A 6= S
(1,2)
B such that the parameter

β̃y is identified as β̃y = [lnP (A|s)− lnP (B|s)] /
[
S
(1,2)
A − S(1,2)B

]
. �
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3.2.3 Myopic dynamic logit with duration dependence

Now, consider the myopic binary choice model with duration dependence. The continuation values

are zero, and now

β(1, yt−1, dt)− β(0, yt−1, dt) = [(1− yt−1)βy(1, 0) + yt−1βd(1, dt)]− yt−1βy(0, 1)

= βy(1, 0) + β̃y yt−1 + β̃d(dt) yt−1

(12)

with β̃d(dt) ≡ βd(1, dt). Therefore, we can present this model as yt = 1{α̃θ + β̃y yt−1 + β̃d(dt)

yt−1+ ε̃t ≥ 0}. For this model, the log-probability of the choice history yT conditional on (y0, d1, θ)

is:

lnP
(
yT | y0, d1, θ

)
=

T∑
t=1

yt

[
α̃θ + β̃y yt−1 + β̃d(dt) yt−1

]
− σθ(yt−1, dt) (13)

where σθ(yt−1, dt) ≡ ln
(

1 + exp
{
α̃θ + β̃y yt−1 + β̃d(dt) yt−1

})
. In order to emphasize that σθ(yt−1, dt)

does not depend on dt when yt−1 = 0, we use the notation σθ(0) to represent σθ(0, d). Without

loss of generality (w.l.o.g.), we consider that the initial condition is y0 = 0.12 Then, we can rewrite

the log probability in equation (13) as follows:

lnP
(
yT |θ

)
= S(1)α̃θ −

[
S(0) + yT − y0

]
σθ(0)−

T−1∑
n=1

[
S
(1,n)
(−yT ) − S

(1,n+1)
(−yT )

]
σθ(1, n)

+ S(1,2)β̃y +
T−1∑
n=1

[
S(1,n+1) − S(1,n+2)

]
β̃d(n)

(14)

Looking at equation (14), we see that condition (i∗) holds if and only if the vector of statistics

s = {y0, yT , S(1), S(1,n)(−yT )−S
(1,n+1)
(−yT ) : n ≥ 1} is the same for the pair of histories A and B, such that the

terms associated to α̃θ, σθ(0), and σθ(1, n) cancel in the log-probability difference lnP (A)−lnP (B).

It is clear that this suffi cient statistic s always exist. Then, conditional on this statistic s, we have

have that:

ln

[
P (A|s)
P (B|s)

]
=
[
S
(1,2)
A − S(1,2)B

]
β̃y +

T−1∑
n=1

{[
S
(1,n+1)
A − S(1,n+2)A

]
−
[
S
(1,n+1)
B − S(1,n+2)B

]}
β̃d(n)

(15)

Condition (ii∗) requires that, conditional on s, we have that S(1,2)A 6= S
(1,2)
B and/or

[
S
(1,n+1)
A − S(1,n+2)A

]
6=[

S
(1,n+1)
B − S(1,n+2)B

]
for some integer n ≥ 1. The following example shows that this pair of choice

histories exists

EXAMPLE 1. Consider the pair of choice histories, A and B, from t = 0 to t = T : A = {0, 0,1d, 1}

and B = {0,1d, 0, 1}, where vector 1d represents a sequence of d consecutive 1′s. Note that

12Since the the initial duration, d1, is observed, we know that before period t = 1 there were d1 consecutive periods
with y = 1 and y−d1 = 0. Therefore, we can always construct a choice history where the initial condition is y = 0.
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d = T −2. First, we verify that these vector of statistics s = {y0, yT , S(1), S(1,n)(−yT )−S
(1,n+1)
(−yT ) : n ≥ 1}.

It is clear that y0,A = y0,B = 0, yT,A = yT,B = 1, and S(1)A = S
(1)
B = d+ 1. Note also that removing

the last period, A(−yT ) = {0, 0,1d} and B(−yT ) = {0,1d, 0}, and these histories have the same

values for S(1,1)(−yT ) = d, S(1,2)(−yT ) = d − 1, ..., S(1,d)(−yT ) = 1, and S(1,n)(−yT ) = 0 for n > d. Second, note

that S(1,2)A = d and S(1,2)B = d− 1, such that
[
S
(1,2)
A − S(1,2)B

]
β̃y = β̃y. Also, for 1 ≤ n ≤ d− 1, the

statistics S(1,n+1) − S(1,n+2) are all equal to 1 in both histories. However, for n = d, we have that

