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Abstract

I combine the tools developed in two important and independent literatures - one
on large economies started with Aumann (1964) and the other on dynamically incom-
plete markets, notably Duffie et al. (1994) - to study Krusell and Smith’s incomplete
markets economy with both idiosyncratic and aggregate shocks. I show the existence
of generalized recursive equilibrium and characterize several important properties of
the equilibrium variables. The equilibrium process admits an ergodic measure, which
enables the application of the ergodic theorem for the simulation and calibration of
the model. Without aggregate shocks, the existence and some characterization results
carry over to economies with only idiosyncratic shocks such as Huggett (1997)’s econ-
omy.
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1 Introduction

Krusell and Smith (1998) provide a workhorse incomplete markets model with hetero-
geneous agents who are subject to both idiosyncratic and aggregate shocks. Their paper
defines a recursive equilibrium and offers an algorithm to compute it .1 Despite the in-
creasing popularity of the model2, little is known about the analytical properties of its
equilibrium. In particular, several theoretical questions remain open: 1. Does a sequential
competitive equilibrium always exist and does it admit some simple recursive form? 2. If
a competitive or recursive equilibrium exists, what are the properties of the equilibrium
allocation and prices? 3. Does the equilibrium process exhibit some ergodic property that
is important for the simulation and calibration of the model? The present paper makes
some progress toward answering these questions.

First, I define a generalized recursive equilibrium as a correspondence that maps current
wealth distribution and exogenous aggregate shock to a set of possible prices, value func-
tion, policy function, and possible future wealth distributions. At least one element in
the set satisfies short-run equilibrium conditions. I first show that any sequence of alloca-
tions and prices generated by a generalized recursive equilibrium constitutes a sequential
competitive equilibrium. I then prove that a generalized recursive equilibrium always
exists in Krusell and Smith’s economy. In addition, if starting from any initial wealth
distribution and aggregate shock, there exists no more than one sequential competitive
equilibrium; then a generalized recursive equilibrium corresponds to a standard recur-
sive equilibrium with the natural endogenous state variable - wealth distribution - as
computed in Krusell and Smith (1998). In general, one can also select a recursive equilib-
rium from a generalized recursive equilibrium if the value function is added to the state
space, which consists of the aggregate shock and wealth distribution. In the special case
of the model without aggregate shocks, the existence results (and some characterization
results) carry over to economies with only idiosyncratic shocks in transitional paths such
as Huggett (1997)’s economy.

Second, I establish several properties of the agents’ value and policy functions and
the equilibrium process. The value function is concave, strictly increasing, and Lipschitz
continuous, while the policy function is weakly increasing and Lipschitz continuous. Ap-
plying results from Duffie et al. (1994), I show that the equilibrium process has an ergodic
measure. Ergodicity3 is an important property since the existing numerical methods often
involve simulating the model.

To obtain these results, I use the tools developed in two extensive theoretical litera-
tures. The first one is the literature on large economies, i.e., economies with a continuum
of agents, studied by Aumann (1964), Hildenbrand (1974), and many others.4 I use the
distributional approach developed in this literature which involves defining and character-

1A recursive equilibrium is a sequential competitive equilibrium that is summarized by a mapping
from current wealth distribution to prices and allocations (policy function), and future wealth distribution
(transition function).

2See Krueger et al. (2016) for a recent review of the literature using Krusell and Smith’s solution method.
3Which is the property that the average over time of a function over the equilibrium variables is the

same as the average of the function under the ergodic measure.
4See Khan and Yannelis (1991) for a rich collection of papers in the literature.
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izing equilibria in terms of the distribution of agents’ characteristics without using the
explicit agent space (in the present paper the characteristics are idiosyncratic shock and
wealth). However, the literature is concerned mostly with static, dynamic complete mar-
kets economies, or dynamic incomplete markets economies without aggregate shocks.5

The literature concerns with dynamically incomplete markets with a finite number of
infinitely-lived agents and aggregate shocks, including Magill and Quinzii (1994), Duffie
et al. (1994) and more recently Feng et al. (2014). The idea in Duffie et al. (1994) is to
construct an expectation correspondence specifying, for each possible current state, the
transitions that are consistent with feasibility and satisfy short-run equilibrium condi-
tions. The key insight in the present paper is to combine this important idea with the
distributional approach in the first literature. I show that the short-run equilibrium con-
ditions can be fruitfully represented as Bellman equations on the current and future value
functions. This representation allow me to apply the techniques developed in Duffie et
al. (1994) and the subsequent literature to study large dynamic economies with aggregate
shocks and incomplete markets.

The present paper is related to Miao (2006) which formulates and proves the existence
of a sequential competitive equilibrium in Krusell and Smith’s economy. The existence
proof in Miao (2006) relies on the existence and uniqueness of the value and policy func-
tions (with arguments include individual wealth and aggregate wealth distribution) as
a solution to a Bellman equation. However, the Bellman operator is not well-defined
when the distribution of capital holdings is a Dirac mass at zero, which leads to an in-
finite marginal rate of return on capital because of the Inada condition. This problem
invalidates the existence proof in Miao (2006).6 I present the details of the problem in
Appendix C, in particular Proposition 4. In the present paper, I follow a different route
to establish the existence of a sequential competitive equilibrium by taking the infinite-
horizon limit of finite horizon economies.7 In order to take the limit, I derive a uniform
lower bound on aggregate capital (or equivalently a upper bound on the rate of return on
capital) using the agents’ Euler equation and a uniform bound on the first derivative of
the value function. My proof allows for unbounded utility functions, e.g., log utility as in
Krusell and Smith (1998) or CRRA utility with the risk-aversion coefficient strictly greater
than 1, while Miao (2006), granted that his proof might be fixed,8 requires bounded util-
ity functions. Lastly, the present paper offers sharp characterizations of the equilibrium
variables and equilibrium process which are absent in Miao (2006).

In the next section of the paper, I present the model and the main results. Section 3
concludes with potential applications of the techniques and results developed here. The
details of the proofs are presented in the appendix.

5In the last topic on dynamic incomplete markets economies, Acemoglu and Jensen (2015) is a recent
contribution with an extensive list of references including earlier papers such as Jovanovic (1982), Bewley
(1986), Hopenhayn (1992), and Huggett (1993).

6Another problem, pointed out in Cheridito and Sagredo (2016a), is that the equilibrium mapping in
Miao (2006) might not be continuous.

7This is also an important technique developed in the incomplete markets literature.
8For example, Cheridito and Sagredo (2016b) provide a potential fix by working with the space of

sequences of aggregate capital instead of the space of sequences of distributions in Miao (2006).
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2 Infinite-Horizon Economy with a Continuum of Agents

The model economy is exactly the same as in Krusell and Smith (1998), which features a
continuum of agents facing both aggregate and idiosyncratic shocks. Markets are incom-
plete since agents can only insure against the shocks by investing in productive capital.

The Environment Consider a production economy with a single final good in infinite
horizon. Time runs from t = 0 to ∞. The economy is populated by a measure one contin-
uum) of infinitely-lived agents (households) indexed by

h ∈ H = [0, 1] .

In each period t, there are S (finite) possible exogenous states (shocks)

s ∈ S = {1, 2, . . . , S} .

The exogenous shocks follow a first-order Markov process with the transition probabili-
ties

πss′ = Pr(s′|s) > 0 ∀s, s′ ∈ S .
Let st denote the history of realizations of shocks up to time t:

st = (s0, s1, . . . , st) ∈ S t.

Agents are subject to idiosyncratic shocks

i ∈ I = {1, 2, ..., I} ,

which I assume to contain a finite number of states.9 In addition, following Krusell and
Smith (1998), I restrict the joint dynamics of aggregate and idiosyncratic shocks such that
(st, it) forms a first-order Markov process with the transition matrix πss′,ii′ :

Pr(st+1 = s′, it+1 = i′, st = s, it = i) = πss′,ii′ ,

which satisfies10

∑
i′

πss′,ii′ = πss′ ,

for each i ∈ I , and s, s′ ∈ S .
Let (Υ,F , P) denote the probability space that describes the stochastic process for id-

iosyncratic shocks î = {it}∞
t=0 conditional on an infinite path for the aggregate shock

s∞ = (s0, s1, ...). I assume that the agents share the same probability space. So the family
of random processes îh can be written as

î(h, ω, s∞).

9The assumption that aggregate and idiosyncratic only take on only a finite number of states is consis-
tent with Krusell and Smith (1998). Relatedly, even if one starts with a continuum of states, one would have
to approximate the state space with a finite number of states to solve the model numerically.

10This condition means that the evolution of the aggregate state is independent of the idiosyncratic states
(but not vice versa):

∑
i′∈I

Pr(st+1 = s′, it+1 = i′, st = s, it = i) = Pr(st+1 = s′, st = s, it = i) = πss′ ,

for all i ∈ I .
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I also endow H with a probability measure φ (φ(H) = 1). I make the following assump-
tion that ensures the empirical distribution of îh across agents to be the same as the ex-ante
distribution for each îh.

Assumption 1 (Conditional No Aggregate Uncertainty). For each s∞ ∈ S∞ and for almost
all ω̃ ∈ Υ and h̃ ∈ H:

φ
(
h ∈ H : î(h, ω̃, s∞) ∈ B

)
= P(ω : î(h̃, ω, s∞) ∈ B)

for each B ∈ B(I∞).

There are at least two ways to construct (Υ,F , P) and a measure φ such that Assump-
tion 1 is satisfied. The first option is to choose φ as the standard Lesbegue measure but
allow for some dependence between ih’s as in Feldman and Gilles (1985), Bergin and Bern-
hardt (1992), and Miao (2006). Alternative, one can choose φ as an extension of Lesbegue
measure and keep the independence between ih’s as in Sun (2006), Sun and Zhang (2009),
and Podczeck (2010). In this case, the law of large numbers for a continuum of random
variables applies exactly.

I assume that, at the beginning of the economy, the fraction of agents with idiosyn-
cratic shock i is ms0(i) where {ms(i)}s∈S ,i∈I satisfies

∑
i∈I

ms(i)
πss′,ii′

πss′
= ms′(i′), (1)

for all s, s′ ∈ S and i′ ∈ I . Together with Assumption 1, this assumption implies that, in
aggregate state s, the fraction of agents with idiosyncratic type i is ms(i), independent of
the past history of aggregate shocks and agents’ idiosyncratic shocks. This assumption is
also assumed in Krusell and Smith (1998). This result is derived in Appendix A.

Both aggregate shock and idiosyncratic shock determine the exogenous labor supply
of the agents in state (s, i): l(s, i). Because the fraction of type-i agent is ms(i), the total
supply of labor in aggregate state s is

L(s) = ∑
i∈I

ms(i)l(s, i).

The idiosyncratic shock also determines the agents’ discount factor in state i: β(i).
We make the following assumptions on the idiosyncratic labor supply l(., .) and discount
factor β(.).

Assumption 2. There exist 0 < l < l̄ such that

l < l(s, i) < l

for all s ∈ S and i ∈ I .
There exist 0 < β < β < 1 such that

β < β(i) < β

for all i ∈ I .

Since S and I have finite elements, we can choose 0 < L < L such that

L ≤ L(s) = ∑
i∈I

ms(i)l(s, i) ≤ L
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for all s ∈ S .
In each state s, there is a representative firm that produces the final output from capital

and labor using an aggregate production function that employs capital and labor as input:

Y = F(s, K, L).

The aggregate state determines the productivity of the aggregate production function
through the first argument.

We make the following standard assumptions on F.

Assumption 3. F is strictly increasing, strictly concave, and has constant returns to scale in K
and L.

This assumption nests the Cobb-Douglas production function used in Krusell and
Smith (1998) as a special case:

F(s, K, L) = A(s)KαL1−α. (2)

I also assume that capital depreciates at rate δ ∈ (0, 1) in each period. The final output
at time t can be transformed into future (aggregate) capital, Kt+1, and current (aggregate)
consumption Ct according to the law of motion

Ct + Kt+1 − (1− δ)Kt = Yt. (3)

I further assume that:

Assumption 4. There exists K̂ such that

F(s, K, L̄)− δK < 0

for all K ≥ K̂ and for all s ∈ S .

This assumption ensures that aggregate capital is always bounded above and it is
satisfied by the Cobb-Douglas production function. Indeed, if the economy starts with
initial aggregate capital K0 below K̄ where

K > max
s∈S

max
0≤K≤K̂

(
F(s, K, L) + (1− δ)K

)
, (4)

then aggregate capital Kt always stays below K̄ .

Preferences and Market Arrangements In each history st, there are rental markets for
capital and labor. Agents rent out their capital to the representative firm at competitive
rental rate rt(st) and supply their labor endowment inelastically to the representative firm
at competitive wage rate wt(st).

Given factor prices, agents maximize inter-temporal expected utility:

U
({

ch
t

(
st, ih,t

)})
= E0

[
∞

∑
t=0

Πt−1
t′=0β(ih

t′)u(c
h
t (s

t, ih,t))

]
where ih,t =

(
ih
0, ih

1, ..., ih
t
)

denotes the history of idiosyncratic shocks for each agent h and
the per period utility function is given by

u(c) = lim
ν→σ

c1−ν − 1
1− ν

.
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I require that σ ≥ 1 so that in equilibrium, consumption is bounded from below. How-
ever, it is straightforward to extend the analysis to allow for more general utility func-
tions.

As in Krusell and Smith (1998), I assume that markets are incomplete: agents can only
save in units of capital. In addition, with K̄ being sufficiently large as in (4), I assume that
the agents’ choice of capital is bounded above by k̄ sufficiently large so that:11

k̄ > l̄ + max
s∈S

F(s, 2K, 2L). (5)

As I argue below, the agents’ Euler equation is crucial in deriving a lower bound for
aggregate capital. But the Euler equation does not hold when the upper bound k̄ on
agents’ capital holding binds. Therefore, the upper bound has to be sufficiently large to
minimize its effect.

Formally, given time and history-dependent interest rates rt(st) and wage rates wt(st)
agent h solves

max
{ch

t (.),k
h
t+1(.)}

U
({

ch
t

(
st, ih,t

)})
(6)

subject to

ch
t (s

t, ih,t) + kh
t+1(s

t, ih,t) ≤ (1− δ + rt(st))kh
t (s

t−1, ih,t−1) + wt(st)l(st, ih
t ), (7)

and ch
t (s

t, ih,t) ≥ 0 and
0 ≤ kh

t+1(s
t, ih,t) ≤ k̄. (8)

Given an initial condition (i0, k0), the optimal consumption and capital holding decisions
are: {(

c̆t(st, it; k0, i0)
)

, k̆t+1
(
st, it; k0, i0

)}
.

The representative firm in history st maximizes profit:

Πt(st) = max
Yt,Kt,Lt≥0

Yt − rt(st)Kt − wt(st)Lt

subject to
Yt ≤ F(st, Kt, Lt).

Since F has constant returns to scale, in equilibrium, we must have Πt(st) = 0, and

Yt = F(st, Kt, Lt) and rt = FK(st, Kt, Lt) and wt = FL(st, Kt, Lt). (9)

Equilibrium Definitions The definition of a sequential competitive equilibrium in this
environment is standard.12

Definition 1. A sequential competitive equilibrium (SCE) - given an initial distribution
of capital holdings and idiosyncratic shocks,

{
kh

0, ih
0
}

h∈H, and initial aggregate shock s0 -

11A upper bound on the choice of capital holding is implicitly assumed by all numerical algorithms since
capital choice is bounded by a machine’s numerical upper bound.

12Alternatively, one can formulate the sequential competitive equilibrium using direct allocations{
ch

t , kh
t+1

}
t,st ,h∈H

which are measurable with respect to past and current aggregate shocks and each in-

dividual’s idiosyncratic shocks.
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consists of optimal policy functions
({

c̆t, k̆t+1

}
t,st

)
, sequences of aggregate capital and

labor demands, {Kt, Lt}t,st , and prices {rt, wt}t,st (rt, wt > 0) such that:

1.
{

c̆t, k̆t+1

}
t,st

solves (6).

2. In each history of aggregate shocks st, {Yt, Kt, Lt} solves the representative firm’s
profit maximization problem, which implies (9).

3. Markets for capital, labor, and the final good clear in each history st:∫
H

k̆t(st−1, ih,t−1; kh
0, ih

0)φ(dh) = Kt(st),

and ∫
H

lh(st, ih
t )φ(dh) = Lt(st),

and∫
H

(
c̆t(st, ih,t; kh

0, ih
0) + k̆t+1(st, ih,t; kh

0, ih
0)− (1− δ)k̆t(st−1, ih,t−1; kh

0, ih
0)
)

φ(dh) = Yt(st).

Following the distributional approach in the literature on large economies, it is more
convenient to work with the distributions over capital holdings (or equivalently, wealth
distributions) and idiosyncratic shocks, instead of working with the allocations of capital
and consumption over households h ∈ H. For each distribution of asset holdings across
agents

{
kh}

h∈H, consider the following probability measure µ defined by

µ(A× I) = φ
(

h ∈ H :
(

kh, ih
)
∈ A× I

)
(10)

for each A× I ∈ B
([

0, k̄
])
×B(I), where B denote the Borel σ-algebras. It is immediately

apparent that
µ ∈ Ω = P

([
0, k̄
]
× I

)
,

where P denotes the space of probability measures over
[
0, k̄
]
× I endowed with the

weak* topology. It is well-known that Ω is compact (see for example Bogachev 2000,
Theorem 8.9.3). Let M denote a closed subset of Ω , which I will define below. Let C
denote the set of functions over

[
0, k̄
]
× I , which are continuous in k. The generalized

recursive equilibrium is defined over the set of distributionsM.

Definition 2. A generalized recursive equilibrium (GRE) consists of a policy correspon-
dence

Q : S ×M⇒ C2 ×R2
+

and a transition correspondence:

T : S ×M⇒MS

and some bounds V, V, with the following property. For each s ∈ S and µ ∈ Ω, and(
V̂, k̂, r, w

)
∈ Q(s, µ), we have V ≤ V̂ ≤ V and there exist

(
s′, µ+

s′
)

s′∈S ∈ T (s, µ) and(
V̂+

s′ , k̂+s′ , r+s′ , w+
s′

)
s′∈S

such that:
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1. For each s′ ∈ S ,
(

V̂+
s′ , k̂+s′ , r+s′ , w+

s′

)
∈ Q

(
s′, µ+

s′
)
.

2. (Market clearing)
∫
[0,k̄]×I ĉ(k, i)dµ(k, i) +

∫
[0,k̄]×I k̂(k, i)dµ(k, i) = F(s, K, L) + (1−

δ)K where for k ∈
[
0, k̄
]

and i ∈ I :

ĉ(k, i) = (1− δ + r)k + wl(s, i)− k̂(k, i)

and
K =

∫
[0,k̄]×I

kdµ(k, i) and L = ∑
i∈I

ms(i)l(s, i).

3. (Firms’ maximization) r = FK (s, K, L) > 0 and w = FL (s, K, L) > 0.
4. (Agents’ maximization) For each k ∈

[
0, k̄
]

and i ∈ I , V̂ and V̂+ satisfy the Bellman
equation:

V̂(k, i) = max
k′

u(c) + β(i) ∑
i′,s′

πss′,ii′V̂+
s′ (k

′, i′) (11)

s.t. 0 ≤ k′ ≤ k̄ and
0 ≤ c = (1− δ + r)k + wl(s, i)− k′.

In addition, k̂(k, i) solves (11).
5.(Distribution Consistency) For each s′ ∈ S ,

µ+
s′ = k̂ ◦ss′ µ, (12)

where the composition ◦ss′ means that for each i′ ∈ I and A ∈ B
([

0, k̄
])

:

µ+
s′ (A, i′) = ∑

i∈I

πss′,ii′

πss′
µ
((

k̂(., i)
)
−1(A), i

)
.

Notice that when the correspondencesQ, T are replaced by functions in the definition
of GRE, we arrive at a recursive equilibrium (RE) as defined in Krusell and Smith (1998).
The following lemma shows that a GRE generates a SCE starting from some initial distri-
bution.

Lemma 1. Let Assumption 1 hold. Starting from an initial distribution of wealth µ0 and aggre-
gate state s0, sequences of policy functions and prices generated by a GRE form a SCE.

Proof. Appendix A.

Main Results To show the existence of a GRE, I need to impose the following properties
on the production function.

Assumption 5. For any L > 0 and K > 0:

max
s∈S

sup
0<K̃≤K

FL(s, K̃, L) < +∞,

and
max
s∈S

sup
0<L̃≤L

FK(s, K, L̃) < +∞.

Lastly, for any L > 0 and s ∈ S
lim
K→0

F(s, K, L) = 0.
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It is easy to verify that Assumption 5 is satisfied under the Cobb-Douglas production
function (2). Together with Assumptions 2-4, this assumption guarantees the existence of
a SCE in the finite horizon economy. The following lemma establishes the result.

Lemma 2. Let Assumptions 2-5 hold. Then a SCE always exists in any finite-horizon economy.

Proof. Appendix B. The appendix provides a precise definition of SCE in finite-horizon
economies and an existence proof. Because the space of measures is an infinite-dimensional
space, the proof uses an extension of the Kakutani’s Fixed Point Theorem to infinite-
dimensional spaces - the Fan-Glicksberg Fixed Point Theorem.

One of the difficulties in the proof is to guarantee that aggregate capital is bounded
from below away from zero in equilibrium, which is equivalent to a finite relative rental
rate of capital. This is the same issue that invalidates the existence proof in Miao (2006).
To get around this, I make use of the agents’ Euler equation:

u′(ct) ≥ β(it)E
[
(1− δ + rt+1) u′(ct+1)

]
(13)

when kt+1 < k̄. Using this equation, I show that Kt+1 cannot be too low. Because other-
wise rt+1 would be very high and the Euler equation implies that u′(ct) would be very
high. Therefore ct would be very low for most agents and, from the aggregate resource
constraint (3), Kt+1 would not be too low, leading to a contradiction.

An additional assumption on the production function, Assumption 6, allows me to
take the limit of equilibria in finite-horizon economies .

Assumption 6. For any L ≥ L and s ∈ S ,

lim
K→0

FK(s, K, L) = ∞.

There exists α > 0, such that for all K, L > 0:

LFL(s, K, L)
F(s, K, L)

> α.

For any s, s′ ∈ S :

lim sup
K→0

F(s′, K, L̄)
F(s, K, L)

< ∞.

