
Crawford School of Public Policy

CAMA
Centre for Applied Macroeconomic Analysis

Estimating and Accounting for the Output Gap with
Large Bayesian Vector Autoregressions

CAMA Working Paper 46/2017
July 2017

James Morley
University of New South Wales and
Centre for Applied Macroeconomic Analysis, ANU

Benjamin Wong
Reserve Bank of New Zealand and 
Centre for Applied Macroeconomic Analysis, ANU

Abstract

We demonstrate how Bayesian shrinkage can address problems with utilizing large 
information sets to calculate trend and cycle via a multivariate Beveridge-Nelson (BN) 
decomposition. We illustrate our approach by estimating the U.S. output gap with large 
Bayesian vector autoregressions that include up to 138 variables. Because the BN trend 
and cycle are linear functions of historical forecast errors, we are also able to account for 
the estimated output gap in terms of different sources of information, as well as particular 
underlying structural shocks given identification restrictions. Our empirical analysis 
suggests that, in addition to output growth, the unemployment rate, CPI inflation, and, to 
a lesser extent, housing starts, consumption, stock prices, real M1, and the federal funds 
rate are important conditioning variables for estimating the U.S. output gap, with 
estimates largely robust to incorporating additional variables. Using standard 
identification restrictions, we find that the role of monetary policy shocks in driving the 
output gap is small, while oil price shocks explain about 10% of the variance over 
different horizons.

| T H E A U S T R A L I A N N A T I O N A L U N I V E R S I T Y



Keywords

Beveridge-Nelson decomposition, output gap, Bayesian estimation, multivariate 
information

JEL Classification

C18, E17, E32

Address for correspondence: 

(E) cama.admin@anu.edu.au

ISSN 2206-0332

The Centre for Applied Macroeconomic Analysis in the Crawford School of Public Policy has been 
established to build strong links between professional macroeconomists. It provides a forum for quality 
macroeconomic research and discussion of policy issues between academia, government and the private 
sector.
The Crawford School of Public Policy is the Australian National University’s public policy school, 
serving and influencing Australia, Asia and the Pacific through advanced policy research, graduate and 
executive education, and policy impact.

| T H E  A U S T R A L I A N  N A T I O N A L  U N I V E R S I T Y



Estimating and Accounting for the Output Gap with
Large Bayesian Vector Autoregressions ∗†

James Morley1,3 and Benjamin Wong2,3

1University of New South Wales
2Reserve Bank of New Zealand

3Centre for Applied Macroeconomic Analysis, The Australian National
University

Abstract

We demonstrate how Bayesian shrinkage can address problems with utilizing
large information sets to calculate trend and cycle via a multivariate Beveridge-
Nelson (BN) decomposition. We illustrate our approach by estimating the U.S.
output gap with large Bayesian vector autoregressions that include up to 138 vari-
ables. Because the BN trend and cycle are linear functions of historical forecast
errors, we are also able to account for the estimated output gap in terms of differ-
ent sources of information, as well as particular underlying structural shocks given
identification restrictions. Our empirical analysis suggests that, in addition to out-
put growth, the unemployment rate, CPI inflation, and, to a lesser extent, housing
starts, consumption, stock prices, real M1, and the federal funds rate are important
conditioning variables for estimating the U.S. output gap, with estimates largely
robust to incorporating additional variables. Using standard identification restric-
tions, we find that the role of monetary policy shocks in driving the output gap is
small, while oil price shocks explain about 10% of the variance over different hori-
zons.

JEL Classification: C18, E17, E32

Keywords: Beveridge-Nelson decomposition, output gap, Bayesian estimation,
multivariate information

∗Email: Morley: james.morley@unsw.edu.au Wong: benjamin.wong@rbnz.govt.nz
†We thank participants at the 25th Symposium of the Society for Nonlinear Dynamics and Econo-

metrics, 11th RCEA Bayes Workshop, and seminar audiences at the University of Melbourne and the
Australian National University for helpful comments and suggestions. The views expressed in this paper
do not necessarily represent the views of the Reserve Bank of New Zealand. Any remaining errors are
ours.

1



1 Introduction

Interpretation of macroeconomic data often involves decomposing time series into trend

and cycle, especially as related concepts such as the neutral rate of interest, the output

gap, and trend inflation are crucial inputs into macroeconomic policy decision making.

The macroeconomic literature is replete with statistical methods to conduct such de-

compositions (e.g., Hodrick and Prescott, 1997; Christiano and Fitzgerald, 2003). These

methods are often univariate and so only rely on a single time series (i.e., the series be-

ing detrended) for implementation. One challenge with univariate detrending is that the

interpretation of the estimated trend and cycle from a statistical filter often needs to be

corroborated “off-model” with other sources of information. While one could allow an

explicit role for multivariate information to help conduct and interpret trend-cycle de-

composition (e.g., Kozicki, 1999; Garratt, Robertson, and Wright, 2006; Sinclair, 2009;

Garratt, Lee, and Shields, 2016; Chan and Grant, 2017), practical challenges remain in

terms of which variables should be included in the information set or even with how large

the information set can be to keep estimation tractable.

We address these issues associated with specifying and interpreting multivariate in-

formation within the context of a particular approach to calculating trend and cycle,

namely the Beveridge and Nelson (BN) (1981) decomposition. The BN decomposition

provides estimates of the trend and cycle for a time series by looking at its long-horizon

conditional forecast. Meanwhile, vector autoregressions (VARs) are widespread and well

developed models for forecasting and provide a natural starting point for incorporating

multivariate information to calculate trend and cycle via the BN decomposition (see, for

example, Evans and Reichlin, 1994). However, their use can give rise to practical concerns

such as overfitting or a mechanical and possibly spurious decrease in the signal-to-noise

ratio given more information, the latter a theoretical property of the multivariate BN

decomposition as proven by Evans and Reichlin (1994). We show that Bayesian shrinkage

can circumvent these practical challenges and that estimation of trend and cycle utilizing

information sets containing well over a hundred variables is both feasible and can avoid

overfitting.

We also show how to infer which sources of information are the most important for

estimating trend and cycle, providing a guide for variable selection and setting the ap-

propriate size of the information set in practice. In particular, we demonstrate that,

because the estimated trend and cycle from a multivariate BN decomposition are linear

functions of the historical forecast errors, the contribution of various sources of informa-

tion to the estimated trend and cycle can be easily determined. Given the forecast errors

and identification restrictions, an extension to structural VAR (SVAR) analysis is also

straightforward when the objective is to infer which economic shocks drive the trend and

cycle.
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A key empirical finding from our analysis is that the U.S. output gap estimated using a

large Bayesian VAR (BVAR) with 138 variables is similar to estimates for smaller BVARs

with 23 or even just 8 variables, if appropriately selected. The reason for the robust results,

despite information sets of very different sizes, is because of the Bayesian shrinkage, as well

as our ability to determine which variables are the most important sources of information

for the output gap. In particular, the most important variables for estimating the U.S.

output gap in addition to output growth itself are the unemployment rate, CPI inflation,

and, to a lesser extent, housing starts, consumption, stock prices, real M1, and the federal

funds rate, with estimates largely robust to incorporating additional variables. Identifying

monetary policy shocks and oil price shocks using standard restrictions in our 23 variable

benchmark system, we find they respectively account for approximately 4% and 10%

of the unconditional variance of the U.S. output gap. We also find that neither type

of shock explains very much of the variance of trend growth, consistent with monetary

neutrality and traditional theories of growth that assume technology shocks are the main

determinant of the long-run level of output.

Our approach and analysis are heavily influenced by Evans and Reichlin (1994), who

explored the multivariate generalization of the original univariate BN decomposition in

Beveridge and Nelson (1981). Figure 1 presents an example to illustrate the two key

insights from Evans and Reichlin (1994) that we build on. First, Evans and Reichlin

show that adding relevant multivariate information into the forecasting model significantly

alters the profile of the estimated output gap. This can be seen by comparing the output

gap obtained from a BN decomposition based on a univariate AR(4) model of U.S. output

growth plotted in the top panel of the figure with various multivariate BN decompositions

based on VARs containing larger information sets, ranging from 2 to 7 variables, plotted in

the bottom panel.1 The univariate BN estimate of the output gap lacks both persistence

and amplitude and also moves counter-cyclically with the NBER chronology of expansions

and recessions, while the multivariate ones are more persistent, have larger amplitude, and

move more pro-cyclically relative to the NBER chronology. Second, Evans and Reichlin

show that the larger the information set, the lower the signal-to-noise ratio. This effect

can be easily seen as the estimated output gap in the bottom panel clearly becomes larger

in amplitude when the number of variables increases, with the 7 variable VAR producing

the largest amplitude estimate of the output gap. Evans and Reichlin’s insights are

powerful because they suggest that multivariate information should serve some role in

making inference about the output gap, yet increasing the amount of information needs

to be balanced with concerns about overfitting and specifically what is the appropriate

1The data are for the U.S. economy and are described in full detail in Section 3. The 2 variable VAR
includes output growth and the unemployment rate. The 3 variable VAR includes output growth, CPI
inflation, and the federal funds rate. The 7 variable VAR includes all of the variables in the 2 and 3
variable system, as well as capacity utilization, the growth of industrial production, and the growth of
real personal consumption expenditure. All of the VARs were estimated with 4 lags using least squares.
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signal-to-noise ratio. Our goal in this paper is to provide a practical solution to balance

these tradeoffs and address other challenges with large multivariate models. In particular,

we suggest how to specify and estimate a multivariate forecasting model to handle various

information sets, as well as how to determine the role of other variables and underlying

structural shocks in explaining the estimated trend and cycle.