S
(1,n+1)
A −S(1,n+2)A = 1 and S(1,n+1)B −S(1,n+2)B = 0. Therefore, we have that lnP (A|s)− lnP (B|s) =

β̃y + β̃d(d). �

PROPOSITION 2. In the myopic binary choice model with duration dependence: (a) the sta-

tistic s = {y0, yT , S(1), S(1,n)(−yT ) − S
(1,n+1)
(−yT ) : n ≥ 1} is the minimum suffi cient statistic for θ

in P
(
yT | y0, d1, θ

)
; and (b) suppose that consider T ≥ 3 and consider the pair of histories

A = {0, 0,1d, 1} and B = {0,1d, 0, 1} with d ≥ 1; then, parameter γ(d) ≡ β̃y + β̃d(d) is iden-

tified as γ(d) = lnP (A|s)− lnP (B|s). �

Given the parameters {γ(d) : d = 1, 2, ...T − 2}, we can identify the marginal returns to

experience β̃d(d)− β̃d(d− 1) as γ(d)− γ(d− 1) for any value d between 2 and T − 2. Note that, in

this binary choice model with both switching costs and duration dependence, it is not possible to

separately identify the switching cost parameter , β̃y, and the return of the first period of experience,

β̃d(1).13 However, knowledge of the structural parameters γ(d) is suffi cient to answer most relevant

economic questions.

3.2.4 Forward-looking dynamic logit with duration dependence

Now, the optimal decision rule includes the difference of continuation values vθ (1, dt + 1)− vθ (0),

where for choice y = 0 we use the vθ (0) instead vθ (0, d) to emphasize that there is not duration

dependence when the state is y = 0. Therefore, we have the model:

yt = 1
{
α̃θ + β̃y yt−1 + β̃d(dt) yt−1 + vθ (1, dt + 1)− vθ (0) + εt ≥ 0

}
(16)

For this model, the log-probability of the choice history yT conditional on (y0, d1, θ) is:

lnP
(
yT | y0, d1, θ

)
=

T∑
t=1

yt

[
α̃θ + β̃yyt−1 + β̃d(dt)yt−1 + vθ (1, dt + 1)

]
− σθ(yt−1, dt) (17)

13This under-identification result is related to the under-identification of the autoregressive of order two model,
AR(2), studied by Chamberlain (1985). In that model, we have yit = 1{α̃i + β1 yi,t−1 + β2 yi,t−2 + ε̃it ≥ 0}.
Chamberlain showed that the parameter β2 is identified but the parameter β1 is not.
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where now α̃θ ≡ αθ(1) − αθ(0) + βy(1, 0) − vθ (0), and σθ(yt−1, dt) ≡ ln(1+ exp{α̃θ+ β̃yyt−1+

β̃d(dt)yt−1+ vθ (1, dt + 1)}). Again, to emphasize that σθ(yt−1, dt) does not depend on dt when

yt−1 = 0, we use the notation σθ(0) to represent σθ(0, d).

Similarly as we did in the myopic model with duration dependence, we consider that the initial

condition is y0 = 0. Then, we can obtain the following expression for the log-probability:

lnP
(
yT |θ

)
= S(1)α̃θ −

[
S(0) + yT − y0

]
σθ(0)−

T−1∑
n=1

[
S
(1,n)
(−yT ) − S

(1,n+1)
(−yT )

]
σθ(1, n)

+
T∑
n=1

[
S(1,n) − S(1,n+1)

]
vθ(1, n)

+ S(1,2)β̃y +
T−1∑
n=1

[
S(1,n+1) − S(1,n+2)

]
β̃d(n)

(18)

This expression shows that to control for the fixed effect in vθ(1, n) we need to control for the

statistic S(1,n) − S(1,n+1). Therefore, the minimum suffi cient statistic for θ is s = {y0, yT , S(1),

S
(1,n)
(−yT ) − S

(1,n+1)
(−yT ) , S

(1,n) − S(1,n+1) : n ≥ 1}. Given a pair of histories A and B, then the log-

probability difference lnP (A|sA) − lnP (B|sB) does not depend on θ if and only if sA = sB, i.e.,

condition (i∗). Furthermore, the log-probability difference depends on the structural parameters

β̃y and β̃d(n) if and only if S(1,2)A 6= S
(1,2)
B and S(1,n+1)A −S(1,n+2)A 6= S

(1,n+1)
B −S(1,n+2)B , respectively,

i.e., condition (ii∗).

