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1. Introduction 

It is widely acknowledged that the creation of new knowledge is an important factor behind 

productivity gains and long-run economic growth (Romer, 1986, 1990; Lucas, 1988). And, since 

knowledge exhibits many of the characteristics of public goods or positive externalities, it is 

generally presumed that private economic activity underinvests in its creation (following Nelson, 

1959, and Arrow, 1962), thus providing the basic policy rationale for public support of research at 

universities (Jencks and Riesman 1968; Nelson 1986; Cowan 2005). Today’s research universities 

articulate three interwoven missions of education, research, and outreach. While the educational 

mission of the university focuses on imparting knowledge and skills to students—enhancing their 

future incomes as well as labor productivity for their future employers—the research and outreach 

missions of the university, respectively, focus on producing new knowledge and facilitating 

spillovers of that knowledge, particularly to stakeholders in industry (Stokes, 1997; Etzkowitz, 

2003). University research has long served as a source of ideas for industrial innovation, spurring 

the development of new products and processes, and driving regional economic development 

(Jaffe, 1989; Mansfield, 1991, 1995; Rosenberg and Nelson 1994; Audretsch and Feldman, 1996). 

In the United States, in 2013, university research accounted for $64.7 billion, or 14 percent, of the 

total $456 billion of R&D performed in the U.S. economy, and, within that, universities accounted 

for 51 percent of the basic research performed. Moreover, almost 95 percent of the funding for 

research performed at U.S. universities came from public or non-profit sources; only 5.4 percent 

came from business (NSF, 2016). In the European Union, in the same year, higher education 

research and development (HERD) accounted for €66 billion, or nearly 23 percent of total R&D 

performed within the EU economy (EuroStat, 2015). 
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In the final decades of the 20th century, the rise of the “knowledge economy” (Romer, 1990; 

Mokyr, 2002; Kahin and Foray, 2006) was characterized by a pervasive shift toward greater 

utilization of intellectual capital in economic processes of value creation, combined with vastly 

greater ease of publication, storage, search, and retrieval of information due to development of the 

Internet (Powell and Snellman 2004). As knowledge itself has become more valuable, it has also 

become more contested, affecting university knowledge creation and dissemination activities in 

several regards (Slaughter and Leslie 1998; Geiger 2004; Winickoff, 2014). This has exacerbated 

policy debates over allocation of public resources to university R&D (Geuna et al, 2001), 

governance of research processes (Dagupta & David, 1994), and policies for how newly created 

knowledge is controlled and disseminated (Eisenberg and Nelson, 2002; Graff, Heiman, & 

Zilberman 2002; OECD 2003; Mowery et al 2004; Sampat 2006; NRC 2010).  

These policy debates persist, to a certain extent, because of challenges in empirically 

measuring the full range of knowledge production and dissemination activities that go on at the 

contemporary research university. One major shortcoming in this regard is not unique to 

universities: R&D processes are often measured by accounting for inputs, such as research 

expenditures or numbers of scientists and engineers employed. Such measures, cannot, however, 

indicate how productive R&D processes are in generating knowledge outputs, the value of those 

outputs, or the mechanisms whereby those outputs impact the economy. Even among studies that 

do seek to model the relationship between the inputs and outputs of university research, many 

consider just a single type or single measure of knowledge output. The most common output 

measure is the count of new publications, sometimes in combination with the count of citations 

made to those publications. In addition, a number of studies utilize an output measure of patents, 

as patent licensing represents a newer, more controversial channel of knowledge dissemination 
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from universities. Other research outputs arise or are transmitted via personnel exchange, 

collaborative research, extension services, consulting activities, and other similar “high-touch” 

channels wherein they may be more difficult to measure (Cote & Cote 1993; Cohen et al 1998; 

Agrawal & Henderson, 2002). However, ideally, systematic empirical analysis of university 

research productivity and impacts should include measures of all significant inputs and outputs of 

the knowledge production process.  

An additional set of challenges faced by empirical studies of university research is related to 

the level of analysis, which is often dictated by the fact that data is often only available at an 

institutional or at an even more aggregated state or national level. Yet, arguably, the locus of much 

of the salient decision making and economic behavior that drives knowledge production at the 

university occurs at more disaggregated levels such as within colleges, institutes, centers, academic 

departments, or even within individual research groups (Etzkowitz, 2003). 

In this study, we follow trends of the last decade for combining multiple large institutional 

datasets created, housed, and serving different purposes in different parts of an organization4. We 

compile from multiple sources across our home institution a uniquely detailed panel data set of 

research inputs and outputs, spanning more than twenty years, for each of the university’s 54 

academic departments or similar research units. We build upon previous studies to estimate, at the 

departmental level, the knowledge production function, in order to explore several interrelated 

research questions: To what extent do different types of knowledge outputs, associated with 

different spillover mechanisms, result from the university’s knowledge production processes? Is 

there a systematic relationship over time between changes in R&D inputs and changes in the 

different types of research outputs? To what extent are economies of scale or scope evidenced in 

                                                 
4 See, for example, “A Different Game: Special Report on Managing Information,” The Economist, Feb 25th 2010. 
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university knowledge production? And what implications do these relationships have for policies 

governing university research and knowledge dissemination? 

2. Literature Review 

2.1. Knowledge Production within Research Universities: Theory and Empirical Analyses 

Our understanding of university research processes is rooted in the framework of knowledge 

production, treating new knowledge as if it were the output of a typical production process. The 

knowledge production function (KPF) was developed by Griliches (1979) and Pakes and Griliches 

(1980, 1984) to analyze the creation of patented inventions, considered to be useful indicators of 

otherwise unobservable increments of economically valuable new knowledge resulting from the 

R&D activities of 121 U.S. firms over 13 years. They find that by including several years of past 

research expenditures they are able to improve the fit of the patent production equation. However, 

they find the positive relationship between the input of research expenditures and the output of 

patents to holds only in the long-run: they do not find significant short-run effects in the lagged 

variable estimates. This may be due to data problems, such as truncation of the panel, or to 

misspecification of the lag structure, having placed no a priori restrictions on the relevant range 

of lags. 

In one of the earliest applications of the KPF framework to university research, Pardey (1989) 

analyzes the input-output relationship in the agricultural research programs of 48 major state Land 

Grant universities in the U.S. over 13 years. Similar to Pakes and Griliches, he finds a significant 

positive long-run relationship between research expenditures and publications, yet, likewise, fails 

to find evidence of systematic short-run or point-to-point influence between particular lagged years’ 

research expenditures and subsequent publications at the institutional level. 
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Adams and Griliches (1998) explore the research performance and productivity of 109 U.S. 

universities over 13 years. Their analysis finds that, at the aggregate level, research outputs such 

as publications exhibit constant returns to scale, but, at the institutional level, appear to exhibit 

diminishing returns to scale, although they acknowledge that this could be attributed to a number 

of measurement problems. Similar to Pardey (1989), they do not find any reliable systematic short-

run relationship between changes in research expenditure inputs and changes in knowledge outputs. 

Crespi and Geuna (2008) estimate the aggregate university KPF at a national level, utilizing a 

dataset of higher education R&D (HERD) for 14 OECD countries over 12 years. They develop a 

polynomial distributed lag (PDL) model of the relationship between research expenditure inputs 

and knowledge outputs over time. Yet, like the previous studies, they fail to find a systematic 

relationship between specific lagged years’ inputs and outputs, and likewise they suggest that this 

may be due to the quality or level of aggregation of the data.  

An alternative approach to the study of knowledge production considers the cost minimization 

function (CMF), based on the work of Baumol et al (1988) on multi-product industries and adapted 

by Cohn et al (1989) and de Groot et al (1991) to consider the economies of scale and scope of the 

multi-product “outputs” of universities. Following this approach, Foltz et al (2007; 2012) estimate 

a knowledge CMF for the joint production of three different university research output measures—

publications, patents, and doctorate degrees—within the life sciences disciplines at 90 major U.S. 

research universities from 1981 to 1998. They find evidence of economies of scope between 

patents and the other two outputs, when quality adjusted. These effects appear to be more 

pronounced among the public Land Grant universities. They also find significant productivity 

growth over time, particularly among top tier universities. Factors that affect knowledge co-

products include total research funding, the presence and experience of technology transfer offices, 
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numbers of post-doc researchers, and the type of research funding, with evidence that federal 

funding and industry funding are complementary rather than substitute inputs. In particular, the 

consideration of multiple co-products enabled by the CMF approach is compelling, albeit again 

limited by data availability and level of aggregation.  

While a number of studies extend and develop the KPF in the context of firm R&D (following 

Hall, Griliches, & Hausman, 1986), others apply the KPF in estimating regional-scale effects of 

aggregate university research (following Jaffe, 1989, Anselin Varga, Acs, 1997, and others). Few 

other studies have attempted to apply the KPF or CMF to model the production of discrete 

university research outputs directly. All of the studies we review that have done so appear to 

encounter similar challenges in measuring knowledge outputs, in model specification of the input-

output lag structure, and in the level of analysis due to data aggregation. 

