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Abstract

We propose a set of intuitive model-free measures of cross-market trading activity based on publicly

available trade and quote data with sufficient time stamp granularity. By virtue of capturing the offset at

which co-activity peaks, as well as its magnitude and dispersion, the measures allow us to shed new light

on the distinct features of the high-frequency cross-market linkages in US Treasury and equity markets.

First, the measures avoid reliance on noisy return series often used in the literature and demonstrate sharp

identification of the prevailing lead-lag relationships between trading activity across markets. Second, we

show how the measures can be used to examine price impact and liquidity provision in (near) arbitrage

linked markets. In particular, we provide new evidence pointing to the fact that price discovery in US

Treasury, equity and EUR/USD FX markets primarily takes place in futures rather than cash markets

and we give a strong rationale for considering the cross-market price impact between arbitrage linked

markets. Finally, we show that our measures of cross-market activity are closely linked with observed

market volatility even after controlling for commonly used measures of individual market activity such

as trading volume and number of transactions. Overall, our empirical findings suggest that accounting

for cross-market trading activity is important when studying volatility and liquidity in US Treasury and

equity markets.
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1. Introduction

Market activity and volatility in the most liquid US fixed income and equity markets

have long been recognized as important barometers of policy expectations and economic

conditions that are scrutinized by market participants and policymakers alike. However,

trading activity in today’s leading financial markets is no longer dominated by long-term

investors expressing their views about risk reward trade-offs. Instead, the majority of mar-

ket activity has become associated with fast-speed automated trading strategies aiming

to optimally place orders and quickly take advantage of short lived trading opportuni-

ties. Much of this activity is taking place across closely related trading venues such as

the leading cash and futures platforms that are seen as distinct liquidity pools allowing

investors to manage substantially similar risk exposures.

As such, there has been much debate on the impact of high-frequency trading (HFT) on

liquidity provision and its role in increased price co-movements between different markets.

This is at least in part because of difficulties with identifying the precise footprint of

alleged changes in cross-market activity despite the unprecedented amount of market

data available for many markets today. Motivated by the need for improved data-driven

inference, this paper develops a simple new approach for sharp identification of arbitrary

patterns of cross-market activity in the form of a set of intuitive model-free measures

of cross-market trading activity based on publicly available trade and quote data with

sufficient time stamp granularity. By virtue of capturing the time offset at which co-

activity peaks, as well as the magnitude and dispersion of cross-market activity, the

measures allow us to shed new light on the distinct features of the high-frequency cross-

market linkages in US Treasury and equity markets.

Accordingly, the starting point of our analysis is that a core feature of the rise in HFT

over the past decade has been the increasingly faster and by now almost instant order

placement and execution in multiple markets.1 Moreover, such high-frequency cross-

market trading activity is known to take place in response not only to news about fun-

damentals but also to brief dislocations in relative values or market activity itself. This

leads to four important observations and our main contributions in this paper.

First, while various types of cross-market trading, e.g. basis trading, have historically

always been an important component of trading activity, the new market structure is

dominated by automated trading which gives rise to high-frequency cross-market linkages

1By adopting fiber optic and microwave tower technology, order and market information transmission
speeds have rapidly been approaching the speed of light.
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subject to technologically determined time lags usually measured in milliseconds or mi-

croseconds. This allows the new cross-market activity measures we propose to reliably pin

down key characteristics of the lead-lag relationships between different markets such as the

prevailing timing offset, the magnitude of peak cross-activity and the dispersion around it

due to market heterogeneity or platform technology. In this regard, our measures provide

a useful complement to popular approaches for studying lead-lag relationships and cross-

market price discovery through return correlation measures and price impact regressions.2

In contrast to such existing alternatives, though, our measures utilize only time stamps

with sufficient granularity (but no prices or quantities) and are exceedingly simple and

cheap to compute in terms of CPU cycles, while also offering sharper identification in

terms of timing.

Second, while the positive developments in market functioning due to HFT have been

widely acknowledged,3 we argue that the (price) efficiency gains associated with high-

frequency cross-market trading come at the cost of making the real-time assessment of

market liquidity across multiple venues more difficult as order placement and execution

in one market can affect liquidity provision across related markets almost instantly. In

particular, we show how to specialize the proposed cross-market activity measures for

studying the co-movement of order books, sometimes referred to as the “liquidity mirage”,

reflecting the challenges for large investors to accurately assess available liquidity based on

displayed market depth across different trading venues.4 We stress that such adjustment

of quotes is consistent with prudent market making behavior and is nothing new per se

although the near simultaneity of quote adjustments across venues is enabled by market

makers deploying cutting edge technology. Our findings in this regard support the notion

that the modern market structure implicitly involves a trade-off between increased price

efficiency and heightened uncertainty about the overall available liquidity in the market

for many investors.

Third, the strong relationship between trading and quoting in cash and futures markets

uncovered by our model-free measure of cross-market activity suggests that price impact

and trading costs in general should not be studied for each market in isolation in the

context of arbitrage linked markets. The importance of this insight is illustrated through

the strong cross-market price-impact regression results we obtain by relating US Treasury

2See for example, Benos, Brugler, Hjalmarsson, and Zikes (2015), Chan (1992), Hasbrouck (1995),
Huth and Abergel (2014), Laughlin, Aguirre, and Grundfest (2014), among many others.

3Notable studies include Brogaard, Hendershott, and Riordan (2014),Hasbrouck and Saar (2013),
Hendershott and Riordan (2013), Menkveld (2008), O’Hara (2015), . . .

4This approach also allows for data-driven analysis of anecdotal examples of fleeting liquidity such as
the one famously described by Lewis (2014).
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and equity index returns to volume imbalances in both cash and futures markets in a

simple extension of the classical price-impact regression framework along the lines of

Breen, Hodrick, and Korajczyk (2002). In particular, we find that volume imbalances

in the futures market are much more important for predicting returns than the similar

cash market quantities. These findings are entirely consistent with the strong asymmetry

in the prevailing lead-lag patterns for high-frequency trading and quoting activity in

futures versus cash markets captured by our model-free measure of cross-market activity

and support the hypothesis that price discovery in Treasury, equity and EUR/USD FX

markets primarily takes place in the futures market. More generally, our cross-market

price impact results provide strong reasons why arbitrage-linked markets should preferably

be analyzed jointly rather than independently of each other.

Fourth, while the close relationship between market volatility and trading activity is a

long-established fact in financial markets, the new market structure appears to be further

associated with HFT-related surges in cross-market activity in relation to the increased

presence of short-lived arbitrage opportunities during periods of heightened volatility.

This motivates us to look empirically for a separate link between cross-market activity

and volatility in both U.S. Treasuries (between the ten-year Treasury note cash and fu-

tures markets) and equities (between the S&P 500 cash ETF and E-mini futures markets)

over more than a decade from January 1, 2004 to September 30, 2015. In particular, we

document that with the rise in HFT in recent years our model-free measure of cross-market

activity expressed as the peak number of cross-active milliseconds (across all offsets) has

become more strongly associated with volatility than trading volume and the number

of trades in each market. This observation may simply reflect the fact that volatility

can create brief dislocations in relative values spurring bursts of cross-market activity by

high-frequency traders seeking to exploit these trading opportunities. When liquidity is

ample, cross-market activity can therefore capture incremental information about market

volatility beyond traditional measures of overall market activity such as trading volume

and the number of transactions. By contrast, the existing voluminous empirical findings

and alternative theories regarding the relationship between trading activity and volatility

do not seem to readily account for such potential high-frequency feedback effects between

volatility and the cross-market component of overall trading activity.5 We further note

that while studies such as Andersen et al. (2015), Ané and Geman (2000), Clark (1973), or

5The vast literature on the subject listed in chronological order includes Ying (1966), Clark (1973),
Epps and Epps (1976), Tauchen and Pitts (1983), Karpoff (1987), Schwert (1989), Harris (1987),Jones,
Kaul, and Lipson (1994), Andersen (1996), Bollerslev and Jubinski (1999), Ané and Geman (2000), Kyle
and Obizhaeva (2013), Andersen, Bondarenko, Kyle, and Obizhaeva (2015), among many others.

4



Kyle and Obizhaeva (2013) aim to rectify a particular theory-implied form of the relation-

ship between volatility and trading activity in a given single market, our main focus is to

show that the cross-market component of high-frequency trading activity between closely

related markets contains extra information about market volatility unspanned by trading

volume and the number of trades in each market. Thus, we help establish cross-market

activity as an increasingly more important driver of the evolving link between trading

activity and volatility. Overall, our findings suggest that there is a potential need to ac-

count for volatility-induced surges in trading due to cross-market activity when modeling

the relationship between trading and volatility in arbitrage-linked markets.

The paper proceeds as follows. Section 2 defines the proposed new class of model-

free measures of cross-market activity based on timings instead of returns and discusses

key features such as location, dispersion, magnitude and robustness. Section 3 carries

out three different empirical applications of the proposed measures to studying lead-lag

relationships between markets, capturing “liquidity mirage” phenomena, and establishing

the strong link between cross-market activity and volatility. Section 4 summarizes our

main findings and discusses possible extensions.

2. Model-Free Measurement of Cross-Market Activity Based on Timings In-

stead of Returns

We measure cross-market activity using transaction-level data with millisecond or

higher precision for a pair of related markets such as the ones for benchmark U.S. Treasury

notes traded on BrokerTec versus Treasury futures contracts traded on the CME or the

ones for the SPDR S&P 500 ETF traded on NYSE versus E-Mini S&P 500 futures traded

on the CME. This allows us to first identify “active” milliseconds in each market when

activity (e.g. trades) occur and then compare the timing offset (millisecond lead or lag)

of activity for two distinct instruments or markets. In particular, we define a measure

of cross-market activity at each offset as the proportion of milliseconds with coincident

trading at that offset relative to the total number of active milliseconds in the less active

of the two markets. We further correct our measure for the expected proportion of such

coincident activity if all trading were independent across markets. The measure can

therefore be interpreted as the excess proportion of trading (relative to the least active

market) accounted for by cross-market activity.
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Market A: · · · T T T T T T · · ·

Market B: · · · T T T T T T T T T · · ·

Offset 0

Market A: · · · T T T T T T · · ·

Market B: · · · T T T T T T T T T · · ·

Offset +1

Figure 1: Model-Free Measures of Cross-Market Activity

2.1. A Timing-Based Measure of Cross-Market Activity

To be specific, consider two markets, A and B, that are observed for N time periods,

i = 1, . . . , N . The incidence of cross market activity is then simply obtained by counting

the number of times that both markets are active during time buckets that are concurrent

or suitably offset in order to capture potential lead-lag relationships between the two

markets. The raw cross-market activity at offset t is given by

X raw
t =

N−|t|∑
i=|t|

1{market A active in period i}∩{market B active in period i+t} (1)

The diagram in Figure 1 illustrates the computation where six active time buckets, marked

with “T”, are observed in market A along with nine active time buckets in market B.

