
Efficient Policy Learning

Susan Athey
athey@stanford.edu

Stefan Wager
swager@stanford.edu

Draft version October 2017

Abstract

We consider the problem of using observational data to learn treatment assignment
policies that satisfy certain constraints specified by a practitioner, such as budget,
fairness, or functional form constraints. This problem has previously been studied in
economics, statistics, and computer science, and several regret-consistent methods have
been proposed. However, several key analytical components are missing, including a
characterization of optimal methods for policy learning, and sharp bounds for minimax
regret. In this paper, we derive lower bounds for the minimax regret of policy learning
under constraints, and propose a method that attains this bound asymptotically up to
a constant factor. Whenever the class of policies under consideration has a bounded
Vapnik-Chervonenkis dimension, we show that the problem of minimax-regret policy
learning can be asymptotically reduced to first efficiently evaluating how much each
candidate policy improves over a randomized baseline, and then maximizing this value
estimate. Our analysis relies on uniform generalizations of classical semiparametric ef-
ficiency results for average treatment effect estimation, paired with sharp concentration
bounds for weighted empirical risk minimization that may be of independent interest.

Keywords: asymptotic theory, double machine learning, double robustness, empirical
welfare maximization, empirical process, minimax regret, semiparametric efficiency.

1 Introduction

The problem of learning treatment assignment policies, or mappings from individual char-
acteristics to treatment assignments, is ubiquitous in applied economics and statistics. It
arises, for example, in medicine when a doctor must decide which patients to refer for a risky
surgery; in marketing when a company needs to choose which customers to send targeted
offers to; and in government and policy settings, when assigning students to educational
programs or inspectors to buildings and restaurants. There is an increasing number of
application areas with rich, observational datasets that can be used to learn personalized
treatment rules. Moreover, technology companies and educational institutions have begun
to introduce explicit randomization into their systems in order to enable policy learning
using routinely logged data. The goal of this paper is to develop an understanding of how
such observational datasets can be used to learn policies in a way that uses the available
data as efficiently as possible.

We are grateful for helpful conversations with colleagues including Guido Imbens, Michael Kosorok,
Alexander Luedtke, Eric Mbakop, Alexander Rakhlin, James Robins, Max Tabord-Meehan and Zhengyuan
Zhou, and for feedback from seminar participants at a variety of universities and workshops.

1

ar
X

iv
:1

70
2.

02
89

6v
2

 [
m

at
h.

ST
]

 1
 O

ct
 2

01
7

The minimax regret criterion for policy learning As in Manski (2004, 2009), we
formalize the task of optimal policy learning via a utilitarian minimax regret criterion.
Following the potential outcomes model (Neyman, 1923; Rubin, 1974), we posit the existence
of a data-generating distribution on triples {Xi, Yi(−1), Y (+1)} ∈ X ×R×R, where the Xi

are observable characteristics of the i-th unit, and the Yi(w), w ∈ {±1}, denote the utility
the i-th unit would have experienced given treatment w. A treatment assignment policy
π(·) is a mapping from a unit’s characteristics Xi to a specification π(Xi) ∈ {±1} of which
treatment the unit should receive. For a class of candidate policies Π, we define an optimal
policy π∗ as one that maximizes expected utility among all policies π ∈ Π, and regret as the
difference between the expected utility of a given policy π and that of the optimal policy,1

π∗ ∈ argmaxπ∈Π {E [Yi (π(Xi))]} , R(π) = E [Yi (π∗(Xi))]− E [Yi (π(Xi))] . (1)

Given this setup, we assume that a practitioner seeks to learn a policy π̂ with the best
possible upper bound on regret R(π̂). This minimax regret criterion underlies several key
developments in statistical decision theory, including the work of Lai and Robbins (1985) on
multi-armed bandits. It is usually attributed to Savage (1951), who proposed it in a review
of Wald (1950).

Throughout this paper, we study a setup where the practitioner chooses π̂ after observing
i = 1, 2, ..., n independent and identically distributed units of the form {Xi, Yi, Wi} ∈
X × R× {±1}, where {Xi, Yi(−1), Y (+1)} are drawn from the population specified in the
above paragraph, and Yi = Yi(Wi) for a treatment assignment variable Wi. We take Wi to
be an unconfounded random variable with overlap (Rosenbaum and Rubin, 1983),

{Yi(−1), Yi(+1)} ⊥⊥Wi

∣∣Xi = x,
∣∣E [Wi

∣∣Xi = x
]∣∣ ≤ 1− 2η (2)

for some η > 0 and all x ∈ X . These assumptions enable identification of causal effects
in observational studies (Imbens and Rubin, 2015). Our goal is to use such observational
data to learn policies π̂ that have low regret R(π̂) with high probability, while only making
generic regularity assumptions about the joint distribution of {Xi, Yi(−1), Yi(+1), Wi}.2

Now, despite the seeming simplicity of the problem outlined above, the criterion (1) can
motivate substantively different statistical tasks depending on how we specify the the class
of allowable policies Π.3 At one end of the spectrum, some authors place no restrictions
on this class of policies, and let Π consist of all (sufficiently regular) functions from X to
{±1}. Manski (2004) considers this setting in the case where X has finite support, and

1All results presented in this paper will also hold in the case where no optimal policy exists, pro-
vided we make appropriate notational adjustments; for example, we would need to redefine regret as
R(π) = sup{E[Yi(π̃ (Xi))] : π̃ ∈ Π} − E [Yi (π (Xi))]. However, to simplify our exposition, we state our re-
sults in the case where π∗ exists.

2Our setup, where we want to learn a policy based on already collected observational data, is in contrast
to the online “contextual bandit” setup where the practitioner seeks to learn a decision rule while actively
making treatment allocation decisions for incoming subjects (e.g., Agarwal et al., 2014; Auer et al., 2002;
Bastani and Bayati, 2015; Lai and Robbins, 1985; Perchet and Rigollet, 2013; Rakhlin and Sridharan,
2016). The contextual bandit problem is quite different from ours: On one hand, it is harder because of
an exploration/exploitation trade-off that arises in sequential trials; on the other hand, it is easier, because
treatment propensities are known (since they were explicitly specified during the sequential trial). In the
machine learning literature, our setup is sometimes called the “offline bandit” problem.

3The results in this paper are all built using a frequentist minimax problem setting. For a discussion
of Bayesian policy learning, see, e.g., Chamberlain (2011) or Dehejia (2005). For papers that consider
alternative welfare criteria, see Kitagawa et al. (2017), who study an equality-weighted version of the welfare
criterion; Tetenov (2012), who considers asymmetric criterion across type I and type II errors; and also Kasy
(2016) examines measure for comparing distributions of policy outcomes.

2

shows that the simple decision rule obtained by thresholding an efficient estimator of the
conditional average treatment effect τ(x) = E

[
Y (+1)− Y (−1)

∣∣X = x
]

is asymptotically
minimax optimal. His result is further refined by Hirano and Porter (2009), who show that
such thresholding rules are also optimal when X is a continuum under local asymptotics
as motivated by Le Cam (1986),4 and by Stoye (2009, 2012) who derives exact minimax
treatment allocation rules in the setting of Manski (2004).

At the other end of the spectrum, one may also consider the case where Π only consists
of two possible policies: treat everyone (π(x) = +1 for all x ∈ X) or treat no one (π(x) = −1
for all x ∈ X). In this case, the problem of policy learning becomes effectively equivalent to
the problem of estimating an average treatment effect under unconfoundedness,5 which is
the topic of another well developed literature (see Imbens and Rubin (2015) for a review),
with notable contributions from Hahn (1998), Hirano et al. (2003), Robins and Rotnitzky
(1995) and Robins et al. (2017), and recent extensions to high-dimensional problems by
Athey et al. (2016a), Belloni et al. (2017) and Farrell (2015).