2.2. Different Types of Knowledge Outputs 

Knowledge is notoriously difficult to quantify. Many different indicators have been proposed 

and used to measure additions to the stock of economically useful knowledge, both in general and 

in particular, from universities. While knowledge itself is widely characterized in economic 

discourse as a pure public good, it has been argued that—at least in the act of transmission or 

“spilling over”—knowledge can deviate from Samuelson’s (1954) classic description of being 

non-excludable and non-rival. Following Romer’s (1990) conception of technology as more of a 

quasi-public good, being at least partially excludible, we propose a simple typology of knowledge 

outputs, based upon varying degrees of rivalry and exclusion to which an increment of new 

knowledge may be subject—whether that variation be due to intrinsic characteristics of the 

knowledge itself, to how it is handled legally or strategically, or to the size, nature, and number of 

firms that make up the potential users of that knowledge. Several broad types of knowledge outputs 
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can be identified, thus, according to the general pathway or spillover mechanism by which each 

is disseminated from its creator to subsequent users (Fig. 1). (For suggestive analyses see Bekkers 

and Bodas Freitas, 2008, or DeFuentes and Dutrenit, 2012.) Each of these types of knowledge 

output has been reported and investigated in the literature as a direct product of university research. 

 
Fig. 1. A typology of knowledge outputs, according to the varying public-good attributes of that 
knowledge, and therefore characterized by the pathways or spillover mechanisms by which the 
knowledge outputs of each type tend to be disseminated, with common metrics for each type. 

 

2.2.1. Public domain 

As illustrated in Fig. 1, release via the public domain is understood to be the primary 

mechanism for dissemination of outputs of research that exhibit the strongest degrees of the public-

good attributes of non-excludability and non-rivalry. Publications represent discrete and often 

incremental contributions to human knowledge, as well as acts of public disclosure and codified 

dissemination of that knowledge. While the knowledge contents of publications largely represent 

deposits into the public domain, it must be noted that, in legal terms, the actual scope of public 

availability to use published knowledge depends upon the extent to which that knowledge is not 

otherwise encumbered by intellectual property claims (Boyle, 2003).  
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Bibliometric studies have long exploited publications and citations data (classics include 

Garfield et al, 1964; de Solla Price, 1965; Narin, 1976). A number of econometric studies have 

used counts of publications, as well as counts of citations to those publications, as measures of the 

output of university research (Pardey 1989; Adams and Griliches, 1998; Crespi and Geuna, 2008; 

Adams and Clemmons, 2011). Others have also counted closely-related metrics, such as PhD 

dissertations or graduate degrees awarded (Adams & Griliches, 1998; Folz et al, 2012).  

2.2.2. Collaboration 

We identify the collaboration mechanism of knowledge dissemination as most appropriate for 

knowledge outputs that exhibit stronger “common-goods” characteristics, i.e. that are relatively 

non-excludable and, yet, are more rivalrous in transmission, either due to the more tacit or “sticky” 

nature of the knowledge, involving skills or routines, or due to higher absorptive capacity 

requirements for learning or using that knowledge after it is created. Such knowledge requires 

inter-personal interaction—such as coaching, apprenticeship, or collaboration in the R&D 

activities—and involves higher transaction costs to effectively spill over.  

A number of surveys have reported on collaboration activities, from samples of university and 

industry respondents (Blumenthal et al, 1986; Cote & Cote, 1993; Landry, Traore, and Godin, 

1996; Cohen, et al, 1998, 2002; Laursen & Salter, 2004; Link, Siegel and Bozeman, 2007). But it 

has proven difficult to directly measure collaborative activities in a systematic way across entire 

academic institutions or national systems over multiple years, due to the uncodified nature of the 

knowledge outputs as well as the multifaceted and often informal or private nature of the contacts 

involved. Therefore, it has been common practice to employ R&D input or process variables, 

which are more consistently reported, as proxies for the production and dissemination of such 

knowledge outputs. These proxies include counts of discrete public-private research projects or 
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joint ventures, such as industry-university research centers (IURCs) or private participation in 

federally funded research and development centers (FFRDCs) (Carayol, 2003; Hall, Link, and 

Scott, 2003) and private-sector funding of university research (Geiger, 2012). One output-related 

proxy that has been systematically investigated is the occurrence of university-industry co-

authorship on published scientific articles (Godin and Gingras, 2000; Zucker, Darby & Armstrong, 

2002; Clark, 2011). Others have sought to measure such knowledge outputs indirectly. Assuming 

that such spillovers of tacit or uncodified research outputs are spatially circumscribed, a number 

of studies measure changes in industry R&D, industry locate decisions, or industry productivity as 

a function of regionally proximate university research (Jaffe, 1989; Audretsch and Feldman, 1994; 

Varga, 1998; Alston et al, 2010). 

2.2.3. IPRs and licensing 

Since the passage of the Bayh-Dole Act in the U.S. in 1980 and similar policies in many 

European countries, Japan, China, and elsewhere, use of intellectual property rights (IPRs) in the 

commercialization of university knowledge has been increasingly emphasized as a mechanism of 

knowledge dissemination and economic impact. The IPR/licensing mechanism is best suited when 

a greater degree of excludability is necessary in order to create incentives for investment in the 

follow-on development of an otherwise non-excludable and non-rivalrous knowledge output—

essentially to solve a free-rider dilemma—by effectively imbuing the university knowledge output 

with greater private-good (when exclusively licensed) or at least club-good (when non-exclusively 

licensed) characteristics.  

University invention disclosures, patents, and licensing agreements, as well as citations to 

university patents, have received considerable attention and empirical analysis (Jaffe, Trajtenberg, 

and Henderson, 1993; Henderson, Jaffe, and Trajtenberg, 1998; Jensen and Thursby, 2001; 
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Mowery, Nelson, and Sampat, 2001; Colyvas, 2002; Graff, Heiman, and Zilberman, 2002; Coupe, 

2003; Geuna and Nesta, 2006; Stephan et al, 2007; Thursby, Fuller, and Thursby, 2009; Feller and 

Feldman, 2010). IPR-mediated technology-transfer activities, when compared with the other 

knowledge dissemination channels of the university, are still relatively minor (Cohen et al, 2002; 

Agrawal & Henderson 2002), yet it is likely to continue as a viable mechanism of managing 

knowledge outputs, while generating limited revenues for the university. 

2.2.4. Venture creation 

Finally, the venture creation mechanism works by raising private investments in the further 

development and dissemination of university knowledge via a startup firm, founded external to the 

university, where IPRs or secrecy makes the knowledge relatively excludable, and intrinsic 

tacitness, complexity, or context-dependence makes the knowledge relatively rivalrous in 

transmission. While this mechanism involves both IPRs and collaborative activities, it does not 

use them to facilitate direct dissemination of new university-produced knowledge to existing firms 

in industry. Rather, it uses them—in combination with other entrepreneurial activities—to create 

new entrants that may compete against established incumbents or, at a minimum, that may serve 

to “de-risk” early stage technologies to then be acquired by incumbent firms once proven 

commercially viable. A number of studies have developed metrics ranging from simple counts of 

startup companies, to measures of the success or economic impact of university startups (Franklin, 

Wright, and Lockett, 2001; Di Gregorio and Shane, 2003; Shane, 2004; O‘Shea et al, 2005; Zhang, 

2009; Rasmussen and Borch, 2010; Fini et al, 2011; Lundqvist, 2014; Rasmussen et al, 2014). 

2.2.5. Measuring multiple university knowledge outputs 

In addition to the aforementioned studies that focus on a single type of university research 

output, a number of empirical studies consider multiple knowledge outputs of the university. 
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Foremost among these are surveys that ask samples of respondents to identify and/or rank various 

ways by which knowledge spillovers from universities impact industry, including all four of the 

broad types of outputs laid out in Fig. 1 (see Blumenthal et al, 1986; Cote & Cote, 1993; Landry, 

Traore, and Godin, 1996; Meyer-Krahmer and Schmoch, 1998; Cohen et al, 2002; Laursen & 

Salter, 2004; De Fuentes and Dutrenit, 2012). Other studies explicitly model or measure 

interactions between two or more quantified outputs, with many focusing on questions specifically 

regarding tradeoffs between publications and patents. Agrawal and Henderson (2002) count the 

publications and the patents generated by individual researchers in two academic departments at 

MIT over 15 years. They find that researchers’ numbers of patents are not related to their number 

of papers, but they are positively correlated with the number of citations to their papers, 

interpreting this to suggest that patenting may be complementary to more fundamental (i.e. highly 

cited) research. Payne and Siow (2003) estimate the effects of federal research funding on the 

output of both papers and patents at 68 U.S. research universities over 28 years, showing that the 

level of federal research funding positively affects the output of both, but does not significantly 

increase their quality as indicated by citations to both. Huang and Murray (2009) analyze the 

dynamics that arise when new knowledge regarding human genes and their functions are 

disseminated via both public domain and IPR mechanisms. They estimate that the granting of a of 

a patent involving a human gene has a slightly negative impact (of 0% to -3%) on the rate by which 

a corresponding academic publication on that same human gene subsequently receives citations. 

Thursby and Thursby (2011) analyze science and engineering faculty at 11 major U.S. research 

universities over 17 years, finding that successful patent licensing by a faculty member increases 

the subsequent volume of that individual’s publications, as well as citations. Bonaccorsi, Daraio, 

and Simar (2006) find that, for 45 Italian universities over 5 years, increased industry research 
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funding (indicating research outputs disseminated via collaborative channels) is associated with 

increased rates of publication. Collectively, results in the literature based on knowledge metrics 

suggest that the multiple types of research outputs of universities appear to be co-products of a 

common underlying knowledge production processes and their production generally exhibits 

economies of scope.  