Applying the definition, at zero offset we find X raw
0 = 2, while at offset +1 (using the

convention that the offset is applied to the first market) we find X raw
1 = 5 in this example.

For any one of the markets, the raw cross market activity measure above can be further

decomposed into a product of the number of active time buckets times the fraction of

time buckets that were cross active. The latter ratio represents a measure of relative

cross-market activity which is interpretable as the fraction of activity in that market

(potentially) related to cross market activity at that offset. For market A, the relative

activity measure at offset t is

X rel,A
t =

∑N−|t|
i=|t| 1{market A active in period i}∩{market B active in period i+t}∑N−|t|

i=|t| 1{market A active in period i}

When analyzing a pair of markets which may have very different levels of activity
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across time and markets, the measure is typically calculated for the least active market

because this leads to a ratio which by definition ranges from 0 to 1:

X rel
t =

∑N−|t|
i=|t| 1{market A active in period i}∩{market B active in period i+t}

min
[∑N−|t|

i=|t| 1{market A active in period i},
∑N−|t|

i=|t| 1{market B active in period i+t}

] (2)

Applied to the example given in Figure 1, X rel
0 = 1

3
while X rel

1 = 5
6
. As should be clear

from this example, both the raw and relative measures of cross-market activity given in

(1)-(2) require only time stamps and are exceedingly simple and cheap (in CPU cycles) to

compute. Importantly, the measures do not require a bandwidth choice beyond the time

granularity of the data analyzed which ideally should be slightly higher than the fastest

transmission time between markets.

In order to account for the level of coincidental cross-market activity that may occur

when analyzing two highly active markets, one may adjust the relative cross market

activity measure by subtracting off a term which is the average cross-market activity

measure for very large positive and negative offsets.

Xt = X rel
t −X rel

∞ , X rel
∞ =

1

2(T2 − T1)

T2∑
|t|=T1+1

X rel
t (3)

This non-parametric adjustment, for large T2 > T1, is robust to clustering and arbi-

trary local arrival rates of market activity which ensures that the cross market activity

measure (3) can be interpreted as a measure of excess activity associated with cross market

activity.

2.2. Key Features: Location, Dispersion and Magnitude of Peak Cross-Activity

The three main features of our measure are location, dispersion and magnitude of the

peak cross-market activity across different offsets. We illustrate each feature below using

a recent representative data sample over the period from Jul 1, 2014 to Dec 31, 2014

for the five-year and ten-year Treasury notes traded on the BrokerTec platform and the

corresponding Treasury futures traded on the Chicago Mercantile Exchange.

2.2.1. Location

Figure 2 shows the relative cross-market activity, Xt, for the ten-year and five-year

Treasury notes. Based on our measure, cross-market trading accounts for around 8 percent

of activity in the cash Treasury market on normal days but almost double than that on
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Figure 2: Cross-Market Trading Activity Between 10-Year and 5-Year Treasury
Cash Markets. Data Sources: BrokerTec (cash market data); Nanotick (CME futures
market data).

October 15, 2014, known to be an exceptionally volatile day in Treasury markets.6 The

location of the peak at zero is intuitive since the Treasury notes are traded on the same

platform, and the sharpness of the spike indicates that random latency (i.e. the time it

takes the platform to process trading instructions known to be around 0.2 milliseconds

on the Brokertec cash platform) is small compared to the millisecond resolution at which

the analysis is carried out.

2.2.2. Dispersion

The cross-market activity between five- and ten-year Treasury futures also exhibits a

spike at zero offset (figure 3), indicating a similarly significant amount of nearly instanta-

neous trading in these instruments. However, the spike is much more diffuse: it spreads

over a much wider range of offsets. This may reflect a wider range of available connectiv-

ity options to CME as well as some occasional platform latency associated with Treasury

futures trading.7 Comparing figures 2 and 3 shows how the defined non-parametric mea-

6See “Joint Staff Report: The U.S. Treasury Market on October 15, 2014”, http://www.treasury.
gov/press-center/press-releases/Documents/Joint_Staff_Report_Treasury_10-15-2015.pdf.

7For more discussion of latency in futures trading, see the “Joint Staff Report: The U.S. Treasury Mar-
ket on October 15, 2014”, http://www.treasury.gov/press-center/press-releases/Documents/

Joint_Staff_Report_Treasury_10-15-2015.pdf.
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Figure 3: Cross-Market Trading Activity Between 10-Year and 5-Year Treasury
Futures Markets. Data Sources: Nanotick (CME futures market data).

sure of cross-market activity can be used to study the impact of market structure and

technology differences on the observed trading behaviors.

2.2.3. Magnitude

To show how the magnitude of cross-market activity can be used to gauge the evo-

lution of high-frequency cross-market trading along the yield curve, in figure 4 we plot

the historical levels of cross-market trading at zero millisecond offset in the ten-year and

five-year Treasury note on BrokerTec over the past decade. Early on, during 2004-2006,

there was essentially no simultaneous trading in the two markets. Starting with a sys-

tems upgrade of the cash platform in March 2006, minor evidence of cross-market activity

appears. In March 2012, a major upgrade to the BrokerTec market data feeds and match-

ing engine significantly reduced platform latency, and synchronized trading activity more

than doubled.8 A more gradual but larger increase followed by mid to late 2013, as a num-

ber of further upgrades to order submission and market data protocols took place, with

synchronized trading activity reaching an average of around 10 percent of total trading

8Specifically, BrokerTec introduced a new trading system for its U.S. based products using a modified
version of the NASDAQ OMX Genium INET system, with changes taking effect on March 26, 2012. The
upgraded platform enabled BrokerTec to increase order volume tenfold and decrease order input latency
by up to 50 times. The platform’s average latency dropped to less than 200 microseconds, with previous
average latency approximately 10 milliseconds. Source: “BrokerTec Brings World Class Trading Platform
To U.S. Fixed Income Market”, NASDAQ Inc. press release, April 18, 2012.
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Figure 4: Evolution of Cross-Market Trading Activity Between 10-Year and
5-Year Treasury Cash Markets. Data Sources: BrokerTec (cash market data).

activity.9 This example shows how the non-parametric measure of cross-market activity

can be used to track changes in trends and patterns of trading behaviors resulting from

discrete technological change.

2.3. Robustness

A key element of the proposed measure is the accurate measurement of when activ-

ity occurred. In practice, this can be difficult for a number of reasons, including ran-

dom variations in the latency with which gateways or matching engines process incoming

messages, or latency associated with the market data feed.10 Any random variation in

latency will tend to blur the measure of cross-market activity as seen in the example of

CME latency above and may further cause the spike in cross-market activity to occur at

a spurious offset. However, in all cases we have encountered in practice, the magnitude of

the peak cross-market activity measure across all offsets remains an informative measure

9In particular these upgrades included the introduction of the ITCH (mid to late 2013) and OUCH
(November 2012) protocols. OUCH is a low-level high performance native protocol that allows partici-
pants to enter, replace, and cancel orders and receive executions in an automated fashion on the Genium
INET platform. ITCH is a high performance direct data feed protocol that displays all public orders and
trades that occur on the platform.

10The special theory of relativity holds that it is impossible to determine (in an absolute sense) that
two distinct events occurred at the same time if those events were separated in space. Thankfully, on the
scale of milliseconds/microseconds, this is not yet a binding constraint.
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of cross-market activity. The appendix explores this issue in the context of alternative

high-frequency data feeds with vastly different latencies incurred at the point of data

capture.

3. Empirical Illustrations and Applications

In this section, we apply the proposed model-free measures of cross-market activity

to analyse various aspects of cross-market activity between the cash markets and the

associated derivatives markets for U.S. Treasuries and U.S. Equitiy indices. While these

relationships have been studied extensively in the literature by comparing observed (often

noisy) market returns, we are able to shed some new light on the matter by relying instead

solely on the timing of activity based on millisecond or higher resolution time stamps.

The Chicago Mercantile Exchange matching engine is located in Aurora Illinois and

is connected via fiber optics and microwave technology to the cash market exchanges.

The Brokertec platform is located in Secaucus New Jersey, roughly 4.7 milliseconds from

Aurora at the speed of light, which puts a natural lower bound on the offset at which

cross-market activity may be expected to take place in recent years.11 The main US equity

exchanges are primarily located in northern New Jersey with negligibly different distance

to Aurora.12 As we shall see throughout the analyses presented below, the roughly 5ms

offset is clearly visible in our analysis and confirms huge impact of technology on trading

behaviors observed in practice.

3.1. A New Analysis of the Lead-Lag Relation between Cash and Futures Markets

We analyze the link between cross-market activity and volatility in both US Treasuries

(10-Year Treasury note cash and futures) and equities (S&P500 E-mini and SPY ETF)

over the six-month period from July 1, 2014 to Dec 31, 2014. We measure cross-market

activity on each trading day as the number of cross-active milliseconds at its peak across

all offsets and restrict attention to the most active US portion of the electronic trading

hours for each pair: 7:00-16:00 ET for the 10-Year T-Note and 9:30-16:00 ET for S&P500.

While we carry out the analysis at millisecond frequency, it trivially generalizes to any

other frequency with adequate time resolution for meaningful cross-activity measurements

at different offsets.
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Figure 5: Cross-Market Trading Activity Between 10-Year Treasury Cash and
Futures Markets. Data Sources: BrokerTec (cash market data); Nanotick (CME futures
market data).