In this paper, we are most interested in the intermediate case where Π is neither uncon-
strained nor binary: For example, we might ask for π(x) to be a sparse linear function of x,
or a fixed-depth decision tree, possibly incorporating constraints such as budget constraints
on the fraction of subjects receiving the treatment. As we discuss in more detail in Section
1.1, there are a variety of motivations for limiting the form of the assignment rule, from reg-
ulatory restrictions or costs for including certain covariates in assignment, to explainability
or to simplicity of implementation. This intermediate “structured” setting appears to be
considerably richer than the two extreme ones discussed above, and we are still far from
having an exact optimality theory for it—despite considerable work in economics (Kitagawa
and Tetenov, 2015; Mbakop and Tabord-Meehan, 2016), statistics (Luedtke and Chambaz,
2017; Qian and Murphy, 2011; Zhang et al., 2012; Zhao et al., 2012; Zhou et al., 2017) and
machine learning (Beygelzimer and Langford, 2009; Dud́ık et al., 2011; Swaminathan and
Joachims, 2015). The objective of our paper is to tie the problem of policy learning over
structured classes Π to that of semiparametrically efficient policy evaluation, thus providing
a sharp characterization (up to constants) of the difficulty of this problem.6

Policy learning via empirical maximization In order to present our contribution, it
is helpful to first review existing results. Given our goal of minimizing regret, a natural
approach to policy learning is to optimize empirical regret estimates (e.g., Dud́ık et al.,
2011; Kitagawa and Tetenov, 2015; Swaminathan and Joachims, 2015; Zhao et al., 2012).

4See also Hirano and Porter (2016), who consider extensions to panel data.
5Heuristically, the connection is obvious, because we want to treat everyone if and only if the average

treatment effect is positive. To obtain a formal equivalence statement for the two statistical tasks, one could
again rely on Le Cam-style local asymptotics as used by Hirano and Porter (2009).

6Following standard practice in this literature, we focus on establishing upper bounds rather than exact
expressions for R(π) (e.g., Kitagawa and Tetenov, 2015; Manski, 2004; Swaminathan and Joachims, 2015), for
the simple reason that exact asymptotics for discrete optimization problems of this type are often intractable
(see Bartlett and Mendelson (2006) for a discussion). There are of course some notable exceptions: Stoye
(2009) uses a game-theoretic approach to derive exact minimax treatment allocation rules in the special
case where X is discrete and Π is unrestricted (see also Stoye (2012)), while Hirano and Porter (2009)
obtain exact asymptotics for regret using carefully set up Le Cam-style asymptotics, again provided that
Π is unrestricted. The difference between our setting and the work of Hirano and Porter (2009) and Stoye
(2009, 2012) is that we allow Π to have arbitrary structure, which makes exact analysis combinatorially
intractable.

3

Procedurally, this amounts to specifying π̂ as

π̂ = argmaxπ∈Π

{
Q̂(π)

}
, where

Q (π)

2
= E [Yi (π(Xi))]−

1

2
E [Yi(−1) + Yi(+1)] (3)

and Q̂(π) is some uniformly consistent estimator for Q(π) over the class π ∈ Π. The
quantity Q(π) is interpreted as a “policy value” that measures the improvement of π over
a randomized baseline. As a concrete example of this line of work, Kitagawa and Tetenov
(2015) consider (3) with a Q̂-estimator obtained via inverse-propensity weighting and show
that, if (2) holds, the utilities Yi are uniformly bounded, |Yi| ≤ M , and the policy class Π
is a Vapnik-Chervonenkis class with dimension VC(Π) (Vapnik and Chervonenkis, 1971),
then π̂ satisfies the regret bound

R (π̂) = OP

(
M

η

√
VC (Π)

n

)
. (4)

Now, although such results have the virtue of providing regret-consistent treatment alloca-
tion rules π̂ and helpfully highlight the relationship between the difficulty of policy learning
and the ratio VC (Π) /n, they are still far from providing an optimality theory for policy
learning. The main problem is that the dependence on the data-generating distribution via
the ratio M/η in the bound (4) is too loose to meaningfully guide specific modeling choices.
Although most of the methods discussed above can be cast in the form (3), many of them use
different choices7 for Q̂(π); and yet, rather disappointingly, (4) is the best bound available
for any of these proposals.

Efficient policy learning The goal of this paper is to provide more clarity on how to
build good estimators of the form (3). We introduce some key concepts by first analyzing
the problem of evaluating a single policy π as accurately as possible. Using notation from
(3), we see that

Q (π) = E [Yi (π(Xi))]− E [Yi (−π(Xi))] , (5)

i.e., Q (π) is the average treatment effect in a randomized controlled trial where the “treated”
sample is assigned policy π(·), and the “control” sample is assigned the opposite policy−π(·).
Given unconfoundedness (2), there is a large literature that develops a semiparametric
efficient estimation theory for statistics like Q(π) (Bickel et al., 1998; Hahn, 1998; Hirano
et al., 2003; Newey, 1994; Robins and Rotnitzky, 1995; Robins et al., 1995), for any fixed
policy π.

Our main result is that we can translate results about efficient policy evaluation into
results about policy learning. Specifically, let V (π) denote the semiparametrically efficient
variance for estimating Q(π). Furthermore, let V∗ := V (π∗) denote the semiparametrically
efficient variance for evaluating the optimal policy π∗, and let Vmax (formally defined in (14)
below) denote a sharp bound on the worst case efficient variance supπ V (π) for any policy
π. Then, under regularity conditions, we propose a learning rule that yields a policy π̂ with

7For example, Kitagawa and Tetenov (2015) and Swaminathan and Joachims (2015) rely on inverse-
propensity weighting, but Dud́ık et al. (2011), Zhang et al. (2012), Zhou et al. (2017) and Zhao et al. (2012)
all make different recommendations.

4

regret bounded by8

R (π̂) = OP

(√
V∗

(
1 + log

(
Vmax

V∗

))
VC (Π)

n

)
. (6)

We also develop regret bounds for non-parametric policy classes Π with a bounded entropy
integral, such as finite-depth decision trees. Key components of our analysis include uniform
concentration results for efficient policy evaluation, as well as sharp generalization bounds
for weighted empirical risk minimization that may be of independent interest.9

This result has several implications. First, on a conceptual level, we note that when
n is large, our bound (6) is strictly better than any other regret bound for policy learn-
ing previously proposed in the literature (Beygelzimer and Langford, 2009; Kitagawa and
Tetenov, 2015; Swaminathan and Joachims, 2015; Zhao et al., 2012; Zhou et al., 2017).10

More importantly, since our bound scales with the variance of Q̂(π) for a single candidate
policy π, this bound (6) can only be attained if Q̂(π) is an efficient estimator of Q(π).
Thus, our bound establishes meaningful separation in terms of regret bounds available for
different policy learners, and concretely establishes the relevance of the classic literature on
semiparametrically efficient estimation (Bickel et al., 1998; Hahn, 1998; Hirano et al., 2003;
Newey, 1994; Robins and Rotnitzky, 1995; Robins et al., 1995) to policy learning.

Our paper is structured as follows. First, in Section 2, we propose a method for policy
learning, present a first regret bound of the form (6), and discuss implementation. Our
main theoretical results are then developed in Section 3. Throughout our analysis, we prove
uniform bounds that allow for both the data-generating distribution and the policy class Π
to change with n; in particular, we allow the VC dimension of Π to grow as a positive power
of n. Finally, Section 4 considers lower bounds for the minimax risk of policy learning, and
shows that our regret bounds are optimal (up to constants) among all regret bounds that
depend on the policy class Π via the VC dimension.