3. Data and Methodology 

3.1. Data Descriptions 

For this analysis, data on research inputs and outputs were collected from a variety of 

institutional sources across Colorado State University, the public Land Grant university for the 

state of Colorado. All data for this analysis were denominated at the smallest common accounting 

unit available, that of the 54 academic departments or analogous research units (e.g. institutes, 

centers, etc.) over 24 years, from 1989 to 2012. The research input data consist of two categories, 

representing financial inputs (research expenditures) and human capital (research FTEs). Data on 

physical capital—including laboratory space and durable research equipment—were also collected 

and tested in preliminary regressions but were not found to be significant determinants of 

knowledge production, at least on the margin, and were therefore omitted from subsequent analysis. 

The research output data were categorized according to the main mechanisms or channels of  

dissemination upon which they depend: (I) knowledge outputs disseminated via the mechanism of 

publication and release into the public domain; (II) knowledge outputs disseminated via direct 

collaboration with industry users of that knowledge; (III) knowledge outputs disseminated via the 

mechanism of formal intellectual property rights and licensing contracts; or (IV) knowledge 

outputs disseminated via the creation of startup ventures. In fact, a given research project may 
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produce knowledge outputs that show up in two or more of these categories, arguably representing 

different aspects or dimensions of the knowledge arising from that line of research work. For 

practical purposes, the latter two types of knowledge outputs, while conceptually distinct, are 

combined in our analysis into a combined technology transfer metric (see below), due both to the 

empirical issue of the small numbers (or, conversely, the preponderance of zero values) observed 

but also to the institutional arrangement whereby they are jointly managed by the university’s 

office of technology transfer. Table 1 provides summary statistics of all research input and output 

variables for the 54 departments and research units of the university from 1989 to 2012, resulting 

in a panel that is comparable in number of observations to those estimated in prior studies (Pakes 

and Griliches, 1980; Pardey 1989; Adams and Griliches, 1998; Crespi and Geuna; 2008). 

Table 1 
Summary statistics of all research input and output variables at the department or research unit 
level within Colorado State University, 1989-2012 

  Mean 
Std. 
Dev. Min Max Sum Group Obs. 

Research inputs        
  Research expenditures (million $) 2.74 4.57 0 37.9 3,545.8 54 1,296 

  Full-time equivalent researchers (FTEs) 56.78 46.10 0 282.4 73,592.0 54 1,296 

Research output measures 
       

  Published journal articles (counts) 28.57 35.91 0 252.0 37,029.0 54 1,296 

  Industry co-authored articles (counts) 2.22 4.96 0 58.0 2,872.0 54 1,296 

  Private sponsor grant awards (million $) 0.18 0.52 0 5.4 230.3 54 1,296 

  Extension budget (million $) 0.08 0.21 0 1.3 105.7 54 1,296 

  Invention disclosures (counts) 1.13 2.99 0 28.0 1,470.0 54 1,296 

  Patent applications and grants (counts) 0.12 0.52 0 9.0 160.0 54 1,296 

  Startup companies (counts) 0.03 0.19 0 3.0 40.0 54 1,296 

Research output index variables 
       

  Combined collaboration metrics (counts) 5.50 12.02 0 167.0 7,131.0 54 1,296 

  Combined tech transfer metrics (counts) 1.29 3.37 0 29.0 1,670.0 54 1,296 
Note: The results of ADF unit root tests indicate that all input and output variables have a stationary process at a 1 percent level 
of statistical significance by four different methodologies, such as inverse chi-squared, inverse normal, inverse logit t, and 
modified inverse chi-squared (except extension budget, which has a stationary process at a 5 percent level with only inverse 
normal and inverse logit t methodologies).  
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3.1.1. Knowledge Inputs 

Annual Research Expenditures are reported by two different sources within the university, for 

different sets of years and at different levels of aggregation. First, departmental-level accounting 

data of annual research expenditures is available for the 54 individual departments and research 

units from 2007 to 2012. Second, the university’s annual total research expenditures are available 

for the entire time period of the study, from 1989 to 2012. In order to generate a complete series 

at the department level, average expenditure shares by department over the available years of 2007-

2012 are used to estimate or “backcast” research expenditure values as a share of the university 

total for all departments during the years of 1989-2006.5 While not ideal, this method of imputing 

missing departmental values of this key input allows us to test for longer lag times in the KPF. 

Departmental shares of total university research expenditures over the observed years were quite 

stable, and discussions with research administration officials of the university confirm that they 

had been similarly stable in previous years. Total research expenditures for the university over the 

23 year time period of the study was $3.5 billion. Annual research expenditures had exceeded $300 

million by the final years of the study period. 

Full-time equivalent (FTE) research appointments consist of the research share of professors’ 

appointments, as well as non-tenured research staff, postdoctoral fellows, and graduate research 

assistants (GRAs). Data on university research FTEs is reported for the 54 departments and 

research units from 2003 to 2012.6 Departmental values for prior years, from 1989 to 2002 were 

similarly calculated by “backcasting” average departmental shares of the reported total university 

                                                 
5 The university switched accounting software systems in 2006, at which point prior years’ departmental level data 
were archived and not carried forward into the new system. Accessing the values would have required perhaps 
hundreds of hours of university administrative staff time. 
6 Data from the Office of Institutional Research at CSU. 
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research FTEs for those years.7  Annual count of research FTEs had exceeded 4000 by the final 

years of the study period. 

3.1.2. Knowledge outputs disseminated via the public domain 

Published academic articles: The primary measure of university research output are annual 

counts of research publications with at least one author affiliated with CSU, from 1989 to 2012, 

identified by departmental affiliation of the CSU author(s).8 The total count of publications for 

this time period is 37,029. The data for each publication includes author names and institutional 

affiliations. A sizable fraction of the raw publications data reports authors’ departmental affiliation. 

By standardizing names of all authors affiliated with CSU, departmental affiliation could be 

imputed from those records where it was reported to other records where it was not. For those 

identified CSU authors for which departmental affiliation was missing in the data altogether, the 

information was obtained by hand from secondary sources, such as departmental web pages. In 

those cases with co-authors from two or more departments, the article was counted once for each 

department represented. On average, each department produced 28.57 publications annually. As a 

result, all 37,029 CSU publications were attributed to at least one department within the university. 

Rate of research publications had come to exceeded 2,000 per year by the final years of the study 

period. 

3.1.3. Knowledge outputs disseminated via university-industry collaboration 

Published academic articles with industry co-authors: Co-authorship between researchers at 

the university and collaborators in industry is considered a leading indicator of knowledge outputs 

disseminated via more interpersonal or collaborative channels. Publication of an article is, in itself, 

                                                 
7 Annual university total FTE data collected from various years of the CSU Fact Book.  
8 The records of CSU authored publications were collected from the Web of Knowledge (Thomson Reuters), accessed 
via CSU Libraries. 
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indication of knowledge output disseminated via the public domain; however, the fact that the 

research was conducted jointly with industry R&D personnel indicates that other knowledge co-

products—such as tacit skills or unpublished data and technical findings of specific relevance to 

the industry partner—may have also been exchanged with them more directly or informally. In 

some instances a listed industry co-author is a graduate of the university, recently hired by industry, 

a commonly cited mechanism for interpersonally-mediated dissemination of tacit knowledge and 

skills from the university to industry. All of the 37,029 publications with a CSU author (see above) 

were additionally categorized according to the nature of co-authors’ affiliations, including (i) all 

co-authors affiliated with CSU only, (ii) all co-authors affiliated with academic or public sector 

institutions only, or (iii) at least one co-author affiliated with a company or other private-sector 

organization. The total number of articles with an industry co-author was 2,872, or 7.8 percent of 

all publications during this time period. Annual counts of articles with industry co-authors were 

then tallied by department. When university authors from more than one department were involved 

on an industry co-authored article, it was counted, in the same manner as above, once for each 

department.  

Departmental expenditures on Cooperative Extension: Given the university’s role as the Land 

Grant university for the state of Colorado, Cooperative Extension activities involving tenure-track 

faculty and research staff with Extension-funded appointments, located within academic 

departments, represent another form of knowledge dissemination. Those with Extension 

appointments engage with private sector stakeholders throughout the state, communicating 

industry-relevant results from their own research as well as the research of their colleagues in the 

department. Our preliminary explorations found that departmental-level budget expenditures on 

Extension appointments and activities is perhaps the only variable systematically reported for all 
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departments and years, related to the quantity of industry-oriented knowledge dissemination from 

the department via the mechanism of Cooperative Extension.9 Extension budgets at the department 

level are in dollars per year from 2003 to 2012.10 Total annual university Extension budgets were 

available for the earlier period from 1989 to 2002,11 and therefore Extension expenditures for 

individual departments over these years were estimated using the “backcasting” method, based on 

observed departmental shares of the university totals from 2003-2012. Total departmental budget 

Cooperative Extension expenditures for the university, for these years, was $105.7 million. 