Now, the key question is whether it is possible to find a pair of histories that satisfy conditions

(i∗) and (ii∗).

EXAMPLE 2. Consider the pair of choice histories, A and B in Example 1 above: A = {0, 0,1d, 1}

and B = {0,1d, 0, 1}. Now, in the forward-looking model, we have that:

lnP (A|sA)− P (B|sB) = β̃y + β̃d(d) + vθ(1, d)− vθ(1, 1) (19)

In this model of forward-looking behavior, this pair of histories does not satisfy condition (i∗),

sA = sB, and log-probability difference depends on the fixed-effect through the continuation value

vθ(1, d)− vθ(1, 1). �

EXAMPLE 3. Consider now the pair of choice historiesA = {0,1d, 0,1d∗+1} andB = {0,1d+1, 0,1d∗},

where d∗ is value defined in section 2 (i.e., β̃d(d+ 1)− β̃d(d) = 0 for any d ≥ d∗), and d is a positive

integer such that d ≤ d∗ − 1. It is straightforward to show that this pair of histories are such that:

ln

[
P (A|sA)

P (B|sB)

]
= β̃d(d

∗)− β̃d(d) + vθ(1, d
∗ + 1)− vθ(1, d+ 1)− σθ(1, d∗) + σθ(1, d+ 1) (20)
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Note that, for d = d∗ − 1, we have that σθ(1, d∗)− σθ(1, d+ 1) = 1. Furthermore, by the definition

of d∗, the continuation value function vθ(1, d) becomes constant for durations greater of equal than

d∗. Therefore, for d = d∗ − 1, we have that lnP (A|sA)− P (B|sB) = β̃d(d
∗)− β̃d(d∗ − 1) such that

the parameter β̃d(d∗)− β̃d(d∗ − 1) is identified. �

PROPOSITION 3. In the forward-looking binary choice model with duration dependence: (a) the

statistic s = {y0, yT , S(1), S(1,n)(−yT ) − S
(1,n+1)
(−yT ) , S

(1,n) − S(1,n+1) : n ≥ 1} is the minimum suffi cient

statistic for θ in P
(
yT | y0, d1, θ

)
; and (b) consider the pair of histories A = {0,1d∗−1, 0,1d∗+1}

and B = {0,1d∗ , 0,1d∗}; then, parameter β̃d(d∗)− β̃d(d∗ − 1) from lnP (A|s)− lnP (B|s). �

Table 1 summarizes the identification results for the dynamic binary logit.

Table 1
Identification of Dynamic Binary Logit Models

Panel 1: Models without duration dependence

Myopic Model Forward-Looking Model
Suffi cient Stat. Identified parameters Suffi cient Stat. Identified parameters

{y0, yT , S(1)} β̃y {y0, yT , S(1)} β̃y

Panel 2: Models with duration dependence

Myopic Model Forward-Looking Model
Suffi cient Stat. Identified parameters Suffi cient Stat. Identified parameters

{y0, yT , S(1), β̃y + β̃d(d) {y0, yT , S(1), β̃d(d
∗)− β̃d(d∗ − 1)

S
(1,n)
(−yT ) − S

(1,n+1)
(−yT ) : n ≥ 1} for d ≤ T − 2 S

(1,n)
(−yT ) − S

(1,n+1)
(−yT ) , if d∗ ≤ T − 2

S(1,n) − S(1,n+1) : n ≥ 1}

Identification of d∗

3.3 Multinomial choice models [Preliminary]

We now generalize the identification results of the forward-looking model in Examples 2 and 4 to the

multinomial case with general T . Proposition 1 deals with the identification of the switching costs

parameters βy (y, y0), while Proposition 2 deals with the identification of the duration dependence
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parameters βd (y, d). In these Propositions we consider a model that includes both switching costs

βy (y, y0) and duration dependence βd (y, d).

PROPOSITION 4. Suppose that T ≥ 3, the conditions in Assumption 1 hold, and P(z1 = z2 =

z3) > 0. Let y0, a, b, and y3 be values in the choice set Y (not necessarily different), and let

A = {y0, a, b, y3} and B = {y0, b, a, y3} represent the two possible choice paths to go from y0

to y3 visiting a and b. Let d1 ∈ {0, 1, ..., d∗} be the duration at period t = 1 such the x1 = (y0, d1).