8The factor 1 + log(Vmax/V∗) is perhaps unexpected, and may not be optimal. However, as discussed in
Section 4, in many situations of interest we may expect to have log(Vmax/V∗) ≈ 0; and, in fact, our lower
bounds are established for sequences of problems with log(Vmax/V∗)→ 0. In these situations, the bound
(6) becomes R(π̂) = OP (V∗ VC(Π)/n), which is the best possible bound of this form.

9The concrete algorithms we propose for policy learning—see Section 2.3 for details—most closely re-
semble methods developed by Dud́ık et al. (2011) and Zhang et al. (2012), who use doubly robust estimates
for Q̂(π) that are well-known to be semiparametrically efficient under appropriate conditions (Hahn, 1998;
Robins and Rotnitzky, 1995). These papers, however, did not study the potential for efficiency gains from
this method, and only focused on doubly robust consistency; moreover, the analytic tools needed to establish
efficiency of these methods were not previously available in the literature. In particular, if one tried to apply
the analysis of Kitagawa and Tetenov (2015) to the methods of Dud́ık et al. (2011) or Zhang et al. (2012)
(or, in fact, to the method we propose in Section 2.3), one would still only obtain bounds of the form (4)
that do not depend on the efficient variance V∗.

In this context, we also note the recent work of Zhou et al. (2017), who use a form of residualization to
improve on outcome-weighted learning as proposed by Zhao et al. (2012), and find it to improve practical
performance. However, the scoring method they use is inefficient whenever treatment propensities may
deviate from e(x) = 1/2, and their theoretical analysis is not sharp enough to provide regret bounds that
scale with the second moment of the scores.

10There is a related strand of literature in the machine learning community on “empirical Bernstein” regret
bounds for weighted learning (Cortes et al., 2010; Maurer and Pontil, 2009; Swaminathan and Joachims,
2015). By applying these methods to our proposed policy learner, we could derive bounds of the type
R(π̂) = OP (

√
V∗ VC (Π) log (n) / n). Much like our result, this bound has a conceptually pleasing quasi-

optimal dependence on the variance of the efficient policy value estimate Q̂(π∗) via V∗. However, unlike our
result, this bound has an extraneous log(n) factor, which makes it inappropriate for asymptotic analysis;
for large n, this bound is in fact worse than (4).

5

1.1 Interlude: Learning Simple Policies under Nonparametric Con-
founding

Our main result (6) is a hybrid parametric-nonparametric result. As in Kitagawa and
Tetenov (2015), we assume that the practitioner wants to choose a policy π from among a
“quasi-parametric” class of decision rules Π with finite VC-dimension (or, more generally, a
finite entropy integral), but at the same only make non-parametric assumptions about the
observational data that is used to learn this policy. Formally, we assume that the practitioner
has access to n independent and identically distributed samples (Xi, Yi, Wi) ∈ X×R×{±1}
generated via potential outcomes {Yi(±1)} such that Yi = Yi(Wi). We require the treatment
assignment to satisfy the identification condition (2); however, beyond that, we only assume
generic regularity properties on

µw(x) = E
[
Yi(w)

∣∣Xi = x
]
, e(x) = P

[
Wi = 1

∣∣Xi = x
]
, (7)

and other aspects of the joint distribution of (Xi, Yi, Wi).
This juxtaposition of quasi-parametric and non-parametric setups may appear surprising

at first glance; however, as also argued by Kitagawa and Tetenov (2015), we believe that
separating assumptions for the nuisance components (8) and the class of policies Π is a
necessary component of a comprehensive analysis of policy learning. On one hand, the
nuisance components µw(x) and e(x) are facts of nature the practitioner has no control over
once the data has been collected, so assuming a non-parametric model for them seems like
a prudent, conservative choice—especially given recent methodological developments that
allow for these nuisance components to be estimated via powerful machine learning methods
(Chernozhukov et al., 2016; van der Laan and Rose, 2011). On the other hand, the class of
candidate policies Π is specified by the practitioner, and there may be many good reasons
to place restrictions on it.

First, we may need to restrict the set of covariates that can be used by policies π ∈
Π. There are protected characteristics of people that may in principle affect the nuisance
components µw(x) and e(x), but cannot be used as decision variables: Kitagawa and Tetenov
(2015) have an example where they measure age, gender and race, but do not use these
features in choosing who should receive job training and/or job search assistance. It is also
desirable that all features used by the candidate decision rules π ∈ Π be reliably measured
and available in a deployed system, and not be manipulable by participants.

Second, as discussed in Bhattacharya and Dupas (2012), we sometimes need to work
with budget constraints that cap the total fraction of the population that may be treated.
Furthermore, in some areas it may be desirable to pre-specify (or bound) treatment assign-
ment rates by subgroup. For example, Kleinberg et al. (2017) study automated decision
rules for mandating pre-trial detention, and emphasize a finding that they can substan-
tially reduce predicted crime rates while maintaining fixed pre-trial detention rates across
subgroups specified by race.

Third, in some application areas, it may be desirable for the policies π ∈ Π to have a
simple functional form, e.g., if they need to be audited or discussed by subject matter spe-
cialists, or if they need to be distributed in a non-electronic format. The formal distinction
between the class of policy functions Π and our non-parametric model for the observational
data provide a simple way to enforce all these desiderata (i.e., constraints on features, bud-
get, or functional form) without making any problematic assumptions about the underlying
distribution of (Xi, Yi, Wi).

There are of course some settings where there may be no meaningful difference between

6

the classes of functions used to estimate nuisance parameters and those used to estimate
policies, and we are willing to learn semiparametric policy functions that are as complicated
as our estimators for (µw(x), e(x)). For example, when working with a single engineering
system, e.g., a website wanting to target advertisements, we have access to a stable stream
of incoming data and do not need to worry about changes in data availability or external
validity. In cases like these, it makes sense to learn π using a bandit algorithm that can fit
rich families of policy functions; see, e.g., Agarwal et al. (2014), Auer et al. (2002), Bastani
and Bayati (2015), and references therein. However, in most public policy applications, we
believe that using different classes of functions for {π(·)} versus {µw(·), e(·)} can be helpful,
or even imperative.

2 From Efficient Policy Evaluation to Learning

Recall that we are interested in the following problem: We have n i.i.d. samples (Xi, Yi, Wi)
drawn from a regular, unconfounded distribution satisfying (2), with

µ(n)
w (x) = En

[
Yi(w)

∣∣Xi = x
]
, e(n)(x) = Pn

[
Wi = 1

∣∣Xi = x
]
. (8)

Given such a data-generating distribution, we want to learn a policy assignment rule π̂n :
X → {±1} belonging to a class π̂n ∈ Πn, such as to make the regret (1) small. Following
an extensive existing literature (Beygelzimer and Langford, 2009; Bottou et al., 2013; Chen
et al., 2016; Dud́ık et al., 2011; Kitagawa and Tetenov, 2015; Swaminathan and Joachims,
2015; Zhao et al., 2012; Zhou et al., 2017), we focus on learners π̂n obtained by optimizing
a policy value estimate Q̂n(π) as in (3). Our goal is to find a class of efficient Q̂n-estimators
that yield π̂n-learners who inherit their efficiency properties.

In the previous paragraph—and in fact through the rest of the paper—we let both
the data generating distribution for (Xi, Yi, Wi) and the policy class Πn change with n;
in particular, we will let the complexity of the class Πn increase with n. All results will
be uniform over a class of sequences of data generating distributions and policy classes
satisfying regularity conditions discussed below. The only aspects of the problem we do
not vary with n are the overlap bound η in (2) and a bound on the irreducible noise level
Varn

[
Yi(w)

∣∣Xi = x
]
; this means that the efficient variance V

(n)
∗ remains bounded as n gets

large (although it may also change).
In this section, we start by specifying a concrete policy learning strategy below, and

present a first regret bound for it in Section 2.2. Then, before presenting a proof, we discuss
implementation of our method in Section 2.3, and show a simple example in Section 2.4.