Research grants and contracts from industry sponsors: Even though the financing of research 

via grants or contracts from industry are, technically speaking, an input to research, the extent of 

such awards to a department can be considered a proxy for the quantity of research being conducted 

with an industry orientation and from which knowledge outputs may be disseminated, at least in 

part, via contact and interactions between university researchers and those industry sponsors. Grant 

and contract awards data are available for the entire university from 1989 to 2012.12 For each 

award we identified the funding source as a public-sector or a private-sector (“for profit” or 

industry) sponsor. Total value of private sector grant awards over this time period was $230.3 

million, representing just 6.5 percent of the university’s total research.  

Combined Collaboration Metric: These three measures or proxies of knowledge output were 

found to be relatively uncorrelated across departments and years, and thus are assumed to be 

relatively independent. We therefore seek to combine them into a single knowledge output variable. 

To do so, first, we transform the dollar amount of expenditures on Cooperative Extension and the 

                                                 
9 Other metrics of extension activity, such as contact hours, numbers of consultations, etc., were found not to be 
systematically collected or reported across all departments or all years. 
10 Departmental level data provided by the Agricultural Business Center of the College of Agricultural Sciences at 
CSU. 
11 University level data collected from the CSU Fact Books for the respective years. 
12 From the Contracts and Grants Database accessible online at the Office of the Vice President for Research, CSU. 
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dollar value of private-sector research grants into “publication equivalent” units, based on each 

department’s ratio of total journal article publications to total research expenditure dollars in the 

same year. We then sum these “publication equivalents” of extension budgets and private sector 

grant awards with the counts of industry co-authored publications, denoting this linear combination 

as the combined collaboration metric13, with one benefit of this measure being that it is roughly 

comparable to the measures of knowledge outputs disseminated via the other two channels.  

3.1.4. Knowledge outputs disseminated via technology transfer mechanisms 

Invention Disclosures: The first indicator of research results that have impact via the 

technology transfer mechanisms mediated by formal intellectual property and licensing contracts 

are inventions resulting from university research disclosed to the university’s technology transfer 

office, from 1989 to 2012. During the time period of this study, CSU research led to 1,470 

invention disclosures.14  

Patent Applications and Issued Patents: Patent data provide a second indicator of knowledge 

outputs disseminated via technology transfer mechanisms, building directly upon invention 

disclosures. Patent data include patent applications and patents granted, characterized by inventor 

names and publication or issue dates. CSU inventors were identified and affiliated with a university 

                                                 
13 Coll i,t = IAi,t + PEExtensioni,t + PEPGranti,t, where IA is industry co-authored articles, a subset of total publications, 
PEExtension is a “publication equivalent” measure of the extension budget, and PEPGrant is a “publication equivalent” 
measure of the value of private-sponsor grant awards for department i in time period t. PEPGrant i,t = 
(Tpubsi,t/Ri,t)∙PGrant i,t and PEExtensioni,t = (Tpubsi,t/Ri,t)∙Extensioni,t, where TPubs is the total publication count and 
R is research expenditures. Extensioni,t is the actual dollar value of the extension budget expenditures by the 
department i in year t, and PGrant i,t  is the dollar value of private-sponsor grants and contracts awarded to department 
i in year t.  Given that these latter proxies are financial data, this transforms them to units similar to count of articles, 
using average research expenditures per total publications for that department in that year, essentially converting these 
knowledge output proxies into the “currency” of research publications.  
14 Data provided by CSU Ventures, which serves as the technology transfer office, located within the external CSU 
Research Foundation, on behalf of the university. 
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department, providing annual counts of patent publications by department from 1990 to 2011. 

During this time CSU research led to 160 published patent applications or issued patents.15  

Startup companies seeking to develop commercial applications of knowledge arising from 

university research are the main indicator of the venture creation mechanism of knowledge 

dissemination. Data on CSU startup companies is characterized by names of the companies, 

incorporation dates, names of individual founders, as well as and the academic department of the 

university-affiliated founders, from 1989 to 2012. During this time CSU research led to 41 startup 

companies.16  

Combined Technology Transfer Metric17: Due to low numbers of any one of these measures, 

we combine counts of invention disclosures, patent applications and issued or granted patents, and 

the number of startup companies by department by year. These three variables represent publicly 

observable university tech transfer activities. While in some cases these may be counting the same 

underlying invention, each different observation represents an important progressive step toward 

commercialization, thereby giving more weight to those knowledge outputs that are presumably 

more significant.  

3.2. Model Framework 

The university knowledge production function developed here builds upon previous models 

(Griliches, 1979; Pakes and Griliches, 1980, 1984; Hausman et al, 1984; Hall et al, 1986; Jaffe, 

1989; Pardey, 1989; Adams and Griliches, 1998) describing the technical relationship between 

                                                 
15 Patent data was collected from the Thompson Innovation database by Thompson Reuters, searching for patents 
assigned to “Colorado State University”. 
16 The data source is, again, the CSU Ventures office. 
17 The combined tech transfer metrics (TTM) index, TTMi,t=Inventioni,t +Patenti,t +Startupsi,t, consists of the sum of 
invention disclosures (Invention), patent apps or granted patents (Patent), and the number of CSU affiliated startup 
companies (Startups), for department i in time period t. 
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research inputs and outputs, structurally analogous to the neoclassical production function. 

Equation (1) represents the empirical functional form for panel data analysis of the university 

knowledge production relating research inputs to outputs, 

𝑌𝑌𝑖𝑖,𝑡𝑡 = 𝛼𝛼 + ∑ 𝛽𝛽𝑗𝑗𝑅𝑅𝑖𝑖,𝑡𝑡−𝑗𝑗 + 𝜀𝜀𝑖𝑖,𝑡𝑡𝑘𝑘
𝑗𝑗=0  (1)  

for i departments or research units and t time periods. Y is the vector of different types of university 

knowledge outputs, which may be considered co-products of a common KPF. R represents 

research expenditures made by the ith department in the current time period t and in each of k 

previous time periods. ,i tε  is an independent and identically distributed panel disturbance term. 

The Y are discrete, taking on a finite number of non-negative, integer values. For such count data, 

the Poisson and negative binomial maximum likelihood estimation (MLE) models are well 

established, with the negative binomial better suited when the data is over-dispersed (Hausman et 

al, 1984; Hall et al, 1986).  

3.2.1. Polynomial distributed lags (PDL) 

Prior studies have established that research expenditures are the main input of knowledge 

production and have used a distributed-lag model to relate a finite number of k prior years’ inputs 

of research expenditures to a given year’s measured output of new knowledge. Some prior studies 

adopted an ad hoc distributed-lag model, which does not assume any a priori restrictions, such as 

systematic patterns of slope coefficients or a maximum length of the lag, but rather allows for a 

form-free lag structure. We observe in Fig. 2 that the estimated slope coefficients of the lagged 

input variables in Pakes and Griliches (1984) and Pardey (1989) appear to follow something more 

like a third or fourth degree polynomial. This suggests that the slope coefficients in both papers 

could be approximated by a suitable degree polynomial. In light of this observation, we instead 

follow Crespi and Geuna (2008) and adapt Almon’s (1965) lag scheme with a polynomial of 
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degree m and k periods of lagged inputs for our empirical specification of the knowledge 

production function, which enables us to find a best fit. Other alternatives—such as ad hoc, Koyck, 

and binomial lag schemes—are either non-restrictive or too restrictive. 18 

 
Fig. 2. Coefficient patterns of Pakes and Griliches (1984), and Pardey (1989) 

A panel count polynomial distributed-lag (PDL) model is derived from equation (1) for 

negative binomial maximum likelihood estimation (MLE). Equation (2) is a PDL scheme in which 

the maximum degree, m, of the polynomial, p=0,1,2,...,m, must be smaller than the maximum lag, 

j=0,1,2,…,k, (m<k).  

𝛽𝛽𝑗𝑗 = 𝜔𝜔0 + 𝜔𝜔1 ∙ 𝑗𝑗 + 𝜔𝜔2 ∙ 𝑗𝑗2 + ⋯+ 𝜔𝜔𝑚𝑚 ∙ 𝑗𝑗𝑚𝑚 = ∑ 𝜔𝜔𝑝𝑝 ∙ 𝑗𝑗𝑝𝑝𝑚𝑚
𝑝𝑝=0  (2) 

The corresponding unrestricted PDL equation of m-degree and k-lags is  

Y𝑖𝑖,𝑡𝑡 = 𝛼𝛼 + ∑ 𝜔𝜔𝑝𝑝𝑍𝑍𝑝𝑝,𝑖𝑖,𝑡𝑡
𝑚𝑚
𝑝𝑝=0 + 𝜀𝜀𝑖𝑖,𝑡𝑡 (3) 

where 𝑍𝑍0,𝑖𝑖,𝑡𝑡 = ∑ 𝑗𝑗0 ∙ 𝑅𝑅𝑖𝑖,𝑡𝑡−𝑗𝑗𝑘𝑘
𝑗𝑗=0 ,  𝑍𝑍1,𝑖𝑖,𝑡𝑡 = ∑ 𝑗𝑗 ∙ 𝑅𝑅𝑖𝑖,𝑡𝑡−𝑗𝑗𝑘𝑘

𝑗𝑗=0 ,⋯ ,𝑍𝑍𝑚𝑚,𝑖𝑖,𝑡𝑡 = ∑ 𝑗𝑗𝑚𝑚 ∙ 𝑅𝑅𝑖𝑖,𝑡𝑡−𝑗𝑗𝑘𝑘
𝑗𝑗=0  

and the R are research expenditures indexed by academic department and year. The choice of 

degree of the polynomial, m, and the number of lagged years, k, to include, can be informed by 

two common measures for comparing maximum likelihood models, the Akaike information 

criterion (AIC) and the Schwarz-Bayesian information criterion (SBIC). The slope coefficients, 

                                                 
18 While the ad hoc lag scheme follows no a priori restrictions, Koyck and binomial lag schemes are too restrictive 
since they assume, respectively, that all slope coefficients decline geometrically or follow quadratic patterns. See 
Ravenscraft and Scherer (1982) or Crespi and Geuna (2008). 
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𝜔𝜔𝑝𝑝, in equation (3) are not the true estimated slope coefficients of the unrestricted PDL model. 