Consider the following restrictions on the values d, y0, a, b, and y3: (i) a 6= b; (ii) if y0 6= 0

and d1 < d∗, then a 6= y0 and b 6= y0; and (iii) either y3 = 0 or {y3 6= a and y3 6= b}. Define

ỹ ≡ (y0, y1, y2, y3) and let s ∈ {0, 1} be the binary statistic defined as,

s = 1 {zt = z for t = 1, 2, 3; ỹ ∈ A ∪B} (21)

Then, (1) the statistic s is suffi cient for θ such that the probability P (ỹ | s = 1, θ) does not depend

on θ; and (2) lnP (A | s = 1)− lnP (B | s = 1) = ∆y (y0 → y3; a, b), and

∆y (y0 → y3; a, b) ≡ [βy (a, y0) + βy (b, a) + βy (y3, b)]− [βy (b, y0) + βy (a, b) + βy (y3, a)] (22)

that represents the difference in total switching costs between choice paths A and B. This parameter

is identified and can be estimated consistently at a rate root-N as N goes to infinity and T is

fixed. �

Proof: Conditional on s = 1, there are only two possible choice histories, A or B. Therefore,

P(ỹ = A | s = 1, θ) = P (A | θ) /[P (A | θ) + P (B | θ)]. Showing that P (ỹ | s = 1, θ) does not

depend on θ is equivalent to proving that P (A | θ) /P (B | θ) does not depend on θ. Let x1 = {y0, d}.

Under condition (ii) "if y0 6= 0 and d1 < d∗, then a 6= y0 and b 6= y0" we have that the transition

fd(a, y0, d1) can take only two possible values: either a = 0 such that fd(a, y0, d1) = 0; or a 6= 0

and a 6= y0 such that fd(a, y0, d1) = 1. Therefore, we have that fd(a, y0, d1) = 1{a 6= 0}. Using the

same argument, we have that fd(b, y0, d1) = 1{b 6= 0}. Therefore, under these conditions, choice

paths A and B imply the following paths for the endogenous state variables at periods t = 1, 2, 3,

where we use 1a and 1b to represent 1{a 6= 0} and 1{b 6= 0}, respectively:

x̃A =

{[
y0
d1

]
,

[
a
1a

]
,
[
b
1b

]}

x̃B =

{[
y0
d1

]
,

[
b
1b

]
,
[
a
1a

]} (23)

These two paths visit the same set of states, but with different timing. Therefore, given that

the denominator in the logit probabilities depends only on the state and not on the choice, we have
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that the denominators in the expressions for P (A|θ) and P (B|θ) are the same and they cancel in

the ratio P (A|θ) / P (B|θ). To see this in more detail, consider the probabilities for the choice

paths (where we have removed z as an argument for notational convenience):

P (A|θ) =
exp { αθ (a) + β (a, y0, d1) + vθ (a, 1a) }∑

j∈Y
exp { αθ (j) + β (j, y0, d1) + vθ (j, fd(j, y0, d1)) }

× exp { αθ (b) + β (b, a, 1a) + vθ (b, 1b) }∑
j∈Y

exp { αθ (j) + β (j, a, 1a) + vθ (j, fd(j, a, 1a)) }

× exp { αθ (y3) + β (y3, b, 1b) + vθ (y3, fd(y3, b, 1b)) }∑
j∈Y

exp { αθ (j) + β(j, b, 1b) + vθ (j, fd(j, b, 1b)) }

(24)

and,

P (B|θ) =
exp { αθ (b) + β (b, y0, d) + vθ (b, 1b) }∑

j∈Y
exp { αθ (j) + β (j, y0, d) + vθ (j, fd(j, y0, d)) }

× exp { αθ (a) + β (a, b, 1b) + vθ (a, 1a) }∑
j∈Y

exp { αθ (j) + β (j, b, 1b) + vθ (j, fd(j, b, 1b)) }

× exp { αθ (y3) + β (y3, a, 1a) + vθ (y3, fd(y3, a, 1a)) }∑
j∈Y

exp { αθ (j) + β (j, a, 1a) + vθ (j, fd(j, a, 1a)) }

(25)

It is clear that the denominators are the same. Under condition (iii), we have that fd(y3, a, 1a) =

fd(y3, b, 1b) = 1{y3 6= 0}. Thus, the ratio of these probabilities is:

P (A|θ)
P (B|θ) =

exp { αθ (a) + β (a, y0, d1) + vθ (a, 1a) } exp { αθ (b) + β (b, a, 1a) + vθ (b, 1b) }
exp { αθ (y3) + β (y3, b, 1b) + vθ (y3, 1y3) }

exp { αθ (b) + β (b, y0, d1) + vθ (b, 1b) } exp { αθ (a) + β (a, b, 1b) + vθ (a, 1a) }
exp { αθ (y3) + β (y3, a, 1a) + vθ (y3, 1y3) }