Assumption 6 is also satisfied under the Cobb-Douglas production function (2). To-
gether with Assumption 4 and again using the agents’ Euler equation (13), Assumption 6
implies that aggregate capital is bounded uniformly both above and below uniformly in
finite horizon economies, i.e., the bounds are independent of the horizon . This allows me
to take the limit of the equilibria in finite horizon T-period economies, as the horizon T
goes to infinity, and obtain the existence of a SCE in the infinite horizon economy as well
as a the existence of a GRE.

Now we arrive at the main existence theorem.

Theorem 1. Let Assumptions 2-6 hold. Starting from an initial distribution of capital holdings
and idiosyncratic shocks µ0 with

K0 =
∫
H

kh
0φ(dh) =

∫
[0,k̄]×I

kdµ0(k, i) > 0,
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there exist 0 < K < K0 < K, such that a generalized recursive equilibrium exists over

M =

{
µ ∈ P

([
0, k̄
]
× I

)
: K ≤

∫
[0,k̄]×I

kdµ(k, i) ≤ K

}
.

Proof. I first choose K < K0 sufficiently small as in Lemma 11 and K > max
{

K0, 2L
}

sufficiently large such that (4) is satisfied. With these bounds, the results in Appendix B,
in particular Lemma 11, apply. Given these results, let Θ denote the set of(

V̂(., .), k̂(., .), r, w
)

such that for each i ∈ I , k̂(k, i) is weakly increasing in k and 0 ≤ k̂(k, i) ≤ k̄ ; and
V ≤ V̂(k, i) ≤ V for all k ∈ [0, k̄] and V̂(k, i) is weakly increasing and weakly concave
in k, and Lipschitz continuous with a Lipschitz constant lV > 0. V, V, lV are given in
Lemma 11. In addition, 0 < r ≤ r ≤ r̄ and 0 < w ≤ w ≤ w̄ where r, r̄, w, w̄ are also
given in Lemma 11. Lemma 10 shows that Θ - endowed with the topology of uniform
convergence for V̂ , pointwise convergence for k̂, and the standard topology for r and w -
is sequentially compact.13,14

Let g : S ×M ⇒ Θ × ΘS denote the following correspondence: for each s ∈ S ,
µ ∈ M, g(s, µ) is the set of θ =

((
V̂(., .), k̂(., .)

)
h∈H

, r, w
)
∈ Θ, and (θs′)s′∈S with θs′ =(

V̂+
s′ (., .), k̂+s′ (., .), r+s′ , w+

s′

)
∈ Θ such that

r = r(s, µ) ≡ FK(s, K, L) > 0 and w = w(s, µ) ≡ FL(s, K, L) > 0, (14)

where
K =

∫
[0,k̄]×I

kµ(dk, i) > 0, and L = ∑
i∈I

ms(i)l(s, i),

and ∫
[0,k̄]×I

ĉ(k, i)dµ(k, i) +
∫
[0,k̄]×I

k̂(k, i)dµ(k, i) = F(s, K, L) + (1− δ)K,

where ĉ(k, i) = (1− δ + r)k + wl(s, i)− k̂(k, i) > 0. In addition,
(

V̂, k̂
)

solves the func-

tional equation (11), given
(
V̂+

s′
)

s′∈S .
Lemma 10 shows that g is a closed-valued correspondence.
Consider the following mapping G from the set of correspondences V : S ×M ⇒ Θ

to itself defined as following. For each V , G(V) is the correspondence W such that, for
each s ∈ S and µ ∈ M, we have

W(s, µ) =


θ =

(
V̂, k̂, r, w

)
∈ Θ : for each s′ ∈ S ,∃θs′ ∈ V

(
s′, µ+

s′
)

where µ+
s′ is given by (12)

and
(
θ, (θs′)s′∈S

)
∈ g(s, µ)


13In infinite dimensional spaces, compactness and sequential compactness are not equivalent. For the

current theorem, we need the sequential compactness property.
14Notice that we do not require k̂ to be continuous in k in the definition of Θ. Otherwise, Θ would not

be sequentially compact. However, in a GRE, since
(

V̂, k̂
)

solves (11), we can show that k̂ is continuous.
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From the definition of G, we can establish the following properties P1-P3.
P1. If V is sequentially compact, in the sense that V(s, µ) is sequentially compact for

all s ∈ S and µ ∈ M, thenW = G(V) is sequentially compact.
Indeed, assume that {θm}∞

m=0 ∈ W(s, µ) and θm → θ =
(

V̂, k̂, r, w
)

. Since Θ is se-
quentially compact, θ ∈ Θ. To show that W = G(V) is sequentially compact, we need
to show that θ ∈ W(s, µ). By the definition of G, for each s′ ∈ S , ∃θm

s′ ∈ V
(
s′, µ+

s′
)

such
that

(
θm,
(
θm

s′
))
∈ g(s, µ). Since V

(
s′, µ+

s′
)

is sequentially compact, we can extract a con-
vergent subsequence, θ

ml
s′ → θs′ for some θs′ ∈ V

(
s′, µ+

s′
)
. Because g is a closed-valued

correspondence,
(
θ, (θs′)s′∈S

)
∈ g(s, µ), which implies θ ∈ W(s, µ). SoW is sequentially

compact.
P2. If V ⊂ V ′ in the sense that V(s, µ) ⊂ V ′(s, µ) for all s ∈ S and µ ∈ M, then

G(V) ⊂ G(V ′).
P3. Let V0 denote the complete correspondence: V0(s, µ) = Θ for all s ∈ S and µ ∈ M.

Then G(V0) ⊂ V0.
Having defined G and established its properties, given V0, we construct the sequence

of {Vn}∞
n=0 recursively using G: Vn+1 = G(Vn). Then by P1, P2, and P3, we have, for all

n ≥ 0, Vn+1 ⊂ Vn and Vn is sequentially compact. By the existence of a SCE in (n+1)-
horizon economy in Lemma 2, Vn+1 is a non-empty valued correspondence.

Let V∗ be defined by
V∗(s, µ) = ∩∞

n=0Vn(s, µ).
Since V∗(s, µ) is the intersection of decreasing, non-empty, sequentially compact sets,
V∗(s, µ) is sequentially compact and non-empty. We show that G(V∗) = V∗.

Indeed, by the definition of V∗, we have V∗ ⊂ Vn, so G(V∗) ⊂ G(Vn) = Vn+1 for all
n. This implies G(V∗) ⊂ V∗.

Now, consider any s ∈ S and µ ∈ Θ and θ =
(

V̂, k̂, r, w
)
∈ V∗(s, µ). Since V∗ ⊂

Vn+1 = G(Vn), there exists θn
s′ ∈ V

n (s′, µ+
s′
)

such that
(

θ,
(
θn

s′
)

s′∈S

)
∈ g(s, µ). By the

sequential compactness of Θ, we can find a convergent subsequence {nl}∞
l=0:(

θ
nl
s′
)

s′∈S −→l→∞ (θs′)s′∈S .

By the sequential compactness of Vnl , we have θs′ ∈ Vnl
(
s′, µ+

s′
)

and since g is closed-
valued,

(
θ, (θs′)s′∈S

)
∈ g(s, µ). Moreover, Vn (s′, µ+

s′
)

is a decreasing sequence so θs′ ∈
∩∞

l=0Vnl
(
s′, µ+

s′
)
= V∗

(
s′, µ+

s′
)
. Therefore, by the definition of G, we have θ ∈ G(V∗).

Thus V∗ ⊂ G(V∗).
We have shown that G(V∗) ⊂ V∗ ⊂ G(V∗), which implies G(V∗) = V∗ as desired.
Let Q = V∗. Since G(Q) = Q, for each s ∈ S and each µ ∈ M, θ =

(
k̂, V̂, r, w

)
∈

Q(s, µ), there exists θs′ ∈ Q
(
s′, µ+

s′
)

for each s′ ∈ S such that
(
θ, (θs′)s′∈S

)
∈ g(s, µ). We

also define T as

T (s, µ) =
{(

µ+
s′
)

s′∈S : given
(

ĉ, k̂, V̂, r, w
)
∈ Q(s, µ), µ+

s′ is determined by (12)
}

.

It follows immediately that (Q, T ) defined as such forms a generalized recursive equilib-
rium for the economy with a continuum of agents.
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By Lemma 1, the existence of a GRE implies the existence of a SCE starting from some
initial distribution. Can we go a step further and always select a RE from a GRE? The
answer is no. The definition of a GRE involves policy and transition correspondences, Q
and T . We can show that Q upper-hemi continuous. Therefore there exists a measurable
selection (function) Q0 from Q (Hildenbrand, 1974). Let T 0 denote the transition func-
tion that corresponds to the selection Q0. However,

(
Q0, T 0) might not form a recursive

equilibrium. To see this clearly, let us assume
(

µ0,+
s′

)
s′∈S

= T 0 (s, µ) and(
V̂+

s′ (., .), k̂+s′ (., .), r+s′ , w+
s′

)
∈ Q(s′, µ+

s′ )

such that Conditions 2-5 in Definition 2 are satisfied. Now, it is possible that µ0,+
s′ = µ at

s′ = s and that Definition 2 requires(
V̂++

s (., .), k̂++
s (., .), r++

s , w++
s

)
∈ Q (s, µ) \Q0 (s, µ) .

In this case, at s′ = s, we would select the “wrong” allocation if we set(
V̂++

s (., .), k̂++
s (., .), r++

s , w++
s

)
= Q0 (s, µ) .

The last observation indicates that, in general, we cannot always select a RE from a
GRE. Therefore, we would need additional conditions to guarantee the existence of a RE.
The following result provides such a sufficient condition for when a GRE gives rise to a
RE.

Proposition 1. Let Assumptions 1-6 hold. Starting from any initial distribution of capital hold-
ings, µ0(k, i) and exogenous aggregate state s0, there exists a SCE. If the SCE is unique for every
initial distribution of capital holdings and aggregate state, then there exists a recursive equilibrium
as defined in Krusell and Smith (1998).

Proof. Since, starting from each s ∈ S and µ ∈ M, there exists no more than one SCE,
there exists a unique element (

V̂, k̂, r, w
)
∈ Q (s, µ)

that satisfies Conditions 1-5 in Definition 2. LetQ0 denote the mapping from (s, µ) to this
element, and T 0 (s, µ) =

(
k̂ ◦ss′ µ

)
s′∈S

. Then
(
Q0, T 0) forms a recursive equilibrium.

Following Duffie et al. (1994) and Miao (2006), from the generalized recursive equi-
librium, for which the existence is established in Theorem 1, we can construct a recur-
sive equilibrium if we enlarge the state space with the value function. The reason is that
the short-run equilibrium condition, i.e. Condition 4 in Definition 2, only involves next-
period value functions. Definition 3 and Proposition 2 below formalize the result.

Definition 3. A recursive equilibrium (RE) with the value function as an extended state variable
consists of a subset J ⊂ S ×Ω× C and a mapping from ξ =

(
s, µ, V̂

)
∈ J to

a. a current policy function k̂, and current factor prices r, w ;
b. next-period wealth distributions and value functions

(
µs′ , V̂+

s′
)

s′∈S such that

ξ+s′ =
(
s′, µs′ , V̂+

s′
)
∈ J for all s′ ∈ S ,
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and Conditions 2-5. in Definition 2 are satisfied.

Proposition 2. Let Assumptions 2-6 hold. Then a RE with value function as an extended state
variable exists.

Proof. Given the set of distributions M and the correspondence Q in Definition 2 and
Theorem 1, let

J =
{(

s, µ, V̂
)
∈ S ×M× C : ∃

(
V̂, k̂, r, w

)
∈ Q(s, µ) for some k̂ ∈ C and r, w > 0

}
.

The existence of this recursive equilibrium is a direct application of the existence of a
GRE shown in Theorem 1, since any selection from the correspondence Q gives rise to a
recursive equilibrium with the extended state variable.

In the special case of the model without aggregate shocks (i.e., S = 1) the Krusell
and Smith’s economy becomes a neoclassical economy with only idiosyncratic shocks in
a transitional path as in Huggett (1997). In particular, we have the following proposition.

Proposition 3. Consider the case with S = 1 (i.e., the economy in Huggett, 1997) and let As-
sumptions 2-6 hold. A transitional path equilibrium exists. In addition, the value and policy
functions are time-dependent and the value function is concave, increasing, and Lipschitz contin-
uous in k; and the policy function is continuous and weakly increasing in k.

Proof. The result stated in this proposition is a direct application of Theorem 1 to the case
S = 1.

Having established the existence of GRE in Theorem 1, we would like to know whether
the long-run dynamics of the equilibrium exhibit some form of ergodicity. To the extent
that the literature using Krusell and Smith-type models involves simulation and calibra-
tion, ergodicity is important because it allows the econometrician to calculate the mo-
ments generated by the equilibrium using simulations.

In order to apply the machinery developed in Duffie et al. (1994) to tackle this question,
I use the following notation. First, let Z denote the extended space of exogenous and
endogenous variables:

Z = S × Y
where

Y =M×BL1 ×BL2.
In the expression for Y , BL1 denotes the space of Lipschitz continuous functions bounded
by
[
V, V

]
and with Lipschitz constant lV ; and BL2 denotes the space of Lipschitz continu-

ous functions bounded by
[
0, k̄
]

with Lipschitz constant lk; and where lV and lk are given
in Lemma 11.

I define the expectations correspondence G̃ as in Duffie et al. (1994)15:

G̃ : Z ⇒ P(Z)

by letting γ ∈ G̃
(

s, µ, V̂, k̂
)

iff

15For any Borel space X, P(X) denotes the space of probability measures on X, endowed with weak*
topology.
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(i) the marginal distribution γS×M of γ on S ×M is ∑s′∈S πss′D(s′,µ◦ss′ k̂)
where D

stands for the Dirac mass function; and
(ii) k̂(., .) solves

V̂(k, i) = max
k′

u(c) + β(i) ∑
s′,i′

πss′,ii′

∫
Ṽ(k′, i′)dγ(.|s′),

subject to: 0 ≤ k′ ≤ k̄ and 0 ≤ c = (1− δ + r(s, µ))k + w(s, µ)l(s, i)− k′, where r(s, µ) and
w(s, µ) are defined as marginal products in (14).

Lemma 3. G̃ has closed-graph and is convex-valued.

Proof. Appendix A.

I use the concept of ergodicity in Duffie et al. (1994). I refer readers to original paper for
more detailed step-by-step explanations of the concept. In particular, with conditionally
spotlessness, sunspots are used only to randomize over spotless transitions from current
state to next period’s state.16 Let PF(S × Y) denote the set of γ in P(S × Y) for which
there is some h : S → Y with measurable graph such that γ(Gr(h)) = 1.

Definition 4. A Conditionally Spotless Ergodic Markov equilibrium consists of a subset
Z∗ ⊂ Z , a mapping Ξ : Z∗ → P(Z∗), and an invariant measure γ∗ ∈ P(Z∗) of Ξ such
that

Ξ(z) ∈ G̃(z)
for all z ∈ Z∗ and

(i) (ergodicity) for any invariant subset A of Z∗, either γ∗(A) = 0 or γ∗(A) = 1.
(ii) (conditionally spotless) for each z ∈ Z∗, there is some M ⊂ PF(S × Y) ∩ G̃ and

λ ∈ P(M) such that Ξ(z) =
∫

νdλ(ν).

With the definition, the following theorem establishes the existence of a conditionally
spotless ergodic Markov equilibrium.

Theorem 2. Let Assumptions 2-6 hold. A conditionally spotless ergodic Markov equilibrium
exists.

Proof. Given the existence of a GRE (Q, T ) from Theorem 1, let

Z∗ =
{(

s, µ, V̂, k̂
)
∈ Z :

(
V̂, k̂, r(s, µ), w(s, µ)

)
∈ Q (s, µ)

}
.

It is easy to show that Z∗ is compact. Because G̃ has closed-graph and is convex-valued,
as shown in Lemma 3, the existence follows directly from Proposition 3.1 in Duffie et al.
(1994).

If a SCE starting from any initial condition is unique, as assumed in Proposition 1, then
a conditionally spotless ergodic equilibrium becomes a usual (spotless) ergodic equilib-
rium, i.e., Ξ does not involves any sunspots. Ergodic property established in Theorem 2 is

16In other words, when there are multiple spotless equilibria starting from a particular state, sunspots
allow the system to randomize among these equilibria (but once the sunspot random variable is realized,
one cannot switch from one equilibrium to another).
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important because many papers using Krusell and Smith (1998)’s solution method make
use of simulations to compute their models. Ergodicity of equilibrium also allows one
to apply the ergodic theorem: one can compute the model’s moments using simulations.
For example, for any function ϕ ∈ L1(Z∗, γ∗) and {zt} is induced by Ξ, we have:

lim
T→∞

1
T

T

∑
t=1

ϕ(zt) =
∫

ϕdγ∗, γ∗-almost surely.

Ergodicity is also important for the calibration or estimation of the models, for example
in order to use the GMM estimators (Hansen, 1982).

3 Conclusion

In this paper, I define the concept of generalized recursive equilibrium, prove its exis-
tence, and characterize its properties in the Krusell and Smith-style neoclassical growth
model with both idiosyncratic and aggregate shocks. The proof techniques apply equally
well to economies with a finite number of agents and I provided the details in Appendix
D. The techniques and results (existence and characterization) in the present paper should
carry over to to other economies in which the agents’ decision variables involve only one
continuous inter-temporal choice variable such as Chang and Kim (2007), Vavra (2014),
and Krueger et al. (2016). Because, in these economies one can sharply characterize the
agents’ value and policy functions. It is more challenging in other classes of models with
more than one continuous choice variables, such as models with portfolio choices (Krusell
and Smith, 1997 and Storesletten et al., 2007).

The existence proof using finite-horizon approximation also suggests a global numer-
ical method using time iterations to solve this class of model. I implement the two-agent
version of the algorithm in Appendix E and discuss its extensions for a larger number or
a continuum of agents. The definitions and proofs in the present paper use the wealth
distribution as a state variable and are consistent with recent algorithms approximating
and discretizing the space of wealth distributions such as Reiter (2010), Gordon (2011),
Childers (2015), and Sager (2016).

Lastly, I provide a rather strong and difficult to verify condition under which a gen-
eralized recursive equilibrium gives rise to a recursive equilibrium with the natural state
variable - wealth distribution. In general, however, it is still an open question whether a
recursive equilibrium exists in these economies. The question deserves further research
given the rising importance of this class of economies.
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APPENDIX

A Supporting Results

The Derivation for the Fractions of Agents. We show by induction in t that if φ(h ∈ H : ih
t =

i) = ms(i) for each i ∈ I and s ∈ S the same property holds for t + 1.
Let B =

{
î ∈ I∞ : it+1 = i′

}
and Bi =

{
î ∈ I∞ : it = i

}
. Conditioning on a path for

aggregate shocks s∞, for each t ≥ 0 and i ∈ I we have, a.s.

φ(h ∈ H : î(h, ω̃, s∞) ∈ B) = P(ω : î(h, ω, s∞) ∈ B)

= ∑
i∈I

P(ω : î(h, ω, s∞) ∈ Bi ∩ B),
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where the first equality holds a.s. for ω̃ ∈ Ω given Assumption 1. Now, a.s.

P(ω : î(h, ω, s∞) ∈ Bi ∩ B) = P(ω : î(h, ω, s∞) ∈ B|î(h, ω, s∞) ∈ Bi) ·P(ω : î(h, ω, s∞) ∈ Bi)

=
πss′,ii′

πss′
·P(ω : î(h, ω, s∞) ∈ Bi)

=
πss′,ii′

πss′
· φ(h ∈ H : î(h, ω̃, s∞) ∈ Bi)

=
πss′,ii′

πss′
ms(i).

Therefore, for almost all ω̃ ∈ Ω,

φ(h ∈ H : î(h, ω̃, s∞) ∈ B) = ∑
i∈I

πss′,ii′

πss′
ms(i) = ms′(i′)

by (1).

Proof of Lemma 1. Consider sequences of wealth distribution µt, policy functions ĉt, k̂t and
prices rt, wt generated by a generalized recursive equilibrium, starting from s0 ∈ S and
a distribution

{
kh

0, ih
0
}

h∈H such that µ0(k, i) as defined in (10) belongs to Ω. That is, se-
quences of distributions

{
µt(st)

}
t,st and, policy functions and value functions{

ĉt(., .; st), k̂t(., .; st), V̂t(., .; st)
}

t,st
,

and prices
{

rt(st), wt(st)
}

t,st are such that for each t, st,
(

V̂t, k̂t, rt, wt

)
∈ Q(st, µt), ĉt is

consistent with k̂t, and
(
st+1, µt

(
st, st+1

))
st+1∈S

∈ T (st, µt) and Conditions 1-5 in Defini-
tion (2) are satisfied. For convenience, I repeat them here using the sequence notations:

1. For each st+1 ∈ S ,(
V̂t+1

(
., .;
(
st, st+1

))
, k̂t+1

(
., .;
(
st, st+1

))
, rt+1

(
st, st+1

)
, rt+1

(
st, st+1

))
∈ Q

(
st+1, µt+1

(
st, st+1

))
.

2. The following identity holds:∫
[0,k̄]×I

ĉt(k, i; st)dµt(k, i; st) +
∫
[0,k̄]×I

k̂t(k, i; st)dµt(k, i; st)

= F(st, Kt(st), L(st)) + (1− δ)Kt(st)

where
Kt(st) =

∫
[0,k̄]×I

kdµt(k, i; st) and L(st) = ∑
i∈I

mst(i)l(st, i).

3. rt(st) = FK
(
st, Kt(st), L(st)

)
> 0 and wt(st) = FL

(
st, Kt(st), L(st)

)
> 0.

4. For each i ∈ I and k ∈
[
0, k̄
]
, V̂t(., .; st) and

{
V̂t+1

(
., .;
(
st, s′

))}
s′∈S satisfy the

Bellman equation:

V̂t(i, k; st) = max
c,k′

u(c) + β(i) ∑
i′,s′

πss′,ii′V̂t+1
(
i′, k′;

(
st, s′

))
(15)
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s.t. c ≥ 0 and 0 ≤ k′ ≤ k̄ and

c + k′ ≤ (1− δ + rt(st))k + wt(st)l(st, i).