Instead, the true slope coefficients need to be recovered from the PDL system (see Gujarati 2004, 

p. 688-690). 

While the unrestricted PDL model has no a priori restrictions, a PDL model can have endpoint 

restrictions in which coefficients of the current and all beyond the kth lagged input variable are held 

to be zero. When imposing this restriction on the coefficient of the current time period’s input 

variable, it is called a left restriction or a near-end restriction. When imposing the restriction on 

the coefficient of the kth and greater lagged input variables, it is called a right restriction or a far-

end restriction. Following Gujarati (2004), such restrictions may be due to psychological, 

institutional, or technical reasons. In this analysis, we test a restricted PDL model in which inputs 

beyond the kth lagged year no longer impact the current research outputs but research expenditures 

in the current year do have impact. The true slope coefficients of the restricted PDL model are 

recovered in much the same manner as in the unrestricted model. In knowledge production, there 

is no doubt that past research expenditures impact current research outputs, but how these may be 

limited depend on the type of research output, the inherent characteristics of the research 

environments, and the different purposes of R&D projects. 

3.2.2. Effective labor in knowledge production 

In the university context, research expenditures and full time equivalent (FTE) researchers 

might be considered the main inputs in the knowledge production function. However, since, most 

of the research expenditures go towards the salaries of the FTE researchers, there is reason to be 

concerned that these two input variables may interact with each other. Thus, we introduce an 

alternative for considering FTEs while avoiding such problems. 
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In Romer’s (1986, 1990) specification of endogenous technological change, the stock of 

human or knowledge capital determines the rate of growth and is a non-rival and semi-excludable 

resource. These aggregate growth models, based on the notion of the production function, and 

therefore sometimes called “the microfoundations of macroeconomics”, assume constant returns 

to scale instead of diminishing returns to scale, as in individual firm production functions. 

However, if we follow this line of reasoning and assume constant returns to scale with respect to 

labor (see Solow, 1956) in the university KPF, we can generate  

ln �𝑌𝑌𝑖𝑖,𝑡𝑡 𝐿𝐿𝑖𝑖,𝑡𝑡� � = 𝛼𝛼 + ∑ 𝛽𝛽𝑗𝑗 ∙ 𝑙𝑙𝑙𝑙 �
𝑅𝑅𝑖𝑖,𝑡𝑡−𝑗𝑗

𝐿𝐿𝑖𝑖,𝑡𝑡� �𝑘𝑘
𝑗𝑗=0 + 𝜀𝜀𝑖𝑖,𝑡𝑡 (4)  

where L is the count of full-time-equivalent (FTE) researchers, as a measure of human capital. 

Assuming a Cobb-Douglas functional form, and taking the logarithm of both sides, we can 

denote research output per unit of effective labor (in our case, per FTE) as a function of research 

expenditures per unit of effective labor (per FTE). It should be noted that equation (4) is still a 

panel group fixed-effects model with polynomial distributed lags (PDL) of past research 

expenditures, but it is not a negative binomial MLE. Instead it is estimated as a log-linear model. 

4. Results 

We seek to test the effects of changes in research inputs on the various types of knowledge 

output as co-products of university research three sets of empirical relationships: (1) knowledge 

outputs disseminated via the public domain (published articles); (2) knowledge outputs 

disseminated via interpersonal contact that occurs in the context of university-industry 

collaboration; and (3) knowledge outputs disseminated via the more formal contractually based 

technology transfer mechanisms of patent licensing and venture creation.  
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We initially tested these relationships as a system of equations, using an effective labor log-

linear seemingly unrelated regression (SUR) model19, but preliminary results indicated that the 

error terms were uncorrelated among the equations for the three different types of research outputs. 

Thus, we do not adopt a system of equations approach, and instead we investigate independent 

regression models for each of the research outputs separately. However, as we will see in a later 

section, it may still be meaningful to describe the multiple outputs of university research as co-

products. 

Given the inherent characteristics of panel data analysis, in that it contains both cross-section 

and time-series, two significant issues that must be controlled for are heteroscedasticity and 

autocorrelation, respectively. Augmented Dickey-Fuller (ADF) results of unit root tests, by four 

different methodologies, indicate a stationary process for the input and output variables 

summarized in Table 1. And, the negative binomial maximum likelihood estimation has the 

advantage of controlling for heteroscedasticity.  

4.1. Estimating the production of knowledge outputs disseminated via the public domain: 
published journal articles 

Published journal articles are the primary output of knowledge production across the various 

departments and other research units of the university. Both Pardey (1989) and Adams and 

Griliches (1998) find journal articles to be increasing in research expenditures, with some lag. The 

total count of published journal articles by CSU authors from 1989 to 2012 was 37,029, compared 

to just 1,470 invention disclosures and 160 patent filings over the same time period. (See Table 1.) 

Moreover, the distribution of the publications across departments is skewed toward a relatively 

small number of departments. 

                                                 
19 Four sets of independent regression models, the effective labor model with bootstrapped standard errors, one each 
for publications, collaboration index, and tech transfer metrics. 
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Table 2 
Regression results for knowledge outputs measured by published journal articles, at the department 
and research unit level, 1989-2012 

Dependent variable: Published Journal Articles 

  Ad-hoc1  
(k=6)2 

  Unrestricted PDL  
(k=6, m=2)2 

  Restricted PDL  
(k=6, m=2)2 

  
Effective labor 

Unrestricted PDL 
(k=6, m=2)2 

[1] 
 

[2] 
 

[3] 
 

[4] 
Negative Binomial YES   YES   YES   NO 
Group Fixed Effects YES  YES  YES  YES 
Expenditure _t-0 0.0472***  0.0369***  0.0248***  0.0689 

(0.0129) 
 

(0.0068) 
 

(0.0064) 
 

(0.0476) 
_t-1 ─0.0129  0.0091***  0.0172***  0.1054** 

(0.0166) 
 

(0.0035) 
 

(0.0027) 
 

(0.0475) 
_t-2 ─0.0024  ─0.0074  0.0109***  0.1270** 

(0.0168) 
 

(0.0049) 
 

(0.0008) 
 

(0.0525) 
_t-3 ─0.0043  ─0.0124**  0.0060***  0.1338*** 

(0.0176) 
 

(0.0053) 
 

(0.0021) 
 

(0.0463) 
_t-4 ─0.0037  ─0.0059*  0.0025  0.1259*** 

(0.0186) 
 

(0.0036) 
 

(0.0030) 
 

(0.0326) 
_t-5 ─0.0213  0.0120***  0.0003  0.1031** 

(0.0189) 
 

(0.0042) 
 

(0.0029) 
 

(0.0496) 
_t-6 0.0758***  0.0413***  0.0338***  0.0656 

(0.0207) 
 

(0.0113) 
 

(0.0110) 
 

(0.1074) 

Sum of the lags 0.0786***  0.0736***  0.0956***  0.7297*** 
(0.0060)  (0.0052)  (0.0129)  (0.1405) 

Mean lag 3.6215  3.1399  2.8398  2.9786 
Constant 2.2490***  2.2514***  2.2463***  2.0077*** 

(0.0848)  (0.0845)  (0.0840)  (0.5708) 
AIC3 5764.0  5760.9  5773.2  976.0 
SBIC4 5802.8  5780.4  5787.8  990.2 
Log-likelihood ─2873.9  ─2876.5  ─2883.6  ─485.0 
Observation 954  954  954  848 
Group 53  53  53  52 
1. Ad-hoc distributed lag scheme, which is not a PDL model, but follow previous studies; 2. k is the length of lags and m 
is the degree of polynomial; 3. Akaike Information Criterion; 4. Schwarz' Bayesian Information Criterion; Parentheses 
are standard errors; *** at 1%, ** at 5%, and * at 10% level of statistical significance. 

Table 2 displays the results of the panel estimation of the KPF resulting in the output of 

published journal articles by the 54 departments and research units of the university from 1989 to 

2012using four different models: model 1 can be denoted an ad hoc distributed lag scheme, 

comparable to those used in previous studies (Pakes and Griliches, 1980, 1984; Pardey, 1989); 

model 2 is an unrestricted polynomial distributed lag (PDL) scheme; model 3 is a restricted PDL 
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with an end-point restriction; model 4 is a log-log model with PDL scheme and White’s robust 

standard error, a.k.a. an effective labor model. Again, models 1 through 3 are negative binomial 

maximum likelihood estimations (MLE), but model 4 is log-linear.  

