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Abstract

Many hedge funds restrict investors’ ability to redeem their investments. We show that lockups al-

leviate a delegation friction. In our model hedge funds can trade a long-term arbitrage opportunity;

doing so increases expected returns but lowers short-term returns. Investors who rationally learn

from returns may mistake a skilled manager who pursues the arbitrage opportunity for an unskilled

manager. Skilled managers therefore have an incentive to avoid redemptions by distorting their

portfolios to enhance short-term returns. The tradeo↵ between the ability to trade the arbitrage op-

portunity more aggressively and investors’ fears of being stuck with an unskilled manager determines

the optimal lockup. We calibrate the model to hedge fund data and show that arbitrage remains

limited even with optimal lockups; the average manager sacrifices 78 basis points in expected returns

per year to improve short-term returns.
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1 Introduction

Many hedge funds impose an initial lockup period to restrict investors’ ability to redeem their invest-

ments. Funds with lockup restrictions significantly outperform open-ended funds.1 This performance

di↵erence implies that managers also benefit from the self-imposed lockup restriction—if not, managers

could enhance their own compensation by removing the restriction. Restrictions on redemptions also

take many other forms such as infrequent redemption windows, notification periods, discretionary gates,

and back-load fees. Managers employ all these tools to increase capital stickiness. In this paper we

model lockups to examine what purpose these tools serve. We show that lockups alleviate a delegation

friction that emerges when investors are uncertain about managerial skill.

Our model has the following elements and sequence of events. Investors have prior beliefs about a

manager who is about to open a fund. The manager o↵ers investors a contract with a fee schedule and a

lockup provision, obtains assets, and trades until the fund is liquidated. Skilled managers earn abnormal

returns by selecting securities and by timing an arbitrage opportunity. Security selection enhances

short-term returns and the long-term arbitrage opportunity increases long-term expected returns at

the expense of short-term returns. Skilled managers know how to trade the arbitrage opportunity to

maximize expected returns. Unskilled managers destroy value.

Fund investors learn about managerial skill from realized returns, and they know that skilled man-

agers profit both by selecting securities and by trading the long-term arbitrage opportunity. They

cannot, however, directly observe managers’ positions nor the arbitrage trade, and so they sometimes

abandon skilled, but unlucky, managers. We solve this model for the manager’s optimal trading rule,

investors’ investment and liquidation policies, and lockup maturity.

1See Aragon (2007) and Agarwal, Daniel, and Naik (2009).
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At the heart of the model is a tradeo↵ that determines the optimal lockup maturity. Investors

perceive the lockup as costly when a manager’s reputation is poor: they may discover that the manager

is unskilled, in which case they are stuck with him for the duration of the contract. Managers, on the

other hand, prefer long contracts. With investors locked in, they can maximize expected returns without

worrying about the negative signal carried by lower short-term returns. In equilibrium, managers o↵er,

and investors accept, lockup contracts because the manager can transfer a part of the expected gain to

the investors as a lockup premium.

Uncertainty about skill is an important feature of the model. If investors know that their manager

is skilled, the lockup provision is redundant. But with uncertainty, it gives managers more time to

demonstrate that they are skilled. Investors learn about managerial skill from returns, and optimally

decide when to withdraw money. This threat of liquidation alters manager behavior. A skilled manager

knows that he might be unlucky—an aggressive bet on the arbitrage opportunity might not pay o↵—in

which case investors infer that he is unskilled and withdraw their investments. The manager therefore

has the incentive to improve his short-term returns by trading the arbitrage opportunity less aggressively.

Managers close to liquidation optimally build reputation by enhancing short-term returns at the expense

of expected long-term returns.

Learning and signaling generate a strong amplification loop. A manager who is concerned about

being liquidated enhances his short-term returns by trading the arbitrage opportunity less aggressively.

Because investors understand that this is the optimal response by a skilled manager, they know short-

term performance is now more informative about skill. Investors’ increased focus on short-term per-

formance, however, gives the manager an even stronger incentive to focus on short-term performance.

The manager’s trading horizon thereby shortens even further.

The threat of liquidation acts as a limit to arbitrage. Managers trade the arbitrage opportunity less
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aggressively than they would if capital was sticky. In the model, the extent to which skilled managers

leave expected returns on the table measures the limits to arbitrage. For example, a manager might

be able to obtain an expected return of 10% per year if he did not need to worry about signaling; but

in equilibrium, with the liquidation threat, his optimal portfolio might earn an expected return of just

6%. In this example, signaling concerns limit arbitrage by 4%.

Investors find long-term contracts less attractive also because they face competition from other

investors. A manager who turns out to be skilled attracts more capital. This competition drives rents

of the manager’s human capital towards him. If, on the other hand, he turns out to unskilled, investors

are stuck with him for the duration of the contract. Competition for skill therefore introduces a costly

asymmetry. Investors dislike long contracts because they are more likely to bind when the manager is

unskilled.

We calibrate the model to match the salient features of the hedge fund industry. These features

include the lockup premium of 4%, fees, the attrition rate of young hedge funds, and the distribution

of the lockup maturities. We show that, without lockup contracts, the average new manager forgoes

167 basis points in expected returns to build up reputation. Optimal lockups decrease this distortion to

78 basis points. These distortions weaken over time as managers build reputation. Among those who

survive a year, the average distortion falls to 29 basis points.

Our paper relates to three strands of literature. First, our model builds on Shleifer and Vishny’s

(1997) insight that arbitrage may be limited because investors may infer from poor short-term perfor-

mance that an arbitrageur is not as competent as they thought, and withdraw capital. In our model,

both investors and managers are rational in their delegation and investment decisions, and in how in-

vestors learn from past returns, and yet the Shleifer and Vishny (1997) mechanism significantly curtails

arbitrage in equilibrium.
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Second, we complement the literature in which investors learn about managers’ abilities from returns.

In models such as those by Berk and Green (2004), Dangl, Wu, and Zechner (2006), Basak, Pavlova,

and Shapiro (2007), and Berk and Stanton (2007), investors rationally learn from past returns but fund

managers do not face a signaling problem that would distort their portfolio choices. In our model,

investors also infer skill from past returns, but managers moreover alter their behavior to signal ability.

Third, the contracting and signaling problem resembles models in which corporations and financial

intermediaries use the maturity of their liabilities as a signal. Diamond (1991) and Stein (2005), for

example, study an environment in which good managers signal their type by choosing short-term con-

tracts. In our model, the underlying signaling problem is di↵erent, and the optimal contract maturity

depends on how costly entrenchment is and how much a long-term contract increases expected returns

by facilitating arbitrage.

Our model is a stylized description of the hedge fund industry. It incorporates only the elements

that are necessary for capturing the key tradeo↵: investors dislike long-term contracts because the

manager might be unskilled, and skilled managers prefer these contracts to be able to trade the arbitrage

opportunity aggressively without worrying about short-term signaling e↵ects. Even this simple setup,

however, gives rich intuition for the forces that determine the optimal contract maturity. Lockups may

also serve other purposes. For example, a mechanism complementary to ours relates to illiquidity. If a

fund holds illiquid assets, it may restrict redemptions to mitigate trading costs. In addition to allowing

managers to exploit long-term arbitrage opportunities, managers can use lockups to match the illiquidity

of their assets and liabilities (Cherkes, Sagi, and Stanton 2009).

We discuss our model as a description of the hedge fund industry, but its mechanism applies more

broadly. It describes any principal-agent setup in which the principal is uncertain about the agent’s

abilities, and the agent can signal ability by enhancing short-term performance at the expense of the
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long term. Our model implies that a long-term contract can alleviate the distortions that emerge from

the signaling-liquidation problem, but that significant distortions may remain.

2 Model

The model has the following sequence of events. The manager first chooses a contract that specifies

the lockup maturity, and then raises capital from investors. The manager then begins trading, and

continues to do so until the fund is liquidated. In addition to the fund’s current investors, there are

outside investors who search and bid for skilled managers.

2.1 Managers’ investment opportunities

A manager is either skilled (denoted by ✓ = g) or unskilled (denoted by ✓ = b). A skilled manager

generates abnormal returns by selecting securities and by trading a long-term arbitrage opportunity.

The manager always generates alpha by selecting securities, but he can choose his exposure to the

arbitrage opportunity. The stock-selection strategy is exposed to idiosyncratic risk. The long-term

arbitrage opportunity is exposed to “crashes:” it earns a riskless return except when there is a crash,

in which case its value jumps. The idiosyncratic risk is represented by standard Brownian motion dB

t

;

the crash risk of the arbitrage opportunity is represented by a Poisson process dN
t

with an intensity �

⇠

.

A dollar invested by a manager in the security selection strategy evolves as,

dS

t

=
⇣

r + ↵

✓

⌘

dt+ �dB

t

+ !̃dN

t

, (1)

where r is the riskless rate, ↵✓ is the manager’s alpha, � is the volatility of the security selection strategy

in the absence of crashes, and !̃ is distributed normally with mean zero and a variance of !2. This
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variance represents the riskiness of the security selection strategy during a crash. The skilled manager

generates excess returns on his selection portfolio, while the unskilled manager tries to select securities

but loses money, ↵g

> 0 > ↵

b.

The price of the long-term arbitrage opportunity evolves as,

dA

t

= (r + �) dt� ⇠

t

dN

t

. (2)

In normal times, this opportunity returns � > 0 in excess of the riskless rate; when it crashes, it returns

�⇠

t

. Because crashes are infrequent, this opportunity generates positive returns most of the time. If

the crash is su�ciently small, the expected excess return on this opportunity is positive; if the crash is

large, it is negative. We assume that ⇠
t

takes one of two values, ⇠h or ⇠l. If ⇠
t

= ⇠

h, the impending crash

is so large that the expected excess return is negative, E[dA
t

� rdt] = � � ⇠

h

�

⇠

< 0. If the impending

crash is small, the expected return is positive. That is, the crash sizes satisfy ⇠

h

>

�

/�⇠ > ⇠

l.

We assume that the expected return on the long-term arbitrage opportunity is zero; that is, without

knowing the size of the impending crash, a manager cannot profit by trading it. The two values of ⇠
t

are equally likely. The value of ⇠
t

is fixed until there is a crash, after which its value is redrawn from

the unconditional distribution.

The return on the manager’s portfolio, which combines the security-selection strategy with the

long-term arbitrage opportunity, is

dR

t

= dS

t

+ ⇡

t

(dA
t

� rdt). (3)

The skilled manager knows whether ⇠

t

is high or low. He invests ⇡

t

2 [�1, 1] in the arbitrage

opportunity, financing this position by buying or selling the riskless asset. The unskilled manager does
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not know whether the impending crash is small or large, and so he always takes a long position to earn

the carry � by choosing ⇡

t

= 1. The unskilled manager’s strategy is as risky as that of the skilled

manager and so fund investors cannot distinguish between the two from volatilities alone.2 Because

funds keep their sizes constant at one—we describe their dividend policies below—R

t

is the cumulative

dollar gross return up to date t.

2.1.1 Discussion

The assumption that the arbitrage opportunity is exposed to crash risk is a modeling device for cap-

turing the idea that the arbitrage trade is a long-term investment opportunity. The unskilled manager

cannot profit by trading this opportunity, but the skilled can. When, unbeknownst to investors, the

impending crash is small, the manager faces no signaling problem: the trade that maximizes long-term

expected returns is the same that maximizes short-term returns. However, when the impending crash

is large, the skilled manager must short the arbitrage opportunity and pay � in order to profit from

the eventual crash. This is the important state, because here the manager has to decide between maxi-

mizing long-term expected returns and signaling skill by enhancing short-term returns. If the manager

maximizes long-term expected returns, investors may interpret his low short-term returns as evidence

of lack of skill and redeem their investments.

