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Abstract

This paper develops extremum estimation and inference results for nonlinear models with

very general forms of potential identification failure when the source of this identification

failure is known. We examine models that may have a general deficient rank Jacobian in

certain parts of the parameter space. When identification fails in one of these models, it

becomes under-identified and the identification status of individual parameters is not gener-

ally straightforward to characterize. We provide a systematic reparameterization procedure

that leads to a reparameterized model with straightforward identification status. Using this

reparameterization, we determine the asymptotic behavior of standard extremum estimators

and Wald statistics under a comprehensive class of parameter sequences characterizing the

strength of identification of the model parameters, ranging from non-identification to strong

identification. Using the asymptotic results, we propose hypothesis testing methods that

make use of a standard Wald statistic and data-dependent critical values, leading to tests

with correct asymptotic size regardless of identification strength and good power properties.

Importantly, this allows one to directly conduct uniform inference on low-dimensional func-

tions of the model parameters, including one-dimensional subvectors. The paper illustrates

these results in three examples: a sample selection model, a triangular threshold crossing

model and a collective model for household expenditures.

∗The authors are grateful to Donald Andrews, Isaiah Andrews, Xiaohong Chen, Xu Cheng, Gregory Cox,
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1 Introduction

Many models estimated by applied economists suffer the problem that, at some points in the

parameter space, the model parameters lose point identification. It is often the case that at

these points of identification failure, the identified set for each parameter is not characterized by

the entire parameter space it lies in but rather the identified set for the entire parameter vector

is characterized by a lower-dimensional manifold inside of the vector’s parameter space. Such

a non-identification scenario is sometimes referred to as “under-identification” or “partial iden-

tification”. The non-identification status of these models is not straightforwardly characterized

in the sense that one cannot say that some parameters are “completely” unidentified while the

others are identified. Instead, it can be characterized by a non-identification curve that describes

the lower-dimensional manifold defining the identified set. Moreover, in practice the model pa-

rameters may be weakly identified in the sense that they are near the under-identified/partially-

identified region of the parameter space relative to the number of observations and sampling

variability present in the data.

This paper develops estimation and inference results for nonlinear models with very general

forms of potential identification failure when the source of this identification failure is known.

We characterize identification failure in this paper as a lack of (global) first-order identification

in that the Jacobian matrix of the model restrictions has deficient column rank at some points

in the parameter space.1 We examine models for which a vector of parameters governs the iden-

tification status of the model. The contributions of this paper are threefold. First, we provide a

systematic reparameterization procedure that nonlinearly transforms a model’s parameters into

a new set of parameters that have straightforward identification status when identification fails.

Second, using this reparameterization, we derive the limit theory for a class of standard ex-

tremum estimators (e.g., generalized method of moments, minimum distance and some forms of

maximum likelihood) and Wald statistics for these models under a comprehensive class of iden-

tification strengths including non-identification, weak identification and strong identification.

We find that the asymptotic distributions derived under certain sequences of data-generating

processes (DGPs) indexed by the sample size provide much better approximations to the finite

1See Rothenberg (1971) for a discussion of local vs. global identification and Sargan (1983) for a discussion of
first vs. higher-order (local) identification.
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sample distributions of these objects than those derived under the standard limit theory that

assumes strong identification. Third, we use the limit theory derived under weak identification

DGP sequences to construct data-dependent critical values (CVs) for Wald statistics that yield

(uniformly) correct asymptotic size and good power properties. Importantly, our robust infer-

ence procedures allow one to directly conduct hypothesis tests for low-dimensional functions of

the model parameters, including one-dimensional subvectors, that are uniformly valid regardless

of identification strength.

A substantial portion of the recent econometrics literature has been devoted to studying

estimation in the presence of weak identification and developing inference tools that are robust

to the identification strength of the parameters in an underlying economic or statistical model.

Earlier papers in this line of research focus upon the linear instrumental variables (IV) model, the

behavior of standard estimators and inference procedures under weak identification of this model

(e.g., Staiger and Stock, 1997), and the development of new inference procedures robust to the

strength of identification in this model (e.g., Kleibergen, 2002 and Moreira, 2003). More recently,

focus has shifted to nonlinear models, such as those defined through moment restrictions. In

this more general setting, researchers have similarly characterized the behavior of standard

estimators and inference procedures under various forms of weak identification (e.g., Stock and

Wright, 2000) and developed robust inference procedures (e.g., Kleibergen, 2005). Most papers in

this literature, such as Stock and Wright (2000) and Kleibergen (2005), focus upon special cases

of identification failure and weak identification by explicitly specifying how the Jacobian matrix

of the underlying model could become (nearly) singular. For example, Kleibergen (2005) focuses

on a zero rank Jacobian as the point of identification failure in moment condition models. In

this case, the identified set becomes the entire parameter space at points of identification failure.

The recent works of Andrews and Cheng (2012a, 2013a, 2014a) implicitly focus on models for

which the Jacobian of the model restrictions has columns of zeros at points of identification

failure. For these types of models, some parameters become “completely” unidentified (those

corresponding to the zero columns) while others remain strongly identified. In this paper, we

do not restrict the form of singularity in the Jacobian at the point of identification failure. This

complicates the analysis but allows us to cover many more economic models used in practice

such as sample selection models, treatment effect models with endogenous treatment, nonlinear

regression models, nonlinear IV models, certain dynamic stochastic general equilibrium (DSGE)

models and structural vector autoregressions (VARs) identified by instruments or conditional

heteroskedasticity. Indeed, this feature of a singular Jacobian without zero columns at points of

identification failure is typical of many nonlinear models.

Only very recently have researchers begun to develop inference procedures that are robust
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to completely general forms of (near) rank-deficiency in the Jacobian matrix. See Andrews

and Mikusheva (2016b) in the context of minimum distance (MD) estimation and Andrews and

Guggenberger (2014) and Andrews and Mikusheva (2016a) in the context of moment condi-

tion models. Andrews and Mikusheva (2016b) provide methods to directly perform uniformly

valid subvector inference while Andrews and Guggenberger (2014) and Andrews and Mikusheva

(2016a) do not.2 Unlike these papers, but like Andrews and Cheng (2012a, 2013a, 2014a), we

focus explicitly on models for which the source of identification failure (a finite-dimensional pa-

rameter) is known to the researcher. This enables us to directly conduct subvector inference in

a large class of models that is not nested in the setup of Andrews and Mikusheva (2016b). Also

unlike these papers, but like Andrews and Cheng (2012a, 2013a, 2014a), we derive nonstandard

limit theory for standard estimators and test statistics. This nonstandard limit theory sheds

light on how (badly) the standard Gaussian and chi-squared distributional approximations can

fail in practice. For example, one interesting feature of the models we study here is that the

asymptotic size of standard Wald tests for the full parameter vector (and certain subvectors) is

equal to one no matter the nominal level of the test. This feature emerges from observing that

the Wald statistic diverges to infinity under certain DGP sequences admissible under the null

hypothesis.

Aside from those already mentioned, there are many papers in the literature that study

various types of under-identification in different contexts. For example, Sargan (1983) stud-

ies regression models that are nonlinear in parameters and first-order locally under-identified.

Phillips (1989) studies under-identified simultaneous equations models and spurious time series

regressions. In a rather different context, Lee and Chesher (1986) also make use of a repa-

rameterization for a type of identification problem. Arellano et al. (2012) proposes a way to

test for under-identification in a generalized method of moments (GMM) context. Qu and

Tkachenko (2012) study under-identification in the context of DSGE models. Escanciano and

Zhu (2013) study under-identification in a class of semi-parametric models.3 Dovonon and Re-

nault (2013) uncover an interesting result that, when testing for common sources of conditional

heteroskedasticity in a vector of time series, there is a loss of first-order identification under the

null hypothesis while the model remains second-order identified. Although all of these papers

study under-identification of various forms, none of them deal with the empirically relevant

2Andrews and Mikusheva (2016a) provide a method of “concentrating out” strongly identified nuisance pa-
rameters for subvector inference when all potentially weakly identified parameters are included in the subvector.
One may also “indirectly” perform subvector inference using the methods of either Andrews and Guggenberger
(2014) or Andrews and Mikusheva (2016a) by using a projection or Bonferroni bound-based approach but these
methods are known to often suffer from severe power loss.

3Both Qu and Tkachenko (2012) and Escanciano and Zhu (2013) use the phrase “conditional identification”
to refer to “under-identification” as we use it here.
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potential for near or local to under-identification, one of the main focuses of the present paper.

In order to derive our asymptotic results under a comprehensive class of identification

strengths, we begin by providing a general recipe for reparameterizing the extremum estimation

problem so that, after reparameterization, it falls under the framework of Andrews and Cheng

(2012a) (AC12 hereafter). More specifically, the reparameterization procedure involves solving a

system of differential equations so that a set of the derivatives of the function that generates the

reparameterization are in the null space of the Jacobian of the original model restrictions. This

reparameterization generates a Jacobian of transformed model restrictions with zero columns at

points of identification failure. This systematic approach to nonlinear reparameterization gen-

eralizes some antecedents in linear models for which the reparameterizations amount to linear

rotations (e.g., Phillips, 1989). We show that the reparameterized extremum objective function

satisfies a crucial assumption of AC12: at points of identification failure, it does not depend

upon the unidentified parameters.4 This allows us to use the results of AC12 to find the limit

theory for the reparameterized parameter estimates.

We subsequently derive the limit theory for the original parameter estimates of economic

interest using the fact that they are equal to a bijective function of the reparameterized param-

eter estimates. To obtain a full asymptotic characterization of the original parameter estimator,

we rotate its subvectors in different directions of the parameter space. The subvector estimates

converge at different rates in different directions of the parameter space when identification is

not strong, with some directions leading to a standard parametric rate of convergence and oth-

ers leading to slower rates. Under weak identification, some directions of the weakly identified

part of the parameter are not consistently estimable, leading to inconsistency in the parameter

estimator that is reflected in finite sample simulation results and our derived asymptotic approx-

imations. The rotation technique we use in our asymptotic derivations has many antecedents

in the literature. For example, Sargan (1983) and Phillips (1989) use similar rotations to de-

rive limit theory for estimators under identification failure; Antoine and Renault (2009, 2012)

use similar rotations to derive limit theory for estimators under “nearly-weak” identification;5

Andrews and Cheng (2014a) (AC14 hereafter) use similar rotations to find the asymptotic dis-

tributions of Wald statistics under weak and nearly-strong identification; and recently Phillips

(2016) uses similar rotations to find limit theory for regression estimators in the presence of

near-multicollinearity in regressors. However, unlike their predecessors used for specific linear

models, our nonlinear reparameterizations are not generally equivalent to the rotations we use

to derive asymptotic theory.

We also derive the asymptotic distributions of standard Wald statistics for general (possibly

4This corresponds to Assumption A of AC12.
5In this paper, we follow AC12 and describe such parameter sequences as “nearly-strong”.
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nonlinear) hypotheses under a comprehensive class of identification strengths. The nonstan-

dard nature of these limit distributions implies that using standard quantiles from chi-squared

distributions as CVs leads to asymptotic size-distortions. To overcome this issue, we provide

two data-driven methods to construct CVs for standard Wald statistics that lead to tests with

correct asymptotic size, regardless of identification strength. The first is a direct analog of the

Type 1 Robust CVs of AC12. The second is a modified version of the adjusted-Bonferroni CVs

of McCloskey (2017), where the modifications are designed to ease the computation of the CVs

in the current setting of this paper. The former CV construction method is simpler to compute

while the latter yields better finite-sample size and power properties. We then briefly analyze the

power performance of one of our proposed robust Wald tests in a triangular threshold crossing

model with a dummy endogenous variable. Finally, we apply the testing method in an empirical

example that analyzes the effects of educational attainment on criminal activity.

The paper is organized as follows. In the next section, we introduce the general class of

models subject to under-identification that we study and detail four examples of models in

this class. Section 3 introduces a new method of systematic nonlinear reparameterization that

leads to straightforward identification status under identification failure. This section includes

a step-by-step algorithm for obtaining the reparameterization. Section 4 provides the limit

theory for a general class of extremum estimators of the original model parameters under a

comprehensive class of identification strengths. The nonstandard limit distributions derived here

provide accurate approximations to the finite sample distributions of the parameter estimators,

uncovered via Monte Carlo simulation. Section 5 similarly provides the analogous limit theory

for standard Wald statistics. We describe how to perform uniformly robust inference in Section

6. Section 7 contains further details for a triangular threshold crossing model, including Monte

Carlo simulations demonstrating how well the nonstandard limit distributions derived in Sections

4–5 approximate their finite-sample counterparts and an analysis of the power properties of a

robust Wald test. Section 8 contains the empirical application. Proofs of the main results of the

paper are provided in Appendix A, verification of assumptions for the threshold crossing model

are contained in Appendix B, while figures are collected at the end of the document.

Notationally, we respectively let bj , b
j and db denote the jth entry, the jth subvector and the

dimension of a generic parameter vector b. All vectors in the paper are column vectors. However,

to simplify notation, we occasionally abuse it by writing (c, d) instead of (c′, d′)′, (c′, d)′ or (c, d′)′

for vectors c and d and for a function f(a) with a = (c, d), we sometimes write f(c, d) rather

than f(a).
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2 General Class of Models

Suppose that an economic model implies a relationship among the components of a finite-

dimensional parameter θ:

0 = g(θ;γ∗) ≡ g∗(θ) ∈ Rdg (2.1)

when θ = θ∗. The “model restriction” function describing this relationship g may depend on the

true underlying value γ∗ ≡ (θ∗, φ∗) of parameter γ ≡ (θ, φ), i.e., the true underlying DGP, and

thus moment conditions may be involved in defining this relationship. The parameter φ captures

the part of the distribution of the observed data that is not determined by θ, which is typically

infinite dimensional. A special case of (2.1) occurs when g relates a structural parameter θ to

a reduced-form parameter ξ and depends on γ∗ only through the true value ξ∗ of ξ:

0 = g∗(θ) = ξ∗ − g(θ) ∈ Rdg (2.2)

when θ = θ∗.

Often, econometric models imply a decomposition of θ: θ = (β,µ), where the parameter β

determines the “identification status” of µ. That is, when β 6= β̄ for some β̄, µ is identified; when

β = β̄, µ is under-identified; and when β is “close” to β̄ relative to sampling variability, µ is local-

to-under-identified. For convenience and without loss of generality, we use the normalization β̄ =

0. In this paper, we characterize identification of µ via the Jacobian of the model restrictions:

J∗(θ) ≡ ∂g∗(θ)

∂µ′
. (2.3)

The Jacobian J∗(θ) will have deficient rank across the subset of the parameter space for θ for

which β = 0 but full rank over the remainder of the parameter space.6 Roughly speaking, we are

considering models that become first-order under-identified in certain regions of the parameter

space. Our main focus is on models for which the column rank of J∗(θ) lies strictly between 0

and dµ when β = 0 and this rank-deficiency is not the consequence of zero columns in J∗(θ);

see Remark 3.1 below for a related discussion in terms of the information matrix. Although

our results cover cases for which J∗(θ) has columns of zeros when β = 0, these cases are not of

primary interest for this paper since they are nested in the framework of AC12.

We detail four examples that have a deficient rank Jacobian (2.3) with nonzero columns

when β = 0. The first two and last examples fall into the framework of (2.1) and the third into

(2.2).

6Assumption ID below is related to the former, and Assumption B3(iii) in AC12, which we assume later,
implies the latter.
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Remark 2.1. For some models, we can further decompose θ into θ = (β,µ) = (β, ζ,π), where

only the identification status of the subvector parameter π of µ is affected by the value of β.

More formally, when β = 0, rank (∂g∗(θ)/∂π′) < dπ for all θ = (0, ζ,π) ∈ Θ and γ∗ ∈ Γ,

where Θ and Γ denote the parameter spaces of θ and γ. Modulo the reordering of the elements

of µ, we can formalize the decomposition µ = (ζ,π) as follows: π is the smallest subvector of

µ such that

dπ − rank
(
∂g∗(θ)/∂π′

)
= dµ − rank(J∗(θ))

when β = 0. That is, the rank deficiency of the Jacobian with respect to the subvector π is equal

to the rank deficiency of the Jacobian with respect to the vector µ when β = 0. This feature

holds for Examples 2.1–2.3 below, and will be illustrated as a special case throughout the paper.

Example 2.1 (Sample selection models using the control function approach).

Yi = X ′iπ
1 + εi, Di = 1[ζ + Z ′1iβ ≥ νi],

(εi, νi)
′ ∼ Fεν(ε, ν;π2),

where Xi ≡ (1, X ′1i)
′ is k × 1 and Zi ≡ (1, Z ′1i)

′ is l × 1. Note that Zi may include (components

of) Xi. We observe Wi = (DiYi, Di, Xi, Zi) and Fεν(·, ·;π2) is a parametric distribution of the

unobservable variables (ε, ν) parameterized by the scalar π2. The mean and variance of each

unobservable is normalized to be zero and one, respectively. Constructing a moment condition

based on the control function approach (Heckman, 1979), we have, when θ = θ∗,

0 =g∗(θ) = Eγ∗ϕ(Wi,θ),

where θ = (β, ζ,π1,π2) and the moment function is

ϕ(w,θ) =

 d

[
x

q̃(ζ + z′1β;π2)

] [
y − x′π1 − q̃(ζ + z′1β;π2)

]
q̃(ζ + z′1β;π2)F−1

ν (−ζ − z′1β) [d− Fν(ζ + z′1β)] z

 , (2.4)

with w = (dy, d, x, z) and q̃(·;π2) being a known function. When Fεν(ε, ν;π2) is a bivariate

standard normal distribution with correlation coefficient π2, we have Fν(·) = Φ(·) and q̃(·;π2) =

π2q(·) where q(·) = φ(·)/Φ(·) is the inverse Mill’s ratio based on the standard normal density

and distribution functions φ(·) and Φ(·).
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Example 2.2 (Models of potential outcomes with endogenous treatment).

Y1i = X ′iπ
1 + ε1i,

Y0i = X ′iπ
2 + ε0i,

Di = 1[ζ + Z ′1iβ ≥ νi],

Yi = DiY1i + (1−Di)Y0i,

(ε1i, ε0i, νi)
′ ∼ Fε1,ε0,ν(ε1, ε0, ν;π3),

where Fε1,ε0,ν(·, ·, ·;π3) is a parametric distribution of the unobserved variables (ε1, ε0, ν) pa-

rameterized by vector π3. We observe Wi = (Yi, Di, Xi, Zi). The Roy model (Heckman and

Honore, 1990) is a special case of this model of regime switching. This model extends the model

in Example 2.1, but is similar in the aspects that this paper focuses upon.

Example 2.3 (Threshold crossing models with a dummy endogenous variable).

Yi = 1[π1 + π̃2Di − εi ≥ 0]

Di = 1[ζ + βZi − νi ≥ 0]
, (εi, νi)

′ ∼ Fεν(εi, vi;π3).

where Zi ∈ {0, 1}. We observe Wi = (Yi, Di, Zi). The model can be generalized by including

common exogenous covariates Xi in both equations and allowing the instrument Zi to take more

than two values. We focus on this stylized version of the model in this paper for simplicity

only. With Fεν(ε, ν;π3) = Φ(ε, ν;π3), a bivariate standard normal distribution with correlation

coefficient π3, the model becomes the usual bivariate probit model. A more general model

with Fεν(ε, ν;π3) = C(Fε(ε), Fν(ν);π3), for C(·, ·;π3) in a class of single parameter copulas, is

considered in Han and Vytlacil (2017), whose generality we follow here. Let π2 ≡ π1 + π̃2 and,

for simplicity, let Fν and Fε be uniform distributions.7 The results of Han and Vytlacil (2017)

provide that when θ = θ∗, ξ∗ − g(θ) = 0, where ξ = (p11,0, p11,1, p10,0, p10,1, p01,0, p01,1)′ with

pyd,z ≡ Prγ [Y = y,D = d|Z = z] and

g(θ) =



p11,0(θ)

p11,1(θ)

p10,0(θ)

p10,1(θ)

p01,0(θ)

p01,1(θ)


≡



C(π2, ζ;π3)

C(π2, ζ + β;π3)

π1 − C(π1, ζ;π3)

π1 − C(π1, ζ + β;π3)

ζ − C(π2, ζ;π3)

ζ + β − C(π2, ζ + β;π3)


. (2.5)

7This normalization is not necessary and is only introduced here for simplicity; see Han and Vytlacil (2017)
for the formulation of the identification problem without it.
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For later use, we also define the (redundant) probabilities:

p00,0(θ) ≡ 1− p11,0(θ)− p10,0(θ)− p01,0(θ), (2.6)

p00,1(θ) ≡ 1− p11,1(θ)− p10,1(θ)− p01,1(θ).

Example 2.4 (Engel curve models for household share). Tommasi and Wolf (2016) discuss

Engel curve estimation for the private assignable good in the Dunbar et al. (2013) collective

model for household expenditure shares when using the PIGLOG utility function. See equation

(5) of Tommasi and Wolf (2016) for these Engel curves. These authors estimate the model

parameters by a particular nonlinear least squares criterion. We instead consider the general

GMM estimation problem in this context for which 0 = g∗(θ) = Eγ∗ϕ(Wi,θ) when θ = θ∗,

where θ = (β,π1,π2,π3) and the moment function is

ϕ(w,θ) = A(yh)

[(
w1,h

w2,h

)
−

(
π1(π2 + π3 + β log(π1yh))

(1− π1)(π2 + β log((1− π1)yh))

)]
, (2.7)

where A(·) is some (dg × 2)-dimensional function. For example,

A(yh) =


1 0

yh 0

0 1

0 yh

 .

There are many other examples of models that fit our framework including but not limited

to nonlinear IV models, nonlinear regression models, certain DSGE models and structural VARs

identified by conditional heteroskedasticity or instruments.

Examples 2.1 and 2.2 are contained in a class of moment condition models that uses a

control function approach to account for endogeneity. This class of models fits our framework

so that when β = 0, the control function loses its exogenous variability and the model presents

multicollinearity in the Jacobian matrix. In Example 2.1, with q(·) being the inverse Mill’s ratio,

the Jacobian matrix (2.3) satisfies

J∗(θ) = Eγ∗

 −π2DiXiq
′
i −DiXiX

′
i −DiqiXi

DiYiq
′
i −DiX

′
iπ

1q′i − 2π2Diqiq
′
i −DiqiX

′
i −Diq

2
i

Li(β, ζ)Zi 0l×k 0l×1

 ,
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where qi ≡ q(ζ + Z ′1iβ), q′i ≡ dq(x)/dx|x=ζ+Z′1iβ
,

Li(β, ζ) ≡ {q
′
i(Di − Φi)− qiφi} (1− Φi) + qiφi(Di − Φi)

(1− Φi)2
, (2.8)

Φi ≡ Φ(ζ + Z ′1iβ) and φi ≡ φ(ζ + Z ′1iβ). Note that dζ < rank(J∗(θ)) < dµ when β = 0, since

qi becomes a constant and Xi = (1, X ′1i)
′.

In general, a rank-deficient Jacobian with non-zero columns when β = 0 poses several chal-

lenges rendering existing asymptotic theory in the literature that considers a Jacobian with zero

columns when identification fails inapplicable here: (i) since none of the columns of J∗(θ) are

equal to zero, it is often unclear which components of the π parameter are (un-)identified; (ii)

key assumptions in the literature, such as Assumption A in AC12, do not hold; (iii) typically,

g∗(θ) or J∗(θ) is highly nonlinear in β. In what follows, we develop a framework to tackle these

challenges and to obtain local asymptotic theory and uniform inference procedures.

3 Systematic Reparameterization

In this section, we define the criterion functions used for estimation and the sample model re-

striction functions that enter them and formally impose assumptions on these two objects. We

then introduce a systematic method for reparameterizing general under-identified models. After

reparameterization, the identification status of the model parameters becomes straightforward

with individual parameters being either well identified or completely unidentified when identi-

fication fails. We later use this reparameterization procedure as a step toward obtaining limit

theory for estimators and tests of the original parameters of interest under a comprehensive class

of identification strengths. However, this reparameterization procedure carries some interest in

its own right because it (i) characterizes the submanifold of the original parameter space that

is (un)identified and (ii) has the potential for application to finding the limit theory for general

globally under-identified models (in contrast to those that lose identification at points in the

parameter space for which β = 0).

We define the extremum estimator θ̂n as the minimizer of the criterion function Qn(θ) over

the optimization parameter space Θ:

θ̂n ∈ Θ and Qn(θ̂n) = inf
θ∈Θ

Qn(θ) + o(n−1).

In the following assumptions we presume that Qn(θ) is a function of θ only through the sample

counterpart ḡn(θ) of g∗(θ). In the case of MD and some particular maximum likelihood (ML)

models, ḡn(θ) = ξ̂n − g(θ), where ξ̂n is a sample analog of ξ∗, in analogy to (2.2). For GMM,
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ḡn(θ) = n−1
∑n

i=1 ϕ(Wi,θ).

Assumption CF. Qn(θ) can be written as

Qn(θ) = Ψn(ḡn(θ))

for some random function Ψn(·) that is differentiable.

Assumption CF is naturally satisfied when we construct GMM/MD or ML criterion func-

tions, given (2.1) or (2.2). Note that models that generate minimum distance structures and the

types of likelihoods that fall under our framework typically involve g∗(θ) = ξ∗ − g(θ) by (2.2).

For a GMM/MD criterion function, Ψn(ḡn(θ)) = ‖Wnḡn(θ)‖2 where Wn is a (possibly random)

weight matrix.8 For a ML criterion function, Ψn(ḡn(θ)) = − 1
n

∑n
i=1 ln f †

(
Wi; ξ̂n − ḡn(θ)

)
if

the distribution of the data depends on θ∗ only through ξ∗ = g(θ∗), which is a reduced-form

parameter (Rothenberg, 1971). That is, there exists a function f †(w; ·) such that

f(w;θ) = f †(w; ξ∗ − g∗(θ)) = f †(w;g(θ)),

where f(·;θ) is the density of Wi. Of course, our framework may also accommodate ML es-

timation performed via a GMM criterion function that uses the score equations as moment

vectors. However, the usual equivalence between this GMM estimation approach (using the

efficient weighting matrix) and direct maximization of the likelihood function no longer holds in

the weak identification scenarios considered in this paper.