The remainder of this paper proceeds as follows. Section 2 discusses the BN decompo-

sition in a multivariate setting and how to infer the role of different sources of information

and underlying structural shocks given identification restrictions. Section 3 describes how

to use Bayesian shrinkage to utilize large information sets and describes the data to be

included in the large BVARs. Section 4 reports the resulting estimates of the U.S. output

gap and considers the role of multivariate information in determining these estimates.

Section 5 employs SVAR analysis to examine possible causal determinants of the U.S.

output gap and trend growth. Section 6 considers Monte Carlo analysis to show how well

our approach works when possibly misspecifying the size the of the BVAR. We conclude

by summarizing our key findings and also suggesting some possible extensions.

2 The BN Decomposition in a Multivariate Setting

Beveridge and Nelson (1981) define the trend of a time series as its long-horizon conditional

expectation minus any deterministic future movements in the time series. In particular,

let {yt} be a time series with a trend component that follows a random walk with a

constant drift, μ, then the BN trend, τt, at time t is

τt = lim
j→∞

Et[yt+j − j · μ]. (1)

The intuition behind the BN decomposition is that the long-horizon the expectation of

the cycle is zero, meaning that the long-horizon conditional expectation of the time series

will just reflect the trend component. Therefore, one only needs to specify a forecasting

model for the first difference of the time series, {Δyt}, to generate these forecasts. For

univariate time series, ARMA models provide a natural choice for the forecasting model,

as considered in Beveridge and Nelson (1981). In the multivariate context, linear VARs

provide a natural choice, as considered in Evans and Reichlin (1994).

Let {Δxt} represent a vector of stationary variables that includes {Δyt}.2 We can

write a finite-order VAR in companion form as

(Δxt − μ) = F(Δxt−1 − μ) +Hνt, (2)

2By framing the stationary variables as being in differences, we can apply the BN decomposition to
the integrated levels of these variables, {xt}, which importantly includes {yt}, although variables that
are naturally stationary in their levels could be included in {Δxt} and the BN decomposition would
implicitly be applied to the accumulation of their levels.
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where F is the companion matrix, μ a vector of unconditional means, H maps the forecast

errors to the companion form, and νt is a vector of serially uncorrelated forecast errors

with covariance matrix Σν . Given stationarity, (I − F)−1 exists and, from equation (2),

the cumulative sum at time t of expected future deviations of the vector process from its

unconditional mean can be written as

Et

∞∑
j=1

(Δxt+j − μ) = F(I− F)−1(Δxt − μ). (3)

Then, denoting τt and ct respectively as the vector of BN trends and BN cycles of xt at

time t, we can solve for these following Morley (2002):

τt = xt + F(I− F)−1(Δxt − μ) (4)

ct = −F(I− F)−1(Δxt − μ). (5)

The BN cycles, ct, can be written as a function of the history of forecast errors

through recursive substitution. Letting Γi ≡ Fi(I− F)−1 for notational convenience and

repeatedly lagging and substituting equation (2) into equation (5), we get the following

representation:

ct = −Γ1(Δxt − μ)

= −Γ1 {F(Δxt−1 − μ) +Hνt}
= −Γ1Hνt − {FΓ1(Δxt−1 − μ)}
= −Γ1Hνt − {Γ2(Δxt−1 − μ)}

= −
{

t−1∑
i=0

Γi+1Hνt−i

}
− Γt+1(Δx0 − μ)

≈ −
{

t−1∑
i=0

Γi+1Hνt−i

}
. (6)

In practice, the initial condition (i.e., Δx0−μ) is either treated as fixed when conducting

conditional maximum likelihood estimation or set to zero according to its unconditional

expectation. Note that, even if the initial condition were treated as fixed, Γt+1 exponen-

tially decays to zero as t increases for a stationary vector process. So the approximation

in the last line should be highly accurate for all but the first few time periods given

conditional maximum likelihood estimation. However, in our application, we use least

squares estimation with backcast observations at the sample average. Thus, Δx0 − μ is

zero and there is no approximation, although we also note it would be straightforward to
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include fixed values instead when accounting for the role of different sources of informa-

tion. Meanwhuile, in terms of representing the changes in BN trends, Δτt, as a function

of the forecast errors, we can work off equation (4) to get the following:

Δτt = {xt + Γ1(Δxt − μ)} − {xt−1 + Γ1(Δxt−1 − μ)}
= μ+ Γ0Hνt. (7)

To isolate a given BN cycle or trend as a function of the forecast errors, we can define

a selection vector, ei, as a vector of zeros and one as its ith element. In particular, to

account for the contribution of the forecast error for the jth variable to the BN cycle

or trend of the sth ordered variable, we pre-multiply ct or Δτt in equations (6) or (7)

respectively by es and post-multiply by ej.

2.1 Interpretation

Equations (6) and (7) provide a natural starting point for two different, but related, ways

of looking at the BN trends and cycles in large systems. We briefly discuss each of these

in turn.

Sources of Information Because equations (6) and (7) express the BN trends and

cycles as functions of all historical forecast errors within the multivariate forecasting

model, it is possible to relate these trends and cycles to different sources of information

by relating them to forecast errors for each variable in the VAR. Thus, it can be easily

determined what multivariate information is important for inferences about the trend and

cycle of a given target variable such as log real GDP. If the trend and cycle of the target

variable do not depend on the forecast errors for another variable, then there will be

very little effect of including or excluding the other variable in the VAR when conducting

a multivariate BN decomposition for the target variable. Importantly, though, this is

not the basis for a variance decomposition of the trend and cycle because the forecast

errors could be correlated across equations. However, as shown in our application, it is

extremely useful for understanding how many and which variables should be included

when estimating the trend and cycle of a target variable.

The Role of Structural Shocks As just noted, to the extent that the forecast errors in

νt are correlated, variance decompositions of trends and cycles based on the forecast errors

are not possible. However, given the forecast errors and identification restrictions, causal

inferences such as a variance decompositions based on structural shocks are possible.

Recall that Σν is the covariance matrix associated with the forecasting model presented

in equation (2). Let εt, where Aεt = νt, represent the vector of structural shocks with

covariance matrix I. The matrix A maps the structural shocks to the reduced form
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forecast errors by a series of identification restrictions that satisfy Σν = AA′ (see, for

example, Kilian, 2013; Stock and Watson, 2016, for textbook treatments and details). In

practice, A could be a lower triangular Cholesky decomposition of Σν , although numerous

other schemes for identifying the structural shocks are also widely used and available.

Then, once an identification scheme is specified, it is straightforward to plug Aεt in place

of νt in equations (6) and (7) such that the BN trends and cycles become functions of the

structural shocks. Because the structural shocks are orthogonal, this allow direct inference

using variance decompositions or related measures about how much, say, monetary policy

shocks, oil price shocks, or other structural shocks contribute to the trend and cycle of a

given target variable.

As with any SVAR analysis, causal interpretations of the drivers of the trend and cycle

directly rely on the plausibility of the identification of the structural shocks. Therefore,

it is crucial to note that, while inferences about sources of information are invariant to

identification restrictions, the causal analysis will necessarily be dependent on a particular

identification scheme. At the same time, it should be noted that, again given orthogo-

nality, it is possible to examine the causal effects of a given structural shock without

needing to identify all of the other structural shocks in a system. This is convenient in

large systems and is the approach we take in our application.

3 Bayesian Shrinkage and the Data

In this section, we first specify a VAR as the forecasting model in order to use Bayesian

shrinkage to address problems with utilizing large information sets to calculate trend and

cycle via a multivariate BN decomposition. Then we discuss the data we will use in a

large BVAR to estimate the U.S. output gap.

Bayesian shrinkage methods for VARs are well developed (e.g., Litterman, 1986;

Robertson and Tallman, 1999), including recently in a large BVAR context (see Ban-

bura, Giannone, and Reichlin, 2010). Letting Yt = (y1,t . . . yn,t)
′ be a vector of n random

variables, we model Yt as a VAR of lag order p:
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Yt = β1Yt−1 + . . . + βpYt−p + ut

=
[
β1 β2 . . .βp

]
⎡
⎢⎢⎢⎢⎣
Yt−1

Yt−2

...

Yt−p

⎤
⎥⎥⎥⎥⎦+ ut

=

⎡
⎢⎢⎣
β11
1 . . . β1n

1 β11
2 . . . β1n

2 . . . . . . β1n
p

...
. . .