The arbitrage opportunity is a positive carry strategy. These strategies earn high Sharpe ratios

in normal times, but they are prone to crashes.3 Strategies that fit this characterization include,

for example, carry trade (Burnside, Eichenbaum, Kleshchelski, and Rebelo 2011), merger arbitrage

(Mitchell and Pulvino 2001), and momentum (Jegadeesh and Titman 1993). Hedge funds trade many

of these strategies (Cochrane 2011, p. 1087). Agarwal and Naik (2004) show that equity hedge funds’

2If the unskilled manager followed a strategy that was more or less risky than that of the skilled manager, investors
would immediately identify him as being unskilled. He must therefore mimic the skilled manager to delay discovery.

3See, for example, Barroso and Santa-Clara (2015) and Moreira and Muir (2016).
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payo↵s resemble those obtained by writing put options on the market index; this strategy earns a small

premium in normal times but bears significant crash risk.

2.2 Contracts

The contract between the manager and the investors specifies the lockup maturity T , management

fee f , and a performance fee � for returns in excess of the riskless rate. When the lockup expires, all

investments become liquid; before this date, all capital is locked up.

The lockup expiration is a Poisson event with an intensity �

e

= 1

T

. Investors who invest in a fund with

a T -year lockup therefore expect the lockup to expire in T years. By assuming stochastic expiration, the

problem is not time-dependent; that is, the passage of time carries no additional information about the

expiration of the lockup. This assumption is appropriate because the long-term arbitrage opportunity

is also a Poisson process—that is, its expected payo↵ also does not vary with the passage of time.

The fund pays dividends to investors so that it always has one unit of capital under management.

With a management fee of f and a performance fee of �, these dividends equal

dD

t

= rdt+ (1� �)(dR
t

� (r + f)dt), (4)

where dR

t

is the fund return.

2.3 Investors, perceived return dynamics, and the market for skill

Risk-neutral investors discount cash flows at the riskless rate r. Each fund has both existing investors

as well as potential investors. The arrival of these other investors, who search for undervalued fund

managers, follows a Poisson process. Because this search process captures the amount of competition

in the market for skill we denote it’s intensity �

c

. The higher the intensity, the more likely it is that a
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skilled manager attracts new capital. All investors value managers the same way. We first solve for this

valuation and then discuss how new investors bid.

A fund’s value to investors depends on their belief that the manager is skilled and the fund’s lockup

status. Investors have a prior belief P
0

that the manager is skilled. Investors update their beliefs P

t

as Bayesians by observing returns. In Section 3.1 we describe how investors update their beliefs. They

also form beliefs about skilled managers’ strategies. For convenience we will use the Ẑ

t

notation to

mean that Ẑ

t

is the expected value of the Z

t

under the investor information set, in contrast to the

skilled manager information set Z

t

. We denote investors’ beliefs about the manager’s portfolio choice

by ⇡̂

t

(⇠, ✓), which depends on the investors’ time-t information set {P
t

, L

t

} and also the crash state and

manager type. Investors do not know the crash state ⇠

t

or the manager type ✓, but they understand

that the manager’s optimal choice ⇡

t

depends on it; in our notation, they believe that if ⇠
t

= ⇠

h and

✓ = g, the manager chooses ⇡̂

t

(⇠h, g). Because the unskilled manager portfolio is constant and equal

to one ⇡̂

t

(⇠, b) = 1, we will omit the type ✓ and use ⇡̂

t

(⇠h) and ⇡

t

(⇠h) to refer to the skilled manager

portfolio from here on.

Investors value a fund at either V (P
t

, L

t

= 1) or V (P
t

, L

t

= 0) depending on its lockup status, where

L

t

= 1 indicates that the lockup is active. If the lockup is active, they value one dollar in the fund at

V (P
t

, L

t

= 1) = Ê

0



Z

⌧

0

e

�rt

dD

t

+ e

�r⌧ (1
⌧c + 1

⌧eV (P
t+⌧

, L

t+⌧

= 0))

�

, (5)

where ⌧ is the time of arrival of outside investors (⌧
p

) or lockup expiration (⌧
e

), whichever comes first.

If outside investors arrive and bid and the manager accepts the bid, current investors get back their

capital. If the lockup expires, investors’ new valuation depends on the manager’s reputation at the time

of this event, taking into account that the fund is now open (L
t+⌧

= 0). Between time t and one of these
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events, investors earn dividends from the fund. When the fund’s lockup has expired, investors can cash

out at will. Investors liquidate if the value of one dollar invested in the fund is less than one dollar,i.e.

as soon as the fund value is lower that the fund net asset value. Because fund expected returns are

increasing in the manager reputation, this redemption decision is of the threshold type, with investors

cashing out as soon as the manager reputation reaches a low enough reputation, or conversely, with

investors investing in the fund as soon as the manager has a high enough reputation. We will label this

threshold p

l

(L), where the argument L makes it clear that this threshold depends on the lockup status

of the fund. We discuss this there thresholds further in Section 3.

When outside investors notice an undervalued fund, which happens with intensity �

c

, they value the

fund as in equation (5). If they value the fund at a premium, they make an o↵er that transfers some of

the surplus to the manager. If they value the fund at a discount, they do not bid,

C(P
t

) =

8

>

>

<

>

>

:

� [V (P
t

, L

t

= 1)� 1] if V (P
t

, L

t

= 1) � 1,

; otherwise.

(6)

Here, � represents the competitiveness of the bidding process. If � = 1, bidding is perfectly competitive

and the manager receives all the surplus. If the manager accepts the bid, current investors have their

capital returned to them, and the new investors take their fund space.

In our baseline model we assume that funds impose lockups on any new investors regardless of the

lockup state of the existing investors. This assumption is consistent with how the industry operates,

and it is also convenient from the modeling perspective.
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2.3.1 Discussion

The arrival of outside investors represents competition for skill. Competition drives rents of the

manager’s human capital back towards the manager. In Berk and Green (2004), capital markets are

competitive, and so investors capture none of these rents. The literature has explored di↵erent mech-

anism that capture this rent transfer. Sirri and Tufano (1998), for example, assume that successful

managers are promoted to manage larger funds. Our assumption that outside investors search for

skilled managers is the same mechanism that Berk and Stanton (2007) propose as an explanation for

the closed-end fund discount puzzle. The mechanism matters less than the outcome. If there is a

mechanism that allows managers to receive pay increases when their perceived value increases (as in

Holmström and Harris (1982)), that pay increase always comes at the expense of the existing investors.

When outside investors successfully bid for an undervalued manager, current investors receive their

capital back—but these are also the states in which they value the manager the highest.

2.4 Manager

Both skilled and unskilled managers discount cash flows at the riskless rate r. By managing a fund,

a manager earns the management fee f and performance fee � specified in the contract. Because the

manager knows that he might receive outside o↵ers in the future, his valuation today also reflects such

potential o↵ers. The manager’s valuation therefore depends on the contract terms, his reputation, and

the arrival rate of the outside o↵ers.4 The skilled manager’s reputation and compensation both depend

4Because the unskilled manager is non-strategic—he always trades to earn the carry from the arbitrage opportunity—we
only need the skilled manager’s value function.
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on his portfolio choices, and he chooses an investment policy ⇡

t

that maximizes his value:

G(P
t

, L

t

, ⇠

t

) = max
⇡t

E

"

Z

⌧

0

e

�rt [�(dR
t

� (f + r)dt) + fdt] + 1
⌧ce

�r⌧c [G(P
t+⌧c , Lt

= 1, ⇠
t

) + C(P
t+⌧c)]

+ 1
⌧ee

�r⌧e
G(P

t+⌧e , Lt+⌧e = 0, ⇠
t

) + 1
⌧le

�r⌧l
G

#

, (7)

where G is the value of an outside option that the manager receives if the fund is liquidated. The

first term represents the fee that the manager receives until one of three events occurs: (1) there is an

outside o↵er at time t+ ⌧

c

that is accepted by the manager; (2) the lockup expires at time t+ ⌧

e

(if the

lockup was currently in place); or (3) fund investors withdraw their investments at time t + ⌧

l

(which

can happen only if the lockup has expired). The manager always accepts the outside o↵er because new

investors pay a front load fee B > 0 and new funds come locked-up.

Every manager who is about to start a new fund is confident that he is skilled. Managers vary in

their initial reputations P

0

. The manager first writes a contract that specifies the lockup maturity T ,

and o↵ers this contract to investors. He chooses the lockup maturity to maximize his valuation,

T

⇤(P
0

) = argmax
T

n

C(P
0

) + E
0

[G(P
0

, L

0

= 1)]
o

, (8)

s.t. C(P
0

) � 0,

where the C(P
0

) � 1 condition ensures that investors break even—that is, that a dollar in the fund

is valued at least at a dollar and investors bid for fund access. The bidding process is the same as

before; investors bid C(P
0

) = � [V (P
0

, L

0

= 1)� 1], where � determines the fraction of surplus that is

transferred to the manager. After starting a fund, a skilled manager makes his decisions according to

equation (7) to maximize his value. An unskilled manager always earns the carry from the arbitrage
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opportunity—these managers can be viewed as either maintaining their belief that they are skilled (and

consistently underestimating the size of the impending crash), or as learning their type after they start

the fund, but choosing to earn the carry to improve their short-term returns. Because the uncondi-

tional expected excess return on the long-term arbitrage opportunity is zero, the unskilled manager’s

portfolio choice does not a↵ect his long-term expected return, while at the same time increasing the

fund performance in the short-term.

2.5 Equilibrium

We assume that investors and managers play the equilibrium that maximizes expected returns and,

therefore, everyone’s valuations. We solve a Markovian equilibrium where the state variables are the

manager’s reputation (P
t

), the fund’s lockup status (L
t

), and the crash state (⇠
t

). Investors’ decisions

can only depend on the manager’s reputation and the lockup status; their beliefs about skilled managers’

actions, however, can also depend on the crash state that they do not know. Skilled managers’ decisions

depend on their reputation and the current crash state. The equilibrium imposes consistency between

the investors’ actions and beliefs, and the actions of skilled managers.

Definition 1. Markovian equilibrium. A Markovian equilibrium is given by skilled managers’ port-

folio ⇡

g

t

, investors’ beliefs about this portfolio ⇡̂

g

t

(⇠), a law of motion for investors’ beliefs P

t

, and

liquidation policies l(P
t

), such that:

(1) Skilled managers’ portfolio choices are optimal given investors’ beliefs, liquidation policies, and

outside o↵ers.

(2) Investors’ beliefs about skilled managers’ portfolio choices are consistent with skilled managers’

portfolio choices.
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(3) Investors’ beliefs about managerial skill are consistent with Bayes’ rule on the equilibrium path.

(4) Current investors’ liquidation policies are optimal given competing investors’ bidding behavior, and

their beliefs about skilled managers’ portfolio choices and the manager’s likelihood of being skilled.

(5) Skilled managers’ portfolio choices maximize expected returns subject to conditions (1) through (4).

3 Model solution

The solution proceeds in three stages. We first describe how investors update their beliefs. We

then discuss the key properties of skilled managers’ optimal portfolio choice. Last, we discuss the

investors’ optimal investment policies. Appendix B contains all propositions and their proofs. The

skilled manager’s and investors’ valuations satisfy a system of coupled di↵erential equations. Appendix C

describes how these equations can be solved.

3.1 Learning about managerial skill

Investors update their beliefs that the manager is skilled as Bayesians. The learning problem divides

into two parts. In periods without a crash, investors face the problem of di↵erentiating between two

processes with di↵erent means but identical variances. When a crash occurs, investors update their

beliefs di↵erently as they observe a very large one-time return. The extent to which investors learn

from the crash depends on their beliefs about the skilled and unskilled managers’ portfolio choices. If

investors believe that both managers have the same exposure to the crash risk, they will not update

their beliefs when there is a crash. If, however, they believe that the managers have di↵erent exposures,

crashes can be highly informative. We assume that, after a crash happens, investors know whether ⇠

t

was high or low.
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We let p

t

denote the log-likelihood ratio that the manager is skilled, p
t

= log
⇣

Pt
1�Pt

⌘

, and use p

t

or P

t

as the state variable depending of convenience. Proposition 1 in the appendix shows that the

log-likelihood ratio of investors’ beliefs about skill evolves as

dp

t

=


t

�

(dR
t

� µ̌

t

dt) +


c

t

(⇠
t

)

!