3.1.1. The US Treasury Cash and Futures Markets

Figure 5 displays the cross-market activity measure for the cash and futures ten-year

Treasury note markets. The measure is shown for October 15, 2014, a day with extraor-

dinarily high volatility and trading; for October 16, 2014, another day with somewhat

heightened volatility and trading; and for the rest of the other, more typical, trading days

in October 2014.

The cash market platform (in Secaucus, New Jersey) and the futures market exchange

(in Aurora, Illinois) exhibit very pronounced cross-market trading activity at an offset

of +/-5 milliseconds, strikingly consistent with the time it takes to transmit information

between the two trading venues using current microwave tower technology. Spikes occur

at both negative and positive offsets, suggesting that sometimes Treasury futures lead

cash Treasuries (+5 millisecond offset) and other times the cash market leads futures (-5

millisecond offset), a remarkable fact since it indicates that price discovery takes place

in both markets as they can both lead each other. The dip at zero is expected because

coordinated trading within a millisecond is not possible (although the local leg of a trade

could purposely be delayed). However, the measure does not reach zero since trading

11Since the refractive index of glass is around 1.5, communication via fiber-optic technology leads to a
lower bound of roughly 7 ms.

12BATS in Weehawken, DirectEdge in Secaucus, Nasdaq in Carteret, and NYSE in Mahwah, NJ.
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activity tends to occur in short bursts and some amount of spurious cross-market activity

may be picked up at very small offsets.

Overall, the large share of cross-market activity probably helps explain the extremely

tight link between Treasury cash and futures markets. Consistent with this, the two

highest volatility days in October 2014, the 15th and 16th, also had the most cross-market

activity.

3.1.2. The S&P 500 E-Mini Futures and Cash Markets
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Figure 6: Cross-Market Trading Activity Between S&P 500 Cash and Futures
Markets. Data Sources: Thomson Reuters Tick History (cash market data); Nanotick
(CME futures market data).

Figure 6 displays the average measure of cross-market activity for the S&P 500 cash

and futures markets. Of note is the pronounced asymmetry of the spike in the measure

at +5 milliseconds for the S&P 500 compared to the 10-Year US Treasury. The much

higher spike for the positive 5ms offset is consistent with the often cited dominant role

played by the S&P futures in price discovery. Unlike prior studies based on returns and

correlation measures, though, our measure successfully uncovers this relationship solely

based on trading activity time stamps and pins down the precise offset with very high

precision.
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Figure 7: Cross-Market Trading Activity Between 10-Year Treasury Cash and
E-Mini S&P 500 Futures Markets. Data Sources: BrokerTec (cash market data);
Nanotick (CME futures market data).

3.1.3. The US Treasury Cash and S&P 500 E-Mini Futures Markets

A different pattern emerges when we compare trading activity across substantially dif-

ferent highly active markets, underscoring the fact that the cross-market activity measure

is not simply picking up spurious coactivity. For example, overall cross-market activity

in the ten-year Treasury notes and E-mini S&P 500 futures is much lower (see figure 7)

and indicates that, to the extent that cross-market activity does occur, the E-mini market

leads the cash Treasury market (+5 millisecond offset) but not vice versa.

3.2. Capturing the Liquidity Mirage

Market efficiency is often pointed to as a main benefit of automated and high-frequency

trading (HFT) in U.S. Treasury markets. Fresh information arriving in the market place

is reflected in prices almost instantaneously, ensuring that market makers can maintain

tight spreads and that consistent pricing of closely related assets generally prevails. While

the positive developments in market functioning due to HFT have been widely acknowl-

edged, we argue that the (price) efficiency gain comes at the cost of making the real-time

assessment of market liquidity across multiple venues more difficult. This situation, which

we term the liquidity mirage, arises because market participants respond not only to news

about fundamentals but also market activity itself. This can lead to order placement and

execution in one market affecting liquidity provision across related markets almost in-
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stantly. The modern market structure therefore implicitly involves a trade-off between

increased price efficiency and heightened uncertainty about the overall available liquidity

in the market.

To illustrate this trade-off, we consider the trading activity in the ten-year U.S. Trea-

sury note and futures in the month of October 2014 during which the October 15 “flash

rally” occurred. Trading in the cash market takes place on the BrokerTec and eSpeed

interdealer platforms (both located in Secaucus, New Jersey), while the corresponding

front-month U.S. Treasury futures contract trades on the Chicago Mercantile Exchange

(CME). All three venues feature anonymous electronic central limit order books with

trading largely dominated by principal trading firms and bank dealers that often employ

automated and low-latency trading techniques, as documented in the recently released

Joint Staff Report on October 15, 2014.

To an investor in the U.S. Treasury market, the eSpeed, BrokerTec, and CME plat-

forms represent distinct liquidity pools which typically exhibit tight spreads and significant

depth at the top of the order book. Thanks to low-latency cross-market trading activity,

the prices on all three platforms are likely to be competitive (market efficiency at work!).

However, the liquidity effectively available to the investor at any point in time is highly

unlikely to be the sum of top-of-book depths across the platforms. To see why, consider

a New York-based investor submitting a buy order to all three venues. Given the short

distance to the interdealer platforms, the investor’s orders will reach one of them first.

Suppose the BrokerTec order is matched first and the trader gets the requested quantity at

the best offer. As soon as the BrokerTec transaction is observed in the market data feed,

colocated low-latency market participants may immediately seek to cancel top-of-book

offers on eSpeed and CME or submit competing buy orders to eSpeed and CME.

The former would be consistent with prudent risk management by market makers

while the latter would be an example of opportunistic trading ahead of anticipated order

flow. Due to random fluctuations in network latency and the close proximity between

eSpeed and BrokerTec, the investor’s order may or may not arrive in time to get filled at

the expected best offer on eSpeed. However, low-latency traders will almost certainly be

able to preempt the order’s arrival at CME, leaving it in a position where it may not be

filled at all. Hence, the displayed market depth across distinct liquidity pools can convey

a misleading impression of the aggregate available liquidity.

3.2.1. Causes of the Liquidity Mirage: Prudent Market Making

To investigate how low-latency liquidity providers respond to incoming market data,

we study the order book reactions to trades across platforms based on cash market data
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Figure 8: CME Trades versus Depth Reductions on BrokerTec. Cross-market
activity is expressed as a share of futures trades and reflects the incidence rate of a trade
at the bid (offer) on CME coinciding with a reduction in depth at the best bid (offer) on
BrokerTec. A positive offset indicates that a CME trade happens prior to a depth reduction
on BrokerTec. The gray area represents the 2.5th to 97.5th interpercentile range of the daily
cross-market activity measures over the second half of 2014. Data Sources: BrokerTec
(cash market data); Nanotick (CME futures market data).

from BrokerTec and CME futures market data from Nanotick. We focus our analysis

on the extent to which CME trades may cause a reduction in depth on BrokerTec, as

captured by the cross-market trading activity measure Xt. In this case, the measure

can be interpreted as the proportion of CME trades associated with top-of-book depth

reduction on BrokerTec in excess of what might be expected by pure chance.

Figure 8 shows that on average as much as 20 percent of Treasury futures trades at the

bid (offer) are associated with depth reduction at the bid (offer) on the BrokerTec plat-

form. Moreover, this BrokerTec order book reaction to CME trades peaks at a roughly 5

millisecond delay, which matches the current shortest possible transmission time between

the two venues using cutting-edge microwave transmission technology. The evidence there-

fore supports the hypothesis that rapid depth reduction by low-latency liquidity providers

contributes to the liquidity mirage. It is also worth highlighting that October 15, while

exhibiting extreme price volatility, is not an outlier in this regard. As such, we did not

find any evidence that the liquidity mirage was more pronounced on October 15 compared

with our control days.

An even stronger link exists between large CME trades (those with a trade size greater

16



100 80 60 40 20 0 20 40 60 80 100
Offset (milliseconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
ro

ss
-M

a
rk

e
t 

A
ct

iv
it

y

Oct 15, 2014
Oct 16, 2014
Rest of 2014

Figure 9: Large CME Trades versus Depth Reductions on BrokerTec. Cross-
market activity is expressed as a share of futures trades and reflects the incidence rate of
a trade at the bid (offer) on CME coinciding with a reduction in depth at the best bid
(offer) on BrokerTec. A positive offset indicates that a CME trade happens prior to a depth
reduction on BrokerTec. The gray area represents the 2.5th to 97.5th interpercentile range
of the daily cross-market activity measures over the second half of 2014. Data Sources:
BrokerTec (cash market data); Nanotick (CME futures market data).

than fifty contracts) and top-of-book depth changes on BrokerTec. Figure 9 displays a

remarkable spike indicating that nearly 60 percent of large CME trades are followed by

BrokerTec depth reductions with an offset of 5 milliseconds. These findings underscore

the fact that the total liquidity available to an investor at a given point in time in practice

may tend to be closer to the depth of the market that gets accessed first rather than the

sum of the depths in each market.

We stress that the patterns displayed above are entirely consistent with prudent market

making in an anonymous central limit order book environment where the informational

advantage of market makers does not lie in having proprietary access to customer flows

(as New York Stock Exchange specialists once did), but rather in their speed and ability

to process complex market data.

3.2.2. Causes of the Liquidity Mirage: Opportunistic Trading

A second potential cause for the liquidity mirage is that traders with a speed advantage

may attempt to trade ahead of (expected) incoming order flow. In this scenario, they

would react to buy (sell) orders at CME by immediately submitting buy (sell) orders on
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Figure 10: CME Trades versus BrokerTec Trades. Cross-market activity is expressed
as a share of cash trades and reflects the incidence rate of a trade at the offer (bid) on CME
coinciding with a trade at the offer (bid) on BrokerTec. A positive offset indicates that
a CME trade happens prior to a BrokerTec trade. The gray area represents the 2.5th to
97.5th interpercentile range of the daily cross-market activity measures over the second half
of 2014. Data Sources: BrokerTec (cash market data); Nanotick (CME futures market
data).

BrokerTec in anticipation that prices may tick up (down) due to incoming order flow.

However, the evidence for this behavior turns out to be quite weak in the data, based on

our cross-market activity measure.

Figure 10 shows the cross-market activity measure for buy and sell trades on CME and

BrokerTec. There is modest evidence that buy (sell) trades take place in a coordinated

fashion at an offset of +/-5 milliseconds, but this accounts for very little of the overall

trading activity on the BrokerTec platform (the less active of the two markets). For large

orders (not shown here), the evidence is even weaker.