...
...

. . .
...

. . . . . .
...

βn1
1 . . . βnn

1 βn1
2 . . . βnn

2 . . . . . . βnn
p

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣
Yt−1

Yt−2

...

Yt−p

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎣
u1,t

...

un,t

⎤
⎥⎥⎦ , (8)

where E(u′
tut) = Σu and E(u′

tut−i) = 0 ∀i > 0. Assuming the variables in Yt are

stationary and have been demeaned prior to estimation, the VAR in equation (8) can

be cast into the companion form presented in equation (2) in a straightforward manner

(see, for example, Hamilton, 1994) and the BN trends and cycles can be calculated and

expressed as functions of historical forecast errors, as discussed in the previous section.

As motivated above, while Evans and Reichlin (1994) show that additional relevant

multivariate information mechanically lowers the signal-to-noise ratio, their result leaves

unanswered the question of how large the information set should be or how one can

practically estimate a very large system in case many variables appear to be relevant.

Meanwhile, it is a virtual certainty that parameter proliferation within a VAR framework

will lead to overfitting as more variables with any estimated degree of Granger causality

are added into the VAR system. The mechanical result in terms of a decrease in the signal-

to-noise ratio was illustrated earlier in Figure 1 with the larger VAR system using least

squares estimation producing the estimated U.S. output gap with the largest amplitude.

Here, we consider how to build on the insights of the BVAR literature in order to best

utilize Bayesian shrinkage (e.g., see Litterman, 1986; Robertson and Tallman, 1999) to

make estimation of BN trends and cycles with larger information sets tractable and not

subject to a mechanical but possibly spurious decrease in the signal-to-noise ratio as more

variables are included in the system. A basic insight from the large BVAR literature (see

Banbura, Giannone, and Reichlin, 2010) is that one should apply more shrinkage as the

system gets larger. We follow this approach, although we highlight that our proposed

approach to shrinkage differs from Banbura, Giannone, and Reichlin’s in three key ways.

First, while Banbura, Giannone, and Reichlin (2010) shrink variables towards random

walk or noise processes depending on their persistence, we shrink the target variable (i.e.,

output growth when estimating the output gap) towards a process with a pre-specified

signal-to-noise ratio, as discussed below, and the other variables to a noise process (if not

differenced) or implicitly to a random walk process in levels (if differenced in the VAR).
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Second, we optimize our shrinkage hyperparameter relative to an out-of-sample one-step-

ahead forecast, rather than targeting the in-sample fit of a smaller system. Third, as

mentioned above, we demean all of our data prior to estimation and thus we do not

estimate a vector of constants as part of the model. Implicitly, this means we are using

the sample average to estimate the unconditional mean of a given time series, which would

be equivalent to placing a highly diffuse prior on the constants if they were included in

estimation.

Because it is the most nonstandard feature of our procedure relative to the wider

BVAR literature, our choice to shrink the target variable towards a process with a partic-

ular signal-to-noise ratio merits some discussion. Typical BVAR methods would shrink a

variable like output towards to a random walk process. The underlying idea is that be-

cause a random walk provides a competitive forecast for many macroeconomic variables,

shrinking towards a random walk balances overfitting, which worsens the forecasting per-

formance of the model, with a more parsimonious and accurate forecasting model. If

forecasting were the sole objective, shrinkage towards a random walk might be a good

choice. However, forecasting is not our sole objective. In particular, while we hope for

a competitive forecasting model, hence our choice to optimize based on out-of-sample

forecasting performance, the ultimate aim of our analysis is to estimate a variable such

as the output gap with a multivariate BN decomposition. By definition, if the forecasting

model for the level of the target variable {yt} were a pure random walk with drift, the

BN decomposition would imply no cycle (i.e., the time series would be equivalent to the

trend, as its long horizon forecast minus drift is equal to the current level of the time

series). In other words, the tighter we shrink towards the random walk, the smaller would

be the BN cycle, by construction. This is not a desirable property as it could conflict with

our use of more shrinkage as the number of variables increase. Put differently, applying

shrinkage in the usual fashion in the BVAR literature would mechanically shrink the size

of the BN cycle as the number of variables increases, with there being no cycle in the

limit as the number of variables goes to infinity.

Our solution, then, is to shrink the target variable equation towards a pre-specified

signal-to-noise ratio, which we label as δ. To interpret this signal-to-noise ratio, δ = 0.01x

implies x% of the variance in the forecast error for {Δyt} is due to permanent shocks to

{yt}. Kamber, Morley, and Wong (2017) demonstrate that one can perform a univariate

BN decomposition with a pre-specified δ because there is a direct mapping from δ to the

AR coefficients in an AR(p) model. In particular, letting ρ be the sum of AR coefficients

in an AR(p) regression of output growth, the mapping between the two is ρ = 1− 1/
√
δ.

In Kamber, Morley, and Wong (2017), the estimation of the output gap from a univariate

AR(p) model of output growth treats ρ as being fixed and so can be viewed as a dogmatic

prior on the signal-to-noise ratio. Here, in the multivariate environment, we place a prior

on δ, but it is not dogmatic because the multivariate information can move the posterior
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away from the prior depending on how well the multivariate information helps to forecast

{Δyt}. A prior on δ amounts to placing a prior on the sum of the autoregressive coefficients

in the target variable equation, which we label ρ(δ).

To be specific about our shrinkage priors, let βij
l denote the VAR coefficient of the lth

lag of variable j in the ith equation of the VAR, which are elements of matrix of VAR

slope coefficients β which we introduced in equation (8). Let the target variable, {Δyt},
be the sth variable in our BVAR, and ρ(δ̄) be the sum of the autoregressive coefficients

in the target variable equation consistent with a pre-specified δ̄. We set the prior means

and variances as follows:

E[βij
l ] = 0 (9)

V[βij
l ] =

⎧⎨
⎩

λ2

l2
, i = j

λ2

l2
σ2
i

σ2
j
, otherwise

(10)

E[

p∑
l=1

βss
l ] = ρ(δ̄) (11)

V[

p∑
l=1

βss
l ] = χ2. (12)

Equations (9) and (10) imply all of the differenced variables in the VAR will shrink towards

random walk processes in their levels or white noise processes for stationary level variables

in the VAR. The variances σ2
i and σ2

j are set by taking the variance of the residuals on

an AR(4) estimated using least squares on each of the individual time series as per the

usual practice (e.g., Banbura, Giannone, and Reichlin, 2010; Koop, 2013). The factor 1/l2

shrinks coefficients at longer lags closer to zero, embedding the Minnesota prior structure

that shorter lags are more important than longer lags in modeling the dynamics of a

time series. Equations (11) and (12) implement the prior on the signal-to-noise ratio for

the target variable. As discussed, we shrink the sum of the AR coefficients in the target

variable equation to ρ(δ̄). In our application, we set δ̄ = 0.25, consistent with Kamber,

Morley, and Wong (2017).3 In order to shrink towards δ̄, rather than a random walk in

the limit, we apply more shrinkage to the sum of the autoregressive coefficients than for

the individual coefficients – i.e., we require χ << λ. Thus, we set χ = λ/10.

Our main estimation strategy centers on the shrinkage hyperparameter λ. Intuitively,

λ serves as an information processing parameter that controls the degree of multivariate

information entering into the estimation of the BN trend and cycle for the target variable.

As discussed previously, our approach is to shrink λ closer to zero as the number of time

3Kamber, Morley, and Wong (2017) employ an explicit objective of maximizing the amplitude-to-noise
ratio of the estimated output gap in their univariate model, which implies δ̄ = 0.25 for U.S. real GDP
data. See Kamber, Morley, and Wong (2017) for more details.
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series in the model increases so as to first prevent overfitting, but also to control the

degree of the multivariate information entering into the estimate of the BN trend and

cycle for the target variable and so prevent a mechanical decrease of the signal-to-noise

ratio. Prior work suggests a number of methods to choose the degree of shrinkage. One

could optimize based on the marginal data density of the model (see Carriero, Clark, and

Marcellino, 2015) or even estimate the shrinkage hyperparameter through the treatment

of the prior in a hierarchical fashion (Giannone, Lenza, and Primiceri, 2015). Banbura,

Giannone, and Reichlin (2010) suggest targeting the in-sample fit of a smaller 3 variable

system with that of the larger system. All of these suggested procedures are based on

the basic principle of increasing the degree of shrinkage as the risk of overfitting increases

with the size of the system.

We adopt the same basic principle of applying shrinkage to mitigate overfitting, but

deviate slightly in how we choose λ. In particular, we set λ to minimize the one-step-ahead

out-of-sample root mean squared forecast error (RMSFE) of the target variable {Δyt}.
This approach is still based on the principle that overfitting compromises out-of-sample

forecasting performance. Intuitively, this approach means that larger systems with a

greater potential to overfit will be subject to a larger degree of shrinkage in order to achieve

similar or better out-of-sample forecasting performance.4 However, we highlight that our

choice to minimize the out-of-sample RMSFE of a target variable serves another purpose

within the context of performing a trend-cycle decomposition with the BN decomposition.