In addition,
(

ĉt(i, k; st), k̂t(i, k; st)
)

solves (15).
5. For each st+1 ∈ S :

µt+1
(
., .;
(
st, st+1

))
= k̂t(., .; st) ◦stst+1 µt(., .; st),

where the composition operator ◦ is defined in (12).
I construct recursively a SCE as following:

k̆t+1(st, ih,t; kh
0, ih

0) = k̂t

(
k̆t(st−1, ih,t−1; kh

0, ih
0), ih

t ; st
)

c̆t(st, ih,t; kh
0, ih

0) = ĉt

(
k̆t(st−1, ih,t−1; kh

0, ih
0), ih

t ; st
)

.

I show that this construction is indeed a SCE as defined in Definition 1.
I first show by induction that µt(st) corresponds to the distribution (10) implied by:{

k̆t(st−1, ih,t−1; kh
0, ih

0)
}

h∈H
,

i.e.
µt(A× J; st) = φ

(
h ∈ H :

(
k̆t(st−1, ih,t−1; kh

0, ih
0), ih

t

)
∈ A× J

)
(16)

for each A× J ∈ B
([

0, k̄
])
×B(I).

Identity (16) holds at t = 0 by definition. Now, assume that the identity holds at t, we
show that it holds at t + 1. Indeed,

φ
(

h ∈ H :
(

k̆t+1(st, ih,t), ih
t+1

)
∈ A× J

)
= P

(
k̂t

(
k̆t

(
st−1, ih,t−1; kh

0, ih
0

)
, ih

t+1; st
)
∈ A× J

)
= ∑

i∈I
P
(

k̂t

(
k̆t

(
st−1, ih,t−1; kh

0, ih
0

)
, ih

t+1; st
)
∈ A× J, ih

t = i
)

,

where the second equality is implied by Assumption 1 and the construction of k̆t+1.
The last expression can be written as:

∑
i∈I

P
(

k̂t

(
k̆t

(
st−1, ih,t−1; kh

0, ih
0; st−1, µt

)
, ih

t+1; st
)
∈ A× J, ih

t = i
)

= ∑
i∈I

∑
i′∈J

πstst+1,ii′

πstst+1

P
(

k̆t

(
st−1, ih,t−1; kh

0, ih
0; st−1, µt

)
∈ k̂−1

t

(
A, ih

t = i; st
)

, ih
t = i, ih

t+1 ∈ J
)

= ∑
i∈I

∑
i′∈J

πstst+1,ii′

πstst+1

φ
(

h ∈ H : k̆t ∈ k̂−1
t
(

A, i′; st) , ih
t = i

)
.

Finally, by the induction assumption at t, the last expression is equal to

∑
i∈I

∑
i′∈J

πstst+1,ii′

πstst+1

µt

(
(k̂t)

−1(A, i′; st), i; st
)

,

which in turn equals µt+1
(

A× J; st+1) from the properties of {µt} and
{

k̂t

}
. So by in-
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duction (16) holds for all t and st.
Consequently, ∫

H
k̆t(st, ih,t; kh

0, ih
0)φ(dh) =

∫
[0,k̄]×I

kdµt(k, i; st) = Kt.

and ∫
H

lh(st, ih
t )φ(dh) =

∫
[0,k̄]×I

l(s, i)dµt(k, i; st) = ∑
i∈I

mst(i)l(s, i) = L(st),

and ∫
H

c̆t(st, ih,t; kh
0, ih

0)φ(dh) =
∫
[0,k̄]×I

ĉt(k, i; st)dµt(k, i; st)

and ∫
H

k̆t+1(st, ih,t; kh
0, ih

0)φ(dh) =
∫
[0,k̄]×I

k̂t+1(k, i; st)dµt(k, i; st).

Therefore the market clearing conditions are satisfied.
Now given the sequences of prices

{
rt(st), wt(st)

}
, let

{
ch

t (s
t, ih,t), kh

t+1(s
t, ih,t)

}
t,st de-

note the allocation generated by the policy functions c̆, k̆ and let
{

c̃h
t (s

t, ih,t), k̃h
t (s

t, ih,t)
}

t,st

denote a sequence that satisfies (7), and (8), we show that:

V̂0(kh
0, ih

0; s0) = E0

[
∞

∑
t=0

Πt−1
t′=0β(ih

t′)u(c
h
t (s

t, ih,t))

]
(17)

≥ E0

[
∞

∑
t=0

Πt−1
t′=0β(ih

t′)u(c̃
h
t (s

t, ih,t))

]
. (18)

From the Bellman equation (15), we have:

V̂0(kh
0, ih

0; s0) = E0

[
T

∑
t=0

Πt−1
t′=0β(ih

t′)u(c
h
t ) + ΠT

t′=0β(ih
t′)V̂T+1(kh

t , ih
t ; st)

]
Now, the second term in the right hand side is bounded (in absolute value) by

β̄T+1 max
{
|V| ,

∣∣V∣∣} −→T→∞ 0.

Therefore taking T → ∞, we obtain (17).
Similarly, from the Bellman equation (15), we have:

V̂0(kh
0, ih

0; s0) ≥ E0

[
T

∑
t=0

Πt−1
t′=0β(ih

t′)u(c̃
h
t ) + ΠT

t′=0β(ih
t′)V̂T+1(k̃h

t , ih
t ; st)

]
.

The second term in the right hand side is bounded below by

min{β̄T+1V, βT+1V} −→ 0.

Therefore taking T → ∞, we obtain (18).

Proof of Lemma 3. First, to show that G̃ has closed graph, we need to show that if a se-
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quence
{(

sn, µn, V̂n, k̂n

)}∞

n=0
converges to some

(
s∗, µ∗, V̂∗, k̂∗

)
∈ Z and

γn ∈ G̃
(

sn, µn, V̂n, k̂n

)
converges to γ∗ ∈ P (Z) then γ∗ ∈ G̃

(
s∗, µ∗, V̂∗, k̂∗

)
. That is γ∗ satisfies conditions (i)

and (ii) in the definition of G̃.
Condition (i) requires that the marginal distributions

γ∗S×M = ∑
s′∈S

π(s, s′)D(s′,k̂∗◦ss′µ
∗).

This identity is equivalent to∫
ϕdγ∗S×M = ∑

s′∈S
π(s, s′)ϕ

(
s′, δk̂∗◦ss′µ

∗

)
, (19)

for all bounded and continuous real-valued function ϕ : S ×M → R. Let ϕ̂ be defined
over Z such that

ϕ̂(s̃, µ̃, Ṽ, k̃) = ϕ(s̃, µ̃)

for all s̃ ∈ S , µ̃ ∈ M and Ṽ ∈ BL1, k̂ ∈ BL2 . Because γn → γ∗ in weak* topology,∫
ϕ̂(s̃, µ̃, Ṽ, k̃)dγn →

∫
ϕ̂(s̃, µ̃, Ṽ, k̃)dγ∗.

From the definition of γn, we have∫
ϕ̂(s̃, µ̃, Ṽ, k̃)dγn =

∫
ϕ(s̃, µ̃)dγn,S×M = ∑

s′∈S
π(s, s′)ϕ(s′, k̂n ◦ss′ µn).

In addition, ∫
ϕ̂(s̃, µ̃, Ṽ, k̃)dγ∗ =

∫
ϕdγ∗S×M.

Because k̂n → k̂∗ uniformly and µn → µ∗, k̂n ◦ss′ µn → k̂∗ ◦ss′ µ∗ in weak* topology.
Consequently, given that ϕ is continuous:

ϕ(s′, k̂n ◦ss′ µn)→ ϕ(s′, k̂∗ ◦ss′ µ∗).

Combining the limits and equalities, we arrive at∫
ϕ(s̃, µ̃)dγ∗S×M = ∑

s′∈S
π(s, s′)ϕ

(
s′, k̂∗ ◦ss′ µ∗

)
.

Therefore, we obtain (19).
Condition (ii) requires that:

V̂∗(k, i; s, µ) = u(ĉ∗(k, i; s, µ)) + β(i) ∑
s′,i′

πss′,ii′

∫
Ṽ
(

k̂∗(k, i; s, µ), i′
)

dγ∗(.|s′) (20)

≥ u(c) + β(i) ∑
s′,i′

πss′,ii′

∫
Ṽ
(
k′, i′

)
dγ∗(.|s′) (21)

for all 0 ≤ c = (1− δ + r(s, µ))k + w(s, µ)l(s, i)− k′ and 0 ≤ k′ ≤ k̄.
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To prove (20), let
ϕ(s′, µ′, Ṽ, k̃) = Ṽ

(
k̂∗(k, i; s, µ), i′

)
which is bounded and continuous. Therefore,

lim
n→∞

dn = 0

where
dn =

∫
ϕdγn(.|s′)−

∫
ϕdγ∗(.|s′).

Consequently

u(ĉn(k, i; s, µ)) + β(i) ∑
s′,i′

πss′,ii′

∫
Ṽ
(

k̂n(k, i; s, µ), i′
)

dγn(.|s′)

= u(ĉ∗(k, i; s, µ)) + β(i) ∑
s′,i′

πss′,ii′

∫
Ṽ
(

k̂∗(k, i; s, µ), i′
)

dγ∗(.|s′)

+ u(ĉn(k, i; s, µ))− u(ĉ∗(k, i; s, µ))

+ β(i) ∑
s′,i′

πss′,ii′

∫ {
Ṽ
(

k̂n(k, i; s, µ), i′
)
− Ṽ

(
k̂∗(k, i; s, µ), i′

)}
dγ∗(.|s′)

+ β(i)dn

and the terms in the last three lines goes to 0 as n → ∞. Therefore, the initial expression
goes to

u(ĉ∗(k, i; s, µ)) + β(i) ∑
s′,i′

πss′,ii′

∫
Ṽ
(

k̂∗(k, i; s, µ), i′; s′, µ′
)

dγ∗(.|s′)

as n→ ∞. Following similar steps, we can prove (21).
Lastly, convex-valuedness of G̃ follows immediately from the fact that, for all γ1, γ2 ∈

P(Z) and 0 ≤ α ≤ 1, we have∫
Ṽ(k′, i′)d(αγ1(.|s′) + (1− α)γ2(.|s′))

= α
∫

Ṽ(k′, i′)dγ1(.|s′) + (1− α)
∫

Ṽ(k′, i′)dγ2(.|s′),

for all k′, i′, s′.

B Finite Horizon Economy and Proofs

We first show the existence of sequential competitive equilibrium (SCE) in a finite hori-
zon economy. Then we show that in any SCE, prices and value and policy functions lie
in compact sets. Consider the finite horizon version of the economy in Section 2 with
t = 0, 1, ..., T. We restate the definition of a SCE using wealth distributions, i.e. the distri-
butional approach, as following.

Given the sequence of prices{
rt,T(st), wt,T(st)

}
t=0,...,T;st∈S t ,
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the representative firm solves:

max
Yt,T,Kt,T ,Lt,T

Πt,T = Yt,T − rt,TKt,T − wt,T Lt,T

s.t. Yt,T ≤ F(st, Kt,T, Lt,T). We allow for Πt,T to be potentially different from 0, but we
show that in equilibrium Πt = 0. We also assume that the profits (or losses) are divided
equally across agents.

Given prices and the representative firm’s profit, the value function of the agents,
V̂t,T(k, i; st) satisfies the Bellman equation (starting from t = T + 1 with V̂T+1,T ≡ 0 mov-
ing backward):

V̂t,T(k, i; st) = max
c,k′

u(c) + β(i)Et

[
V̂t+1,T(k′, i; st+1)

]
(22)

subject to
c + k′ − (1− δ)k ≤ rt,T(st)k + wt,T(st)l(st, it) + Πt,T(st), (23)

and c ≥ 0 and 0 ≤ k ≤ k̄. Let ĉt,T(k, i; st) and k̂t,T(k, i; st) denote the implied policy
functions.

A SCE consists of prices
{

rt,T(st), wt,T(st)
}

, aggregate capital Kt,T(st), value and policy
functions V̂t,T, ĉt,T, k̂t,T that satisfy (22) and sequences of wealth distribution µt,T(k, i; st)
such that the following identity holds:∫

[0,k̄]×I
ĉt,T(i, k; st)dµt,T(k, i; st) +

∫
[0,k̄]×I

k̂t,T(i, k; st)dµt,T(k, i; st)

= F(st, Kt,T(st−1), L(st)) + (1− δ)Kt,T(st−1)

where
Kt,T(st−1) =

∫
[0,k̄]×I

kdµt(k, i; st) and L(st) = ∑
i∈I

mst(i)l(st, i).

In addition,

rt,T(st) = FK

(
st, Kt,T(st−1), L(st)

)
> 0 and wt,T(st) = FL

(
st, Kt,T(st−1), L(st)

)
> 0.

Lastly, the sequences of wealth distributions are consistent with the policy functions:

µt+1,T
(
., .;
(
st, st+1

))
= k̂t,T ◦stst+1 µt,T

(
., .; st) ,

where the composition operator ◦ is defined in (12).
The following lemma establishes the existence of SCE in the finite horizon economy.

Lemma 4. SCE exists in the finite horizon economy version of the model in Section 2.

Proof. To prove the existence, following Debreu (1959), we switch to the normalization,
pc

t + wt + rt = 1, where pc
t is the price of the consumption good, instead of normalizing

pc
t to 1.

Given a sequence εT = {εt}T
t=0 such that εt > 0 for all t ∈ {0, 1, ..., T}, let us define

∆ΣT

εT = ×(t,st)∆εt

=

{
(pc

t , rt, wt)t,st ∈
(

R3
+

)ΣT

: pc
t + wt + rt = 1 and pc

t ≥ εt

}
,
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where each ∆ε denotes a subset of the 3-dimensional simplex:

∆ε = {(pc, r, w)� 0 : pc + r + w = 1 and pc ≥ ε} .

Given the prices pT ∈ ∆ΣT
εT . The firms maximize profit and the agents maximize the

inter-temporal expected utility. In particular, in each history st the representative firm
solves

max
Yt,Kt,Lt≥0

Πt,T(Kt,T, Lt,T) (24)

s.t.
Yt,T ≤ F(st, Kt,T, Lt,T)

and
Πt,T = pc

t,TYt,T − rt,TKt,T − wt,T Lt,T.
We also impose two additional constraints:

0 ≤ Lt,T ≤ 2L̄ and 0 ≤ Kt,T ≤ 2K̄,

where L̄ and K̄ are defined in Assumption 2 and in (4).
Given ΠT =

(
Πt,T(st)

)
,17 the agents solve the dynamic programing problem: V̂t,T is

defined recursively (starting from t = T + 1 with V̂T+1,T ≡ 0 moving backward) as

V̂t,T(k, i; st, pT, ΠT) = max
c,k′

u(c) + β(i)Et

[
V̂t+1,T(k′, i; st, pT, ΠT)

]
(25)

subject to c ≥ 0, 0 ≤ k′ ≤ k̄ and

pc
t,T(s

t)
(
c + k′ − (1− δ)k

)
≤ rt,T(st)k + wt,T(st)l(st, i) + Πt,T. (26)

In Lemma 7, we show that the policy function for k′, k̂t,T(k, i; st) is uniquely-defined, con-
tinuous, and weakly increasing.

Given the policy function k̂t,T, we construct the sequence of measures µ̃T =
(
µ̃t,T(.; st)

)
t,st

as following:
1. µ̃0,T = µ0,T
2. For t ≥ 0,

µ̃t+1,T(., .; st+1) = k̂t,T ◦stst+1 µt,T(., .; st),
where the composition operator ◦ is defined in (12).

We denote
ψµ : ∆ΣT

εT ×ΩΣT
⇒ ΩΣT

as the correspondence that map the sequence of prices pT and distributions µT to the
sequence of distributions µ̃T as constructed above.

17The maximization problem (24) might have many maximizers but the maximized objective Πt,T is
uniquely determined given prices pt,T ∈ ∆εt .

25



We form the following excess demands:

Consumption:xc
t,T(s

t) =
∫
[0,k̄]×I

(
ĉt,T(k, i; st) + k̂t,T(k, i; st)− (1− δ)k

)
dµt,T(k, i; st)−Yt,T(st)

Capital:xk
t,T(s

t) = Kt,T(st)−
∫
[0,k̄]×I

kµt,T(k, i; st)

Labor: xl
t,T(s

t) = Lt,T(st)− L(st).

These definitions imply exogenous bounds on the excess demands:

xc = −(1− δ)k̄− Ȳ < xc
t,T(s

t) < x̄c =
1− ε

ε
k̄ +

1− ε

ε
L̄ +

1
ε

Ȳ,

where ε = 1
2 min0≤t≤T εt, and

xk = −2k̄ < xk
t,T(s

t) < x̄k = 2K̄,

and
xl = −2L̄ < xl

t,T(s
t) < x̄l = 2L̄.

Let Kx denote the cube
(
[xc, x̄c]×

[
xk, x̄k]× [xl, x̄l])ΣT

. We define the correspondence

ψx : ∆ΣT

ε ×ΩΣT
⇒ Kx

that maps a sequence of prices pT and a sequence of distributions µT to the excess de-
mands in every history.

Lastly,
ψp : Kx ⇒ ∆ΣT

εT

such that
pt,T = arg max

p∈∆εt

p · xt,T.

Let Φε denote an operator (which depends on {εt}) taking φp, φµ, φx as components:

Ψε : ∆ΣT

εT ×ΩΣT ×Kx ⇒ ∆ΣT

εT ×ΩΣT ×Kx (27)

Ψε =
(
ψp, ψµ, ψx

)
Lemma 8 shows that Ψε is upper-hemi continuous and is non-empty, compact, and

convex-valued. In addition ∆ΣT
ε ×ΩΣT ×Kx is a compact and convex subset of a locally

convex Hausdorff space.18 Therefore, by the Kakutani-Glicksberg-Fan Fixed Point Theo-
rem, Φε admits a fixed point. In Lemma 5 we show that, by choosing {εt} appropriately,
this fixed point constitutes a SCE.

The following lemma uses the fixed point in the previous lemma to establish the exis-
tence of SCE in the finite horizon economy stated in Lemma 2.

Lemma 5. Consider the sequence {εt, Kt}
T
t=0 constructed in Lemma 6, and Ψε as defined in (27)

18These properties follow directly from the result that the space Ω of probability measures endowed
with weak* topology is metrizable, shown in Bogachev (2000, Theorem 8.3.2).
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given the sequence {εt}. Let

ψ̄ =
(
( p̄t,T)t,st , (µ̄t,T)t,st , (x̄t,T)t,st

)
be a fixed point of Ψε. Then ψ̄ corresponds to a SCE.

Proof. To show that ψ̄ corresponds to a SCE, we need to show that xt,T(st) = 0 and
rt,T, wt,T > 0 for all t ≤ T and st ∈ S t. To simplify the notations, we omit the bar no-
tation on variables. We also omit the dependence on st, pT, ΠT when it is not ambiguous.

First, we notice that for all t ≤ T and st ∈ S t,

pt,T · xt,T = pc
t,Txc

t,T + rt,Txk
t,T + wt,Txl

t,T

= pc
t,T

∫
[0,k̄]×I

(
ĉt,T(k, i) + k̂t,T(k, i)− (1− δ)k

)
dµt,T(k, i)− pc

t,TYt,T

+ rt,TKt,T − rt,T

∫
[0,k̄]×I

kdµt,T(k, it) + wt,T Lt,T − wt,T L(st)

= pc
t,T

∫
[0,k̄]×I

(
ĉt,T(k, i) + k̂t,T(k, i)− (1− δ)k

)
dµt,T(k, i)

−Πt,T(Kt, Lt)− rt,T

∫
[0,k̄]×I

kdµt,T(k, i)− wt,T(st)
∫
[0,k̄]×I

l(st, it)dµt,T(k, i).

Since pc
t > 0, (26) holds with equality for each k, i. Therefore the last expression equal to

0. So
pt,T · xt,T = 0 (28)

for all t, st.
From the definition of a fixed point, we have

pt,T ∈ arg max
p∈∆εt

p · xt,T.

Therefore,
0 = pt,T · xt,T ≥

(
1 0 0

)
· xt,T = xc

t,T,
or equivalently,

xc
t,T(s

t) ≤ 0 ∀t ≤ T and ∀st ∈ S t. (29)

Now, we show by induction that xt,T = 0 for all t ≤ T and st ∈ S t. In particular, we
show that, x0,T = 0 and r0,T, w0,T > 0 (Step 1) and if xt−1,T = 0 and rt−1,T, wt−1,T > 0 for
all st−1 ∈ S t−1 then xt,T = 0 and rt,T, wt,T > 0 and in addition Kt > Kt (Step 2).

Step 1: Starting with t = 0, we have just shown in (29) that xc
0,T ≤ 0.

If xk
0,T < 0 then r0,T = 0 (since p0,T ∈ arg maxp p · x0,T and p0,T · x0,T = 0). The

maximization of the representative firm, (24), at t = 0 implies that K0,T = 2K̄. But then
xk

0,T > 0 since we chose 2K̄ > K0 =
∫
[0,k̄]×I kdµ0,T(k, i; s0). So xk

0,T ≥ 0.

Similarly, if xl
0,T < 0 then w0,T = 0. This implies that, from the maximization of

the representative firm, (24), at t = 0, L0,T = 2L̄. But then xl
0,T > 0 since we chose

2L̄ > L̄ > maxs∈S L(s). So xl
0,T ≥ 0.

Now, we show by contradiction that xc
0,T = 0. Assume the contrary: xc

0,T < 0. Then
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pc
0,T = ε0 (since p0,T ∈ arg maxp p · x0,T and p0,T · x0,T = 0 and xk

0,T, xl
0,T ≥ 0). Conse-

quently,
r0,Txk

0,T + w0,Txl
0,T = −ε0xc

0,T > 0. (30)
If r0,T = 0 then K0,T = 2K̄ and

xk
0,T ≥ 2K̄− K0 > K̄ > 2L̄ > xl

0,T.

But then, because p0,T ∈ arg maxp p · x0,T, we have r0,T = 1− ε0 and w0,T = 0, a con-
tradiction with the assumption that r0,T = 0. So we must have r0,T > 0. And since
p0,T ∈ arg maxp p · x0,T, it must be that xk

0,T ≥ xl
0,T. From (30), we have xk

0,T > 0.
If w0,T = 0 then L0,T = 2L̄ > 0 and xl

0,T = L0,T − L(s0) > 0. If w0,T > 0 then since
p0,T ∈ arg maxp p · x0,T, it must be that xl

0,T ≥ xk
0,T. Since we have shown above that

xk
0,T ≥ xl

0,T, this leads to xk
0,T = xl

0,T > 0. In either case, we have xl
0,T > 0.