2.1 Double Machine Learning for Policy Evaluation

Perhaps the simplest way to construct semiparametrically efficient estimators for Q(π) is via
doubly robust methods. These methods were originally studied by Hahn (1998) and Robins
and Rotnitzky (1995) and, more recently, Belloni et al. (2017), Farrell (2015), van der Laan
and Rose (2011), and others have considered extensions to high-dimensional settings. In this
paper, we focus on doubly robust estimators obtained via the “double machine learning”
construction advocated by Chernozhukov et al. (2016).

The core idea behind double machine learning is that, by relying on a modest amount of
sample splitting, we can use machine learning methods to build treatment effect estimators
that can be guaranteed to be efficient given only high-level conditions on the predictive

7

accuracy of the machine learning method. We build such estimators as follows: First divide
the data into K evenly-sized folds and, for each fold k = 1, ..., K, run a machine learning
estimator of our choice on the other K − 1 data folds to estimate the functions µ

(n)
±1 (x)

and e(n)(x); denote the resulting estimates µ̂
(−k)
±1 (x) and ê(−k)(x) (with dependence on n

suppressed). Then, given these pre-computed values, we estimate Qn(π) as

Q̂DML,n(π) =
1

n

n∑
i=1

π(Xi)Γ̂i, Γ̂i := µ̂
(−k(i))
+1 (Xi)−µ̂(−k(i))

−1 (Xi)+Wi

Yi − µ̂(−k(i))
Wi

(Xi)

ê
(−k(i))
Wi

(Xi)
, (9)

where k(i) ∈ {1, ..., K} denotes the fold containing the i-th observation. Here, we have also
used the short-hand

ê
(−k(i))
Wi

(Xi) =
1

2
−Wi

(
1

2
− ê(−k(i))(Xi)

)
(10)

to denote estimates of the class-specific propensities. The K-fold algorithmic structure used
in (9) was proposed by Schick (1986) as a general purpose tool for efficient estimation in
semiparametric models, and has also been used in Robins et al. (2008, 2017) and Wager
et al. (2016).

Under weak assumptions, Chernozhukov et al. (2016) show that the double machine
learning estimator (9) achieves the semiparametrically efficient rate for estimating Qn(π)
(Hirano et al., 2003),11

√
n
(
Q̂DML,n(π)−Qn(π)

) /√
V (n)(π)⇒ N (0, 1) , (11)

V (n)(π) = Varn

[
π(X)τ (n)(X)

]
+ En

[
Varn

[
Y (−1)

∣∣X = Xi

]
1− e(n)(Xi)

+
Varn

[
Y (+1)

∣∣X = Xi

]
e(n)(Xi)

]
,

provided the product of the root-mean squared error of the estimators µ̂
(n)
±1 (x) and ê(n)(x)

goes to zero faster than 1/
√
n (e.g., this would hold if both estimators were oP (n1/4)-

consistent). For a review of conditions under which such convergence is possible, see Cher-
nozhukov et al. (2016); for example, it is enough that e(n)(·) and µ

(n)
w (·) belong to appro-

priate L2-Sobolev classes. This estimator is closely related to the classical semiparametric
two-stage methods studied by, e.g., Hahn (1998), Newey (1994) and Robins and Rotnitzky
(1995).

Throughout our analysis, we will make the following assumption about the machine
learning method underlying (9).

Assumption 1 (Consistent machine learning). Whenever we use a double machine learning
estimator Q̂DML,n constructed as in (9), we assume that the machine learning methods used
to construct our estimator satisfy the following consistency guarantees. The methods must
be uniformly consistent,

sup
x∈X

∣∣∣µ̂(n)
w (x)− µ(n)

w (x)
∣∣∣ , sup

x∈X

∣∣∣ê(n)
±1 (x)− e(n)

±1 (x)
∣∣∣→p 0. (12)

Moreover, the product of the L2-errors of both methods must converge as n1/2:

E
[(
µ̂(n)
w (X)− µ(n)

w (X)
)2
]
≤ a(n)

nζµ
, E

[(
1/ê

(n)
±1 (X)− 1/e

(n)
±1 (X)

)2
]
≤ a(n)

nζe
, (13)

11Recall that we write the conditional average treatment effect as τ (n)(x) = µ
(n)
+1 (x)− µ(n)−1 (x).

8

for some constants 0 < ζµ, ζe < 1 with ζµ + ζe ≥ 1, and some sequence a(n)→ 0. Here X is
taken to be an independent test example drawn from the same distribution as the training
data.12

Given these conditions, the results of Chernozhukov et al. (2016) imply that, for any
single policy π, double machine learning policy evaluators Q̂DML(π) built via methods
satisfying Assumption 1 are asymptotically efficient for estimating Q(π). In Section 3.3, we
extend their analysis and establish conditions under which such convergence holds uniformly
over the whole class π ∈ Π; this result will then play a key role in establishing strong regret
bounds for policy learning. Before presenting the result in more detail, however, we first
discuss the type of regret bound it enables, and how to implement a concrete policy learner
building on our choice of Q̂DML(π).

2.2 A Motivating Result

To get a feeling for the types of results we can obtain for policy learning with double machine
learning, we consider below the case where Π belongs to a VC class. This setup allows us to
state a result without resorting to too much notation. As discussed in the introduction, our
results will also depend on the following upper bound for the worst-case efficient variance
for estimating any policy:

V (n)
max = En

[(
τ (n)(X)

)2
]

+ En

[
Varn

[
Y (−1)

∣∣X = Xi

]
1− e(n)(Xi)

+
Varn

[
Y (+1)

∣∣X = Xi

]
e(n)(Xi)

]
, (14)

and note that V (n) (π) = V
(n)
max −Q2

n (π) for any policy π. We develop the technical tools
required to prove this result in Section 3.

Theorem 1. Define Q̂DML,n(π) as in (9), and let π̂n = argminπ∈Πn Q̂DML,n(π). Given
unconfoundedness and overlap (2) and Assumption 1, suppose moreover that the irreducible
noise εi = Yi − En

[
Yi
∣∣Xi, Wi

]
is both uniformly sub-Gaussian conditionally on Xi and

Wi and has second moments uniformly bounded from below, Var
[
εi
∣∣Xi = x, Wi = w

]
≥ s2,

and that the conditional average treatment effect τ (n)(x) is uniformly bounded in x and n.
Finally, suppose that Πn is a VC class of dimension VC(Πn) bounded by

VC(Πn) = O
(
nβ
)
, β ≤ min {ζµ, ζe} , β < 1/2. (15)

Then, for any δ > 0, there is a universal constant13 Cδ, as well as a threshold N that depends
on the constants used to define the regularity assumptions such that, with probability at least
1− δ,

Rn (π̂n) ≤ Cδ

√√√√VC (Πn)V (n) (π∗)

(
1 + log

(
V

(n)
max

V (n) (π∗)

))/
n, for all n ≥ N, (16)

12A notable special case of this assumption is when ζµ = ζe = 1/2; this is equivalent to the standard
assumption in the semiparametric estimation literature that all nuisance components (i.e., in our case,
both the outcome and propensity regressions) are o(n−1/4)-consistent in terms of L2-error. The weaker
requirement (13) reflects the fact that doubly robust treatment effect estimators can trade-off accuracy of
the µ-model with accuracy of the e-model, provided the product of the error rates is controlled (Farrell,
2015).