Assumption Reg1. ḡn : Θ→ Rdg is continuously differentiable in θ.

Assumption ID. When β = 0, rank (∂ḡn(θ)/∂µ′) ≡ r < dµ for all θ = (0,µ) ∈ Θ.

To simplify the asymptotic theory derived in Section 4, we impose the following assumption

that ensures the reparameterization function h(·) in Procedure 3.1 below is nonrandom and does

not depend on the true DGP.

Assumption Jac. When β = 0, the null space of J∗(θ) is equal to the null space of ∂ḡn(θ)/∂µ′

for all n ≥ 1 and does not depend upon φ∗.

This assumption guarantees that the reparameterization we later obtain is deterministic and

does not depend upon the true DGP. Example 2.1–2.4 satisfy this assumption. However, the

asymptotic theory derived in Section 4 can be extended to some cases for which our reparam-

eterization is random and/or DGP-dependent, but we have not found an application for which

such an extension would be useful.
8Note that Assumption CF does not cover GMM with a continuously updating weight matrix Wn(θ).

11



Remark 3.1. Given the existence of f †(w; ·) in the ML framework, the setting of this paper can

be characterized in terms of the information matrix. Let I(θ) be the dθ×dθ information matrix

I(θ) ≡ E
[
∂ log f

∂θ

∂ log f

∂θ′

]
.

Then, the general form of singularity of the full vector Jacobian (0 ≤ rank(∂g(θ)/∂θ′) < dθ) can

be characterized as the general form of singularity of the information matrix (0 ≤ rank(I(θ)) <

dθ), since
∂ log f(w;θ)

∂θ′
=
∂ log f †(w;g(θ))

∂g′
∂g(θ)

∂θ′

and I†(g) ≡ E
(
∂ log f †/∂g

) (
∂ log f †/∂g′

)
has full rank.9

We now propose a systematic reparameterization as a key step toward deriving the limit

theory under various strengths of identification. Let dπ denote the rank reduction in the sample

Jacobian ∂ḡn(θ)/∂µ under identification failure, i.e., dπ ≡ dµ − r (this will later denote the

dimension of a new parameter π). Let the parameter space for µ be denoted as

M = {µ ∈ Rdµ : θ = (β,µ) for some θ ∈ Θ}.

The reparameterization procedure in its most general form proceeds in two steps:

Procedure 3.1. For a given ḡn(θ) that satisfies Assumptions Reg1 and ID, let θ = (β, µ)

denote a new vector of parameters for which dµ = dµ. Find a reparameterization function h(·)
as follows:

1. Find a deterministic full rank dµ × dµ matrix M that performs elementary column opera-

tions10 such that when β = 0,

∂ḡn(θ)

∂µ′
M(µ) =

[
Gn(µ) : 0dg×dπ

]
(3.1)

for all µ ∈M, where Gn(µ) is some dg × r matrix.11

2. Find a differentiable one-to-one function h :M→M such that

∂h(µ)

∂µ′
= M(h(µ))

9This is because ξ = g(θ) is a reduced-form parameter that is always (strongly) identified.
10There are three types of elementary column operations: switching two columns, multiplying a column with a

non-zero constant, and replacing a column with the sum of that column and a multiple of another column.
11The existence of such a matrix M is guaranteed by Assumption Jac.
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for all µ ∈M, where

M≡ {µ ∈ Rdµ : θ = (β, h(µ)) for some θ ∈ Θ}.

Proposition 3.1 below provides sufficient conditions for the existence of a h(·) function re-

sulting from Procedure 3.1. We also note that the singular value decomposotion can be used

to compute the matrix M(µ) with conventional software since the right singular vectors of

∂ḡn(θ)/∂µ′ that correspond to its zero singular values span its null space and its left singular

vectors that correspond to its non-zero singular values span its column space.12 With the repa-

rameterization function h(·), we transform µ to µ such that µ = h(µ). That is, we have the

reparameterization as the following one-to-one map:

θ ≡ (β, µ) 7→ θ ≡ (β,µ), (3.2)

where (β,µ) = (β, h(µ)). Let π denote the subvector composed of the final dπ entries of the new

parameter µ so that we may write µ = (ζ, π). We illustrate this reparameterization approach

in the following continuation of Example 2.1. The approach is further illustrated in Examples

2.3–2.4 below.

Examples 2.1 and 2.2, continued. Since Examples 2.1 and 2.2 are similar in the aspects we

focus on, we only analyze Example 2.1 in further detail. In this example, we are considering

a GMM estimator so that ḡn(θ) = n−1
∑n

i=1 ϕ(Wi,θ), where the moment function ϕ(w,θ) is

given by (2.4). In the case for which Fεν(ε, ν;π2) is a bivariate standard normal distribution,

the sample Jacobian for this model with respect to µ is

∂ḡn(θ)

∂µ′
= − 1

n

n∑
i=1

 π2DiXiq
′(ζ) DiXiX

′
i Diq(ζ)Xi

DiX
′
iπ

1q′(ζ) + (2π2q(ζ)− Yi)Diq
′(ζ) Diq(ζ)X ′i Diq(ζ)2

−Li(0, ζ)Zi 0l×k 0l×1


when β = 0, where Li(β, ζ) is defined in (2.8). Note that r = dµ − 1 since the final column is

a scalar multiple of the (l + 1)th so that dπ = 1. For Step 1 of Procedure 3.1, we set the final

column of M(µ) equal to (0,−q(ζ), 01×(k−1), 1)′. For Step 2, we find the general solution in h(·)
to the following system of ODEs:

∂h(µ)

∂π
= (0,−q(h1(µ)), 01×(k−1), 1)′.

12We thank Áureo de Paula for pointing this out.
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This yields

h(µ) = (c1(ζ),−q(c1(ζ))π + c2(ζ), c3(ζ)′, π + c4(ζ))′,

where c1(ζ), c2(ζ) and c4(ζ) are arbitrary one-dimensional constants of integration that may

depend on ζ and c3(ζ) is an arbitrary (k − 1)-dimensional constant of integration that may

depend on ζ. Upon setting c1(ζ) = ζ1, c2(ζ) = ζ2, c3(ζ) = (ζ3, . . . , ζk+1)′ and c4(ζ) = 0, we have

∂h(µ)

∂µ′
=


1 0 01×(k−1) 0

−q′(ζ1)π 1 01×(k−1) −q(ζ1)

0(k−1)×1 0(k−1)×1 Ik−1 0(k−1)×1

0 0 01×(k−1) 1


being full rank. Thus, we have found a one-to-one reparameterization function h(·) such that

µ = (ζ,π) = h(µ) = (ζ1, ζ2 − q(ζ1)π, ζ3, . . . , ζk+1, π), or equivalently, ζ1 = ζ, ζ2 = π1
1 + q(ζ)π2,

(ζ3, . . . , ζk+1) = (π1
2, . . . ,π

1
k) and π = π2.

Define the sample model restriction and the criterion functions of the new parameter θ as

ḡn(θ) ≡ ḡn(β, h(µ))

and

Qn(θ) ≡ Qn(β, h(µ)).

The new Jacobian ∂ḡn(θ)/∂µ′ = (∂ḡn(θ)/∂µ′)(∂h(µ)/∂µ′) has the same reduced rank r < dµ =

dµ as the original Jacobian ∂ḡn(θ)/∂µ′ since ∂h(µ)/∂µ = M(h(µ)) has full rank. But now, by

the construction of the reparameterization function h(·) according to Procedure 3.1, the rank

reduction arises purely from the final dπ columns of ∂ḡn(θ)/∂µ being equal to zero. Using this

result, the reparameterized criterion function Qn(θ) satisfies a property that is instrumental to

deriving the limit theory detailed below.

Theorem 3.1. Under Assumptions CF, Reg1 and ID, Qn(θ) does not depend upon π when

β = 0 for all θ = (0, ζ, π) ∈ Θ.

In conjunction with other assumptions, the result of this theorem allows us to apply the

asymptotic results in Theorems 3.1 and 3.2 of AC12 to the reparameterized criterion function

Qn(θ), the new parameter θ and estimator θ̂n, defined by

Qn(θ̂n) = inf
θ∈Θ

Qn(θ) + o(n−1),

where Θ is the optimization parameter space in the reparameterized estimation problem and is
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defined in terms of the original optimization parameter space Θ as follows:

Θ ≡ {(β, µ) ∈ Rdθ : (β, h(µ)) ∈ Θ}.

We now provide an algorithm for practical implementation of Procedure 3.1.

Algorithm 3.1. For a given ḡn(θ) that satisfies Assumptions Reg1 and ID, let θ = (β, µ) =

(β, ζ, π) denote a new vector of parameters for which dµ = dµ. Find a reparameterization

function h(·) as follows:

1. Find a deterministic non-zero dµ × 1 vector m(1) such that when β = 0,

∂ḡn(θ)

∂µ′
m(1)(µ) = 0dg×1 (3.3)

for all µ ∈M.

2. Let µ(1) = (ζ(1), π(1)) denote a new dµ × 1 vector of parameters, where π(1) is a dπ × 1

subvector. Find the general solution in h(1) : M(1) →M to the following system of first

order ordinary differential equations (ODEs):

∂h(1)(µ(1))

∂π
(1)
1

= m(1)(h(1)(µ(1))) (3.4)

for all µ(1) ∈M(1) ≡ {µ(1) ∈ Rdµ : θ = (β, h(1)(µ(1))) for some θ ∈ Θ}.

3. From the general solution for h(1) in Step 2, find a particular solution for h(1) such that

the matrix ∂h(1)(µ(1))/∂µ(1)′ has full rank for all µ(1) ∈M(1).13

4. If dπ = 1 (i.e., π
(1)
1 = π(1)), stop and set h = h(1) and µ = µ(1). Otherwise, set θ(1) =

(β, µ(1)), g
(1)
n (θ(1)) = ḡn(β, h(1)(µ(1))), Θ(1) = {(β, µ(1)) ∈ Rdθ : (β, h(1)(µ(1))) ∈ Θ} and

i = 2 (moving to the second iteration of the algorithm) and continue to the next step.

5. Find a non-zero dµ × 1 vector m(i) such that when β = 0,

∂g
(i−1)
n (θ(i−1))

∂µ(i−1)′
m(i)(µ(i−1)) = 0dg×1 (3.5)

for all µ(i−1) ∈M(i−1).

13When evaluated at µ = h(1)(µ(1)), the vector m(1)(µ) is a column in the matrix ∂h(1)(µ(1))/∂µ(1)′, denoted
as M (1) later. The analogous statement applies to m(i) in Steps 5–6. In the special case for which dπ = 1, m(1)(µ)
evaluated at µ = h(1)(µ(1)) is equal to the final column of ∂h(1)(µ(1))/∂µ(1)′.
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6. Let µ(i) = (ζ(i), π(i)) denote a new dµ × 1 vector of parameters, where π(i) is a dπ × 1

subvector. Find the general solution in h(i) : M(i) → M(i−1) to the following system of

first order ODEs:
∂h(i)(µ(i))

∂π
(i)
i

= m(i)(h(i)(µ(i))), (3.6)

for all µ(i) ∈M(i) ≡ {µ(i) ∈ Rdµ : θ(i−1) = (β, h(i)(µ(i))) for some θ(i−1) ∈ Θ(i−1)}.

7. From the general solution for h(i) in Step 6, find a particular solution for h(i) such that

for all µ(i) ∈M(i) (1) the matrix ∂h(i)(µ(i))/∂µ(i)′ has full rank and (2)

∂h(i)(µ(i))

∂(π
(i)
1 , ..., π

(i)
i−1)

=

 0(dµ−dπ)×(i−1)

C(i)(µ(i))

0(dπ−i+1)×(i−1)

 ,
where C(i)(µ(i)) is an arbitrary (i− 1)× (i− 1) matrix.

8. If i = dπ, stop and set h = h(1) ◦ . . . ◦ h(dπ) and µ = µ(dπ). Otherwise, set θ(i) = (β, µ(i)),

g
(i)
n (θ(i)) = g

(i−1)
n (β, h(i)(µ(i))), Θ(i) = {(β, µ(i)) ∈ Rdθ : (β, h(i)(µ(i))) ∈ Θ(i−1)} and

i = i+ 1 and return to Step 5.

As is the case for Procedure 3.1, the function h(·) is a reparameterization function that maps

the new parameter µ to the original parameter µ in accordance with (3.2), i.e., µ = h(µ). We

formally establish the connection between Algorithm 3.1 and Procedure 3.1.

Theorem 3.2. Define M = M(dπ), where M(dπ) is defined in Step 6 of Algorithm 3.1. The

reparameterization function h : M →M constructed according to Algorithm 3.1 constitutes a

solution to Procedure 3.1.

Remark 3.2. Defining the matrix function M (i)(h(i)(µ(i))) = ∂h(i)(µ(i))/∂µ(i)′ for i = 1, . . . , dπ

consistently with the notation used in Algorithm 3.1 so that each m(i)(h(i)(µ(i))) is the (dζ +

i)th column of M (i)(h(i)(µ(i))), we note that the matrix performing elementary operations in

Procedure 3.1 can be expressed as

M(h(µ)) = M (1)(h(1) ◦ . . . ◦ h(dπ)(µ))× . . .×M (dπ)(h(dπ)(µ)).

We also note that in terms of the recursive parameter spaces of Algorithm 3.1, Θ = Θ(dπ).

When implementing Steps 3 and 7 of Algorithm 3.1, knowledge of the well-identified pa-

rameter ζ in µ = (ζ,π) is useful in making ∂h(i)(µ(i))/∂ζ(i) relatively simple; see Remark 3.5

16



and the examples below. We note that the reparameterizations resulting from Procedure 3.1

or Algorithm 3.1 are not necessarily unique though such non-uniqueness poses no problems for

our analysis. A sufficient condition for the existence of such a reparameterization is provided as

follows.

Assumption Lip. m(i)(·) is Lipschitz continuous on compact M(i−1) for every i = 1, ..., dπ

with M(0) ≡M.

Proposition 3.1. Under Assumptions Reg1, ID and Lip, there exists a reparametrization func-

tion h(·) on M that is an output of Algorithm 3.1 if Assumption Lip holds.

Assumption Lip is related to restrictions on ḡ(θ). In practice, one can verify this assumption

by simply calculating m(i)(·) in Step 2 or 5 in Algorithm 3.1, as these steps are straightforward

to implement.

Remark 3.3. The nonlinear reparameterization approach we pursue here results in a new pa-

rameter with straightforward identification status when identification fails: ζ is well-identified

and π is completely unidentified. When β is close to zero, π will be weakly identified while (β, ζ)

remain strongly identified. Our analysis can be seen as a generalization of linear rotation-based

reparameterization approaches that have been successfully used to transform linear models in

the presence of identification failure so that the new parameters have the same straightforward

identification status. See for example, Phillips (1989) in the context of linear IV models and

Phillips (2016) in the context of the linear regression model with potential multicollinearity.

Remark 3.4. We note that our systematic reparameterization approach may also be useful

in contexts for which a particular model is globally under-identified across its entire parameter

space (not just in the region for which a parameter β is equal to zero). The reparameterization

procedure may be useful for analyzing the identification properties of such models as well as

determining the limiting behavior of parameter estimates and test statistics. For globally under-

identified models with a constant (deficient) rank Jacobian, the subsequent results of sections

4–6 could be modified so that no parameter β appears in the analysis and the relevant limiting

distributions would correspond to those derived under weak identification with the localization

parameter b simply set equal to zero. For example, such an approach may be useful for under-

identified DSGE models used in macroeconomics (see e.g., Komunjer and Ng, 2011 and Qu and

Tkachenko, 2012). Further analysis of this approach is well beyond the scope of the present

paper.

Remark 3.5. As can be seen from the continuation of Examples 2.1 and 2.3, when we know

the component ζ of µ is well-identified for all values of β, we can form h(·) so that the first
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dζ elements of h(µ) are equal to the first dζ elements of the new well-identified parameter ζ =

(ζ1, ζ2), viz., ζ = (h1(µ), . . . , hdζ(µ)) = ζ1. In this special case, the reparameterization (3.2)

can be written as a one-to-one map

θ ≡ (β, ζ, π) 7→ θ ≡ (β, ζ,π),

where (β, ζ,π) = (β, ζ1, h2(ζ2, π)) with µ = (ζ1, ζ2, π) = (ζ, π) and ζ is the new always well-

identified parameter.

We close this section by illustrating the reparameterization algorithm with two other exam-

ples discussed earlier.

Examples 2.3, continued. Given the specification of a single parameter copula C(·, ·;π3),

this model can be estimated by minimizing the negative (conditional) likelihood function so that

ḡn(θ) = ξ̂n − g(θ), where ξ̂n is equal to a vector of the empirical probabilities corresponding to

the pyd,z’s and g(θ) is defined in (2.5).14 The sample Jacobian for this model with respect to µ

is

∂ḡn(θ)

∂µ′
= −∂g(θ)

∂µ′
= −



C2(π2, ζ;π3) 0 C1(π2, ζ;π3) C3(π2, ζ;π3)

C2(π2, ζ;π3) 0 C1(π2, ζ;π3) C3(π2, ζ;π3)

−C2(π1, ζ;π3) 1− C1(π1, ζ;π3) 0 −C3(π1, ζ;π3)

−C2(π1, ζ;π3) 1− C1(π1, ζ;π3) 0 −C3(π1, ζ;π3)

1− C2(π2, ζ;π3) 0 −C1(π2, ζ;π3) −C3(π2, ζ;π3)

1− C2(π2, ζ;π3) 0 −C1(π2, ζ;π3) −C3(π2, ζ;π3)


when β = 0, where C1(·, ·;π3), C2(·, ·;π3) and C3(·, ·;π3) denote the derivatives of C(·, ·;π3)

with respect to the first argument, the second argument and π3. This matrix contains only three

linearly independent row so that r = dµ− 1. In the following analysis, since dπ = 1, we simplify

notation by letting h(1) = h, m(1) = m and µ(1) = µ = (ζ, π). For Step 1 of Algorithm 3.1, we

set m(µ) = (0, C3(π1, ζ;π3)/(1 − C1(π1, ζ;π3)),−C3(π2, ζ;π3)/C1(π2, ζ;π3), 1)′. For Step 2,

14Maximizing the conditional likelihood is equivalent to maximizing the full likelihood for this problem.
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a set of general solutions to the system of ODEs

∂h(µ)

∂π
=


0

C3(h2(µ),h1(µ);h4(µ))
1−C1(h2(µ),h1(µ);h4(µ))

−C3(h3(µ),h1(µ);h4(µ))
C1(h3(µ),h1(µ);h4(µ))

1

 (3.7)

is implied by

h1(µ) = c1(ζ)

h2(µ)− C(h2(µ), h1(µ);h4(µ)) = c2(ζ) (3.8)

C(h3(µ), h1(µ);h4(µ)) = c3(ζ)

h4(µ) = π + c4(ζ),

where ci(ζ) is an arbitrary one-dimensional function of ζ for i = 1, 2, 3, 4. For Step 3, upon

setting c1(ζ) = ζ1, c2(ζ) = ζ2, c3(ζ) = ζ3 and c4(ζ) = 0, we have

∂h(µ)

∂µ′
=


1 0 0 0

C2(h2(µ),ζ1;π)
1−C1(h2(µ),ζ1;π)

1
1−C1(h2(µ),ζ1;π) 0 C3(h2(µ),ζ1;π)

1−C1(h2(µ),ζ1;π)

−C2(h3(µ),ζ1;π)
C1(h3(µ),ζ1;π) 0 1

C1(h3(µ),ζ1;π) −C3(h3(µ),ζ1;π)
C1(h3(µ),ζ1;π)

0 0 0 1

 (3.9)

being full rank. Thus, we have found a reparameterization function h(·) satisfying the conditions

of Algorithm 3.1 though its explicit form will depend upon the functional form of the copula C(·).
For example, if we use the Ali-Mikhail-Haq copula, defined for u1, u2 ∈ [0, 1] and π ∈ [−1, 1) by

C(u1, u2;π) =
u1u2

1− π(1− u1)(1− u2)
, (3.10)

we obtain the following closed-form solution for h(·):

h(µ) =


ζ1

−b(µ)+
√
b(µ)2−4a(µ)c(µ)

2a(µ)
ζ3(1−π+πζ1)
ζ1−ζ3π+ζ1ζ3π

π

 , (3.11)

where a(µ) = π(1 − ζ1), b(µ) = (1 − ζ1)(1 − π − πζ2) and c(µ) = ζ2[π(1 − ζ1) − 1].15 For any

15As may be gleaned from this formula, the expression for h2(µ) comes from solving a quadratic equation.
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choice of copula, we can also express the new parameters as a function of the original ones as

follows:

µ = (ζ1, ζ2, ζ3, π) = h−1(ζ,π) = (ζ,π1 − C(π1, ζ;π3), C(π2, ζ;π3),π3). (3.12)

Examples 2.4, continued. In this example, we again consider GMM estimation so that

ḡn(θ) = n−1
∑n

i=1 ϕ(Wi,θ), where the moment function ϕ(w,θ) is given by (2.7). The sample

Jacobian with respect to µ is

∂ḡn(θ)

∂µ′
= − 1

n

n∑
i=1

A(Yh,i)

[
π2 + π3 π1 π1

−π2 1− π1 0

]

when β = 0. Since again r = dµ − 1 so that dπ = 1, simplifying notation as in the previous

examples, for Step 1 of Algorithm 3.1, we set m(µ) = (−π1(1− π1),−π1π2,π2 + π3(1− π1))′.

For Step 2, we need to find the general solution in h(·) to the following system of ODEs:

∂h(µ)

∂π
= (−h1(µ)(1− h1(µ)),−h1(µ)h2(µ), h2(µ) + h3(µ)(1− h1(µ)))′.

Given its triangular structure, this system can be solved successively using standard single-

equation ODE methods, starting with the ∂h1(µ)/∂π equation, then the ∂h2(µ)/∂π equation,

followed by the ∂h3(µ)/∂π equation. The general solution takes the form

h(µ) =

 [1 + c1(ζ)eπ]−1

c2(ζ)[e−π + c1(ζ)]

c3(ζ)[1 + c1(ζ)eπ]− c2(ζ)[e−π + c1(ζ)]

 ,

where ci(ζ) is an arbitrary function of ζ for i = 1, 2, 3. For Step 3, setting c1(ζ) = 1, c2(ζ) = eζ1

and c3(ζ) = ζ2 induces a simple triangular structure on the components of h(µ) as functions of

µ, i.e., so that h1(µ) is a function of π only and h2(µ) is a function of π and ζ1 only. Such a

triangular structure makes it easier to solve for µ in terms of µ. In this case, we have

∂h(µ)

∂µ′
=

 0 0 −eπ(1 + eπ)−2

eζ1(e−π + 1) 0 −eζ1−π

−eζ1(e−π + 1) 1 + eπ ζ2e
π + eζ1−π


being full rank. Thus, we have found a reparameterization function h(·) satisfying the conditions

This solution has two solutions, one of which is always negative and one of which is always positive. Given that
h2(µ) = π1 must be positive, h2(µ) is equal to the positive solution.
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of Algorithm 3.1 such that µ = h(µ) = (1/(1 + eπ), eζ1(e−π + 1), ζ2(1 + eπ) − eζ1(e−π + 1)), or

equivalently, µ = (ζ1, ζ2, π) = (log(π2(1− π1)),π1(π2 + π3), log((1− π1)/π1)).

4 Limit Theory for Extremum Estimators

We proceed to derive the limit theory for the extremum estimator θ̂n under a comprehensive

class of identification strengths by applying results from AC12 to the estimator of the parameters

in the reparameterized model θ̂n and then determining the asymptotic behavior of the original

parameter estimator of interest via the relation θ̂n = (β̂n, h(µ̂n)). We formally characterize a

local-to-deficient rank Jacobian by modeling the β parameter as local-to-zero. This allows us

to fully characterize different strengths of identification, namely, strong, semi-strong, and weak

(which includes non-identification). Our ultimate goal from deriving asymptotic theory under

parameters with different strengths of identification is to conduct uniformly valid inference that

is robust to identification strength.

The true parameter space Γ for γ takes the form

Γ = {γ = (θ, φ) : θ ∈ Θ∗, φ ∈ Φ∗(θ)},

where Θ∗ is a compact subset of Rdθ and Φ∗(θ) ⊂ Φ∗ for all θ ∈ Θ∗ for some compact metric

space Φ∗ with a metric that induces weak convergence of the bivariate distributions of the data

(Wi,Wi+m) for all i,m ≥ 1. Define h̄(θ) ≡ (β, h(µ)) where h is the solution from Procedure 3.

The next lemma formally establishes the properties of the reparameterization function h̄(·).

Assumption H. (i) h : M → M is proper and continuously differentiable; (ii) Θ is simply

connected.

Sufficient conditions for Assumption H(i) are (i) M is bounded and (ii) h is continuously

differentiable.16

Lemma 4.1. Under Assumptions Reg1, ID and H, (i) the function h̄ : Θ→ Θ is a homeomor-

phism and hence bijective; (ii) h̄(θ) is continuously differentiable on Θ.

Lemma 4.1(i) implies the bijectivity of h̄ : Θ∗ → Θ∗ as well, since we assume that the true

parameter space is contained in the optimizing parameter space.17 Due to this result, we can

16A function is proper if its pre-image of a compact set is compact. If h is continuous, the pre-image of a closed
set under h is closed. Also, if M is bounded, the pre-image of a bounded set under h is bounded. Therefore,
under these sufficient conditions, h is proper.

17See Assumption B1 in AC12, which is imposed in Theorem 4.1, Corollary 4.1 and Proposition 5.1 below.
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equivalently derive limit theory derived under sequences of parameters in Γ or in the following

transformed parameter space:

Γ ≡ {γ = (θ, φ) : θ ∈ Θ∗, φ ∈ Φ∗(θ))},

where Θ∗ ≡ h̄−1(Θ∗) and Φ∗(θ) ≡ Φ∗(h̄(θ)) ⊂ Φ∗ for all θ ∈ Θ∗.