Therefore K0,T = xk
0,T + K0 > K0 and L0,T = xl

0,T + L(s0) > L.
Now, at time t = 0 and s0, (because p0,T = ε0) (Y0,T, K0,T, L0,T) solves:

max
Y,K,L

ε0Y− r0,TK− w0,T L

s.t.
Y ≤ F(s0, K, L)

and K ≤ 2K̄, L ≤ 2L̄. Because ε0 > 0, Y0,T = F(s0, K0,T, L0,T) and

ε0FK(s0, K0,T, L0,T) ≥ r0,T

(with equality if K0,T < 2K̄) and

ε0FL(s0, K0,T, L0,T) ≥ w0,T

(with equality if L0,T < 2L̄). Therefore

ε0(FK(s0, K0,T, L0,T) + FL(s0, K0,T, L0,T)) ≥ r0,T + w0,T = 1− ε0.

Equivalently,
ε0(1 + FK(s0, K0,T, L0,T) + FL(s0, K0,T, L0,T)) ≥ 1. (31)

Because F is concave and K0,T ≥ K0,

FK(s0, K0,T, L0,T) ≤ FK(s0, K0, L0,T) ≤ max
0≤L≤2L̄

FK(s0, K0, L),

where max0≤L≤2L̄ FK(s0, K0, L) < ∞ by Assumption 5. Similarly, because L0,T ≥ L,

FL(s0, K0,T, L0,T) ≤ max
0≤K≤2K̄

FL(s0, K, L).

Therefore,

ε0(1 + FK(s0, K0,T, L0,T) + FL(s0, K0,T, L0,T))

< ε0(1 + max
0≤L≤2L̄

FK(s0, K0, L) + max
0≤K≤2K̄

FL(s0, K, L)) < 1,

where the last inequality comes from property (41) in Lemma 6. But this contradicts the
earlier inequality, (31).

So we obtain by contradiction that xc
0,T = 0.

28



Now if xk
0 > 0 or xl

0 > 0 then max p · x0,T > 0, which contradicts (28): 0 = p0,T · x0,T =

maxp p · x0,T. Therefore xk
0 = xl

0 = 0.
If w0,T = 0, then L0,T = 2L̄ and xl

0 > 0 therefore w0,T > 0. If r0,T = 0 then K0,T = 2K̄
and xk

0,T = 2K̄− K0 > 0 therefore r0,T > 0.
Step 2: From t− 1 to t.
Since xc

t−1,T = xk
t−1,T = 0, we have

∫
[0,k̄]×I

(
ĉt−1,T(k, i; st−1) + k̂t−1,T(k, i; st−1)− (1− δ)k

)
dµt−1,T(k, i; st−1)− F(st−1, Kt−1, Lt−1) = 0

and ∫
[0,k̄]×I

kdµt−1,T(k, i; st−1) = Kt−1.

From the definition of µt,T, µ̃t,T and the fixed point property of ψ̄,∫
[0,k̄]×I

kdµt,T(k, i; st) =
∫
[0,k̄]×I

k̂t−1,T(k, i; st−1)dµt−1,T(k, i; st−1).

Therefore, ∫
[0,k̄]×I

kdµt,T(k, i; st) ≤ F(st−1, Kt−1, Lt−1) + (1− δ)Kt−1 < K̄,

where the last inequality comes from condition (4) on K̄.
Now, we show that xt,T = 0 and rt,T, wt,T > 0. Indeed, we show in (29) that xc

1,T(s
1) ≤

0. The following arguments are similar to the argument in Step 1.
If xk

t,T(s
t) < 0 then rt,T(s1) = 0. Then Kt,T(st) = 2K̄ but then xk

t,T(s
t) > 0 since we have

shown that K̄ >
∫
[0,k̄]×I kdµt,T(k, i; st). So xk

t,T(s
t) ≥ 0.

If xl
t,T(s

t) < 0 then wt,T(s1) = 0. Then Lt,T(st) = 2L̄ but then xl
t,T(s

t) > 0 since
2L̄ > maxs∈S L(s). So xl

t,T(s
t) ≥ 0.

We show by contradiction that xc
t,T(s

t) = 0. Assume to the contrary that, xc
t,T(s

t) < 0.
Then pc

t,T(s
t) = εt (since pt,T ∈ arg maxp∈∆εt

p · xt,T and xk
t,T, xl

t,T ≥ 0). Therefore,

rt,T(st)xk
t,T(s

t) + wt,T(st)xl
t,T(s

t) = −εtxc
t,T(s

t) > 0. (32)

If rt,T(st) = 0 then Kt,T(st) = 2K̄ and

xk
t,T(s

t) = 2K̄−
∫
[0,k̄]×I

kdµt,T(k, i; st)

> 2K̄− K̄ > 2L̄ > xl
t,T(s

t).

But then, since pt,T ∈ arg maxp p · xt,T, so rt,T(st) = 1− εt and wt,T(st) = 0, a contradiction
with the assumption that rt,T(st) = 0. So we must have rt,T(st) > 0. Therefore, since
pt,T ∈ arg maxp p · xt,T, it implies that xk

t,T(s
t) ≥ xl

t,T(s
t). From (32), we have xk

t,T(s
t) > 0.

If wt,T(st) = 0 then Lt,T(st) = 2L̄ > 0 and xl
t,T(s

t) = Lt,T(st)− L(st) > 0. If wt,T(st) > 0
then since pt,T ∈ arg maxp p · xt,T, it must be that xl

t,T(s
t) ≥ xk

0,T(s
t). We have just shown

above that xk
t,T(s

t) ≥ xl
t,T(s

t). This leads to xk
t,T(s

t) = xl
t,T(s

t) > 0. In either case, we have
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xl
t,T(s

t) > 0.
Therefore Kt,T(st) = xk

t,T(s
t) + Kt−1,T(st−1) > Kt−1 and Lt,T(st) = xl

t,T(s
t) + L(st) > L.

As we show in (29) xc
t,T(s

t) ≤ 0, which by the definition of xc
t,T implies:∫

[0,k̄]×I

(
ĉt,T(k, i; st) + k̂t,T(k, i; st)− (1− δ)k

)
dµt,T(k, i; st)−Yt,T(st) ≤ 0.

Therefore∫
[0,k̄]×I

ĉt,T(k, i; st)dµt,T(k, i; st) ≤ (1− δ)
∫
[0,k̄]×I

kdµt,T(k, i; st) + Yt,T(st)

≤ (1− δ)Kt,T(st) + Yt,T(st), (33)

where the last inequality comes from xk
t,T(s

t) ≥ 0.
From the agents’ Euler equation, shown in Lemma 7,

pc
t−1,Tu′(ĉt−1,T) ≥ β(it−1)Et−1[((1− δ)εt + rt,T)u′(ĉt,T)]

if k̂t−1,T(k, i; st−1) < k̄. In this case, since pc
t−1,T ≤ 1,

u′(ĉt−1,T) ≥ β ∑
st∈S

πst−1st ∑
it∈I

Pr(it|st−1, st, it−1)((1− δ)εt + rt,T)u′(ĉ1,T)

≥ βπst−1st ∑
it

Pr(it|st−1, st, it−1)((1− δ)εt + rt,T)u′(ĉt,T)

≥ βπst−1st((1− δ)εt + rt,T)u′
(

∑
it

Pr(it|st−1, st, it−1)ĉt,T

)
,

where the last inequality comes from Jensen’s inequality and the convexity of u′.
Therefore (

βπst−1st((1− δ)εt + rt,T)
) 1

σ ≤ ∑it∈I πst−1st,it−1it ĉt,T

ĉt−1,T
.

Integrating over µt−1,T, and by (33),19 we obtain(
βπst−1st((1− δ)εt + rt,T)

) 1
σ ≤ Yt,T + (1− δ)Kt,T∫

[0,k̄]×I ĉt−1,T(k, i)χk̂t−1,T<k̄dµt−1,T(k, i)
, (34)

where χ is the set characteristic function.
Now ∫

[0,k̄]×I
k̄χk̂t−1,T≥k̄dµt−1,T(k, i) ≤ Kt.

Equivalently,

k̄
∫
[0,k̄]×I

χk̂t−1,T≥k̄dµt−1,T(k, i) ≤ Kt. (35)

19We use the inequality that m ≤ aj
bj

for all j implies m ≤
∫

aj∫
bj

.
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We also have∫
[0,k̄]×I

ĉt,T(k, i)χk̂t,T(i,k)<k̄dµt,T(k, i)

=
∫
[0,k̄]×I

ĉt,T(k, i)dµt,T(k, i)−
∫
[0,k̄]×I

ĉt,T(k, i)χk̂t,T≥k̄dµt,T(k, i). (36)

For k such that k̂t−1,T(k, i; st) = k̄ we have

pc
t−1,T(ĉt−1,T(k, i) + k̄− (1− δ)k)

= rt−1,Tk + wt−1,Tl(st, i) + Πt,T

≤ (1− εt−1)(k̄ + l̄) + Ȳ,

where Ȳ = maxs∈S F(s, 2K̄, 2L̄). Therefore, for these values of k:

ĉt−1,T(k, i) ≤ (1− εt−1)(k̄ + l̄) + Ȳ
εt−1

≤ 2
εt−1

k̄ (37)

since k̄ > l̄ + Ȳ, by Assumption 5.
So, (35), (36), and (37) yield∫

[0,k̄]×I
ĉt,T(k, i)χk̂t,T<k̄dµt,T(k, i)

≥
∫
[0,k̄]×I

ĉt,T(k, i)dµt,T(k, i)− 2
εt−1

k̄
∫
[0,k̄]×I

χk̂t,T≥k̄dµt,T(k, i)

≥
∫
[0,k̄]×I

ĉt,T(k, i)dµt,T(k, i)− 2
εt−1

Kt,T.

Therefore, from (34), we get(
βπst−1st((1− δ)εt + rt,T)

) 1
σ ≤ Yt,T + (1− δ)Kt,T

F(st−1, Kt−1,T, Lt−1,T) + (1− δ)Kt−1,T − Kt,T − 2
εt−1

Kt,T

(38)
From the firm’s problem, (Yt,T, Kt,T, Lt,T) solves

max
Y,K,L

εtY− rt,TK− wt,T L

s.t.
Y ≤ F(s1, K, L)

and 0 ≤ K ≤ 2K̄, 0 ≤ L ≤ 2L̄. Since εt > 0, we have Yt = F(st, Kt,T, Lt,T) and since we
established that Kt,T, Lt,T > 0, we have

εtFK(st, Kt,T, Lt,T) ≥ rt,T(st)

and
εtFL(st, Kt,T, Lt,T) ≥ wt,T(st).

Notice that
FL(st, Kt,T, Lt,T) ≤ FL(st, Kt,T, L) ≤ max

0≤K≤2K̄
FL(st, K, L),

which is finite by Assumption 5.
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Since rt,T = 1− pc
t,T − wt,T = 1− εt − wt,T,

εtFK(st, Kt,T, Lt,T) ≥ rt,T ≥ 1− εt(1 + max
0≤K≤2K̄

FL(st, K, L)) (39)

Since we chose εt such that

εtFK(st, Kt,T, Lt,T) < 1− εt(1 + max
0≤K≤2K̄

FL(st, K, L))

for all Kt,T ≥
(1−δ)Kt−1

2
(

1+ 2
εt−1

) , (i.e., Property e1. in Lemma 6) inequality (39) implies that Kt,T ≤

(1−δ)Kt−1

2
(

1+ 2
εt−1

) . So (38), together with Kt−1 > Kt−1, yields

(
βπst−1st((1− δ)εt + 1− εt(1 + max

0≤K≤2K̄
FL(st, K, L)))

) 1
σ

≤ Yt,T + (1− δ)Kt,T
1
2(1− δ)Kt−1

≤ F(st, Kt,T, 2L̄) + (1− δ)Kt,T
1
2(1− δ)Kt−1

.

By the choice of εt in Lemma 6 (Property e2), because Kt,T satisfies:

FK(st, Kt,T, Lt,T) ≥
1− εt(1 + max0≤K≤2K̄ FL(st, K, L))

εt

we have(
βπst−1st((1− δ)εt + 1− εt(1 + max

0≤K≤2K̄
FL(st, K, L)))

) 1
σ

>
F(st, Kt,T, 2L̄) + (1− δ)Kt,T

1
2(1− δ)Kt−1

.

This is a contradiction with the earlier inequality.
So we have shown by contraction that xc

t,T = 0. Next, we show that xk
t,T = xl

t,T = 0
and wt,T, rt,T > 0.

Indeed, if xk
t,T > 0 or xl

t,T > 0 then pt,T · xt,T = max p · xt,T > 0, contradicting (28).
Therefore xk

t,T = xl
t,T = 0.

If wt,T = 0, then Lt,T = 2L̄ and xl
t,T > 0. Therefore wt,T > 0. If rt,T = 0 then Kt,T = 2K̄

and xk
t,T > 0. Therefore rt,T > 0.

Now we show that Kt,T > Kt. Following the derivation of (38), we obtain(
βπst−1st((1− δ)pc

t,T + rt,T)
) 1

σ ≤ Yt,T + (1− δ)Kt,T

F(st−1, Kt−1,T, Lt−1,T) + (1− δ)Kt−1,T − Kt,T − 2
εt−1

Kt,T

(40)
Therefore, if Kt,T ≤ Kt,

Kt,T

(
1 +

2
εt−1

)
≤ (1− δ)Kt−1 < (1− δ)Kt−1,T.

So, because pc
t,T ≥ εt, (40) implies(

βπst−1st((1− δ)εt)
) 1

σ
<

F(st, Kt,T, 2L̄) + (1− δ)Kt,T

F(st−1, Kt−1, L)
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which contradicts the definition of Kt in Lemma 6 (in particular property e2). Therefore
Kt,T > Kt.

Lemma 6. Given s0 ∈ S and K0 > 0, we can choose the sequence {εt, Kt}
∞
t=0 recursively as

follow:

K0 =
1
2

K0 < K0

and ε0 > 0 such that

ε0 <
1

1 + max0≤L≤2L̄ FK(s0, K0, L) + max0≤K≤2K̄ FL(s0, K, L)
. (41)

For t > 0, given εt−1 and Kt−1, we can choose εt > 0 and Kt > 0 such that the following
properties e1. and e2. are satisfied:

e1. εt is sufficiently small such that

εt < min
s∈S ,0≤L≤2L̄

1

FK

(
s, (1−δ)Kt−1

2
(

1+ 2
εt−1

) , L

)
+ 1 + max0≤K̃≤2K̄ FL(s, K̃, L)

(42)

and
e2. for all ŝ, s ∈ S , and for all K such that

FK(s, K, L) ≥
1− εt(1 + max0≤K̃≤2K̄ FL(s, K̃, L))

εt
,

for some 0 ≤ L ≤ 2L̄ , we have(
βπŝs((1− δ)εt + 1− εt(1 + max

0≤K̃≤2K̄
FL(s, K̃, L)))

) 1
σ

>
F(s, K, 2L̄) + (1− δ)K

1
2(1− δ)Kt−1

. (43)

Given εt−1, εt, and Kt−1, there exists Kt <
(1−δ)Kt−1

1+ 2
εt−1

such that for all ŝ, s ∈ S and K ≤ Kt,(
βπŝs(1− δ)εt

) 1
σ
>

F(s, K, 2L̄) + (1− δ)K
F(ŝ, Kt−1, L)

. (44)

Proof. The existence of K0 is obvious. By Assumption 5,

max
0≤L≤2L̄

FK(s0, K, L) < +∞ and max
0≤K̃≤2K̄

FL(s, K̃, L) < +∞,

so there exists ε0 > 0 that satisfies (41). Now we construct εt and Kt recursively.
The right hand side of (42) is finite and is strictly positive. Let εt > 0 denote this value

and let

ε̃t = min

εt,
1

2
(

1 + maxs∈S ,0≤K̃≤2K̄ FL(s, K̃, L))
)
 .

By Assumption 5, there exists K̂t such that for all ŝ, s ∈ S :(
βπŝs

1
2

) 1
σ 1

2
(1− δ)Kt−1 > F(s, K, L̄) + (1− δ)K, (45)
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for all K ≤ K̂t. Again, by Assumption 5, we can find 0 < εt < ε̃t such that

max
0≤L≤2L̄

FK(s, K̂t, L) ≤
1− εt(1 + max0≤K̃≤2K̄ FL(s, K̃, L))

εt
. (46)

We show that εt defined as such satisfies Properties e1. and e2.
Indeed, since εt < εt, (42) holds, i.e., εt satisfies e1. Now we show that εt satisfies e2.

For all ŝ, s ∈ S , and for all K such that

FK(s, K, L) ≥
1− εt(1 + max0≤K̃≤2K̄ FL(s, K̃, L))

εt
,

for some 0 ≤ L ≤ 2L̄ , by (46), we have K ≤ K̂t. Because

εt <
1

2
(
1 + max0≤K̃≤2K̄ FL(s, K̃, L))

)
we have (

βπŝs((1− δ)εt + 1− εt(1 + max
0≤K̃≤2K̄

FL(s, K̃, L)))
) 1

σ

>

(
βπŝs

1
2

) 1
σ

So (45) yields (43).
By Assumption 5 (limK→0 F(s, K, 2L̄) = 0), there exists Kt such that

0 < Kt <
(1− δ)Kt−1

1 + 2
εt−1

(47)

and for all ŝ, s ∈ S , and 0 < K < Kt,(
βπŝs(1− δ)εt

) 1
σ F(ŝ, Kt−1, L) > F(s, K, 2L̄) + (1− δ)K.

So we obtain (44).

Lemma 7. Consider the value and policy functions defined recursively by the Bellman equations,
(25). We have the following properties:

1. The value functions V̂t,T are continuous, strictly increasing, strictly concave.
2. The corresponding policy correspondence, ĉt,T, k̂t,T are single-valued, i.e., are functions,

continuous, and k̂t,T are weakly increasing, and the budget constraints, (26), hold with equality.
3.(Euler Equation) If k′ = k̂t,T(k, i; st) < k̄ then

u′
(

ĉt,T(
(

k, i; st−1, pT, ΠT
))
≥ β(i)E

[
(1− δ + rt+1,T(st+1))u′

(
ĉt+1,T

(
k′, i′; st+1, pT, ΠT

))]
with equality if k′ > 0.

Proof. These properties are standard. The single-valued property of the policy function
comes from the fact that u(.) is strictly concave. The monotonicity of k̂t,T comes from a
standard-single crossing argument using the concavity of u.

Lemma 8. We show that the correspondence Ψε constructed in Lemma 4 is upper hemi-continuous,
and is non-empty, compact and convex valued.
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Proof. In order to show that Ψε is upper hemi-continuous, we need to show that given
any sequence (pn, µn, xn) ∈ ∆ΣT

εT × ΩΣT × Kx that converges to some (p, µ, x) ∈ ∆ΣT

εT ×
ΩΣT ×Kx:

(pn, µn, xn)→ (p, µ, x)
and

( p̃n, µ̃n, x̃n)→ ( p̃, µ̃, x̃)
and

( p̃n, µ̃n, x̃n) ∈ Ψε (pn, µn, xn)

then we must have:
( p̃, µ̃, x̃) ∈ Ψε (p, µ, x) .

Indeed, since
( p̃n, µ̃n, x̃n) ∈ Ψε (pn, µn, xn) ,

there exists {
Yn

t,T(s
t), Kn

t,T(s
t), Ln

t,T(s
t)
}

t,st

that solves (24). Let
Πn

t,T = pc,n
t,TYn

t,T − rn
t,TKn

t,T − wn
t,T Ln

t,T,

and Πn,T =
(

Πn
t,T(s

t)
)

t,st
.

Let V̂n
t,T(k, i; st, pT,n, ΠT,n) denote the value functions that solves (25) given pT,n and

ΠT,n and k̂n
t,T(k, i; st, pT,n, ΠT,n) denote the corresponding policy functions.

By choosing a convergent subsequence, we can assume that there exists{
Yt,T(st), Kt,T(st), Lt,T(st)

}
t,st

such that (
Yn

t,T(s
t), Kn

t,T(s
t), Ln

t,T(s
t)
)
−→n→∞

(
Yt,T(st), Kt,T(st), Lt,T(st)

)
for all t, st.

First, we show that for all t and st,
(
Yt,T(st), Kt,T(st), Lt,T(st)

)
solves (24) given pT.

Indeed, for any (Y, K, L) such that

Y ≤ F(st, Kt,T, Lt,T)

and
0 ≤ L ≤ 2L̄ and 0 ≤ K ≤ 2K̄,

since
(

Yn
t,T(s

t), Kn
t,T(s

t), Ln
t,T(s

t)
)

solves (24), we have

pn,c
t,TY− rn

t,TK− wn
t,T L ≤ pn,c

t,TYn
t,T − rn

t,TKn
t,T − wn

t,T Ln
t,T.

Taking n→ ∞, we obtain

pc
t,TY− rt,TK− wt,T L ≤ pc

t,TYt,T − rt,TKt,T − wt,T Lt,T.

Therefore
(
Yt,T(st), Kt,T(st), Lt,T(st)

)
solves (24) given pT.

In addition, from the expression for Πn
t,T(s

t) and Πt,T(st), we also have

lim
n→∞

Πn
t,T(s

t) = Πt,T(st).
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Lemma 9 then shows that

k̂n
t,T(., i; st, pn,T, ΠT,n) −→n→∞ k̂t,T(., i; st, pT, ΠT)

uniformly over
[
0, k̄
]
.

From the definition of ψx, we have (to simplify the notations, we omit the dependence
on pn,T, Πn,T, pT, ΠT, etc. ):

x̃c
t,T;n(s

t) =
∫
[0,k̄]×I

(
ĉt,T;n(k, i; st) + k̂t,T;n(k; i, st)− (1− δ)k

)
dµn

t,T(k, i; st)−Yn
t,T(s

t)

x̃k
t,T;n(s

t) = Kn
t,T(s

t)−
∫
[0,k̄]×I

kdµn
t,T(k, i; st)

x̃l
t,T;n(s

t) = Ln
t,T(s

t)− L(st).

As shown in Lemma 7,

ĉt,T;n(k, i; st) + k̂t,T;n(k; i, st)− (1− δ)k =
rn

t,T(s
t)k + wn

t,T(s
t)l(st, it) + Πn

t,T(K
n
t,T, Ln

t,T)

pn,c
t,T(s

t)
.