(dR
t

+ � µ̌

c

t

(⇠
t

)) , (9)

in which dR

t

is the instantaneous non-crash return, dR
t

+ is the crash-event return (if there is a crash at

time t), 
t

and 

c

t

(⇠
t

) are the signal-to-noise ratios of short-term performance and crash performance, µ̌
t

represents investors’ expectations in log-likelihood space about performance in periods without a crash,

and µ̌

c

t

(⇠
t

) represents investors’ expectations (in log-likelihood space) about performance in periods crash

performance given a particular crash state realization.5 We provide the formulas for these variables in

the Appendix.

Equation (9) shows that if investors expect skilled managers to display better short-term perfor-

mance, they infer from positive return surprises (dR
t

� µ̌

t

dt > 0) that the manager is more likely skilled

than not. Investors measure performance relative to how well they expect the average manager to per-

form, µ̂
t

. The informational content of short-term performance is measured by 

t

; it is the di↵erence

between skilled and unskilled managers’ expected short-term performance, scaled by return volatility.

The informational content of crash performance is measured by 

c

t

(⇠
t

); if the crash is large relative to !,

investors significantly revise their beliefs if ⇡̂g

t

6= 1, as long as investors believe that the skilled manager

invested di↵erently from the unskilled manager. A key aspect of the learning problem is that in the

absence of a crash investors know neither the state ⇠

t

nor whether the manager is long or short the

arbitrage opportunity. They therefore have to form beliefs about managers’ choices, and to learn from

performance by averaging across the two crash states.

5Expectations in log-likelihood space are the equal-weighted expected performance of each manager type.
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3.2 Manager’s optimal portfolio choice

We take as given the lockup maturity T and let G(t) = G(p
t

, L

t

, ⇠

t

) denote the skilled manager’s

value function from equation (7) (which is know defined in log-likelihood space p

t

). The value process

G(t) is a martingale for t < ⌧

l

that satisfies the following HJB equation:

rG(t) = f + �(↵g + ⇡

t

(�� �

⇠

⇠

t

)� f) + �

c

C(p
t

) (10)

+ �

c

(G(p
t

, L

t

= 1, ⇠
t

)�G(t)) + �

e

(G(p
t

, L

t

= 0, ⇠
t

)�G(t))

+Gp(t)


t

�

(µ
t

� µ̌

t

) +
1

2
Gpp(t)(t)

2 + �

⇠

(E
t

[G(p
t

+ , L
t

, ⇠

t+

)]�G(t)) .

When the lockup has expired, the valuation respects the boundary condition imposed by investors’

liquidation policy so that G(p
t

, L

t

= 0, ⇠
t

) = G for all p
t

 p

l

(L = 0) , where p
l

(L = 0) is the reputation

threshold at which investors optimally cash from the fund (more on this threshold later). That is, the

manager receives the value of the outside option when investors withdraw their investments.

Equation (10) provides intuition for the forces that shape the manager’s decisions. On the left we

have the the time discounting of the value function. On the right, the first line represents the managed

expected compensation: management fee, expected performance fee due to non-crash and crash periods,

and load fees due to the arrival of new investors’ flows.

In the second line we have the valuation e↵ects of changes in the lockup status of the fund. The first

term captures the valuation gain from new investors being initially locked up; it is zero if the lockup

is already active for the current investors. The second term measures the valuation loss of a lockup

expiration; it is zero for funds with already expired lockups.

In the last line the first two terms capture the valuation e↵ect of expected reputation changes in

periods without a crash. The expected growth rate is increasing in the wedge between a manager’s
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and investors’ beliefs about expected fund performance. This growth rate increases or decreases in

the volatility of reputation, 
t

/�, depending on whether the value function is convex or concave in

reputation. The third term is the valuation e↵ect of expected reputation changes in periods with a

crash. The expected reputation jump in a crash is E
t

[p
t

+ � p

t

] = 1

2

(c
t

)2. A crash has a large impact on

the manager’s valuation if the signal-to-noise ratio 

c

t

is high and learning is sharp, i.e. if the equilibrium

di↵erences across skilled and unskilled portfolios is large relative to the amount of idiosyncratic risk !

to which managers are exposed.

Equation (10) is a system of four coupled integro-di↵erential equations—these are distinct from

ordinary di↵erential equations in that they feature non-local movements in reputation. The number of

equations is four because the system jumps between the two crash states (⇠
t

= {⇠h, ⇠l}) and between

funds with active and expired lockups (L
t

= {0, 1}).

Propositions 2 and 3 show that the manager’s valuation, with some restrictions on the parameters,

is increasing and S-shaped in his reputation. This S-shape induces state-dependent variation in the

manager’s aversion to reputation shocks: a manager with a low reputation prefers reputation shocks

while a highly reputable manager is averse towards them. Proposition 4 shows that lockups reduce

managers’ short-term reputation concerns.

We can examine the determinants of the skilled manager’s portfolio choice by focusing on the terms

in equation (10) that depend on ⇡

t

.

max
⇡t

⇡

t
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, (11)

where the expectation is with respect to the manager’s information set at time t.
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Equation (11) shows that the objective is almost linear in the portfolio choice. The only non-linearity

stems from the manager’s concerns about long-term (that is, post-crash) reputation. Therefore, absent

these concerns, the manager’s portfolio choice will be at one of the extremes, at either ⇡

t

= �1 or

⇡

t

= 1.

Performance fee � gives the manager an incentive to maximize expected returns. Other things equal,

an increase in this fee leads the manager to place more weight in maximizing expected returns. The

performance fee term in equation (11) is positive when the impending crash is small (⇠
t

= ⇠

h) and

negative when it is large.

The second term in equation (11) represents short-term reputational concerns. This term is positive

when 

t

> 0, that is, when investors view high short-term returns as a positive signal about managerial

skill. This short-term reputational e↵ect gives the manager an incentive to take a long position in the

long-term arbitrage opportunity regardless of the size of the impending crash. The more informative

short-term returns are about skill, the more the manager distorts his portfolio.

The last term in equation (11) represents long-term reputational concerns. A manager’s portfolio

choice also a↵ects the manager’s reputation once the crash happens. This term balances out some of

the short-term concerns: while a manager might be tempted to take a long position in the arbitrage

opportunity even when the impending crash is large, he is concerned about what doing so would do

to his reputation if there is a crash. These long-term concerns therefore incentivize the manager to

maximize expected returns.

The relative importances of the short- and long-term reputational concerns depend on the manager’s

horizon. This horizon appears in equation (11) as the di↵erence in the slope of the value function with

respect to reputation (Gp) before and after the crash. These slopes are similar when a manager has

a long horizon; for a manager close to liquidation, however, the before-crash value function is much
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steeper.

Proposition 5 describes the manager’s optimal portfolio choice. When the impending crash is small,

the manager’s optimal strategy is always ⇡

t

= 1; in this case, the strategy that maximizes expected

returns is the same that maximizes short-term returns and therefore best signals skill. When the

impending crash is large, the optimal choice ranges from ⇡

t

= �1 to ⇡

t

= 1 depending on the strengths

of the reputational e↵ects. If the short-term reputational concerns are small enough, the manager

maximizes long-term expected returns by choosing ⇡

t

= �1. If these short-term concerns are large,

they can completely overwhelm the long-term reputational concerns. The manager then maximizes

short-term returns at the expense of long-term expected returns by choosing ⇡

t

= 1. There is also

an intermediate region with �1 < ⇡

t

< 1; here, the marginal long-term reputational concerns exactly

balance out the short-term concerns and payo↵ incentives.

Figure 1 illustrates how the equilibrium portfolio choice depends on reputation. Here, a skilled

manager manages a fund without a lockup clause, knowing that the impending crash is large, ⇠
t

= ⇠

h.

If the manager’s reputation is too low—here, if the probability that the manager is skilled is less than

1

/3—investors are unwilling to invest with the manager. This is the “liquidation region” in the graph.

If the manager’s reputation is low but above the liquidation threshold, the manager has a strong

incentive to maximize short-term performance. He thus invests ⇡

t

= 1 in the long-term arbitrage

opportunity despite knowing that he will su↵er significant losses if there is a crash. This is the optimal

choice because the manager is so close to the liquidation threshold; he cannot a↵ord to maximize long-

term expected returns because, in expectation, it will take too long for the arbitrage opportunity to pay

o↵.

As the manager’s reputation improves in Figure 1, the manager’s reputational concerns lessen,

and the manager shifts towards the strategy that maximizes long-term expected returns. However, only
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Figure 1: Skilled manager’s equilibrium portfolio choice and signaling. This figure shows
how the skilled manager’s equilibrium portfolio depends on his reputation when ⇠

t

= ⇠

h. The skilled
manager runs a fund without a lockup clause. Panel A shows the optimal portfolio and Panel B shows
the expected short-term and long-term returns. The expected short-term return is the expected return
conditional on no crashes. The shaded area on the left denotes managers whose reputation is too low
to raise capital. As the manager’s reputation increases, the manager does not need to improve his
short-term returns to signal skill, and therefore invests in the strategy that maximizes expected returns,
⇡

t

= �1.

when the manager’s reputation is very high—here, if the probability that the manager is skilled is above

0.8—he follows the strategy that maximizes long-term expected returns, entirely ignoring short-term

signaling issues.

Figure 1 shows that reputational concerns limit arbitrage. A skilled manager with a low reputation

willingly forgoes expected returns to signal his ability to ensure survival. The gap between the maximum

attainable expected return and the expected return that the manager accepts in the equilibrium mea-

sures limits to arbitrage. In Figure 1 the maximum expected return, obtained by shorting the arbitrage

opportunity is 13%; however, a manager whose reputation is just barely above the liquidation threshold

earns an expected return of just 1%. Such a manager trades against the arbitrage opportunity, making

a gamble that there will not be a crash until he has built enough reputation to pursue the expected
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return-maximizing strategy.

Proposition 6 shows that the limits to arbitrage increase as managers get closer to the liquidation

threshold. This result holds for managers who manage funds without lockups and for those whose funds

have lockups and su�cient reputation. It also shows that the limits to arbitrage decrease in the length

of the lockup.

A long-term contract a↵ects a manager’s equilibrium choice by lowering the value he puts on short-

term changes in reputation. The lockup provision ensures that the investors cannot liquidate the fund

even if the manager’s reputation temporarily drops below the level at which investors would like to do

so. The lockup provision therefore provides insurance against temporary drops in reputation. It allows

the manager to take a long-term view to portfolio choice.

3.2.1 Feedback loop and equilibrium multiplicity

The portfolio choice examined in Equation (11) depends not only on exogenous expected returns

� � �

⇠

⇠

t

and endogenous reputation concerns G

p

, but also on investors beliefs about the manager

portfolio choice through the terms 
t

, c
t

, and µ̌

c

t

. This feature is typical of learning environments where

the content of the signal depends on the expected action, and in turn the action taken depends on the

signal content. This mechanism leads to amplification and equilibrium multiplicity.

Intuitively, a reduction in reputation that increases reputation concerns G
p

increases the incentives

to perform well in the short-term and as a result increase ⇡ towards one. Investors realize this change

in incentives and adjust upwards their beliefs about the gap between the short-term performance of

skilled and unskilled managers 

t

. This further increases incentives to perform well in the short term

through second term in Equation (11) and increases ⇡ further.

Multiplicity arises naturally if reputation concerns G
p

are large relative to compensation incentives.
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Investors beliefs become self-fulfilling as their learning behavior provide su�cient incentives for the

skilled manage to conform with their expectations. Similar considerations arises for the long-term

reputation concerns because 

c

t

and µ̌

c

t

depend on investors and shape manager portfolio incentives.

Because investors and managers can communicate we focus on the equilibrium with the highest

expected returns (and therefore lowest amount of distortions), as this equilibrium features higher com-

pensation for the manager and higher net distributions to investors.