In particular, Nelson (2008) argues that an AR(1) is a sensible forecasting model for

performing a BN decomposition of log real GDP because, while parsimonious, it produces

comparatively good forecasts of output growth. Within our context, our priority is not so

much to optimize the forecasting performance of the entire BVAR. However, we do view

requiring the BVAR to produce competitive forecasts for output growth relative to an

AR(1) as an important step to mitigate Nelson’s critique. Therefore, while we retain the

principle of applying shrinkage to deal with overfitting, our main goal is to perform a BN

decomposition of log real GDP and we view this deviation from the BVAR literature as

being sensible within the context of trend-cycle decomposition of a given target variable.

To conduct Bayesian estimation of the model, we cast the VAR in equation (8) into a

system of multivariate regressions:

Y = Xβ + u, (13)

where Y = [Y1, . . . ,YT]
′, X = [X1, . . . ,XT]

′ with Xt = [Y′
t−1, . . . ,Y

′
t−p]

′, and u =

4For the out-of-sample forecast evaluation, we consider an expanding window for the estimation sam-
ple, starting with the initial 20 years of data (roughly one third of the 230 quarterly observations).
However, we note that degree of shrinkage appears largely robust to an initial sample as short as 10
years.
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[u1, . . . ,uT]
′. We then employ a Normal-Inverse Wishart prior, which has the form

vec(β)|Σ ∼ N(vec(β0),Σ⊗ Ω0) and Σ ∼ IW (S0, α0), (14)

where the prior parameters β0, Ω0, S0, and α0 are set to be consistent with equations

(9), (10), (11), and (12) and the expectation of Σ being diag(σ2
1, . . . σ

2
n). The prior from

(14) can then be implemented by choosing the following dummy observations in order to

match the moments of the prior (see, e.g., Del Negro and Schorfheide, 2011; Woźniak,

2016):

Yd =

⎛
⎜⎝

0k,n

diag(σ1 . . . σn)

01,s−1 ρ/χ 01,n−s

⎞
⎟⎠ , Xd =

⎛
⎜⎜⎝

Jp ⊗ diag(σ1 . . . σN)/λ

0n,k

11,n ⊗
[
01,s−1 1/χ 01,n−s

]
⎞
⎟⎟⎠ , (15)

where Yd and Xd are dummy observations, Jp = diag(1, . . . p), S0 = (Yd − XdB0)
′(Yd −

XdB0), B0 = (X ′
dXd)

−1X ′
dYd, Ω0 = (X ′

dXd)
−1, and α0 = Td−k, where Td is the number of

rows for both Yd and Xd and k = n×p.5 The first block of dummy observations places the

prior on all of the individual VAR slope coefficients, the second block imposes the priors

on the covariance matrix, and the third block implements the prior on the signal-to-noise

ratio.

Augmenting the regression in equation (13) with the dummy observations gives the

following:

Y∗ = X∗β + u∗, (16)

where Y∗ = [Y′,Yd
′]′, X∗ = [X′,Xd

′]′ and u∗ = [u′,ud
′]′. Estimating the BVAR then

simply amounts to conducting least squares regression of Y ∗ on X∗. Therefore, the

posterior distribution has the form

vec(β)|Σ,Y ∼ N(vec(β̃,Σ⊗ (X∗′X∗)−1) (17)

Σ|Y ∼ IW (Σ̃, Td + T − k + 2), (18)

where β̃ = (X∗′X∗)−1)X∗′Y∗′ and Σ̃ = (Y∗ −X∗β̃)′(Y∗ −X∗β̃).

Data For our empirical application, we consider data from 1959Q2 to 2016Q4. We use

a 23 variable BVAR for our benchmark specification. The raw data are the oil price,

real GDP, the Consumer Price Index (CPI), the unemployment rate, hourly earnings, the

5Note that because we demean all the variables prior to estimation, we do not include a constant in
our BVAR. Thus the number of parameters in each equation in n× p, not n× (p+ 1).
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fed funds rate, stock prices, the slope of the yield curve, the GDP deflator, employment,

income, real personal consumption expenditure (PCE), industrial production, capacity

utilization, housing starts, producer price index for all commodities, the PCE deflator,

hours worked, nonfarm real output per hour, total reserves, non-borrowed reserves, real

M1, and real M2. Much of the 23 variable system is informed by Banbura, Giannone,

and Reichlin’s 20 variable system, which in turn is informed by an influential monetary

VAR study by Christiano, Eichenbaum, and Evans (1999). In particular, Banbura, Gian-

none, and Reichlin (2010) suggest their medium-sized 20 variable BVAR system contains

a sufficiently broad information set for macroeconomic forecasting purposes and so we

believe it serves as a reasonable starting point for a model which should contain most, if

not all, of the relevant information for estimating the output gap via the BN decompo-

sition. However, we also consider a 138 variable BVAR, many of the additional variables

of which are just subcomponents of the 23 variable system, to make it comparable to

the large BVAR (see Banbura, Giannone, and Reichlin, 2010) or FAVAR (e.g., Bernanke,

Boivin, and Eliasz, 2005) studies employed within the wider empirical literature. Finally,

we consider an 8 variable system that contains a subset of variables of the baseline model,

as discussed in the next section. All of the raw data are sourced from FRED and IFS.

We leave definitions and details of the data to the appendix.

We take natural logarithms of series when appropriate and then take first differences

of any series if either a unit root test cannot reject at a 5% level of significance or a simple

t-test can reject an equal sample mean for the first half and latter half of the sample at

a 10% level of significance.6 We transform the data in this way because we have assumed

stationarity of the variables in our VAR in order to construct BN trends and cycles, as

noted in Section 2.7 All series, once rendered stationary, are backcast with their sample

average so as to keep the initial observations as part of the estimation sample. We conduct

all of our estimation with 4 lags, as is standard for quarterly data.

4 U.S. Output Gap Estimates from BVARs

Figure 2 plots the estimated BN output gap based on our benchmark 23 variable BVAR.

The estimated output gap moves with the NBER chronology of business cycle peaks and

troughs reasonably well. In comparison to Figure 1, it appears that the use of Bayesian

shrinkage has been successful in processing multivariate information, without necessarily

producing an output gap that has a mechanically outsized amplitude.

6The simple sample splitting approach for testing for a break in mean is for convenience given the
large number of series to process. However, it would certainly be possible to consider more formal tests
for structural breaks in mean at unknown breakpoints.

7Preliminary analysis showed that, despite the shrinkage, incorporating very persistent series in the
BVAR, including those with apparent shifts in the mean based on the split sample test, results in BN
cycles that appear to drift up or down over rather than reverting to a mean of zero.
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As discussed previously, equation (6) shows that the BN cycle can be represented

as a function of the forecast errors for the various n variables, where the informational

contribution of the ith variable, Si, to the BN cycle of output for output growth as the

sth variable can be expressed as

Si = esctei. (19)

We calculate the standard deviations of the various n informational contributions to un-

derstand which sources of multivariate information are most important for the estimation

of the output gap. These standard deviations are presented as unnormalized shares in

Figure 3. It can be seen from the figure that the two most important sources of multi-

variate information for the output gap in our 23 variable system are the unemployment

rate and CPI inflation. We also observe that five other variables, personal consumption

expenditure, housing starts, the federal funds rate, real M1, and stock prices are also

somewhat important.

To confirm the importance of these particular variables as sources of information, we

consider a more parsimonious 8 variable BVAR, which includes the seven most important

variables from our 23 variable benchmark BVAR, along with output growth itself, in order

to estimate the output gap. We also consider a large 138 variable BVAR to see if other

macroeconomic variables might provide useful information.

The top panel of Figure 4 plots the output gap estimates for three different BVARs

containing 8, 23, and 138 variables, respectively. The output gap estimates for these three

models are largely similar. The reason for the similarity is that Bayesian shrinkage has

surpressed all but the most important sources of multivariate information for output gap

estimation. This is even true for the 8 variable BVAR that produces a smaller amplitude

output gap than the estimate based on a 7 variable VAR estimated by least squares in

Figure 1. Meanwhile, the bottom panel of Figure 4 compares the output gap estimate

from our benchmark BVAR with the estimate for a 22 variable BVAR that omits the

unemployment rate, which was the most important source of information according to the

results in Figure 3. The output gap estimate now differs substantially from the benchmark

estimate, supporting an approach that determines the main sources of information for a

given BN cycle, rather than, say, using a factor model approach to process the information

in a large dataset. In particular, it is the inclusion of key variables that matters, not

necessarily the general size of the information set.

Figure 5 plots the out-of-sample root mean square error of output growth as a function

of our shrinkage hyperparameter, λ, for the three different cases in terms of the number of

variables in the BVAR. As expected, our procedure produces more shrinkage as the system

gets larger. The shrinkage hyperparameter, λ, minimizes the one-step-ahead RMSFE at

0.49, 0.11, and 0.04, for our 8, 23, and 138 variable BVAR models, respectively. Therefore,
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while our procedure of optimizing the degree of shrinkage differs from Banbura, Giannone,

and Reichlin (2010), targeting out-of-sample fit achieves the same goal of tightening the

degree of shrinkage as we increase the size of the BVAR, suggesting that this is a viable

alternative option for determining the degree of shrinkage in large BVARs.