= exp {β (a, y0, d1)− β (b, y0, d1) + β (b, a, 1a)− β (a, b, 1b) + β (y3, b, 1b)− β (y3, a, 1a)}
(26)

Now, remember the additive structure of function β (y, y−1, d) = 1{y = y−1} βd (y, d) + 1{y 6=

y−1} βy (y, y−1), with β (0, y−1, d) = 0, βy(y, y) = 0, and βd (y, 0) = 0. Given condition (i), [a 6= b],

we have that β (b, a, 1a) = βy (b, a) and β (a, b, 1b) = βy (a, b). Given condition (ii), [if y0 6= 0, then

a 6= y0 and b 6= y0], we have that β (a, y0, d1) = βy(a, y0) and β (b, y0, d1) = βy(b, y0). Finally, given

condition (iii), [either y3 = 0 or {y3 6= a and y3 6= b}], we have that β (y3, a, 1a) = βy(y3, a) and

18



β (y3, b, 1b) = βy(y3, b). Therefore,

ln

[
P (A)

P (B)

]
= ∆y (y0 → y3; a, b)

≡ [βy (a, y0) + βy (b, a) + βy (y3, b)]− [βy (b, y0) + βy (a, b) + βy (y3, a)]

(27)

We can obtain a root-N consistent estimator of ∆y (y0 → y3; a, b) by using the logarithm of the

ratio between the sample frequencies of choice paths A and B. �

Remark 1.1. [Trinomial Choice Model]. In the trinomial model (J = 2), suppose that d1 < d∗, and

consider the paths A = {0, 1, 2, 0} and B = {0, 2, 1, 0}. These paths satisfy conditions (i) to

(iii) in Proposition 1. From the sample frequencies of these histories we can identify the parameter:

∆y (0→ 0; 1, 2) = [βy (1, 0) + βy (2, 1) + βy (0, 2)]− [βy (2, 0) + βy (1, 2) + βy (0, 1)] (28)

It is simple to verify that ∆y (1→ 1; 0, 2) and ∆y (2→ 2; 0, 1) are also identified and they should

be equal to ∆y (0→ 0; 1, 2). Therefore, the model implies over-identifying restrictions. Consider

the pair of paths A = {0, 0, 1, 2} and B = {0, 1, 0, 2}. The frequencies of these paths identify

the parameter:

∆y (0→ 2; 0, 1) = βy (2, 1)− [βy (0, 1) + βy (2, 0)] (29)

Similarly, we have that ∆y (0→ 1; 0, 2) = βy (1, 2)− [βy (0, 2) + βy (1, 0)] is identified.

Remark 1.2. [Identification of parametric switching cost function]. Consider the Trinomial model

above, and suppose that the switching cost function has the following parametric specification:

βy (yt, yt−1) = β1 |yt − yt−1|+ β2 (yt − yt−1)2, where β1 and β2 are parameters. Given this specifi-

cation and taking into account equation (29), we have that ∆y (0→ 2; 0, 1) = −2β1−4β2. Further-

more, with d1 = d∗, ∆y (1→ 2; 0, 1) is identified and this parameter is equal to −2β2. Therefore,

∆y (0→ 2; 0, 1) and ∆y (1→ 2; 0, 1), together, can identify the parameters β1 and β2 in the switch-

ing cost function.

Remark 1.3. Using our notation, a dynamic structural model without duration dependence is

equivalent assuming that d∗ = 0. Under this restriction, condition (ii) in Proposition 1 becomes

irrelevant such that we can use more choice paths to identify switching costs.

Remark 1.4. The identification result in Proposition 1 is similar to the identification in a non-

structural (i.e., not forward-looking or myopic) dynamic logit model (Honoré and Kyriazidou,

2000). There is a key difference though and it comes from condition (iii). In the myopic model

condition (iii) is not necessary and we can have y3 6= 0 and {y3 = a or y3 = b}. This is possible
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in the myopic model because there are not continuation values and we should not have to control

these values.

Interestingly, this difference provides a test of myopic versus forward-looking behavior that

we present in section 3. The test is based on the following idea: in a myopic model we can

estimate consistently the parameters βy exploiting choice paths that do not satisfy condition (iii). In

contrast, if individuals are forward-looking, using choice that do not satisfy condition (iii) generates

inconsistent estimates of the same parameters. We use this idea to construct a Hausman test of

the null hypothesis of myopic behavior.