3.3 Investors’ optimal policy

Investors’ value function satisfies a HJB equation similar to that of the manager. The important

di↵erence between the two is the return dynamics. Whereas the skilled manager knows these dynamics,

under the investors’ information set they are a mixture of the skilled and unskilled managers’ dynamics.

The mixture weight is the manager’s current reputation. Investors’ HJB equation can be written as,

rV (t) = [r + (1� �)(µ̂
t

+ �

⇠

µ̂

c

t

� f)] + �

c

(1� V (t)) + �

e

[V (p
t

, L

t

= 0)� V (t)] (12)

+
1

2
Vpp(t)

2

t

+ �

⇠

⇣

Ê

t

[V (p
t

+ , L
t

)]� V (t)
⌘

,

where the expectation integrate out investors’ uncertainty about the manager type ✓, the crash state

⇠

t

, and the idiosyncratic risk realization !̃. The investors’ valuation depends on the fund expected

net of fees return (first term in the right), the intensity of competition for managers (second term),

the expected time to lockup expiration (third term), and how quickly investors expect to learn about

managerial skill (second line).

Investors’ optimal policy consists of choosing the smallest manager reputation at which they are

willing to invest when the shares are liquid, and the smallest reputation at which they are willing to invest
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when the shares are illiquid for a maturity T . These thresholds are the solution of V (pl(0), L = 0) = 1,

V

p

(pl(0), L = 0) = 0, and V (pl(1), L = 1) = 1. The first and third equality are “value matching”

conditions that state that the investor must be indi↵erent between one dollar inside or outside the fund

at the liquidation threshold. The second equality is a “smooth pasting” condition that arises because

when the fund is open ended the investor has the option to delay divestment. This flexibility implies

that the value function must have zero slope at the optimum threshold. There is no smooth pasting

condition for the optimal investment in the fund because investors cannot postpone investment in the

fund. Once they find a fund, the must invest or loose the investment opportunity.

Proposition 7 shows that the liquidation threshold is increasing in the arrival rate of other investors.

That is, when investors are concerned that good news about the manager’s reputation will be promptly

captured by outside investors, they are less willing to invest with a manager with a low reputation. The

same proposition also shows that when the market for skill is su�ciently competitive, the liquidation

threshold increases in the limits to arbitrage. That is, investors are unwilling to invest in low-reputation

managers when they know that these managers’ equilibrium response is to enhance short-term returns

at the expense of expected returns.

4 Implications of the model

In this section we calibrate the model to the hedge fund industry. We use this calibration to illustrate

why and when skilled managers distort their portfolio choices, and how these distortions change as

managers build reputation. We also show how the lockup contracts alleviate managers’ reputational

concerns, and discuss the factors that determine the optimal lockup maturity.
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Table 1: Calibrating model to hedge fund data

This table reports the parameter estimates that we use to calibrate the model to hedge fund data. The
last column, when applicable, references the study that estimates the parameter, or states how the
parameter is selected.

Parameter Notation Value Note
Risk-free rate r 1%
Fund fees
Performance fee � 20% Agarwal et al. (2009)
Management fee f 1% Agarwal et al. (2009)

Fund risks
Idiosyncratic fund volatility � 11% Agarwal et al. (2009)
Crash volatility ! 5.5%

Long-term arbitrage opportunity
Carry � 4% Jurek and Sta↵ord (2015)
Crash intensity �

⇠

0.33
High crash ⇠

h 24% Calibrated to give skilled managers
Low crash ⇠

l �3% up to 6% returns from market timing
Security selection abilities
Skilled manager’s alpha ↵

g 6% Match the average lockup
Unskilled manager’s alpha ↵

b �5% premium of 4%
Outside o↵ers
Arrival rate �

c

4 Berk and Green (2004) and Aragon (2007)
Rent sharing � 1

4.1 Calibration to hedge fund data

Table 1 summarizes the model parameters and gives the calibrated values; it also references, when

applicable, the study that estimates each parameter. These are the baseline values. We later demon-

strate how, for example, the signaling problem and the optimal lockup maturity respond to changes in

these parameters.

We choose the management fee (f = 1%), performance fee (k = 20%), and idiosyncratic volatility

(� = 11%) to match the median fees and risk estimates of Agarwal, Daniel, and Naik (2009, p. 2231).

We assume that a crash in the model approximates a shock that unfolds over a period of three months,

and set the crash volatility to the volatility over a three-month period, ! = 11%
p

3

/12 = 5.5%.
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We choose the carry of the long-term arbitrage opportunity (�) to match the return of a put-option

writing strategy. Jurek and Sta↵ord (2015) show that a strategy that writes out-of-the-money put

options matches the key features of hedge fund returns, and they estimate that this strategy earns a

CAPM alpha of 7% per year. Mitchell and Pulvino (2001) show that the merger arbitrage strategy

generates a total return of 13%, and that an implicit put writing strategy contributes 3.5% to this total.

We set the carry equal to the lower end of these estimates, � = 3.5%.

We assume that the expected return on the long-term arbitrage opportunity is zero; that is, managers

who do not know whether the impending crash is large or small cannot profit from it. The di↵erence

⇠

h � ⇠

l together with the frequency of crashes �

⇠

determines the returns available to skilled managers

from market timing. We first set �

⇠

= 1

3

; this choice implies that a large crash occurs once every six

years. By then setting ⇠

h = 24%, a skilled manager can earn 1

2

�

⇠

(⇠h � ⇠

l) = 6% per year by timing the

market.6 This is a modest crash in a risk-neutral world. Jurek and Sta↵ord (2015) estimate that the

average hedge fund earned a return of �20% in 2008.

The arrival rate of outside investors controls the speed at which managers capture the rents of

positive news about their skill. Aragon (2007) and Agarwal, Daniel, and Naik (2009) show that the

average fund without a lockup provision delivers a zero net alpha. Such estimates are consistent with

a competitive market for managerial skill (Berk and Green 2004). Therefore, to reflect the typical

evaluation frequency of hedge funds, we set the arrival rate of outside investors to �

p

= 4. This choice

implies that, on average, positive news are diluted in a quarter. We set � = 1, which is the parameter

that determines how managers and investors split rents. In the model, this parameter and the arrival

rate of outside o↵ers enter multiplicatively, and so we can vary either � or the arrival rate to alter the

amount of competition for skill.

6Because the two crash states are equally likely and the expected excess return on the long-term arbitrage opportunity
is zero, equation (2) implies that 1

2

�

⇠h + ⇠l
�

= �
�⇠
. The choices of ⇠h, �, and �⇠ therefore determine ⇠l.
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Parameters ↵g and ↵

b represent skilled and unskilled managers’ security selection skills. Two equi-

librium conditions restrict these choices. First, unskilled managers have to underperform the risk-free

rate, which is the investors’ best outside option. Second, the gap between the skilled and unskilled

managers has to be su�ciently large so that investors interpret abnormal positive performance as good

news about type. For this condition to hold both when the impending crash is large or small, the

di↵erence in alphas has to be at least as large as the carry, ↵g � ↵

b � �. With these restrictions in

mind, we use the lockup premium to choose ↵

g and ↵

b. Aragon (2007) shows that funds with lockup

provisions earn net alphas between 4% and 7% relative to funds with no restrictions; Agarwal, Daniel,

and Naik (2009) estimate a 3% to 4% premium. The lockup premium increases in the gap between ↵

g

and ↵

g because it is about the risk of being tied up with an unskilled manager who earns low returns.

We set ↵g = 6% and ↵

b = �5% which, in the model, generate a lockup premium of 3.8%.

4.2 Reputation, survival, and optimal portfolio choice

Managers who are concerned about their reputation trade the long-term arbitrage opportunity

cautiously; by distorting their portfolios, they can improve their chances of survival. Figure 2 shows

how managers enhance their changes of survival. We give managers of di↵erent reputations open-ended

funds and measure their one-year survival rates. In this computation, all managers are skilled, and

therefore equally deserving of surviving. Not everyone, however, survives; no matter what portfolio they

choose, they get liquidated if they are unlucky. Because investors learn from returns, they sometimes

mistake an unlucky skilled manager for an unskilled manager. This risk increases as we get closer to

the liquidation boundary.

The thick solid line in Figure 2 shows the survival rates of managers who make the equilibrium

choices. This choice maximizes the manager’s own valuation, which depends crucially on survival and
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Figure 2: Survival of skilled and unskilled managers. This figure shows the one-year survival rates
for skilled and unskilled managers of di↵erent initial reputations. The thick solid line represents skilled
managers who make equilibrium portfolio choices. The thick dashed line represents skilled managers who
deviate from the equilibrium by maximizing expected returns. The thin solid line represents unskilled
managers who always maximize short-term returns by choosing ⇡

t

= 1.

the expected evolution of reputation. The thick dashed line has the same managers instead choosing

portfolios that maximize long-term expected returns. That is, the managers now choose their portfolios

without worrying about the signal that their lower short-term returns send to the investors. Here, the

manager deviates unilaterally; that is, investors assume that both sets of managers make equilibrium

choices. We also report, for reference, the survival rates of unskilled managers. Because unskilled

managers, on average, generate lower returns, their survival rates are significantly lower than those of

equally reputable skilled managers.

Figure 2 shows that managers’ equilibrium choices significantly enhance their survival probabilities.

The e↵ect is particularly strong among managers who are close to the liquidation threshold. As shown

in Figure 1, these are also the managers who distort their behavior the most. They understand that

the long-term arbitrage opportunity typically does not pay o↵ in the short run, and so they instead
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Figure 3: Reputation and limits to arbitrage over time. This figure simulates five years of data
for skilled and unskilled managers. Each manager has an initial reputation of 0.64. Panel A plots
the survival rates of these managers. The thick line represents skilled managers who make equilibrium
portfolio choices. The thin solid line represents unskilled managers who always maximize short-term
returns by choosing ⇡

t

= 1. Panel B plots the average reputation of a skilled manager conditional
on surviving. Panel C plots limits to arbitrage for the skilled manager. Limits to arbitrage is the
di↵erence between the maximum expected return that the manager could obtain and the one he obtains
in equilibrium.

enhance short-term returns to build reputation. As we increase reputations, the gap between the two

sets of skilled managers disappears; when a manager’s reputation is high enough, he does not need to

distort his behavior to ensure survival.

Figure 3 shows how managers alter their behavior as they build reputation. In this analysis, we

examine a manager with a reputation of 0.64. This manager distorts his portfolio moderately to signal

skill. Instead of choosing ⇡

t

= �1 to maximize long-term expected returns when the impending crash

is large, he chooses a portfolio of ⇡
t

= �0.74.

We now track this manager over time. Even when following the equilibrium strategy, 9 percent of

these managers get liquidated over the first year. We also report the survival rates of unskilled managers.

The survival rates show that investors therefore typically reach the right conclusion. However, because

returns are noisy, some unskilled managers survive for “too long,” and some skilled managers get

liquidated despite being skilled.
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Panel B of Figure 3 shows that, conditional on survival, skilled managers’ reputations improve. If

the manager survives for a year, his reputation has increased from 0.64 to 0.74. This increase is due to

a combination of two factors. First, the manager’s reputation increases because the manager is skilled

and earns high returns, and the investors therefore, on average, correctly revise their estimates upwards.

Second, because we condition on survival, we cut out the left tail of the distribution, that is, we remove

the skilled-but-unlucky managers whose reputations fall below the liquidation threshold.

Panel C of Figure 3 shows the average limits to arbitrage, which is the gap between the maximum

available expected return and the equilibrium expected return measures limits to arbitrage. This gap

measures the amount of returns that the manager leaves on the table because the reputational cost from

harvesting these returns is too high.

The average skilled manager begins to trade the long-term arbitrage opportunity more aggressively

as his reputation improves. This is the optimal choice; the manager is no longer as concerned about

survival, and so the gain from higher returns o↵sets the reputational cost of lower short-term returns.