3.3. Implications for Cross-Market Price Impact

The strong relationship between cash and futures trades and between trades and quotes

across the market pairs studied above suggests that measures of price impact and trading

costs should not be constructed for each market in isolation. As captured by our cross-

market activity measure, the tick data time stamps indicate that a trade in one market

may move quotes in the other even in absence of trading in the latter market. Moreover,

the asymmetry evident in Figure 6 and, to a lesser degree, in Figure 5, point to futures
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markets as being potentially more important in price discovery on average. To investigate

this hypothesis, we build on the classic price impact regression framework of Breen et al.

(2002) specialized to US Treasury and equity index cash and futures markets.

In the case of a single market, the imbalance ∆vt between buyer-initiated and seller-

initiated trading volume during a short time interval tends to explain the contemporaneous

return rt, leading to the following popular price-impact regression studied by Breen et al.

(2002), among many others:

rt = λ∆vt + εt (4)

In the context of arbitrage linked markets, in view of the uncovered lead-lag patterns in

high-frequency cross-market order placement and execution activity, we instead consider

the following extension to a pair of cross-market price-impact regressions for US Treasury

returns and volume imbalance on both CME and BrokerTec:

rBTEC
t = λCME∆vCME

t + λBTEC∆vBTEC
t + εt (5)

rCME
t = λ̃CME∆vCME

t + λ̃BTEC∆vBTEC
t + ε̃t (6)

where the returns {rCME
t , rBTEC

t } differ slightly due to the duration difference between

the instruments and intraday changes in the cash-futures basis.13

From the regression results for pooled five-minute series reported in Table 1, it is clear

that the loading on volume imbalance for both markets is highly significant but that

CME volume appears to be much more informative than BrokerTec volume regardless

of whether one is predicting CME or BrokerTec returns (as mentioned the returns are

strongly but not perfectly correlated). Moreover, adding BrokerTec volume in a bivariate

regression only marginally increases the R-squared of the regression, especially for CME

returns. These results are remarkably robust when running the regressions day by day

(i.e. without pooling the five minute series across days), as further reported in table

A.3. Overall, this is consistent with the prevailing lead-lag patterns for CME versus

BrokerTec trading and quoting activity and supports the hypothesis that price discovery

in the Treasury markets primarily takes place in the futures market.

The strong cross-market price impact is not unique to US Treasury markets. As seen

from Figure 6 vis-à-vis Figure 5, the tendency for futures to lead cash markets is even

more pronounced in the case of the S&P500 equity index. This leads us to consider the

13Cross-market price impact in other such settings has recently been studied by Pasquariello and Vega
(2015), Back and Crotty (2015), and Boulatov, Hendershott, and Livdan (2013). Multivariate extensions
of Kyle’s (1985) lambda have previously been considered also by Caballé and Krishnan (1994), among
others.
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rBTEC

Const 3.68E‐06 4.29E‐05 2.54E‐05
[0.120] [1.334] [0.894]

vCME 1.12E‐06 8.35E‐07
[93.296] [66.201]

vBTEC 1.81E‐05 1.09E‐05
[75.825] [45.408]

Adj	R2 0.44 0.34 0.51

rCME

Const 4.69E‐06 2.27E‐05 1.56E‐05
[0.192] [0.835] [0.662]

vCME 9.03E‐07 7.39E‐07
[94.329] [70.687]

vBTEC 1.27E‐05 6.32E‐06
[62.67] [31.795]

Adj	R2 0.44 0.26 0.48

Table 1: Cross Market Price Impact Regressions for Ten-Year US Treasury
Cash and Futures Markets. The left panel shows the results of different regression
specifications with BrokerTec five-minute returns for the ten-year Treasury Note as the
dependent variable while the right hand panel shows the results using CME five-minute re-
turns for the ten-year Treasury futures as the dependent variable. In each case, we run two
univariate specifications as in (4) using each market’s net volume as well as a bivariate spec-
ification as in (5)-(6). T-stats are given is square brackets under each coefficient estimate.
The five-minute return series and corresponding net order flow measures are pooled across
all days for the sample period from July 1, 2014 to December 31, 2014. Data Sources:
BrokerTec (cash market data); Nanotick (CME futures market data).

rNYSE

Const 1.42E‐04 ‐1.17E‐03 ‐2.08E‐04
[2.277] [‐13.392] [‐3.226]

vCME 2.99E‐06 2.78E‐06
[117.21] [100.25]

vNYSE 2.45E‐08 7.22E‐09
[48.487] [17.692]

Adj	R2 0.54 0.17 0.55

rCME

Const 1.42E‐04 ‐1.15E‐03 ‐1.75E‐04
[2.236] [‐12.960] [‐2.647]

vCME 3.03E‐06 2.84E‐06
[116.55] [100.19]

vNYSE 2.41E‐08 6.53E‐09
[46.831] [15.654]

Adj	R2 0.54 0.16 0.55

Table 2: Cross Market Price Impact Regressions for S&P 500 Cash and Futures
Markets. The left panel shows the results of different regression specifications with NYSE
five-minute returns for the SPY ETF as the dependent variable while the right hand panel
shows the results using CME five-minute returns for the E-mini futures as the dependent
variable. In each case, we run two univariate specifications as in (4) using each market’s
net volume as well as a bivariate specification as in (7)-(8). T-stats are given is square
brackets under each coefficient estimate. The five-minute return series and corresponding
net order flow measures are pooled across all days for the sample period from July 1, 2014
to December 31, 2014. Data Sources: Nanotick (CME futures market data); Thomson
Reuters Tick History (cash market data).

20



following pair of cross-market price-impact regressions for S&P 500 returns and volume

imbalance on CME (as captured by E-mini futures) and NYSE (as captured by the SPY

ETF):

rNY SE
t = λCME∆vCME

t + λNY SE∆vNY SE
t + εt (7)

rCME
t = λ̃CME∆vCME

t + λ̃NY SE∆vNY SE
t + ε̃t (8)

The pooled regression results reported in Table 2 along with the corresponding day by

day regression results in Table A.4 reveal that, for the S&P 500, the net order flow in the

futures market alone explains the S&P 500 five-minute returns and that adding the net

order flow in the cash market has a negligible impact.14 As such, our cross-market price

impact findings reveal that the futures market plays a far more dominant role for S&P

500 than in the case of US Treasuries consistent with the pronounced one-sided peak in

our measure of high-frequency cross-market trading for S&P 500 (Figure 6 above). By

contrast, the two-sided peak in our measure for US Treasuries (Figure 5 above) with a

secondary peak at -5 milliseconds suggests that cash Treasury markets can sometimes also

lead the Treasury futures markets and can thus have a somewhat more informative net

order flow compared to S&P 500 cash versus futures markets. In this light, our results

provide a strong rationale for explicitly considering the cross-market price impact between

arbitrage linked markets as a testable implication of the prevailing high-frequency lead-lag

relationship between them that is identified by our model-free measure of cross-market

trading activity.

We further analyze the evolution of high-frequency cross-market price impact over the

period 2004-2015 by repeating the above regressions for five-second instead of five-minute

returns and plotting the partial R2 representing the improvement in the explanatory power

of the bivariate specification (7)-(8) over the corresponding univariate specification (4) for

each market. In the case of S&P 500, Figure 11 shows that futures market order flows

have been providing substantial additional explanatory power for S&P 500 returns over

cash market order flows at the five-second frequency since at least 2007 but increasingly

less so going further back to 2004 when HFT is known to have been at very early stages.

Moreover, in line with the pronounced one-sided peak in our measure of high-frequency

cross-market trading for S&P 500 (Figure 6 above), there appears to be almost no ad-

14The intraday returns for the S&P500 and SPY ETF are almost perfectly correlated at the 5 min
frequency and the regression results for the two markets are therefore near identical.

21



2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Futures Market (CME) Cash Market (NYSE)

Figure 11: Evolution of Partial R2 for Bivariate versus Univariate Price Impact
Regressions for S&P 500 Cash and Futures Markets. We run daily price impact re-
gressions of five-second returns on corresponding net order flows. The green line represents
the improvement in explanatory power as measured by partial R2 for the bivariate specifi-
cation (7)-(8) over the corresponding univariate specification (4) for the SPY ETF traded
on NYSE. The blue line represents the improvement in explanatory power as measured by
partial R2 for the bivariate specification (7)-(8) over the corresponding univariate specifi-
cation (4) for the S&P 500 E-mini Futures traded on CME. The plotted values represent
monthly medians of the corresponding daily partial R2 values in each month over the period
2004-2015. Data Source: Thomson Reuters Tick History (CME futures market data and
NYSE cash market data).

ditional explanatory power when augmenting futures market order flows by cash market

order flows to explain S&P 500 returns. By contrast, in line with the two-sided peak in

our measure for US Treasuries (Figure 5 above), Figure 12 shows that from 2008 onwards

US Treasury cash-market order flows have started to provide some additional explanatory

power on top of US Treasury futures order flows, which otherwise have still had much

greater explanatory power on top of cash market order flows also for US Treasury returns

at the five-second frequency.15.