Therefore

x̃c
t,T;n(s

t) =
∫
[0,k̄]×I

(
ĉt,T;n(k, i; st) + k̂t,T;n(k; i, st)− (1− δ)k

)
dµn

t,T(k, i; st)−Yn
t,T(s

t)

=
∫
[0,k̄]×I

(
rn

t,T(s
t)k + wn

t,T(s
t)l(st, it) + Πn

t,T(K
n
t,T, Ln

t,T)

pn,c
t,T(s

t)

)
dµn

t,T(k, i; st)−Yn
t,T(s

t)

=
rn

t,T(s
t)

pn,c
t,T(s

t)

∫
[0,k̄]×I

kdµn
t,T(k, i; st) +

rn
t,T(s

t)

pn,c
t,T(s

t)

∫
[0,k̄]×I

l(st, it)dµn
t,T(k, i; st)

+
Πn

t,T(K
n
t,T, Ln

t,T)

pn,c
t,T(s

t)
−Yn

t,T(s
t).

Because pn → p, and pn,c
t,T, pc

t,T > εt > 0,
rn

t,T(s
t)

pn,c
t,T(s

t)
→ rt,T(st)

pc
t,T(s

t)
and

rn
t,T(s

t)

pn,c
t,T(s

t)
→ rt,T(st)

pc
t,T(s

t)
. In

addition, as we show above,
Πn

t,T(K
n
t,T ,Ln

t,T)

pn,c
t,T(s

t)
→ Πt,T(Kt,T ,Lt,T)

pc
t,T(s

t)
and Yn

t,T(s
t)→ Yt,T(st).

Because µn → µ, ∫
[0,k̄]×I

kdµn
t,T(k, i; st)→

∫
[0,k̄]×I

kdµt,T(k, i; st)

and ∫
[0,k̄]×I

l(st, it)dµn
t,T(k, i; st)→

∫
[0,k̄]×I

l(st, it)dµt,T(k, i; st).
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Therefore, for all t and st, we have:

x̃c
t,T;n(s

t)→ rt,T(st)

pc
t,T(s

t)

∫
[0,k̄]×I

kdµt,T(k, i; st) +
rt,T(st)

pc
t,T(s

t)

∫
[0,k̄]×I

l(st, it)dµt,T(k, i; st)

+
Πt,T(Kt,T, Lt,T)

pc
t,T(s

t)
−Yt,T(st)

=
∫
[0,k̄]×I

(
ĉt,T(k, i; st) + k̂t,T(k; i, st)− (1− δ)k

)
dµt,T(k, i; st)−Yt,T(st).

In addition, we also have x̃c
t,T;n(s

t)→ x̃c
t,T(s

t) . Therefore, for all t and st:

x̃c
t,T =

∫
[0,k̄]×I

(
ĉt,T(k, i; st) + k̂t,T(k; i, st)− (1− δ)k

)
dµt,T(k, i; st)−Yt,T(st)

Similarly, we can also show that, for all t and st:

x̃k
t,T(s

t) = Kt,T(st)−
∫
[0,k̄]×I

kdµt,T(k, i; st)

x̃l
t,T(s

t) = Lt,T(st)− L(st).

Therefore
x̃ ∈ ψx(p, µ, x).

Following the same steps, it is also easy to show that p̃ ∈ ψp(p, µ, x). Now we show
that µ̃ ∈ ψµ(p, µ, x).

Indeed, from the definition of ψµ, for every A ∈ B
([

0, k̄
])

µ̃t+1,T;n(A, it+1; st+1) = ∑
it∈I

Pr(it+1|it, st, st+1)µt,T;n

((
k̂t,T;n

)−1
(A), it; st

)
. (48)

We need to show that, for every A ∈ B
([

0, k̄
])

µ̃t+1,T(A, it+1; st+1) = ∑
it∈I

Pr(it+1|it, st, st+1)µt,T

((
k̂t,T;n

)−1
(A), it; st

)
.

From the construction of the Kantorovich-Rubinstein norm for the space of measures
in Bogachev (2000, Section 8.3), to show the identity, we just need to show that for all
ϕ ∈ Lip1

([
0, k̄
])

,∫ k̄

0
ϕ(k)µ̃t+1,T(dk, it+1; st+1) = ∑

it∈I
Pr(it+1|it, st, st+1)

∫ k̄

0
ϕ
(

k̂t,T(k, i; st)
)

µt,T(dk, it; st)

(49)
From (48), we have∫ k̄

0
ϕ(k)µ̃t+1,T;n(dk, it+1; st+1) = ∑

it∈I
Pr(it+1|it, st, st+1)

∫ k̄

0
ϕ
(

k̂t,T;n(k, i; st)
)

µt,T;n(dk, it; st).

Since µ̃n → µ̃,

lim
n→∞

∫ k̄

0
ϕ(k)µ̃t+1,T;n(dk, it+1; st+1) =

∫ k̄

0
ϕ(k)µ̃t+1,T(dk, it+1; st+1).
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Therefore, to establish (49), we just need to show that:

lim
n→∞

∫ k̄

0
ϕ
(

k̂t,T;n(k, i; st)
)

µt,T;n(dk, it; st) =
∫ k̄

0
ϕ
(

k̂t,T(k, i; st)
)

µt,T(dk, it; st). (50)

Indeed,∣∣∣∣∣
∫ k̄

0
ϕ
(

k̂t,T;n(k, i; st)
)

µt,T;n(dk, it; st)−
∫ k̄

0
ϕ
(

k̂t,T(k, i; st)
)

µt,T(dk, it; st)

∣∣∣∣∣
=

∣∣∣∣∣
∫ k̄

0
ϕ
(

k̂t,T;n(k, i; st)
)

µt,T;n(dk, it; st)−
∫ k̄

0
ϕ
(

k̂t,T(k, i; st)
)

µt,T;n(dk, it; st)

+
∫ k̄

0
ϕ
(

k̂t,T(k, i; st)
)

µt,T;n(dk, it; st)−
∫ k̄

0
ϕ
(

k̂t,T(k, i; st)
)

µt,T(dk, it; st)

∣∣∣∣∣
≤
∫ k̄

0

∣∣∣ϕ (k̂t,T;n(k, i; st)
)
− ϕ

(
k̂t,T(k, i; st)

)∣∣∣ µt,T;n(dk, it; st)

+

∣∣∣∣∣
∫ k̄

0
ϕ
(

k̂t,T(k, i; st)
)

µt,T;n(dk, it; st)−
∫ k̄

0
ϕ
(

k̂t,T(k, i; st)
)

µt,T(dk, it; st)

∣∣∣∣∣ . (51)

We first show that

lim
n→∞

∫ k̄

0

∣∣∣ϕ (k̂t,T;n(k, i; st)
)
− ϕ

(
k̂t,T(k, i; st)

)∣∣∣ µt,T;n(dk, it; st) = 0. (52)

Indeed, because ϕ ∈ Lip1
([

0, k̄
])

,∫ k̄

0

∣∣∣ϕ (k̂t,T;n(k, i; st)
)
− ϕ

(
k̂t,T(k, i; st)

)∣∣∣ µt,T;n(dk, it; st)

≤
∫ k̄

0

∣∣∣k̂t,T;n(k, i; st)− k̂t,T(k, i; st)
∣∣∣ µt,T;n(dk.it; st)

≤ sup
0≤k≤k̄

∣∣∣k̂t,T;n(k, i; st)− k̂t,T(k, i; st)
∣∣∣ µt,T;n(

[
0, k̄
]

, it; st)

We show in Lemma 9, that k̂t,T;n → k̂t,T uniformly, therefore

lim
n→0

sup
0≤k≤k̄

∣∣∣k̂t,T;n(k, i; st)− k̂t,T(k, i; st)
∣∣∣ = 0,

In addition, since µt,T;n(
[
0, k̄
]

, it; st) ≤ ∑i∈I µt,T;n(
[
0, k̄
]

, i; st) = 1. These two results
imply (52).

Because ϕ
(

k̂t,T(k, i; st)
)

is continuous, we also have:

lim
n→∞

∣∣∣∣∣
∫ k̄

0
ϕ
(

k̂t,T(k, i; st)
)

µt,T;n(dk, it; st)−
∫ k̄

0
ϕ
(

k̂t,T(k, i; st)
)

µt,T(dk, it; st)

∣∣∣∣∣ = 0.

Combining this limit with (52), and (51), we arrive at (50). As argued above, this implies
µ̃ ∈ φµ(p, µ, x).

We have just established that ( p̃, µ̃, x̃) ∈ Ψε (p, µ, x), i.e., Ψε is upper hemi-continuous.
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It is standard to show that Ψε is compact and convex valued. The proof is facilitated by
the fact that if

( p̃1, µ̃1, x̃1) ∈ Ψε (p, µ, x)
and

( p̃2, µ̃1, x̃2) ∈ Ψε (p, µ, x)
then Π1

t,T = Π2
t,T for all t and st. Therefore by Lemma 7, k̂1

t,T ≡ k̂2
t,T for all t and st. So

µ̃1 ≡ µ̃2, i.e., ψµ(p, µ, x) is single-valued.

Lemma 9. Assume that pn,T −→n→∞ pT and Πn
t,T −→n→∞ Πt,T. In addition, V̂n

t,T solves (25),
given pn,T and Πn,Twith the corresponding policy function k̂n

t,T and V̂t,T solves (25) given pT and
Πt,T with the corresponding k̂t,T. Then, for all st ∈ S t and i ∈ I and k ∈

[
0, k̄
]
, we have

V̂n
t,T(., i; st, pn,T, Πn,T) −→n→∞ V̂t,T(., i; st, pT, ΠT)

pointwise, and
k̂n

t,T(., i; st, pn,T, Πn,T) −→n→∞ k̂t,T(., i; st, pT, ΠT)

uniformly over
[
0, k̄
]
.

Proof. We show the results stated in the lemma by induction backward from t = T + 1.
1. At t = T, the result is obvious since

V̂n
T,T(k, i; sT, pn,T, Πn,T) = u

(
rn

T,T(s
T)k + wn

T,T(s
T)l(sT, i) + Πn

T,T + (1− δ)k
pn,c

T,T(s
T)

)
and

V̂T,T(k, i; sT, pT, ΠT) = u

(
rT,T(sT)k + wT,T(sT)l(sT, i) + ΠT,T + (1− δ)k

pc
T,T(s

T)

)
and k̂n

T,T ≡ 0 and k̂T,T ≡ 0.
2. Assume that the results in the current lemma hold for t + 1 ≤ T, we show that they

also hold for t.
Indeed, given st ∈ S , i ∈ I and k ≥ 0, we first show that

lim inf
n→∞

V̂n
t,T(k, i; st, pn,T, Πn,T) ≥ V̂t,T(k, i; st, pT, ΠT).

This is immediate if the right hand side is −∞, which happens if and only if

Πt,T(st) = wt,T(st) = k = 0.

Now if the right hand side is finite, for any ν > 0, there exists c ≥ 0 and k′ ∈
[
0, k̄
]

such
that

pc
t,T(s

t)
(
c + k′ − (1− δ)k

)
< rt,T(st)k + wt,T(st)l(st, it) + Πt,T(st),

and
V̂t,T(k, i; st, pT, ΠT) ≤ u(c) + β(i)Et

[
V̂n

t+1,T(k
′, i; st, pn,T, Πn,T)

]
+ ν

Because (
pn

t,T, Πn
t,T
)
→ (pt,T, Πt,T) ,
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there exists N such that for all n ≥ N

pn,c
t,T(s

t)
(
c + k′ − (1− δ)k

)
≤ rn

t,T(s
t)k + wn

t,T(s
t)l(st, it) + Πn

t,T(s
t).

Therefore,

V̂n
t,T(k, i; st, pT, Πn,T) ≥ u(c) + β(i)Et

[
V̂n

t+1,T(k
′, i; st, pn,T, Πn,T)

]
and since V̂n

t+1,t(k
′, i)→ V̂t+1,T(k′, i) by the the induction assumption,

lim inf
n→∞

V̂n
t,T(k, i; st, pn,T, Πn,T) ≥ u(c) + β(i)Et

[
V̂t+1,T(k′, i; st, pn,T, Πn,T)

]
≥ V̂t,T(k, i; st, pT, ΠT)− ν.

Therefore,
lim inf

n→∞
V̂n

t,T(k, i; st, pn,T) ≥ V̂t,T(k, i; st, pT). (53)

We show by contradiction that

lim sup
n→∞

V̂n
t,T(k, i; st, pn,T) ≤ V̂t,T(k, i; st, pT). (54)

Case 1: V̂t,T(k, i; st, pT) > −∞. Assume to the contrary that there exists ν > 0 and a
subsequence nm → ∞ such that

V̂nm
t,T (k, i; st, pn,T) > V̂t,T(k, i; st, pT) + ν. (55)

By the definition of Vnm , there exists cnm ≥ 0, and k′nm ∈
[
0, k̄
]

, such that

pnm,c
t,T (st)

(
cnm + k′nm − (1− δ)k

)
≤ rnm

t,T(s
t)k + wnm

t,T(s
t)l(st, it) + Πnm

t,T, (56)

and
V̂nm

t,T (k, i; st, pT) = u(cnm) + β(i)Et

[
V̂nm

t+1,T(k
′nm , i; st, pnm,T)

]
.

By choosing subsequences, we can assume that cnm → c∗ and k
′nm → k∗ for some c∗ ≥ 0

and k∗ ∈
[
0, k̄
]

. From (56), and because(
pn

t,T, Πn
t,T
)
→ (pt,T, Πt,T) ,

we have
pc

t,T(s
t) (c∗ + k∗ − (1− δ)k) ≤ rt,T(st)k + wt,T(st)l(st, it) + Πt,T.

Since V̂nm
t+1,T → V̂t+1,T pointwise and V̂t+1,T is continuous and increasing in k, we obtain20

lim sup
m→∞

V̂nm
t+1,T(k

′nm , i; st, pnm,T) ≤ V̂t+1,T(k∗, i; st, pT).

Consequently,

lim sup
m→∞

V̂nm
t,T (k, i; st, pT) ≤ u(c∗) + β(i)Et

[
V̂t+1,T(k∗, i; st, pT)

]
≤ V̂t,T

(
k, i; st, pT

)
.

20For any 0 ≤ k∗ < k̃,

lim sup
m→∞

V̂nm
t+1,T(k

′nm , i; st, pnm ,T) ≤ lim
m→∞

V̂nm
t+1,T(k̃, i; st, pnm ,T)

= V̂t+1,T(k̃, i; st, pT).

Taking the limit k̃ to k∗, we obtain the desired inequality.
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This contradicts (55). So we obtain (54) by contradiction.
Case 2: V̂t,T(k, i; st, pT) = −∞. Then

Πt,T(st) = wt,T(st) = k = 0.

From the budget’s constraint for V̂n
t,T, we have

V̂n
t,T(0, i; st, pT, Πn,T) ≤ u

(
wn

t,T(s
t)l(st, it) + Πn

t,T(s
t)

pn,c
t,T(s

t)

)
+ β(i)Et

[
V̂n

t+1,T(k̄, i; st, pn,T, Πn,T)
]

.

Now,

lim
n→∞

wn
t,T(s

t) = wt,T(st) = 0

lim
n→∞

Πn
t,T(s

t) = Πt,T(st) = 0,

and pn,c
t,T(s

t) > εt > 0, and u(0) = −∞. Therefore,

lim
n→∞

u

(
wn

t,T(s
t)l(st, it) + Πn

t,T(s
t)

pn,c
t,T(s

t)

)
= −∞.

In addition, V̂n
t+1,T(k̄, i; st, pn,T, Πn,T) is finite. So

lim sup
n→∞

V̂n
t,T(0, i; st, pT, Πn,T) = −∞ = V̂t,T(k, i; st, pT).

We have shown that, in either case, we obtain (54). Combining this inequality, with
(53), we finally get the desired limit

lim
n→∞

V̂n
t,T(k, i; st, pn,T, Πn,T) = V̂t,T(k, i; st, pT, ΠT).

Given k ∈
[
0, k̄
]
, we also show by contradiction that

lim
n→∞

k̂n
t,T(k, i; st, pn,T, Πn,T) = k̂t,T(k, i; st, pT, ΠT).

Assume to the contrary. Then, there exists a subsequence {nm} such that

k
′nm = k̂n

t,T(k, i; st, pn,T, Πn,T)→ k∗

for some k∗ ∈
[
0, k̄
]

and k∗ 6= k̂t,T(k, i; st, pT, ΠT). Let cnm be defined such that the budget
constraint, (56) holds with equality. Taking, further subsequence if necessary, we can
assume that cnm → c∗ for some c∗. As shown above (c∗, k∗) must satisfy the budget
constraint at pT, ΠT, and

V̂t,T

(
k, i; st, pT, ΠT

)
= lim

m→∞
V̂nm

t,T (k, i; st, pT, Πn,T) = u(c∗)+ β(i)Et

[
V̂t+1,T(k∗, i; st, pT, ΠT)

]
.

Therefore, k∗ = k̂t,T(k, i; st, pT, ΠT) (by Lemma 7 the maximizer is unique). This is a
contradiction.

So we have established the pointwise convergence of k̂n
t,T to k̂t,T. Because k̂t,T and k̂n

t,T
are increasing and continuous (by Lemma 7), the convergence is uniform.

Lemma 10. Θ, g defined in Theorem 1 satisfy:
1. Θ is sequentially compact.
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2. g is a closed-valued correspondence.

Proof. Proof of Part 1: We endow the space of increasing function with pointwise conver-
gence topology and we endow the space of V function with the sup norm topology.
MF denote the space of monotone functions from

[
0, k̄
]

to
[
0, k̄
]
. We endow MF

with the topology of pointwise-convergence. Then, by Helly’s selection theorem,MF is
sequentially compact.21

BL1 denote the space of Lipschitz continuous function with the Lipschitz constant lV ,
defined in (61), and bounded below by V and bounded above by V. We endow BL1
with the topology of convergence in sup norm. Then, by Ascoli-Arzela theorem, BL1 is
sequentially compact.

Proof of Part 2: We need to show that g(s, µ) is closed for all s ∈ S and µ ∈ Ω. That is,

for any sequence
(

θn,
(
θn

s′
)

s′∈S

)∞

n=0
∈ g(s, µ) such that(

θn, (θn
s′)s′∈S

)∞
n=0 −→n→∞

(
θ, (θs′)s′∈S

)
then

(
θ, (θs′)s′∈S

)
∈ g(s, µ).

By the definition of convergence (topology) in different spaces, we have k̂n → k̂ (point-
wise convergence) and V̂n → V̂ and V̂+n

s′ → V̂ (convergence in sup norm).

First, since
(

θn,
(
θn

s′
)

s′∈S

)∞

n=0
∈ g(s, µ), we have

V̂n(k, i) ≥ u
(
(1− δ + rn)k + wnl(s, i)− k′

)
+ β(i) ∑

i′,s′
πss′,ii′V̂+n

s′ (k′, i′)

for each k′ ∈
[
0, k̄
]
. Taking the limit n→ ∞, we have

V̂(k, i) ≥ u
(
(1− δ + r)k + wl(s, i)− k′

)
+ β(i) ∑

i′,s′
πss′,ii′V̂+

s′ (k
′, i′)

for all k′ ∈ [0, k]. Therefore

V̂(k, i) ≥ max
k′∈[0,k̄]

u
(
(1− δ + r)k + wl(s, i)− k′

)
+ β(i) ∑

i′,s′
πss′,ii′V̂+

s′ (k
′, i′).

Now, since
(

θn,
(
θn

s′
)

s′∈S

)∞

n=0
∈ g(s, µ):

V̂n(k, i) = u
(
(1− δ + rn)k + wnl(s, i)− k̂n(k, i)

)
+ β(i) ∑

i′,s′
πss′,ii′V̂+n

s′ (k̂n(k, i), i′).

We show that
lim

n→∞
V̂+n

s′ (k̂n(k, i), i′) = V̂+
s′

(
k̂(k, i), i′

)
.

Indeed ∣∣∣V̂+n
s′ (k̂n(k, i), i′)− V̂+

s′

(
k̂(k, i), i′

)∣∣∣ ≤ ∣∣∣V̂+n
s′ (k̂n(k, i), i′)− V̂+n

s′ (k̂(k, i), i′)
∣∣∣

+
∣∣∣V̂+n

s′ (k̂(k, i), i′)− V̂+
s′

(
k̂(k, i), i′

)∣∣∣ .

21See Exercise 7.13 in Rudin (1976) for an elementary proof.
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The first term goes to zero because V̂+n
s′ is Lipschitz continuous and k̂n converges point-

wise to k̂ and the second term goes to 0 because of the pointwise convergence of V̂+
s′ to

V̂+
s′ .

Therefore

V̂(k, i) = u
(
(1− δ + r)k + wl(s, i)− k̂(k, i)

)
+ β(i) ∑

i′,s′
πss′,ii′V̂+

s′ (k̂(k, i), i′).

So
V̂(k, i) = max

k′∈[0,k̄]
u
(
(1− δ + r)k + wl(s, i)− k′

)
+ β(i) ∑

i′,s′
πss′,ii′V̂+

s′ (k
′, i′),

and k̂(k, i) is a maximizer.

Now we find bounds for the endogenous variables.

Lemma 11. There exist 0 < K < K0, 0 < r < r̄ and 0 < w < w̄, and V < V and lV , lk > 0,
such that in competitive equilibrium in the finite horizon economy, starting with an initial wealth
distribution µ0(k, i) and

K0 =
∫
[0,k̄]×I

dµ0(k, i)

we have, for all t ≤ T and st ∈ S t :
1. Kt,T(st) ≥ K
2. rt,T(st) ∈ [r, r̄] and wt,T(st) ∈ [w, w̄]
3. V̂t,T(k, i; st) ∈ [V, V̄]
4. 0 ≤ V̂′t,T(k, i; st) ≤ lV and 0 ≤ k̂′t,T(k, i; st) ≤ lk.22

Proof. By Assumption 6, there exists K < min
{

K0, L
2

}
such that:

1.There exists γ > 0, such that, for all K ≤ K,

F(s′, K, L(s′))
F(s, K, L(s))

< γ,

for all s, s′ ∈ S .
2. For all K ≤ K,

FK(s, K, L(s)) > max

1,

(
γ

2(2−δ)
α

)σ

β mins,s′ πss′

 (57)

for all s ∈ S .
We show that if for some t and st ∈ S t, Kt,T(st) ≥ K then Kt+1,T(st, s) ≥ K for all s ∈ S .
Assume to the contrary that Kt+1,T

(
st+1) < K. We will show that this leads to a

contradiction.
To simplify the exposition, we use the notation zt,T(k, i) as shorthand for zt,T(k, i; st),

where zt,T can be the value, policy, or pricing functions, V̂t,T or ĉt,T, k̂t,T or rt,T, wt,T. In a

22V̂ and k̂ might not be differentiable everywhere because of the borrowing constraint, 0 ≤ k′ ≤ k̄. In this
case we can use the concept of generalized derivatives and the associated Envelope Theorems in Milgrom
and Segal (2002).
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competitive equilibrium, Lt,T(st) = L(st) = ∑i∈I m(i, st)l(i, st), so we write Lt instead of
Lt,T.