Remark 1.5. For notational simplicity, in Proposition 1 we have considered that the choice paths

A and B occur at periods t = 0, 1, 2, 3 in the sample. However, we can construct these choice paths

using any four consecutive periods within the sample. Also, we have limited the discussion to choice

paths with four periods (more precisely, three periods and an initial condition). It is possible to

consider longer choice paths that have identification power.

Proposition 5 provides identification conditions for the duration dependence structural parame-

ters βd (y, d).

PROPOSITION 5. Suppose that T ≥ d∗+2, the conditions in Assumption 1 hold, and P(z1 = z2 =

... = z,d∗+2) > 0. Suppose that the initial condition is x1 = (y, d∗− 1), where y ∈ Y is an arbitrary

choice. Let y′ 6= y be a different choice. Consider choice paths A and B, between periods t = 1

and t = d∗ + 2, such that alternative y is chosen at every period expect at one period where this

alternative is replaced by y′: for path A this replacement occurs at t = 1, and for path B it occurs

at t = 2, i.e., A = {y′, yt = y for t = 2, ..., d∗ + 2}, and B = {y, y′, yt = y for t = 3, ..., d∗ + 2}.

Define ỹ ≡ (y0, y1, ..., yd∗+2) and let s ∈ {0, 1} be the binary statistic defined as,

s = 1 {zt = z for t = 1, 2, ..., d∗ + 2; x1 = (y,d
∗ − 1); ỹ ∈ A ∪B} (30)

Then, (1) the statistic s is suffi cient for θ such that the probability P (ỹ | s = 1, θ) does not depend

on θ; and (2) lnP (A | s = 1)− lnP (B | s = 1) = ∆d (y), and

∆d (y) ≡ βd (y, d∗)− βd (y, d∗ − 1) (31)

that represents the marginal return to duration at dt = d∗. This parameter is identified and can be

estimated consistently at a rate root-N as N goes to infinity and T is fixed. �

Proof: Conditional on s = 1, there are only two possible choice paths, A or B. Therefore, we need

to show that P (A|θ) / P(B|θ) does not depend on θ. Under choice histories A and B, the paths of
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the endogenous state variables between period t = 1 and t = d∗ + 2 are:

x̃A =

{[
y

d∗ − 1

]
,

[
y′
1

]
,
[
y
1

]
, ...,

[
y

d∗ − 1

]
,

[
y
d∗

]}

x̃B =

{[
y

d∗ − 1

]
,

[
y
d∗

]
,
[
y′
1

]
, ...,

[
y

d∗ − 2

]
,

[
y

d∗ − 1

]} (32)

Note that the two histories visit the same states and the same number of times. Therefore, the

denominators in the expressions for P (A|θ) and P (B|θ) are the same and they cancel in the ratio

of probabilities P (A|θ) / P (B|θ). The ratio of probabilities becomes:

P (A|θ)
P (B|θ) =

exp { (d∗ + 1) αθ (y) + αθ (y′) + βy(y′, y) + βy(y, y′) }
exp { (d∗ + 1) αθ (y) + αθ (y′) + βy(y′, y) + βy(y, y′) }

× exp { 0 + 0 + βd(y, 1) + ...+ βd(y, d
∗ − 1) + βd(y, d

∗) }
exp { βd(y, d∗ − 1) + 0 + 0 + βd(y, 1) + ...+ βd(y, d∗ − 1) }

× exp { vθ (y′, 1) + vθ (y, 1) + vθ (y, 2) + ...+ vθ (y, d∗) + vθ (y, d∗) }
exp { vθ (y, d∗) + vθ (y′, 1) + vθ (y, 1) + ...+ vθ (y, d∗ − 1) + vθ (y, d∗) }

= exp { βd(y, d∗)− βd(y, d∗ − 1) }

(33)

We can obtain a root-N consistent estimator of ∆d (y) ≡ βd (y, d∗) − βd (y, d∗ − 1) by using the

logarithm of the ratio between the sample frequencies (over the N individuals) of choice histories

type A and type B. �

Remark 2.1. A key condition for the identification result in Proposition 2 is that durations greater

than d∗ have zero marginal effect on the payoff function. If this assumption does not hold, then

the probability ratio between choice paths A and B depend on the difference of continuation values

vθ (y, d∗ + 1) − vθ (y, d∗). This term depends on the unobserved heterogeneity θ such that s is no

longer a suffi cient statistic for this unobserved heterogeneity. However, the dynamic structural

models in empirical applications impose restrictions on the maximum number of periods with

returns to experience.