In Panel C, however, limits to arbitrage initially increase because of Jensen’s inequality. Although the

average skilled manager’s reputation improves, some experience a decline because of bad luck. Because

these unlucky managers tilt their strategies sharply away from the arbitrage opportunity (see Figure 1),

the average limits to arbitrage increases. Initially, the average skilled manager foregoes 125 basis points

in expected returns to signal skill. This amount increases to 147 basis points in a year before starting

the decline. By the end of year two, the average manager gives up just 85 basis points in returns.

4.3 Signaling and commitment

In the model skilled managers sometimes deliberately destroy value to signal skill. Instead of earning

an expected return of 10%, a skilled manager may earn a return of just 2% in equilibrium; the threat
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of liquidation induces him to distort his behavior. Skilled managers would extract more value from the

market if they could commit not to signal; that is, if investors could write and enforce a contract that

forces skilled managers to maximize expected returns.

Because investors cannot write such contracts, the set of managers to whom they are willing to

provide capital is smaller. As we move below the equilibrium liquidation threshold, the likelihood that

a manager is skilled is lower and, if these managers were given assets to manage, they would distort

their portfolios the most. We can quantify the e↵ects of the inability to coordinate by changing the

model so that, first, skilled managers always maximize expected returns and, second, investors know

that skilled managers behave this way and update their beliefs consistent with this knowledge.

In Figure 1, the model parameters are such that the liquidation threshold is XL = 0.34, and the

managers close to this threshold maximally distort their portfolios to ensure survival. If investors and

managers could coordinate, and the skilled managers would therefore commit to maximizing expected

returns, this liquidation threshold would fall to 0.27. That is, investors would now be willing to give

capital to managers whose probability of being skilled is just one-quarter. This change in the liquidation

threshold can also be expressed as a change in the required return; the higher a manager’s reputation, the

higher the investors’ expectation of his gross return. The change in the liquidation threshold from 0.27

(with commitment) to 0.34 (without commitment) corresponds to investors only considering managers

who can deliver 1.4% higher expected gross returns.

4.4 Optimal signaling when short- and long-term returns are more or less informa-

tive

Skilled managers distort their portfolio choices because returns carry information that investors use

to update their beliefs. Investors learn from both short-term and long-term returns. The informativeness
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Figure 4: Optimal portfolio choices when short- and long-term returns are more or less
informative. This figure shows how the skilled manager’s equilibrium portfolio depends on his rep-
utation when ⇠

t

= ⇠

h. The skilled manager runs a fund without a lockup clause. Panel A varies the
informativeness of short-run returns. The volatility of the Brownian motion, �, takes the values of
7% (high informativeness), 9% (baseline), and 11% (low informativeness). Panel B varies the infor-
mativeness of long-run returns. The volatility of the crash-event returns, !, takes the values of 9%
(high informativeness), 12% (baseline), and 15% (low informativeness). The liquidation boundary also
depends on � and !; this figure shows only the lowest thresholds.

of these returns therefore determines the extent to which managers alter their behavior. In Figure 4,

we illustrate how the informativeness of short- and long-term returns a↵ect managers’ optimal portfolio

choices and therefore limits to arbitrage. Parameters � and ! determine the speed at which investors

learn about managerial skill from short-term and crash-event returns, respectively.

Panel A of Figure 4 plots the equilibrium portfolio choices of skilled managers of di↵erent reputa-

tions. Similar to Figure 1, we study the choice when the impending crash is large so that the portfolio

that maximizes long-term returns invests ⇡
t

= �1 in the arbitrage opportunity. We vary the informa-

tiveness of returns around the baseline values. Panel A shows that when short-term returns become more

informative (� falls), managers’ incentives to enhance short-term performance increase. Short-term re-

turns now carry more information. In the baseline case, the threshold below which managers maximally
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distort their choices (and choose ⇡

t

= 1) is 0.51. When short-term returns become more informative,

this threshold increases to 0.66. All managers below this level view the short-term reputational cost of

trading the arbitrage opportunity too high.

Panel B modifies investors’ ability to learn from crashes. In Section 2, we considered the two extreme

cases where learning during crashes is either perfect or fully absent. At these extremes, manager faces

almost no long-term reputational concerns. When learning is perfect, the manager knows that as long

as his expected crash performance is slightly better than that of the unskilled manager, investors will

learn that he is skilled. Although this result is a consequence of the ability to perfectly detect a jump

in a continuous-time environment, it makes the general point that when learning is “lumpy,” managers’

marginal long-term reputational concerns are weak. At the other extreme, when crash returns carry little

information, the manager’s portfolio choice today does not a↵ect his expected after-crash reputation.

Long-term reputational concerns therefore matter only between these two extremes.

Panel B of Figure 4 illustrates the relations between reputation, the informativeness of crash-event

returns, and the limits to arbitrage. When a manager’s reputation is high, an increase in the informa-

tiveness of crash-event returns increases the limits to arbitrage. However, among managers with low

reputation, an increase in informativeness lowers them. That is, when crashes carry more information

about skill, low-reputation managers are less eager to distort their portfolios.

4.5 The benefit of lockups to skilled managers

Skilled managers benefit from the lockups because they allow managers to take the long-term view.

Managers do not have to worry about short-term returns because, while the lockup is active, investors

cannot withdraw their funds even if the manager’s reputation temporarily falls under the liquidation

threshold. Moreover, if the long-term arbitrage opportunity pays o↵ while the lockup is active, the
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Figure 5: Optimal portfolio choices with lockup provisions. This figure shows how a skilled
manager’s optimal portfolio choice depends on his reputation when the impending crash is large, ⇠

t

= ⇠

h.
The manager runs either an open-ended fund or a fund with a six-month, one-year, or two-year lockup.
The shaded area signifies the liquidation threshold of an open-ended fund; the circles denote liquidation
thresholds of the funds with lockup provisions. Because a manager’s reputation can fall below the
liquidation threshold while the lockup is in e↵ect, the three lines that correspond to funds with lockups
extend into the liquidation regions.

manager’s reputation will almost certainly exceed that what it would have been had the manager been

forced to signal skill by enhancing short-term returns at the expense of long-term returns.

Figure 5 illustrates the benefit of lockups. In this figure, skilled managers of di↵erent reputations

manage either open-ended funds or funds with lockup provisions ranging from six months to two years.

The liquidation threshold also depends on the length of the lockup. The gray area denotes the threshold

of an open-ended fund; the gray circles denote the thresholds of the funds with lockup provisions. A

manager’s reputations can lie below the liquidation threshold when the lockup is active; if the lockup

expires while the reputation is below the threshold, investors withdraw their funds.

Consistent with the intuition that lockups alleviate managers’ short-term reputational concerns, an

increase in the length of the lockup increases managers’ willingness to trade the long-term arbitrage
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opportunity. When a manager’s reputation is very high, the lockup provision does not play any role.

Investors are confident that the manager is skilled and, therefore, even a manager of an open-ended

fund trades the long-term arbitrage opportunity without worrying about the reputational cost of the

low short-term returns. As reputations fall, however, managers reduce their positions in the long-term

arbitrage opportunity. Managers who run funds with lockup provisions alter their behavior less because

their liquidation risk is lower.

As the reputation of the manager who runs the open-ended fund falls close to the liquidation thresh-

old, he invests ⇡

t

= 1 to maximize his short-term returns. That is, he sacrifices all of the long-term

returns to build reputation. The portfolio choices of the managers who run funds with lockup provi-

sions begin to fall back down; that is, they again begin to trade the long-term arbitrage opportunity

aggressively. The reason is not that the liquidation risk is low; it is that the liquidation risk is now so

high that these managers do not care about any short-term performance boost. The only way these

managers can survive after the lockup expires is by trading the arbitrage opportunity and hoping that

it pays o↵ in time.

4.6 Optimal lockup maturity

Panel A of Figure 6 shows the optimal lockup maturity as a function of manager’s reputation, and

Panel B shows how much the manager gains from choosing the optimal lockup over an open-ended

contract. When a manager’s reputation is close to the liquidation threshold, investors are unwilling to

enter anything but an open-ended contract. As the manager’s reputation improves, the lockup provision

becomes very valuable. These managers are still close to the liquidation threshold, and so long lockups

benefit them the most by decreasing the liquidation risk. At the liquidation threshold of 0.41, the

optimal lockup is an open-ended contract. However, a manager whose reputation lies 0.05 higher at
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0.46 gains 17% in valuation by being able to o↵er a contract with just a four-month lockup.

As a manager’s reputation increases, liquidation risk decreases, and so does the valuation gain.

These managers are far away from the liquidation threshold, and so they would benefit less from the

lockup provision. Managers who have very high reputations would benefit little from the lockups.

However, without additional restrictions, other things equal, they would still weakly prefer long-term

contracts. We therefore assume that investors have demand an illiquidity premium, that is, they need to

be compensated for tying up their capital for longer periods of time.7 Because high-reputation managers

are almost indi↵erent between all contract maturities, even a small cost pushes them to favor short-term

contracts.

Panels C and D show how the optimal lockup maturity responds to changes in the manager’s market-

timing skill and the competitiveness of the market for skill. The amount of returns skilled managers

can generate by timing the arbitrage opportunity is an important driver of the optimal maturity. In

the baseline calibration, managers can generate an additional 6% in returns by timing the long-term

arbitrage opportunity. If skilled managers lose this ability, the signaling problem disappears, and the

lockup provision is no longer useful for this purpose. Panel C shows that a manager who chooses a

one-year contract in the baseline case with 6% market-timing skill reduces the length of the contract

to 4 months when he has no market-timing ability. If, on the other hand, we increase the returns

available through long-term arbitrage opportunity to 10%, this manager’s optimal maturity increases

to 17 months.

Panel D shows that the amount of competition in the market for skill also has a substantial e↵ect on

the optimal contracts. An increase in competition makes long-term contracts more costly to investors by

7We assume that investors demand a higher hurdle rate in equation (5). That is, instead of discounting at a rate r,
they discount at a rate of r(T ) that increases in T . This assumption is equivalent to assuming that investors face random
liquidity shocks that force them to liquidate funds early and at a discount.
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Figure 6: Optimal lockup maturity: Valuation gains, market-timing skill, and competition
in the market for skill. This figure shows the optimal lockup (Panels A, C, and D) and the valuation
gain (Panel D) as a function of manager’s reputation. A manager chooses the optimal lockup to
maximize his valuation at the time he sets up a fund. Valuation gain in Panel B is the percentage
increase in the manager’s value from moving from an open-ended fund to a fund with the optimal
lockup. Panel C varies the amount of market-timing skill; the values are 0% (no market-timing skill),
6% (baseline) and 10% (high market-timing skill). Panel D varies the competitiveness of the market for
skill by changing the arrival rate of outside investors. The arrival rates are once a year (low competition),
once a quarter (baseline), and once a month (high competition). In Panels C and D, the liquidation
threshold depends on the parameters. The shaded area signifies the lowest liquidation threshold; the
circles denote the liquidation thresholds of the other cases.
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strengthening the asymmetry: skilled managers are discovered more quickly, and so an increase in the

arrival rate of outside investors makes it more likely that long-term contracts bind only when investors

wish they did not. Panel D shows that when the frequency of outside o↵ers decreases from once a

quarter to once a year, a manager who previously chose a one-year contract now writes a 19-month

contract.

5 Implied distribution of reputation

Optimal lockup maturities and survival rates depend on managers’ reputations. Managers with very

high or low reputations will write short contracts, and managers close to the liquidation threshold have

lower survival rates than those far above the threshold. In this section, we use these relations between

reputations, optimal contracts, and survival rates to back out the implied distribution of reputation.

We assume that managers’ (log-likelihoods of) reputations evolve according to equation (??) even

before they try to open a fund. Managers’ initial reputations are therefore normally distributed. We

denote this distribution by N(µ
s

,�

s

). We draw a large number of managers from this distribution, have

those with su�ciently high reputations raise capital and start funds with optimal lockups, and simulate

five years of data. We record the distribution of optimal lockup maturities and the survival rates. We

repeat these simulations to find µ

s

and �

s

by matching, between the simulations and the data, this

distribution of lockups and the survival rates.