From the first order condition, if k̂t,T(k, i) < k̄ then

u′(ĉt,T(i, k)) ≥ β(i)Et

[
(1− δ + FK(st+1, Kt+1,T, Lt+1))u′(ĉt+1,T(i, k̂t,T(i, k)))

]
.

Therefore, since Kt+1,T < K, FK(st+1, Kt+1,T, Lt+1) > FK(st+1, K, Lt+1) and the last inequal-
ity implies:

u′(ĉt,T(i, k)) ≥
{

min
s∈S

(1− δ + FK(K, L(s), s))
}

β(i)πstst+1 ∑
it+1

πstst+1,iit+1

πstst+1

u′
(

ĉt+1,T(k̂t,T(i, k), it+1)
)

≥
{

min
s∈S

(1− δ + FK(K, L(s), s))
}

βπstst+1u′
(

∑
it+1

πstst+1,iit+1

πstst+1

ĉt+1,T(k̂t,T(k, i), it+1)

)
where the last inequality comes from the fact that u′(c) = c−σ is strictly convex.

Consequently,({
min
s∈S

(1− δ + FK(s, K, L(s)))
}

βπstst+1

) 1
σ

≤
∑it+1

πstst+1,iit+1
πstst+1

ĉt+1,T(k̂t,T(k, i), it+1)

ĉt,T(k, it)
.

Therefore, using the basic result in footnote 19,({
min
s∈S

(1− δ + FK(K, L(s), s))
}

βπstst+1

) 1
σ

≤
∑it,it+1

πstst+1,it it+1
πstst+1

∫
k̂t,T<k̄ ĉt+1,T(k̂t+1,T(k, it+1), it+1)µt,T(dk, it)

∑it

∫
k̂t,T<k̄ ĉt,T(k, it)µt,T(dk, it)

(58)

Now, we show that this would lead to a contradiction.
Indeed, for k such that k̂t,T(k, i; st) = k̄ we have

ĉt,T + k̄− (1− δ)k
= rt,Tk + wt,Tl(st, i)
≤ FK(st, Kt,T, Lt)k̄ + FL(st, Kt,T, Lt)l̄.

or
ĉt,T ≤ (−δ + FK(st, Kt,T, Lt))k̄ + FL(st, Kt,T, Lt)l̄. (59)

In addition,
K > Kt+1,T ≥∑

i

∫
k̂t,T=k̄

k̂t,T(k, i)µt,T(dk, i)

Therefore
Kt+t,T

k̄
> ∑

i

∫
k̂t,T=k̄

µt,T(dk, i).
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Combining this inequality with (59), we obtain∫
[0,k̄]×I

ĉt,T(k, i)dµt,T(k, i)

< Kt+1,T(−δ + FK(st, Kt,T, Lt,T)) + Kt+1,TFL(st, Kt,T, Lt,T)
l̄
k̄

< Kt+1,T(−δ + FK(st, Kt,T, Lt,T)) + Kt+1,TFL(st, Kt,T, Lt,T)

< Kt,TFK(st, Kt,T, Lt,T)− δKt+1,T +
1
2

Lt,TFL(st, Kt,T, Lt,T)) (60)

where the second inequality comes from (5), which implies k̄ > l̄ and the last inequality
comes from Kt+1,T < K < Kt,T and K < L

2
Therefore,∫

[0,k̄]×I
ĉt,T(k, i)dµt,T(k, i)

=
∫
[0,k̄]×I

ĉt,T(k, i)dµt,T(k, i)−
∫
[0,k̄]×I ,k̂t,T=k̄

ĉt,T(k, i)dµt,T(k, i)

= Yt,T + (1− δ)Kt,T − Kt+1,T −
∫
[0,k̄]×I ,k̂t,T=k̄

ĉt,T(k, i)dµt,T(k, i)

= Kt,TFK(st, Kt,T, Lt,T) + Lt,TFL(st, Kt,T, Lt,T) + (1− δ)Kt,T − Kt+1,T

−
∫
[0,k̄]×I ,k̂t,T=k̄

ĉt,T(k, i)dµt,T(k, i).

Replacing the last item with (60), we have∫
[0,k̄]×I ,k̂t,T<k̄

ĉt,T(k, i)dµt,T(k, i) >
1
2

Lt,TFK(st, Kt,T, Lt,T) + (1− δ) (Kt,T − Kt+1,T)

> Lt,TFL(st, Kt,T, Lt,T).

Assumption 6 implies that

Lt,TFL(st, Kt,T, Lt,T) > αF(st, Kt,T, Lt,T) > αF(st, Kt+1,T, Lt,T).

In addition

∑
it

πstst+1,itit+1

πstst+1

∫
k̂t,T<k̄

ĉt+1,T(k̂t,T(k, it), it+1)µt,T(dk, it)

= ∑
it+1

∫
k<k̄

ĉt+1,T(k, it+1)µt+1,T(dk, it+1)

< ∑
it+1

∫ k̄

0
ĉt+1,T(it+1, k)µt+1,T(dk, it+1)

= Yt+1,T + (1− δ)Kt+1,T − Kt+2,T

< F(st+1, Kt+1,T, Lt+1) + (1− δ)Kt+1,T.
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Therefore (58) becomes({
min

s
(1− δ + FK(s, K, L(s)))

}
βπstst+1

) 1
σ

<
F(st+1, Kt+1,T, Lt+1) + (1− δ)Kt+1,T

α
2 F(st, Kt,T, Lt,T)

.

<
2F(st+1, Kt+1,T, Lt+1)

αF(st, Kt+1,T, Lt)

(
1 + (1− δ)

Kt+1,T

F(st+1, Kt+1,T, Lt+1)

)
≡ E .

Because
Kt+1,T

F(st+1, Kt+1,T, Lt+1)
<

1
FK(st+1, Kt+1, Lt+1)

<
1

FK(st+1, K, Lt+1)
< 1,

and by (57), we have

E <
F(st+1, Kt+1,T, Lt+1)

F(st, Kt+1,T, Lt,T)

2(2− δ)

α
< γ

2(2− δ)

α
.

However, this contradicts the definition of K, which satisfies (57). We obtain the desired
contradiction.

Therefore, by contradiction, Kt,T ≥ K for all t and st. Now, for each t and st, we have

FK(st, K̄, L(st)) ≤ rt,T = FK(st, Kt,T, Lt) ≤ FK(st, K, L(st)).

Hence rt,T ∈ [r, r̄], where

0 < r = min
s∈S

FK(s, K̄, L(s)) and r̄ = max
s∈S

FK(s, K, L(s)).

Similarly, there exist 0 < w < w̄, such that wt,T ∈ [w, w̄] for all t and st.
From the (22), for all k ∈

[
0, k̄
]
, i ∈ I , and t ≤ T and st ∈ S t, we have

1− (β̄)T−t+1

1− β
u
(
(1− δ + r̄)k̄ + w̄l̄

)
≥ V̂t,T(k, i) ≥

1− (β)T−t+1

1− β
u (wl) .

Let

V = sup
t,T:0≤t≤T

1− (β̄)T−t+1

1− β
u
(
(1− δ + r̄)k̄ + w̄l̄

)
and V = inf

t,T:0≤t≤T

1− (β)T−t+1

1− β
u (wl) .

Then
V ≤ V̂t,T(k, i; st) ≤ V

for all k ∈
[
0, k̄
]
, i ∈ I , and t ≤ T and st ∈ S t.

Now
V̂t,T(k, i) = u (ĉt,T(k, i)) + β(i)Et

[
V̂t+1,T(k′, i)

]
.

Therefore
u (ĉt,T(k, i)) > V − β̄ max{V, 0}.

Since limc→0 u(c) = −∞, there exists c > 0 such that

ĉt,T(k, i) > c

for all k ∈
[
0, k̄
]
, i ∈ I , and t ≤ T and st ∈ S t.
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From the envelope condition

V̂′t,T(k, i) =
(
1− δ + rt,T(st)

)
u′(ĉt,T (k, i)),

Therefore
V̂′t,T(k, i) ≤ (1− δ + r̄) u′(c) ≡ lV (61)

for all k ∈
[
0, k̄
]
, i ∈ I , and t ≤ T and st ∈ S t.

If k̂ = 0 or k̄ then k̂′ = 0. Now if k̂ ∈
(
0, k̄
)
, the first-order on k′ holds with equality

u′
(
(1− δ) + rt,T(st)k− k̂

)
= β(i)Et

[
V̂′t,+1T(k̂, i′)

]
.

Differentiate both sides with respect to , we obtain

u′′
((

1− δ + rt,T(st)
)

k− k̂
) (

1− δ + rt,T(st)− k̂′(k, i)
)
= β(i)Et

[
V̂′′t,+1T(k̂, i′)

]
k̂′(k, i) ≤ 0.

Therefore
k̂′(k, i) ≤ 1− δ + rt,T(st) ≤ 1− δ + r̄ = lk. (62)

C Relation to Miao (2006)

Consider the economy with a continuum of agents in Section 2. Let P̂ denote the set of
probability measures µ over [0, ∞)× I such that∫

R+×I
kdµ(k, i) ≤ K̄,

where K̄ is defined in (4) and
P̂∞ = ×∞

t=0P̂S
t
.

The existence proof in Miao (2006) relies on the fixed point of the following operator:

T : C
(
[0, ∞) , I ,S , P̂∞)→ C ([0, ∞) , I ,S , P̂∞)

define for each
µ̃ =

({
µt(st)

}
t≥0,st∈S t

)
∈ P̂∞

as

TV (k, i; s0, µ̃) = max
k′∈Γ(k,i,s,µ0)

u
(
(1 + r (s0, µ0)− δ) k + w(s0, µ0)l(i)− k′

)
+ β(i) ∑

s1∈S ,i′∈I
πs0s1;ii′V

(
k, i; s1,

{
µt+1(st+1)

}
t≥0

)
(63)

where
Γ (k, i, s, µ0) =

{
k′ : 0 ≤ k′ ≤ (1 + r (s0, µ0)− δ) k + w(s0, µ0)l(i)

}
.

Miao shows that operator T is a contraction mapping (as an application of the Black-
well Theorem). Therefore, T admits a unique fixed point V̂ and the corresponding policy
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function is
k̂ (k, i; s0, µ̃)

We define
Λµ̃ = ˜̃µ

where ˜̃µ0 = µ̃0 and

˜̃µt+1(st+1)
(

A, i′
)
= ∑

i∈I

πstst+1,ii′

πstst+1

µ̃t

(
k̂−1

(
A, i; st, {µτ(sτ)}τ≥t

))
,

for all A ∈ B(R+). The mapping Λ is continuous in P̂∞. Therefore by the Brouwer-
Schauder-Tychonoff Fixed Point Theorem, Λ admits a fixed point, which corresponds to
a sequentially competitive equilibrium.

However this proof does not directly apply to Krusell and Smith (1998)’s model in
which the production function satisfies the Inada condition at zero aggregate capital.
Most importantly because of the following two reasons.

First of all, because of the Inada condition on the production function, the operator T
is not well-defined when µ0 = D(0), where D(x) is the Dirac mass at x because

r(s0,D(0)) = +∞.

Therefore V must be defined over P̂∞
∗ where P∗ = P̂\D(0).

However, the following proposition shows that Λ does not preserve P̂∞
∗ , i.e., there

exists µ̃ ∈ P̂∞
∗ such that, Λµ̃ /∈ P̂∞

∗ . The intuition is that if aggregate capital in µ̃ is very
high, the implied marginal rate of return on capital (interest rate) is very low. Together
with a sufficiently low discount factor, the agents will not want to save, leading to zero
aggregate capital in ˜̃µ.23 The following proposition formalizes this intuition.

Proposition 4. Assume that β(i) = β for all i ∈ I and let β ∈ (0, 1) sufficiently small such that

u′
(
l̄FL(s, K̄, L(s))

)
> βu′

(
lFL(s′, K̄, L(s′))

)
(64)

for all s, s′ ∈ S . Then there exists K∗ such that, for all K ≤ K∗, and

µ̃ =
(
D (K) , {D (K̄)}t>0,st∈S t

)
we have

Λµ̃ =
(
D(K), {D(0)}t>0,st∈S t

)
/∈ P̂∞

∗ .

Proof. Because limc↓0 u′(c) = +∞ and limK↓0 F(s0, K, L(s0))− δK = 0, there exists K∗ such
that for all K ≤ K∗, we have

u′ (F(s0, K, L(s0))− δK) ≥ βu′
(
lFL(s′, K̄, L(s′))

)
(65)

for all K ≤ K∗. Let µ̃ be defined above. Using the agents’ Euler equation, we have, at
k = K, the solution to (63) involves:

kt = 0 for all t > 0. (66)

23The discount factor has to be sufficiently low to dominate the precautionary saving motive coming
from uncertain labor income.
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Indeed, we just have to verify that:

u′ (l(it)FL(st, K̄, L(st))) ≥ βEt
[
(1− δ + FK (st+1, K̄, L(st+1))) u′ (l(it+1)FL(st+1, K̄, L(st+1)))

]
(67)

for all st, st+1 ∈ S and it, it+1 ∈ I and:

u′ (F(s0, K, L(s0))− (1− δ)K) ≥ βE0
[
(1− δ + FK (s1, K̄, L(s1))) u′ (l(i1)FL(s1, K̄, L(s1)))

]
.

(68)
Because for all s ∈ S

F (s, K̄, L(s))− δK̄ < 0
we have

FK (s, K̄, L(s)) < δ

or
1− δ + FK (s1, K̄, L(s1)) < 1.

So (67) and (68) follow directly from (64) and (65).
From (66), we obtain

Λµ̃ =
(
D(K), {D(0)}t>0,st∈S t

)
.

Second of all, P̂∞
∗ , endowed with the product topology (of weak* topology in P̂∗) is

not a a compact set. Therefore one cannot apply the Brouwer-Schauder-Tychonoff Fixed
Point Theorem for continuous functions defined on this set.

In the present paper, I follow a different route to establish the existence of a competi-
tive equilibrium by taking the limit of finite horizon economies as in Appendix B. I derive
a lower bound on aggregate capital using the agents’ Euler equation, hence indirectly rule
out D(0). Another way to put it is that D(0) implies an infinite marginal rate of return r
on capital but in Lemma 4, by restricting prices on ∆ε, we impose an upper bound on r. I
show that this bound does not bind in equilibrium.

D Finite Agents Economy

In this Appendix, I present the finite agent version of the Krusell and Smith (1998)’s
model. The proof for the existence of a generalized recursive equilibrium in this model is
similar but simpler than the one for the economy with a continuum of agents in Section
2.

D.1 Infinite-Horizon Economy

The Environment Consider an endowment, a single consumption (final) good econ-
omy in infinite horizon. Time runs from t = 0 to ∞. The economy is populated by H
representative, infinitely-lived agents (households) indexed by:

h ∈ H = {1, 2, . . . , H}
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Each representative agent represents a continuum of measure 1
H of identical agents. The

preferences over the streams of consumption of agent h is given by

U
({

ch
t (s

t)
}

t≥0,st∈S t

)
= E0

[
∞

∑
t=0

(
Πt

t′=0βh(st′)
)

u(ch
t )

]
(69)

where

u(c) = lim
ν→σ

c1−ν − 1
1− ν

and the discount factor βh
t depends on the aggregate state st. We require σ ≥ 1 so that in

equilibrium, consumption is bounded from below.
In each period t, there are S (finite) possible exogenous states (shocks)

s ∈ S = {1, 2, . . . , S} .

The shocks capture both idiosyncratic uncertainties (or more precisely household level
uncertainties) and aggregate uncertainties. For example, state s can be a vector:

s = (A, i1, ..., iH) ,

where A is the aggregate productivity and ih’s are idiosyncratic shocks capturing agents’
labor productivity and/or discount rate. As pointed out in Den Haan (2001), one caveat
with a finite number of agents is that each idiosyncratic shock is by construction an ag-
gregate shock because it changes the aggregates, for example, aggregate labor supply
when ih determines idiosyncratic labor supply. However, when the number of agents is
very large, the effects of each idiosyncratic shock on the aggregates become negligible. In
the limit with a continuum of agents considered in the next section, by the law of large
numbers, an idiosyncratic shock does not have direct aggregate effects.

The exogenous shock follows a first-order Markov process with the transition proba-
bilities π (s, s′). Let st denote the history of realizations of shocks up to time t:

st = (s0, s1, . . . , st) ∈ S t.

At time t, state st determines the agents’ endowments, lh(st) > 0 units of labor for
h ∈ H. We assume that, there exist L, L̄ > 0 such that:

L ≤ 1
H ∑

h∈H
lh(st) ≤ L̄

for all s ∈ S . State st also determines the agents’ discount factor, βh(st). In addition, there
exist 0 < β, β̄ < 1 such that:

β < βh(st) < β̄.
In each state s, there is a representative firm that produces the final output from capital

and labor using an aggregate production function that employs capital and labor as input:

Y = F(s, K, L).

The aggregate state determines the productivity of the aggregate production function
through the first argument. We assume that the production function F satisfies Assump-
tions 3, 4, and 5 in Section 2.
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Market Arrangements In each history st, there are rental markets for capital and labor
market. Agents of type h rent out their capital to the representative firm at competitive
rental rate rt(st) and supply their labor endowment inelastically to the representative firm
at competitive wage rate wt(st).

We assume that markets are incomplete inter-temporally, i.e., the agents can only hold
capital to insure against idiosyncratic and aggregate shocks. Therefore they face the se-
quential budget constraints:

ch
t (s

t) + kh
t+1(s

t)− (1− δ)kh
t (s

t−1) ≤ rt(st)kh
t (s

t−1) + wt(st)lh(st) (70)

and the borrowing constraints:
kh

t+1(s
t) ≥ 0. (71)

Agent h solves

max
ch,kh
U
({

ch
t (s

t)
}

t,st

)
(72)

subject to (70) and (71).
The representative firm in history st maximizes profit:

Πt(st) = max
Yt,Kt,Lt≥0

Yt − rtKt − wtLt

subject to
Yt ≤ F(st, Kt, Lt).

Since F has constant returns to scale, in equilibrium, we must have Πt(st) = 0 and

Yt = F(st, Kt, Lt) and rt = FK(st, Kt, Lt) and wt = FL(st, Kt, Lt). (73)

The definition of a SCE in this environment is standard.

Definition 5. A SCE given an initial distribution of capital holdings
{

kh
0
}

h∈H consists of

an allocation
({

ch
t , kh

t+1
}

t,st

)
h∈H

and {Kt, Lt}t,st and prices {rt, wt}t,st (rt, wt > 0) such
that:

1. For each agent h ∈ H,
{

ch
t , kh

t+1
}

t,st maximizes the intertemporal expected utility
(69) subject to the sequential budget constraints, (70) and borrowing constraints, (71).

2. In each history st, {Yt, Kt, Lt} solves the representative firm’s profit maximization
problem, i.e., (73) is satisfied.

3. Markets for capital, labor, and final good clear in each history st:

1
H ∑

h∈H
kh

t (s
t) = Kt(st)

and
1
H ∑

h∈H
lh(st) = Lt(st)

and
1
H ∑

h∈H

(
ch

t (s
t) + kh

t+1(s
t)− (1− δ)kh

t (s
t−1)

)
= Yt(st).

Let Ω denote a set of wealth distributions, or equivalently of the distributions of capi-
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tal holdings, and is a compact subset of RH
+ :

Ω =
{(

kh
t

)
h∈H

}
⊂ RH

+ .

Following Krusell and Smith (1998), we define a generalized recursive equilibrium as
following.

Definition 6. A GRE is a policy correspondence and a transition correspondence:

Q : S ×Ω ⇒ R3H+2
+

and
T : S ×Ω ⇒ Ω

and c > 0 such that for all s ∈ S and
{

kh}
h∈H ∈ Ω and

({
ch, kh

+, vh}
h∈H , r, w

)
∈

Q
(

s,
{

kh}
h∈H

)
, we have ch ≥ c and there exists({

ch
+(s
′), kh

++(s
′), vh

+(s
′)
}

h∈H
, r+(s′), w+(s′)

)
s′∈S

that satisfies the following properties:
1.
{

kh
+

}
h∈H ∈ T

(
s,
{

kh}
h∈H

)
2.
({

ch
+, kh

++, vh
+

}
h∈H , r+, w+

)
∈ Q

(
s′,
{

kh
+

}
h∈H

)
3. (Market clearing) 1

H ∑h∈H ch + 1
H ∑h∈H kh

+ = F(s, K, L) + (1− δ)K where

K =
1
H ∑

h∈H
kh > 0 and L =

1
H ∑

h∈H
lh(s) > 0.

4. (Firms’ maximization) r = FK(s, K, L) > 0 and w = FL(s, K, L) > 0.
5. (Agents’ maximization) For each h ∈ H

u′(ch) ≥ βh(s) ∑
s′∈S

πss′
(
1− δ + r+(s′)

)
u′(ch

+(s
′)) (74)

with equality if kh
+ > 0 and

ch + kh
+ = (1− δ + r)kh + wlh (75)

and
vh = u(ch) + βh(s) ∑

s′∈S
πss′vh

+(s
′). (76)

A recursive equilibrium is a generalized recursive equilibrium in Definition 6 with the
correspondences Q, T being single-valued.

The following lemma shows the connection between a generalized recursive equilib-
rium and competitive equilibrium.

Lemma 12. A sequence of allocations and prices generated by a GRE forms a SCE.

Proof. Appendix D.2.

To show the existence of a GRE, we need the following properties on the production
function.
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Assumption 7. There exists K∗ such that for any 0 < K < K∗ and L ≤ L ≤ L̄, and s, s′ ∈ S :(
β min

s′′∈S
(1− δ + FK(s′′, K, L))

) 1
σ

>
F(s′, K, L) + (1− δ)K

F(s, K, L̄)− δK
.

This assumption requires that the marginal rate of return on capital is very high when
capital is low. Together with the agents’ Euler equation, it implies a lower bound on
aggregate capital in any competitive equilibrium.