Remark 2.2. Proposition 2 considers only choice paths of length d∗ + 2. When the dataset is

such that T > d∗ + 2, we can use more pairs of choice paths to construct suffi cient statistics.

In general, for T ≥ d∗ + 2, we can construct all the following pairs of choice paths A and B

such that lnP (A|θ) /P (B|θ) = ∆d (y). For any j = 1, ..., [T − d∗ − 1], we can construct choice

paths A and B of length d∗ + 1 + j with an initial condition x1 = (y, d∗ − j) and with A =

{y′, yt = y for t = 2, ..., d∗ + 1 + j} and B = {y, y′, yt = y for t = 3, ..., d∗ + 1 + j}. All this pairs

of choice paths can be used to estimate consistently the parameter ∆d (y).
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Remark 2.3. Proposition 2 establishes that in a dynamic logit model with forward looking indi-

viduals and a fixed-effects specification of unobserved heterogeneity, the only structural parameter

related to duration dependence that is identified is ∆d (y) ≡ βd(y, d
∗) − βd(y, d∗ − 1). This result

contrasts with the identification of the myopic version of the fixed-effects dynamic logit model. In

the myopic model there are not heterogeneous continuation values that we should deal with.

Consider the myopic model. The initial condition is x1 = (y, d1), where y ∈ Y is an arbitrary

choice alternative and the duration d1 is restricted to T ≥ d1 + 3. Let y′ 6= y. Define the pair of

choice paths A and B between t = 1 and t = d1 + 3, with A = {y′, yt = y for t = 2, ..., d1 + 3} and

B = {y, y′, yt = y for t = 3, ..., d1 + 3}. These choice paths visit the same values of the endogenous

state variables and with the same frequency. Therefore,

P (A|θ)
P (B|θ) =

exp { (d1 + 2) αθ (y) + αθ (y′) + βy(y′, y) + βy(y, y′) }
exp { (d1 + 2) αθ (y) + αθ (y′) + βy(y′, y) + βy(y, y′) }

× exp { 0 + 0 + βd(y, 1) + ...+ βd(y, d1) + βd(y, d1 + 1) }
exp { βd(y, d1) + 0 + 0 + βd(y, 1) + ...+ βd(y, d1) }

= exp { βd(y, d1 + 1)− βd(y, d1) }

(34)

This implies that the whole function βd(y, d1), for any y ∈ Y and any d1 ≤ min{d∗, T − 3}, is

identified. Define ∆myopic
d (y, d1) ≡ βd(y, d1 + 1) − βd(y, d1), that as shown above is identified for

d1 ≤ T −3. For d1 = 0, given the normalization βd(y, 0) = 0, we have that βd(y, 1) = ∆myopic
d (y, 1).

Then, βd(y, 2) = ∆myopic
d (y, 1) + ∆myopic

d (y, 2), and so on βd(y, d1) =
∑d1

j=1 ∆myopic
d (y, j).

We see that, in a fixed-effects dynamic logit model, allowing for forward looking behavior has

a cost in terms of identification of duration dependence.

4 Estimation and Inference

TBW

5 Empirical Applications

5.1 Bus replacement (Rust, 1987)

Here we revisit the model and data in the seminal article by Rust (1987). The model belongs

to the class of machine replacement models that we have briefly described in section 2. The

superintendent of maintenance at the Madison (Wisconsin) Metropolitan Bus Company has a fleet

of N buses indexed by i. For every bus i and at every period t, the superintendent decides whether

to keep the bus engine (yit = 1) or to replace it (yit = 0). In Rust’s model, if the engine is replaced,
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the payoff is equal to −RC+ εit(0), where RC is a parameter that represents the replacement cost.

If manager decides to keep the engine, the payoff is equal to −c0 − c1(mit) + εit(1), where mit is a

state variable that represents the engine cumulative mileage, and c0 + c1(mit) is the maintenance

cost. We incorporate two modifications in this model. First, we replace cumulative mileage mit

with duration since last replacement. We show below that the two variables are highly correlated.

Second, we allow for time-invariant unobserved heterogeneity in the replacement cost, RCi, and

in the constant term in the maintenance cost function, c0i. Using the notation in our paper, we

have the payoff function is αi(0) + εit(0) if yit = 0, and αi(1) + βd(dit) + εit(1) if yit = 1, where

αi(0) = −RCi, αi(1) = −c0i, and βd(dit) = −c1(dit).