We also note that the out-of-sample fit improves as we move away from λ = 0. Recall

that the prior implies output growth is shrunk towards an AR(4) with a pre-specified sum

of coefficients that coincides with a fixed signal-to-noise ratio, δ̄. As shown in Kamber,

Morley, and Wong (2017), maximum likelihood estimates of δ are far in excess of 1, so it is

not surprising that the fit when δ = 0.25, as implied by the prior, can be improved upon.

However, we also note that, due to likely overfitting, the out-of-sample fit deteriorates

much quicker for the larger models as we loosen the degree of shrinkage. Therefore,

our objective of targeting the out-of-sample forecasting performance balances out the

improvement of in-sample fit from being less restrictive on the signal-to-noise ratio and

adding multivariate information against possible overfitting.

Interestingly, the minimum achievable out-of-sample RMSE does fall marginally as

we increase the size of the information set. This suggest that additional variables do

contain more information to improve out-of-sample forecasts, which one could exploit with

judicious choices about the degree of shrinkage. For comparison, we also plot a horizontal

line to indicate the out-of-sample forecasting performance of an AR(1) model. As can

be seen, our BVARs produce very competitive forecasts relative to an AR(1) model,

even beating the AR(1) model when we increase the information set to 138 variables.

Our benchmark BVAR does only marginally worse than an AR(1) model in terms of its

out-of-sample forecasting performance. This addresses a key critique by Nelson (2008),

who argues that the BN decomposition based on an AR(1) model is relevant because an

AR(1) matches the autocovariance structure of the output growth data. We show that

with shrinkage, it is possible to specify other models that do as well as AR(1) model in

out-of-sample forecasts, supporting our approach as possible way to conduct multivariate

BN decompositions without necessarily generating spurious cycles.

We draw three general conclusions from the preceding analysis. First, Evans and

Reichlin (1994) show that multivariate information will lead the BN decomposition to

produce larger cycles relative to univariate BN decompositions. However, given least

squares estimation of a VAR, the addition of multivariate information mechanically low-

ers of the signal-to-noise ratio, implying a larger amplitude cycle. That the cycle is a

mechanical function of the size of the information set is a relevant obstacle to using such

multivariate BN decompositions for practical analysis. However, we show that Bayesian

shrinkage is helpful in filtering information, so the general issues that Evans and Reichlin

(1994) discuss are no longer impediments to using multivariate BN decompositions for

practical analysis. As long as a researcher specifies a set of relevant multivariate informa-

tion, the output gap estimate should be robust to varying the exact size of the information
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set. Second, we show that it is crucial to determine what is important information. We do

this by examining the informational contributions of different forecast errors in driving the

BN cycle. Not surprisingly, discarding or omitting important information has a noticeable

impact on the output gap estimate. Third, we show shrinkage is an important tool to

be able to consider very large datasets. That we have successfully estimated an output

gap using 138 variables suggest that we may have a feasible solution to a scenario not

dissimilar to that observed in the policy environment. In particular, policy institutions

such as central banks typically monitor and observe large volumes of data, which they

use to inform their view of the degree of economic slack. We present a method to directly

incorporating a vast amount of information directly into formal trend-cycle decomposition

aimed at estimating the output gap.

In sum, we have demonstrated that it is possible to utilize Evans and Reichlin’s in-

sights about using multivariate information to estimate the output gap, but without the

disadvantage of a mechanical lowering of the signal-to-noise ratio or overfitting. We have

also showed that it is possible to produce a robust estimate of the U.S. output gap in

particular using as few as 8 variables, with the unemployment rate and CPI inflation

being particularly important sources of multivariate information in this case.

Why was the estimated output gap less deep during the Great

Recession than in the early 1980s?

The estimates in Figures 2 and 4 suggest that the output gap was more negative in

the early 1980s than during the Great Recession. Given that output fell by more with

the Great Recession, this directly suggests that the decline in trend output during the

Great Recession must have been more substantial than in the early 1980s. This result

is consistent with the assessment by the President of the Federal Reserve Bank of St.

Louis, James Bullard, who suggested that the Great Recession resulted in large permanent

decreases in output that cannot be expected to be reversed (see Bullard, 2012). A lower

level of trend output also means that the estimated output gap was back to zero by

2014Q1 and was as positive as 1% by early 2016.

Because we consider multivariate information, we can also study which source of multi-

variate information help explain trend growth. Our analysis suggest that the information

from consumption during and after the Great Recession played the main role in explain-

ing the lower estimate of trend output. In particular, the top panel of Figure 6 presents

the change in trend output (cumulated because of the stochastic trend) that is accounted

for by the forecast errors of consumption, comparing two periods, 1980Q1-1983Q1 and

2008Q1-2013Q4. The former period encompasses the twin recessions in the early 1980s

and serves as a contrast as we try to understand what happened during the Great Re-

cession. Recall that we estimate a large negative output gap in the 1981-1983 recession,
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but less so in the Great Recession. Evidently, the forecast errors of consumption only

lower the estimate of trend growth during the twin recessions in the early 1980s by less

than -0.5%. By contrast, the forecast errors of consumption lower the estimate of trend

output by about 2% during the period between 2008Q1 to 2013Q4. Therefore, because

the estimate of trend output was substantially lower during and after the Great Recession,

this corresponds to a less deep output gap as our BVAR suggests much of the decline in

real GDP with the Great Recession was permanent.

Looking at the profile of consumption growth during the two time periods in the

bottom panel, one striking observation is that consumption stayed sluggish throughout

the Great Recession. Compare this with the early 1980s, where there was a sharp fall

in the consumption growth rate in 1980Q2, but which was immediately reversed in the

following quarter. Meanwhile, during the 1982-83 recession, consumption growth did

not collapse, but was comparatively strong throughout most of the recession. For the

Great Recession, consumption growth stayed largely negative during the whole of the

NBER dated recession and remained weak afterwards. In fact, consumption growth in

the period 2011-2013 was weaker than in the period from 1982-1983 when NBER still

considered the U.S. economy to be in a recession.

We can conjecture why consumption stayed sluggish in the aftermath of the Great Re-

cession. To the extent the permanent income hypothesis holds and households perceived

slower growth the permanent income, consumption growth should be sluggish. Our esti-

mates suggesting that much of the fall of output was permanent in the Great Recession

and was related to the behaviour of consumption is consistent with this conjecture. Mean-

while, we do not wish to give the impression that the Great Recession only produced a

small negative output gap. Looking across the whole sample period, our estimated output

gap was still relatively deep, but this is despite our concurrent estimates of a large fall in

trend output.

What does multivariate information really add?

While it is apparent from the previous analysis that the addition of multivariate informa-

tion substantially impacts our estimates, we now explore exactly what the multivariate

information adds beyond a univariate approach in the vein of Kamber, Morley, and Wong

(2017). A natural way to do this is to plot the univariate estimate from such an approach

against our multivariate estimate. In particular, we can compare the benchmark estimate

of the output gap against the “BN Filter” estimate based on Kamber, Morley, and Wong

(2017).8 For completeness, we can also compare our multivariate estimate against the

prior mean, which can be captured by estimating the output gap with a very tight prior

8We conduct the Kamber, Morley, and Wong (2017) procedure of maximizing the amplitude-to-noise
ratio for an AR(4) model to make it directly comparable to our BVAR. We find δ̄ = 0.25, consistent with
the finding in Kamber, Morley, and Wong (2017) for an AR(12) model.

17



by setting λ effectively to zero.9 Recall that this recovers the prior on the signal-to-noise

ratio of δ̄ = 0.25. These comparisons are plotted in the top panels of Figure 7 and two

results are immediately noticeable. First, the estimated output gap that incorporates

multivariate information tends to be of larger amplitude relative to the univariate “BN

Filter” approach or the prior. Second, the estimated output gap incorporating multi-

variate information appears to be capturing booms in the sense that there is always a

large positive output gap near the peak of NBER expansions. The BN Filter or the es-

timated output gap based on the prior mean only appear to be capturing troughs, with

the estimated output gap often falling before the start of NBER recessions. A suggestive

interpretation is that multivariate information could be more helpful in capturing booms,

but less so for capturing troughs.

To investigate this possibility in greater detail, we track the shrinkage hyperparameter,

λ, in pseudo-real-time. Recall λ determines how much multivariate information is allowed

into the detrending problem and is chosen based on minimizing the one-step-ahead out-

of-sample RMSFE. We can interpret a larger λ as implying a greater role for multivariate

information. We thus track λ for our 23 variable benchmark and 138 variable models by

increasing the sample, one observation at a time.10 The pseudo-real-time values of λ are

plotted in the bottom panels of Figure 7. Looking at large movements in λ, there is some

evidence that multivariate information appears to be overfitting in recessions, but appears

to be more useful in expansions. For example, the value of the shrinkage hyperparameter

collapses at the trough of the Great Recession, but appears to be rising steadily in the

current expansion.