It is easy to verify that the last two assumptions hold for the Cobb-Douglas production
function in (2) since FK(s′′, K, L)→ ∞ as K → 0 and F(s′,K,L)

F(s,K,L) is bounded above as K → 0.
Armed with the assumptions above, we arrive at the first existence result.

Theorem 3. Assume that Assumptions 3-5, and 7 hold. Given any initial distribution of capital,
1
H ∑h∈H kh

0 = K0 > 0, there exist 0 < K < K0 < K̄ such that a GRE exists with Ω ={(
kh)

h∈H ∈ RH
+ : K ≤ 1

H ∑h∈H kh ≤ K̄
}

.

Proof. We choose K̄ sufficiently large:

K̄ > max
{

K0, K̂, max
s∈S

max
0≤K≤K̂

(F(s, K, L̄) + (1− δ)K) , 2L̄
}

, (77)

where K̂ is defined in Assumption 4, and K sufficiently small:

K < min {K0, K∗} , (78)

where K∗ is defined in Assumption 7.
The proofs follow closely the steps in Cao (2010). I first show that a SCE exists for any

finite horizon economy. In addition, the equilibrium variables in a finite horizon economy
always lie in a compact set. Then I take the limit of the horizon to infinity and construct
appropriate correspondences to show the existence of a GRE.

However, Cao (2010) assumes that each agent receives an strictly positive amount of
final good endowment in every period and history of shocks. In this paper, we relax this
assumption. We only require that each agent receives an strictly positive amount of labor
endowment in every period and history of shocks. We show that aggregate capital is
always bounded from below:

Kt,T(st) ≥ K
for all t and st, where Kt,T(st) is the aggregate capital at time t and in history st in the
T-period economy. Therefore wage rate is bounded from below:

wt,T(st) = FL(st, Kt,T(st), Lt,T(st)) ≥ w

for some w > 0. Together with a strictly positive labor endowment, the lower bound on
wage rate implies a strictly positive labor income, which plays a similar role to a strictly
positive final good endowment in Cao (2010).

To show that aggregate capital is bounded from below, we use the agents’ Euler equa-
tion, (74):

u′(ch
t ) ≥ βh

t Et

[
(1− δ + rt+1) u′(ch

t+1)
]

.
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This equation implies that if Kt+1 is too small, the rate of return on capital rT+1 is every
high, driving up saving from time t, and in turn, increasing Kt+1. Assumption 7 then
leads to a contradiction.

The details of the proof are given in Appendix D.2.

Generalized Recursive Equilibrium and Recursive Equilibrium As discussed in Sec-
tion 2, in general, we cannot always select a recursive equilibrium from a GRE. Therefore,
we would need additional conditions to guarantee the existence of a recursive equilib-
rium. The following result provides such a sufficient condition for when a GRE gives rise
to a recursive equilibrium.

Corollary 1. Assume that the conditions in Theorem 3 are satisfied. We have:
1. Starting from any wealth distribution

{
kh

0
}

h∈H ∈ RH
+ and exogenous state s0 ∈ S , there

exists a SCE.
2. In addition if the SCE is unique for every initial wealth distribution and exogenous state,

there exists a recursive equilibrium.

Proof. 1. By Lemma 12, starting from any distribution of capital holdings
{

kh
0
}

h∈H and
aggregate state s, the sequences of allocation and prices generated by a GRE is a SCE.
Theorem 3 guarantees the existence of a GRE. Hence, a SCE exists.

2. Because starting from each s ∈ S and
{

kh}
h∈H ∈ Ω, there exists no more than one

SCE, there exists a unique element({
ch, kh

+, vh
}

h∈H
, r, w

)
∈ Q

(
st,
{

kh
}

h∈H

)
that satisfies Conditions 1.-5. in Definition 6. LetQ0 denote the mapping from

(
s,
{

kh}
h∈H

)
to this element, and T 0

(
s,
{

kh}
h∈H

)
=
{

kh
+

}
h∈H. Then

(
Q0, T 0) forms a recursive equi-

librium.

A GRE also gives rise to a recursive equilibrium if we allow for more (endogenous)
state variables in addition to the agents’ capital holdings. This point is emphasized more
generally in Duffie et al. (1994).

Corollary 2 (Recursive Equilibrium with Extended State Variables). Given the set of distri-
butions Ω and the correspondence Q in Definition 6 and Theorem 3, let

Ξ =

{(
s,
{

kh
}

,
{

ch, vh
})
∈ S ×Ω×R2H

∣∣∣∣ ({ch, kh
+, vh} , r, w

)
∈ Q

(
st,
{

kh})
for some

(
kh
+

)
and r, w > 0

}
where

{
xh} is a short-cut for

{
xh}

h∈H.
A recursive equilibrium with an extended state variable can be constructed over Ξ as a mapping

from from ξ =
(
s,
{

kh} ,
{

ch, vh}) to
a. a current capital choices and values

{
kh
+

}
, and current factor prices r, w ;

b. next period capital holdings and consumption
(
s′,
{

kh
+

}
,
{

ch
+, vh

+

})
s′∈S such that

ξ+s′ =
(

s′,
{

kh
+

}
,
{

ch
+, vh

+

})
∈ Ξ for all s′ ∈ S ,
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and Conditions 3.− 5. in Definition 2 are satisfied.
We notice that from the firms’ maximization problem (Condition 4), r and w are pinned down

by the current states s and K = 1
H ∑h kh. Therefore, from the agents’ budget constraint, (75), ch

pins down kh
+. Consequently, the values of

{
ch, vh} uniquely select the element in Q(s,

{
kh})

and T (s,
{

kh}), i.e. , for any ξ =
(
s,
{

kh} ,
{

ch, vh}) ∈ Ξ there exists a unique tuple
(
kh
+

)
, r, w

such that
({

ch, kh
+, vh} , r, w

)
∈ Q

(
st,
{

kh}). The selection gives rise to a recursive equilibrium
in the extended state space.

In the following section, we extends the analysis above in this environment with a
finite number of (representative) agents to the environment with a continuum of agents.

D.2 Finite-Horizon Economy and Proofs

To prove Theorem 3, first we show the existence of a SCE in Lemma 13. The proof of this
lemma uses Kakutani’s Fixed Point Theorem.

We consider a finite horizon economy that lasts for T + 1 periods, t = 0, 1, ..., T. Given
prices {

rt,T(st), wt,T(st)
}

t≤T,st∈S t

the representative firm solves

max
Yt,Kt,Lt

Πt = Yt − rtKt − wtLt

s.t. Yt ≤ F(st, Kt, Lt). We allow for Πt potentially be different from 0, but we show that in
equilibrium Πt = 0. We also assume that the profits (or losses) are divided equally across
agents.

Given prices and the representative firm’s profit, agents solve

max
ch

t,T ,kh
t+1,T

E0

[
T

∑
t=0

(
Πt

t′=0βh(st)
)

u(ch
t,T)

]
(79)

s.t.
ch

t,T + kh
t+1,T ≤ (1− δ)kh

t,T + rt,Tkh
t,T + wt,Tlh

t +
1
H

Πt

and
ch

t,T, kh
t+1,T ≥ 0.

A SCE is defined similarly as in Definition 5. Lemma 13 show that a SCE exists.
Lemma 14 shows that

c ≤ ch
t,T ≤ c̄ 0 ≤ kh

t,T ≤ k̄ v ≤ vh
t,T ≤ v̄

K ≤ Kt ≤ K̄ r ≤ rt,T ≤ r̄ w ≤ wt,T ≤ w̄

with the bounds appropriately defined.

Lemma 13. Given an initial distribution of capital holding
{

kh
0
}

h∈H such that

K0 =
1
H ∑

h∈H
kh

0 > 0,
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a SCE exists in the finite horizon economy.

Proof. The proof uses Kakutani’s Fixed Point Theorem as in Cao (2010), which builds
upon Debreu (1959).

To simplify the proof, we switch from choosing the final good as numeraire to the
following normalization:

pc
t,T(s

t) + wt,T(st) + rt,T(st) = 1.

The sequential budget constraint of the consumers become:

pc
t,T(c

h
t,T + kh

t+1,T − (1− δ)kh
t,T) ≤ rt,Tkh

t,T + wt,Tlh
t +

1
H

Πt.

The objective function of the representative firms

Πt,T = pc
t,TYt,T − rt,TKt,T − wt,T Lt,T. (80)

Given a sequence ε̃ = {εt}T
t=0 such that εt > 0 for t = 0, 1, ..., T, we impose an additional

restriction on the set of normalized prices:

pc
t,T(s

t) ≥ εt > 0. (81)

This restriction effectively puts an upper bound on marginal rate of returns on capital:

rt,T

pc
t,T
≤ 1− εt

εt

therefore a lower bound on aggregate capital.
For ε > 0, let ∆ε denote the subset of R3

+:

∆ε =
{
(pc, w, r) ∈ R3

+ : pc + w + r = 1 and pc ≥ ε > 0
}

. (82)

For each history st , given our normalization and the additional restriction (81):(
pc

t,T(s
t), wt,T(st), rt,T(st)

)
∈ ∆εt .

We also denote

∆ΣT

ε̃ =
{(

pc
t,T, rt,T, wt,T

)
t,st :

(
pc

t,T, rt,T, wt,T
)
∈ ∆εt

}
.

Given the prices, the representative firm maximizes (80) subject to

0 ≤ Yt,T, Kt,T, Lt,T and Yt,T ≤ F(st, Kt, Lt).

To ensure the compactness of the maximization problem, we impose additional restric-
tions:

Kt,T ≤ 2K̄ and Lt,T ≤ 2L̄,
for all t and st, where K̄ is defined in (4).

Similarly, each consumers maximize (79) subject to

pc
t,Tch

t,T + pc
t,T

(
kh

t+1,T − (1− δ)kh
t,T

)
≤ rt,Tkh

t,T + wt,Tlh
t +

1
H

Πt,T (83)

and
0 ≤ ch

t,T, kh
t+1,T
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for all t and st.
Because the representative firms’ choices are restricted on a compact set. Their profits

Πt are bounded above:
Πt,T(st) < Π̄

for all t, st. Given the initial distribution of capital holding, the budget constraints (83)
and the exogenous lower bound on pc

t,T, (81), it is easy to show that there exist ĉ, k̂ > 0
such that

ch
t,T < ĉ and kh

t+1,T < k̂

for all h, t, st.
Let ψx denote the correspondence that maps each set of prices{(

pt,T(st), rt,T(st), wt,T(st)
)}

sT∈ΣT

to the excess demand in each market in each history:

ψx :∆ΣT

ε̃ ⇒R3‖ΣT‖

pT ∈ ∆ΣT

ε̃ 7→xT = (excess demands)

The component of the excess demand in each market corresponds to the component of
the price system in that market:

Consumption:xc
t,T(s

t) =
1
H ∑

h∈H

(
ch

t,T(s
t) + kh

t+1,T(s
t)− (1− δ)kh

t (s
t−1)

)
−Yt,T(st)

Capital:xk
t,T(s

t) = Kt,T(st)− 1
H ∑

h
kh

t,T(s
t−1)

Labor: xl
t,T(s

t) = Lt,T(st)− L(st).

It is standard to show that ψx is upper hemi-continuous and compact, convex-valued.24

Given that each individual choices ch
t,T, kh

t+1,T are bounded, ψx is bounded by a closed

cube Kx ⊂ RΣT
. For example,

−k̂ ≤ xk
t,T(s

t) ≤ 2K̄

for all t, st.
Consider the following correspondence:

Ψ : ∆ΣT

ε̃ ×Kx ⇒∆ΣT

ε̃ ×Kx{
pT ∈ ∆ΣT

ε̃ , xT ∈ Kx

}
7→
{

arg max
p̃∈∆ΣT

ε̃

p̃ · xT

}
× ψx(pT).

It is also standard to show that Ψ is a upper hemi-continuous, non-empty, compact,
and convex valued correspondence. Kakutani’s Fixed Point Theorem then guarantees
that Ψ has a fixed point

(
p̄T, x̄T). By choosing ε̃ appropriately, we can show that

(
p̄T, x̄T)

corresponds to a competitive equilibrium. The proof is similar to the one in Lemma 5
and Lemma 6 below so we omit the details here. For example, ε̃ and {Kt}

T
t=0 are chosen

24The additional restriction (81) is crucial for the upper hemi-continuity of ψx. Without the restriction ψx
is not upper hemi-continuous.
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recursively using Assumption 5 and the agents’ Euler equation (84):
1. ε0 and K0 are chosen as in Lemma 6.
2. Given Kt−1, εt is chosen sufficiently small such that, for any K such that

FK(s, K, L) ≥
1− εt

(
1 + max0≤K≤2K̄ FL(s, K, L)

)
εt

,

for some L ∈ [0, 2L̄] we have(
πs−s

(
(1− δ) εt + 1− εt

(
1 + max

0≤K̃≤2K̄
FL(s, K̃, L

))) 1
σ

>
F(s, K, L̄) + (1− δ)K

F(s−, Kt−1, L) + (1− δ)Kt−1 − K
.

for all s, s− ∈ S .
Kt is chosen such that for all s, s− ∈ S , and Kt ≤ Kt:

(πs−s (1− δ) ε)
1
σ >

F(s, K, L̄) + (1− δ)K
F(s−, Kt−1, L) + (1− δ)Kt−1 − K

.

Lemma 14. Consider a SCE with the initial aggregate capital K0 > 0 and let K, K̄ be defined as
in (78) and (4). Then for all t ∈ {0, ..., T} and st ∈ S t, we have K ≤ Kt,T(st) ≤ K̄ and, for all
h ∈ H:

0 ≤ ch
t,T, kh

t,T ≤ H max
s∈S
{F(s, K̄, L(s)) + (1− δ)K̄} = c̄ = k̄,

and
r = min

s∈S
min

L≤L≤L̄
FK(s, K̄, L(s)) ≤ rt,T ≤ r̄ = max

s∈S
max

L≤L≤L̄
FK(s, K, L(s))

and
w = min

s∈S
min

K≤K≤K̄
FL(s, K, L̄) ≤ wt,T ≤ w̄ = max

s∈S
max

K≤K≤K̄
FL(s, K, L).

In addition, there exists c > 0 such that ch
t,T ≥ c for all t and st and h ∈ H.

Proof. First we show by induction that Kt,T(st−1) ≤ K̄ for all t and st. At t = 0, this
property is satisfied by the definition of K̄. Assume that the property holds for t, and all
st ∈ S t, we show that it holds for t + 1 and st+1 ∈ S t+1.

Indeed, from the market clearing conditions, we have

Kt+1(st) =
1
H ∑

h∈H
kh

t+1,T(s
t)

= Yt,T(st) + (1− δ)Kt(st−1)− 1
H ∑

h∈H
ch

t,T(s
t)

≤ Yt,T(st) + (1− δ)Kt(st−1)

= F
(

st, Kt(st−1), L(st)
)
+ (1− δ)Kt(st−1).
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If Kt(st−1) ≥ K̂ then

Kt+1(st) = Kt(st−1) + F
(

st, Kt(st−1), L(st)
)
− δKt(st−1)

≤ Kt(st−1) ≤ K̄.

If Kt(st−1) ≤ K̂ then

Kt+1(st) = F
(

st, Kt(st−1), L(st)
)
+ (1− δ)Kt(st−1)

≤ max
s∈S

max
0≤K≤K̂

F(K, L(s), s) + (1− δ)K ≤ K̄

So in either case we have Kt+1(st) ≤ K̄.
Therefore, by induction, we have Kt,T(st−1) ≤ K̄ for all t and st.
Now we show by induction that

Kt,T(st−1) ≥ K

for all t and st.
By the definition of K, K0 ≥ K. Now assume that Kt(st−1) ≥ K for all st ∈ S t, we show

by contradiction that Kt+1(st) ≥ K. Assume to the contrary, i.e. Kt+1(st) < K for some
st ∈ S t.

From the first order condition of the agents, we have

u′(ch
t,T) ≥ βEt

[
(1− δ + FK(st+1, Kt+1, Lt+1))u′(ch

t+1,T)
]

(84)

for all h ∈ H. Therefore

u′(ch
t,T) ≥ min

st+1∈S
(1− δ + FK(st+1, K, Lt+1))βEt

[
u′(ch

t+1,T)
]

≥ min
st+1∈S

(1− δ + FK(st+1, K, Lt+1))βu′
(

Et[ch
t+1,T]

)
where the last inequality comes from the fact that u′(c) = c−σ is strictly convex.

Consequently,

Et

[
ch

t+1,T

]
ch

t,T
≥
(

β min
st+1∈S

(1− δ + FK(st+1, K, Lt+1))

) 1
σ

and25

Et

[
1
H ∑h∈H ch

t+1,T

]
1
H ∑h∈H ch

t,T
≥
(

β min
st+1∈S

(1− δ + FK(st+1, K, Lt+1))

) 1
σ

.

From the market clearing conditions, we have

1
H ∑

h∈H
ch

t+1,T ≤ F(st+1, Kt+1, Lt+1) + (1− δ)Kt+1 ≤ max
s∈S

F(s, K, L̄) + (1− δ)K

25We use the inequality that m ≤ aj
bj

for all j implies m ≤ ∑ aj
∑ bj

.
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and
1
H ∑

h∈H
ch

t,T = F(st, Kt, Lt) + (1− δ)Kt − Kt+1 ≥ F(st, K, L̄)− δK.

Therefore,
Et

[
1
H ∑h∈H ch

t+1,T

]
1
H ∑h∈H ch

t,T
≤ maxs∈S F(s, K, L̄) + (1− δ)K

F(st, K, L̄)− δK
.

So finally, we obtain

maxs∈S F(s, K, L̄) + (1− δ)K
F(st, K, L̄)− δK

≥
(

β min
st+1∈S

(1− δ + FK(st+1, K, Lt+1))

) 1
σ

.

However, this contradicts the inequality in Assumption 7. Therefore we must have Kt+1(st) ≥
K. So by contradiction, Kt(st−1) ≥ K for all t and st.

The other inequalities for ch
t , kh

t , rt, wt follow immediately.
Now we show that there exists c > 0 such that ch

t ≥ c for all t, st, and h. Indeed, from
the agents’ maximization problem, since starting from any history st, an agent can always
consumes her labor endowment, we have

u(ch
t (s

t)) + Et

[
∞

∑
t+1

t′

∏
t′′=t′

β(st′′)u(ch
t′)

]
≥ u(wl) + Et

[
∞

∑
t+1

t′

∏
t′′=t′

β(st′′)u(wl)

]

≥ 1
1− β̄

u(wl).

In addition, ch
t′ ≤ c̄ for all t′. Therefore

u(ch
t (s

t)) +
β

1− β
u(c̄) ≥ 1

1− β̄
u(wl).

So

ch
t (s

t) ≥ c = u−1

(
1

1− β̄
u(wl)−

β

1− β
u(c̄)

)
> 0.

Proof of Theorem 3. The steps of the proof are similar to the ones for Theorem 1 presented
in the main paper. With some abuse, we re-use several notations in the proof such as Θ, g
etc.

Given the bounds determined in Lemma 14, let Θ denote the set of((
ch, kh

+, vh
)

h∈H
, r, w

)
such that c ≤ ch ≤ c̄, 0 ≤ kh

+ ≤ k̄, v ≤ vh ≤ v̄, r ≤ r ≤ r̄, and w ≤ w ≤ w̄.
Let g : S × Ω ⇒ Θ × ΘS denote the following correspondence: for each s ∈ S ,

ω =
(
kh)

h∈H ∈ Ω, g(s, ω) is the set of θ =
((

ch, kh
+, vh)

h∈H , r, w
)
∈ Θ and (θs′)s′∈S ∈ ΘS
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with θs′ =
({

ch
+(s′), kh

++(s′), vh
+(s′)

}
h∈H , r+(s′), w+(s′)

)
s′∈S

such that:

1
H ∑

h∈H
ch +

1
H ∑

h∈H
kh
+ = F(s, K, L) + (1− δ)K

where K = 1
H ∑h∈H kh > 0 and L = 1

H ∑h∈H lh(s) > 0, and r = FK(s, K, L) > 0 and
w = FL(s, K, L) > 0. In addition, (13), (75), and (76) are satisfied.

It is easy to show that g is a closed-valued correspondence.
Consider the following mapping G from the set of correspondences V : S ×Ω ⇒ Θ ⊂

R3H+2 to itself as following. For each V , G(V) is the correspondence W such that, for
each s ∈ S and ω =

(
kh)

h∈H ∈ Ω, we have

W(s, ω) =

{
θ =

((
ch, kh

+, vh)
h∈H , r, w

)
∈ Θ : for each s′ ∈ S ,∃θs′ ∈ V

(
s′,
(
kh
+

)
h∈H

)
and

(
θ, (θs′)s′∈S

)
∈ g(s, ω)

}
From the definition of G, we have the following properties P1-P3:
P1. If V is compact in the sense that V(s, ω) is compact for all s ∈ S and ω ∈ Ω, then

W = G(V) is compact.
Indeed, assume {θm}∞

m=0 ∈ W(s, ω), and θm → θ =
((

ch, kh
+, vh)

h∈H , r, w
)

. Since Θ
is compact, θ ∈ Θ. To show that G(V) is compact, we need to show that θ ∈ W(s, ω).
By the definition of G, for each s′ ∈ S , ∃θm

s′ ∈ V
(

s′,
(
kh
+

)
h∈H

)
and

(
θm,
(
θm

s′
))
∈ g(s, ω).

Since V
(

s′,
(
kh
+

)
h∈H

)
is compact, we can extract a converging subsequence, θ

ml
s′ → θs′ for

some θs′ ∈ V
(

s′,
(
kh
+

)
h∈H

)
. Because g is a closed valued correspondence,

(
θ, (θs′)s′∈S

)
∈

g(s, ω), which implies θ ∈ W(s, ω).
P2. If V ⊂ V ′ in the sense that V(s, ω) ⊂ V ′(s, ω) for all s ∈ S and ω ∈ Ω then

G(V) ⊂ G(V ′).
P3. Let V0 denote the complete correspondence: V0(s, ω) = Θ for all s ∈ S and ω ∈ Ω.

Then G(V0) ⊂ V0.
Given V0, we construct the sequence of {Vn}∞

n=0 recursively using G: Vn+1 = G(Vn).
Then by P1, P2, and P3, we have Vn+1 ⊂ Vn and is non-empty, compact valued. Non-
empty-ness comes from the existence of competitive equilibrium in the n + 1-horizon
economy proved in Lemma 13.