Importantly, the same rationale for considering cross-market price impact regressions

extends to many other arbitrage-linked markets even in cases when coarser than millisec-

ond time stamp granularity or other venue-specific data collection features could make it

difficult to apply our model-free measure of cross-market activity. For example, in the case

of the EUR/USD FX rate, trading activity on the EBS platform has traditionally been

15Qualitatively similar conclusions can be obtained also by repeating the regression analysis at other
even higher frequencies (e.g. one-second) that we omit reporting in order to save space.
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Figure 12: Evolution of Partial R2 for Bivariate versus Univariate Price Impact
Regressions for Ten-Year US Treasury Cash and Futures Markets. We run daily
price impact regressions of five-second returns on corresponding net order flows. The green
line represents the improvement in explanatory power as measured by partial R2 for the
bivariate specification (7)-(8) over the corresponding univariate specification (4) for the Ten-
Year U.S. Treasury Note traded on BrokerTec. The blue line represents the improvement in
explanatory power as measured by partial R2 for the bivariate specification (7)-(8) over the
corresponding univariate specification (4) for the Ten-Year U.S. Treasury Futures traded on
CME. The plotted values represent monthly medians of the corresponding daily partial R2

values in each month over the period 2004-2015. Data Sources: BrokerTec (cash market
data); Thomson Reuters Tick History (CME futures market data).

reported as an aggregate over 100 millisecond buckets, thereby precluding precise mil-

lisecond identification of the lead-lag relationship with respect to the EUR/USD futures

markets. Nonetheless, the recorded order flow still suffices to study the differential impor-

tance of cross-market price impact in the cash versus futures market over time, thereby

refining and extending the price impact findings in the extant literature which has focused

on a single market in isolation.16 In line with the analysis of Treasury and equity markets

above, we consider the following bi-variate price impact regression specification:

rEBS
t = λCME∆vCME

t + λEBS∆vEBS
t + εt (9)

rCME
t = λ̃CME∆vCME

t + λ̃EBS∆vEBS
t + ε̃t (10)

Figure 13 reveals that there was a largely symmetric relationship between cash and

16See for example Berger, Chaboud, and Hjalmarsson (2009).
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Figure 13: Evolution of Partial R2 for Bivariate versus Univariate Price Impact
Regressions for EUR/USD FX Cash and Futures Markets. We run daily price
impact regressions of five-second returns on corresponding net order flows. The green line
represents the improvement in explanatory power as measured by partial R2 for the bivariate
specification (7)-(8) over the corresponding univariate specification (4) for the EUR/USD
FX rate traded on EBS. The blue line represents the improvement in explanatory power
as measured by partial R2 for the bivariate specification (7)-(8) over the corresponding
univariate specification (4) for the EUR/USD FX Futures traded on CME. The plotted
values represent monthly medians of the corresponding daily partial R2 values in each month
over the period 2004-2015. Data Sources: EBS (cash market data); Thomson Reuters Tick
History (CME futures market data).

futures markets in terms of the incremental informativeness of order flows until 2009.

Subsequently, a considerable divergence took place with futures market order flows ap-

pearing to gain considerably more explanatory power relative to cash market order flows.

This differential jumped dramatically in response to the March 2011 decision by EBS

to introduce price decimalization (cutting the tick size by a factor of 10) that was also

blamed for impairing liquidity on the EBS platform by many market participants. In 2012

EBS partially reversed the change (increasing the tick size to half of what it had been pre

March 2011) but our analysis indicates that EBS never regained its pre-2009 importance

as a venue for price discovery. However, our analysis does indicate that the gap between

EBS and CME in this regard appears to have narrowed since 2015.

Overall, the documented evolution in the additional explanatory power of cross-market

versus single-market price impact regressions highlights the importance of properly ac-

counting for high-frequency cross-market trading when studying price discovery in many

arbitrage-linked markets as exemplified by the cash and futures markets for US Treasuries,
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equities, and FX rates.

3.4. Cross-Market Activity and Volatility

The close relationship between market volatility and trading activity is a long-established

fact in financial markets.17 On the one hand, a large body of empirical findings and

compelling alternative theories advocate that trading volume comoves with measures of

within-day price variability. On the other hand, in recent years much of the trading in

U.S. Treasury and equity markets has been associated with nearly simultaneous trading

between the leading cash and futures platforms. Thus, the striking cross-activity patterns

we uncover in both high-frequency cross-market trading and related cross-market order

book changes naturally lead to the question of how the cross-market component of overall

trading activity is related to volatility.

Leaving aside the pronounced asymmetry in figure 6 versus figure 5, the spikes in

cross-market activity on October 15 and 16, 2014, stand out as being well-aligned with

the heightened volatility and trading observed on those days.18 Cross-market trading

and quoting activity thus appears to be related to variations in market volatility, which

can create (short-lived) dislocations in relative valuations as market participants respond

to news about fundamentals or market activity itself. We further demonstrate empiri-

cally that the peak number of cross-active milliseconds (across all offsets) comoves more

strongly with market volatility than generic market-activity proxies such as trading vol-

ume and the number of transactions. This pattern is consistent with a positive feedback

effect by which an increase in volatility can spur additional trading activity by creating

cross-market trading opportunities. This observation stands in contrast to the more con-

ventional view in the finance and economics literature which holds that trading activity

predominantly causes volatility but not vice versa.

We study the evolution of the link between cross-market activity and volatility in

both U.S. Treasuries (ten-year Treasury note cash and futures) and equities (S&P 500

E-mini and SPY ETF) over more than a decade from January 1, 2004 to September

30, 2015. Our analysis starts with a closer look at intraday patterns and the degree

of alignment between volatility and cross-market activity over our representative recent

sample period from July 1, 2014 to December 31, 2014 before proceeding with the full

17A survey of the early literature on the subject can be found in Karpoff (1987), while notable later
examples include Schwert (1989), Ané and Geman (2000), Kyle and Obizhaeva (2013) and Andersen
et al. (2015), among many others.

18See “Joint Staff Report: The U.S. Treasury Market on October 15, 2014”, http://www.treasury.
gov/press-center/press-releases/Documents/Joint_Staff_Report_Treasury_10-15-2015.pdf.

25

http://www.treasury.gov/press-center/press-releases/Documents/Joint_Staff_Report_Treasury_10-15-2015.pdf
http://www.treasury.gov/press-center/press-releases/Documents/Joint_Staff_Report_Treasury_10-15-2015.pdf


decade-long sample. We measure cross-market activity on each trading day as the number

of cross-active milliseconds at its peak across all offsets and restrict attention to the most

active electronic U.S. trading hours for each pair: from 7:00 to 16:00 ET for the ten-year

Treasury note and from 9:30 to 16:00 ET for the S&P 500. While we carry out the analysis

at millisecond frequency, it trivially generalizes to any other frequency with adequate time

resolution for meaningful cross-activity measurements at different offsets.

3.4.1. Intraday Patterns in Cross-Market Trading Activity and Volatility
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Figure 14: Intraday Patterns in Different Trading Activity Measures and
Volatility. We plot the minute-average peak number of cross-active milliseconds between
cash and futures markets (red line), number of trades (blue line) and trading volume (green
line) against the minute-average realized volatility (gray line) in the cash market. The av-
erages are taken over the period from July 1, 2014 to December 31, 2014 and the values
are brought to the same scale by representing them as the binary logarithm of the ratio to
their intraday mean. Zero indicates equality to the intraday mean; positive/negative one
indicates twice/half the intraday mean. Left Panel: Ten-Year U.S. Treasury Note. Right
Panel: S&P 500. Data Sources: BrokerTec; Nanotick; Thomson Reuters Tick History.

Figure 14 shows that for both the ten-year Treasury note and S&P 500, the prevailing

intraday volatility pattern is matched very closely by the diurnal pattern in cross-market

activity as measured by the number of cross-active milliseconds between the cash and

futures markets. The biggest volatility spikes for U.S. Treasuries (left panel of figure 14)

occur at 8:30, 10:00, 13:00, and 14:00 ET around known times of news announcements,

Treasury auctions, and the release of Federal Open Market Committee announcements

and meeting minutes. For the S&P 500, only the spikes at 10:00 and 14:00 ET stand out
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to a lesser degree (right panel of figure 14). For U.S. Treasuries, there is also a notable

peak around 15:00 ET corresponding to the CME market close for all pit-traded interest

rate options.

Furthermore, in terms of correlation, the number of cross-active milliseconds is tracking

the intraday volatility pattern somewhat more closely than either trading volume or the

number of trades. However, the tight range of most observed values within negative

and positive one (excluding the extremes) suggests that interday as opposed to intraday

variation may provide a better measure of the degree to which the different activity series

relate to volatility.

3.4.2. Day-to-Day Variations in Volatility and Cross-Market Trading Activity

Figure 15 shows changes in daily logarithmic realized volatility plotted against changes

in each daily logarithmic activity measure over the July 1 to December 31, 2014 sample

period. For both the ten-year Treasury (left column) and the S&P 500 (right column)

markets, the day-to-day changes in volatility appear to be more closely associated with

the day-to-day changes in the peak number of cross-active milliseconds (bottom row) than

with the changes in the number of trades (middle row) or trading volume (top row). In

particular, the R squared for the number of cross-active milliseconds exceeds by more

than 0.1 the R squared for trading volume and about half that amount the R squared for

the number of trades.

Moreover, the number of cross-active milliseconds often appears to crowd out both

trading volume and the number of trades if included jointly as regressors for volatility.

This result is quite remarkable since it establishes that the number of cross-active mil-

liseconds subsumes both trading volume and the number of trades in terms of information

content that is available about volatility. It is also worth highlighting that while October

15 (in red) and October 16 (in blue) are known to have exhibited extreme volatility, they

are not large outliers in terms of the strong linear relationship observed between changes

in volatility and changes in the number of cross-active milliseconds (bottom row).

3.4.3. Evolution of the Relationship between Cross-Market Trading Activity and Volatility

To better assess the extent to which market volatility has become more closely as-

sociated with high-frequency cross-market trading activity, table A.5 reports historical

R squared measures of goodness of fit for each year from Jan 1, 2004 to Sep 30, 2015

obtained by regressing year by year the daily changes in logarithmic realized volatility on

the daily changes in logarithmic trading volume, number of trades, or number of cross-

active milliseconds for the 10-Year US Treasury (left part of the table) and S&P 500
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Figure 15: Degree of Association between Different Trading Activity Measures
and Volatility. Daily changes in logarithmic trading volume (top row), number of trades
(middle row) and peak number of cross-active milliseconds between cash and futures mar-
kets (bottom row) are plotted and regressed against daily changes in logarithmic realized
volatility over the period from July 1, 2014 to December 31, 2014. The R squared measure
of goodness of fit is reported above each panel. Left Column: Ten-Year U.S. Treasury
Note. Right Column: S&P 500. Data Sources: BrokerTec; Nanotick; Thomson Reuters
Tick History.