13Throughout this paper, we will use C and Cδ to denote different universal constants; no two instantia-
tions of C and Cδ should be assumed to denote the same constant.

9

where Rn(·) denotes regret for the n-th data-generating distribution, V (n)(π) denotes the
semiparametric efficient variance for policy evaluation (11) and V

(n)
max is as defined in (14).

2.3 Implementation via Weighted Classification

In the previous sections, we established regret bounds for the policy π̂DML obtained by
maximizing Q̂DML(π) as defined in (9). In order to carry out this optimization, we follow
Beygelzimer and Langford (2009), Kitagawa and Tetenov (2015), Zhang et al. (2012), Zhao
et al. (2012) and Zhou et al. (2017), and note that π̂DML can also be understood as the
empirical risk minimizer in a weighted classification problem:

π̂ = argmaxπ∈Π

{
1

n

n∑
i=1

λiZiπ(Xi)

}
, λi =

∣∣∣Γ̂i∣∣∣ , Zi = sign
(

Γ̂i

)
, (17)

i.e., we want to train a classifier with response Zi using weights λi; recall that Γ̂i was defined
in (9). Given this formulation as a weighted classification problem, we can use standard
off-the-shelf tools for weighted classification to learn π̂, e.g., classification trees (Breiman
et al., 1984), support vector machines (Cortes and Vapnik, 1995), or best-subset empirical
risk minimization (Chen and Lee, 2016; Greenshtein et al., 2006).14

Several other proposals also fit into this framework, with different choices of Γ̂i. Zhao
et al. (2012) assume a randomized controlled trial and use Γ̂i = Wi Yi /P [Wi = 1], while
Kitagawa and Tetenov (2015) use inverse-propensity weighting Γ̂i = Wi Yi / êWi

(Xi). In an
attempt to stabilize the weights, Beygelzimer and Langford (2009) introduce an “offset”

Γ̂i =
Wi

êWi
(Xi)

(
Yi −

max {Yi}+ min {Yi}
2

)
,

while Zhou et al. (2017) go further and advocate

Γ̂i =
Wi

êWi
(Xi)

(
Yi −

µ̂+1(Xi) + µ̂−1(Xi)

2

)
.

None of the above methods, however, are built on semiparametrically efficient policy evalu-
ation, and so they do not fit into the class of algorithms covered by Theorem 1. Finally, the
method advocated by Zhang et al. (2012) actually takes the same form as our procedure
(17). However, the paper by Zhang et al. (2012) does not provide regret bounds; moreover,
they do not use “cross-fitting” or “cross-estimation” as in (9), so it is unclear under what
conditions their method satisfies the bounds from Theorem 1.15

2.4 A Simple Illustration

We illustrate our approach with a simple simulation example. Suppose that we have access
to data (X, Y, W) ∈ [−1, 1]2 × R × {±1}, and want to learn a policy function π(·) that

14In our discussion so far, we have largely left aside questions on how to estimate µ̂w(·) and ê(·), provided
that they are obtained using some machine learning method that satisfies Assumption 1. However, in terms
of finite-sample performance, experience suggests that it may be preferable to use methods for µ̂+1(·) and
µ̂−1(·) that estimate both arms simultaneously while explicitly seeking out treatment effect heterogeneity
(Athey et al., 2016b; Imai and Ratkovic, 2013).

15Other related methods, such as those by Dud́ık et al. (2011) and Swaminathan and Joachims (2015),
apply in a setting with multiple available treatments and so do not directly fit into the setting of (17).
Extending our efficiency analysis to the multi-treatment regime would be of considerable interest.

10

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x2

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x2

Inverse-propensity weighting Double machine learning

Figure 1: Results from two attempts at learning a policy π by counterfactual risk minimiza-
tion (3) over depth-2 decision trees, as described in Section 2.4, with Q̂-estimators obtained
by both inverse-propensity weighting and double machine learning. The dashed blue line
denotes the Bayes-optimal decision rule (treat in the upper-right corner, do not treat else-
where); the solid black lines denote learned policies π (treat in the shaded regions, do not
treat elsewhere). We also use a heat map to depict the average policies learned across 200
simulations; the darkest red regions are never treated and lightest yellow regions are always
treated. Simulations were performed using n = 500 samples drawn according to (18).

can be written as a depth-2 decision tree. Here, the data is independent and identically
distributed as

Xi ∼ U
(
[−1, 1]2

)
, Wi

∣∣Xi ∼ Bern (e(x)) , Yi
∣∣Wi, Xi ∼ N (µ(Xi) + τ(Xi)Wi/2, 1) , (18)

with e(x) = 1/(1+e−(x1+x2)), µ(x) = 2e−(x1+x2), and τ(x) = 2/[(1+e−4x1)(1+e−4x2)]−0.4.
For our purposes, the salient facts about this data-generating distribution are that it is
unconfounded (2); however, it cannot be represented by trees, and the Bayes-optimal policy
is not in our class Π of interest, i.e., depth-2 decision trees.

In Figure 1, we show results for learning π using two different counterfactual risk mini-
mization strategies of the form (3), but with different Q̂-estimators. The left panel obtains
Q̂ by inverse-propensity weighting; conversely, the right panel uses an efficient double ma-
chine learning Q̂-estimator. We see that the policies π̂ learned via efficient policy evaluation
are much better than those learned by inverse-propensity weighting. Across 200 simulation
runs, inverse-propensity weighting led to a mean regret of 0.143, whereas double machine
learning got a mean regret of 0.063 relative to the best possible depth-2 tree. Figure 1 shows
both a single realization of each method, as well as the average policy learned across 200
simulation runs.

In terms of specifics, we started by learning µ̂±1(·) and ê(·) via a lasso (Tibshirani, 1996)
on a polynomial basis expansion (with interactions), all while using out-of-fold prediction
as in (9). For µ̂±1(·), we fit both response functions simultaneously while writing them in
terms of a main effect (µ̂+1(·) + µ̂−1(·))/2 and a treatment effect (µ̂+1(·)− µ̂−1(·))/2; when

11

the treatment effect is weaker than the main effect, this re-parametrization can interact
with the lasso penalty in a way that improves the resulting fit (Imai and Ratkovic, 2013).
Finally, we got π̂ by optimizing (17) over depth-2 trees with the R-package evtree, which
learns an optimal classification tree using an evolutionary algorithm (Grubinger et al., 2014).
Inverse-propensity weighting uses Γ̂i = Yi/êWi

(Xi), while our method uses the form in (9).

3 Theoretical Development

As is common in the literature on semiparametric estimation, our proof is built around a
study of the efficient influence function for policy evaluation,

Q̃n (π) =
1

n

n∑
i=1

π(Xi)Γ
(n)
i , Γ

(n)
i := µ

(n)
+1 (Xi)− µ(n)

−1 (Xi) +Wi

Yi − µ(n)
Wi

(Xi)

e
(n)
Wi

(Xi)
. (19)

Note that Q̃n(π) can be understood as a version of Q̂n(π) computed by an oracle who has
access to the true functions µ

(n)
w (x) and e(n)(x). Many classical results in semiparametric

efficiency theory rely on characterizing the realizable estimators Q̂n(π) in terms of the oracle
quantities Q̃n(π): Classical results going back at least to Newey (1994) show that, under
appropriate regularity conditions, two-stage estimators of the form (9) are asymptotically
equivalent to an average of the efficient influence function,

√
n
(
Q̂n (π)− Q̃n (π)

)
→p 0. (20)

This type of idea approach is also standard in the literature on treatment effect estimation
(e.g., Chernozhukov et al., 2016; Hahn, 1998; Robins and Rotnitzky, 1995).