In choosing the number of lagged years, k, and the degree of the polynomial, m, the preferred 

model is the one with minimum values of the AIC and SBIC. Further, we assume that the 

coefficient on the kth lagged variable, at the end of the lag window, must be statistically significant 

at least at the 5% level and that k cannot be greater than 10 years, to prevent loss of degrees of 

freedom. As indicated in  

Table 2, in the publications model the best fit is obtained when the maximum lag of research 

expenditures is 6 years (k=6) and with a second-degree polynomial (m=2).  

Overall, models 2 through 4, using the PDL scheme of lagged research expenditures, have 

more statistically significant estimated slope coefficients and better model specification as 

indicated by the information criteria (AIC and SBIC), compared to the ad hoc model. 20 

Interestingly, in the ad hoc model, coefficients on lagged research expenditures are not statistically 

significant in the middle time periods, from lagged years 1 to 5, similar to results in Pakes and 

Griliches (1980, 1984) and in Pardey (1989). These results generally conflict with intuition about 

the effects of changes in research funding. However, in the other three models we find lagged 

research expenditures during the crucial time period of 1 to 5 years are statistically significant, 

particularly in the effective labor PDL, model 4.  

In model 3, the restricted PDL model, estimation results indicate that only a few years’ 

expenditures—those made in the current through the third lagged years—strongly and positively 

affect the current year’s publication counts. In model 4, the effective-labor PDL model, estimation 

                                                 
20 Model 4, the effective labor model, cannot be directly compared with the other models using the information criteria, 
because it is a log-log model whereas the others are negative binomial MLE. 
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results indicate that the most recent six years’ research expenditures (per FTE) have a positive and 

significant effect on current publication counts (per FTE).  

The sum of the estimated coefficients represents the long-run or total impact of past and current 

research expenditures on a current year’s publications. It indicates how publications by department 

change in response to prior years’ changes in research expenditures. The sum of the coefficients 

in all four models are statistically significant: research expenditures have a positive and significant 

long-run impact on publication counts, at the departmental level, according to all four models.  

These results also shed light on the nature of the time lags between research expenditures and 

resulting publications. The mean lag21 is a weighted average and this corresponds, for example, to 

the average duration between a research project’s inception and completion.22 The unrestricted 

PDL model [2] indicates that, on average, a university research team spends 3.14 years in 

generating a publication from a given round of research expenditures: similarly, the restricted PDL 

model [3] finds a mean lag of 2.84 years; the ad hoc model [1], 3.62 years; and the effective labor 

PDL model [4], 2.98 years.  

However, there are reasons to focus on the restricted PDL model in evaluating the mean lag. 

Given its end point restriction, the restricted PDL model is not affected by spurious lag effects 

from more distant prior years’ expenditures. Thus, the estimate of 2.84 years in model 3 is likely 

a more reliable mean lag than those estimated by the other models. By comparison, in previous 

studies, Pardey (1998) finds a mean lag of citation-adjusted publications is 3.87 years in his OLS 

model, 3.30 years in his “within” model, 4.64 years in his “between” model, and 3.62 years in his 

                                                 
21 It can be calculated as 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑙𝑙𝑙𝑙𝑙𝑙 = ∑ 𝑘𝑘∙|𝛽𝛽𝑘𝑘|𝑘𝑘

0
∑ |𝛽𝛽𝑘𝑘|𝑘𝑘
0

 

22 In practice, actual expenditures typically begin some time after project inception, due to the time involved in 
applying for and receiving funding. While similarly, publications occur some time after project completion, due to 
time involved in submission, review, revision, and publication of academic journal articles. 
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EGLS model. In Crespi and Geuna (2008), their unrestricted PDL model shows a mean lag of 3.48 

years and their restricted PDL model, 4.16 years. Thus, this analysis finds a somewhat smaller 

mean lag than previous studies. The differences in lag may be related to differences in level of 

analysis: this study uses data at the departmental level, while Pardey analyzes data at an 

institutional level, and Crespi and Geuna use data aggregated at a national level. 

Since models 1, 2, and 3 are negative binomial MLEs, their slope coefficients do not directly 

reveal marginal effects. Rather, marginal effects need to be calculated by an incident rate ratio 

(IRR). However, in model 4, the log-linear effective labor PDL model, each coefficient directly 

indicates the marginal effect. We find that elasticity of publication output relative to research 

expenditures made in each lagged year increases from the current year until the third lagged year, 

which implies that research expenditures in the third lagged year have maximum impact on the 

current year’s journal publications.  

4.2. Estimating the production of knowledge outputs disseminated via university-industry 
collaboration, as measured by the combined collaboration metric  

Table 3 presents regression results for the relationship between the common input variable of 

research expenditures and, in this section, those knowledge outputs measured by the combined 

collaboration metrics, at the department level, from 1989 to 2012. The set of models estimated is 

the same as in the previous section: [1] ad hoc, [2] unrestricted PDL, [3] restricted PDL, and [4] 

effective labor. However, the best fit is found when considering several more lagged years, when 

k=9, and when fitting a second degree polynomial, m=2. Similar to the estimation results in the 

previous section, all of the PDL models (models 2, 3, and 4) have better fit than the ad hoc model 

[1]. The unrestricted PDL, model 2, indicates that the current and the previous years’ level of 

research expenditures positively affects the current year’s collaboration-mediated outputs. The 
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restricted PDL model [3] and the effective labor PDL model [4] are largely in agreement indicating 

positive effects from the most recent five years’ research expenditures.  

Table 3 
Regression results for knowledge outputs measured by the combined collaboration metric, at the 
department and research unit level, 1989-2012 

Dependent variable: Collaboration Index 

 Ad-hoc1  
(k=9)2  

Unrestricted PDL  
(k=9, m=2)2  

Restricted PDL  
(k=9, m=2)2  

Effective labor 
Unrestricted PDL 

(k=9, m=2)2 

[1] 
 

[2] 
 

[3] 
 

[4] 
Negative Binomial YES   YES   YES   NO 
Group Fixed Effect YES  YES  YES  YES 
Expenditure_t-0 0.0587**   0.0372***   0.0270***   0.1317 

(0.0277) 
 

(0.0112) 
 

(0.0112) 
 

(0.0922) 

_t-1 ─0.0035  0.0158**  0.0218***  0.1697*** 
(0.0391) 

 
(0.0067) 

 
(0.0065) 

 
(0.0547) 

_t-2 0.0124  0.0006  0.0171***  0.1871*** 
(0.0460) 

 
(0.0066) 

 
(0.0028) 

 
(0.0543) 

_t-3 ─0.0066  ─0.0085  0.0130***  0.1837*** 
(0.0402) 

 
(0.0078) 

 
(0.0016) 

 
(0.0677) 

_t-4 0.0187  ─0.0114  0.0095***  0.1598** 
(0.0358) 

 
(0.0080) 

 
(0.0033) 

 
(0.0746) 

_t-5 ─0.0348  ─0.0082  0.0065  0.1152 
(0.0380) 

 
(0.0068) 

 
(0.0047) 

 
(0.0708) 

_t-6 0.0263  0.0012  0.0041  0.0499 
(0.0647) 

 
(0.0053) 

 
(0.0054) 

 
(0.0596) 

_t-7 ─0.0788  0.0167**  0.0022  ─0.0360 
(0.0610) 

 
(0.0075) 

 
(0.0052) 

 
(0.0571) 

_t-8 0.0098  0.0384***  0.0009  ─0.1425 
(0.0622) 

 
(0.0143) 

 
(0.0043) 

 
(0.0878) 

_t-9 0.1311***  0.0662***  0.0327  ─0.2697* 
(0.0565) 

 
(0.0239)  

 
(0.0167) 

 
(0.1479) 

Sum of the lags 0.1332***  0.1479***  0.1349**  0.5490* 
(0.0211) 

 
(0.0211) 

 
(0.0180) 

 
(0.2945) 

Mean lag 5.9491  5.6615  3.7660  4.4481 
Constant 0.7913*** 

 
0.7558*** 

 
0.8366*** 

 
─0.6184 

(0.1245)    (0.1225)   (0.1185)   (0.9869) 
AIC3 2775.2   2767.5   2773.8   821.6 
SBIC4 2824.9  2785.6  2787.3  834.1 
Log-likelihood ─1376.6  ─1379.8  ─1383.9  ─407.8 
Observation 675  720  720  487 
Group 45   45   45   43 
1. Ad-hoc distributed lag scheme, which is not a PDL model, but follow previous studies; 2. k is the length of lags and m is the 
degree of polynomial; 3. Akaike Information Criterion; 4. Schwarz' Bayesian Information Criterion; Parentheses are standard 
errors; *** at 1%, ** at 5%, and * at 10% level of statistical significance. 
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The sum of the estimated coefficients, reflecting the total or long-run effect indicate that, 

overall, research expenditures have a net positive impact on the university knowledge outputs 

disseminated via the collaboration mechanism, with at least a 1 percent level of statistical 

significance across all four models. Mean lags, interpreted to represent the average duration 

between research expenditure and the outputs measured (or at least proxied) by the combined 

collaboration metrics, are 5.95 years in the ad hoc model [1]; 5.66 years later in the unrestricted 

PDL [2]; 3.77 years in the restricted PDL [3]; and 4.45 years later in the effective labor model [4].  