(right part of the table). In particular, measuring the peak number of cross-active mil-

liseconds day by day and taking logarithmic differences of the daily measures during each

twelve-month period limits the impact of secular trends in latency and trading practices

over the past decade resulting from technological improvements and the related evolution

in high-frequency trading. Table A.5 thus strongly indicates that with the rise in high-

frequency trading in recent years, cross-market activity as measured by the peak number

of cross-active milliseconds between the cash and futures markets has typically been more

tightly linked to volatility than standard activity measures such as overall trading volume

or the number of trades in either the cash or futures markets.
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Even more strikingly, the proposed model-free measure of cross-market activity ap-

pears to contain extra information about volatility beyond what is implied by naively

combining the trading volumes and counts for both the cash and futures markets. Table

A.6 shows the high statistical significance of the loading on the peak number of cross-active

milliseconds in yearly OLS regressions including also the trading volumes and number of

trades for both the cash and futures markets. The regression specification takes the form:

∆rvt = const+β[n1] ·∆n1,t +β[n2] ·∆n2,t +β[v1] ·∆v1,t +β[v2] ·∆v2,t +β[x12] ·∆x12,t + εt ,

where daily changes in logarithmic realized volatility (rvt) are regressed on daily changes

in the logarithmic number of trades and trading volume in both the futures market (n1,t

and v1,t) and the cash market (n2,t and v2,t) as well as daily changes in the logarithmic

measure of cross-market activity between the two markets (x12,t = log(maxsX raw
s,t )) given

by the peak number of cross-active milliseconds across all different offsets. In addition

to the high statistical significance of the model-free measure of cross-market activity, the

resulting improvements in R squared are most visible in the years when high-frequency

trading has become prevalent for each market pair (starting from 2011 for the ten-year US

Treasury Note and from 2009 for S&P 500). We further note that while other studies such

as Andersen et al. (2015), Ané and Geman (2000), Clark (1973), or Kyle and Obizhaeva

(2013) aim to rectify a particular theory-implied form of the relationship between volatility

and trading activity in a given single market, our main goal is to show that the cross-

market component of high-frequency trading activity between closely related markets

contains extra information about market volatility unspanned by trading volume and the

number of trades in each market.

To address possible concerns stemming from the high degree of multi-collinearity be-

tween the trading activity measures, we further consider an alternative specification that

brings all cross-correlations below 0.5 by way of suitable transformations. Table A.7 shows

the OLS regression results for one such rearrangement in which both the cross-market ac-

tivity and the number of trades in the futures market are taken relative to the number

of trades in the cash market, while the trading volume in each market is transformed to

average trade size (daily trading volume taken relative to trade count). By design this

yields the same R squared measures of goodness of fit while better revealing the statistical

significance of cross-market activity in comparison to the rest of the activity variables.

In particular, it becomes clear that while most of the explanatory power stems from the

chosen proxy for the baseline trading activity level (the number of trades in the cash mar-

kets n2,t), the proposed measure of cross-market activity relative to the baseline activity
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level (x12,t − n2,t) has consistently been highly statistically significant, especially after

high-frequency cross-market trading activity is known to have grown up in the considered

cash and futures markets.

The resulting increase in terms of the adjusted R squared measure of goodness of

fit is more evident when regressing volatility residuals on cross-market activity residuals

after partialling out the number of trades and trading volume for each market from both

volatility and cross-market activity (denoted as relative increase in adjusted R squared

in the last column of tables A.6 and A.7). Thus, for the ten-year U.S. Treasury Note

cash and futures markets at least 5% of the variability in volatility unexplained by the

number of trades and trading volume in both cash and futures markets appears to be

consistently associated with cross-market activity from 2011 onwards when high-frequency

cross-market trading is known to have become prevalent in these markets. Even more

strikingly, with the rise in high-frequency cross-market trading between S&P 500 cash

and futures markets from 2009 onwards, the proposed measure of cross-market activity

consistently can explain as much as 10% of the variability in volatility that remains

unexplained by the number of trades and trading volume in both markets.

4. Conclusion

We propose a set of intuitive model-free measures of cross-market trading activity

based on publicly available trade and quote data with sufficient time stamp granularity.

By virtue of capturing the offset at which co-activity peaks, as well as the magnitude and

dispersion of cross-market activity, the measures allow us to shed new light on the distinct

features of the high-frequency cross-market linkages in US Treasury and equity markets.

First, the measures avoid reliance on noisy return series often used in the literature and

demonstrate sharp identification of the prevailing lead-lag relationships between trading

activity in closely related markets. Second, we show how the measures can also be used

to study cross-market linkages of liquidity provision as illustrated by an application to

examining the existence of so called liquidity mirages. In this regard, we further pro-

vide new evidence pointing to the fact that price discovery in US Treasury, equity and

EUR/USD FX markets primarily takes place in futures rather than cash markets and

we give strong rationale for considering the cross-market price impact between arbitrage

linked markets. Finally, as we uncover significant presence of high-frequency cross-market

trading, we reexamine the close relationship between trading activity and volatility. In

particular, we show that our measures provide additional explanatory power for observed

market volatility, beyond commonly used measures of overall market activity such as
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trading volume and number of transactions. This observation may reflect the fact that

volatility can create brief dislocations in relative values spurring bursts of cross-market

activity by high-frequency traders seeking to exploit these trading opportunities. When

liquidity is ample, cross-market activity can therefore capture incremental information

about market volatility beyond traditional measures of overall market activity such as

trading volume and the number of transactions.

Overall, our findings suggest that accounting for cross-market trading activity is di-

rectly relevant when studying volatility, liquidity provision, and transaction cost analysis.

In particular, from this new perspective there is a potential need to account for volatility-

induced surges in trading due to cross-market activity when modeling the relationship

between trading and volatility in arbitrage-linked markets.
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Appendix A. Tables

5% 10% 25% 50% 75% 90% 95%

Panel A: Daily regressions of BrokerTec five-minute returns on net order flow

∆vBTEC 0.15 0.19 0.22 0.31 0.39 0.44 0.49
∆vCME 0.18 0.24 0.33 0.41 0.47 0.54 0.57
∆vBTEC , ∆vCME 0.26 0.33 0.41 0.50 0.56 0.62 0.65

Panel B: Daily regressions of CME five-minute returns on net order flow

∆vBTEC 0.07 0.10 0.17 0.23 0.31 0.39 0.44
∆vCME 0.21 0.25 0.32 0.42 0.50 0.55 0.60
∆vBTEC , ∆vCME 0.25 0.29 0.36 0.47 0.55 0.60 0.63

Table A.3: Daily Regressions of Intraday Returns on Net Order Flow for the
Ten-Year US Treasury Cash and Futures Markets. The table reports percentiles of
adjusted R2 for daily regressions of five-minute returns on net order flow for the Ten-Year
U.S. Treasury Note traded on BrokerTec (Panel A) and the Ten-Year U.S. Treasury Futures
traded on CME (Panel B) based on the univariate specifications (4) using each market’s
net order flow as well as the bivariate specification (5)-(6) using the net order flow in both
markets. The percentiles are taken across all days for the sample period from July 1, 2014
to December 31, 2014. Data Source: BrokerTec; Nanotick.

5% 10% 25% 50% 75% 90% 95%

Panel A: Daily regressions of NYSE five-minute returns on net order flow

∆vNYSE 0.05 0.08 0.13 0.20 0.27 0.32 0.36
∆vCME 0.33 0.42 0.52 0.59 0.68 0.74 0.75
∆vNYSE , ∆vCME 0.33 0.44 0.54 0.61 0.70 0.75 0.77

Panel B: Daily regressions of CME five-minute returns on net order flow

∆vNYSE 0.03 0.06 0.12 0.18 0.25 0.30 0.36
∆vCME 0.36 0.42 0.51 0.58 0.66 0.73 0.75
∆vNYSE , ∆vCME 0.38 0.43 0.52 0.59 0.68 0.74 0.75

Table A.4: Daily Regressions of Intraday Returns on Net Order Flow for the
S&P 500 Cash and Futures Markets. The table reports percentiles of adjusted R2

for daily regressions of five-minute returns on net order flow for the SPY ETF traded on
NYSE (Panel A) and the E-mini Futures traded on CME (Panel B) based on the univariate
specifications (4) using each market’s net order flow as well as the bivariate specification
(7)-(8) using the net order flow in both markets. The percentiles are taken across all days
for the sample period from July 1, 2014 to December 31, 2014. Data Sources: Nanotick;
Thomson Reuters Tick History.
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Year
Trading
Volume

Number
of Trades

Number of
Cross-Active Msec.

Trading
Volume

Number of
Trades

Number of
Cross-Active Msec.

2004 0.51 0.52 0.55 0.55 0.65 0.63
2005 0.64 0.66 0.67 0.60 0.65 0.61
2006 0.61 0.65 0.61 0.59 0.71 0.67
2007 0.50 0.57 0.64 0.63 0.76 0.76
2008 0.41 0.44 0.43 0.54 0.69 0.69
2009 0.45 0.47 0.43 0.44 0.56 0.63
2010 0.48 0.52 0.62 0.58 0.62 0.67
2011 0.52 0.58 0.64 0.51 0.68 0.72
2012 0.56 0.60 0.65 0.52 0.60 0.59
2013 0.64 0.72 0.75 0.61 0.71 0.73
2014 0.63 0.69 0.75 0.65 0.71 0.76
2015 0.56 0.67 0.73 0.57 0.63 0.67

Ten-Year US Treasury Note S&P 500

Historical Degree of Association between Different Trading Activity Measures and Volatility

Table A.5: Historical Degree of Association between Different Trading Activity
Measures and Volatility. The table reports yearly R squared measures of goodness of
fit obtained by regressing year by year the daily changes in logarithmic realized volatility
on the daily changes in logarithmic trading volume, number of trades, and peak number of
cross-active milliseconds over the period from Jan 1, 2004 to Sep 30, 2015. The numbers
in bold represent the largest values obtained separately for each year for the Ten-Year U.S.
Treasury Note and S&P 500. Data Sources: BrokerTec; Nanotick; Thomson Reuters Tick
History.
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Year
const n1 n2 v1 v2 x12 const n1 n2 v1 v2 x12