Let V∗ be defined by
V∗(s, ω) = ∩∞

n=0Vn(s, ω).
Since V∗(s, ω) is the intersection of decreasing compact sets, V∗(s, ω) is compact and is
non-empty. We show that G(V∗) = V∗.

Indeed, by the definition of V∗, we also have V∗ ⊂ Vn, to G(V∗) ⊂ G(Vn) = Vn+1, so
G(V∗) ⊂ V∗.

Now, for each s ∈ S and ω ∈ Θ and θ =
({

ch, kh
+, vh}

h∈H , r, w
)
∈ V∗(s, ω). Since

V∗ ⊂ Vn, there exists θn
s′ ∈ V

n
(

s′,
(
kh
+

)
h∈H

)
and

(
θ,
(
θn

s′
)

s′∈S

)
∈ g(s, ω). By the com-

pactness of Θ, we can find a converging subsequence {nl}∞
l=0,

(
θ

nl
s′
)

s′∈S −→l→∞ (θs′)s′∈S .

By the compactness of Vnl , we have θs′ ∈ Vnl

(
s′,
(
kh
+

)
h∈H

)
and since g has closed graph,
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(
θ, (θs′)s′∈S

)
∈ g(s, ω). Moreover, Vn

(
s′,
(
kh
+

)
h∈H

)
is a decreasing sequence so θs′ ∈

∩∞
l=0Vnl

(
s′,
(
kh
+

)
h∈H

)
= V∗

(
s′,
(
kh
+

)
h∈H

)
. So by the definition of G, we have θ ∈ G(V∗).

Therefore V∗ ⊂ G(V∗).
Since G(V∗) ⊂ V∗ ⊂ G(V∗), it implies that G(V∗) = V∗.
Let Q = V∗. Since G(Q) = Q, for each s ∈ S and each ω =

(
kh)

h∈H ∈ Ω, θ =((
ch, kh

+, vh)
h∈H , r, w

)
∈ Q(s, ω), there exists θs′ ∈ Q

(
s′,
(
kh
+

)
h∈H

)
for each s′ ∈ S and(

θ, (θs′)s′∈S
)
∈ g(s, ω). We also define T as

T (s, ω) =
{(

kh
+

)
h∈S

:
((

ch, kh
+, vh

)
h∈H

, r, w
)
∈ Q(s, ω) for some

(
ch, vh

)
h∈H

and some r, w
}

.

It is immediate that (P , T ) defined as such forms a GRE for the economy with a finite
number of types.

Proof of Lemma 12. Consider sequences of allocation and prices generated by a GRE, start-
ing from s0 ∈ S and

{
kh

0
}

h∈H ∈ Ω. That is, sequences
{

ch
t (s

t), kh
t+1(s

t), vh
t (s

t)
}

t,st,h and{
rt(st), wt(st)

}
t,st such that for each t, st({

ch
t (s

t), kh
t+1(s

t), vh
t (s

t)
}

h∈H
, rt(st), wt(st)

)
∈ Q

(
st,
{

kh
t (s

t)
}

h∈H

)
,

and({
ch

t+1(s
t+1), kh

t+2(s
t+1), vh

t+1(s
t+1)

}
h∈H

, rt+1(st+1), wt(st+1)
)
∈ Q

(
st+1,

{
kh

t+1(s
t)
}

h∈H

)
,

and Conditions 3-4 in Definition 6 are satisfied (with the variable without subscript stands
for the variable at time t, the variables with subscript + stands for the variables at time t+
1 and the variables with subscript ++ stands for the variables at time t + 2, for example
ch stands for ch

t , ch
+ stands for ct+1 and ch

++ stands for ch
t+2, etc.).

The market clearing conditions are satisfied obviously. We just need to verify that
given

{
rt(st), wt(st)

}
, the allocation

{
ch

t (s
t), kh

t+1(s
t)
}

t,st solves agent h’s maximization

problem, (72). That is for any alternative allocation
{

c̃h
t (s

t), k̃h
t+1(s

t)
}

t,st that satisfies (70)
and (71), we have

E0

[
∞

∑
t=0

(
Πt−1

t′=0βh(st′)
)

u(ch
t )

]
≥ E0

[
∞

∑
t=0

(
Πt−1

t′=0βh(st′)
)

u(c̃h
t )

]
. (85)

The proof of this inequality follows closely Duffie et al. (1994). First, we show by induc-
tion that for all T ≥ 0:

E0

[
∞

∑
t=0

(
Πt−1

t′=0βh(st′)
)

u(ch
t )

]
≥ E0

[
T

∑
t=0

(
Πt−1

t′=0βh(st′)
)

u(c̃h
t )

]
+ E0

[
∞

∑
T+1

(
Πt−1

t′=0βh(st′)
)

u(ch
t )

]
+ E0

[(
ΠT−1

t′=0βh(st′)
)

u′(ch
T)
(

k̃h
T+1 − kh

T+1

)]
. (86)

For T = 0, inequality (86) is

u(ch
0) ≥ u(c̃h

0) + u′(ch
0)
(

k̃h
1 − kh

1

)
,
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which is true because
u(ch

0) ≥ u(c̃h
0) + u′(ch

0)
(

ch
0 − c̃h

0

)
,

from the concavity of u(.) and from

c̃h
0 + k̃h

1 ≤ (1− δ + r0)kh
0 = ch

0 + kh
1,

which implies ch
0 − c̃h

0 ≥ k̃h
1 − kh

1.
Now, assume that (86) holds for T, we need to show that it also holds for T + 1, i.e.

E0

[
∞

∑
t=0

(
Πt−1

t′=0βh(st′)
)

u(ch
t )

]
≥ E0

[
T+1

∑
t=0

(
Πt−1

t′=0βh(st′)
)

u(c̃h
t )

]
+ E0

[
∞

∑
T+2

(
Πt−1

t′=0βh(st′)
)

u(ch
t )

]
+ E0

[(
ΠT

t′=0βh(st′)
)

u′(ch
T+1)

(
k̃h

T+2 − kh
T+2

)]
. (87)

Given (86) holds for T, to show (87), we just need to show:

E0

[(
ΠT

t′=0βh(st′)
)

u(ch
T+1)

]
+ E0

[(
ΠT−1

t′=0βh(st′)
)

u′(ch
T)
(

k̃h
T+1 − kh

T+1

)]
≥ E0

[(
ΠT+1

t′=0βh(st′)
)

u(c̃h
T+1)

]
+ E0

[(
ΠT

t′=0βh(st′)
)

u′(ch
T+1)

(
k̃h

T+2 − kh
T+2

)]
.

Equivalently,

E0

[
βh(sT)u(ch

T+1)
]
+ E0

[
u′(ch

T)
(

k̃h
T+1 − kh

T+1

)]
≥ E0

[
βh(sT)u(c̃h

T+1)
]
+ E0

[
βh(sT)u′(ch

T+1)
(

k̃h
T+2 − kh

T+2

)]
. (88)

Because of Condition 5. in Definition 6,

u′(ch
T) = βh

T(sT)ET

[
(1− δ + rT+1) u′(ch

T+1)
]

,

if kh
T+1 > 0, and

u′(ch
T) ≥ βh

T(sT)ET

[
(1− δ + rT+1) u′(ch

T+1)
]

,

if kh
T+1 = 0, which implies k̃h

T+1 − kh
T+1 ≥ 0 . Therefore

E0

[
u′(ch

T)
(

k̃h
T+1 − kh

T+1

)]
≥ E0

[
βh

T(sT) (1− δ + rT+1) u′(ch
T+1)

(
k̃h

T+1 − kh
T+1

)]
.

From this inequality, we obtain (88) if

u(ch
T+1) + (1− δ + rT+1) u′(ch

T+1)
(

k̃h
T+1 − kh

T+1

)
≥ u(c̃h

T+1) + u′(ch
T+1)

(
k̃h

T+2 − kh
T+2

)
. (89)

Since

ch
T+1 + kh

T+2 = (1− δ + rT+1) kh
T+1

c̃h
T+1 + k̃h

T+2 ≤ (1− δ + rT+1) k̃h
T+1,
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we have
(1− δ + rT+1)

(
k̃h

T+1 − kh
T+1

)
≥ k̃h

T+2 − kh
T+2 + c̃h

T+1 − ch
T+1.

Plugging this into (89), we obtain the desired inequality if

u(ch
T+1) + u′(ch

T+1)
(

c̃h
T+1 − ch

T+1

)
≥ u(c̃h

T+1),

which is true because u(.) is concave.
Having established (86), we are ready to show (85). First we observe that, because Ω

is compact, there exists k̄ > 0 such that kh
t (s

t) ≤ k̄ for all h, t, st. Now, from (86), taking
T → ∞ and noticing that

E0

[
∞

∑
T+1

(
Πt−1

t′=0βh(st′)
)

u(ch
t )

]
≥ β̄T+1 1

1− β̄
u(c)→T→∞ 0

and

E0

[(
ΠT−1

t′=0βh(st′)
)

u′(ch
T)
(

k̃h
T+1 − kh

T+1

)]
≥ −E0

[(
ΠT−1

t′=0βh(st′)
)

u′(ch
T)k

h
T+1

]
≥ −β̄Tu′(c)k̄ −→T→∞ 0,

we obtain (85).

E Numerical Algorithm and Examples

The existence proofs in Section 2 and Appendix D also suggest an algorithm to compute
recursive equilibria, alternative to the one put forth in Krusell and Smith (1998), using the
equilibria in finite horizon economies. The next subsection presents the algorithm and
the one following presents two numerical examples for two-agent economies.

E.1 Numerical Algorithm

I propose an algorithm to compute the GRE as defined in Definition 6 for finite agent
economies, assuming that the equilibrium is indeed a recursive equilibrium. That is, we
seek to compute the functions (instead of correspondences)Q and T defined over S ×Ω.

Notice that Ω can be re-parametrized as:

Ω = [K, K̄]× ∆H =

{(
K,
(

ωh
)

h∈H

)
: K ≤ K ≤ K̄ and 0 ≤ ωh ≤ 1, ∑

h∈H
ωh = 1

}
,

where ωh
t =

kh
t

HKt
. We calculate recursively, for each T ≥ 0, the function ϕT from Ω,

the set of current wealth distributions, to current prices and allocations, and to future
wealth distributions. Function ϕT corresponds to the equilibrium mapping, for the (T +
1)−horizon economy presented in Appendix D.2, from the initial distribution of capital
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holdings and aggregate shock in period 0 to allocation and prices in the period. Indeed,

ϕT : S × [K, K̄]× ∆H ⇒ R4H+2
+{

s ∈ S , K ∈ [K, K̄] , ω ∈ ∆H
}
7→
{(

ch, kh
+, λh, vh

)
h∈H

, r, w
}

defined as follows.
1. For T = 0:

ϕ0 :
{

s ∈ S , K ∈ [K, K̄] , ω ∈ ∆H
}
7→
{(

ch, kh
+, λh, vh

)
h∈H

, r, w
}

where
r = FK(s, K, L(s)) and w = FL(s, K, L(s))

and for all h ∈ H
ch = (1− δ + r)ωhK + wlh(s) and vh = u(ch),

and
kh
+ = 0 and λh = 0.

2. For T > 0, assuming that we have calculated ϕT−1, ϕT is calculated as:

ϕT :
{

s ∈ S , K ∈ [K, K̄] , ω ∈ ∆H
}
7→
{(

ch, kh
+, λh, vh

)
h∈H

, r, w
}

such that, for each s′ ∈ S ,(
ch
+, kh

++, λh
+, vh

+

)
= ϕT−1

(
s′, K+,

(
ωh
+

)
h∈H

)
where

K+ =
1
H ∑

h∈H
kh
+

and for each h ∈ H:

ωh
+ =

kh
+

∑ kh
+

,

and Conditions 2.-5. in Definition 6 are satisfied:

A1. 1
H ∑h∈H ch + 1

H ∑h∈H kh
+ = F(s, K, L(s)) + (1− δ)K.

A2. r = FK(s, K, L(s)) > 0 and w = FL(s, K, L(s)) > 0

A3. For each h ∈ H
u′(ch) = βh(s) ∑

s′∈S
πss′

(
1− δ + r+(s′)

)
u′(ch

+(s
′)) + λh (90)

with λh ≥ 0 and
λhkh

+ = 0
and

ch + kh
+ = (1− δ + r)kh + wlh

and
vh = u(ch) + βh(s) ∑

s′∈S
πss′vh

+(s
′).
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Condition A3 is a reformulation of Condition 5 in Definition 6 using the multipliers λh’s
and the complementary-slackness condition. Notice also that for each

(
K,
(
ωh)

h∈H

)
∈

[K, K̄] × ∆H, the conditions in A2. and A3. gives us 4H + 2 equations for 4H + 2 un-
knowns (including λh’s). The market clearing, condition A1., is satisfied by summing up
the budget constraint of each agent.

Discretization and Approximation We discretize Ω using Ωd:

Ωd =
{

K = Kd
1 < Kd

2 < ... < Kd
N = K̄

}
×
{

ωd
m

}M

m=1
(91)

where ωd
m ∈ ∆H for m = 1, ..., M.

Let ϕd
T denote the discrete approximation of ϕT over S ×Ωd. For each s ∈ S and at

each
(
Kd

n, ωd
m
)
, we solve for

ϕd
T

(
s, Kd

n, ωd
m

)
=
(

ch, kh
+, λh, vh

)
such that Conditions A2 and A3 are satisfied. In Conditions A2 and A3, the future values
ĉh
+, v̂h

+ are computed using multi-dimensional cubic splines approximation:(
ch
+, vh

+, λh
+, kh

++

)
= ϕd

T−1

(
s′,

1
H ∑ kh

+,
kh
+

∑ kh
+

)
. (92)

Fixing a precision ν, the algorithm converges when∥∥∥ϕd
T − ϕd

T−1

∥∥∥
S×Ωd

≤ ν.

E.2 Numerical Results

We present two numerical examples in economies with two agents. When H = 2, we just
need to keep track of the wealth share of agent 1 because ω2 = 1−ω1. Therefore, in (91),{

ωd
m

}M

m=1
=
{

ω̃1
m

}M

m=1

where
0 = ω̃1

1 < ω̃1
2 < ... < ω̃1

M = 1.
In the first example, Subsection E.2.1, the agents differ in labor productivity but have the
same discount factor. In the second example, Subsection E.2.2, the agents have the same
labor productivity but differ in their discount factor.

E.2.1 Heterogeneous Income

There are two representative agents h ∈ {1, 2} in the economy of mass 1
2 each. The agents

share the same intertemporal expected utility

E0

[
∞

∑
t=0

βt log ch
t

]
.
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In each period, the exogenous aggregate state of the economy is a pair of states (s, i)
where s ∈ {b, g} and i ∈ {0, 1}. State s determines the aggregate productivity A(s) and
aggregate labor supply L(s). The aggregate production function is Cobb-Douglas, (2).

State i determines which agent is employed. If i = 0 then agent 1 is unemployed
and agent 2 is employed, and vice versa for i = 1.26 The employed agent has 2(1 −
υ)L(s) units of labor and the unemployed agent has 2υL(s) units of labor. υ stands for
unemployment transfers by the government and is set at 7%.

The parameters are taken from Krusell and Smith (1998, Section 2) in particular, the
discount rate and the production parameters are:

β = 0.99 δ = 0.025 α = 0.36.

The aggregate productivity and aggregate labor supply are:[
A(b) A(g)

]
=
[
0.99 1.01

]
and

[
L(b) L(g)

]
=
[
0.2944 0.3140

]
, (93)

with the transition matrix π = [πss′ii′ ], directly taken from Krusell and Smith (1998, Sec-
tion 2):27

π =


0.5250 0.3500 0.0312 0.0938
0.0389 0.8361 0.0021 0.1229
0.0938 0.0312 0.2917 0.5833
0.0091 0.1159 0.0243 0.8507


Figure 1 shows next period aggregate capital, K+ as a function of current period ag-

gregate capital, K, in state (b, 0), for two different values of ω: ω = 0 and ω = 1. The
figure shows that future aggregate capital depends on not only current aggregate capital
but also on current wealth share ω of agent 1.

Given the global nonlinear solution for ϕ∞, we can also simulate forward and carry
out a regression exercise as in Krusell and Smith (1998). From 10, 000-period simulation
(with the first 1000 periods dropped), we obtain the following regression results:

log K′ = 0.0438 + 0.9832 log K; R2 = 0.999223

in good times and

log K′ = 0.0167 + 0.9923 log K; R2 = 0.997372

in bad times. These regression results tell us that, in the simulated paths of the economy,
current aggregate capital seems to be a sufficient state variable to forecast future aggregate
capital, which Krusell and Smith call an “approximate aggregation” property. However,
Figure 1 tells us that this property does not hold globally.

As a comparison, we also solve the Krusell and Smith’s model, with the exact pa-
rameters above, but in which idiosyncratic shocks are truly idiosyncratic. We obtain the
following regression results:

log K′ = 0.0906 + 0.9631 log K; R2 = 0.999999

26This approximation of a fully idiosyncratic income process using a two agent income process is similar
to the approximation in Heaton and Lucas (1995).

27In the transition matrix, we use the convention {1, 2, 3, 4} correspond to {(b, 0) , (b, 1) , (g, 0) , (g, 1)}
respectively.
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Figure 1: Evolution of Aggregate Capital in Bad Times
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in good times

log K′ = 0.0807 + 0.9651 log K; R2 = 0.999999

and in bad times.
The approximate evolution of aggregate capital is not too different in the two-agent

economy compared to the Krusell and Smith’s economy. But we observe that the auto-
correlation coefficients for log aggregate capital are lower than those in the two-agent
economy. The R2 are also slightly higher than in the two-agent economy.

E.2.2 Heterogenous Betas

In this example, we assume that the agents face idiosyncratic shocks that determine their
discount rate. The discount factor can be low (β) or high (β̄), where:

β = 0.9858 and β̄ = 0.9930,

taken from Krusell and Smith (1998, Section 3). As in their paper, the transition from one
to the other is determined such that the average duration for individual β is 50 years,
which corresponds to agents’ lifetime. To simplify the exercise, we assume that the two
agents have the same labor productivity, which varies with the aggregate state, s. The
aggregate productivity and aggregate labor supply are given in (93). The evolution of
the aggregate state is the same as in the previous example. The other aggregate state i
determines the agents’ discount factor (i = 0 agent 1 has low discount factor and agent
2 has high discount factor and vice versa for i = 1). The evolution of aggregate state i is
independent of the evolution of aggregate state s.

Figure 2 shows next period aggregate capital, K+ as a function of current period ag-
gregate capital, K, in state (b, 0), for two different values of ω: ω = 0 and ω = 1. The
figure shows that future aggregate capital depends mostly on current aggregate capital
and does not vary visibly with the current wealth share ω of agent 1.

As in the previous example, from 10, 000-period simulation (with the first 1000 periods
dropped), we obtain the following regression results:

log K′ = 0.0916 + 0.9633 log K; R2 = 0.999999

in good times

log K′ = 0.0789 + 0.9662 log K; R2 = 0.999999

and in bad times. Because future aggregate capital depends mostly on current aggregate
capital, the fitness of the linear regressions are very high.

As in the previous example, these regression results are comparable to the ones in
Krusell and Smith (1998)’s model in which the discount rates are truly idiosyncratic:

log K′ = 0.0871 + 0.9662 log K; R2 = 0.999981

in good times and

log K′ = 0.0836 + 0.9670 log K; R2 = 0.999976

in bad times.
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Figure 2: Evolution of Aggregate Capital in Bad Times

E.3 Discussion of the Algorithm for Many Agents and for Continuum
of Agents

The discretization and approximation method laid out in Subsection E.1 applies to general
model in Section D with many agents. However, when the number of agents is larger
than 2, the algorithm suffers from the curse of dimensionality, i.e., it takes many points
to discretize Ω using Ωd (the number of points is approximately Ndim(Ω) where N is the
number of points used to discretize each dimension). There are two ways to get around
this problem.

First, notice that from Conditions A1-A3, in Subsection E.1, we just need to solve for(
ch)

h∈H as functions of the exogenous and endogenous states (s, K, ω) ∈ Ω. The idea is
to approximate numerically ch’s using some basis functions

{ξ1, ξ2, ..., ξm}
that is

ch (s, K, ω) =
m

∑
i=1

ĉh
i ξ(s, K, ω).

We can then solve for the approximation coefficients
(
ĉh

i
)h∈H

i=1,2,...,,m. The advantage of this
algorithm is that the number of basis functions can be significantly smaller than the num-
ber of points to discretize Ω and does not increase fast with the dimension of Ω. The ba-
sis functions can be polynomials as in Judd (1992) and Gaspar and Judd (1997). Second,
we can use Smolyak (1963)’s sparse-grid collocation method. The method only requires
knowing the value of ch’s at a few number of collocation points in Ω to approximate
the whole functions. A comprehensive exposition of the method and applications can be
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found in Maliar and Maliar (2014).
Using these ideas, the algorithm in Subsection E.1 can potentially be applied to the

model in Section 2 with a continuum of agents. However, there are two major difficul-
ties. First, the endogenous state space Ω of probability measures is infinite-dimensional.
Therefore, we need to approximate Ω with a finite-dimensional space. For example, one
can approximate Ω with the set of convex combinations of Dirac masses, i.e., for each
µ ∈ Ω we approximate µ by

µ ≈ ∑
i∈I

M

∑
j=1

µ̂i,jD(k j)

where 0 ≤ k1 < k2 < ... < kM ≤ k̄, and ∑i∈I ∑M
j=1 µ̂i,j = 1.28 Second, following Definition

2, for each µ ∈ Ω, we need to solve for the value and policy functions, V̂ and k̂ (in contrast
to the case with a finite number of agents, we just need to solve for a vector of current
consumptions and future capital holdings). In other words, we need to solve for the
value and policy functions that depend both on capital holding and wealth distribution,
V̂(k, i; s, µ) and k̂(k, i; s, µ). Having approximated Ω with a finite n−dimensional space, V̂
and k̂ become functions over (n + 1) dimensions. They can then be approximated using
basis functions or Smolyak’s sparse grid method.

While these are viable paths to implement the algorithm for many agents or for a
continuum of agents, they would require a significant amount of engineering and thus lie
outside the scope of the present paper.

28Approximating distributions using Dirac masses is similar the histogram technique used in Reiter
(2010) and Young (2010).
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