Define sets of sequences of parameters {γn} as follows:

Γ(γ0) ≡ {{γn ∈ Γ : n ≥ 1} : γn → γ0 ∈ Γ} ,

Γ(γ0, 0, b) ≡
{
{γn} ∈ Γ(γ0) : β0 = 0 and n1/2βn → b ∈ Rdβ∞

}
,

Γ(γ0,∞, ω0) ≡
{
{γn} ∈ Γ(γ0) : n1/2 ‖βn‖ → ∞ and

βn
‖βn‖

→ ω0 ∈ Rdβ
}
,

where γ0 ≡ (θ0, φ0) and γn ≡ (θn, φn), and R∞ ≡ R ∪ {±∞}. When ‖b‖ < ∞, {γn} ∈
Γ(γ0, 0, b) are weak or non-identification sequences, otherwise, when ‖b‖ =∞, they characterize

semi-strong identification. Sequences {γn} ∈ Γ(γ0,∞, ω0) characterize semi-strong identification

when βn → 0, otherwise, when limn→∞ βn 6= 0, they are strong identification sequences.

We characterize the limit theory for subvectors of the original parameter estimator of interest

θ̂n, which we show is equal to h̄(θ̂n) by using Lemma 4.1. Toward this end, we use µ̂sn to denote

a generic ds-dimensional subvector of µ̂n and hs(·) to denote the corresponding elements of h(·)
in the relation µ̂n = h(µ̂n). Let hsµ(µ) = ∂hs(µ)/∂µ′ and partition hsµ(µ) conformably with

µ = (ζ, π): hsµ(µ) = [hsζ(µ) : hsπ(µ)]. Suppose rank(hsπ(µ)) = d̃∗π for all µ ∈ Mε ≡ {µ : (β, µ) ∈
Θ, ‖β‖ < ε} for some ε > 0. For µ ∈ Mε, let Ã(µ) ≡ [Ã1(µ)′ : Ã2(µ)′]′ be an orthogonal

ds × ds matrix such that Ã1(µ) is a (ds − d̃∗π) × ds matrix whose rows span the null space of

hsπ(µ)′ and Ã2(µ) is a d̃∗π × ds matrix whose rows span the column space of hsπ(µ). The matrix

Ã1(µ) essentially rotates hs(µ) “off” the π direction of its parameter space while the matrix

As2(µ) rotates hs(µ) “in” the direction of π. The estimate µ̂sn = hs(µ̂n) has very different

limiting behavior after being rotated by either of these two matrices, with one “direction”

converging at the
√
n-rate and the other being inconsistent. Similar asymptotic behavior can be

found in related contexts where parameters of interest are functions of quantities with different

convergence rates. Indeed, the rotation approach used in the limit theory here has antecedents in

many distinct but related contexts including Sargan (1983), Phillips (1989), Sims et al. (1990),

Antoine and Renault (2009, 2012), AC14 and Phillips (2016).

The following assumptions impose regularity conditions on the subvector function hs(·).

Assumption Reg2. rank(hsπ(µ)) = d̃∗π for some constant d̃∗π ≤ dπ for all µ ∈ Mε for some

ε > 0.
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Define

η̃n(µ) ≡

{ √
nÃ1(µ){hs(ζn, π)− hs(ζn, πn)}, if d̃∗π < ds

0, if d̃∗π = ds.

Assumption Reg3. Under {γn} ∈ Γ(γ0, 0, b), η̃n(µ̂n)
p−→ 0 for all b ∈ Rdβ∞ .

Analogous assumptions can be found in, e.g., Assumptions R1 and R2 of AC14. With an

explicit h(·) found e.g., by Algorithm 3.1, Assumption Reg2 is straightforward to verify. As-

sumption Reg3 is a high-level assumption that may be verified via any of the sufficient conditions

given in Assumption Reg3* below.

Assumption Reg3*. (i) d̃∗π = ds.

(ii) ds = 1.

(iii) The column space of hsπ(µ) is the same for all µ ∈Mε for some ε > 0.

(iv) hs(µ) = Hsµ, where Hs is a ds × dµ matrix with full row rank.

(v) No more than dπ entries of hs(µ) depend upon π and each π-dependent entry depends

on a single different element of π.

Applying results of Lemmas 5.1 and 5.2 of AC14 shows that any of the conditions of As-

sumption Reg3*(i)-(iv) is sufficient for Assumption Reg3 to hold. The condition in Assumption

Reg3*(v) is sufficient for the condition in Assumption Reg3*(iii) to hold, as formalized in the

following lemma. This condition is relevant when the reparameterization function h(·) is non-

linear and one wishes to obtain the joint limiting behavior of a larger subvector of µ̂n such that

ds > max{d̃∗π, 1}. As may be gleaned from the sufficient conditions of Assumption Reg3*, the

feasibility of rotating a subvector µ̂sn to obtain a
√
n-convergent direction in the parameter space

requires restrictions on the number of entires of µ̂sn = hs(µ̂n) that are nonlinear functions of π̂n.

These types of restrictions will be important for conducting Wald statistic-based inference in the

next section and are explored in more detail in the context of Example 2.3 after the following

lemma.

Lemma 4.2. Assumption Reg3*(v) implies Assumption Reg3*(iii).

Examples 2.3, continued. We first note that by expression (3.11), Assumption Reg3*(v) holds

for any two-dimensional subvector hs(µ) = (h1(µ), hj(µ)) for any j = 2, 3 or 4. Thus, we may

rotate any corresponding µ̂sn = (µ̂n,1, µ̂n,j) to find a
√
n-convergent direction of the parameter

space and apply the limit theory of the following theorem, even for those µj’s that are nonlinear

functions of π (i.e., for j = 2 or 3). On the other hand, none of the conditions of Assumption

Reg3* hold for any µ̂sn containing more than one µ̂n,j for j = 2, 3 or 4 and it is not possible to
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find a
√
n-convergent rotation. For illustration, consider the simplest of these cases for which

µ̂sn = (µ̂n,3, µ̂n,4). In this case under {γn} ∈ Γ(γ0, 0, b),

Ã1(µ̂n) = S(µ̂n)

(
1,
C3(h3(µ̂n), ζ̂1,n; π̂n)

C1(h3(µ̂n), ζ̂1,n; π̂n)

)
,

where S(µ̂n) ≡ {1 + C3(h3(µ̂n), ζ̂1,n; π̂n)2/C1(h3(µ̂n), ζ̂1,n; π̂n)2}−1/2 so that

η̃n(µ̂n) =
√
nS(µ̂n)

[
η̃Nn (µ̂n)

η̃Dn (µ̂n)

]
(π̂n − πn),

where

η̃Nn (µ̂n) ≡ ζ2
3,n(ζ1,n − 1)2(ζ1,n − ζ3,n)(π̂n − πn) +Op(n

−1/2) = Op(n
−1/2‖βn‖−1),

η̃Dn (µ̂n) ≡ {ζ1,n − ζ3,nπ̂n + ζ1,nζ3,nπ̂n +Op(n
−1/2)}2(ζ1,n − ζ3,nπ + ζ1,nζ3,nπ) = Op(1),

and S(µ̂n) = Op(1), which we obtain by using the results from Lemma A.1 in Appendix A.

(The derivations behind the above expressions can be found in Appendix B.) Thus, we have

that ‖η̃n(µ̂n)‖ = ‖Op(n−1/2‖βn‖−1)
√
n(π̂n − πn)‖ = ‖Op(n−1/2‖βn‖−2)‖ → ∞ if n1/4‖βn‖ → 0,

according to Lemma A.1.

Define

ι(β) ≡

{
β, if β is scalar,

‖β‖, if β is a vector.

We are now ready to state the main result of this section.

Theorem 4.1. (i) Suppose Assumptions CF, Reg1, ID, Jac, Reg2, Reg3 and H, and Assump-

tions B1-B3 and C1-C6 of AC12,18 applied to the transformed objects of this paper including θ

and Qn(θ), hold. Under parameter sequences {γn} ∈ Γ(γ0, 0, b) with ‖b‖ <∞,
√
n(β̂n − βn)

√
nÃ1(µ̂n)(µ̂sn − µsn)

Ã2(µ̂n)(µ̂sn − µsn)

 d−→

 τβ0,b(π
∗
0,b)

Ã1(ζ0, π
∗
0,b)h

s
ζ(ζ0, π

∗
0,b)τ

ζ
0,b(π

∗
0,b)

Ã2(ζ0, π
∗
0,b)[h

s(ζ0, π
∗
0,b)− µs0]

 ,

where

π∗0,b ≡ π∗(γ0, b) ≡ arg min
π∈Π
−1

2
(G0(π) +K0(π)b)′H−1

0 (π)(G0(π) +K0(π)b),

18Here and below, we refer the reader to AC12 for the assumptions in that paper. For the sake of brevity, we
do not repeat them in the current paper. In Appendix B, however, we provide sufficient conditions for all the
assumptions used in this paper including those from AC12 for the threshold crossing model (Example 2.3).
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τ0,b(π) ≡ τ(π; γ0, b) ≡ −H−1
0 (π)(G0(π) +K0(π)b)− (b, 0dζ×1)

with π∗0,b being a random vector that minimizes a non-central chi-squared process and {τ0,b(π) :

π ∈ Π} being a Gaussian process for which τβ0,b(π) and τ ζ0,b(π) denote the first dβ and final

dµ − dπ entries. The underlying Gaussian process G0(·) ≡ G(·; γ0) is defined in Assumption C3

of AC12 and the underlying functions H0(π) ≡ H(π; γ0) and K0(π) ≡ K(π; γ0) are defined in

Assumptions C4(i) and C5(ii) of AC12, respectively.

(ii) Suppose Assumptions CF, Reg1, ID, Jac, Reg2, Reg3 and H, and Assumptions B1-B3,

C1-C5, C7-C8 and D1-D3 of AC12, applied to the θ and Qn(θ) of this paper, hold. Under

parameter sequences {γn} ∈ Γ(γ0,∞, ω0),

√
n

 β̂n − βn
Ã1(µ̂n)(µ̂sn − µsn)

ι(βn)Ã2(µ̂n)(µ̂sn − µsn)

 d−→

 Zβ

Ã1(µ0)hsζ(µ0)Zζ

Ã2(µ0)hsπ(µ0)Zπ

 ,

if β0 = 0 and

√
n

(
β̂n − βn
µ̂n − µn

)
d−→

(
Zβ

hζ(µ0)Zζ + ι(β0)−1hπ(µ0)Zπ

)
if β0 6= 0, where (Zβ, Zζ , Zπ) = Zθ ∼ N (0, J−1(γ0)V (γ0)J−1(γ0)). The underlying matrices

J(γ0) and V (γ0) are defined in Assumptions D2 and D3 of AC12.

Theorem 4.1 describes the joint limiting behavior of β̂n and µ̂sn under a comprehensive

class of identification strengths. By rotating the subvector µ̂sn in the appropriate direction

of the parameter space via A1(µ̂n), we obtain
√
n-consistency under weak and semi-strong

identification. If the full vector function h(·) satisfies Assumptions Reg2 and Reg3, then the

results of Theorem 4.1 apply to the full parameter vector µ̂n. Though nonlinearity of the

reparameterization function often makes it impossible to obtain a
√
n-consistent rotation of the

full vector µ̂n under weak and semi-strong identification, it is still possible to characterize its

joint limiting behavior at slower convergence rates without rotation, as in the following corollary.

In order to express this corollary, it is necessary to separate the components of µ = h(ζ, π)

according to whether they depend upon π or not. Without loss of generality, suppose that

the first dµ1 components of h(ζ, π) do not actually depend upon π (e.g., in cases described

by Remark 3.5), while the final dµ − dµ1 of h(ζ, π) do. Denote the corresponding entries of

µ = h(ζ, π) as µ1 = h1(ζ) and µ2 = h2(ζ, π), respectively.

Corollary 4.1. Suppose all of the assumptions of Theorem 4.1 hold except for Assumption

Reg3. Under parameter sequences {γn} ∈ Γ(γ0, 0, b),

25



(i) 
√
n(β̂n − βn)
√
n(µ̂1

n − µ1
n)

µ̂2
n

 d−→

 τβ0,b(π
∗
0,b)

h1
ζ(ζ0)τ ζ0,b(π

∗
0,b)

h2(ζ0, π
∗
0,b)


if ‖b‖ <∞ and

(ii)

√
n

 β̂n − βn
µ̂1
n − µ1

n

ι(βn)(µ̂2
n − µ2

n)

 d−→

 Zβ

h1
ζ(ζ0)Zζ

h2
π(µ0)Zπ

 ,

if ‖b‖ =∞.

Apart from the simpler cases for which dµ2 = dπ that are already covered by the analysis of

AC12, it is interesting to note that the limiting random vectors under both cases of Corollary

4.1 are singular in some sense. For case (ii), the singularity is straightforward: the Gaussian

limit has a singular covariance matrix. For case (i), the singularity comes from the fact that

dim(π∗0,b) = dπ < dµ2 = dµ − dµ1 so that the dimension of the parameter estimator µ̂2
n exceeds

the dimension of the “randomness” in its limit.

5 Wald Statistics

We are interested in testing general nonlinear hypotheses of the form

H0 : r(θ) = v ∈ Rdr

using the Wald statistic. To reduce notation and make assumptions more transparent, it is

useful to view H0 in its equivalent form as a hypothesis on the reparameterized parameters θ,

viz.,

H0 : r(θ) ≡ r(h̄(θ)) = v ∈ Rdr ,

With this notation in mind, a standard Wald statistic for H0 based upon θ̂n = h̄(θ̂n) can be

written as19

Wn(v) ≡ n(r(θ̂n)− v)′(rθ(θ̂n)B−1(β̂n)Σ̂nB
−1(β̂n)rθ(θ̂n)′)−1(r(θ̂n)− v),

19The Wald statistic Wn(v) is identical to the usual Wald statistic written as a function of θ̂n that uses an esti-
mator of the asymptotic covariance matrix for θ̂n that takes the natural form h̄θ(θ̂n)B−1(β̂n)Σ̂nB

−1(β̂n)h̄θ(θ̂n)′.
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where rθ(θ) ≡ ∂r(θ)/∂θ′ ≡ [rβ(θ) : rζ(θ) : rπ(θ)] ∈ Rdr×dθ , Σ̂n estimates the covariance matrix

of (Z ′β, Z
′
ζ , Z

′
π)′ and

B(β) =

 Idβ 0 0

0 Idζ 0

0 0 ι(β)Idπ

 .

Note that, although the asymptotic distributions we obtain under weak identification are not

pivotal, scaling by Σ̂n in the Wald statistic can still be motivated by asymptotic pivotality under

(semi-)strong identification (see Proposition 5.1(ii)).

Under the assumptions of Theorem 4.1 and R1–R2 and V1–V2 of AC14, the limiting behavior

of Wn(v) under {γn} ∈ Γ(γ0, b) or {γn} ∈ Γ(γ0,∞, ω0) can be obtained as a simple application

of the results of Theorem 5.1 of that paper. However, the fact that θ̂n is generally a nonlinear

function of θ̂n creates certain peculiarities specific to the current context of potential under-

identification that are worth exploring in more detail. In particular, Assumptions R1 and R2 of

AC14 rule out a handful of very standard null hypotheses that the Wald statistic can be used

for in the presence of (near-)under-identification. Hence, we repeat these assumptions here and

discuss them in the present context.

Assumption R1. (i) r(θ) is continuously differentiable on Θ.

(ii) rθ(θ) is full row rank dr for all θ ∈ Θ.

(iii) rank(rπ(θ)) = d∗π for some constant d∗π ≤ min{dr, dπ} for all θ ∈ Θε ≡ {θ ∈ Θ : ‖β‖ <
ε} for some ε > 0.

Assumption R1(i) holds in the present context if the restriction on the original parameters

r(θ) is continuously differentiable on Θ because h̄(θ) is continuously differentiable on Θ by

Lemma 4.1(ii). Since h̄θ(θ) is full rank by Lemma 4.1(i), Assumption R1(ii) holds if ∂r(θ)/∂θ′

is full row rank for all θ ∈ Θ. Finally, Assumption R1(iii) requires the product of ∂r(h̄(θ))/∂µ′

and hπ(θ) to have constant rank for all θ ∈ Θε, which should occur when they each separately

have constant rank in the absence of some perverse interaction between them.

Let A(θ) = [A1(θ)′ : A2(θ)′]′ be an orthogonal dr×dr matrix such that A1(θ) is a (dr−d∗π)×dr
matrix whose rows span the null space of rπ(θ)′ and A2(θ) is a d∗π × dr matrix whose rows span

the column space of rπ(θ). Let

ηn(θ) ≡

{
n1/2A1(θ) {r(βn, ζn, π)− r(βn, ζn, πn)} , if d∗π < dr

0, if d∗π = dr.

Assumption R2. Under {γn} ∈ Γ(γ0, 0, b), ηn(θ̂n)
p−→ 0 for all b ∈ Rdβ∞ .
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In leading cases of interest, subvector null hypotheses, i.e., H0 : θs = v for some subvector

θs of θ, Assumption R2 is equivalent to Assumption Reg3 introduced in the previous section.20

Recalling that Assumption Reg3 is used to show a
√
n-convergent rotation of θ̂sn can be con-

structed, we note that the existence of such a
√
n-convergent rotation is crucial to obtaining the

convergence of a subvector Wald statistic under weak and semi-strong identification sequences.

In the potential presence of the more complicated forms of identification failure we are interested

in here, standard Wald statistics for testing seemingly straightforward (linear) hypotheses can

easily diverge under the null hypothesis and weak or semi-strong identification sequences.

Remark 5.1. In cases for which ‖ηn(θ̂n)‖ diverges, Theorem 5.2 of AC14 tells us that Wn(v)

also diverges. This is particularly important in the context of the nonlinear reparameterizations

of this paper. For example, it implies that if the reparameterization function h(·) is nonlinear,

a standard subvector Wald statistic can easily diverge when the subvector under test is “large

enough”, containing more than dπ entries of µ that are nonlinear functions of π. See the

continuation of Example 2.3 in the previous section for an example. This result is very important

in practice. It implies that subvector Wald tests making use of χ2
dr

CVs exhibit size distortion

of the most extreme kind: their asymptotic size is equal to one if the subvector is large enough

(including the full vector θ).

Any one of the following sufficient conditions implies the high-level Assumption R2, as veri-

fied in Lemma 5.1 of AC14.

Assumption R2*. (i) d∗π = dr.

(ii) dr = 1.

(iii) The column space of rπ(θ) is the same for all θ ∈ Θε for some ε > 0.

In our context, Assumption R2*(i) requires the number of restrictions under test not exceed

dπ and that all restrictions must involve elements of µ that are nontrivial functions of π. In the

case of subvector hypotheses, Assumption R2*(i)-(iii) is identical to Assumption Reg3*(i)-(iii)

and Assumptions Reg3*(iv) and (v) each implies Assumption R2*(iii).21

Assumption RL. r(θ) = Rθ, where R is a dr × dθ matrix with full row rank.

In the present context, Assumption RL essentially requires both the reparameterization

function h(·) and the restrictions under test to be linear, viz., h(θ) = Hθ and r(θ) = Rθ so

that r(θ) = RHθ. The reparameterization function h(·) is not generally linear. However, it is

20This statement holds because if any elements of r(θ) are equal to elements of β, the corresponding elements
of r(βn, ζn, π)− r(βn, ζn, πn) are simply equal to zero.

21These statements hold because β is not a function of π.
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sometimes possible to obtain linear reparameterizations in special cases for which the underlying

model is linear. See Remark 3.3. In linear models for which h(θ) = Hθ, the Wald statistic for

linear restrictions does not diverge under weak or semi-strong identification. The potential for

Wald statistic divergence for linear (including subvector) restrictions under weak or semi-strong

identification, as discussed in Remark 5.1, is truly a consequence of the nonlinearity of the

models we study in this paper.

Under a sequence {γn}, we consider the sequence of null hypotheses H0 : r(θ) = vn, where

vn = r(θn). In combination with our reparameterization results, direct application of Theorem

5.1 of AC14 yields the following results.

Proposition 5.1. (i) Suppose Assumptions CF, ID, Reg1, Jac, H, R1 and R2, and Assumptions

B1-B3, C1-C6 and V1 of AC12, applied to the θ and Qn(θ) of this paper, hold. Under {γn} ∈
Γ(γ0, 0, b) with ‖b‖ <∞,

Wn(vn)
d−→ λ(π∗0,b; γ0, b),

where {λ(π; γ0, b) : π ∈ Π} is a stochastic process defined in expression (5.20) of AC14.

(ii) Suppose Assumptions CF, ID, Reg1, Jac, H, R1 and R2, and Assumptions B1-B3, C1-

C5, C7-C8, D1-D3 and V2 of AC12, applied to the θ and Qn(θ) of this paper, hold. Under

{γn} ∈ Γ(γ0,∞, ω0),

Wn(vn)
d−→ χ2

dr .

Remark 5.2. For some hypotheses, one may use the Wald statistic and robust CVs described

in the following section to conduct tests that uniformly control asymptotic size in the potential

presence of general identification failure. To better fit this result into the current literature

on hypothesis testing that is robust to general forms of identification failure, we remark here

on three leading categories of hypotheses that are of typical interest in applied work: (i) one-

dimensional hypotheses, (ii) subvector hypotheses and (iii) full vector hypotheses. Our results

are the first we are aware of that allow one to directly conduct one-dimensional hypothesis tests

for general moment condition or likelihood models that fall into the framework of this paper.

The methods of Andrews and Mikusheva (2016b) can only be used for these cases when the

estimation problem can be formulated in a MD framework. To use the methods of Andrews and

Guggenberger (2014) and Andrews and Mikusheva (2016a), one must rely on a power-reducing

projection or Bonferroni bound-based approach. For subvector hypotheses, our results allow one

to directly conduct hypothesis tests for a class of subvectors that are typically not “too large”

(see Example 2.3 in Section 4 and Remark 5.1). On the other hand, one may “concentrate out”

well-identified parameters to directly conduct hypothesis tests for a different class of subvectors in

moment condition models using the methods of Andrews and Guggenberger (2014) and Andrews
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and Mikusheva (2016a).22 There is an interesting complementarity here between our results

and those of Andrews and Guggenberger (2014) and Andrews and Mikusheva (2016a): to use the

approach of these latter papers, the subvector must contain all parameters subject to identification

failure so that, in some sense, the subvectors cannot be “too small”. Finally, we note that except

for models that already fall under the framework of AC12, the results of our paper do not allow

one to directly conduct full vector hypotheses (due to the divergence of ηn(θ̂n)) whereas the

methods of Andrews and Guggenberger (2014) and Andrews and Mikusheva (2016a) do. We

should also note that the frameworks of our paper and Andrews and Guggenberger (2014) or

Andrews and Mikusheva (2016a) are non-nested.

Remark 5.3. We restrict focus in this paper to Wald statistics (rather than e.g., Langrange

multiplier or likelihood ratio statistics) since they do not require estimation under the null hy-

pothesis. This allows us to use the results of Section 4 and avoid restrictive assumptions on the

reparameterization function h(·) and/or the restrictions under test r(·). For example, AC12 im-

pose Assumption RQ1(iii) to analyze the likelihood ratio statistic. Though somewhat restrictive

even in their setting, such an assumption would be especially restrictive in our’s since it would

typically require the separate elements of h(·) to be functions of ζ or π only, but not both at the

same time.

6 Robust Wald Inference

The limit distribution of λ(π∗0,b; γ0, b) given in Proposition 5.1(i) provides a good approximation

to the finite-sample distribution of Wn(v). This limit distribution depends upon the unknown

nuisance parameters b and γ0. Letting c1−α(b, γ0) denote the 1−α quantile of this distribution,

a standard approach to CV construction for a test of size α would be to evaluate c1−α(·) at a

consistent estimate of (b, γ0). However, the nuisance parameter b and some elements in γ0 are

not consistently estimable under {γn} ∈ Γ(γ0, 0, b) with ‖b‖ < ∞, lending such an approach

to size distortions. This feature of the problem leads us to consider more sophisticated CV

construction methods that lead to correct asymptotic size for the test. We will restrict our focus

to testing problems for which the distribution function of λ(π∗0,b; γ0, b) in Proposition 5.1(i) only

depends upon γ0 through the parameters ζ0 and π0 and an additional consistently-estimable

finite-dimensional parameter δ0. This is the case in all of the examples we have encountered.

Without loss of generality, we will assume δ is a component of φ so we can write φ = (δ, ϕ).23

22Andrews and Mikusheva (2016a) cannot handle moment conditions for which the asymptotic variance matrix
of the moments is singular. This occurs for the ML estimators of this paper.

23It is possible to relax this restriction and modify the CVs accordingly. However, we have not found an example
where this is necessary.
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Assumption FD. The distribution function of λ(π∗0,b; γ0, b) depends upon γ0 only through ζ0,

π0, and some δ0 ∈ Rdδ∞ such that under {γn} ∈ Γ(γ0, 0, b) or {γn} ∈ Γ(γ0,∞, ω0) there is an

estimator δ̂n with δ̂n
p−→ δ0.

We will “plug-in” consistent estimators for ζ0 and δ0, ζ̂n and δ̂n, when constructing the CVs.

The first construction is more computationally straightforward while the second leads to tests

with better finite-sample properties.

6.1 Identification Category Selection CVs

The first type of CV we consider is the direct analog of AC12’s (plug-in and null-imposed) Type

I Robust CV. Define tn ≡ (nβ̂′nΣ̂−1
ββ,nβ̂n/dβ)1/2, where Σ̂ββ,n is equal to the upper left dβ × dβ

block of Σ̂n and suppose {κn} is a sequence of constants such that κn → ∞ and κn/n
1/2 → 0

(Assumption K of AC12). Then the ICS CV for a test of size α is defined as follows:

cICS1−α,n ≡

χ2
dr

(1− α)−1 if tn > κn,

cLF1−α,n if tn ≤ κn

where χ2
dr

(1 − α)−1 is the (1 − α) quantile of a χ2
dr

-distributed random variable and cLF1−α,n ≡
sup`∈L̂n∩L(v) c1−α(`) with L̂n ≡ {` = (b, γ) ∈ L : γ = (β, ζ̂n, π, δ̂n, ϕ)}, L(v) ≡ {` = (b, γ0) ∈ L :

r(θ0) = v}, and L ≡ {` = (b, γ0) ∈ Rdβ∞ × Γ : for some {γn} ∈ Γ(γ0), n1/2βn → b}. That is, we

both impose H0 and “plug-in” consistent estimators ζ̂n and δ̂n of ζ0 and δ0 in the construction

of the CV. This leads to tests with smaller CVs and hence better power (see, e.g., AC12 for a

discussion).24 A typical choice for κn is κn = (log n)1/2 as it is analogous to the penalty term

in the Bayesian information criterion. Under the assumptions of Proposition 5.1, Assumption

FD and the following assumption, we can establish the correct asymptotic size of tests using the

Wald statistic and ICS CVs.