We also know from observing the raw data that there is some negative skewness in

the sense of abnormally large negative observations for output growth in recessions, but

not so many abnormally large positive growth rates in expansions. Instead, expansions

tend to be dominated by realizations of output growth closer to the mean. One possible

interpretation is that, because we get a large negative growth rate in recession, one may

not require multivariate information in recessions to understand the permanent and tran-

sitory effects of recessions. By contrast, because output growth tends to be closer to its

average rate in expansions, multivariate information can help provide better identification

of permanent and transitory movements in output.

We also note that the apparent asymmetry in output growth has given rise to the idea

in the literature that output growth may be driven by nonlinear dynamics and/or the

output gap is asymmetric (e.g., see Hamilton, 1989; Morley and Piger, 2012). Despite

9We set λ = 1e − 15. This produces slightly different results, although a similar shape, compared to
the BN filter. The difference is because of the prior on lagged differences is not exactly the same for the
two approaches.

10Note that whatever the size of the pseudo-real-time sample, we maintain an initial window size of 20
years to estimate the coefficients–i.e., the out-of-sample root mean square error is always only calculated
from the 81st observation onwards.
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the multivariate information being informative for estimating a sizeable positive output

gap, our output gap still appears to be somewhat asymmetric. Because our BVAR model

is linear and our estimated BN cycle is a function of the historical forecast errors, this

asymmetry must, by construction, reflect asymmetry in the estimated forecast errors,

which we argue should be quite prevalent given our observation about output growth

asymmetry.

These findings may be related to Harding and Pagan (2010), who document that

linear univariate models struggle to identify business cycle peaks. We show that by

incorporating multivariate information, our BVAR models are better able to estimate

significantly positive output gaps, and thus may provide some support for the idea that

multivariate information is more useful in identifying the output gap in expansions than

in recessions.

5 Causal Determinants of the U.S. Output Gap and

Trend Growth

So far, our analysis has largely abstracted from causality given that all we have been doing

is associate movements in the estimated output gap with information embedded in various

forecast errors. In this section, we turn to conducting more structural analysis in order to

examine possible causal determinants of those movements. In particular, we use SVAR

analysis to identify two widely-considered structural shocks: a monetary policy shock and

an oil price shock. The monetary policy shock is identified by ordering the federal funds

rate after “slow moving” variables, but before “fast moving” ones in a Cholesky decom-

position. This identification strategy is similar in spirit to work by, inter alia, Christiano,

Eichenbaum, and Evans (1999) and Bernanke, Boivin, and Eliasz (2005), where the idea

is that financial market variables are in the fast moving block because they can respond

contemporaneously to monetary policy shocks, while slow moving variables take at least

a quarter to respond. The “fast moving” variables in our benchmark 23 variable specifi-

cation are real M1 and M2, stock prices, non-borrowed reserves, total reserves, and the

slope of the yield curve. The oil price shock is identified by drawing from Kilian and Vega

(2011), who show that oil prices do not appear responsive to macroeconomic news and

thus can be taken to be pre-determined. This in essence orders the oil price first in a

Cholesky decomposition and also has precedence in the wider SVAR literature studying

oil price shocks (e.g, see Edelstein and Kilian, 2009; Wong, 2015). Our system is partially

identified, in the sense that we only identify two out of 23 potential structural shocks in

our benchmark system and we do not attempt to disentangle any of the remaining 21

unidentified shocks.

We first examine how much a given structural shock has driven the historical BN trend
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and cycle by performing a variance decomposition. To set up a variance decomposition of

the BN cycle, we first note that Eνt = 0. Working off Equation (6), it can be verified that

the difference between the actual h-step-ahead BN cycle and the conditional expectation

of the BN cycle at time t− 1 is

ct+h − Et−1ct+h =
h∑

i=0

Γi+1Hνt+h−i (20)

=
h∑

i=0

Γi+1HAεt+h−i, (21)

where the second equality follows from the identification associated with the structural

shocks from the SVAR. Because E(ν′
tνt−i) = 0, i > 0, the total variance can therefore be

written as

V ar(ct+h − Et−1ct+h) =
h∑

i=0

Γi+1HΣνH
′Γi+1

′. (22)

It follows, then, that a variance decomposition of the h-step-ahead variation in the BN

cycle can be calculated using equations (21) and (22):

FEV Dc
j,h =

[∑h
i=0 esΓi+1HAe′j

]2
es

[∑h
i=0 Γi+1HΣνH′Γi+1

′
]
e′s
, (23)

where FEV Dc
j,h is the h-step-ahead share of the variance of the output gap due to the

jth structural shock, where output growth is once again the sth variable in the system.

Similarly, to perform a variance decomposition of trend growth, it is straightforward to

verify from equation (7) that the variance of the change in trend can be written as

V ar(Δτt − Et−1Δτt) = Γ0HΣνH
′Γ′

0 (24)

and the share of the variance can be similarly decomposed as

FEV Dτ
j =

[∑h
i=0 esΓ0HAe′j

]2
es

[
Γ0HΣνH′Γ′

0

]
e′s
. (25)

Note that due to the random walk trend, the variance of trend is unbounded as the time

horizon goes to infinity. Consequently, a decomposition of the contemporaneous variance

of the change in the trend is sufficient to provide insight into how much of the variation

of trend growth is due to the various identified structural shocks given the random walk

trend implies a one-off permanent shift in the random walk trend.

Figure 8 presents a variance decomposition of the output gap and trend growth. For
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the output gap, we present the share of monetary policy shocks and oil price shocks at

horizons h = 0, h = 4, and h = ∞. Neither the monetary policy shock nor the oil

price shock explain more than 10% of the variance of the output gap at any horizon.

While the monetary policy shock explains about 7% of the variance of the output gap

contemporaneously, its share quickly dissipates and it only explains about 4% of the

unconditional variance. Therefore, it appears that the role of the monetary policy shock

in driving the output gap is limited and relatively short lived. This finding is consistent

with the wider SVAR literature, which often reports that monetary policy shocks explain

only a small part of real economic activity. The oil price shock explains a somewhat

larger share at about 10% of the variance of the output gap over all horizons. Meanwhile,

consistent with traditional theories of growth that assume technology shocks are the main

determinant of the long-run level of output, neither of these shocks explains much of trend

growth, with shares of about 5% for the oil price shock and less than 4% for the monetary

policy shock. Notably, the latter result is reflective of the idea of money neutrality, which

suggests monetary policy should not have any permanent effects on the level of output.

Although variance decompositions are useful to gain an overall perspective on the

importance of shocks, we can also calculate historical contribution of shocks to the output

gap to understand specific episodes. This analysis is displayed in Figure 9. For historical

monetary policy shocks, we can observe that they explain a large share of the positive

output gap before the 1980 recession, consistent with anecdotal evidence that the Fed may

have been overly heating the economy. Although we can see that monetary policy shocks

contributed to some of the negative output gap in the early 1980s, consistent with the

Volcker disinflation, the overall output gap in the early 1980s was estimated to be large

and negative, with monetary policy shocks only contributing to part of the negative gap

rather than being the dominant cause. Meanwhile, a recent interpretation of the events

leading to the Great Recession suggest that Chairman Greenspan was perhaps running

the economy too hot before 2008 (e.g., see Taylor, 2012). Our historical decomposition

does not support this story. We find that, while monetary policy shocks did contribute

modestly to a rising positive output gap in the early 2000s, this contribution largely

turned negative by 2005, while the estimated output gap continued to increase up until

the advent of the Great Recession.

We find that with historical oil price shocks, they tend to contribute positively to the

output gap when oil prices are low and contribute negatively when oil prices are high.

This can be seen from the negative contribution of oil price shocks throughout the 2000s

and the positive contribution in the late 1990s. We also observe a positive contribution

turning negative around 1990, consistent with the timing when the First Gulf War caused

oil prices to rise from a low starting level. Furthermore, oil price shocks contributed

negatively to the output gap around 1979 and 1980, consistent with the timing of the

Iranian hostage crisis and the start of the Iraq-Iran War.
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Overall, we find that the contribution of the historical monetary policy and oil price

shocks line up with many well-understood events. This analysis thus provides support

for using the tools developed in this paper as way to understand and interpret historical

estimates of trend and cycle.

6 Robustness to Specifying the Size of the Model

We have provided a method to utilize Bayesian shrinkage and the BN decomposition in

order to estimate the output gap with potentially large information sets. In this section,

we conduct Monte Carlo analysis to better understand the robustness of our procedure

to correctly specifying the size of the model. We consider three data generating process

(DGPs), which are based on model estimates when applying our shrinkage procedure to

U.S. output growth data (i.e., only one variable) and the variables in our 8 and 23 variable

systems, respectively. We generate 1000 artificial datasets for each of the three DGPs

of length T = 230, consistent with the length of the sample in our empirical analysis.