The model matches these features of the data when the managers’ log-likelihoods of reputations are

drawn from a distribution with a mean of µ
s

= 0.0625 and a standard deviation of �
s

= 2.08. With this

distribution of reputation, the first-year attrition rate is 17.6%, and the fractions of managers choosing

contracts with 0- to 3-month, 3- to 12-month, and longer-than-12-month maturities are 23%, 60%, and

17%. In the data, the first-year attrition rate is 18% (Brown, Goetzmann, and Park 2001) and the

37



fractions of funds with these lockup maturities are 30%, 67%, and 3% (Hedge Fund Research (HFR)

database).8

In the model investors have rational expectations, and so the distribution of reputations also tells

the fraction of skilled managers. With this distribution of reputation, 16% of potential managers have

su�ciently high reputations to open a fund. Some skilled managers are below the threshold, and some

unskilled managers are above it. A total of 40% of all skilled managers have too low reputations to

raise capital, and the share of skilled managers among those who start a fund is 58%. This proportion

increases over time as investors learn about returns and liquidate managers they come to perceive as

unskilled. In a year, the proportion of skilled managers among funds that remain alive has increased to

66%; investors rationally update their beliefs and therefore predominantly liquidate unskilled managers.

The proportion of skilled managers reaches 80% after three years.

Because many skilled managers are only marginal in terms of their reputations, they initially distort

their behavior significantly. In the beginning, the average skilled manager forgoes 78 basis points in

expected long-term returns to signal skill by enhancing short-term returns. This is the unconditional

estimate that averages across the crash states. If the economy starts in the low crash state, there is

no distortion; and if it starts in the high crash state, the distortion is exactly twice as high at 156

basis points. These distortions dissipate over time as the reputations of managers near the liquidation

threshold either fall down (and the managers get liquidated) or move up. Among managers who survive

a year, the average distortion falls from 78 to 29 basis points. These distortions occur with managers

o↵ering their investors contracts with optimal lockup maturities. If skilled managers could only o↵er

open-ended contracts, the initial distortions would be higher at 167 and 332 basis points, respectively.

8Three di↵erent hedge fund contract terms limit investors ability to withdraw funds and are therefore equivalent to
lockups in our model: lockups, advance notices, and redemption wait times. In classifying funds in the HFR database, we
set each fund’s lockup maturity equal to the maximum of these values.
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Lockups therefore substantially reduce, but do not fully eliminate, the distortions that emerge from the

signaling problem.

Although these estimates are based on a stylized model, our approach makes a more general point.

Because optimal contracts and attrition rates depend on investors’ perceptions of skill, we can draw

inferences about skill from a model such as ours without estimating fund alphas. This ability is particu-

larly valuable in the hedge fund industry. Hedge funds are exempt from the Investment Company Act of

1940 and therefore not subject to its disclosure requirements. As a consequence, hedge fund databases

are subject to various biases, such as the management of reported returns, backfill and incubation bi-

ases, survivorship bias, liquidation bias, and self-reporting bias.9 Using a structural model to estimate

the distribution of skill is complementary to estimating alphas from these hedge fund databases.

6 Conclusions

We present a dynamic model in which rational investor learning leads managers to improve their

short-term returns at the expense of expected long-term returns. The model highlights a fundamental

delegation friction that stems from investors’ inability to distinguish, in the short-run, a profitable long-

term strategy from lack of skill. We show that this friction generates large limits to arbitrage. Managers

do not trade the arbitrage opportunity to the full extent because they are concerned about investors

interpreting their low short-run returns as evidence of lack of skill. Limits to arbitrage is a robust feature

9See, for example, Bollen and Pool (2009) and Agarwal, Daniel, and Naik (2011) on the management of reported
returns; Malkiel and Saha (2005) on backfill and incubation biases; Fung and Hsieh (1997, 2000) and Brown, Goetzmann,
and Park (2001) for survivorship bias; Ackermann, McEnally, and Ravenschaft (1999) for liquidation bias; and Agarwal,
Fos, and Jiang (2013) for self-reporting bias. Backfill bias refers to hedge funds ability to begin reporting returns only if
their performance has been good, and to backfill returns that they earned before entering the platform. Incubation bias
refers to the fact that it mainly the successful funds that show up on the platforms; see, also, Evans (2010). Survivorship
bias refers to the bias in returns that occurs if the databases do not contain information on all liquidated funds. Liquidation
bias refers to the bias that emerges when funds stop reporting their (low) returns when they are about to get liquidated.
Self-reporting bias refers to hedge funds’ ability to choose not to report to any platform or to discontinue and later continue
reporting for various reasons.
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of an environment in which investors are uncertain about managerial skill, and managers have to decide

how aggressively to trade the long-term arbitrage opportunity. A wide range of parametrizations leads

to quantitatively large limits to arbitrage.

Lockups, with similar maturities to those in the hedge fund data, reduce, but do not eliminate,

limits to arbitrage. Managers benefit from the lockups. With investors committed not to liquidate,

managers can trade the long-term arbitrage opportunity more aggressively without worrying about the

signal sent by low short-term returns. Investors, on the other hand, perceive these lockups as costly.

They are ex ante concerned about the possibility of being locked up with an unskilled manager who

destroys value. The optimal lockup maturity strikes a balance between these tradeo↵s.

The model tells us to ask four questions when evaluating or designing a management contract. What

is the typical horizon of the manager investment? How informative is short-term performance about

the managerial skill? How competitive is the market for skill? What is the cost of lack of skill? The

answers to these questions determine the extent to which a lockup provision can benefit both managers

and investors.

Although we discuss the model in terms of, and calibrate it to, hedge funds, its fundamental friction

applies to other contracts, such as CEO compensation. Whenever there is uncertainty about managerial

skill and when profitable long-term opportunities are sometimes costly in the short run, the insights of

our model apply.
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A Appendix

B Propositions

Proposition 1. Evolution of beliefs. The log-likelihood ratio of investors’ beliefs about skill, p
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In equation (13), dR
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is the instantaneous non-crash return, dR
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Proof. Let µ
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denote investors’ expectations about skilled and unskilled managers’ short-term

performance at time t when there is no crash. Also let R
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. The problem facing the

analysts is that of distinguishing between two normal distributions with di↵erent means but equal
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The log-likelihood ratio p
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Investors’ expectations about short-term performance depend on their beliefs about the skilled man-

ager’s portfolio choice, ⇡̂
t

. Let 
t

denote the signal-to-noise ratio of short-term performance and µ̌

t

the

average short-term performance across the manager types (the investor expectation in log-likelihood

space):
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The log-likelihood process of perceived skill, in absence of crashes, therefore evolves as given by the first

term of Equation (13).

When there is a crash, the manager experiences a large return. Because the unskilled manager is

always long the arbitrage opportunity, he loses �⇠

t

when the crash hits. The skilled manager’s return

depends on ⇡̂

t

(⇠
t

). Investors again need to distinguish between two normal distributions that have

di↵erent means (if ⇡̂
t

6= 1) but equal variances; the return volatility associated with the crash is !. Let
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Applying Equation (15) to the crash return, we obtain the second term of Equation (13).

Proposition 2. A manager’s valuation increases in his reputation. Let �

c

= 0, G = 0, f > 0,



t

=  > 0, and 

c

t

(⇠) = 

c(⇠) > 0, and fix the liquidation threshold pL(L) for the two lockup states,

as well as the skilled manager’s portfolio policy ⇡

t

(⇠) = ⇡(⇠).The manager’s valuation then increases in

his reputation, Gp > 0.

Proof. If no outside o↵ers are made (�
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= 0), then the manager reputation only impacts her valuation

through the liquidation event. The conditions on fees and manager skill imply that the manager has
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that is the sum of the discounted expected cash-flows weighted by the probability of being alive. Since

the manager’s portfolio choice is assumed to be fixed across reputations, the expected cash flows are

independent of p. The manager’s valuation therefore depends (negatively) on the probability of fund

liquidation. Since we proved that this probability is decreasing in reputation, it follows that manager

valuations are increasing in reputations (Gp > 0).

Proposition 3. A manager’s valuation is S-shaped in his reputation. Let �

c

= 0, G = 0,

f > 0, ⇡

t

(⇠) = ⇡, and ! ! 1, and fix the liquidation threshold pL(L) for the two lockup and crash

states as well as the manager’s portfolio. Then,

(1) A skilled manager who manages an open-ended fund is risk-averse with respect to reputation risk:

p

t

� pL ) Gpp < 0.

(2) A skilled manager who manages a fund with an active lockup is risk-averse with respect to rep-

utation risk when his reputation is su�ciently high, and risk-loving when his reputation is low:
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depends on the length of the lockup provision.

Proof. When ! ! 0 learning is perfect during crashes. The results hold more generally, but the “no

learning in crashes” case is convenient as the manager HJB becomes a system of four ODE’s with

constant coe�cients, with boundary condition G(p
t

, L

t

= 0, ⇠
t

) = 0 for p  pL(L = 0). The constructive

proof is almost identical in the opposite extreme, i.e. if learning is perfect, that is if the manager

reputation jumps to p = 1 the first time a crash arrives. The four di↵erent ODEs are for states

{⇠
t

, L

t

} 2 ({⇠h, ⇠l}⇥ {0, 1}),

0 = �(↵g + ⇡(�� �

⇠

⇠

t

)� f) + f � rG(t) +Gp(t)


t

�

(↵g + ⇡�� µ̌

t

) +
1

2
Gpp(t)(t

)2

+�

e

(G(X
t

, L

t

= 0, ⇠
t

)�G(t)) + �

⇠

⇣

E

⇠[G(p
t

, L

t

, ⇠̃)]�G

⌘

Under the assumptions of the proposition, the only di↵erence between the ODEs are the ⇠ state that

shows up only in the first term and the transition from a lockup fund to an open-ended fund. We start

with the open-ended fund. Since there are no outside o↵ers, an open-ended fund never transitions back

to a lockup fund, and so the ODE system can be decoupled from the lockup ODEs:

0 = �(↵g + ⇡(�� �⇠⇠
h)� f) + f � rG(p, ⇠h) +Gp(p, ⇠

h)
t

�
(↵g + ⇡�� µ̌t) +

1

2
Gpp(p, ⇠

h)(t)
2 +

�⇠
2

⇣

G(p, ⇠l)�G(p, ⇠h)
⌘

0 = �(↵g + ⇡(�� �⇠⇠
l)� f) + f � rG(p, ⇠l) +Gp(p, ⇠

l)
t

�
(↵g + ⇡�� µ̌t) +

1

2
Gpp(p, ⇠

l)(t)
2 +

�⇠
2

⇣

G(p, ⇠h)�G(p, ⇠l)
⌘

Let W (p) = G(p, ⇠l)�G(p, ⇠h). Then, subtracting both equations we obtain

0 = ��

⇠

⇡(⇠h � ⇠

l)� rW (p) +W

p

(p)


�

(↵g + ⇡�� µ̌) +
1

2
W

pp

(p)()2 � �

⇠

W (p)

Check that W (p) =
�⇡�⇠(⇠

h�⇠

l
)

r+�⇠
, satisfies this equation. This tells us that Gp(p, ⇠l) =

�⇡�⇠(⇠
h�⇠

l
)

r+�⇠
+

Gp(p, ⇠h). The system simplifies to one ODE,
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0 = �(↵g +⇡(�� �

⇠

⇠

h)� f)+ f � rG(p, ⇠h)+Gp(p, ⇠
h)



�

(↵g +⇡�� µ̌)+
1

2
Gpp(p, ⇠

h)()2+ �

⇠

0.5

✓

�⇡�

⇠

(⇠h � ⇠

l)

r + �

⇠

◆

Which homogenous solution can be easily found to be:

G(p, ⇠h) =
�(↵g + ⇡(�� �

⇠

⇠

h)� f) + f + �⇠

2
�⇡�⇠(⇠

h�⇠

l)
r+�⇠

r

+K1e
X⌘1 +K2e

x⌘2

with ⌘

1

< 0 < ⌘

2

. There are two relevant boundary conditions G(pL, ⇠
h) = 0 and

lim
p!1

G(p, ⇠h) =
�(↵g + ⇡(�� �

⇠

⇠

h)� f) + f + 0.5�
⇠

�⇡�⇠(⇠
h�⇠

l
)

r+�⇠

r

, (18)

the value that the manager would earn if his reputation is perfect and and therefore he is never liquidated.