Assumption DF1. The distribution function of λ(π∗0,b; γ0, b) is continuous at χ2
dr

(1−α)−1 and

sup`∈L0∩L(v) c1−α(`), where L0 ≡ {` = (b, γ) ∈ L : γ = (β, ζ0, π, δ0, ϕ)}.

This assumption is assured to hold e.g., if the distribution function of λ(π∗0,b; γ0, b) is abso-

lutely continuous. This both holds and is easy to check in most examples.

Proposition 6.1. Under the assumptions of Proposition 5.1, Assumption K of AC12 and As-

sumptions FD and DF1, lim supn→∞ supγ∈Γ:r(θ)=v Pγ(Wn(v) > cICS1−α,n) = α.
24As in AC12, one may also choose not to impose H0 in the CV construction since it is misspecified under the

alternative. Then, simply replace L̂n ∩ L(v) with L̂n in the expression for cLF1−α. Also, any consistent estimators
of the components of γ0 may be analogously “plugged-in”.
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6.2 Adjusted-Bonferroni CVs

The second type of CV we consider is a modification of the adjusted-Bonferroni CV of McCloskey

(2017). The basic idea here is to use the data to narrow down the set of localization param-

eters b and parameters π from the entire space P(ζ̂n, δ̂n) ≡ {(b, π) ∈ Rdβ+dπ
∞ : for some γ0 ∈

Γ with ζ0 = ζ̂n and δ0 = δ̂n, π = π0 and for some {γn} ∈ Γ(γ0), n1/2βn → b}, as in the con-

struction of least-favorable CVs, to a data-dependent set. Then one subsequently maximizes

c1−α(b, γ) over b and π in this restricted set. Intuitively, this allows the CV to randomly adapt

to the data to determine how “guarded” we should be against potential weak identification and

which part of the parameter space Π is relevant to the finite-sample testing problem.

Let b̂n = n1/2β̂n. Using the results of Theorem 4.1, we can determine the joint asymp-

totic distribution of (b̂n, π̂n) under sequences {γn} ∈ Γ(γ0, 0, b) with ‖b‖ < ∞, and conse-

quently construct an asymptotically valid confidence set for (b, π0). In the context of this

paper, the adjusted-Bonferroni CV of McCloskey (2017) uses such a confidence set for (b, π0)

as the data-dependent set to maximize c1−α(b, γ) over. Though this may be feasible in prin-

ciple, the formation of such a confidence set would be quite computationally burdensome in

our context since the quantiles of the limit random vector (τβ0,b(π
∗
0,b), π

∗
0,b) depend upon the

underlying parameters (b, π0) themselves.25 As a modification, here we instead propose the

use of either one of two sets as follows. For notational simplicity, we will denote either of the

two sets as Îan(b̂n, π̂n), though the second one does not depend directly on π̂n. The first is

Îan(b̂n, π̂n) = {(b, π) ∈ P(ζ̂n, δ̂n) : [(b̂n−b)′, (π̂n−π)′] ˆ̄Σ−1
n [(b̂n−b)′, (π̂n−π)′]′ ≤ χ2

dβ+dπ
(1−a)−1},

where

ˆ̄Σn ≡

(
Σ̂ββ,n n−1/2‖β̂n‖−1Σ̂βπ,n

n−1/2‖β̂n‖−1Σ̂′βπ,n n−1‖β̂n‖−2Σ̂ππ,n

)

with Σ̂βπ,n denoting the upper right dβ × dπ block of Σ̂n and Σ̂ππ,n denoting the lower right

dπ×dπ block of Σ̂n. This set is akin to an a-level Wald confidence set for (b, π0). The second set

we propose can ease later computations: Îan(b̂n, π̂n) = {(b, π) ∈ P(ζ̂n, δ̂n) : (b̂n−b)′Σ̂−1
ββ,n(b̂n−b) ≤

χ2
dβ

(1− a)−1}. Though neither of these confidence sets has asymptotically correct coverage (at

level 1−a) under {γn} ∈ Γ(γ0, 0, b) with ‖b‖ <∞ sequences, they attain nearly correct coverage

as ‖b‖ → ∞. Similarly to the ICS CV in the previous subsection, one may also impose H0 and

“plug-in” the values of ζ̂n and δ̂n since they are consistent estimators.

Let L̃an(b, γ0) = {` = (b̃, γ) ∈ L̂n : (b̃, π) ∈ Îan(b+ τβ0,b(π
∗
0,b), π

∗
0,b)} and L̂an = {` = (b, γ) ∈ L̂n :

(b, π) ∈ Îan(b̂n, π̂n)}. For a size-α test, the construction of the CV proceeds in two steps:

25A similar complication arises in e.g., the formation of an asymptotically valid confidence set for the localization
parameter in a local-to-unit root autoregressive model.
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1. Compute the smallest value ς = ς(ζ̂n, δ̂n,
ˆ̄Σn) such that

P

(
λ(π∗0,b; γ0, b) ≥ sup

`∈L̃an(b,γ0)∩L(v)

c1−α(`) + ς

)
≤ α

for all (b, γ0) ∈ L̂n ∩ L(v).

2. Construct the quantity cAB1−α,n = sup`∈L̂an∩L(v) c1−α(`) + ς(ζ̂n, δ̂n,
ˆ̄Σn). This is the adjusted-

Bonferroni CV.

The computations in Step 1 can be achieved by simulating from the joint distribution of

λ(π∗0,b; γ0, b), τ
β
0,b(π

∗
0,b) and π∗0,b over a grid of (b, γ0) values in L̂n ∩ L(v) or by using more

computationally efficient global optimization methods such as response surface analysis (see

e.g., Jones et al., 1998 and Jones, 2001). See Algorithm Bonf-Adj in McCloskey (2017) for

additional details on the computation of this CV. Under the assumptions of Proposition 5.1,

Assumption FD and the following assumption, we can establish the correct asymptotic size of

tests using the Wald statistic and adjusted-Bonferroni CVs.

Let La0(b, γ0) = {` = (b̃, γ) ∈ Lγ0 : (b̃, π) ∈ Ia0 (b+ τβ0,b(π
∗
0,b), π

∗
0,b)}, where Lγ0 ≡ {` = (b, γ) ∈

L : γ = (β, ζ0, π, δ0, ϕ)}. When using the first Îan(b̂n, π̂n) described above,

Ia0 (b+ τβ0,b(π
∗
0,b), π

∗
0,b) = {(b, π) ∈ P(ζ0, δ0) :

[(τβ0,b(π
∗
0,b)
′, (π∗0,b − π)′]Σ̄−1

0 (b+ τβ0,b(π
∗
0,b), θ

∗
0,b)[(τ

β
0,b(π

∗
0,b)
′, (π∗0,b − π)′]′ ≤ χ2

dβ+dπ(1− a)−1}

with

Σ̄0(b+ τβ0,b(π
∗
0,b), θ

∗
0,b) ≡

(
Σββ,0(θ∗0,b) ‖b+ τβ0,b(π

∗
0,b)‖−1Σβπ,0(θ∗0,b)

‖b+ τβ0,b(π
∗
0,b)‖−1Σβπ,0(θ∗0,b)

′ ‖b+ τβ0,b(π
∗
0,b)‖−2Σππ,0(θ∗0,b)

)

and Σββ,0(θ∗0,b) denoting the upper left dβ × dβ block of Σ0(θ∗0,b), Σβπ,0(θ∗0,b) denoting the upper

right dβ×dπ block of Σ0(θ∗0,b), and Σππ,0(θ∗0,b) denoting the lower right dπ×dπ block of Σ0(θ∗0,b).

(The function Σ0(·) is defined in Assumptions V1 of AC12 and AC14.) When using the second

Îan(b̂n, π̂n) described above,

Ia0 (b+ τβ0,b(π
∗
0,b), π

∗
0,b) = {(b, π) ∈ P(ζ0, δ0) : τβ0,b(π

∗
0,b)
′Σ−1
ββ,0(θ∗0,b)τ

β
0,b(π

∗
0,b) ≤ χ2

dβ
(1− a)−1}.

Assumption DF2. There exists some (b∗, γ∗0) ∈ L such that

(i) P (λ(π∗0,b∗ ; γ
∗
0 , b
∗) ≥ sup`∈La0(b∗,γ∗0 )∩L(v) c1−α(`) + ς(ζ∗0 , δ

∗
0 , Σ̄(b∗, γ∗0))) = α,

(ii) P (λ(π∗0,b∗ ; γ
∗
0 , b
∗) = sup`∈La0(b∗,γ∗0 )∩L(v) c1−α(`) + ς(ζ∗0 , δ

∗
0 , Σ̄(b∗, γ∗0))) = 0.
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This assumption is a similar distributional continuity condition to Assumption DF1 that

holds in most examples.

Proposition 6.2. Under the assumptions of Proposition 5.1 and Assumptions FD and DF2,

lim supn→∞ supγ∈Γ:r(θ)=v Pγ(Wn(v) > cAB1−α,n) = α.

7 Threshold-Crossing Model Example

To illustrate our approach, we examine the threshold crossing model of a triangular system

(Example 2.3) in this section. Weak identification and robust inference has been extensively

studied in the literature (e.g., Staiger and Stock, 1997; Kleibergen, 2002; Moreira, 2003) for

linear models of a triangular system (i.e, linear IV models), but not in this nonlinear setting. The

latter, however, is empirically relevant when the dependent variable and endogenous regressor

are both binary (e.g., Evans and Schwab, 1995; Goldman et al., 2001; Lochner and Moretti,

2004; Altonji et al., 2005; Rhine et al., 2006) and instruments are potentially weak.

The random sample is given by the vector Wi ≡ (Yi, Di, Zi) for i = 1, . . . , n. We also

suppose the instrument Zi ∈ {0, 1} is independent of (εi, νi) with φ0 ≡ φz,0 ≡ Pγ0(Zi = z).

The ML estimator θ̂n minimizes the following criterion function in θ = (β, ζ,π1,π2, π) over the

parameter space Θ ≡ {θ = (β, ζ,π1,π2, π) ∈ [−0.98− ε, 0.98 + ε]× [0.01− ε, 0.99 + ε]× [0.01−
ε, 0.99 + ε]× [0.01− ε, 0.99 + ε]× [−0.99− ε, 0.99 + ε] : 0.01− ε ≤ β + ζ ≤ 0.99 + ε}:

Qn(θ) =
1

n

n∑
i=1

ρ(Wi,θ)

for ε = 0.005, where ρ(w,θ) ≡ −
∑

y,d,z=0,1 1ydz(w) logpyd,z(θ) is the logarithm of density

function26 with 1ydz(w) ≡ 1{w = (y, d, z)}, and the set of pyd,z(θ)’s are defined in (2.5)–(2.6).

7.1 Asymptotic Distributional Approximations for the Estimators

In this subsection, we describe the quantities composing the asymptotic distributions of the

estimators in the threshold-crossing model example under {γn} ∈ Γ(γ0, 0, b) with ‖b‖ < ∞
found in Theorem 4.1 and Corollary 4.1. The derivations used to obtain these quantities are

given in Appendix B.

After the transformation, the transformed fitted probabilities pyd,z(θ) ≡ pyd,z(h̄(θ)) can be

26The log density would originally be ρ(w,θ, φ) ≡
∑

y,d,z=0,1

1ydz(w) {logpyd,z(θ) + log φz}, but the term log φz

is dropped since it does not affect the optimization problem.
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expressed as

p11,0(θ) = ζ3,

p11,1(θ) = C(h3(ζ1, ζ3, π), ζ1 + β;π),

p10,0(θ) = ζ2, (7.1)

p10,1(θ) = h2(ζ1, ζ2, π)− C(h2(ζ1, ζ2, π), ζ1 + β;π),

p01,0(θ) = ζ1 − ζ3,

p01,1(θ) = ζ1 + β − p11,1(θ),

and

p00,0(θ) = 1− p11,0(θ)− p10,0(θ)− p01,0(θ) = 1− ζ1 − ζ2, (7.2)

p00,1(θ) = 1− p11,1(θ)− p10,1(θ)− p01,1(θ) = 1− ζ1 − β − p10,1(θ).

The first deterministic function appearing in the results of Theorem 4.1 and Corollary 4.1 is

H(π; γ0) = −
∑

y,d,z=0,1

φz,0
pyd,z(θ0)

Dψpyd,z(ψ0, π)Dψpyd,z(ψ0, π)′,

where ψ ≡ (β, ζ), ψ0 ≡ (0, ζ0) and Dψpyd,z(ψ0, π) ≡ ∂pyd,z(ψ0, π)/∂ψ. The second one is

K(π; γ0) = −
∑

y,d,z=0,1

φz,0
pyd,z(θ0)

∂pyd,z(θ0)

∂β0
Dψpyd,z(ψ0, π).

Finally, G(·; γ0) is a mean zero Gaussian process indexed by π ∈ Π = [−0.99, 0.99] with bounded

continuous sample paths and covariance kernel for π1, π2 ∈ Π equal to

Ω(π1, π2; γ0) = SψV
†((ψ0, π1), (ψ0, π2); γ0)S′ψ,

where Sψ ≡ [Idψ : 0dψ×1] is a selector matrix that selects the subvector ψ from θ and

V †(θ1, θ2; γ0) ≡ Eγ0

 ∑
y,d,z=0,1

1ydz(Wi)
Dθp

†
yd,z(θ1)

pyd,z(θ1)

 ∑
y,d,z=0,1

1ydz(Wi)
Dθp

†
yd,z(θ2)′

pyd,z(θ2)


− Eγ0

 ∑
y,d,z=0,1

1ydz(Wi)
Dθp

†
yd,z(θ1)

pyd,z(θ1)

Eγ0
 ∑
y,d,z=0,1

1ydz(Wi)
Dθp

†
yd,z(θ2)′

pyd,z(θ2)


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=
∑

y,d,z=0,1

pyd,z(θ0)φz,0
pyd,z(θ1)pyd,z(θ2)

Dθp
†
yd,z(θ1)p†yd,z(θ2)′

−

 ∑
y,d,z=0,1

pyd,z(θ0)φz,0
pyd,z(θ1)

Dθp
†
yd,z(θ1)

 ∑
y,d,z=0,1

pyd,z(θ0)φz,0
pyd,z(θ2)

Dθp
†
yd,z(θ2)′


with Dθp

†
yd,z(θ) ≡ B

−1(β)∂pyd,z(θ)/∂θ.

We conclude this subsection with a brief simulation study illustrating how well the weak

identification asymptotic distributions for the parameter estimators approximate their finite

sample counterparts. Here we specialize the results to the model that uses the Ali-Mikhail-Haq

copula defined in (3.10). Figures 1–4 provide the simulated finite-sample density functions of

the estimators of the threshold-crossing model parameters in red and their asymptotic approx-

imations in blue. For the finite-sample distributions, we examine the true parameter values

β ∈ {0, 0.1, 0.2, 0.4}, ζ = 0.2 and π = (0.6, 0.4, 0.4). Under {γn} ∈ Γ(γ0, 0, b) the asymptotic

distributional approximations use the corresponding parameter values with b =
√
nβ, ζ0 = ζ

and π0 = π. Since θ̂n = (β̂n, µ̂n) = (β̂n, h(ζ̂n, π̂n)), we use the distributions of the elements

of β + τβ0,b(π
∗
0,b)/
√
n and h(ζ0 + τ ζ0,b(π

∗
0,b)/
√
n, π∗0,b) as our asymptotic approximations to the

finite sample distributions of the elements of β̂n and µ̂n. This approximation is asymptotically

equivalent to using the limiting objects in Corollary 4.1(i) but performs better in finite samples

by capturing the additional “randomness” arising from the
√
n-consistently estimable parame-

ter ζ̂n in the distribution of µ̂n. Figures 1–4 show that (i) the distributions of the parameter

estimators can be highly non-Gaussian under weak/non-identification; (ii) as β grows larger,

the distributions become approximately Gaussian; and (iii) the new asymptotic distributional

approximations perform well overall, especially in contrast with usual Gaussian approximations.

7.2 Asymptotic Distributional Approximations for Wald Statistics

Similarly to the previous subsection, we now describe the additional quantities needed to obtain

the asymptotic distributions of the Wald statistics in the threshold-crossing model example.

The derivations can similarly be found in Appendix B.

Recalling the function λ is defined in expression (5.20) of AC14, the only new object appear-

ing in λ(π∗0,b; γ0, b) in Proposition 5.1 that is not a function of the specific restrictions under test

r(·) or objects described in the previous subsection is the deterministic function Σ(π; γ0). For

the threshold-crossing model, this function is given by Σ(π; γ0) = V −1(ψ0, π; γ0), where

V (ψ0, π; γ0) =
∑

y,d,z=0,1

φz,0
pyd,z(θ0)

Dθp
†
yd,z(ψ0, π)Dθp

†
yd,z(ψ0, π)′.

36



Similarly to the previous subsection, we provide a brief simulation study to illustrate how well

the random variable λ(π∗0,b; γ0, b) from Proposition 5.1, arising as the limit of the Wald statistic

under weak identification, approximates its finite-sample counterparts. Figures 5–8 provide the

simulated finite sample density functions of Wn(v) for one-dimensional null hypotheses on the

separate elements of the parameter vector θ. This type of null hypothesis is a special case of those

satisfying Assumptions R1–R2 in Section 5. We emphasize the one-dimensional subvector testing

case here, since it is often of primary interest in applied work and, to the best of our knowledge,

no other studies in the literature have developed weak identification asymptotic results for test

statistics of this form. As in the previous subsection, the finite-sample density functions for the

Wald statistics are given in red and the densities of λ(π∗0,b; γ0, b) are given in blue. In addition,

the solid black line graphs the density function of a χ2
1 distribution for comparison. We look at

identical true parameter values as in the previous subsection. Figures 5–8 show similar features

to the corresponding figures for the estimators (Figures 1–4): (i) the distributions of the Wald

statistics can depart significantly from the usual asymptotic χ2
1 approximations in the presence of

weak/non-identification; (ii) as β grows larger, the distributions become approximately χ2
1; and

(iii) the new asymptotic distributional approximation perform very well, especially compared

to the usual χ2
1 approximation when β is small. One interesting additional feature to note is

that, although the distributions of the parameter estimates when β = 0.2 in Figure 3 appear

highly non-Gaussian (especially for π1 and π3), the corresponding distributions in Figure 7 look

well-approximated by the χ2
1 distribution. This is perhaps due to the self-normalizing nature of

Wald statistics.

7.3 Power Performance for One-Dimensional Robust Wald Tests

In this subsection, we provide a brief analysis of the power of one of our proposed robust

Wald tests when applied to the one-dimensional parameter π2 of the threshold crossing model.

Since the current literature does not contain tests with proven uniform size control for directly

testing one-dimensional hypotheses in the maximum likelihood setting, we can only compare

the power of our robust Wald test to a projected version of a full vector test. And since this

model is estimated by maximum likelihood, the only test we could find in the literature for the

full parameter vector θ with proven asymptotic size control is the singularity-robust Anderson

Rubin (SR-AR) test of Andrews and Guggenberger (2014) that uses the score function of the

log-likelihood as the moment function. Thus, as a baseline performance measure, we compare

the power of our robust test to the projected version of the SR-AR test.27

27Specifically, we minimize the SR-AR statistic over the remaining nuisance parameters β, ζ, π1 and π3 and
compare it to χ2

5(0.95)−1.
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For testing the null hypothesis, H0 : π2 = 0.4 at the α = 0.05 level, we examine the power of

the robust Wald test that uses the (modified and) adjusted-Bonferroni CV described in Section

6.2, where we implement the CV with the second Îan(b̂n, π̂n) set described there with a = 0.5 . We

examine power under both weak and strong identification, corresponding here to β = 0.2 and 0.4.

For these two values of β, the finite sample distributions of the data are generated identically

to those in Sections 7.2-7.3 except that in order to produce power curves, we vary the true

underlying value of π2 across a space of alternative hypotheses. These power curves, along with

those of the projected SR-AR test are shown in Figure 9. Here, we can see the clear dominance

of the robust Wald test in comparison to projected SR-AR under strong identification. Under

weak identification, though the robust Wald test does not dominate, it exhibits higher power

over most of the alternative space, with especially pronounced power differences occurring at

more local alternatives.

8 Empirical Application: The Effect of Education on Crime

We now provide a short identification-robust empirical analysis that revisits some of the analysis

of Lochner and Moretti (2004) on how educational attainment affects an individual’s subsequent

participation in crime. For this application, we use US Census data (Lochner and Moretti’s, 2004

“inmates” data). Of the many sets of variables examined by these authors, one fits particularly

neatly into the threshold crossing model of a triangular system (Example 2.3) we examine in

detail in this paper. In terms of the variables of this model, Yi is an indicator variable that

equals one if the individual is in prison (labeled “prison” in the authors’ dataset), Di is an

indicator variable that equals one if the individual is a high school dropout (labeled “drop”)

and Zi is an indicator variable that equals one if the individual’s high school required at least

11 years of schooling (labeled “ca11”). All data and descriptions thereof are freely available on

Enrico Moretti’s website (http://eml.berkeley.edu// moretti/).

We focus on the subpopulation of black individuals. Lochner and Moretti (2004) also provide

separate analyses for white vs black individuals. We further focus on the subpopulation of black

individuals turning age 14 in 1958 or later to account both for the impact of the Supreme Court

decision Brown v. Board of Education and to mitigate cohort and/or time effects (see Lochner

and Moretti, 2004 for further details). This leaves us with a final subpopulation of n = 184, 171

individuals.

From this subpopulation, the maximum likelihood point estimates of the threshold crossing

model parameters are as follows: β̂n = −0.0137, ζ̂n = 0.3060, π̂1,n = 0.0260, π̂2,n = 0.0782

and π̂3,n = 0.0394. Loosely speaking, note that the value of β̂n may be indicative of weak
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identification since |
√
nβ̂n| = 5.879, roughly in line with b values that produce nonstandard

densities in our simulation analysis of Sections 7.1–7.2. We perform robust Wald inference for

the parameter π2, the counterfactual probability that an individual would be incarcerated had

they dropped out of high school. To perform inference, we use the same (modified and) adjusted-

Bonferroni CV for α = 0.05 as described in Section 7.3, yielding a CV cAB1−α,n ≈ 11.5.28 Forming

a robust confidence interval for π2, by finding all hypothesized values of π2 that are not rejected

by the robust Wald test, we obtain a 95% confidence interval equal to [lb∗, 0.326], where lb∗ > 0

is some small number that provides the lower bound on the true parameter space for π2. It is

interesting to note that this implies that we fail to reject any small value of the counterfactual

probability.

28Due to the structure of the parameter space, the CV does not depend upon the null hypothesized value for
π2.
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A Appendix A: Proofs of Main Results

Proof of Theorem 3.1: When β = 0,

∂Qn(θ)

∂π′
=
∂Ψn

∂g′
∂ḡn(β, h(µ))

∂π′
=
∂Ψn

∂g′
∂ḡn(β,µ)

∂µ′
∂h(µ)

∂π′
= 01×dπ

for all θ = (0, µ) ∈ Θ ≡ {(β, µ) ∈ Rdθ : (β, h(µ)) ∈ Θ}. �
Proof of Theorem 3.2 First note that

∂g
(1)
n (0, µ(1))

∂π
(1)
1

=
∂ḡn(0, h(1)(µ(1)))

∂π
(1)
1

=
∂ḡn(0,µ)

∂µ′

∣∣∣∣
µ=h(1)(µ(1))

× ∂h(1)(µ(1))

∂π
(1)
1

= 0

by Steps 1 and 2. By way of induction, for 1 ≤ i−1 ≤ dπ−1, assume that the first i−1 columns

of ∂g
(i−1)
n (0, µ(i−1))/∂π(i−1)′ are equal to zero. Then by Step 8 of the algorithm,

∂g
(i)
n (0, µ(i))

∂π(i)′ =
∂g

(i−1)
n (0, h(i)(µ(i)))

∂π(i)′ =
∂g

(i−1)
n (0, µ(i−1))

∂µ(i−1)′

∣∣∣∣∣
µ(i−1)=h(i)(µ(i))

× ∂h(i)(µ(i))

∂π(i)′

=

[
∂g

(i−1)
n (0, µ(i−1))

∂ζ(i−1)′ :
∂g

(i−1)
n (0, µ(i−1))

∂(π
(i−1)
1 , . . . , π

(i−1)
i−1 )

:
∂g

(i−1)
n (0, µ(i−1))

∂(π
(i−1)
i , . . . , π

(i−1)
dπ

)

]∣∣∣∣∣
µ(i−1)=h(i)(µ(i))

×

[
∂h(i)(µ(i))

∂(π
(i)
1 , ..., π

(i)
i−1)

:
∂h(i)(µ(i))

∂π
(i)
i

:
∂h(i)(µ(i))

∂(π
(i)
i+1, ..., π

(i)
dπ

)

]

=

[
∂g

(i−1)
n (0, µ(i−1))

∂ζ(i−1)′ : 0dg×(i−1) :
∂g

(i−1)
n (0, µ(i−1))

∂(π
(i−1)
i , . . . , π

(i−1)
dπ

)

]∣∣∣∣∣
µ(i−1)=h(i)(µ(i))

×

 0(dµ−dπ)×(i−1)

C(i)(µ(i))

0(dπ−i+1)×(i−1)

:
∂h(i)(µ(i))

∂π
(i)
i

:
∂h(i)(µ(i))

∂(π
(i)
i+1, ..., π

(i)
dπ

)


=

[
0dg×(i−1)

:
∂g

(i−1)
n (0, µ(i−1))

∂µ(i−1)′
∂h(i)(µ(i))

∂π
(i)
i

:
∂g

(i−1)
n (0, µ(i−1))

∂µ(i−1)′
∂h(i)(µ(i))

∂(π
(i)
i+1, ..., π

(i)
dπ

)

]∣∣∣∣∣
µ(i−1)=h(i)(µ(i))

=

[
0dg×(i−1)

: 0dg×1 :
∂g

(i−1)
n (0, µ(i−1))

∂µ(i−1)′
∂h(i)(µ(i))

∂(π
(i)
i+1, ..., π

(i)
dπ

)

]∣∣∣∣∣
µ(i−1)=h(i)(µ(i))

,

where the third equality results from the definition of µ(i) in Step 6, the fourth equality follows

from Step 7 and the final equality follows from Steps 5 and 6.