Our proof is structured as follows. Having spelled out assumptions about the policy
class below, we proceed in Section 3.2 to prove a regret bound that would be available to an
analyst who could optimize the infeasible objective Q̃n(π) rather then the feasible double
machine learning objective Q̂n(π). Then in Section 3.3, we establish a strengthening of (20)
that holds uniformly over all π ∈ Π, and use this coupling to establish a first result about
learning with Q̂n(π). Finally, in Section 3.4, we re-visit and strengthen our bounds under
stronger assumptions on Πn that hold, for example, when Πn is a VC-class.

3.1 Assumptions about the Policy Class

Although we stated our first result, Theorem 1, under the simple assumption that Π is a
Vapnik-Chervonenkis class, we will develop our technical results under weaker, more abstract
assumptions on Π. In order to obtain regret bounds as in (16) that decay as 1/

√
n, we of

course need some control over the complexity of the class Π.
Here, we do so using bounds on the Hamming entropy of Π. For any discrete set of points

{X1, ..., Xm} and any ε > 0, define the ε-Hamming covering numberNH(ε, Π, {X1, ..., Xm})
as the smallest number of policies π : {X1, ..., Xm} → {±1} (not necessarily contained in
Π) required to ε-cover Π under Hamming distance,

H(π1, π2) =
1

m

m∑
j=1

1 ({π1(Xj) 6= π2(Xj)}) .

12

Then, define the ε-Hamming entropy of Π as log (NH(ε, Π)), where

NH(ε, Π) = sup {NH(ε, Π, {X1, ..., Xm}) : X1, ..., Xm ∈ X ; m ≥ 1}

is the number of functions needed to ε-cover Π under Hamming distance for any discrete
set of points. We note that this notion of entropy is purely geometric, and does not depend
on the distribution used to generate the Xi. Finally, we assume the following:

Assumption 2 (Entropy bound). We assume that there are constants C, β ≥ 0 and ω > 0
such that β + ω < 1/2, and that the Hamming entropy of Πn is bounded by

log (NH(ε, Πn)) ≤ Cnβε−ω for all 0 < ε < 1 and n ∈ N. (21)

Given this assumption define the complexity κ of the class Πn in terms of a variant of
the classical entropy integral of Dudley (1967):16

κ (Πn) =

∫ 1

0

√
log (NH(ε2, Πn)) dε. (22)

Using entropy integrals to bound model class complexity is ubiquitous in empirical process
theory (see, e.g., Boucheron et al. (2013)), and easily allows us to specialize to more restric-
tive cases. In particular, in one example of particular interest, it is well known that if Π is
a Vapnik-Chervonenkis class, then (Haussler, 1995)

log (NH(ε, Π)) ≤ d
(
log
(
ε−1
)

+ log(2) + 1
)

+ log (d+ 1) + 1, with d := VC(Π). (23)

Thus, we immediately see that Assumption 2 holds whenever Πn = Π is a fixed VC class,
and can use (23) to verify that κ2(Π) ≤ 6d for any value of d = 1, 2, ... Moreover, when Πn

is a sequence of VC classes of increasing dimension dn, Assumption 2 still holds whenever
dn = O

(
nβ
)

for some β < 1/2 (with, e.g., ω = (1/2− β)/2).
There has also been some recent interest in developing tree-based decision rules (Athey

and Imbens, 2016; Kallus, 2017; Su et al., 2009). If we let Π consist of the set of all depth-L
decision trees with Xi ∈ Rd, we can verify that17

log (NH(ε, Π)) = O
(
2L log

(
ε−1
)

+ 2L log(d) + L2L
)
. (24)

Then, letting the depth Ln grow as Ln = bβ log2(n)c for some β < 1 Assumption 2 again
holds with ω = (1/2− β)/2.

Finally, we note that further high-level constraints on Π as discussed in Section 1.1, e.g.,
budget constraints or constraints on marginal treatment rates among subgroups, simply
reduce the complexity of the policy class Π and thus do not interfere with the present
assumptions.

16Assumption 2 immediately guarantees that this integral is finite.
17To establish this result for trees, one can follow Bartlett and Mendelson (2002) and view each tree-leaf

as a conjunction of L boolean functions, along with a sign. A simple argument then shows that a library of
4d2L2Lε−1 boolean functions lets us approximate each leaf to within Hamming error 2−Lε; and so we can
also also approximate the tree to within ε Hamming error. The resulting bound on NH(ε, Π) follows by
noting that a full tree has 2L−1 splits, and so can be approximated using 2L−1 of these boolean functions.

13

3.2 Rademacher Complexities and Oracle Regret Bounds

We start our analysis by characterizing the regret of an oracle learner who has access to the
functions µ

(n)
±1 (·) and e(n)(·), and chooses their policy π̂n by optimizing the infeasible value

estimator Q̃n(π) as defined in (19). The advantage of studying this oracle is that it allows
us, for the time being, to abstract away from the specific machine learning methods used to
obtain Q̂n(π), and instead to focus on the complexity of counterfactual risk minimization
over the class Πn.

Specifically, our present goal is to study concentration of the empirical process Q̃n(π)−Qn(π)
for all π ∈ Πn. Recalling the definition of Γ

(n)
i from (19), a convenient way to bound the

supremum of our empirical process of interest is by controlling its Rademacher complexity
Rn(Πn), defined as

Rn(Πn) = sup
π∈Πn

{
1

n

n∑
i=1

ZiΓ
(n)
i π(Xi)

}
(25)

where the Zi are independent Radmacher (i.e., sign) random variables Zi = ±1 with prob-
ability 1/2 each (Bartlett and Mendelson, 2002). For intuition as to why Rademacher
complexity is a natural complexity measure, note that Rn(Πn) characterizes the maximum
(weighted) in-sample classification accuracy on randomly generated labels Zi over classifiers
π ∈ Πn; thus, Rn(Πn) directly measures how much we can overfit to random coin flips using
Πn.

Following this proof strategy, we start by providing a bound for Rn(Πn) that scales as√
E [Γ2] /n. Despite its simple form, we are not aware of existing proofs of such results

in the literature. Bounds that scale as max {Γi} /
√
n are standard but, in our setting, are

not strong enough to move past results of the type (4) as obtained by, e.g., Kitagawa and
Tetenov (2015). Meanwhile, bounds that scale as

√
E [Γ2] log(n)/n are developed by Cortes

et al. (2010) and Maurer and Pontil (2009); however, the additional log(n) factor makes
these bounds inappropriate for asymptotic analysis.

Lemma 2. Suppose that the class Πn satisfies Assumption 2, and that the weights Γ
(n)
i

in (25) are drawn from a sequence of uniformly sub-Gaussian distributions with variance
bounded from below,18

P
[∣∣∣Γ(n)

i

∣∣∣ > t
]
≤ Cν e−νt

2

for all t > 0, Var
[
Γ

(n)
i

]
≥ s2, (26)

for some constants Cν , ν, s > 0 that do not depend on n. Then, there is a universal constant
C > 0 for which

E [Rn (Πn)] ≤ 8 (κ (Πn) + C)

√
E
[(

Γ
(n)
i

)2
]/

n+O

(√
log(n)

n

)
, (27)

where κ(Πn) is the complexity of Πn as defined in (22).

Given this Rademacher complexity bound, we can obtain a uniform concentration bound
for Q̃(π) using standard arguments. Here, we refine an argument of Bartlett and Mendelson
(2002) using Talagrand’s inequality to obtain a bound that scales as

√
E [Γ2

i] rather than
sup |Γi|. In the statement of the result below, we note that Vmax = E

[
Γ2
i

]
, as is clear from

(14).