The true output gap is defined as the BN decomposition of output based on the VAR

coefficients which parametrize a given DGP. For each artificial dataset, we estimate VARs

using either least squares or the shrinkage procedure introduced in this paper, considering

respectively a 1 variable, 8 variable, and 23 variable system. In each case, we construct

the output gap via the BN decomposition based on the estimated parameters. For each

draw, we calculate the root mean squared error (RMSE) of the estimated output gap

relative to the true cycle. For each DGP, there is therefore one correct specification of

the number and set of variables and two other specifications that do not coincide with

the number or set of variables in the underlying DGP.11

Table 1 reports the results for our Monte Carlo analysis. The top panel (a) presents

the mean and standard deviation of the RMSEs across draws in each case of estimated

model size for a given DGP. The bottom panel (b) presents the proportion of Monte Carlo

draws where our BVAR approach has a lower RMSE compared to estimates based on least

squares.

In cases where the size of the model is correctly specified (i.e., the diagonals in both

panels (a) and (b)), we find that, apart from the univariate case when shrinkage matters

the least, our BVAR approach is more accurate than least squares. Even in a moderately-

sized 8 variable system, our shrinkage procedure produces a more accurate estimate of the

output gap over 60% of the time, with both a lower mean and lower standard deviation

of the RMSE. The benefits of shrinkage are particularly noticeable when we consider a

11When there are additional variables which do not feature in the underlying DGP, we use their
historical sample values as the additional data used in our estimation. For example, for our 8 variable
DGP, we use the 8 simulated series for the variables in the DGP and the 15 additional historical data
series for the variables that are not in the DGP to estimate a 23 variable model.

22



larger 23 variable DGP. In such a situation, overfitting would likely be a concern with

least squares even if one knew the 23 variables of the underlying DGP with certainty. For

the 23 variable system, our shrinkage procedure produces a more accurate estimate of the

output gap 99% of the time.

Notably though, our BVAR approach is not only useful when the size of the model is

correctly specified, but also when it is not. In particular, we can investigate the effects

of misspecifying the size of the model by looking at the off-diagonals in panels (a) and

(b). When the model size is misspecified, our Monte Carlo results suggest that shrinkage

helps keep the estimate of the output gap comparatively accurate. For example, we find

that under misspecification, our BVAR approach always produces a more accurate output

gap relative to least squares more than 75% of the time and as much as 99% of the time

in multiple cases. Notably, this proportion becomes larger as either the DGP or the

estimated model size becomes larger.

7 Conclusion

In this paper, we have shown how to apply the Beveridge-Nelson decomposition to obtain

estimates of trend and cycle using very large multivariate models with Bayesian shrinkage.

We have also shown how to account for and interpret the various sources of multivariate

information. In our empirical application, we present estimates of the U.S. output gap,

with information sets ranging from eight to well over a hundred variables. We find the

U.S. unemployment rate and CPI inflation, together with, to a lesser extent, housing

starts, real M1, real consumption, the federal funds rate, and stock prices, are important

sources of information in estimating the U.S. output gap. We also show how to conduct

causal analysis given identified structural shocks and find that neither monetary policy

shocks nor oil price shocks are responsible for the bulk of movements in the U.S. output

gap or trend growth.

Future Extensions We view two advantages of the tools developed in this paper that

motivate future extensions and applications. The first advantage of our approach is that

casting the detrending problem within a linear regression framework allows us to utilize

complicated datasets for inferring sources of movements in trend and cycle. In particular,

many time series problems can naturally be cast into the BVAR models considered in

this paper. For example, policy institutions often construct an output gap by monitoring

very broad set of data of differing frequencies. One could, with some extra work, cast the

problem into a BVAR with mixed frequencies, and thus allow information from monthly

data to directly enter the problem of nowcasting the output gap, even though real GDP

is often only available at a quarterly frequency. Another potential extension is joint

detrending. Although we only target a single variable to estimate the output gap in
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our analysis, one could cast the problem in the form where one could jointly detrend

multiple variables to obtain estimates about, say, the natural rate of unemployment,

trend inflation, the natural rate of interest, and potential output within a unified and

consistent framework. A second advantage of our approach is the ability to interpret

trend and cycle by appealing further to tools from the well-developed SVAR literature.

This allows us to be able to meaningfully discuss shocks driving the trend and cycle and

to attribute causality. The standard frameworks of trend-cycle decomposition using time

series methods like unobserved components models can struggle to attribute causality, in

addition to being more difficult to estimate than the models we propose, especially given

large information sets. For example, Kamber and Wong (2017) employ the methods

introduced in this paper to estimate the role of foreign shocks in driving trend inflation

and the inflation gap for a number of open economies. One could similarly use the tools

we introduce in this paper to answer current relevant policy questions such as what drives

low neutral interest rates or what drives financial cycles. However, we leave this analysis

to future research.
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Data Appendix

IFS in the mnemonic field refers to the time series being sourced from the International Financial Statistics. Otherwise, the time series
is sourced from the Federal Reserve Economic Data (FRED), and the mnemonic field refers to the FRED mnemonic.

Series Mnemonic

U.S.: Commodity Price: W Texas Interm Spot Price (US$/Barrel) IFS

Real Gross Domestic Product, 3 Decimal GDPC96

Real Personal Consumption Expenditures PCECC96

Personal Consumption Expenditures: Durable Goods PCDGx

Personal Consumption Expenditures: Services PCESVx

Personal Consumption Expenditures: Nondurable Goods PCNDx

Real Gross Private Domestic Investment, 3 decimal GPDIC96

Fixed Private Investment FPIx

Gross Private Domestic Investment: Fixed Investment: Nonresidential: Equipment Y033RC1Q027SBEAx

Private Nonresidential Fixed Investment PNFIx

Private Residential Fixed Investment PRFIx

Shares of gross domestic product: Gross private domestic investment: Change in private inventories A014RE1Q156NBEA

Real Government Consumption Expenditures and Gross Investment GCEC96

Real Government Consumption Expenditures and Gross Investment: Federal A823RL1Q225SBEA

Federal Government Current Receipts FGRECPTx

State and Local Consumption Expenditures & Gross Investment SLCEx

Real Exports of Goods and Services, 3 Decimal EXPGSC96

Real Imports of Goods and Services, 3 Decimal IMPGSC96

Real Disposable Personal Income DPIC96

Nonfarm Business Sector: Real Output OUTNFB

Business Sector: Real Output OUTBS

Industrial Production Index INDPRO

Industrial Production: Final Products (Market Group) IPFINAL

Industrial Production: Consumer Goods IPCONGD

Industrial Production: Materials IPMAT
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Industrial Production: Durable Materials IPDMAT

Industrial Production: Nondurable Materials IPNMAT

Industrial Production: Durable Consumer Goods IPDCONGD

Industrial Production: Durable Goods: Automotive products IPB51110SQ

Industrial Production: Nondurable Consumer Goods IPNCONGD

Industrial Production: Business Equipment IPBUSEQ

Industrial Production: Consumer energy products IPB51220SQ

Capacity Utilization: Manufacturing (SIC) CUMFNS

All Employees: Total Nonfarm Payrolls PAYEMS

All Employees: Total Private Industries USPRIV

Civilian Employment Level CE16OV

Civilian Labor Force Participation Rate CIVPART

Civilian Unemployment Rate UNRATE

Unemployment Rate: 16 to 19 years LNS14000012

Unemployment Rate: 20 years and over, Men LNS14000025

Unemployment Rate: 20 years and over, Women LNS14000026

Number of Civilians Unemployed for Less Than 5 Weeks UEMPLT5

Number of Civilians Unemployed for 5 to 14 Weeks UEMP5TO14

Number of Civilians Unemployed for 15 to 26 Weeks UEMP15T26

Number of Civilians Unemployed for 27 Weeks and Over UEMP27OV

Employment Level: Part-Time for Economic Reasons, All Industries LNS12032194

Business Sector: Hours of All Persons HOABS

Nonfarm Business Sector: Hours of All Persons HOANBS

Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing AWHMAN

Average Weekly Overtime Hours of Production and Nonsupervisory Employees: Manufacturing AWOTMAN

Housing Starts: Total: New Privately Owned Housing Units Started HOUST

Privately Owned Housing Starts: 5-Unit Structures or More HOUST5F

Housing Starts in Midwest Census Region HOUSTMW

Housing Starts in Northeast Census Region HOUSTNE

Housing Starts in South Census Region HOUSTS
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Housing Starts in West Census Region HOUSTW

Personal Consumption Expenditures: Chain-type Price Index PCECTPI

Personal Consumption Expenditures Excluding Food and Energy (Chain-Type Price Index) PCEPILFE

Gross Domestic Product: Chain-type Price Index GDPCTPI

Gross Private Domestic Investment: Chain-type Price Index GPDICTPI

Business Sector: Implicit Price Deflator IPDBS

Personal consumption expenditures: Goods (chain-type price index) DGDSRG3Q086SBEA

Personal consumption expenditures: Services (chain-type price index) DSERRG3Q086SBEA