Rust’s full sample contains a total of 124 buses that are classified in eight groups according to

the bus size, and the engine manufacturer, model and year. For the estimation of the structural

model, Rust focuses on groups 1 to 4 that account for 104 buses: 15 buses in group 1; 4 buses in

group 2; 48 buses in group 3; and 37 buses in group 4. For each bus engine, the choice history in

the data includes the actual initial condition of the engine, i.e., the first month where the engine

was installed.

For these 104 buses, the empirical distribution of the number of engine replacements per bus is

the following: 0 engine replacements for 45 buses; 1 replacement for 58 buses; and 2 replacements

for 1 bus. For our fixed effects estimation of the structural parameters βd, choice histories with zero

replacement do not contain any useful information. Therefore, for this first step in the estimation

of the model, we have only 59 buses or choice histories, and 60 complete spells until replacement.

The results below are based on the 58 buses (and duration spells) with only one replacement. For

our analysis, we consider that the frequency of the superintendent’s decisions is at the annual level.

We observe replacement decisions for these 58 buses over 10 years (117 months).

Table 2 presents the empirical distribution of choice histories, and the CMLE of the parameter

βd(d
∗)− βd(d∗ − 1) for different possible values of d∗. Remember that for this model we have the

following identification result. For d∗ ≥ 2:

βd(d
∗)− βd(d∗ − 1) = lnP ({0,1d∗} | d1 = d∗ − 1)− lnP ({1, 0,1d∗−1} | d1 = d∗ − 1) (35)

We can obtain estimates for d∗ equal to 4 and 3 years. Under the hypothesis that d∗ = 4, the

estimate of βd(4) − βd(3) is equal to -0.205 with standard error 0.295 such that this estimate is

not significantly different to zero (p-value = 0.4871). Following the approach described in section

3 to identify the value of d∗, we proceed by decreasing d∗ by one unit. Under the hypothesis that

d∗ = 3, the estimate of βd(3) − βd(2) is equal to −1.070 with standard error 0.121. This estimate
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is significantly different to zero with a p-value very close to zero. Note that βd(d) represents

maintenance costs with negative value. Therefore, based on these estimates, we can conclude that

the marginal maintenance costs of a 3 years old bus is significantly larger than the cost of a two-years

old bus, but this marginal cost is insignificant after 3 years.

Table 2
Bus Engine Replacement (Rust, 1987)

Empirical Distribution of Choice Histories
Frequency

Choice history Absolute % % cumulative

1101111111 3 5.17 5.17
1110111111 11 18.96 24.13
1111011111 9 15.51 39.64
1111101111 18 31.03 70.67
1111110111 7 12.07 82.74
1111111011 5 8.62 91.36
1111111101 3 5.17 96.53
1111111110 2 3.45 100.00

CML Estimate of βd(d
∗)− βd(d

∗−1)

Parameter βd(d∗)− βd(d∗ − 1) Estimate (s.e.) [p-value]

with d∗ = 4 -0.205 (0.295) [0.4871]

with d∗ = 3 -1.070∗∗∗ (0.121) [0.0000]

5.2 Demand of differentiated storable product [Preliminary]

• Consumer scanner data (A.C. Nielsen) on ketchup purchases.

• Same dataset as in Pesendorfer (1998) and Erdem, Imai and Keane (2003), among others.

• 2797 households over 123 weeks.

• Three national brands (Heinz, Hunt’s and Del Monte), and one store brand; these are choices

y = 1, 2, 3, 4.

• Outside option, y = 0, means "No purchase".

• Duration since last purchase represents inventory depletion.

• A consumer’s choice sequence could look like: {1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, ...}.
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Table 3
Switching costs parameters (under symmetry)

Estimate (s.e.)
Heinz Hunts Del Monte Store

Heinz - 1.052∗∗ (0.122) 1.711∗∗ (0.103) 2.199∗∗ (0.102)
Hunts - 0.635 (0.099) 1.225∗∗ (0.095)

Del Monte - 1.016∗∗ (0.092)
Store -

Table 4
Structural duration dependence

Parameter βd(d∗)− βd(d∗ − 1) Estimate s.e.
...

with d∗ = 16 weeks -0.025 0.128

with d∗ = 15 weeks -0.124 0.151

with d∗ = 14 weeks -0.287 0.149

with d∗ = 13 weeks -0.304 0.159

with d∗ = 12 weeks -0.516∗∗ 0.136

6 Conclusions

TO BE WRITTEN
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