18Due to typographical concerns, we will frequently omit the superscript (n) in the body of the text when
there is no risk of confusion.

14

Theorem 3. Under the conditions of Lemma 2, the averaged efficient influence functions
Q̃n(π) concentrate uniformly: There is a universal constant C > 0 such that, for any δ > 0,
with probability at least 1− δ,

sup
π∈Πn

∣∣∣Q̃n (π)−Qn (π)
∣∣∣ ≤ (16κ (Πn) +

√
2 log (δ−1) + C

)√
V

(n)
max

/
n

+O
(
log(n)κ (Πn)

/
n
)
.

(28)

If we set π̃n ∈ argmax{Q̃n (π) : π ∈ Π}, then again with probability at least 1− δ,

Rn (π̃n) ≤ 2
(

16κ (Πn) +
√

2 log (δ−1) + C
)√V

(n)
max

n
+O

(
log(n)κ (Πn)

n

)
, (29)

where Rn (π̃n) stands for the regret of policy π̃n.

3.3 Uniform Coupling with the Efficient Score

In the previous section, we established risk bounds that would hold if we could optimize the
infeasible value function Q̃n(π); we next need to extend these bounds to cover the situation
where we optimize a feasible value function. As discussed above, we focus on the double
machine learning estimator Q̂n(π) = Q̂DML,n(π). For a single, fixed policy π, Chernozhukov
et al. (2016) showed that Q̃n(π) and Q̂n(π) are asymptotically equivalent, meaning that
the discrepancy between the two value estimates decays faster than the variance of either.
However, in our setting, the analyst gets to optimize over all policies π ∈ Πn, and so coupling
results established for a single pre-determined policy π are not strong enough. The following
lemma extends the work of Chernozhukov et al. (2016) to the case where we seek to establish
a coupling of the form (20) that holds simultaneously for all π ∈ Πn.

Lemma 4. Under the conditions of Lemma 2, suppose that we obtain Q̂n(π) = Q̂DML,n(π)
by double machine learning according to Assumption 1 and moreover that overlap holds as
in (2). Then

√
n sup

{∣∣∣Q̂n(π)− Q̃ (π)
∣∣∣ : π ∈ Πn

} /
a
((

1−K−1
)
n
)

= OP
(

1, κ (Πn)
/√

nmin{ζµ, ζe}
)
,

(30)

where the OP (·) term hides a dependence on the overlap parameter η (2) and the sub-
Gaussianity parameter ν specified in Lemma 2.

The above result is perhaps surprisingly strong: Provided that the complexity of Πn,
κ(Πn), does not grow too fast with n, the bound (30) is the same coupling bound as we
might expect to obtain for a single policy π, and the complexity κ(Πn) of the class Πn

does not affect the leading-order constants in the bound. In other words, in terms of the
coupling of Q̃n(π) and Q̂n(π), we do not lose anything by scanning over a continuum of
policies π ∈ Πn rather than just considering a single policy π. The doubly robust form
used by double machine learning is not the only way to construct efficient estimators for the
value of a single policy π—for example, Hirano et al. (2003) show that inverse-propensity
weighting with non-parametrically estimated propensity scores may also be efficient—but it
plays a key role in the proof of Lemma 4. It is far from obvious that other efficient methods

15

for evaluating a single policy π, such as that of Hirano et al. (2003), would lead to equally
strong uniform couplings over the whole class Πn.

Given our coupling lemma, the following result is an immediate corollary of Theorem
3. In terms of assumptions, we note that assuming overlap as in (2), sub-Gaussianity of
the irreducible noise εi = Yi−En

[
Yi
∣∣Xi, Wi

]
, and uniform boundedness of the conditional

average treatment effect τ (n)(x) lets us guarantee that the weights Γ
(n)
i in (25) are sub-

Gaussian; meanwhile, the lower bound on Varn [εi] induces a lower bound on En
[
Γ

(n)2
i

]
.

Theorem 5. Suppose that Assumption 1 and 2 hold, that we have unconfoundedness and
overlap as in (2), and that the irreducible noise εi = Yi − E

[
Yi
∣∣Xi, Wi

]
is both uniformly

sub-Gaussian conditionally on Xi and Wi and has second moments uniformly bounded
from below, Var

[
εi
∣∣Xi = x, Wi = w

]
≥ s2, and that τ (n)(x) is uniformly bounded in x

and n. Suppose, moreover, that the candidate policy class Πn grows slowly enough that
lim supn n

−min{ζµ, ζe} κ2 (Πn) <∞. Then, for any δ > 0, there is a universal constant Cδ
and a problem-specific threshold N such that

Rn (π̂n) ≤ Cδ max {κ (Πn) , 1}
√
V

(n)
max

/
n (31)

with probability at least 1−δ for all n ≥ N , where π̂n optimizes the double machine learning
risk estimate as in (3).

The above bound is close to our desideratum: It obtains regret bounds for a realizable
policy that have the desired dependence on κ(Πn) and n (recall that, for VC-classes, κ(Πn) =
O(
√

VC(Πn))), and scales with a semiparametric variance bound rather than with a crude
bound on, e.g., sup |Yi|. However, a down-side of the bound (31) is that it depends on V

(n)
max,

i.e., a worst-case bound for the semiparametric efficient variance for evaluating any policy,
and not as V

(n)
∗ , the semiparametric efficient variance for evaluating the optimal policy π∗.

In the following section, we seek to replace the dependence on V
(n)
max with one on V

(n)
∗ , at

the expense of stronger assumptions on the class Πn.

3.4 Improved Bounds via Slicing

To move past the V
(n)
max scaling above, we need a closer analysis that cuts the space Πn into

strata of policies that have comparable values of V (n)(π), and then develop concentration
bounds for these strata separately. This “slicing” idea is common in the literature, and has
been used in different contexts by, e.g., Bartlett et al. (2005) and Giné and Koltchinskii
(2006).

The reason we might expect slicing to work in our case is that, as discussed earlier,
the efficient variance for evaluating any given policy π is V (n)(π) = V

(n)
max −Q2

n (π). Thus,
any “good” policy, i.e., with a large value Qn(π), must also have a small efficient variance
V (n)(π). More specifically, letting Πλ,n denote the set of policies with with regret at most
λ,

Πλ,n = {π ∈ Πn : R (π) ≤ λ} , (32)

we immediately see that

sup
{
V (n) (π) : π ∈ Πλ,n

}
≥ V (n)

λ := V (n) (π∗n) + 2λQn (π∗n) , (33)

where π∗n is an optimal policy.

16

This improved variance bound suggests an argument proceeding in two stages: First,
Theorem 5 already established that the learned policy π̂n has regret going to 0 and so
P[π̂ ∈ Πλ,n]→ 1 for any fixed λ > 0; then, in a second stage, we use the improved variance
bounds in (33) to get tighter concentration bounds for π̂n.

The fact that such a slicing argument works is not to be taken for granted; and, in
our case, is a property that hinges crucially on the fact that, if we use an efficient method
for policy evaluation, then there do not exist any policies πn that simultaneously have low
regret and are hard to evaluate (i.e., V (n)(πn) is large). Given other evaluation methods,
e.g., inverse propensity weighting as used in Kitagawa and Tetenov (2015) or Swaminathan
and Joachims (2015), such a slicing argument may not work.

Below we establish a concentration bound for Πλ,n under the following assumption on
the entropy of Πn: for some αn > 0,

log (NH (ε, Πn)) ≤ αn log
(
ε−1
)
, for all 0 < ε <

1

2
. (34)

Note that if Πn is a VC-class then the above holds with αn ≤ 6 VC(Πn); see (23).