4.3. Estimating the production of knowledge outputs disseminated via patent licensing and venture 
startups, as measured by the combined technology transfer metric 

Third, we estimate the production of knowledge outputs that are disseminated via technology 

transfer activities using, again, the same empirical regression models and independent variables 

employed in the previous two sections, even though the overall magnitude of tech transfer 

activities is considerably smaller. The total number of invention disclosures from 1989 to 2012 

was 1,470. Following the disclosure of an invention comes the decisions of whether to file a patent 

application, to start up a company, or both. The university’s total count of patent applications filed 

from 1989 to 2012 was 160, and the university’s total count of startups from 1989 to 2012 was 40. 

The distributions of patent filing and of the creation of startup companies are skewed toward a few 

colleges and departments, with departments in the three leading colleges accounting for over 80 

percent of both measures. 

Conversely, the number of invention disclosures, patent filings, and startups by the remainder 

of academic departments is usually zero in a given year, and thus these individual variables cannot 

be estimated without a zero-inflated count model regression procedure. Instead, we create a linear 

combination of these three metrics into a single variable, which exhibits relatively fewer zero 
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values. This linear combination of the tech transfer metrics introduces a degree of multi-counting 

of single inventions (as the technology transfer process may, in some cases, consist of invention 

disclosures, patenting procedures, and a startup company, all around a single invention.) However, 

we can interpret this combination of metrics to simply give more weight to those inventions that 

proceed further through the typical technology transfer process.  

As displayed in Table 4, the three PDL models ([2], [3], and [4]) exhibit better goodness of fit 

than the ad hoc model ([1]). In model 2, the unrestricted PDL, estimated coefficients from the 

current year’s to the 3rd lagged year’s research expenditures are positive and significant. Similarly, 

in model 3, the restricted PDL, research expenditures from the current year through the 3rd lagged 

year also have positive and significant impacts on the current year’s tech transfer activities, but 

research expenditures from years prior appear to have insignificant or negative influence. The 

negative relationship indicated in all four models over longer time periods could be an artifact of 

a major restructuring of the university’s tech transfer office undertaken in 2007, prior to which 

levels of invention disclosures, patent filings, and startups were relatively low, even though 

research expenditures were already growing rapidly, but after which the expected positive 

relationship was restored and continued until the end of the study’s time period in 2012.  

Overall, the total or long-run impact of research expenditure inputs on the combined tech 

transfer metrics output is not significant in models 1 and 2, but it is positive and significant in 

models 3 and 4. Mean lags indicate that the average duration between making research 

expenditures and the observation of an invention disclosure, patent filing, or startup is 4.98 years 

in the ad hoc model, 4.56 years in the unrestricted PDL model, 4.48 years in the restricted PDL 

model, and 4.81 years in the effective labor PDL model. According to tech transfer survey data 
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analyzed by Heher (2007), the average time between invention disclosure and a final patent granted 

is about five years.  

Table 4 
Regression results for knowledge outputs measured by the combined tech transfer metrics, at the 
department and research unit level, 1989-2012 

Dependent variable: Combined Tech Transfer Metrics 

 Ad-hoc1  
(k=9)2  

Unrestricted PDL  
(k=9, m=2)2  

Restricted PDL  
(k=9, m=2)2  

Effective labor 
Unrestricted PDL 

(k=9, m=2)2 

[1] 
 

[2] 
 

[3] 
 

[4] 
Negative Binomial YES   YES   YES   NO 
Group Fixed Effect YES  YES  YES  YES 
Expenditure_t-0 0.0969**   0.0487***   0.0555***   0.0432  

(0.0396) 
 

(0.0167) 
 

(0.0156) 
 

(0.1331) 

_t-1 ─0.0153  0.0440***  0.0371***  0.2031**  
(0.0590) 

 
(0.0100) 

 
(0.0090) 

 
(0.0932) 

_t-2 0.0837  0.0372***  0.0216***  0.3095***  
(0.0630) 

 
(0.0099) 

 
(0.0037) 

 
(0.0839) 

_t-3 ─0.0857  0.0285**  0.0089***  0.3622***  
(0.0623) 

 
(0.0118) 

 
(0.0022) 

 
(0.0891) 

_t-4 0.1102  0.0178  ─0.0009  0.3613***  
(0.0550) 

 
(0.0121) 

 
(0.0049) 

 
(0.0915) 

_t-5 ─0.0164  0.0050  ─0.0079  0.3069***  
(0.0543) 

 
(0.0104) 

 
(0.0069) 

 
(0.0847) 

_t-6 0.0741  ─0.0097  ─0.0120  0.1988***  
(0.0903) 

 
(0.0081) 

 
(0.0078) 

 
(0.0709) 

_t-7 ─0.0336  ─0.0264**  ─0.0133*  0.0372  
(0.0911) 

 
(0.0109) 

 
(0.0076) 

 
(0.0665) 

_t-8 0.0308  ─0.0452**  ─0.0117*  ─0.1780*  
(0.0939) 

 
(0.0207) 

 
(0.0062) 

 
(0.0985) 

_t-9 ─0.2066**  ─0.0659*  0.0767***  ─0.4469***  
(0.0847) 

 
(0.0348) 

 
(0.0235) 

 
(0.1645) 

Sum of the lags 0.0382  0.0341  0.1540***  1.1973***  
(0.0291) 

 
(0.0270) 

 
(0.0229) 

 
(0.3600) 

Mean lag 4.9756  4.5598  4.4754  4.8171 
Constant  0.5143**  0.5586***  0.4422**  0.2890 
 (0.2091)   (0.2029)   (0.1879)   (1.1219) 
AIC3 1364.2   1356.6   1357.5   500.8 
SBIC4 1412.3  1374.1  1370.6  511.6 
Log-likelihood ─671.1  ─674.3  ─675.8  ─247.4 
Observation 585  585  585  274 
Group 39   39   39   39 
1. Ad-hoc distributed lag scheme, which is not a PDL model, but follow previous studies; 2. k is the length of lags and m is the 
degree of polynomial; 3. Akaike Information Criterion; 4. Schwarz' Bayesian Information Criterion; Parentheses are standard 
errors; *** at 1%, ** at 5%, and * at 10% level of statistical significance. 
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However, according to Graff, Heiman, and Zilberman (2023) licensing or startup negotiations 

are typically conducted in parallel with patent prosecution and are often completed before a final 

patent issues. Thus, mean lags computed from the estimates here are certainly reasonable. 

5. Discussion 

5.1. Returns to Scale in Knowledge Production  

The knowledge production function is based on neoclassical production theory, wherein it is 

assumed the main objective of a producer is to maximize the difference between revenues and 

costs involved in turning inputs into outputs. The production function, as such, necessarily exhibits 

certain characteristics, such as non-negativity, weak essentiality, and concavity. However, because 

knowledge is an intangible asset and because a research university does not necessarily pursue a 

profit maximization objective, not all of the typical characteristics and assumptions of neoclassical 

production theory necessarily hold when describing the relationships between university research 

inputs and outputs.  

Since publications represent the most common knowledge output of the university, it is more 

likely that the production of publications has been optimized and, therefore, may exhibit 

neoclassical production theory’s law of diminishing marginal returns. Adams and Griliches (1998) 

find output of journal publications to exhibit constant returns to scale at the aggregate level but 

decreasing returns to scale at the individual university level. Decreasing returns to scale (DRTS) 

is indicated when the sum of all slope coefficients is significantly less than one: ∑ 𝛽𝛽𝑗𝑗𝑘𝑘
𝑗𝑗=0 < 1. In 
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our analysis, in the effective labor model23 of published journal articles, the sum of all lagged year 

coefficient estimates is 0.7297 and the sum of just those coefficient estimates that are significantly 

greater than zero is 0.5952 (from model 4 in Table 2) indicating DRTS. Similarly, the sum of 

estimated slope coefficients in the effective labor PDL model of the collaboration metrics output 

(model 4 in Table 3) is 0.5490 for all estimated coefficients and 0.7003 for just those coefficients 

that are significantly greater than zero, indicating the output of knowledge disseminated via 

collaborative mechanisms also exhibits DRTS. In contrast, the sum of coefficients in the effective 

labor PDL model of the tech transfer metrics output (model 4 in Table 4) is 1.1973 for all estimated 

coefficients and 1.7419 for just those coefficient estimates that are significantly greater than zero, 

indicates increasing returns to scale (IRTS). Generally interpreted, a doubling in research inputs 

would lead to less than a doubling of the outputs disseminated via the public domain or via industry 

collaboration but would lead to more than a doubling of the tech-transfer-mediated knowledge 

outputs in the long run.  

We must caution that, in terms of creating new knowledge associated with each of these 

alternative mechanisms of dissemination, the assessment of productivity is complicated, especially 

in an empirical study, by variations in institutional conditions as well as intrinsic propensities of 

researchers to engage in what might be perceived as more commercially-oriented research 

activities across different disciplines, fields, technologies, and industries. In addition, biases may 

be introduced from the different proxy variables, due to the skewed distribution of observations 

across departments, or the linear combinations of these proxy variables. Nevertheless, these results 

                                                 
23 In order to compare research productivity across the three different types of research outputs, the effective labor 
log-linear model [4] is more appropriate, because estimated slope coefficients interpreted as marginal effects directly, 
representing output elasticities with respect to each of the lagged values of research expenditure. 
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provide some indication that productivity of university research, at the scale observed here, may 

vary across the different types of knowledge outputs as disseminated via these different channels.  