Hence, we have shown that for 1 ≤ i ≤ dπ, the first i columns of ∂g
(i)
n (0, µ(i))/∂π(i)′ are
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equal to zero. In particular, ∂g
(dπ)
n (0, µ(dπ))/∂π(dπ)′ = 0dg×dπ . Also note that Step 8 defines θ

as equal to (β, µ(dπ)) and

ḡn(θ) = ḡn(β, h(1) ◦ . . . ◦ h(dπ)(µ(dπ))) = g(1)
n (β, h(2) ◦ . . . ◦ h(dπ)(µ(dπ)))

= g2
n(β, h(3) ◦ . . . ◦ h(dπ)(µ(dπ))) = . . . = g(dπ)

n (β, µ(dπ)),

where the first equality follows from the definition of h in Step 8, the second equality follows

from the definition of g
(1)
n (θ(1)) in Step 4 and the final two equalities follow from the definition

of g
(i)
n (θ(i)) in Step 8. Thus for β = 0, using the definition of h(·) in Step 8, we have

· · · 01×dπ
...

...

· · · 01×dπ

 =
∂g

(dπ)
n (θ(dπ))

∂µ(dπ)′ =
∂ḡn(β, h(1) ◦ . . . ◦ h(dπ)(µ(dπ)))

∂µ(dπ)′

=
∂ḡ(β, h(µ))

∂µ′
=
∂ḡ(θ)

∂µ′

∣∣∣∣
θ=(β,h(µ))

× ∂h(µ)

∂µ′

so that h :M→M satisfies Procedure 3.1 if it is one-to-one. This latter property holds because

each ∂h(i)(µ(i))/∂µ(i)′ for i = 1, . . . , dπ has full rank by Steps 3 and 7 and h = h(1) ◦ . . . ◦ h(dπ)

by Step 8. �

Proof of Proposition 3.1 First, when β = 0, under Assumption ID, there exists at least

one column in ∂ḡn(θ)/∂µ′ that is linearly dependent on the other columns, which implies that

there exists a nonzero vector m(1) such that (3.3) holds. Thus, (3.4) is a well-defined system of

ODE’s with an initial condition that is determined by constants of integration. By the (global)

Picard-Lindelöf Theorem (Picard, 1893; Lindelöf, 1894), since m(1)(·) is Lipschitz continuous

on compact M(1), there exists a solution h(1) on M(1) of (3.4). Since the choice of constants

of integration for this solution does not affect (3.4), it is always possible to choose them to

ensure full rank of ∂h(1)(µ(1))/∂µ(1)′. Now by way of induction, for 1 ≤ i − 1 ≤ dπ − 1, since

∂h(i)(µ(i))/∂µ(i)′ is full rank and rank(∂g
(i−1)
n (θ(i−1))/∂µ(i−1)′) = r, it follows that

rank

(
∂g

(i)
n (θ(i))

∂µ(i)′

)
= rank

(
∂g

(i−1)
n (θ(i−1))

∂µ(i−1)′
∂h(i)(µ(i))

∂µ(i)′

)
= r.

Thus, there exists a nonzero vector m(i) such that (3.5) holds. Given (3.6), since m(i)(·) is

Lipschitz continuous on compactM(i), there exists a solution h(i) onM(i). Similarly to before,

since the choice of constants of integration for this solution does not affect (3.6), it is always

possible to choose them to ensure (1) and (2) of Step 7 hold. Therefore, h = h(1) ◦ · · · ◦ h(dπ)
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exists on M =M(dπ). �

Proof of Lemma 4.1: For any µ ∈ M, since M(h(µ)) has full rank, ∂h(µ)/∂µ′ has full

rank by Step 2 of Procedure 3.1. Therefore

∂h̄(θ)

∂θ′
=

[
1 0

0 ∂h(µ)
∂µ

]

has full rank for any θ ∈ Θ. Also, since h : M → M is proper, h̄ : Θ → Θ is also proper.

Combining these results with Assumption H(ii), we can apply Hadamard’s global inverse function

theorem Hadamard (1906a,b) to h̄ : Θ→ Θ, and conclude that h̄ is a homeomorphism. �

Proof of Lemma 4.2: Suppose Assumption Reg3*(v) holds. Without loss of generality we

may permute the elements of µs so that

hsπ(µ) =

(
0(ds−d̃∗π)×d̃∗π

0(ds−d̃∗π)×(dπ−d̃∗π)

D(µ) 0d̃∗π×(dπ−d̃∗π)

)
,

where D(µ) is a diagonal full rank d̃∗π × d̃∗π matrix. By definition, the column space of hsπ(µ) is

equal to

{v : v = hsπ(µ)x for some x ∈ Rdπ}

= {(01×(ds−d̃∗π), v
′
2)′ : v2 ∈ Rd̃

∗
π and for each i = 1, . . . , d̃∗π, v2,i = Dii(µ)xi for some xi ∈ R}

= {(01×(ds−d̃∗π), x2)′ : x2 ∈ Rd̃
∗
π ,

which clearly satisfies the condition in Assumption Reg3*(iii) since it does not depend upon µ.

�

The proofs of Theorem 4.1, Corollary 4.1 and Proposition 5.1 make use of the following

auxiliary lemmas. The following lemma applies some of the main results of AC12.

Lemma A.1. (i) Suppose Assumptions CF, Reg1 and ID, and Assumptions B1-B3 and C1-C6

of AC12, applied to the θ and Qn(θ) of this paper, hold. Under parameter sequences {γn} ∈
Γ(γ0, 0, b) with ‖b‖ <∞, 

√
n(β̂n − βn)
√
n(ζ̂n − ζn)

π̂n

 d−→

 τβ0,b(π
∗
0,b)

τ ζ0,b(π
∗
0,b)

π∗0,b

 .

(ii) Suppose Assumptions CF, Reg1 and ID, and Assumptions B1-B3, C1-C5, C7-C8 and
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D1-D3 of AC12, applied to the θ and Qn(θ) of this paper, hold. Under parameter sequences

{γn} ∈ Γ(γ0,∞, ω0),

√
n

 β̂n − βn
ζ̂n − ζn

ι(βn)(π̂n − πn)

 d−→

 Zβ

Zζ

Zπ

 .

Proof. Theorem 3.1 directly implies that Assumption A of AC12 holds when applied to the θ

and Qn(θ) of this paper. Then (i) and (ii) follow by direct application of Theorems 3.1(a) and

3.2(a) of AC12.

The next lemma ensures we can write θ̂n = (β̂n, h(µ̂n)).

Lemma A.2. Suppose Assumption H holds. Then, θ̂n = (β̂n, h(µ̂n)) for some θ̂n = (β̂n, µ̂n) ∈ Θ

such that Qn(θ̂n) = infθ∈ΘQn(θ) + o(n−1).

Proof. The reparameterization function h̄ : Θ → Θ is bijective by Lemma 4.1, which implies

Θ = h̄(Θ) and Θ = h−1(Θ) so that

Qn(θ̂n) = inf
θ∈h̄(Θ)

Qn(θ) + o(n−1) = inf
h̄−1(θ)∈Θ

Qn(h̄(h̄−1(θ))) + o(n−1)

= inf
h̄−1(θ)∈Θ

Qn(h̄−1(θ)) + o(n−1)

= inf
θ∈Θ

Qn(θ) + o(n−1) = Qn(θ̂n)

for some θ̂n ∈ Θ.

Proof of Theorem 4.1: (i) Using Lemma A.2, begin by decomposing µ̂sn−µsn = hs(µ̂n)−
hs(µn) as follows:

hs(µ̂n)− hs(µn) = [hs(ζ̂n, π̂n)− hs(ζn, π̂n)] + [hs(ζn, π̂n)− hs(ζn, πn)]

= hsζ(µ̂n)(ζ̂n − ζn) + [hs(ζn, π̂n)− hs(ζn, πn)] + op(n
−1/2),

where the second equality uses a mean value expansion (with respect to ζ) that holds by Lemma

A.1(i) and Lemma 4.1(ii). Using this decomposition, we have
√
n(β̂n − βn)

√
nÃ1(µ̂n)(µ̂sn − µsn)

Ã2(µ̂n)(µ̂sn − µsn)

 =


√
n(β̂n − βn)

√
nÃ1(µ̂n)hsζ(µ̂n)(ζ̂n − ζn)

Ã2(µ̂n)[hs(ζn, π̂n)− hs(ζn, πn)]


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+

 0
√
nÃ1(µ̂n)[hs(ζn, π̂n)− hs(ζn, πn)]

Ã2(µ̂n)hsζ(µ̂n)(ζ̂n − ζn)

+ op(1)

=


√
n(β̂n − βn)

Ã1(µ̂n)hsζ(µ̂n)
√
n(ζ̂n − ζn) + η̃∗0,b

Ã2(µ̂n)[hs(ζn, π̂n)− hs(ζn, πn)]

+ op(1)

d−→

 τβ0,b(π
∗
0,b)

Ã1(ζ0, π
∗
0,b)h

s
ζ(ζ0, π

∗
0,b)τ

ζ
0,b(π

∗
0,b) + η̃∗0,b

Ã2(ζ0, π
∗
0,b)[h

s(ζ0, π
∗
0,b)− µs0]


under {γn} ∈ Γ(γ0, 0, b) with ‖b‖ < ∞, where the second equality follows from Assumptions

Reg2 and Reg3, Lemma A.1(i) and the CMT and the weak convergence follows from Assumption

Reg2, Lemma A.1(i), the CMT and the fact that hs(ζ0, π0) = µs0.

(ii) For the β0 = 0 case, the same decomposition of µ̂sn−µsn = hs(µ̂n)− hs(µn) as that used

in the proof of part (i) and similar reasoning imply

√
n

 β̂n − βn
Ã1(µ̂n)(µ̂sn − µsn)

ι(βn)Ã2(µ̂n)(µ̂sn − µsn)

 =


√
n(β̂n − βn)

Ã1(µ̂n)hsζ(µ̂n)
√
n(ζ̂n − ζn)

Ã2(µ̂n)
√
nι(βn)[hs(ζn, π̂n)− hs(ζn, πn)]

+ op(1).

A mean-value expansion, Lemma 4.1(ii) and the consistency of µ̂n under {γn} ∈ Γ(γ0,∞, ω0)

given by Lemma A.1(ii) provide that

Ã2(µ̂n)
√
nι(βn)[hs(ζn, π̂n)− hs(ζn, πn)] = Ã2(µ̂n)

√
nι(βn)[(hsπ(ζn, π̂n) + op(1))(π̂n − πn)]

= Ã2(µ̂n)hsπ(ζn, π̂n)
√
nι(βn)(π̂n − πn) + op(1),

where the second equality follows from Lemma 4.1(ii) and Lemma A.1(ii). Putting these results

together, we have

√
n

 β̂n − βn
Ã1(µ̂n)(µ̂sn − µsn)

ι(βn)Ã2(µ̂n)(µ̂sn − µsn)

 d−→

 Zβ

Ã1(µ0)hsζ(µ0)Zζ

Ã2(µ0)hsπ(µ0)Zπ


by Assumption Reg2, Lemma A.1(ii) and the CMT. Finally, for the β0 6= 0 case, note that a

standard mean value expansion for µ̂n − µn = h(µ̂n) − h(µn), Lemma 4.1(ii), Lemma A.1(ii)
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and the CMT imply

√
n

(
β̂n − βn
µ̂n − µsn

)
=

( √
n(β̂n − βn)

√
nhµ(µ̂n)(µ̂n − µn)

)
+ op(1)

=

( √
n(β̂n − βn)

hζ(µ̂n)
√
n(ζ̂n − ζn) + hπ(µ̂n)

√
n(π̂n − πn)

)
+ op(1)

d−→

(
Zβ

hζ(µ0)Zζ + ι(β0)−1hπ(µ0)Zπ

)
. �

Proof of Corollary 4.1: For case (i),

√
n(µ̂1

n − µ1
n) =

√
n[h1(ζ̂n)− h1(ζn)] = h1

ζ(ζ̂n)
√
n(ζ̂n − ζn) + op(1)

d−→ h1
ζ(ζ0)τ ζ0,b(π

∗
0,b),

where the first equality follows from Lemma A.2, the second equality follows from the mean

value theorem, Lemma 4.1(ii) and Lemma A.1(i) and the weak convergence follows from the

CMT, Lemma 4.1(ii) and Lemma A.1(i). The results for β̂n, µ̂2
n and the joint convergence of the

three components follow directly from Lemmas A.2 and A.1(i), Lemma 4.1(ii) and the CMT.

For case (ii), note that

√
nι(βn)(µ̂n − µn) =

√
nι(βn)[h(ζ̂n, π̂n)− h(ζn, πn)]

=
√
nι(βn)[h(ζ̂n, π̂n)− h(ζn, π̂n)] +

√
nι(βn)[h(ζn, π̂n)− h(ζn, πn)]

=
√
nι(βn)[hζ(µ̂n)(ζ̂n − ζn) + op(n

−1/2)]

+
√
nι(βn)[hπ(ζn, π̂n)(π̂n − πn) + op(n

−1/2ι(βn)−1)]

= hπ(ζn, π̂n)
√
nι(βn)(π̂n − πn) + op(1)

d−→ hπ(µ0)Zπ,

where the first equality follows from Lemma A.2, the third equality follows from the mean value

theorem, Lemma 4.1(ii) and Lemma A.1(ii), while the final equality and weak convergence

result follow from the CMT, Lemma 4.1(ii) and Lemma A.1(ii). Nearly identical arguments to

those used for case (i) provide that
√
n(µ̂1

n − µ1
n)

d−→ h1
ζ(ζ0)Zζ . Joint convergence of the three

components immediately follows from Lemma A.1(ii). �

Proof of Proposition 6.1: The proof is nearly identical to the proof of Theorem 5.1(b)(iv)

of AC12, using Proposition 5.1 in the place of Theorems 4.2 and 4.3 of AC12. �

Proof of Proposition 6.2: The proof of this proposition verifies that the assumptions

of Theorem Bonf-Adj of McCloskey (2017) hold, with some modifications. First, Assumption

PS of McCloskey (2017) holds with γ1 = (β, π), γ2 = (ζ, δ) and γ3 = ϕ. For the definition
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of {γn,h}, γn,h,1 = (βn,h, n
−1/2πn,h) and γn,h,2 = (ζn,h, δn,h). Note that h1,1 = b, where h1,1

denotes the first dβ elements of h1. In the notation of McCloskey (2017), sequences {γn,h} with

‖h1,1‖ < ∞ (‖h1,1‖ = ∞) correspond to weak (semi-strong or strong) identification sequences

{γn} ∈ Γ(γ0, 0, b) with ‖b‖ <∞ ({γn} ∈ Γ(γ0,∞, ω0)) in the notation of this paper.

Second, for Assumption DS of McCloskey (2017), Tn(θn) = Wn(vn) ĥn,1 = (b̂n, π̂n) and

ĥn,2 = (ζ̂n, δ̂n). Proposition 5.1 provides the marginal weak convergence of Tωn(θωn) for all

sequences {γωn,h}, where in the notation of McCloskey (2017), Wh = λ(π∗0,b; γ0, b) when ‖h1,1‖ <
∞ and Wh is distributed χ2

dr
when ‖h1,1‖ = ∞. Lemma A.1 and Assumption FD provide

the marginal weak convergence of ĥωn = (ĥωn,1, ĥωn,2) for all sequences {γωn,h}, where in the

notation of McCloskey (2017), h̃1 = (b + τβ0,b(π
∗
0,b), π

∗
0,b) when ‖h1,1‖ < ∞, h̃1 = (b + Zβ, π0)

when ‖h1,1‖ = ∞ and h2 = (ζ0, δ0). Joint convergence of (Tωn(θωn), ĥωn) follows from nearly

identical arguments for joint convergence to those used in the proof of Theorem 5.1 of AC14.

Third, for Definition MLLD of McCloskey (2017), we are in what McCloskey (2017) refers to

as “the usual case” for which u = 1, W̃
(1)
h = λ(π∗0,b; γ0, b) and H̄(1),c = ∅ since P (|λ(π∗0,b; γ0, b)| <

∞) = 1 under the assumptions of Proposition 5.1. Since we are in the usual case, there is no

need to define the auxiliary sequence of parameters {ζn} (it can be any arbitrary sequence in

Rr for arbitrary r > 0) and P = Rr∞ for any r > 0. Since Wh = λ(π∗0,b; γ0, b) = W̃
(1)
h when

‖h1,1‖ < ∞ and Wh = W̃
(1)
h is distributed χ2

dr
when ‖h1,1‖ = ∞, the only item left to verify

is that λ(π∗0,b; γ0, b) is completely characterized by h(1) = h = (b, π0, ζ0, δ0). This holds by

Assumption FD.

Fourth, for Assumption Cont-Adj of McCloskey (2017), H̄(1) = H. This assumption holds

for any δ(1) > 0 and δ̄(1) ≤ α since λ(π∗0,b; γ0, b) is an absolutely continuous random variable with

quantiles that are continuous in b and π0 and λ(π∗0,b; γ0, b)
d∼ χ2

dr
for any b such that ‖b‖ = ∞.

Fifth, Assumption Sel holds trivially since we are in the “usual case”.

Sixth, Assumption CS of McCloskey (2017) can be modified and applied to Îan(·) and its

limit counterpart Ia0 (·) so that: (i)

sup

(b,π0)∈{(b̃,π̃)∈R
dβ+dπ
∞ :(b̃,γ̃)∈L}

dH(Îan(b, π0), Ia0 (b, π0))
p−→ 0

under any {γn} ∈ Γ(γ0), where dH(A,B) denotes the Hausdorff distance between the two sets

A and B; (ii) Ia0 (·) is a continuous and compact-valued correspondence; (iii) Pγn(Îan(b̂n, π̂n) ⊂
H̄

(1)
1 (ĥcn,2)) = 1 for all n ≥ 1 and {γn} ∈ Γ(γ0) and P (Ia0 (b + τβ0,b(π

∗
0,b), π

∗
0,b) ⊂ H̄

(1)
1 (hc2)) = 1;

and (iv) Ia0 (b + τβ0,b(π
∗
0,b), π

∗
0,b) need not satisfy a coverage requirement (i.e., P (h1 ∈ Ia0 (b +

τβ0,b(π
∗
0,b), π

∗
0,b) ≥ 1−a). The proof of Theorem Bonf-Adj in McCloskey (2017) still goes through

with this modification of Assumption CS. Condition (i) is satisfied by the consistency of (ζ̂n, δ̂n)
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and the uniform consistency of Σ̂n(·) under any {γn} ∈ Γ(γ0). The former holds by Lemma A.1

and Assumption FD while the latter holds by Assumptions V1 and V2 of AC12. For condition

(ii), Ia0 (·) is clearly continuous and compact-valued. Note that P(ζ̂n, δ̂n) and P(ζ0, δ0) are equal

to H̄(1)(ĥcn,2) and H̄(1)(hc2) in the notation of McCloskey (2017) so that condition (iii) holds by

construction.

Seventh, note that rather than using a quantile adjustment function (a(j)(·) in the notation

of McCloskey, 2017), we are fixing the quantile at level 1 − α and adding a size-correction

function ς(·) to it. The proof of Theorem Bonf-Adj of McCloskey (2017) can be easily adjusted

to this modification. Rather than requiring the quantile adjustment function to be continuous,

the proof requires ς(·) to be continuous. That is, Assumption a(i) of McCloskey (2017) may

be replaced by the analogous assumption: ς(·) is continuous. In practice, ς(·) is only evaluated

at the point (ζ̂n, δ̂n,
ˆ̄Σn), which is consistent with this assumption. Due to the replacement of

quantile adjustment by additive size-correction, Assumption a(ii) of McCloskey (2017) should

also be replaced by the analogous assumption: P (λ(π∗0,b; γ0, b) ≥ sup`∈La0(b,γ0)∩L(v) c1−α(`) +

ς(ζ0, δ0, Σ̄(b, γ0))) ≤ α for all (b, γ0) ∈ L0 ∩ L(v). This assumption holds by the construction of

ς(ζ̂n, δ̂n,
ˆ̄Σn) and the (uniform) consistency of (ζ̂n, δ̂n, Σ̂n(·)).

Finally, Assumption Inf-Adj of McCloskey (2017) holds vacuously since H̄(1),c = ∅ and

Assumption LB-Adj of that paper is imposed by Assumption DF2. �
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B Appendix B: Assumption Verifications for Threshold-Crossing

Example

Before proceeding to verify the assumptions imposed for the Threshold-Crossing Model example,

we provide the details for the claim that ‖η̃(µ̂n)‖ diverges for µ̂sn = (µ̂n,3, µ̂n,4) made in the

continuation of Example 2.3 in Section 4.

Proof ‖η̃(µ̂n)‖ diverges in Example 2.3: Note that

η̃n(µ̂n) =
√
nS(µ̂n)

[
h3(ζn, π̂n)− h3(ζn, πn) +

C3(h3(µ̂n), ζ̂1,n; π̂n)

C1(h3(µ̂n), ζ̂1,n; π̂n)
(π̂n − πn)

]

=
√
nS(µ̂n)

[
ζ3,n(ζ1,n − 1)(ζ1,n − ζ3,n)

(ζ1,n − ζ3,nπ̂n + ζ1,nζ3,nπ̂n)(ζ1,n − ζ3,nπn + ζ1,nζ3,nπn)

+
C3(h3(µ̂n), ζ̂1,n; π̂n)

C1(h3(µ̂n), ζ̂1,n; π̂n)

]
(π̂n − πn)

=
√
nS(µ̂n)

[
ζ3,n(ζ1,n − 1)(ζ1,n − ζ3,n)

(ζ1,n − ζ3,nπ̂n + ζ1,nζ3,nπ̂n)(ζ1,n − ζ3,nπn + ζ1,nζ3,nπn)

− ζ̂3,n(ζ̂1,n − 1)(ζ̂1,n − ζ̂3,n)

(ζ̂1,n − ζ̂3,nπ̂n + ζ̂1,nζ̂3,nπ̂n)2

]
(π̂n − πn)

=
√
nS(µ̂n)

[
η̃Nn (µ̂n)

η̃Dn (µ̂n)

]
(π̂n − πn),

where

η̃Nn (µ̂n) = ζ3,n(ζ1,n − 1)(ζ1,n − ζ3,n)(ζ̂1,n − ζ̂3,nπ̂n + ζ̂1,nζ̂3,nπ̂n)

− ζ̂3,n(ζ̂1,n − 1)(ζ̂1,n − ζ̂3,n)(ζ1,n − ζ3,nπn + ζ1,nζ3,nπn)

= ζ3,n(ζ1,n − 1)(ζ1,n − ζ3,n)[(ζ̂1,n − ζ̂3,nπ̂n + ζ̂1,nζ̂3,nπ̂n)− (ζ1,n − ζ3,nπn + ζ1,nζ3,nπn)]

+ [ζ3,n(ζ1,n − 1)(ζ1,n − ζ3,n)− ζ̂3,n(ζ̂1,n − 1)(ζ̂1,n − ζ̂3,n)](ζ1,n − ζ3,nπn + ζ1,nζ3,nπn)

= ζ2
3,n(ζ1,n − 1)2(ζ1,n − ζ3,n)(π̂n − πn) +Op(n

−1/2) = Op(n
−1/2‖βn‖−1)

with the final two equalities resulting from Lemma A.1 and a mean value expansion of the term

ζ̂3,n(ζ̂1,n − 1)(ζ̂1,n − ζ̂3,n), and

η̃Dn (µ̂n) = (ζ1,n − ζ3,nπ̂n + ζ1,nζ3,nπ̂n +Op(n
−1/2))2(ζ1,n − ζ3,nπ + ζ1,nζ3,nπ) = Op(1)

by Lemma A.1. Noting that both S(µ̂n) and η̃Dn (µ̂n)−1 are also Op(1) by Lemma A.1, we may

combine the expressions for η̃n(µ̂n), S(µ̂n), η̃Nn (µ̂n) and η̃Dn (µ̂n) to conclude that ‖η̃n(µ̂n)‖ =
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‖Op(n−1/2‖βn‖−1)
√
n(π̂n − πn)‖ = ‖Op(n−1/2‖βn‖−2)‖ → ∞, according to Lemma A.1. �

We now proceed to verify the imposed assumptions for the Threshold-Crossing Model ex-

ample. Hereafter, Andrews and Cheng (2013a) and Han and Vytlacil (2017) are abbreviated as

AC13 and HV16. The supplemental material for AC12, AC13 and AC14, Andrews and Cheng

(2012b, 2013b, 2014b), are abbreviated as AC12supp, AC13supp and AC14supp. The working

paper version of AC13 is abbreviated as ACMLwp. And “with respect to” is abbreviated as

“w.r.t.”

B.1 Assumptions for Threshold Crossing Models

The assumptions in the main text of the current paper and the assumptions in AC12 on objects

involving the transformed parameter θ are verified under assumptions introduced in this section.

The assumptions in AC12 are verified by verifying those in AC13.

Assumption TC1: {Wi : i ≥ 1} is an i.i.d. sequence.

Assumption TC2: (i) Z ⊥ (ε, ν);

(ii) Fε and Fν are known marginal distributions of ε and ν, respectively, that are strictly increas-

ing and absolutely continuous with respect to the Lebesgue measure such that E[ε] = E[ν] = 0

and V ar(ε) = V ar(ν) = 1;

(iii) (ε, ν)′ ∼ Fεν(ε, ν) = C(Fε(ε), Fν(v);π) where C : (0, 1)2 → (0, 1) is a copula known up to

a scalar parameter π ∈ Π such that C(u1, u2, ;π) is three-times differentiable in (u1, u2, π) ∈
(0, 1)2 ×Π;

(iv) The copula C(u1, u2, ;π) satisfies

C(u1|u2;π) ≺S C(u1|u2;π′) for any π < π′, (B.1)

where “≺S” is a stochastic ordering defined in HV16 (Definition 3.2);

(v) (1, Z) does not lie in a proper linear subspace of R2;

(vi) Θ∗ is open and convex.