The second boundary implies K
2

= 0, since ⌘

2

> 0. K
1

is determined by:

�(↵g + ⇡(�� �

⇠

⇠

h)� f) + f + 0.5�
⇠

k⇡�⇠(⇠
h�⇠

l)
r+�⇠

r

+K1e
pL⌘1 = 0

then

G(p, ⇠h, L
t

= 0) =

8

>

>

>

<

>

>

>

:

�(↵g+⇡(���⇠⇠
h)�f)+f+0.5�⇠

�⇡�⇠(⇠h�⇠l)

r+�⇠

r

(1� e

(p�pL)⌘1) p > pL

0 X  pL

It is trivial to check that Sign[Gpp] = Sign[G⇥ (�n

2

1

)] < 0. So managers of open-ended funds are are

always averse to reputational risk. For funds with lockups, we have
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0 = �(↵g + ⇡(�� �

⇠
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h)� f) + f � rG+Gp
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2
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= 0)�G(p, ⇠l, L
t

= 1))

Following identical steps as for open-ended funds, we have that G(p, ⇠l, L
t

= 1) � G(p, ⇠h, L
t

= 1) =

k⇡�⇠(⇠
h�⇠

l
)

r+�⇠
, plugging in the equation above we obtain

0 = �(↵g + ⇡(�� �

⇠

⇠

h)� f) + f � rG+Gp
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r + �

⇠

◆

+ �

e

(G(p, ⇠h, L
t

= 0)�G(p, ⇠h, L
t

= 1)).

Below the liquidation threshold, p  p

L

(0) we have G(p, ⇠h, L
t

= 0) = 0, then

G(p, ⇠h, L = 1) =
�(↵g + ⇡(�� �

⇠

⇠

h)� f) + f + 0.5�
⇠

�⇡�⇠(⇠
h�⇠

l)
r+�⇠

r + �

e

+K1e
X⌘3 +K2e

x⌘4

with boundary conditions lim
p!�1G(p, ⇠h, L = 1) =

�(↵

g
+⇡(���⇠⇠

h
)�f)+f+0.5�⇠

�⇡�⇠(⇠
h�⇠l)

r+�⇠

r+�e
, the value of

managing the fund if the manager is liquidated for sure once the lockup expires, this implies K
1

= 0. So

below pL we have that Sign[Gpp] = Sign[K
2

⇥ (n2

4

)]. Because ⌘
4

> 0 and K

2

> 0 and since we know that

G(p, ⇠h, L
t

= 1) is increasing in reputation, we have that Sign[GXX ] > 0. So managers with reputations

below the liquidation threshold like reputational risk when they have active lockups. We use the same

strategy to solve for the fund lockup value above the threshold and solve the valuation of the di↵erence
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between the value function. Let W (p, ⇠h) = G(p, ⇠h, L
t

= 1)�G(p, ⇠h, L
t

= 0)

0 = �rW (p, ⇠h) +W

p



�

(↵+ ⇡�� µ̌) +
1

2
W

pp

()2 � �

e

W (p, ⇠h)

which solution is of the form:

W (p, ⇠h) = K

3

e

p⌘3 +K

4

e

p⌘4

and the roots ⌘
3

< 0 < ⌘

4

are the same roots from the value function below the threshold. So above the

threshold we have G(p, ⇠h, L
t

= 1) = G(p, ⇠h, L
t

= 0) +K

3

e

X⌘3 +K

4

e

x⌘4 , since as p ! 1 the manager

is not liquidated, the value of the open-ended fund has to converge to the value of the lockup fund

lim
p!1G(p, ⇠h, L

t

= 1) = G(p, ⇠h, L
t

= 0), this implies K
4

= 0. Let G1 = �(↵g + ⇡(�� �

⇠

⇠

h)� f) +

f + 0.5�
⇠

�⇡�⇠(⇠
h�⇠

l
)

r+�⇠
be the value of the infinite lived manager, then the value of a lockup fund is of the

form

G(p, ⇠h, L
t

= 1) =

8

>

>

>

<

>

>

>

:

G1
r

(1� e

(p�pL)⌘1) +K3e
p⌘3

p > pL,

G1
r+�e

+K2e
p⌘4

p  pL.

We can solve K

3

and K

2

by imposing value-matching
⇣

limp%pL
G(p, ⇠

h
, Lt = 1) = limp&pL

G(p, ⇠

h
, Lt = 1)

⌘

and smooth-pasting
⇣

limp%pL
Gp(p, ⇠

h
, Lt = 1) = limp&pL

Gp(p, ⇠
h
, Lt = 1)

⌘

. See Dixit (1993) for a discussion why

these are the relevant boundary conditions for a transitional boundary. This gives us a system of two

equations and two unknowns which yields,

K3 = e

�pL⌘3

 

G1
r + �

e

+
�G1

r

⌘1 + ⌘3(
G1
r+�e

)

(⌘4 � ⌘3)

!

K2 = e

�pL⌘4
�G1

r

⌘1 + ⌘3(
G1
r+�e

)

(⌘4 � ⌘3)
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Above pL, Gpp = �G1
r

(⌘2
1

e

(p�pL)⌘1) + ⌘

2

3

e

(p�pL)⌘3

✓

G1
r+�e

+
�G1
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◆

. Since it can be shown that
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(⌘4�⌘3)

◆

> 0 and ⌘

1

, ⌘

3

< 0, we see that the risk aversion can alternate between

positive and negative depending on which root dominates. These roots are function of the model

primitives and are given by:

%(�
e

) =
p

a

2 + 2(r + �

e

)�2

,
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�a� %(0)
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�
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e

)



t

�

,

where a = (↵g+⇡��µ̌). Because ⌘
3

< ⌘

1

< 0 < ⌘

4

, the risk-aversion term will dominate when reputation

is su�ciently high: lim
p!1

Gpp(p,⇠
h
,Lt=1)

e

(p�pL)⌘1
= �G1

r

⌘
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1

 0. Since ⌘
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< 0, either |G1
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, in which case the manager is risk averse for any p > pL, or |G1
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(⌘2
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✓
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r+�e

+
�G1

r ⌘1+⌘3(
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r+�e
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(⌘4�⌘3)
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, in which case the manager is risk-loving for values above pL and below

p

⇤. The threshold p

⇤ is defined by:

p

⇤ = pL +
1

⌘1 � ⌘3
ln

 

r

G1

⌘

2
3

⌘

2
1

 

G1
r + �

e

+
�G1

r

⌘1 + ⌘3(
G1
r+�e

)

(⌘4 � ⌘3)

!!

.

Proposition 4. Longer lockup provisions reduce short-term reputational concerns. Let

T = 1/�
e

be the length of the lockup provision. Under the same conditions as Proposition 3, and if

idiosyncratic volatility � is not too large, then for any p > pL,
@Gp(p,⇠|T )

@T

> 0.
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Proof. From Proposition 3, we have

Gp = �⌘

1

G1

r

e

(p�pL)⌘1 + ⌘

3

(�
e

)

 

G1

r + �

e
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�G1
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e

) G1
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⌘

4

(�
e

)� ⌘

3

(�
e

)

!

e

(p�pL)⌘3
, (19)

where we have made explicit that roots ⌘
3

and ⌘

4

depend on the length of the lockup. We need to show

that @Gp

@�e
> 0 to prove the result. Di↵erentiating the above expression,

@Gp(p, ⇠, L = 1)

@�

e

= (p� pL)e
� (p�pL)(a+%[�e])

�
G(p, ⇠, L = 1)(a3 + 2(�

e

+ r)a�2 + (a2 + 2(�
e

+ r)�2)%[0]

+
1� e

� (p�pL)(a+%[�e])

�
G(p, ⇠, L = 1)

t

�(a(a+ %[0])� 2r�2)

2r2(a2 + 2(�
e

+ r)�2)3/2
.

Note that the first term dominate when reputation is high, while for reputation close to the liquidation

threshold the second term dominates. The first term is positive as long a > 0. So @Gp

@�e
> 0 ) @Gp

@T

< 0

for high enough reputations. The second term has a positive constant term and a negative term that is

decreasing (in absolute value) in the reputation. Note that this second term goes to zero as the lockup

maturity goes to zero (�
e

! 1). Reputational concerns therefore decrease with increase in lockups

when lockups are short-enough, there is a T

⇤
> 0, such that for any T < T

⇤, @Gp(·|T )

@T

< 0. So we

have shown so far that reputation concerns are decreasing in lockup maturity for any maturity for high

enough reputations, and for any reputation for short enough maturities. To prove the general result,

we need conditions under which

G1�3

✓

a
a+

p
a2 + 2r�2

�2
� 2r

◆

< 1.

This condition holds for reasonable parameters. For example, with volatility of 0.1, signal-to-noise

ratio of 1, drift of 0.1, and a total fund value V of 10, this expression has value ⇡ 0.01. We can also

frame this as a condition on the amount of idiosyncratic risk. Recall that  = ↵

g
+⇡��(�+↵

b
)

�

. The
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expression is clearly increasing in � and holds for � ! 0. So given the model primitives we can define

�

⇤ implicitly as

G1(↵g + ⇡�� (�+ ↵b))

✓

a(a+
p
a2 + 2r�⇤2)� 2r

�⇤2

◆

= 1

So @Gp(·|T )

@T

< 0 for any � < �

⇤. This condition is not an important limitation because everything else

constant reputation concerns are decreasing in idiosyncratic volatility. So lockups reduce reputation

concerns when reputation concerns are large.

Proposition 5. Manager’s equilibrium portfolio choice. Let  > 0, G � 0, and Gp � 0. We

let ⇡(p
t

, L

t

, ⇠

t

) denote the skilled manager’s optimal portfolio choice. In the equilibrium defined in

Section 2.5,

⇡(p
t

, L

t

, ⇠

t

) =
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>

>

<

>

>
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1 if ⇠

t

= ⇠

l

,

g(p
t

, L

t

) if ⇠

t

= ⇠

h

,

(20)

where g(p
t

, L

t

) solves:

g = max
g

g(�� �

⇠

⇠

h), (21)

s.t. g = argmax
⇡2[�1,1]

(

�⇡(�� �

⇠

⇠

h) +Gp

↵

g + 1
2 (g � 1)�� ↵

b
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⇡� (22)
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⇠

E
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✓

p� (g � 1)⇠h
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✓

!̃ � ⇡⇠

h +
(g + 1)

2
⇠

h

◆

, L, ⇠̃

◆�

)

,

where E(·) takes the expectation over the unknown state ⇠̃ and the idiosyncratic shock !̃.

Proof. Given beliefs g, the right hand side of Equation (22) is the solution of the manager problem.

Therefore Equation is a fixed point problem. In equilibrium, investors beliefs about the skilled manager

portfolio in the high crash state have to be equal to the actual strategy implemented by the skilled
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manager in this state. Because of strategic complementarities this fixed point problem might have

multiple solutions. Intuitively, looking at Equation (22) we see that a higher g increases the incentives

for the manager to choose a higher pi, so there is potential for multiplicity, specially when reputation

concerns are high G

p

relative to compensation incentives �(�� �

⇠

⇠

h).

We take a mechanism design approach for equilibrium selection and state the portfolio allocation

problem as the maximization of expected returns (the surplus of the relationship) subject to being

consistent with the manager investment incentives. Therefore, one can think of Equation (22) as a (local)

Incentive Compatibility constraint. This approach here is natural because managers and investors can

communicate, thus is natural to expect coordination in the high surplus equilibrium.