Without
x12

With
x12

Absolute
Increase

Relative
Increase

Panel A: Ten-Year U.S. Treasury Note
2004 0.0 3.1 -1.0 -0.6 0.5 -0.3 0.8 8.2 -1.4 -1.4 0.9 -1.4 0.74 0.74 0.00 0.01
2005 0.0 1.6 0.3 -0.5 -0.4 0.6 0.1 4.2 0.8 -1.8 -1.5 5.9 0.74 0.75 0.01 0.05
2006 0.0 1.5 1.0 -0.6 -0.5 0.1 0.4 4.8 2.5 -2.5 -1.5 0.8 0.74 0.74 0.00 0.01
2007 0.0 1.8 0.8 -1.0 -0.8 0.7 -0.2 6.4 1.8 -3.2 -2.6 3.4 0.76 0.78 0.02 0.10
2008 0.0 1.6 0.0 -0.2 -0.1 0.1 0.0 5.0 -0.1 -0.9 -0.2 1.4 0.68 0.68 0.00 0.01
2009 0.0 2.9 -0.4 -1.3 0.4 0.0 -0.3 5.3 -0.3 -4.2 0.4 -0.3 0.60 0.60 0.00 0.00
2010 0.0 2.4 -0.3 -0.6 -0.3 0.3 -0.7 7.8 -0.6 -2.5 -0.6 2.1 0.74 0.74 0.01 0.03
2011 0.0 1.0 0.5 0.1 -0.9 0.7 -0.8 1.5 1.0 0.1 -2.2 2.9 0.69 0.70 0.02 0.06
2012 0.0 0.5 0.1 -0.1 0.0 0.8 -0.9 1.9 0.2 -0.2 0.1 4.0 0.67 0.70 0.03 0.10
2013 0.0 0.8 1.4 -0.7 -0.9 0.8 0.3 1.8 3.3 -1.8 -1.9 4.1 0.77 0.78 0.01 0.06
2014 0.0 1.1 0.7 -0.1 -1.2 0.8 -0.4 4.3 2.3 -0.6 -4.0 5.4 0.79 0.81 0.01 0.07
2015 0.0 0.5 1.6 0.1 -1.6 0.6 0.5 1.3 3.4 0.3 -5.2 3.8 0.78 0.79 0.01 0.06

Panel B: S&P 500
2004 0.0 1.1 0.5 -0.7 0.0 0.3 -0.7 2.9 3.3 -3.0 -0.1 2.1 0.65 0.66 0.01 0.02
2005 0.0 0.7 0.0 -0.2 0.1 0.4 -0.1 3.1 0.3 -1.8 2.0 2.2 0.65 0.66 0.01 0.03
2006 0.0 1.6 0.2 -0.7 0.1 0.1 -0.2 5.2 1.6 -3.8 0.5 0.7 0.75 0.75 0.00 0.00
2007 0.0 1.8 -0.6 -1.2 0.2 1.1 -1.0 4.8 -3.0 -9.1 1.5 3.8 0.80 0.82 0.02 0.11
2008 0.0 2.7 0.4 -1.9 0.0 0.3 -0.2 5.3 2.0 -4.9 -0.2 2.2 0.81 0.81 0.00 0.03
2009 0.0 1.3 0.4 -1.3 0.0 0.8 -1.7 3.1 1.8 -6.4 -0.1 2.0 0.68 0.72 0.04 0.13
2010 0.0 0.1 0.7 -0.6 -0.1 1.0 -0.4 0.3 2.2 -2.8 -0.4 2.1 0.71 0.74 0.03 0.10
2011 0.0 1.0 0.6 -1.3 -0.6 1.3 -0.7 3.6 2.1 -6.3 -2.4 4.6 0.74 0.77 0.03 0.12
2012 0.0 1.6 0.1 -1.3 -0.1 0.7 0.7 3.2 0.3 -3.6 -0.4 2.2 0.64 0.65 0.01 0.04
2013 0.0 1.2 0.3 -1.2 -0.3 1.2 -0.8 2.9 0.9 -3.9 -1.7 4.4 0.72 0.76 0.03 0.12
2014 0.0 1.0 -0.1 -1.1 -0.2 1.4 -0.2 2.2 -0.2 -3.1 -1.5 4.4 0.76 0.81 0.05 0.20
2015 0.0 0.1 0.7 -0.1 -1.1 1.6 0.1 0.4 1.6 -0.4 -3.8 4.9 0.69 0.75 0.05 0.17

Adjusted R2

Regression of Volatility on Cash and Futures Market Trading Activity Measures

OLS Coefficients Student's t-statistics

Table A.6: Regression of Volatility on Cash and Futures Markets Trading
Activity Measures. The table reports results for yearly OLS regressions ∆rvt =
const + β[n1] · ∆n1,t + β[n2] · ∆n2,t + β[v1] · ∆v1,t + β[v2] · ∆v2,t + β[x12] · ∆x12,t + εt of
daily changes in logarithmic realized volatility (rvt) on daily changes in logarithmic num-
ber of trades and trading volume in both the futures market (n1,t and v1,t) and the cash
market (n2,t and v2,t) as well as daily changes in the model-free logarithmic measure of
cross-market activity between the two markets (x12,t) given by the peak number of cross-
active milliseconds across all different offsets. Student’s t-statistics in bold are significant
at 0.05 level after Newey-West adjustment with 22 lags. The relative increase in adjusted
R squared is computed by regressing volatility residuals on cross-market activity residuals
after partialling out the number of trades and trading volume for each market from both
volatility and cross-market activity. The sample period is from Jan 1, 2004 to Sep 30, 2015
and gray boxes indicate when high-frequency cross-market trading is known to have become
prevalent in each of the considered market pairs. Panel A: Ten-Year U.S. Treasury Note.
Panel B: S&P 500. Data Sources: BrokerTec; Nanotick; Thomson Reuters Tick History.
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Year const n1-n2 n2 v1-n1 v2-n2 x12-n2 const n1-n2 n2 v1-n1 v2-n2 x12-n2
Without

x12-n2

With
x12-n2

Absolute
Increase

Relative
Increase

Panel A: Ten-Year U.S. Treasury Note
2004 0.0 2.5 1.7 -0.6 0.5 -0.3 0.8 9.5 9.3 -1.4 0.9 -1.4 0.74 0.74 0.00 0.01
2005 0.0 1.2 1.6 -0.5 -0.4 0.6 0.1 3.0 23.0 -1.8 -1.5 5.9 0.74 0.75 0.01 0.05
2006 0.0 0.9 1.4 -0.6 -0.5 0.1 0.4 3.9 14.5 -2.5 -1.5 0.8 0.74 0.74 0.00 0.01
2007 0.0 0.8 1.4 -1.0 -0.8 0.7 -0.2 4.2 14.4 -3.2 -2.6 3.4 0.76 0.78 0.02 0.10
2008 0.0 1.3 1.4 -0.2 -0.1 0.1 0.0 7.3 27.1 -0.9 -0.2 1.4 0.68 0.68 0.00 0.01
2009 0.0 1.6 1.6 -1.3 0.4 0.0 -0.3 5.0 12.6 -4.2 0.4 -0.3 0.60 0.60 0.00 0.00
2010 0.0 1.8 1.5 -0.6 -0.3 0.3 -0.7 12.2 18.8 -2.5 -0.6 2.1 0.74 0.74 0.01 0.03
2011 0.0 1.1 1.4 0.1 -0.9 0.7 -0.8 4.6 17.3 0.1 -2.2 2.9 0.69 0.70 0.02 0.06
2012 0.0 0.4 1.3 -0.1 0.0 0.8 -0.9 1.9 19.4 -0.2 0.1 4.0 0.67 0.70 0.03 0.10
2013 0.0 0.2 1.4 -0.7 -0.9 0.8 0.3 0.5 14.2 -1.8 -1.9 4.1 0.77 0.78 0.01 0.06
2014 0.0 1.0 1.3 -0.1 -1.2 0.8 -0.4 4.9 20.1 -0.6 -4.0 5.4 0.79 0.81 0.01 0.07
2015 0.0 0.6 1.2 0.1 -1.6 0.6 0.5 2.2 10.2 0.3 -5.2 3.8 0.78 0.79 0.01 0.06

Panel B: S&P 500
2004 0.0 0.4 1.3 -0.7 0.0 0.3 -0.7 2.0 11.2 -3.0 -0.1 2.1 0.65 0.66 0.01 0.02
2005 0.0 0.5 1.1 -0.2 0.1 0.4 -0.1 2.5 21.7 -1.8 2.0 2.2 0.65 0.66 0.01 0.03
2006 0.0 0.9 1.3 -0.7 0.1 0.1 -0.2 5.1 18.6 -3.8 0.5 0.7 0.75 0.75 0.00 0.00
2007 0.0 0.5 1.3 -1.2 0.2 1.1 -1.0 1.8 14.5 -9.1 1.5 3.8 0.80 0.82 0.02 0.11
2008 0.0 0.8 1.5 -1.9 0.0 0.3 -0.2 3.4 14.3 -4.9 -0.2 2.2 0.81 0.81 0.00 0.03
2009 0.0 0.0 1.2 -1.3 0.0 0.8 -1.7 0.1 9.0 -6.4 -0.1 2.0 0.68 0.72 0.04 0.13
2010 0.0 -0.5 1.1 -0.6 -0.1 1.0 -0.4 -1.6 9.4 -2.8 -0.4 2.1 0.71 0.74 0.03 0.10
2011 0.0 -0.2 1.1 -1.3 -0.6 1.3 -0.7 -0.9 11.0 -6.3 -2.4 4.6 0.74 0.77 0.03 0.12
2012 0.0 0.3 1.0 -1.3 -0.1 0.7 0.7 0.8 7.3 -3.6 -0.4 2.2 0.64 0.65 0.01 0.04
2013 0.0 0.0 1.1 -1.2 -0.3 1.2 -0.8 -0.2 13.9 -3.9 -1.7 4.4 0.72 0.76 0.03 0.12
2014 0.0 -0.2 1.0 -1.1 -0.2 1.4 -0.2 -0.4 11.3 -3.1 -1.5 4.4 0.76 0.81 0.05 0.20
2015 0.0 0.0 1.2 -0.1 -1.1 1.6 0.1 -0.1 10.9 -0.4 -3.8 4.9 0.69 0.75 0.05 0.17

Adjusted R2

Regression of Volatility on Transformed Cash and Futures Market Trading Activity Measures