Given the form of h in (3.8) with c4(ζ) set equal to zero, we write π = π3 in this assumption

and below. The conditions in TC2 are sufficient for (global) identification of θ when β 6= 0. The

argument is similar to that in HV16, except that the condition for the parameter space TC2(vi)

is stronger than that in HV16.

For the next assumption, define Θ∗δ ≡ {θ ∈ Θ∗ : |β| < δ} for some δ > 0.

Assumption TC3: (i) Θ ≡ Θ−π ×Π, and Θ−π and Π are compact and simply connected;
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(ii) int(Θ) ⊃ Θ∗;

(iii) For some δ > 0, Θ ⊃
{
β ∈ Rdβ : |β| < δ

}
× Z0 × Π ⊃ Θ∗δ for some non-empty open set

Z0 ⊂ Rdµ−dπ and Π.

(iv) h−1(Z0 ×Π) = Z0 ×Π for some non-empty open set Z0 ⊂ Rdµ−dπ .

As is typical, Assumption TC3(i)-(ii) will be satisfied by a proper choice of the optimization

parameter space. For concreteness, we define

Θ∗ ≡ {θ = (β, ζ,π1,π2, π) ∈ [−0.98, 0.98]× [0.01, 0.99]× [0.01, 0.99]× [0.01, 0.99]× [−0.99, 0.99]

: 0.01 ≤ β + ζ ≤ 0.99} (B.2)

and

Θ ≡ {θ = (β, ζ,π1,π2, π) ∈ [−0.98− ε, 0.98 + ε]× [0.01− ε, 0.99 + ε]× [0.01− ε, 0.99 + ε]

×[0.01− ε, 0.99 + ε]× [−0.99− ε, 0.99 + ε] : 0.01− ε ≤ β + ζ ≤ 0.99 + ε} (B.3)

for some ε > 0 so that TC3(i)-(ii) is clearly satisfied for small enough ε. Given the definition

(B.2), TC4 below also holds if we define the parameter space Φ∗(θ) of φ ≡ φ1 as

Φ∗(θ) = Φ∗ ≡ [0.01, 0.99]. (B.4)

TC3(iii) is satisfied by setting

Z0 ≡ (0.01− δ, 0.99 + δ)3

for δ < ε/2. For TC3(iv), let h̃−1(ζ,π) = (h−1
1 (ζ,π), h−1

2 (ζ,π), h−1
3 (ζ,π)), the first three

elements of (3.12). Note that h4(ζ, π) = π (i.e., π3 = π) and for any given π ∈ Π, h̃−1(Z0, π)

does not depend on π. Thus, we may set Z0 = h̃−1(Z0, π) for any π ∈ Π, noting that Z0 must

be a non-empty open set by the continuity of the first three elements of h(·). The latter follows

from TC2(iii) and (3.8) after setting c1(ζ) = ζ1, c2(ζ) = ζ2 and c3(ζ) = ζ3.

Assumption TC4: (i) Γ is compact and Γ = {γ = (θ, φ) : θ ∈ Θ∗, φ ∈ Φ∗(θ)};
(ii) ∀δ > 0, ∃γ = (β,µ, φ) ∈ Γ with 0 < |β| < δ;

(iii) ∀γ = (β,µ, φ) ∈ Γ with 0 < |β| < δ for some δ > 0, γa = (aβ,µ, φ) ∈ Γ ∀a ∈ [0, 1].

Assumption TC4(ii) guarantees that the true parameter space includes a region where weak

identification occurs and TC4(iii) ensures that Γ is consistent with the existence of K(θ; γ),

defined later.

Assumption TC5: (i) C(u1, u2, ;π) is bounded away from zero over (0, 1)2 ×Π;
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(ii) 0 < φ1 ≡ Prγ [Z = 1] < 1 ∀γ ∈ Γ.

Lemma B.1. TC5 and TC2(iii) imply the following: for (y, d, z) ∈ {0, 1}3, ∀γ = (θ, φ) ∈ Γ,

and ∀γ = (θ, φ) ∈ Γ,

(i) the first, second, and third order derivatives of pyd,z(θ) are bounded over Θ;

(ii) pyd,z(θ) is bounded away from zero over Θ and 0 < φ1 < 1;

(iii) h̄(θ) is three-times differentiable on Θ;

(iv) pyd,z(θ) ≡ pyd,z(h̄(θ)) is three-times differentiable on Θ and the first, second, and third order

derivatives of pyd,z(θ) are bounded over Θ;

(v) pyd,z(θ) is bounded away from zero over Θ.

Proof of Lemma B.1: (i) holds by TC2(iii), the fact that the domain Θ is compact by TC3(i),

and the definitions of pyd,z(θ). (ii) immediately holds by TC5. For (iii), given (3.9), TC2(iii)

and TC3(i) imply that h(µ) is three-times differentiable in µ and hence h̄(θ) = (β, h(µ)) is

three-times differentiable in θ. Next, (iv) holds by (i), (iii), and the chain rule, and (v) trivially

holds by (ii).

B.2 Verification of Assumptions in the Main Text

Assumptions CF, ID, Jac, and Reg3 are verified in the main text. Assumption Reg1 is satis-

fied with ḡn(θ) = ξ̂n − g(θ), where each element pyd,z(θ) of the vector g(θ) is continuously

differentiable by TC2(iii). For Assumption H, H(i) holds since its sufficient conditions that Θ is

bounded and h is continuous hold by S2(v), verified below, and by Proposition 3.1, respectively.

H(ii) is also trivially satisfied by TC3(i). For Reg2, rank(hsπ(µ)) = 1 if hs(π) contains h2(π),

h3(π) or h4(π) and rank(hsπ(µ)) = 0 otherwise, as can be seen from the form of h in (3.8) upon

setting c1(ζ) = ζ1, c2(ζ) = ζ2, c3(ζ) = ζ3 and c4(ζ) = 0.

B.3 Verification of Assumptions in Andrews and Cheng (2013)

In this section, given our transformed parameter θ and associated transformed objects, we verify

the regularity conditions for the asymptotic theory of the ML estimator θ̂n in AC13. Specifically,

we show that Assumptions TC1–TC5 are sufficient for Assumptions S1–S4, B1, B2, C6, C7, V1,

and V2 of AC13. Then, under Assumptions B1 and B2, Assumptions S1–S3 of AC13 imply

Assumptions A, B3, C1–C4, C8, and D1–D3 of AC12; see Lemma 9.1 in ACMLwp. Maintaining

the same labels of AC13, below we rewrite the assumptions of AC13 before verifying them.

Note that in our stylized threshold crossing model, β is scalar. Therefore we do not consider

Assumptions S3∗ and V1∗ of AC13 which apply to the vector β case.
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Assumption S1: {Wi : i ≥ 1} is an i.i.d. sequence.29

Assumption S2: (i) For some function ρ(w, θ) ∈ R, Qn(θ) = n−1
∑n

i=1 ρ(Wi, θ), where ρ(w, θ)

is twice continuously differentiable in θ on an open set containing Θ∗ ∀w ∈ W.

(ii) ρ(w, θ) does not depend on π when β = 0 ∀w ∈ W.

(iii) ∀γ0 ∈ Γ with β0 = 0, Eγ0ρ(Wi, ψ, π) is uniquely minimized by ψ0 ∀π ∈ Π.

(iv) ∀γ0 ∈ Γ with β0 6= 0, Eγ0ρ(Wi, θ) is uniquely minimized by θ0.

(v) Ψ(π) is compact ∀π ∈ Π, and Π and Θ are compact.

(vi) ∀ε > 0, ∃δ > 0 such that dH(Ψ(π1),Ψ(π2)) < ε ∀π1, π2 ∈ Π with |π1−π2| < δ, where dH(·, ·)
is the Hausdorff metric.

Verification of S2(i): By TC2(iii), pyd,z(θ) is twice continuously differentiable in θ. Then,

since pyd,z(θ) ≡ pyd,z(h̄(θ)) is twice continuously differentiable by Lemma B.1, so is ρ(w, θ) =

−
∑

y,d,z=0,1 1ydz(w) log pyd,z(θ). �

Verification of S2(ii): It is easy to see from (2.5)–(2.6) that, when β = 0, pyd,0(θ) = pyd,1(θ)

for all θ and (y, d), which implies that pyd,0(h̄(θ)) = pyd,1(h̄(θ)) for all θ. Therefore

p11,1(θ) = p11,0(θ) = ζ3,

p10,1(θ) = p10,0(θ) = ζ2, (B.5)

p01,1(θ) = p01,0(θ) = ζ1 − ζ3,

where the second equality in each equation is from (7.1)–(7.2). Therefore pyd,z(θ) does not

depend on π when β = 0, and hence ρ(w, θ) = −
∑

y,d,z=0,1 1ydz(w) log pyd,z(θ) does not depend

on π. �

Verification of S2(iii): When β0 = 0, for ψ 6= ψ0 and for a given π,

Eγ0ρ(Wi, ψ, π)− Eγ0ρ(Wi, ψ0, π) = −
∑

y,d,z=0,1

pyd,z(ψ0, π0)φz,0 log
pyd,z(ψ, π)

pyd,z(ψ0, π)

≥ − log
∑

y,d,z=0,1

pyd,z(ψ0, π0)φz,0
pyd,z(ψ, π)

pyd,z(ψ0, π)

= − log
∑

y,d,z=0,1

pyd,z(ψ, π)φz,0

= 0,

where the last equality holds since
∑

y,d pyd,1(θ) =
∑

y,d pyd,0(θ) = 1 and φ0,0 = 1 − φ1,0, and

29This is actually a sufficient condition for Assumption S1 of AC13.
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the second-to-last equality holds since

pyd,z(ψ0, π0) = pyd,z(ψ0, π) ≡ p0
yd (B.6)

when β0 = 0, as in (B.5). Notationally, p11 = ζ3, p10 = ζ2, and p01 = ζ1 − ζ3. The Jensen’s

inequality is strict if there exist (y, d, z) ∈ {0, 1}3 such that

pyd,z(ψ, π)

pyd,z(ψ0, π)
6= 1.

Under TC2, this condition can be readily shown to hold by a slight modification of the identifi-

cation proof of Theorem 4.1 in HV16, which is omitted here for brevity. �

Verification of S2(iv): For θ 6= θ0,

Q0(θ)−Q0(θ0) = −
∑

y,d,z=0,1

pyd,z(θ0)φz,0 log
pyd,z(θ)

pyd,z(θ0)

> − log
∑

y,d,z=0,1

pyd,z(θ)φz,0

= 0,

where the Jensen’s inequality is strict because there exist (y, d, z) ∈ {0, 1}3 such that

pyd,z(θ)

pyd,z(θ0)
6= 1

by Theorem 4.1 in HV16 under TC2. �

Verification of S2(v): By TC3(i), Π is compact and the parameter space is the same before

and after the transformation. Also, Θ = h̄−1(Θ) is compact since Θ is compact and Assumption

H(i) holds. For compactness of Ψ(π), first note that, for a given π ∈ Π, h̄−π(·, π), which is h̄(·, π)

except the last element, is a homeomorphism. This is because Θ−π is simply connected, h̄−π(·, π)

is continuous, and Ψ(π) is bounded since Θ is bounded. Then,

Θ−π = Θ−π(π) ≡ h̄−π(Ψ(π), π)

where the first equality is because the dependence parameter π does not restrict the space of

the remaining elements of θ (or by TC3(i)), and thus Ψ(π) = h̄−1
−π(Θ−π, π). Therefore Ψ(π) is

compact since Θ−π is compact and h̄−π(·, π) is proper. �

Verification of S2(vi): The space of ψ = (β, ζ) is continuous in π since Ψ(π) = h̄−1
−π(Θ−π, π),
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where h̄−1
−π(θ−π, π) is continuous in π by (3.12) and TC2(iii). �

Let ρθ(w, θ) and ρθθ(w, θ) denote the first and second order partial derivatives of ρ(w, θ)

w.r.t. θ, respectively. Also, let ρψ(w, θ) and ρψψ(w, θ) denote the first and second order partial

derivatives of ρ(w, θ) w.r.t. ψ, respectively. Recall

B(β) ≡

[
Idψ 0dψ×1

01×dψ β

]
∈ Rdθ×dθ .

For β 6= 0, let

B−1(β)ρθ(w, θ) ≡ ρ†θ(w, θ),
B−1(β)ρθθ(w, θ)B

−1(β) ≡ ρ†θθ(w, θ) + r(w, θ),
(B.7)

where ρ†θθ(w, θ) is symmetric and ρ†θ(w, θ), ρ
†
θθ(w, θ), and r(w, θ) satisfy Assumption S3 below30;

see below for actual expressions of these terms. Next, define

V †(θ1, θ2; γ0) ≡ Covγ0
(
ρ†θ(Wi, θ1), ρ†θ(Wi, θ2)

)
.

Let λmax(A) and λmin(A) denote the maximum and minimum eigenvalues, respectively, of a

square matrix A.

In this example of a threshold crossing model, define Dθp
†
yd,z(θ) ≡ B

−1(β)Dθpyd,z(θ) so that

ρθ(w, θ) = −
∑

y,d,z=0,1

1ydz(w)
1

pyd,z(θ)
Dθpyd,z(θ),

ρθθ(w, θ) = −
∑

y,d,z=0,1

1ydz(w)

[
− 1

pyd,z(θ)2
Dθpyd,z(θ)Dθpyd,z(θ)

′ +
1

pyd,z(θ)
Dθθpyd,z(θ)

]
,

ρ†θ(w, θ) = −
∑

y,d,z=0,1

1ydz(w)
1

pyd,z(θ)
Dθp

†
yd,z(θ),

ρ†θθ(w, θ) = ρ†θ(w, θ)ρ
†
θ(w, θ)

′ =
∑

y,d,z=0,1

1ydz(w)
1

pyd,z(θ)2
Dθp

†
yd,z(θ)Dθp

†
yd,z(θ)

′,

r(w, θ) = −
∑

y,d,z=0,1

1ydz(w)
1

pyd,z(θ)
B−1(β)Dθθpyd,z(θ)B

−1(β).

Suppressing the argument (ζ1, ζ3, π) in h3 and its derivatives, and suppressing the argument

30The remainder term r(w, θ) and related conditions in S3 are slightly more general than conditions on
β−1ε(w, θ) and related conditions in AC13.
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(ζ1, ζ2, π) in h2 and its derivatives, note that from (7.1)–(7.2),

Dθp11,0(θ) =


0

0

0

1

0

 , Dθp10,0(θ) =


0

0

1

0

0

 , Dθp01,0(θ) =


0

1

0

−1

0

 , Dθp00,0(θ) =


0

−1

−1

0

0

 ,

Dθp11,1(θ) =


C2 (h3, ζ1 + β;π)

C2 (h3, ζ1 + β;π) + C1 (h3, ζ1 + β;π)h3,ζ1

0

C1 (h3, ζ1 + β;π)h3,ζ3

Cπ (h3, ζ1 + β;π) + C1 (h3, ζ1 + β;π)h3,π



=


C2 (h3, ζ1 + β;π)

C2 (h3, ζ1 + β;π) + C1 (h3, ζ1 + β;π)h3,ζ1

0

C1 (h3, ζ1 + β;π)h3,ζ3

β
{
Cπ2

(
h3, ζ1 + β†;π

)
+ C12

(
h3, ζ1 + β†;π

)
h3,π

}

 , (B.8)

where 0 ≤ |β†| ≤ β. The last equality is derived using a mean value expansion and the fact

that Cπ (h3, ζ1;π) +C1 (h3, ζ1;π)h3,π = 0, obtained by differentiating C(h3, ζ1;π) = ζ3 w.r.t. π.

Furthermore,

Dθp10,1(θ) =


−C2 (h2, ζ1 + β;π)

h2,ζ1 − C2 (h2, ζ1 + β;π)− C1 (h2, ζ1 + β;π)h2,ζ1

h2,ζ2 − C1 (h2, ζ1 + β;π)h2,ζ2

0

h2,π − Cπ (h2, ζ1 + β;π)− C1 (h2, ζ1 + β;π)h2,π



=


−C2 (h2, ζ1 + β;π)

h2,ζ1 − C2 (h2, ζ1 + β;π)− C1 (h2, ζ1 + β;π)h2,ζ1

h2,ζ2 − C1 (h2, ζ1 + β;π)h2,ζ2

0

−β
{
Cπ2

(
h2, ζ1 + β††;π

)
+ C12

(
h2, ζ1 + β††;π

)
h2,π

}

 , (B.9)

where 0 ≤ |β††| ≤ β and the last equality is derived using a mean value expansion and the fact
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that h2,π − Cπ (h2, ζ1;π)− C1 (h2, ζ1;π)h2,π = 0. Finally,

Dθp01,1(θ) =


1

1

0

0

0

−Dθp11,1(θ), Dθp00,1(θ) =


−1

−1

0

0

0

−Dθp10,1(θ).

Also, note that for all (y, d),

Dθθpyd,0(θ) = 0 (B.10)

and

Dθθp01,1(θ) = −Dθθp11,1(θ), Dθθp00,1(θ) = −Dθθp10,1(θ). (B.11)

Now, for z = 0,

Dθp
†
yd,z(θ) = Dθpyd,z(θ) (B.12)

and, for z = 1,

Dθp
†
11,1(θ) =


C2 (h3, ζ1 + β;π)

C2 (h3, ζ1 + β;π) + C1 (h3, ζ1 + β;π)h3,ζ1

0

C1 (h3, ζ1 + β;π)h3,ζ3

Cπ2

(
h3, ζ1 + β†;π

)
+ C12

(
h3, ζ1 + β†;π

)
h3,π

 , (B.13)

Dθp
†
10,1(θ) =


−C2 (h2, ζ1 + β;π)

h2,ζ1 − C2 (h2, ζ1 + β;π)− C1 (h2, ζ1 + β;π)h2,ζ1

h2,ζ2 − C1 (h2, ζ1 + β;π)h2,ζ2

0

−Cπ2

(
h2, ζ1 + β††;π

)
− C12

(
h2, ζ1 + β††;π

)
h2,π

 , (B.14)

and expressions for the remaining two derivatives can be derived analogously.

Note that

ρψ(w, θ) = −
∑

y,d,z=0,1

1ydz(w)
1

pyd,z(θ)
Dψpyd,z(θ),
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ρψψ(w, θ) = −
∑

y,d,z=0,1

1ydz(w)

[
− 1

pyd,z(θ)2
Dψpyd,z(θ)Dψpyd,z(θ)

′ +
1

pyd,z(θ)
Dψψpyd,z(θ)

]
,

where, with ψ = (β, ζ) = (β, ζ1, ζ2, ζ3),

Dψp11,0(θ) =


0

0

0

1

 , Dψp10,0(θ) =


0

0

1

0

 , Dψp01,0(θ) =


0

1

0

−1

 , Dψp00,0(θ) =


0

−1

−1

0

 ,

Dψp11,1(θ) =


C2 (h3, ζ1 + β;π)

C2 (h3, ζ1 + β;π) + C1 (h3, ζ1 + β;π)h3,ζ1

0

C1 (h3, ζ1 + β;π)h3,ζ3

 ,

Dψp10,1(θ) =


−C2 (h2, ζ1 + β;π)

h2,ζ1 − C2 (h2, ζ1 + β;π)− C1 (h2, ζ1 + β;π)h2,ζ1

h2,ζ2 − C1 (h2, ζ1 + β;π)h2,ζ2

0

 ,
and

Dψp01,1(θ) =


1

1

0

0

−Dψp11,1(θ), Dψp00,1(θ) =


−1

−1

0

0

−Dψp10,1(θ).

Also, for all (y, d) and θ,

Dψψpyd,0(θ) = 0 (B.15)

and

Dψψp01,1(θ) = −Dψψp11,1(θ), Dψψp00,1(θ) = −Dψψp10,1(θ). (B.16)

Assumption S3: (i) (a) Eγ0r(Wi, θ0) = 0; and (b) ‖Eγ0r(Wi, ψ0, π)‖ ≤ C |π − π0| ∀γ0 ∈ Γ

with 0 < |β0| < δ for some δ > 0.

(ii) (a) For all δ > 0 and some function M1(w) : W → R+, ‖ρψψ(w, θ1)− ρψψ(w, θ2)‖ +∥∥∥ρ†θθ(w, θ1)− ρ†θθ(w, θ2)
∥∥∥ ≤ M1(w)δ, ∀θ1, θ2 ∈ Θ with ‖θ1 − θ2‖ ≤ δ, ∀w ∈ W; and (b) for

all δ > 0 and some function M2(w) :W → R+,
∥∥∥ρ†θ(w, θ1)− ρ†θ(w, θ2)

∥∥∥+‖r(w, θ1)− r(w, θ2)‖ ≤
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M2(w)δ, ∀θ1, θ2 ∈ Θ with ‖θ1 − θ2‖ ≤ δ, ∀w ∈ W.

(iii) Eγ0 supθ∈Θ

{
|ρ(Wi, θ)|1+δ + ‖ρψψ(Wi, θ)‖1+δ +

∥∥∥ρ†θθ(Wi, θ)
∥∥∥1+δ

+M1(Wi) +
∥∥∥ρ†θ(Wi, θ)

∥∥∥q +

‖r(Wi, θ)‖q +M2(Wi)
q ≤ C for some δ > 0 ∀γ0 ∈ Γ, where q is as in Assumption S1.

(iv) (a) λmin(Eγ0ρψψ(Wi, ψ0, π)) > 0 ∀π ∈ Π when β0 = 0; and (b) Eγ0ρ
†
θθ(Wi, θ0) is positive

definite ∀γ0 ∈ Γ.

(v) V †(θ0, θ0; γ0) is positive definite ∀γ0 ∈ Γ.

Verification of S3(i)(a): Note that

Eγ0r(Wi, θ0) = −
∑

y,d,z=0,1

φz,0B
−1(β0)Dθθpyd,z(θ0)B−1(β0) = 0

by (B.10) and (B.11) since β0 6= 0. �

Verification of S3(i)(b): Using (B.10) and (B.11),

Eγ0r(Wi, ψ0, π) =
∑

y,d=0,1

pyd,1(θ0)φ1,0B
−1(β0)

Dθθpyd,1(ψ0, π)

pyd,1(ψ0, π)
B−1(β0)

= φ1,0B
−1(β0)

[
p11,1(θ0)

p11,1(ψ0, π)
Dθθp11,1(ψ0, π) +

p01,1(θ0)

p01,1(ψ0, π)
Dθθp01,1(ψ0, π)

+
p10,1(θ0)

p10,1(ψ0, π)
Dθθp10,1(ψ0, π) +

p00,1(θ0)

p00,1(ψ0, π)
Dθθp00,1(ψ0, π)

]
B−1(β0)

= φ1,0B
−1(β0)

[(
p11,1(θ0)

p11,1(ψ0, π)
− p01,1(θ0)

p01,1(ψ0, π)

)
Dθθp11,1(ψ0, π)

+

(
p10,1(θ0)

p10,1(ψ0, π)
− p00,1(θ0)

p00,1(ψ0, π)

)
Dθθp10,1(ψ0, π)

]
B−1(β0)

= φ1,0B
−1(β0)

[(
(ζ10 + β0)(p11,1(θ0)− p11,1(ψ0, π))

p11,1(ψ0, π)(ζ10 + β0 − p11,1(ψ0, π))

)
Dθθp11,1(ψ0, π)

+

(
(1− ζ10 − β0)(p10,1(θ0)− p10,1(ψ0, π))

p10,1(ψ0, π)(1− ζ10 − β0 − p10,1(ψ0, π))

)
Dθθp10,1(ψ0, π)

]
B−1(β0) (B.17)

where the last equality uses p01,1(θ) = ζ1 + β − p11,1(θ) and p00,1(θ) = 1 − ζ1 − β − p10,1(θ).