Consumer Price Index for All Urban Consumers: All Items CPIAUCSL

Producer Price Index for All Commodities PPIACO

Producer Price Index by Commodity Industrial Commodities PPIIDC

Producer Price Index by Commodity for Fuels and Related Products and Power: Crude Petroleum (Domestic Production) WPU0561

Average Hourly Earnings of Production and Nonsupervisory Employees: Construction CES2000000008x

Average Hourly Earnings of Production and Nonsupervisory Employees: Manufacturing CES3000000008x

Nonfarm Business Sector: Real Compensation Per Hour COMPRNFB

Business Sector: Real Compensation Per Hour RCPHBS

Nonfarm Business Sector: Real Output Per Hour of All Persons OPHNFB

Business Sector: Real Output Per Hour of All Persons OPHPBS

Business Sector: Unit Labor Cost ULCBS

Nonfarm Business Sector: Unit Labor Cost ULCNFB

Nonfarm Business Sector: Unit Nonlabor Payments UNLPNBS

Producer Price Index by Commodity Metals and metal products: Primary nonferrous metals PPICMM

Consumer Price Index for All Urban Consumers: Apparel CPIAPPSL

Consumer Price Index for All Urban Consumers: Transportation CPITRNSL

Consumer Price Index for All Urban Consumers: Medical Care CPIMEDSL

Consumer Price Index for All Urban Consumers: Commodities CUSR0000SAC

Consumer Price Index for All Urban Consumers: Durables CUUR0000SAD

Consumer Price Index for All Urban Consumers: Services CUSR0000SAS

Consumer Price Index for All Urban Consumers: All Items Less Food CPIULFSL

Consumer Price Index for All Urban Consumers: All items less shelter CUUR0000SA0L2
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Consumer Price Index for All Urban Consumers: All items less medical care CUSR0000SA0L5

Average Hourly Earnings of Production and Nonsupervisory Employees: Goods-Producing CES0600000008

Consumer Motor Vehicle Loans Owned by Finance Companies, Outstanding DTCOLNVHFNM

Effective Federal Funds Rate FEDFUNDS

3-Month Treasury Bill: Secondary Market Rate TB3MS

6-Month Treasury Bill: Secondary Market Rate TB6MS

1-Year Treasury Constant Maturity Rate GS1

10-Year Treasury Constant Maturity Rate GS10

Moody’s Seasoned Aaa Corporate Bond Yield AAA

Moody’s Seasoned Baa Corporate Bond Yield BAA

Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury Constant Maturity BAA10YM

6-Month Treasury Bill Minus Federal Funds Rate TB6SMFFM

10-Year Treasury Constant Maturity Minus Federal Funds Rate T10YFFM

Real St. Louis Adjusted Monetary Base AMBSLREALx

Real M1 Money Stock M1REALx

Real M2 Money Stock M2REALx

Real MZM Money Stock MZMREALx

Commercial and Industrial Loans, All Commercial Banks BUSLOANSx

Consumer Loans at All Commercial Banks CONSUMERx

Total Nonrevolving Credit Owned and Securitized, Outstanding NONREVSLx

Real Estate Loans, All Commercial Banks REALLNx

Total Consumer Credit Owned and Securitized, Outstanding TOTALSLx

Households and Nonprofit Organizations; Total Assets, Level TABSHNOx

Households and Nonprofit Organizations; Total Liabilities, Level TLBSHNOx

Households and Nonprofit Organizations; Credit Market Instruments; Liability, Level CMDEBT

Households and Nonprofit Organizations; Net Worth, Level TNWBSHNOx

Households and Nonprofit Organizations; Total Financial Assets, Level TFAABSHNO

Households and nonprofit organizations; real estate at market value, Level HNOREMQ027Sx

Households and Nonprofit Organizations; Total Financial Assets, Level TFAABSHNOx

Shares of gross domestic product: Exports of goods and services B020RE1Q156NBEA
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Shares of gross domestic product: Imports of goods and services B021RE1Q156NBEA

Industrial Production: Manufacturing (SIC) IPMANSICS

Industrial Production: Residential utilities IPB51222S

Industrial Production: Fuels IPFUELS

Average (Mean) Duration of Unemployment UEMPMEAN

Average Weekly Hours of Production and Nonsupervisory Employees: Goods-Producing CES0600000007

Total Reserves of Depository Institutions TOTRESNS

Reserves of Depository Institutions, Nonborrowed NONBORRES

5-Year Treasury Constant Maturity Rate GS5

3-Month Treasury Bill Minus Federal Funds Rate TB3SMFFM

5-Year Treasury Constant Maturity Minus Federal Funds Rate T5YFFM

Moody’s Seasoned Aaa Corporate Bond Minus Federal Funds Rate AAAFFM

Total Consumer Loans and Leases Owned and Securitized by Finance Companies, Outstanding DTCTHFNM

Securities in Bank Credit at All Commercial Banks INVEST

Nikkei Stock Average, Nikkei 225 NIKKEI225

Nonfinancial Corporate Business; Total Liabilities, Level TLBSNNCBx

Nonfinancial Corporate Business; Nonfinancial Assets, Level TTAABSNNCBx

Nonfinancial Corporate Business; Net Worth, Level TNWMVBSNNCBx

Nonfinancial noncorporate business; total liabilities, Level NNBTILQ027Sx

Nonfinancial noncorporate business; total assets, Level NNBTASQ027Sx

Nonfinancial Noncorporate Business; Proprietors’ Equity in Noncorporate Business (Net Worth), Level TNWBSNNBx

Corporate Net Cash Flow with IVA CNCFx

U.S.: Industrial Share Prices (2010=100) IFS
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Table 1: Monte Carlo Results

(a) Mean and standard deviation of RMSEs
Estimated Model Size

1 variable 8 variables 23 variables

1 variable Shrinkage 0.39 1.82 2.77
(0.212) (0.916) (1.833)

MLE 0.28 2.08 4.18
(0.188) (0.929) (2.049)

8 variables Shrinkage 1.47 0.92 0.94
DGP (0.176) (0.401) (0.348)

MLE 1.52 1.07 1.59
(0.194) (0.606) (0.709)

23 variables Shrinkage 1.33 0.73 0.61
(0.191) (0.378) (0.297)

MLE 1.36 0.90 1.20
(0.207) (0.492) (0.510)

(b) Proportion of Monte Carlo Draws RMSEShrinkage < RMSEMLE

Estimated Model Size
1 variable 8 variables 23 variables

1 variable 0.27 0.77 0.91
DGP 8 variables 0.99 0.62 0.96

23 variables 0.99 0.81 0.99

Notes: Root mean square errors (RMSE) are calculated for estimates compared to the
true output gap for a given simulation under the respective DGP. Estimated model size
indicates the size of the variable set for which the VAR is estimated to derive the output
gap. The three DGPs contain 1, 8, and 23 variables respectively. Panel (a) presents the
mean and standard deviation (in parenthesis) of the RMSEs across 1000 Monte Carlo
draws. Shrinkage and MLE refers to respectively using our procedure or MLE to estimate
the VAR. Panel (b) counts the proportion of Monte Carlo draws where our shrinkage
procedure produces an output gap that has a lower RMSE relative to the true output gap
compared to estimating the VAR using conditional maximum likelihood.
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Figure 1: Estimated Output Gap from Univariate and Multivariate BN Decompositions

Notes: Units are 100 times natural log deviation from trend. Shaded bars correspond to
NBER recession dates. See footnote 1 for descriptions of the 2 variable, 5 variable and 7
variable VAR systems.
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Figure 2: Estimated Output Gap for Benchmark BVAR Model

Notes: Units are 100 times natural log deviation from trend. Shaded bars correspond to
NBER recession dates.
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Figure 3: Standard Deviations of Informational Contributions

35



Figure 4: Estimated Output Gap for Various Sized BVAR Models

Notes: Units are 100 times natural log deviation from trend. Shaded bars correspond to
NBER recession dates.
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Figure 5: One-Step-Ahead Out-of-Sample Root Mean Square Error

Notes: The horizontal axis represents the tightness of the prior on the hyperparameter λ.
The vertical axis represents the one-step-ahead out-of-sample root mean square error. 8
variables, 23 variables, and 138 variables refer to the size of the various BVARs. The
horizontal line is the one-step-ahead out-of-sample root mean square error forecasting
output growth with an AR(1) estimated by least squares.
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Figure 6: Role of Consumption

Notes: Cumulative change in trend is in terms of 100 times natural logs. Shaded bars
correspond to NBER recession dates. Real personal consumption expenditure is plotted
as a quarterly percent change.
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Figure 7: Role of Multivariate Information

Notes: Units in top panels are 100 times natural log deviation from trend. Shaded bars
correspond to NBER recession dates.
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Figure 8: Variance Decompositions

Notes: Percentage of total variation
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Figure 9: Historical Decomposition of the Estimated Output Gap

Notes: Units are 100 times natural log deviation from trend. Shaded bars correspond to
NBER recession dates.
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