OLS Coefficients Student's t-statistics

Table A.7: Regression of Volatility on Transformed Cash and Futures Markets
Trading Activity Measures. The table reports results for yearly OLS regressions ∆rvt =
const+ β[n1] ·∆(n1,t − n2,t) + β[n2] ·∆n2,t + β[v1] ·∆(v1,t − n1,t) + β[v2] ·∆(v2,t − n2,t) +
β[x12] ·∆(x12,t − n2,t) + εt of daily changes in logarithmic realized volatility (rvt) on daily
changes in the logarithmic number of trades in futures markets relative to cash markets
(n1,t − n2,t), logarithmic number of trades in cash markets (n2,t), logarithmic average trade
size in futures markets (v1,t − n1,t) and cash markets (v2,t − n2,t), as well as daily changes
in the model-free logarithmic measure of cross-market activity between the two markets
given by the peak number of cross-active milliseconds across all different offsets relative to
the number of trades in the cash market (x12,t − n2,t). Student’s t-statistics in bold are
significant at 0.05 level after Newey-West adjustment with 22 lags. The relative increase in
adjusted R squared is computed by regressing volatility residuals on cross-market activity
residuals after partialling out the number of trades and trading volume for each market from
both volatility and cross-market activity. The sample period is from Jan 1, 2004 to Sep 30,
2015 and gray boxes indicate when high-frequency cross-market trading is known to have
become prevalent in each of the considered market pairs. Panel A: Ten-Year U.S. Treasury
Note. Panel B: S&P 500. Data Sources: BrokerTec; Nanotick; Thomson Reuters Tick
History.
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Appendix B. Description of High Frequency Data Sources and Timestamp

Precision

We obtain high frequency market data for both U.S. Treasuries (ten-year Treasury

note and futures) and equities (S&P 500 E-mini futures and SPDR SPY ETF) with

millisecond or higher precision of the timestamps over a recent representative six-month

sample period from July 1, 2014 to December 31, 2014. In particular, for the ten-year

Treasury cash market we rely on Brokertec data with platform-provided microsecond

precision of the timestamps. For the S&P 500 cash market represented by the SPDR ETF

we use data available through Thomson Reuters Tick History (TRTH), which contains

exchange-provided NYSE timestamps recorded with millisecond precision. Finally, for

the CME Treasury and S&P 500 futures market we rely on high-frequency market data

captured on-site by Nanotick with sub micro-second resolution of the timestamps. As

such, the timestamp precision is more than adequate enough for constructing reliable

cross-market activity measures at millisecond frequency.

We further note that while measuring the prevailing offset and dispersion of cross-

market activity can get affected by timestamp distortions due to extra latency incurred at

data capture, measuring relative changes in the magnitude of cross-market activity tends

to be a lot more robust across alternative data sources. This inherent robustness greatly

expands the ability to extract meaningful information from the proposed cross-market

activity measures across a wider range of data sources and time periods. In particular, it

allows us to study changes in the magnitude of cross-market activity over the past decade

from January 1, 2004 to September 30, 2015 by using the longer history of futures market

data available through TRTH despite the somewhat coarser than millisecond accuracy of

most TRTH-provided timestamps in view of the extra time lag incurred due to centralized

off-site data processing in London.

Appendix C. Robust Realized Volatility Estimation via Model-Free Quote-

Filtering of the Bid-Ask Bounce in Trade Prices

Plotting the mean daily realized volatility estimates over a given date range of interest

as a function of the underlying intraday sample frequency is a time-honored way for

identifying distortions due to various market macrostructure effects such as the bid-ask

bounce in consecutive trade prices or the quote activity at the top of the limit order book.

The flat region in these so called volatility signature plots is typically used to identify the

highest sample frequency that can be used for reliable estimation of the volatility of the

unobserved efficient price process. As an example, figure C.16 shows annualized realized
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volatility signature plots computed from unfiltered trade prices for the ten-year Treasury

futures and cash markets over the second half of 2014.
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Figure C.16: Ten-Year Treasury Note Realized Volatility Signature Plots for
Unfiltered Trade Prices. We plot average realized volatility as a function of sample
frequency over the second half of 2014 for the ten-year Treasury note (in red), the ten-year
Treasury futures (in blue) and the duration-adjusted ten-year Treasury futures (in green)
based on unfiltered trade prices in each market. Data Sources: BrokerTec (cash market
data); Nanotick (CME futures market data).

Semi-martingale properties and the near-arbitrage relationship between the Treasury

futures and cash markets dictate that, apart from staying flat across different frequencies,

the volatility of the ten-year Treasury futures contract should be proportional to the

volatility of the ten-year Treasury note, with proportionality constant given to a first

order of approximation by the ratio of the corresponding modified durations on each

day over the considered date range.19 Therefore, the realized volatility of the ten-year

Treasury note (represented by the red line) should be closely approximated by the realized

volatility of the duration-adjusted ten-year Treasury futures (represented by the green

line). However, the plotted realized volatility estimates clearly violate this condition even

at the five-minute frequency (denoted on the chart as 300 seconds) used in many studies

as a rule of thumb to avoid distortions by microstructure noise. Another salient violation

of the relationships in place is that as the sample frequency goes up, the average realized

volatility for the ten-year Treasury futures without duration adjustment (represented by

19The modified duration of the futures contract is dictated by the so called cheapest to deliver bond
and the corresponding embedded optionality in the futures contract. The average ratio of the modified
duration of the ten-year Treasury futures to the modified duration of the ten-year Treasury note over the
second half of 2014 is about 0.76 and the ratio varies between 0.69 and 0.82 throughout this period.
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the blue line) first surpasses the corresponding average implied volatility level of 5.1%

(registered by the CBOE Ten-Year U.S. Treasury Note Volatility Index) and then quickly

becomes higher even than the realized volatility in the Treasury cash market.

Most important of all, though, is the observation that even the seemingly flat region of

the signature plots for sample frequencies from three to five minutes on figure C.16 does

not satisfy the near-arbitrage relationship in place between Treasury cash and futures

markets. This suggests that the close links between such markets may naturally offer

extra power to detect distortions of the corresponding realized volatility estimates due to

noise, given that only the volatility of the efficient price (but not the noise component)

scales in accordance with the constant of proportionality implied by no arbitrage.

To alleviate such apparent biases in the realized volatility estimates even at frequencies

often deemed to be safe to choose, we devise a simple model-free procedure that filters out

the bid-ask bounce in trade prices. The proposed filter is extremely simple to apply and

operates by inferring the mid-quote price corresponding to each trade price after adding

or subtracting half the bid-ask spread. In particular, relying solely on the available record

for the buy/sell side of each trade, the mid-quote price is inferred as follows:20

PMid
t =

 PTrade
t + 1

2 (PAsk
t − PBid

t ) for seller initiated trade at time t

PTrade
t − 1

2 (PAsk
t − PBid

t ) for buyer initiated trade at time t

In the highly liquid ten-year Treasury Note futures and cash markets over the considered

date range the filter can be further simplified by setting the bid-ask spread PAsk
t −PBid

t to

its minimum possible value of 1/64 cents prevailing in these markets.21 Furthermore, we do

not need to match trades against quotes to distinguish between buyer-initiated and seller-

initiated transactions as our data sources for both the futures and cash markets include

an indicator for the direction of each trade. This makes it trivial to apply the proposed

procedure for filtering out the bid-ask bounce in Treasury futures and cash market trade

prices.

The resulting realized volatility signature plots for the Treasury futures and cash mar-

kets are shown on figure C.17. They are considerably more stable and remain strikingly

consistent between each other for sample frequencies as high as 30 seconds. The remaining

20When a buy/sell side indicator for each trade is not available, one can instead rely on a suitable
adaptation of the Lee and Ready (1991) algorithm for matching trades against quotes to determine the
direction of each trade.

21For markets where the size of the bid-ask spread is highly unstable, an alternative simplification
would be to take the unfiltered prices only for the observed portion of seller (or buyer) initiated trades
and completely discard the information for the remaining portion of buyer (or seller) initiated trades.
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Figure C.17: Ten-Year Treasury Note Realized Volatility Signature Plots for
Quote-Filtered Trade Prices. We plot average realized volatility as a function of sample
frequency over the second half of 2014 for the ten-year Treasury note (in red), the ten-year
Treasury futures (in blue) and the duration-adjusted ten-year Treasury futures (in green)
based on quote-filtered trade prices in each market. Data Sources: BrokerTec (cash market
data); Nanotick (CME futures market data).
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Figure C.18: Signature Plots of the Ratio of Ten-Year Treasury Note Realized
Volatility for the Duration-Adjusted Futures vs Cash Market. We plot the ratios
for the average realized volatility of the duration-adjusted ten-year Treasury futures versus
the ten-year Treasury note as a function of sample frequency over the second half of 2014
based on either unfiltered trade prices (in blue) or quote-filtered trade prices (in green). The
dashed line (in black) represents the no-arbitrage value of the ratio equal to one. Data
Sources: BrokerTec (cash market data); Nanotick (CME futures market data).

visible distortion for frequencies higher than 10-15 seconds reflects occasional mid-quote

price under-correction with the imposed constant minimum bid-ask spread adjustment as

well as possible activity patterns and bid/ask asymmetries on top of the order book in
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relation to trades.

Figure C.18 further compares the ratio of the realized volatility between the duration-

adjusted ten-year Treasury futures and the ten-year Treasury note for unfiltered trade

prices (represented by the blue line) versus quote-filtered trade prices (represented by the

green line). When relying on the proposed filter as opposed to using unfiltered trade

prices, the ratio is remarkably stable around one for almost the entire frequency range,

indicating perfect agreement with the underlying arbitrage-related restrictions between

Treasury futures and cash markets. Thus, the introduced simple method for quote-filtering

of trade prices allows reliable estimation of realized volatility in these markets up to sample

frequencies as high as 30 seconds without the need to apply more complex procedures to

achieve sufficient robustness to microstructure noise.

The main advantage of the proposed approach in comparison to standard approaches

for noise-robust estimation in the realized volatility literature (e.g. kernel based esti-

mation, pre-averagaing, multi-scale estimation and the like) is its model-free nature and

simplicity. In particular, there is no need to use more complex robust extensions of the

simple realized volatility estimator that involve at least some extra statistical assumptions

on the noise component in the observed prices due to market microstructure effects. As

another contribution, we show how arbitrage-related restrictions for closely related mar-

kets such as those for Treasury notes and futures can be exploited for improved empirical

assessment of the quality of realized volatility estimators at different sample frequencies.
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