5.2. Interrelationships among the Different Types of University Research Outputs 

While productivity and returns to scale is informed by the sum of estimated coefficients, more 

nuanced insights can be gleaned by comparing the patterns of the estimated coefficients across the 

three systems. Fig. 3 plots the coefficient point estimates on lagged research expenditures from the 

effective labor model for each of the knowledge output measures (model 4 in Table 2, Table 3, 

and Table 4) which, again, directly indicate marginal effects. The slope coefficients in all three 

models follow broadly similar inverted-U-shape or concave patterns over time.  

 
Fig. 3. Comparison of estimated slope coefficients of three research outputs in each effective labor 
PDL log-linear model (degree of polynomial m=2 in all three models) 

 

Given this concave pattern, we can observe not just the sums of the coefficients (essentially, 

the area under each curve in Fig. 3) indicating the returns to scale (as in the previous section), but 
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we also can observe their average values over time, their maximum value and when it occurs, as 

well as their weighted average over time, i.e. the mean lag, as was calculated for each type of 

output in Section IV above. 

Based on these patterns, we see that publications reach maximum output around the third year 

after research expenditures. This corresponds with the mean lag for publications which was 

calculated as 2.98 in the effective labor PDL model. The maximum coefficient value, at 0.1338 (in 

the 3rd lagged year) is not much greater than the average coefficient value of 0.1042 over all lagged 

years. 

Collaboration outputs reach a maximum somewhat earlier than publication outputs, peaking 

sometime in the second to third years after research expenditures are made. This is much shorter 

timeframe than the mean lag computed for the combined collaboration metrics in Section IV above 

of 4.45 years. Moreover, the maximum coefficient value of 0.1871 (in the second lagged year) is 

considerably higher than the average coefficient value of 0.0549.  

The combined tech transfer metric is most responsive to changes in research expenditures, with 

a much greater maximum value, at 0.3622, and a higher average coefficient value, at 0.1197, than 

the other two types of knowledge output. These observations correspond to the higher sum of 

estimated coefficients and the conclusion that technology transfer outputs appear to exhibit IRTS 

in the long run. Also, the maximum coefficient value occurs somewhat later, in the third to fourth 

years after research expenditures are incurred, closer to the calculated mean lag of 4.81 years.  

The timings of these coefficient maxima are intuitive. Knowledge disseminated through 

collaboration tends to arise earliest, during the actual process of conducting R&D. Output of 

knowledge via publications takes more time, due to the editorial review process. Knowledge output 
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via technology transfer can take longer still, due to the inherent lags involved in patent prosecution 

as well as in both license negotiation and firm startup processes.  

Unfortunately, it is not possible to directly evaluate the co-product relationship among the three 

knowledge outputs using the pattern of lagged slope coefficients in Fig. 3, due to the departure of 

knowledge production from some of the assumptions characteristic of physical production. If the 

three independent effective-labor PDF models were for three physical co-products from a set of 

factories or farms, the production possibility frontier (PPF) for the physical co-products would be 

defined, each slope coefficient would indicate a marginal physical product (MPP) for that co-

product, and the rate of product transformation (RPT) or opportunity cost of production of one 

output relative to another, given the level of inputs, could be written as 𝑑𝑑𝑑𝑑2 𝑑𝑑𝑑𝑑1⁄ =

−(𝑀𝑀𝑀𝑀𝑀𝑀2 𝑀𝑀𝑀𝑀𝑀𝑀1⁄ ). If the RPT is positive (negative) the outputs would be said to be complements 

(substitutes) in production. In our results, since all slope coefficient in the three systems have the 

same sign up through the 6th lagged year, this means that all RPTs are negative and all possible 

pairwise relationships among the three outputs would be said to be substitutionary.  

However, unlike physical production where mapping of inputs to outputs is largely 

deterministic (planting more corn than soybeans tends to produce more corn than soybeans), the 

output of a given type of knowledge from a knowledge production process is, to a certain degree, 

stochastic. Researchers may declare their intentions at the outset of a research project, but they 

cannot control, with certainty, the quantities or proportions of publishable findings versus tacit 

results versus patentable inventions that will result. Moreover, intuitively, production of more of 

one type of output does not necessarily result in fewer of another; indeed, the opposite can be 

imagined just as easily: with success in producing one type of knowledge output actually 

increasing the probability of producing more of the others. Considering knowledge production in 
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these terms, the patterns in Fig. 3 can be consistent with a story of complementarity among all 

three types of knowledge output as co-products of a common set of research activities. This 

concurs with prior results in the literature that indicate pairwise complementarity or economies of 

scope between publications and patents (Agrawal and Henderson, 2002; Payne and Siow, 2003; 

Thursby and Thursby, 2011; Folz et al 2012), between publications and industry collaboration 

(Bonaccorsi, Daraio, and Simar, 2006), and between patent licensing and industry collaboration 

(Jensen and Thursby, 2001). Under these conditions, an increase in research expenditures results 

in increases in each of the three outputs, albeit in different magnitudes and over different 

timeframes. 

6. Conclusion and Further Study 

This study explores the research production and knowledge dissemination activities of the 

academic departments of a large public research university, developing a uniquely comprehensive 

institutional data set and new empirical techniques for estimating the knowledge production 

function. The dataset represents all of the departments or research units of the university, across 

all fields of study, over a fairly long time frame, and seeks to include all relevant research inputs 

and outputs. As such, it constitutes more than just a random sample or just a subset of disciplines. 

We have utilized four different specifications of the knowledge production function (KPF) to 

estimate a group fixed-effects panel, using negative binomial maximum likelihood estimation 

(MLE) and log-linear effective labor models, with both ad hoc and with polynomial distributed 

lag (PDL) schemes relating past research expenditures to subsequent research outputs. We estimate 

these same four KPF models for each of three types of knowledge outputs independently. The 

estimates of the slope coefficients in the PDL models are statistically more significant (according 

to p values) and the model specification appears to be generally better (as indicated by smaller 
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AIC and SBIC values) than the ad hoc model, which is comparable to those used in the prior 

literature. After considering various input variables, we find research expenditures as a financial 

input and full-time equivalent (FTE) researchers as a labor input to be empirically significant 

explanatory variables, aligning our knowledge production function with neo-classical production 

theory. The effective labor PDL model gives what are perhaps the most intuitive results in this 

analysis of knowledge production, whether for investigating returns to scale, output elasticity, or 

the notion of knowledge co-products. The greatest advantage of the effective labor model is to 

control for lag effects of the FTE variable, following the labor-augmenting or Harrod-neutral 

approach, with knowledge and labor entering multiplicatively. Quality of human capital is 

generally unmeasurable in production function systems.  

We see, even just from the summary statistics, that publications—or, more generally, 

increments of new knowledge disseminated via the public domain—are the most common output 

across all of the departments and research units of the university: The average number of 

publication by department in a year was 28, while the average collaboration metric value was about 

6 (publication equivalents) and the tech transfer metric value was about 1 (invention disclosure, 

patent filing, or startup founding).  And these measures are skewed: for most departments in most 

years published journal articles were the only research output observed. Also, in the estimated 

models, publications have the shortest mean lag length: the time between research project 

inception and the output of publications is one or two years shorter than the output of the other two 

knowledge types. 

Production of knowledge disseminated via publications and the more traditional industry 

collaboration and extension activities appear to fit more closely the assumptions of classical 

production theory, including the law of diminishing marginal productivity or decreasing returns to 
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scale with respect to the input of research expenditures. The other type of research output, 

knowledge disseminated via the newer, more formal technology transfer activities between 

university and industry, appear to exhibit increasing returns to scale. This result opens up questions 

about whether and how the creation of the kinds of knowledge that can be disseminated via formal 

IP-mediated tech transfer or entrepreneurial activities may enjoy cost advantages in the long run, 

and whether currently they may not be operating at efficient scale.  

As for policy implications, several things stand out. First, those outputs of university 

knowledge production that are more commercially oriented (exhibit less public goods 

characteristics) are also found to be systematically related to the knowledge production inputs, 

much as are the university’s public goods outputs. In other words, they do not appear as merely 

spurious, occasional byproducts. Their production can and should therefore be accounted for by 

the university and understood to be systematically related to university research activities. Second, 

tech transfer outputs are found to exhibit increasing returns to scale while the public-domain 

outputs exhibit decreasing returns to scale. This may imply a growth opportunity for university 

knowledge production activities increasing industry collaboration and tech transfer. Third, as 

implied by the fact that these different knowledge outputs can be characterized by their different 

dissemination or spillover mechanisms, there may be tradeoffs involved in the distribution of 

economic impacts as these different types of knowledge output grow at different rates from an 

increase in research inputs. Those outputs with less public-goods characteristics are more “sticky” 

and therefore deferentially result in regional economic impacts. 

Despite interesting preliminary findings, one major issue for this study is its reliance upon a 

single institution’s context and data. There are both advantages and disadvantages of focusing on 

just one or a handful of institutions, which others have confronted as well (see Agrawal and 
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Henderson, 2002, or Mowery et al, 2004, chapter 6). It may compromise generality; however, it 

does control for other institutional and regional characteristics, including overall levels of 

infrastructure, management skills, administrative policies, and so on. In future research, it will be 

valuable to collect more institutions’ data at a similarly disaggregated level. Nevertheless, results 

of this analysis to be of value in future economic studies of university knowledge production, as 

well as of practical value to university administrators as well as policymakers. 
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