The optimal choice can be broken into three regimes:

(A) g = �1 if

�
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2
�,

(B) if (A) does not hold, g is given by the minimum ⇡ that satisfies

⇡ = min

8

<

:

1, 1�
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h
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2

2�2 + (⇠h)2
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E
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� (⇡�1)
2 ⇠

h + !̃

⌘

, L, ⇠̃

⌘i

9

=

;

, (23)

This proposition follows directly from three conditions that hold for the equilibrium: (1) the man-

ager’s first-order condition, (2) investors’ beliefs about the manager’s portfolio choice, and (3) return

maximization. In the state ⇠

l, the manager’s first-order condition is satisfied at ⇡(p
t

, L

t

, ⇠

t

= ⇠

l) = 1—

which maximizes expected returns—as long investors believe that the manager chooses ⇡
t

= 1. Therefore

⇡(p, L, ⇠l) = 1 for any p and L.

The optimal choice in state ⇠

t

= ⇠

h divides into three regions depending on the intensity of repu-
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tational concerns. We first check if reputation concerns are weak enough so that ⇡(p
t

, L

t

, ⇠

h) = �1–

the maximum expected return portfolio– satisfies the manager’s first-order condition. If it does, this

choice is the equilibrium portfolio choice. If not, we find the lowest of ⇡
t

—because expected returns are

decreasing in ⇡

t

—that satisfies the manager’s first-order condition. The resulting portfolio may lie in

the interior—�1 < ⇡

t

< 1, or it may be in the corner, ⇡
t

= 1.

Intuition. The expression in case (A) in Proposition 5 shows that, at the e�cient choice, the long-

term reputational concern will be close to zero both when the long-term signal-to-noise ratio is very

high or very low. If learning during crashes is very weak, than the manager’s after-crash reputation

will be very close to his before-crash reputation. The marginal long- and short-term reputational

concerns will therefore be of similar magnitude, but the marginal impact of portfolio changes on the

after-crash reputation is small because the signal-to-noise ratio is low in this weak-learning case. On

the other hand, if learning is very strong, the marginal impact of portfolio changes on the manager’s

long-term reputation is large, but the marginal value of reputation is low if the manager maximizes

expected returns. Since learning is strong, a manager who maximizes expected returns will likely have

a very after-crash reputation. As long reputational concerns are decreasing in reputation (Gpp < 0),

the marginal value of reputation after the crash will be much lower than before the crash, leading to a

strong temptation to deviate towards more short-term oriented strategies.

While long-term reputational concerns will typically not be strong enough to keep the manager from

distorting his choices, they will be e↵ective in keeping the manager from fully maximizing short-term

performance. Short-term reputational concerns introduce complementarity between investors’ beliefs

and manager actions. The more investors expected to learn from short-term returns, i.e. the higher

the , the higher the manager’s incentives to enhance these returns. On one hand the sensitivity of

reputation to performance in a crash works exactly as for short-term performance. The better the
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manager is expected to do when the crash hits, the higher the signal-to-noise ratio 

c, and therefore

the higher the incentives to perform well when the crash hits. But the nonlinearity built into long-

term learning also induces more subtle reputational incentives. The long-term reputational concern is

impacted not only by investors’ beliefs ⇡̂ = g as in the case of short-term reputation concerns, but also

by the actual manager’s choice ⇡. Inspecting the distribution of crash reputation growth in the second

line of Equation (22) , we can see that as the portfolio increases towards 1, the lower the expected

reputation growth. As a result, the expectation puts more weight on low reputation states, i.e. states

with higher reputation concerns Gp ". Therefore, reputation incentives depend on beliefs but also on

the actual portfolio chosen by the manager.

Proposition 6. Limits to arbitrage, distance to liquidation, and lockup maturity.

Under the conditions of Propositions 4 and 3,

(A) A skilled manager’s incentive to invest in the long-term arbitrage opportunity increases in the

distance to liquidation when the fund does not have a lockup provision.

(B) A skilled manager’s incentive to invest in the long-term arbitrage opportunity increases in the

distance to liquidation when the fund has a lockup provision and the manager’s reputation is

su�ciently high.

(B) A skilled manager’s incentive to invest in the long-term arbitrage opportunity increases in the

lockup maturity.

Proof. Proposition 4 shows the conditions under which reputational concerns are decreasing in lockup

maturity. Proposition 5 shows that when the long-term reversal strategy is the most profitable, the
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manager’s first-order condition is:
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◆
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= 0.

If investors cannot learn from a crash-event returns, ! ! 1, this expression becomes:

�(�� ⇠

h

�

⇠

) +Gp

↵

g + 1

2

(⇡ � 1)�� ↵

b

�

2

�,

with the manager maximizing returns (i.e., choosing ⇡ = �1) if this value is negative. Note that

↵

g
+

1
2 (⇡�1)��↵

b

�

2 � > 0, �(� � ⇠

h

�

⇠

) < 0. We therefore only need to show that Gp is decreasing in cases

A-C. (A) Proposition 4 implies Gpp < 0 for any p > pL(0) in the case of open ended funds, so the

result follows. (B) Proposition 4 implies Gpp < 0 for high enough reputations, so the (B) result follows.

(C) Proposition 4 shows that @Gp(·|T )

@T

< 0. It follows that managers with longer lockups have stronger

incentives to pursue the long-term arbitrage opportunity.

An identical argument holds when investors learn perfectly from crash-event returns, ! ! 0.

Proposition 7. Investors’ liquidation policies.

If investors do not learn during crashes, ! ! 1, then

(a) The liquidation threshold pL increases in the arrival rate of the outside investors, �

c

.

(b) The liquidation threshold pL increases in the limits to arbitrage—that is, the di↵erence between the

highest available expected return and the skilled manager’s expected return in the equilibrium—

when the market for skill is su�ciently competitive.

Proof. A more competitive market for skill means that the arrival rate of outside investors is higher, �
c

".

The liquidation policy satisfies V (pL, Lt

= 0) = 1. If outside investors bid a positive amount, current
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investors experience a capital loss of 1 � V (p
t

, L

t

). Current investors never experience a capital gain

since outside investors always bid zero when V (p
t

, L

t

) < 1. Everything else constant, an increase in the

rate of o↵er arrival decreases the investors’ valuation. Because the investor has to be indi↵erent between

a share in the fund and one unit of cash at the liquidation threshold, it follows that the liquidation

threshold has to increase.

Higher limits to arbitrage implu smaller expected returns µ̂

t

+ �µ̂

c

t

; therefore, holding everything

else constant, an increase in the limits to arbitrage also implies lower valuations. But higher limits to

arbitrage also implies more learning from short-term performance 
t

". Since the liquidation decision is

an option on the manager skill, this e↵ect increases investor valuations. As �
c

! 1 this volatility e↵ect

goes to zero as outside investors bid on any positive news. The expected return e↵ect dominates, that

is, the liquidation threshold increases in the limits to arbitrage when the capital markets are su�ciently

competitive.

C Numerical solution

We apply the finite-di↵erence method to solve the integro-partial di↵erential equations. To solve for

optimal policies, we sequentially iterate until the value function converges. The two value functions—the

skilled manager’s G and the investors’ V—and the three choice variables—the skilled manager’s portfolio

choice ⇡

t

and the investors’ investment policy for funds with and without lockups—are determined

jointly. Equilibrium o↵ers B(X
t

, L

t

) are determined once we have the investor valuation V . The state

space consists of the manager’s reputation in probability space (� 2 [0, 1]) , strategy state (⇠ 2 {⇠h, ⇠l}),

and the lockup status L 2 {0, 1}. We solve in the probability space instead of the log-likelihood space.

We first hold constant the skilled manager’s portfolio choice at the e�cient choice ⇡(⇠h, a, L) = �1

and iterate to find what we denote the e�cient solution (G
ef

, B

ef

, V

ef

, a

ef

L , a
ef

Lt=1

). The e�cient liquidation
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threshold a

ef

L is the lower bound to the equilibrium liquidation threshold a

eq

L . Starting from the e�cient

policies we iterate on the HJB, but this time solving for the optimal portfolio ⇡(⇠h, a, L) policy at each

step. Recall that ⇡(⇠l, a, L) = 1, 8a, L.

The iteration procedure can be divided into steps:

1. Given choices ⇡

i�1 solve for aiL, a
i

Lt=1

, V

i such that V i(aiL, L) = 1, V i(ai
Lt=1

, L

t

= 1) = 1, and V

satisfy the investors’ HJB equation.

2. Given a

i

L, a
i

Lt=1

, V

i and ⇡

i�1 solve for G

i such that the manager’s valuation satisfies the HJB

equation and G

i(⇠, aiL, L) = 0.

3. Given G

i solve for ⇡i using Proposition 5

4. If
�

�

G

i �G

i�1

�

�

< ✏,
�

�

B

i �B

i�1

�

�

< ✏, and
�

�

V

i � V

i�1

�

�

< ✏, stop. If not, repeat.

When we solve for the e�cient solution—that is, the one in which the skilled manager commits to

maximizing expected returns—we skip step 3 as the portfolio choice is always held at ⇡(⇠h) = �1.

D Lockup premium in a stylized model

Investors dislike lockups. If they invest in a fund with a lockup and the manager turns out to be

unskilled, they will be stuck with the manager for the duration of the lockup. If the manager is skilled,

he is likely to receive an outside o↵er, in which case the investors lose the manager despite the lockup.

The lockup is therefore asymmetric; it more likely binds when the investors wish it did not.

The key benefit of the lockup provision is that it reduces limits to arbitrage. With the lockup in

place, the manager can increase his expected return by trading the long-term arbitrage opportunity

more aggressively. Investors, however, need to be compensated for the risk of being stuck with unskilled
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managers. The di↵erence between the expected net alpha of a fund with a lockup and an open-ended

fund is the lockup premium. It measures the entrenchment costs perceived by investors.

We use a stylized example to illustrate the source of the lockup premium. Suppose that investors

learn the true type of the manager in t years, and that they are asked to enter a contract with a T -year

lockup provision, where T > t. We make the following assumptions. First, if the manager is revealed

to be skilled at time t, outside investors discover and bid him away with probability p. Second, the

riskless rate is zero, there are no performance fees, and the skilled and unskilled managers earn after-fees

expected returns of r
g

and r

b

. With these assumptions, investors’ expected return over T years is

E(r) =

8

>

>

<

>

>

:

(1� p)r
g

T + pr

g

t if the manager is skilled,

r

b

T if the manager is unskilled.

(24)

If the manager is skilled, investors may have their capital returned to them after just t years; but if he

is unskilled, they will earn low returns for T > t years. In our notation, the manager is skilled with

probability �̂

0

, and so investors break even if

E(r) � 0 ) �̂

0

h

(1� p)r
g

T + pr

g

t

i

| {z }

skilled

+(1� �̂

0

)r
b

T

|{z}

unskilled

� 0. (25)

Investors therefore break even when the manager’s reputation is at least

�̂

0

� �r

b

T

(1� p)r
g

T + pr

g

t� r

b

T

. (26)

Suppose now that we take a manager at the boundary and have him manage an open-ended fund
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instead. Taking T ! 0 in equation (25), investors in such a fund earn a net alpha of

E(r) = �̂

0

r

g

+ (1� �̂

0

)r
b

. (27)

Substituting the boundary reputation from (26) into equation (27), we see that investors require a

lockup premium ⇤ of

⇤ =
�r

b

T

(1� p)r
g

T + pr

g

t� r

b

T

(r
g

� r

b

) + r

b

, (28)

over the open-ended fund—that is, investors only invest in managers who they believe will deliver high

expected returns. This lockup premium ⇤ increases in the contract maturity T , the cost of investing in

the unskilled manager, �r

b, and the degree of competition in the market for skill, p. In the full model,

the lockup premium is more complicated because the speed of learning depends on the manager’s choices

and the model primitives, and because investors learn continuously from returns.
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