Apply the mean value theorem to p11,1(θ0)− p11,1(ψ0, π) w.r.t. π:

p11,1(ψ0, π0)− p11,1(ψ0, π) =
∂p11,1(ψ0, π

†)

∂π
(π0 − π)

=
∂2p11,1(β†, ζ0, π

†)

∂π∂β
(π0 − π)β0, (B.18)

where π† is between π0 and π and 0 ≤ |β†| ≤ |β0|. The second equality holds by another mean
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value expansion of
∂p11,1(ψ0,π†)

∂π w.r.t. β0 around β0 = 0 and the fact that
∂p11,1(β,ζ0,π†)

∂π

∣∣∣
β=0

= 0

since

Cπ(h3(π), ζ1;π) + C1(h3(π), ζ1;π)h3,π(π) = 0

for all (ζ1, ζ3, π). Similarly, using mean value expansions,

p10,1(ψ0, π0)− p10,1(ψ0, π) =
∂2p10,1(β††, ζ0, π

††)

∂π∂β
(π0 − π)β0 (B.19)

for some π†† between π0 and π and 0 ≤ |β††| ≤ |β0|. Therefore, combining (B.17)–(B.19),

‖Eγ0r(Wi, ψ0, π)‖ ≤ |c1|
∥∥B−1(β0)β0Dθθp11,1(ψ0, π)B−1(β0)

∥∥ |π0 − π|

+ |c2|
∥∥B−1(β0)β0Dθθp10,1(ψ0, π)B−1(β0)

∥∥ |π0 − π|

where c1 and c2 are collections of all other terms, whose norms are bounded by (7.1)–(7.2) and

Lemma B.1. Also
∥∥B−1(β0)β0

∥∥ is bounded for 0 < |β0| < δ. Note that
∥∥Dθθp11,1(ψ0, π)B−1(β0)

∥∥
and

∥∥Dθθp10,1(ψ0, π)B−1(β0)
∥∥ can be shown to be bounded for 0 < |β0| < δ by differentiating

(B.13) and (B.14) w.r.t. θ, respectively, and applying Lemma B.1. �

Verification of S3(ii)(a): Generically, for A = aa′ where a = (a1, ..., ap) ∈ Rda and a1, ..., ap

are vectors,

‖A‖ ≤
p∑
j=1

‖aj‖2 ,

and for A∗ = a∗a∗′

‖A−A∗‖ ≤
∥∥a(a− a∗)′

∥∥+
∥∥(a− a∗)a∗′

∥∥ ≤ (‖a‖+ ‖a∗‖) ‖a− a∗‖

≤
p∑
j=1

(
‖aj‖+

∥∥a∗j∥∥) p∑
j=1

∥∥aj − a∗j∥∥ .
Applying this result to the last inequality below,

‖ρψψ(w, θ1)− ρψψ(w, θ2)‖

≤
∑

y,d,z=0,1

∥∥∥∥Dψpyd,z(θ1)Dψpyd,z(θ1)′

pyd,z(θ1)2
−
Dψpyd,z(θ2)Dψpyd,z(θ2)′

pyd,z(θ2)2

∥∥∥∥
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+
∑

y,d,z=0,1

∥∥∥∥Dψψpyd,z(θ1)

pyd,z(θ1)
−
Dψψpyd,z(θ2)

pyd,z(θ2)

∥∥∥∥
≤

∑
y,d,z=0,1

(∥∥∥∥Dψpyd,z(θ1)

pyd,z(θ1)

∥∥∥∥+

∥∥∥∥Dψpyd,z(θ2)

pyd,z(θ2)

∥∥∥∥)∥∥∥∥Dψpyd,z(θ1)

pyd,z(θ1)
−
Dψpyd,z(θ2)

pyd,z(θ2)

∥∥∥∥
+

∑
y,d,z=0,1

∥∥∥∥Dψψpyd,z(θ1)

pyd,z(θ1)
−
Dψψpyd,z(θ2)

pyd,z(θ2)

∥∥∥∥
≤

∑
y,d,z=0,1

dψ∑
j=1

(∣∣∣∣Dψjpyd,z(θ1)

pyd,z(θ1)

∣∣∣∣+

∣∣∣∣Dψjpyd,z(θ2)

pyd,z(θ2)

∣∣∣∣) dψ∑
j=1

∣∣∣∣Dψjpyd,z(θ1)

pyd,z(θ1)
−
Dψjpyd,z(θ2)

pyd,z(θ2)

∣∣∣∣
+

∑
y,d,z=0,1

dψ∑
j,k=1

∣∣∣∣Dψjψkpyd,z(θ1)

pyd,z(θ1)
−
Dψjψkpyd,z(θ2)

pyd,z(θ2)

∣∣∣∣ ,
where |1ydz(w)| ≤ 1 is used in the first inequality. Applying the mean value theorem to the

differential terms,∣∣∣∣Dψjpyd,z(θ1)

pyd,z(θ1)
−
Dψjpyd,z(θ2)

pyd,z(θ2)

∣∣∣∣ ≤
∥∥∥∥∥Dθ

{
Dψjpyd,z(θ

†)

pyd,z(θ†)

}∥∥∥∥∥ ‖θ1 − θ2‖ ,∣∣∣∣Dψjψkpyd,z(θ1)

pyd,z(θ1)
−
Dψjψkpyd,z(θ2)

pyd,z(θ2)

∣∣∣∣ ≤
∥∥∥∥∥Dθ

{
Dψjψkpyd,z(θ

††)

pyd,z(θ††)

}∥∥∥∥∥ ‖θ1 − θ2‖ ,

where θ† and θ†† lie between θ1 and θ2 (element-wise). By Lemma B.1, supθ

∣∣∣∣Dψj pyd,z(θ)

pyd,z(θ)

∣∣∣∣ < c1,

supθ

∣∣∣∣Dθk

{
Dψj pyd,z(θ)

pyd,z(θ)

}∣∣∣∣ < c2 and supθ

∣∣∣∣Dθl

{
Dψjψkpyd,z(θ)

pyd,z(θ)

}∣∣∣∣ < c3 for some positive constants

c1, c2 and c3, and therefore combining the inequalities,

‖ρψψ(w, θ1)− ρψψ(w, θ2)‖ ≤
∑

y,d,z=0,1

dψ∑
j=1

2c1

dψ∑
j=1

dθ∑
k=1

c2 ‖θ1 − θ2‖

+
∑

y,d,z=0,1

dψ∑
j,k=1

dθ∑
l=1

c3 ‖θ1 − θ2‖ . (B.20)

Similarly,∥∥∥ρ†θθ(w, θ1)− ρ†θθ(w, θ2)
∥∥∥

≤
∑

y,d,z=0,1

∥∥∥∥∥Dθp
†
yd,z(θ1)Dθp

†
yd,z(θ1)′

pyd,z(θ1)2
−
Dθp

†
yd,z(θ2)Dθp

†
yd,z(θ2)′

pyd,z(θ2)2

∥∥∥∥∥
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≤
∑

y,d,z=0,1

(∥∥∥∥∥Dθp
†
yd,z(θ1)

pyd,z(θ1)

∥∥∥∥∥+

∥∥∥∥∥Dθp
†
yd,z(θ2)

pyd,z(θ2)

∥∥∥∥∥
)∥∥∥∥∥Dθp

†
yd,z(θ1)

pyd,z(θ1)
−
Dθp

†
yd,z(θ2)

pyd,z(θ2)

∥∥∥∥∥
≤

∑
y,d,z=0,1

dθ∑
j=1

(∣∣∣∣∣Dθjp
†
yd,z(θ1)

pyd,z(θ1)

∣∣∣∣∣+

∣∣∣∣∣Dθjp
†
yd,z(θ2)

pyd,z(θ2)

∣∣∣∣∣
)

dθ∑
j=1

∣∣∣∣∣Dθjp
†
yd,z(θ1)

pyd,z(θ1)
−
Dθjp

†
yd,z(θ2)

pyd,z(θ2)

∣∣∣∣∣
and by Lemma B.1, supθ

∣∣∣∣Dθj p†yd,z(θ)

pyd,z(θ)

∣∣∣∣ < c4 and supθ

∣∣∣∣Dθk

{
Dθj p

†
yd,z(θ)

pyd,z(θ)

}∣∣∣∣ < c5 for some positive

constants c4 and c5, and therefore by applying the mean value theorem as above,

∥∥∥ρ†θθ(w, θ1)− ρ†θθ(w, θ2)
∥∥∥ ≤ ∑

y,d,z=0,1

dθ∑
j=1

2c4

dθ∑
j,k=1

c5 ‖θ1 − θ2‖ . (B.21)

By combining (B.20) and (B.21), we have the desired result. �

Verification of S3(ii)(b): For bounding ‖r(w, θ1)− r(w, θ2)‖, the proof is very similar to the

one above with
∥∥∥ρ†θθ(w, θ1)− ρ†θθ(w, θ2)

∥∥∥. Bounding
∥∥∥ρ†θ(w, θ1)− ρ†θ(w, θ2)

∥∥∥ can also be done

analogously. �

Verification of S3(iii): First, M1(w) is finite and does not depend on w, as can be seen from

the verification of S3(ii)(a). Now, since |1ydz(w)| ≤ 1

Eγ0 sup
θ∈Θ
|ρ(Wi, θ)|1+δ ≤ Eγ0

 ∑
y,d,z=0,1

sup
θ∈Θ
|1ydz(w) · log pyd,z(θ)|

1+δ

≤

 ∑
y,d,z=0,1

sup
θ∈Θ
|log pyd,z(θ)|

1+δ

,

which is bounded since pyd,z(θ) is bounded away from zero for any θ ∈ Θ and (y, d, z) ∈ {0, 1}
by Lemma B.1. Next,

Eγ0 sup
θ∈Θ
‖ρψψ(Wi, θ)‖1+δ

≤ Eγ0

 ∑
y,d,z=0,1

sup
θ∈Θ

∥∥∥∥1ydz(w)

[
− 1

pyd,z(θ)2
Dψpyd,z(θ)Dψpyd,z(θ)

′ +
1

pyd,z(θ)
Dψψpyd,z(θ)

]∥∥∥∥
1+δ

≤

 ∑
y,d,z=0,1

C sup
θ∈Θ

{∥∥Dψpyd,z(θ)Dψpyd,z(θ)
′∥∥+ ‖Dψψpyd,z(θ)‖

}1+δ
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by Lemma B.1, where ‖Dψpyd,z(θ)Dψpyd,z(θ)
′‖ ≤

∑dψ
j=1

∥∥Dψjpyd,z(θ)
∥∥2

, which is bounded by

Lemma B.1, and similarly for ‖Dψψpyd,z(θ)‖. Similar arguments to those used in the verifi-

cation of S3(i)(b) and S3(ii)(a) provide the desired result for the remaining four terms in the

assumption. �

Verification of S3(iv)(a): Note that, when β0 = 0,

Eγ0ρψψ(Wi, ψ0, π) =
∑

y,d,z=0,1

pyd,z(θ0)φz,0

[
Dψpyd,z(ψ0, π)Dψpyd,z(ψ0, π)′

pyd,z(ψ0, π)2
−
Dψψpyd,z(ψ0, π)

pyd,z(ψ0, π)

]

=
∑

y,d,z=0,1

φz,0

[
Dψpyd,z(ψ0, π)Dψpyd,z(ψ0, π)′

p0
yd

−Dψψpyd,z(ψ0, π)

]

=
∑

y,d,z=0,1

φz,0
Dψpyd,z(ψ0, π)Dψpyd,z(ψ0, π)′

p0
yd

where the second equality is by (B.6), and the third equality is by (B.15) and (B.16). Let

Myd,z ≡ Dψpyd,z(ψ0, π)Dψpyd,z(ψ0, π)′ and M̃yd,z ≡Myd,z/p
0
yd so that

Eγ0ρψψ(Wi, ψ0, π) = φ1,0
∑

y,d=0,1

M̃yd,1 + φ0,0
∑

y,d=0,1

M̃yd,0. (B.22)

Let h3(π) ≡ h3(ζ10, ζ30;π) and h2(π) ≡ h2(ζ10, ζ20;π). Note that when β0 = 0, theDψpyd,z(ψ0, π)

terms can be expressed as

Dψp11,0 =


0

0

0

1

 , Dψp10,0 =


0

0

1

0

 , Dψp01,0 =


0

1

0

−1

 , Dψp00,0 =


0

−1

−1

0

 ,

Dψp11,1 =


C2 (h3(π), ζ1;π)

0

0

1

 ,

Dψp10,1 =


−C2 (h2(π), ζ1;π)

0

1

0

 ,
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and

Dψp01,1 =


1− C2 (h3(π), ζ1;π)

1

0

−1

 , Dψp00,1 =


−1 + C2 (h2(π), ζ1;π)

−1

−1

0

 ,
where, in Dψp11,1 and Dψp10,1,

C2 (h3, ζ1;π) + C1 (h3, ζ1;π)h3,ζ1 = 0, (B.23)

C1 (h3, ζ1;π)h3,ζ3 = 1, (B.24)

h2,ζ1 − C2 (h2, ζ1;π)− C1 (h2, ζ1;π)h2,ζ1 = 0, (B.25)

h2,ζ2 − C1 (h2, ζ1;π)h2,ζ2 = 1, (B.26)

by differentiating the objects in (7.1)–(7.2) w.r.t. ζ1, ζ2 and ζ3 and (B.5). Let c ≡ C2 (h3(π), ζ10;π)

and c̃ ≡ C2 (h2(π), ζ10;π) for notational simplicity. Then,

M11,1 =


c2 0 0 c

0 0 0 0

0 0 0 0

c 0 0 1

 , M10,1 =


c̃2 0 −c̃ 0

0 0 0 0

−c̃ 0 1 0

0 0 0 0

 ,

M01,1 =


(1− c)2 1− c 0 c− 1

1− c 1 0 −1

0 0 0 0

c− 1 −1 0 1

 , M00,1 =


(1− c̃)2 1− c̃ 1− c̃ 0

1− c̃ 1 1 0

1− c̃ 1 1 0

0 0 0 0

 ,

M11,0 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 , M10,0 =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 ,

M01,0 =


0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1

 , M00,0 =


0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

 .
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By Weyl (1912),

λmin(A+B) ≥ λmin(A) + λmin(B) (B.27)

for symmetric matrices A and B. Thus, for (B.22),

λmin (Eγ0ρψψ(Wi, ψ0, π)) ≥ λmin

(
φ1,0

∑
y,d=0,1

M̃yd,1

)
+ λmin

(
φ0,0

∑
y,d=0,1

M̃yd,0

)
.

The second term on the right hand side satisfies λmin

(
φ0,0

∑
y,d=0,1

M̃yd,0

)
≥ φ0,0

∑
y,d=0,1

λmin

(
M̃yd,0

)
=

0 by (B.27), the above expressions for the Myd,0’s and since λmin

(
M̃yd,0

)
= λmin (Myd,0) = 0

because p0
yd > 0 for all (y, d) by Lemma B.1(v). The first term on the right hand side

satisfies λmin

(
φ1,0

∑
y,d=0,1

M̃yd,1

)
≥ φ1,0λmin

({
M̃11,1 + M̃01,1 + M̃00,1

})
by (B.27) and since

λmin

(
M̃10,1

)
= λmin (M10,1) = 0. Now we prove λmin(M̃11,1 + M̃01,1 + M̃00,1) > 0, which

then implies that λmin(Eγ0ρψψ(Wi, ψ0, π)) > 0 as desired since φ1,0 > 0 by TC5(ii). Un-

der TC5(i) and by Lemma B.1(v), let a ≡ p0
11/p

0
01 and b ≡ p0

11/p
0
00 for simplicity. Then,

M̃11,1 + M̃01,1 + M̃00,1 = (M11,1 + aM01,1 + bM00,1) /p0
11 and

M ≡M11,1 + aM01,1 + bM00,1

=


a(1− c)2 + b(1− c̃)2 + c2 a(1− c) + b(1− c̃) b(1− c̃) −a(1− c) + c

a(1− c) + b(1− c̃) a+ b b −a
b(1− c̃) b b 0

−a(1− c) + c −a 0 a+ 1

 .

Then one can easily show the following: For the k-th leading principal minor |Mk| and determi-

nant |M | of M ,

|M1| = a(1− c)2 + b(1− c̃)2 + c2 > 0,

|M2| = ab [(1− c) + (1− c̃)]2 + (a+ b)c2 > 0,

|M3| = abc̃2 > 0,

|M | = ab
[
a(2c− 1)2 + b(c̃− 1)2

]
> 0,

and therefore M is positive definite and so is M/p0
11, i.e., λmin(M̃11,1 + M̃01,1 + M̃00,1) > 0. �

Verification of S3(iv)(b): We divide this proof into two cases: (i) β0 6= 0 and (ii) β0 = 0.
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Case (i): Note that by S3(i)(a),

Eγ0B
−1(β0)ρθθ(Wi, θ0)B−1(β0) = Eγ0ρ

†
θθ(Wi, θ0).

We first show that Eγ0ρθθ(w, θ0) is positive definite For a positive definite matrix A, P ′AP is

also positive definite, provided that P has full rank. Therefore, given Remark 3.1, since the

full vector Jacobian ∂g(θ0)
∂θ′ has full rank by HV16, it suffices to show that I†(g(θ0)) is positive

definite where g(θ0) ≡ g(h̄(θ0)). Since

∂ log f †(w; g(θ0))

∂g′
=

[
1110(w)

p11,0(θ0)
,

1111(w)

p11,1(θ0)
, ...,

1011(w)

p01,1(θ0)

]
,

we have a diagonal matrix

I†(g(θ0)) =


φ0,0

p11,0(θ0) 0 0 0

0
φ1,0

p11,1(θ0) 0 0

. . .

0 0 0
φ1,0

p01,1(θ0)

 ,

which is positive definite, since all diagonal elements are positive by Lemma B.1. Therefore

Eγ0ρθθ(w, θ0) is positive definite Thus, for a nonzero vector a ∈ Rdθ , a′Eγ0ρθθ(w, θ0)a > 0, which

implies that, for a nonzero vector ã ∈ Rdθ , ã′Eγ0ρ
†
θθ(w, θ0)ã = ã′B−1(β0)Eγ0ρθθ(w, θ0)B−1(β0)ã >

0. Therefore Eγ0ρ
†
θθ(w, θ0) is positive definite.

Case (ii): First note that by (B.12)–(B.14) and (B.23)–(B.26), we can express Dθp
†
yd,z(ψ0, π)’s

as follows when β0 = 0,

Dθp
†
11,0 =


0

0

0

1

0

 , Dθp
†
10,0 =


0

0

1

0

0

 , Dθp
†
01,0 =


0

1

0

−1

0

 , Dθp
†
00,0 =


0

−1

−1

0

0

 , (B.28)

Dθp
†
11,1 =


C2 (h3(π), ζ10;π)

0

0

1

Cπ2 (h3(π), ζ10;π) + C12 (h3(π), ζ10;π)h3,π(ζ10, ζ30, π)

 , (B.29)
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Dθp
†
10,1 =


−C2 (h2(π), ζ10;π)

0

1

0

−Cπ2 (h2(π), ζ10;π)− C12 (h2(π), ζ10;π)h2,π(ζ10, ζ20, π)

 , (B.30)

and

Dθp
†
01,1 =


1

1

0

0

0

−Dθp
†
11,1, Dθp

†
00,1 =


−1

−1

0

0

0

−Dθp
†
10,1. (B.31)

The remaining arguments are similar to those used to verify S3(iv)(a): Let M †yd,z ≡ Dθp
†
yd,z(θ0)

×Dθp
†
yd,z(θ0)′ and M̃ †yd,z ≡M

†
yd,z/p

0
yd. Then,

Eγ0ρ
†
θθ(Wi, θ0) = Eγ0ρ

†
θ(Wi, θ0)ρ†θ(Wi, θ0)′ = φ1,0

∑
y,d=0,1

M̃ †yd,1 + φ0,0
∑

y,d=0,1

M̃ †yd,0. (B.32)

For notational simplicity, let c ≡ C2 (h3(π0), ζ10;π0) and c̃ ≡ C2 (h2(π0), ζ10;π0). Also let

d ≡ Cπ2 (h3(π0), ζ10;π0) + C12 (h3(π0), ζ10;π0)h3,π(ζ10, ζ30, π0) and d̃ ≡ Cπ2 (h2(π0), ζ10;π0) +

C12 (h2(π0), ζ10;π0)h2,π(ζ10, ζ20, π0). Therefore,

M †11,1 =


c2 0 0 c cd

0 0 0 0 0

0 0 0 0 0

c 0 0 1 d

cd 0 0 d d2

 , M †01,1 =


(1− c)2 1− c 0 c− 1 (c− 1)d

1− c 1 0 −1 −d
0 0 0 0 0

c− 1 −1 0 1 d

(c− 1)d −d 0 d d2

 ,
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M †10,1 =


c̃2 0 −c̃ 0 c̃d̃

0 0 0 0 0

−c̃ 0 1 0 −d̃
0 0 0 0 0

c̃d̃ 0 −d̃ 0 d̃2

 , M †00,1 =


(1− c̃)2 1− c̃ 1− c̃ 0 (c̃− 1)d̃

1− c̃ 1 1 0 −d̃
1− c̃ 1 1 0 −d̃

0 0 0 0 0

(c̃− 1)d̃ −d̃ −d̃ 0 d̃2

 ,

M †11,0 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

 , M †01,0 =


0 0 0 0 0

0 1 0 −1 0

0 0 0 0 0

0 −1 0 1 0

0 0 0 0 0

 ,

M †10,0 =


0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

 , M †00,0 =


0 0 0 0 0

0 1 1 0 0

0 1 1 0 0

0 0 0 0 0

0 0 0 0 0

 .

By Lemma B.1, in analogy to the verification of S3(iv)(a), since
∑

y,d=0,1

λmin

(
M̃ †yd,0

)
= λmin(M̃ †00,1) =

0, we consider the rest of the sum in (B.32) and apply (B.27). Let a ≡ p0
11/p

0
01 and b ≡ p0

11/p
0
10.

Then, M̃ †11,1 + M̃ †01,1 + M̃ †10,1 =
(
M †11,1 + aM †01,1 + bM †10,1

)
/p0

11 and

M † ≡M †11,1 + aM †01,1 + bM †10,1

=


a(1− c)2 + bc̃2 + c2 a(1− c) −bc̃ −a(1− c) + c a(c− 1)d+ bc̃d̃+ cd

a(1− c) a 0 −a −ad
−bc̃ 0 b 0 −bd̃

−a(1− c) + c −a 0 a+ 1 (a+ 1)d

a(c− 1)d+ bc̃d̃+ cd −ad −bd̃ (a+ 1)d (a+ 1)d2 + bd̃2

 .

For the k-th leading principal minor
∣∣∣M †k∣∣∣ of M †,

∣∣∣M †1 ∣∣∣ = a(1− c)2 + bc̃2 + c2 > 0,

∣∣∣M †2 ∣∣∣ = abc̃2 + ac2 > 0,
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∣∣∣M †3 ∣∣∣ = abc2 > 0,∣∣∣M †4 ∣∣∣ = a2b(1− c)2 + abc2 > 0,∣∣∣M †5 ∣∣∣ =
∣∣∣M †∣∣∣ = ab

{
a2(1 + (1− c)2)d2 + b2c̃2d̃2 + c2(d2 + bd̃2) + a

(
((1− c)2 + c2)d2 + bc2d̃2

)}
> 0.

Therefore, M̃ †01,1 + M̃ †10,1 + M̃ †11,1 is positive definite and by (B.27), we can easily show that

λmin(Eγ0ρ
†
θθ(Wi, θ0)) > 0. �

Verification of S3(v): Recall

V †(θ1, θ2; γ0) ≡ Covγ0
(
ρ†θ(Wi, θ1), ρ†θ(Wi, θ2)

)
.

But

Covγ0

(
ρ†θ(Wi, θ0), ρ†θ(Wi, θ0)

)
= Eγ0ρ

†
θ(Wi, θ0)ρ†θ(Wi, θ0)′

= Eγ0ρ
†
θθ(Wi, θ0), (B.33)

where the first equality is by Eγ0ρ
†
θ(Wi, θ0) = B−1(β0)Eγ0ρθ(w, θ0) = 0 and the second equality

is by the definition of ρ†θ(Wi, θ) and ρ†θθ(Wi, θ). Since Eγ0ρ
†
θθ(Wi, θ0) is positive definite from

S3(iv)(b), we have the desired result. �

Define the dψ × dβ matrix-valued function

K(θ; γ0) ≡ ∂

∂β′0
Eγ0ρψ(Wi, θ) (B.34)

with domain Θδ × Γ0, where Θδ ≡ {θ ∈ Θ : |β| < δ} and

Γ0 ≡ {γa = (aβ, ζ, π, φ) ∈ Γ : γ = (β, ζ, π, φ) ∈ Γ with |β| < δ and a ∈ [0, 1]}

for some δ > 0.

Assumption S4: (i) K(θ; γ0) exists ∀(θ, γ0) ∈ Θδ × Γ0.

(ii) K(θ; γ∗) is continuous in (θ, γ∗) at (θ, γ∗) = ((ψ0, π), γ0) uniformly over π ∈ Π ∀γ0 ∈ Γ with

β0 = 0, where ψ0 is a subvector of γ0.

Verification of S4(i): Note that

K(θ; γ0) ≡ ∂

∂β0
Eγ0ρψ(Wi, θ)

68



= − ∂

∂β0

∑
y,d,z=0,1

pyd,z(θ0)φz,0
pyd,z(θ)

Dψpyd,z(θ)

= −
∑

y,d,z=0,1

∂pyd,z(θ0)

∂β0

φz,0
pyd,z(θ)

Dψpyd,z(θ),

where
∂pyd,z(θ0)

∂β0
is the first element of Dψ0pyd,z(θ0) for all (y, d, z), whose expressions are above.

�

Verification of S4(ii): For

K(π; γ0) ≡ K(ψ0, π; γ0) = −
∑

y,d,z=0,1

∂pyd,z(θ0)

∂β0

φz,0
pyd,z(ψ0, π)

Dψpyd,z(ψ0, π),

let ayd,z(π, θ0, φ1,0) ≡ ∂pyd,z(θ0)
∂β0

φz,0
pyd,z(ψ0,π)Dψpyd,z(ψ0, π) since φ0,0 = 1−φ1,0. Note that ayd,z(π, θ0, φ1,0)

is continuous in its arguments by Lemma B.1(iv). We can show that ayd,z(π, θ0, φ1,0) is contin-

uous uniformly in π ∈ Π by applying the uniform convergence result in Lemma 9.2 of ACMLwp

to ayd,z(π, θn, φ1,n) − ayd,z(π, θ0, φ1,0), using (i) the pointwise convergence (i.e., pointwise con-

tinuity) above, (ii) ayd,z(π, θ0, φ1,0)’s differentiability in π with derivatives bounded over π ∈ Π

by Lemma B.1 and (iii) the compactness of Π (B1(iii) below). �

Next, we impose conditions on the parameter spaces Θ and Γ. Define Θ∗δ ≡ {θ ∈ Θ∗ : |β| <
δ}, where Θ∗ is the true parameter space for θ. The “optimization parameter space” Θ satisfies:

Assumption B1: (i) int(Θ) ⊃ Θ∗.

(ii) For some δ > 0, Θ ⊃
{
β ∈ Rdβ : |β| < δ

}
× Z0 × Π ⊃ Θ∗δ for some non-empty open set

Z0 ⊂ Rdζ and Π.

(iii) Π is compact.

The following general results are useful in verifying B1 and B2 below: for a continuous

function f , (i) if a set A is compact, then f(A) is compact and (ii) f−1(int(A)) ⊂ int(f−1(A))

for any set A in the range of f , where the latter is necessary and sufficient for continuity. Also

note that by definition, for a proper function f , if B is compact, then f−1(B) is compact. Lastly,

for a function f , if A ⊂ B then f(A) ⊂ f(B).

Verification of B1: TC3(ii) implies B1(i) since

int(Θ) = int(h̄−1(Θ)) ⊃ h̄−1(int(Θ)) ⊃ h̄−1(Θ∗) = Θ∗,

where the first ⊃ is by the continuity of h̄ and the second ⊃ is by TC3(ii) and h̄−1 being a
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function. For B1(ii), first note that given TC3(iii),

h̄−1(Θ) ⊃ h̄−1
({
β ∈ Rdβ : ‖β‖ < δ

}
×Z0 ×Π

)
⊃ h̄−1(Θ∗δ).

But h̄−1(Θ) = Θ and

h̄−1(Θ∗δ) =
{
θ ∈ Θ∗ : h̄(θ) ∈ Θ∗δ

}
=
{
θ ∈ Θ∗ : h̄(θ) ∈ Θ∗,

∣∣h̄1(θ)
∣∣ < δ

}
= {θ ∈ Θ∗ : θ ∈ Θ∗, |β| < δ}

= Θ∗δ ,

where the third equality is by h̄ being a homeomorphism and h̄1(θ) = β being the first element

of h̄. Also, with Bδ ≡
{
β ∈ Rdβ : |β| < δ

}
,

h̄−1(Bδ ×Z0 ×Π) =
{
θ ∈ Θ∗ : h̄(θ) ∈ Bδ ×Z0 ×Π

}
= Bδ ×

{
µ ∈M∗ : h(µ) ∈ Z0 ×Π

}
= Bδ × h−1(Z0 ×Π)

≡ Bδ ×Z0 ×Π,

where M∗ = {µ ∈ Rdµ : θ = (β, µ) for some θ ∈ Θ∗}, the second equality holds since h̄(θ) =

(β, h(µ)) and the last equality holds by TC3(iv). Lastly, B1(iii) holds by TC3(i). �

Assumption B2: (i) Γ is compact and Γ = {γ = (θ, φ) : θ ∈ Θ∗, φ ∈ Φ∗(θ)}.
(ii) ∀δ > 0, ∃γ = (β, ζ, π, φ) ∈ Γ with 0 < ‖β‖ < δ.

(iii) ∀γ = (β, ζ, π, φ) ∈ Γ with 0 < ‖β‖ < δ for some δ > 0, γa = (aβ, ζ, π, φ) ∈ Γ ∀a ∈ [0, 1].

Verification of B2: Consider B2(i). Under TC4(i), define Φ∗(θ) as Φ∗(θ) ≡ Φ∗(h̄(θ)). Since

Γ is compact, Θ∗ and Φ∗(θ) are compact for θ ∈ Θ∗. Thus, Θ∗ = h̄−1(Θ∗) is compact by the

properness of h̄. Also given (B.4), we have

Φ∗(θ) ≡ Φ∗(h̄(θ)) = Φ∗ = [0.01, 0.99],

which is compact. And therefore Γ is also compact. Next, TC4(ii) implies B2(ii). This is

because, ∀δ > 0, for γ = (β,µ, φ) that satisfies TC4(ii), let γ in B2(ii) be γ = (β, h−1(µ), φ),

which is in Γ since (β,µ) ∈ Θ∗ implies (β, h−1(µ)) = h̄−1(β,µ) ∈ Θ∗. To show that TC4(iii)

implies B2(iii), note that for any γ = (β, ζ, π, φ) ∈ Γ with 0 < |β| < δ for some δ > 0,

γ = (β, h(ζ, π), φ) ∈ Γ. By TC4(iii), this implies that γa = (aβ, h(ζ, π), φ) ∈ Γ ∀a ∈ [0, 1].
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Therefore, γa = (aβ, h−1(h(ζ, π)), φ) ∈ Γ. �

Define a “weighted non-central chi-square” process {ξ(π; γ0, b) : π ∈ Π} by

ξ(π; γ0, b) ≡ −
1

2
(G(π; γ0) +K(π; γ0)b)′H−1(π; γ0) (G(π; γ0) +K(π; γ0)b) ,

where G(π; γ0) is defined such that Gn(·) ⇒ G(·; γ0), where “ ⇒′′ denotes weak convergence,

with

Gn(π) ≡ n−1/2
n∑
i=1

(ρψ(Wi;ψ0,n, π)− Eγnρψ(Wi;ψ0,n, π))

and

H(π; γ0) ≡ Eγ0ρψψ(Wi;ψ0, π).

Assumption C6: Each sample path of the stochastic process {ξ(π; γ0, b) : π ∈ Π} in some set

A(γ0, b) with Prγ0(A(γ0, b)) = 1 is minimized over Π at a unique point (which may depend on

the sample path), denoted π∗(γ0, b), ∀γ0 ∈ Γ with β0 = 0, ∀b with ‖b‖ <∞.

In Assumption C6, π∗(γ0, b) is random. The following is a primitive sufficient condition for

Assumption C6 for the case where β is scalar. Let ρψ(w, θ) ≡ (ρβ(w, θ)′, ρζ(w, θ)
′)′. When

β = 0, ρζ(w, θ)
′ does not depend on π by Assumption S2(ii) and is denoted by ρζ(w,ψ)′. For

β0 = 0, define

ρ∗ψ(Wi, ψ0, π1, π2)′ ≡ (ρβ(Wi, ψ0, π1)′, ρβ(Wi, ψ0, π2)′, ρζ(Wi, ψ0)′)′,

ΩG(π1, π2;ψ0) ≡ Covγ0
(
ρ∗ψ(Wi, ψ0, π1, π2)′, ρ∗ψ(Wi, ψ0, π1, π2)′

)
.

Assumption C6†: (i) dβ = 1

(ii) ΩG(π1, π2; γ0) is positive definite ∀π1, π2 ∈ Π with π1 6= π2, ∀γ0 ∈ Γ with β0 = 0.

Note that Assumptions S1–S3 and C6† imply C6; see Lemma 3.1 of AC13.

Verification of C6†(ii): Noting that Dζpyd,z(ψ0, π) does not depend on π when β0 = 0 so that

we may denote it Dζpyd,z(ψ0), define

Dψp
∗
yd,z(ψ0, π1, π2) ≡ (Dβpyd,z(ψ0, π1)′, Dβpyd,z(ψ0, π2)′, Dζpyd,z(ψ0)′)′.
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Then

ΩG(π1, π2;ψ0) = Eγ0ρ
∗
ψ(Wi, ψ0, π1, π2)ρ∗ψ(Wi, ψ0, π1, π2)′

=
∑

y,d,z=0,1

φz,0
p0
yd

Dψp
∗
yd,z(ψ0, π1, π2)Dψp

∗
yd,z(ψ0, π1, π2)′,

where the second equality follows from (B.6) and Dψp
∗
yd,z(ψ0, π1, π2) can be expressed as

Dψp
∗
11,0 =


0

0

0

0

1

 , Dψp
∗
10,0 =


0

0

0

1

0

 , Dψp
∗
01,0 =


0

0

1

0

−1

 , Dθp
∗
00,0 =


0

0

−1

−1

0

 ,

Dψp
∗
11,1 =


C2 (h3(ζ10, ζ30, π1), ζ10;π1)

C2 (h3(ζ10, ζ30, π2), ζ10;π2)

0

0

1

 ,

Dψp
∗
10,1 =


−C2 (h2(ζ10, ζ20, π1), ζ10;π1)

−C2 (h2(ζ10, ζ20, π2), ζ10;π2)

0

1

0

 ,

and

Dψp
∗
01,1 =


1

1

1

0

0

−Dψp
∗
11,1, Dψp

∗
00,1 =


−1

−1

−1

0

0

−Dψp
∗
10,1,

using (B.23)-(B.26). The remaining arguments are similar to those used in the verification of

S3(iv)(a): Let M∗yd,z ≡ Dψp
∗
yd,z(ψ0, π1, π2) ×Dψp

∗
yd,z(ψ0, π1, π2)′ and M̃∗yd,z ≡M∗yd,z/p0

yd. Then,

ΩG(π1, π2;ψ0) = φ1,0
∑

y,d=0,1

M̃∗yd,1 + φ0,0
∑

y,d=0,1

M̃∗yd,0. (B.35)
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Let c ≡ C2 (h3(ζ10, ζ30, π1), ζ10;π1), c̃ ≡ C2 (h3(ζ10, ζ30, π2), ζ10;π2), d ≡ C2 (h2(ζ10, ζ20, π1), ζ10;π1),

and d̃ ≡ C2 (h2(ζ10, ζ20, π2), ζ10;π2) for notational simplicity. Then,

M∗11,1 =


c2 cc̃ 0 0 c

cc̃ c̃2 0 0 c̃

0 0 0 0 0

0 0 0 0 0

c c̃ 0 0 1

 , M
∗
01,1 =


(1− c)2 (1− c)(1− c̃) 1− c 0 −(1− c)

(1− c)(1− c̃) (1− c̃)2 1− c̃ 0 −(1− c̃)
1− c 1− c̃ 1 0 −1

0 0 0 0 0

−(1− c) −(1− c̃) −1 0 1

 ,

M∗10,1 =


d2 dd̃ 0 d 0

dd̃ d̃2 0 d̃ 0

0 0 0 0 0

d d̃ 0 1 0

0 0 0 0 0

 , M
∗
00,1 =


(1− d)2 (1− d)(1− d̃) 1− d 1− d 0

(1− d)(1− d̃) (1− d̃)2 1− d̃ 1− d̃ 0

1− d 1− d̃ 1 1 0

1− d 1− d̃ 1 1 0

0 0 0 0 0

 ,

M∗11,0 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

 , M
∗
01,0 =


0 0 0 0 0

0 1 0 −1 0

0 0 0 0 0

0 −1 0 1 0

0 0 0 0 0

 ,

M∗10,0 =


0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

 , M
∗
00,0 =


0 0 0 0 0

0 1 1 0 0

0 1 1 0 0

0 0 0 0 0

0 0 0 0 0

 .

By Lemma B.1 and similar arguments to those used to verify S3(iv)(a), since
∑

y,d=0,1

λmin

(
M̃∗yd,0

)
=

λmin(M̃∗00,1) = 0, we consider the rest of the sum in (B.35) and apply (B.27). Let a ≡ p0
01/p

0
10

and b ≡ p0
01/p

0
11. Then, M̃∗01,1 + M̃∗10,1 + M̃∗11,1 =

(
M∗01,1 + aM∗10,1 + bM∗11,1

)
/p0

01, and

M∗ ≡M∗01,1 + aM∗10,1 + bM∗11,1
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=


ad2 + (1− c)2 + bc2 add̃+ (1− c)(1− c̃) + bcc̃ 1− c ad −(1− c) + bc

add̃+ (1− c)(1− c̃) + bcc̃ ad̃2 + (1− c̃)2 + bc̃2 1− c̃ ad̃ −(1− c̃) + bc̃

1− c 1− c̃ 1 0 −1

ad ad̃ 0 a 0

−(1− c) + bc −(1− c̃) + bc̃ −1 0 1 + b

 .

For the k-th leading principal minor |M∗k | and determinant |M∗| of M∗,

|M∗1 | = ad2 + (1− c)2 > 0,

|M∗2 | = a
{
d̃(1− c)− d(1− c̃)

}2
+ b

{
c(1− c̃)− c̃2(1− c)

}2
+ ab(d̃c− dc̃)2 > 0,

|M∗3 | = ab(d̃c− dc̃)2 + ab(d̃c+ dc̃)2 + 4bcc̃(1− c)(1− c̃) > 0,

|M∗4 | = a
{
ad̃2(1− c)2 + (1− c)2(1− c̃)2

}
+ ab

{
(1− c̃)2c2 + bc2c̃2 + ad2c̃2 + (1− c)2c̃2

}
> 0,

|M∗| = ab
[
a(d̃c− dc̃)2 + {c(1− c̃)− c̃(1− c)}2 + a

{
(d̃(1− c)− dc̃)2 + (1− b)d2c̃2

}
+ a2d2d̃2 + (1− c)2(1− c̃)2 + b(1− c̃)2c2 + b2c2c̃2 + bc̃2(1− c)2 + 2ad̃2c(1− c)

]
> 0.

Therefore, M̃∗01,1 + M̃∗10,1 + M̃∗11,1 is positive definite and by (B.27), we can easily show that

λmin(ΩG(π1, π2;ψ0)) > 0. �

Define a non-stochastic function {η(π; γ0) : π ∈ Π} by

η(π; γ0) ≡ −1

2
K(π; γ0)′H−1(π; γ0)K(π; γ0).

Assumption C7: The non-stochastic function η(π; γ0) is uniquely minimized over π ∈ Π at π0

∀γ0 ∈ Γ with β0 = 0.

For β0 = 0, by (B.15)–(B.16) we can write

K(π; γ0) = −
∑

y,d,z=0,1

φz,0
p0
yd

∂pyd,z(θ0)

∂β0
Dψpyd,z(ψ0, π),

H(π; γ0) =
∑

y,d,z=0,1

φz,0
p0
yd

Dψpyd,z(ψ0, π)Dψpyd,z(ψ0, π)′.
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Note that we can partition H(π) and K(π), suppressing γ0, as

H(π) =

[
H11(π) H12(π)

H21(π) H22

]
}dβ
}dζ

and K(π) =

(
K1(π)

K2

)
}dβ
}dζ

,

and note that K(π0) = [−H11(π0) : −H21(π0)′]′ by the expressions for K(π; γ0) and H(π; γ0).

Verification of C7: We first show that, for any π ∈ Π,

η(π) ≥ η(π0).

For matrices A and B, let A ≤ B denote B −A being p.s.d. Then we can show that

K(π)′H−1(π)K(π) ≤ H11(π0) = K(π0)′H−1(π0)K(π0), (B.36)

where the inequality is an application of the matrix Cauchy-Schwarz inequality (Proposition

B.1 below) and the equality holds because K(π0) = [−H11(π0) : −H21(π0)′]′; see below for the

proof. Lastly, the weak inequality in (B.36) holds as an equality if and only if ρβ(Wi, ψ0, π0)a+

ρψ(Wi, ψ0, π)′b = 0 with probability 1 for some a ∈ R and b ∈ Rdψ with (a, b′) 6= 0. Let

Dβp
0
yd,z ≡ Dβpyd,z(ψ0, π0) and Dψpyd,z(π) ≡ Dψpyd,z(ψ0, π) for simplicity. Then, when β0 = 0

ρβ(Wi, ψ0, π0)a+ ρψ(Wi, ψ0, π)′b =
∑

y,d,z=0,1

1ydz(Wi)

p0
yd

[
Dβp

0
yd,za+Dψpyd,z(π)′b

]
.

But, it is easy to see that a (1 + dψ) × 8 matrix (suppressing π in Dψpyd,z(π) and letting

h3,0 ≡ h3(π0) and h2,0 ≡ h2(π0))[
Dβp

0
11,1 Dβp

0
10,1 Dβp

0
01,1 Dβp

0
00,1 Dβp

0
11,0 Dβp

0
10,0 Dβp

0
01,0 Dβp

0
00,0

Dψp11,1 Dψp10,1 Dψp01,1 Dψp00,1 Dψp11,0 Dψp10,0 Dψp01,0 Dψp00,0

]

=


C2(h3,0; ζ10, π0) −C2(h2,0, ζ10;π0) 1− C2(h3,0, ζ10;π0) −1 + C2(h2,0, ζ10;π0) 0 0 0 0

C2(h3; ζ10, π0) −C2(h2, ζ10;π0) 1− C2(h3, ζ10;π0) −1 + C2(h2, ζ10;π0) 0 0 0 0

0 0 1 −1 0 0 1 −1

0 1 0 −1 0 1 0 −1

1 0 −1 0 1 0 −1 0


has full row rank (i.e., rank of 1 + dψ) except when π = π0, since

C2 (h3(π), ζ10;π) 6= C2 (h3(π0), ζ10;π0)

C2 (h2(π), ζ10;π) 6= C2 (h2(π0), ζ10;π0)
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for π 6= π0. This can be shown by modifying the proof of Lemmas 3.1 and 4.1 of HV16 under

Assumption TC2, which yields

∂C2 (h3(π), ζ1;π) /∂π = Cπ2 (h3(π), ζ1;π) + C12 (h3(π), ζ1;π)h3,π(π) < 0

and

Cπ2 (h2(π), ζ1;π) + C12 (h2(π), ζ1;π)h2,π(π) < 0.

In fact, h2 or h3 can be seen as u∗1 in Lemma 4.1 of HV16. Therefore, there is no (a, b′)

with (a, b′) 6= 0 such that Dβp
0
yd,za + Dψp

′
yd,z(π)b = 0 for all (y, d, z) ∈ {0, 1}3, which implies

that there is no (a, b′) with (a, b′) 6= 0 such that ρβ(Wi, ψ0, π0)a + ρψ(Wi, ψ0, π)′b = 0 with

probability 1. In other words, the equality holds uniquely at π = π0 so that for any π 6= π0,

Pr[c′(ρβ(Wi, ψ0, π0), ρψ(Wi, ψ0, π)′)′ = 0] < 1 for all c ∈ Rdβ+dψ with c 6= 0 and thus the

inequality in (B.36) is strict. �

Proposition B.1. Let x ∈ Rp and y ∈ Rq be random vectors such that E ‖x‖2 <∞, E ‖y‖2 <
∞, and Eyy′ is nonsingular. Then

(
Exy′

) (
Eyy′

)−1 (
Eyx′

)
≤ Exx′.

For our verification proof, taking x = ρβ(Wi, ψ0, π0) and y = ρψ(Wi, ψ0, π), we have

Eγ0yy
′ = H(π),

Eγ0xx
′ = H11(π0),

−Eγ0xy′ = −
(
Eγ0yx

′)′ = K(π).

Proof of H11(π0) = K(π0)′H−1(π0)K(π0): Define a 4× 4 block-diagonalizing matrix

A(r) =

[
1 −H12(r)H−1

22

03 I3

]
.

Then,

K(r0)′H−1(r0)K(r0) = K(r0)′A(r) [A(r)H(r0)A(r)]−1A(r)K(r0)

= (−1)2[H11(r0) : H21(r0)′]A(r) [A(r)H(r0)A(r)]−1A(r)

[
H11(r0)

H21(r0)

]

= [H11(r0)−H12(r0)H−1
22 H21(r0) : H21(r0)′]

[
H∗11(r0)−1 0

0 H−1
22

]
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×

[
H11(r0)−H12(r0)H−1

22 H21(r0)

H21(r0)

]

= [1 : H21(r0)′H−1
22 ]

[
H11(r0)−H12(r0)H−1

22 H21(r0)

H21(r0)

]
= H11(r0),

where the second equality is due to the fact that K(r0) = [−H11(r0) : −H21(r0)′]′ and H∗11(r0)

is implicitly defined. We also use the symmetricity of H(r) in this derivation. �

Define the following quantities that arise in the asymptotic distribution of θ̂n and the test

statistics we consider. Letting Sψ ≡
[
Idψ : 0dψ×1

]
denote the dψ×dθ selector matrix that selects

ψ out of θ:

Ω(π1, π2; γ0) ≡ SψV † ((ψ0, π1), (ψ0, π2); γ0)S′ψ,

J(θ; γ0) ≡ Eγ0ρ
†
θθ(Wi; θ),

V (θ; γ0) = V †(θ, θ; γ0),

and

J(γ0) ≡ J(θ0; γ0),

V (γ0) ≡ V (θ0; γ0).

Note that

J(γ0) = V (γ0)

by (B.33). Define

Σ(θ; γ0) ≡ J−1(θ; γ0)V (θ; γ0)J−1(θ; γ0)

and

Σ(π; γ0) ≡ Σ(ψ0, π; γ0).

Assumption V1: (i) Ĵn = Ĵn(θ̂n) and V̂n = V̂n(θ̂n) for some (stochastic) dθ×dθ matrix-valued

functions Ĵn(θ) and V̂n(θ) on Θ that satisfy supθ∈Θ

∥∥∥Ĵn(θ)− J(θ; γ0)
∥∥∥→p 0 and supθ∈Θ

∥∥∥V̂n(θ)− V (θ; γ0)
∥∥∥→p

0 under {γn} ∈ Γ(γ0, 0, b) with ‖b‖ <∞.

(ii) J(θ; γ0) and V (θ; γ0) are continuous in θ on Θ ∀γ0 ∈ Γ with β0 = 0.

(iii) λmin(Σ(π; γ0)) > 0 and λmax(Σ(π; γ0)) <∞ ∀π ∈ Π, ∀γ0 ∈ Γ with β0 = 0.
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Verification of V1(i): We define the following:

Ĵn(θ) ≡ 1

n

n∑
i=1

ρ†θθ(Wi, θ) =
1

n

n∑
i=1

ρ†θ(Wi, θ)ρ
†
θ(Wi, θ)

′

=
1

n

n∑
i=1

∑
y,d,z=0,1

1ydz(Wi)
Dθp

†
yd,z(θ)Dθp

†
yd,z(θ)

′

pyd,z(θ)2
,

where Dθp
†
yd,z(θ0) are defined above. Also,

V̂n(θ) ≡ 1

n

n∑
i=1

ρ†θ(Wi, θ)ρ
†
θ(Wi, θ)

′

=
1

n

n∑
i=1

∑
y,d,z=0,1

1ydz(Wi)
Dθp

†
yd,z(θ)Dθp

†
yd,z(θ)

′

pyd,z(θ)2
= Ĵn(θ).

The rest of the proof follows from the uniform law of large numbers in Lemma 9.3 of ACMLwp

with Assumptions S1 and S3 and Θ being compact. �

Verification of V1(ii): The continuity follows from the fact that the first and second deriva-

tives of pyd,z(θ) are continuous by Lemma B.1(vi). �

Verification of V1(iii): Note that

Σ(π; γ0) = J−1(ψ0, π; γ0)V (ψ0, π; γ0)J−1(ψ0, π; γ0) = V −1(ψ0, π; γ0)

since V (ψ0, π; γ0) = J(ψ0, π; γ0). This is because

V (ψ0, π; γ0) = Covγ0

(
ρ†θ(Wi, ψ0, π), ρ†θ(Wi, ψ0, π)

)
= Eγ0ρ

†
θ(Wi;ψ0, π)ρ†θ(Wi;ψ0, π)′

= Eγ0ρ
†
θθ(Wi; θ)

where the last equality holds since ρ†θθ(w, θ) = ρ†θ(w, θ)ρ
†
θ(w, θ)

′, and the second-to-last equality

holds since

Eγ0ρ
†
θ(Wi, ψ0, π) = −

∑
y,d,z=0,1

φz,0Dθp
†
yd,z(ψ0, π)

= −
∑

y,d=0,1

φ0,0Dθp
†
yd,0(ψ0, π)−

∑
y,d=0,1

φ1,0Dθp
†
yd,1(ψ0, π)

= 0.

Now, for the first part of V1(iii), note that since each element of the vectors in (B.28)–(B.31)
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are bounded by TC2(iii) and B2(i), the elements of the matrix

V (ψ0, π; γ0) = Eγ0ρ
†
θ(Wi;ψ0, π)ρ†θ(Wi;ψ0, π)′ =

∑
y,d,z=0,1

φz,0
pyd,0

Dθp
†
yd,z(ψ0, π)Dθp

†
yd,z(ψ0, π)′

are bounded. For a d × d matrix A,
∑d

i=1 |λi| ≤
∑d

i,j=1 |Aij | where the λi’s are A’s eigenval-

ues and the Aij ’s are A’s elements. Therefore, λmax(V (ψ0, π; γ0)) < ∞. This implies that

λmin(V −1(ψ0, π; γ0)) > 0. By Lemma B.1, the proof of the second part is similar to the

proofs of S3(iv)(b) and S3(v) and we can show that λmin(V (ψ0, π; γ0)) > 0, which implies

that λmax(V −1(ψ0, π; γ0)) <∞. �
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Figure 1: Threshold Crossing Model Parameter Estimator Densities when b = 0

Asymptotic (blue) and finite-sample (red, n = 1000) densities of the estimators of β, ζ, π3, π1

and π2 (left-to-right) in the Threshold-Crossing model when ζ = 0.2 and π = (0.6, 0.4, 0.4).

Figure 2: Threshold Crossing Model Parameter Estimator Densities when b =
√
n0.1

Asymptotic (blue) and finite-sample (red, n = 1000) densities of the estimators of β, ζ, π3, π1

and π2 (left-to-right) in the Threshold-Crossing model when ζ = 0.2 and π = (0.6, 0.4, 0.4).
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Figure 3: Threshold Crossing Model Parameter Estimator Densities when b =
√
n0.2

Asymptotic (blue) and finite-sample (red, n = 1000) densities of the estimators of β, ζ, π3, π1

and π2 (left-to-right) in the Threshold-Crossing model when ζ = 0.2 and π = (0.6, 0.4, 0.4).

Figure 4: Threshold Crossing Model Parameter Estimator Densities when b =
√
n0.4

Asymptotic (blue) and finite-sample (red, n = 1000) densities of the estimators of β, ζ, π3, π1

and π2 (left-to-right) in the Threshold-Crossing model when ζ = 0.2 and π = (0.6, 0.4, 0.4).
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Figure 5: Wald Statistic Densities for the Threshold Crossing Model when b = 0

Asymptotic (blue) and finite-sample (red, n = 1000) densities of the Wald statistic for the
parameters β, ζ, π3, π1 and π2 (left-to-right) in the Threshold-Crossing model when ζ = 0.2
and π = (0.6, 0.4, 0.4), with a χ2

1 density overlay (black line).

Figure 6: Wald Statistic Densities for the Threshold Crossing Model when b =
√
n0.1

Asymptotic (blue) and finite-sample (red, n = 1000) densities of the Wald statistic for the
parameters β, ζ, π3, π1 and π2 (left-to-right) in the Threshold-Crossing model when ζ = 0.2
and π = (0.6, 0.4, 0.4), with a χ2

1 density overlay (black line).
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Figure 7: Wald Statistic Densities for the Threshold Crossing Model when b =
√
n0.2

Asymptotic (blue) and finite-sample (red, n = 1000) densities of the Wald statistic for the
parameters β, ζ, π3, π1 and π2 (left-to-right) in the Threshold-Crossing model when ζ = 0.2
and π = (0.6, 0.4, 0.4), with a χ2

1 density overlay (black line).

Figure 8: Wald Statistic Densities for the Threshold Crossing Model when b =
√
n0.4

Asymptotic (blue) and finite-sample (red, n = 1000) densities of the Wald statistic for the
parameters β, ζ, π3, π1 and π2 (left-to-right) in the Threshold-Crossing model when ζ = 0.2
and π = (0.6, 0.4, 0.4), with a χ2

1 density overlay (black line).
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Figure 9: Power Curves for Testing π2 in the Threshold Crossing Model
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Robust Wald (blue) and projected SR-AR (red) power for testing π2 = 0.4 in the Threshold-
Crossing model with n = 1000, when β = 0.4 (left - corresponding to strong identification) and
β = 0.2 (right - corresponding to weak identification), ζ = 0.2, π1 = 0.6, π3 = 0.4 and (π2−0.4)
varies across the horizontal axes.
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