Theorem 6. Under the conditions of Theorem 5, suppose moreover that (34) holds for a
sequence αn = O

(
nβ
)

for some β < 1/2, and let λ > 0 be predetermined. Then, for any
δ > 0 there is a universal constant Cδ, as well as a potentially problem-specific threshold N ,
such that for all n ≥ N , with probability at least 1− δ,

sup
π∈Πλ,n

∣∣∣Q̃n (π)−Qn (π)
∣∣∣ ≤ Cδ

√√√√αn
n
V

(n)
λ

(
1 + log

(
V

(n)
max

V
(n)
λ

))
, (35)

where αn controls the complexity of Πn via (34).

Although the above bound may superficially look like a direct extrapolation from (28),
we caution that the proof relies on a subtly different construction than that used in Lemma
2, requiring stronger assumptions. In particular, the additional factor log(V

(n)
max/V

(n)
∗) in

the bound below is directly tied to the entropy growth rate assumed in (34); and in fact is
closely related to the log(n) factor appearing in the empirical Bernstein bounds of Cortes
et al. (2010) and Maurer and Pontil (2009).

Given this result, the proof of our main result follows immediately. Note that, whenever
the condition (34) holds, we can replace the term VC(Πn) with αn/6 in the statement of
Theorem 1.

Proof of Theorem 1. Given that Πn is a VC class, recall that (34) holds with αn ≤ 6 VC(Πn).
Now, set

λ =
1

3
lim inf
n→∞

{
V (n)(π∗)

} /
lim sup
n→∞

{Qn(π∗)} ,

so V
(n)
λ ≤ 2V

(n)
∗ for large enough n. By Theorem 5, we know that P[π̂ ∈ Πλ] → 1, and

so (16) follows immediately from Theorem 6 paired with Lemma 4 (recall that, given (34),
κ2(Πn) = O (αn)).

4 A Lower Bound for Minimax Policy Regret

To complement the upper bounds given in Theorems 1 and 5, we also present lower bounds
on the minimax risk for policy learning, with the goal of showing that these upper bounds

17

are optimal up to constants. Of course, any optimality statement about upper bounds must
be considered with care, as it is sensitive to the class of bounds under consideration. For
example, after proving the bound (4), Kitagawa and Tetenov (2015) effectively argue that
their bound is optimal—and, in fact, it is the best possible regret bound for policy learning
that only depends on M , η, VC(Π) and n, because sometimes M/η is a sharp bound for
the semiparametric variance V∗ (again, up to constants). But in this paper, we found that
it is possible to meaningfully improve on the bound of Kitagawa and Tetenov (2015) if we
are willing to have a more nuanced dependence on the {Xi, Yi, Wi}-distribution.

In this light, our goal is to show that our bounds are the best possible regret bounds that
flexibly account for the joint distribution of {Xi, Yi, Wi}, but only depend on the policy
class Π through the Vapnik-Chervonenkis dimension VC(Π). This approach is in line with
existing results in the machine learning literature: It is well known that regret bounds for
empirical risk minimization over Π based on structural summaries of Π (such as the VC
dimension) may sometimes be loose (Bartlett and Mendelson, 2006); however, it is not clear
how to exploit this fact other than by conducting ad-hoc analyses for specific choices of Π.

To establish our result, we consider lower bounds over sequences of problems defined
as follows. Let Xs := [0, 1]s denote the s-dimensional unit cube for some positive integer
s, and let m(x) and e(x) be ds/2 + 1e times continuously differentiable functions over Xs.
Moreover, let σ2(x) and τ(x) be functions on Xs such that σ2(x) is bounded away from 0
and ∞, and |τ(x)| is bounded away from ∞. Then, we define an asymptotically ambiguous
problem sequence as one where {Xi, Yi, Wi} are independently and identically distributed
drawn as

Xi ∼ Uniform (Xs) , Wi

∣∣Xi ∼ 2 · Bernoulli(e(Xi))− 1,

Yi
∣∣Xi, Wi ∼ N

(
m(Xi) +

(
Wi + 1

2
− e(Xi)

)
τ(Xi)√

n
, σ2(Xi)

)
.

(36)

Because of the number of derivatives assumed on m(x) and e(x), it is well known that simple
series estimators satisfy Assumption 1,19 and so Theorem 1 immediately implies that, under
unconfoundedness,

Rn (π̂n) = OP

(√
V∗VC (Π)

n

)
, V∗ = E

[
σ2(Xi)

e(Xi) (1− e(Xi))

]
(37)

for any policy class Π with finite VC dimension. Here, we also note that (14) implies that
Vmax ∼ V (π∗) in our problem as the treatment effect gets small for large n. The following
result shows that (37) is sharp up to constants.

Theorem 7. Let m(x), e(x), and σ(x) be functions over Xs satisfying the conditions dis-
cussed above, and let d be a positive integer. Then, there exists a class of functions Π over
Xs with VC (Π) = d (and a constant C) such that the minimax risk for policy learning over
the data generating distribution (36) (with unknown |τ(x)| ≤ C) and the policy class Π is

19For a precise argument, we need to address the fact that we have not assumed the treatment effect
function τ(x) to be differentiable. To address this issue, note that in our data-generating process (36) we
have E [Yi|Xi = x] = m(x) regardless of n. Thus, because both e(x) and m(x) are sufficiently differentiable,
we can use standard results about series estimation to obtain oP (n−1/4)-consistent estimators ê(x) and
m̂(x) for these quantities. Next, for the purpose of our policy learner, we simply set µ̂0(x) = µ̂1(x) = m̂(x);
and because E

[
τ2(Xi)/

√
n
]

= O(1/n), these regression adjustments in fact satisfy Assumption 1.

18

bounded from below as

lim inf
n→∞

{
√
n inf

π̂n

{
sup

|τ(x)|≤C
{E [Rn (π̂n)]}

}}
≥ 0.33

√
V∗d. (38)

Here, the fact that we focus on problems where the magnitude of the treatment effect
scales as 1/

√
n is important, and closely mirrors the type of asymptotics used by Hirano

and Porter (2009). If treatment effects decay faster than 1/
√
n, then learning better-than-

random policies is effectively impossible—but this does not matter, because of course all
decision rules have regret decaying as o(1/

√
n) and so Theorem 1 is loose. Conversely, if

treatment effects dominate the 1/
√
n scale, then in large samples it is all but obvious who

should be treated and who should not, and it is possible to get regret bounds that decay
at superefficient rates (Luedtke and Chambaz, 2017), again making Theorem 1 loose. But
if the treatment effects obey the Θ(1/

√
n) scaling of Hirano and Porter (2009), then the

problem of learning good policies is neither trivial nor impossible, and the value of using
efficient policy evaluation for policy learning becomes apparent.

5 Discussion

In this paper, we showed how classical concepts from the literature on semiparametric effi-
ciency can be used to develop performant algorithms for policy learning with strong asymp-
totic guarantees. Our regret bounds may prove to be particularly relevant in applications
since, unlike existing bounds, they are sharp enough to distinguish between different a priori
reasonable policy learning schemes (e.g., ones based on inverse-propensity weighting versus
double machine learning), and thus provide methodological guidance to practitioners. We
end our paper by discussing some potential extensions to our analysis.

First, following Manski (2004) and Hirano and Porter (2009), Kitagawa and Tetenov
(2015), Stoye (2009), etc., our analysis is built on minimax regret bounds for learning a
decision rule π from a pre-specified class Π that encodes constraints related to fairness, bud-
get, functional form, etc. A limitation of this minimax approach is that it doesn’t allow us
to leverage further regularity properties of the optimal policy π∗ = argmax {Q(π) : π ∈ Π}:
For example, if Π consists of all k-sparse linear decision rules, but the optimal policy is
actually k′-sparse for some k′ � k, then our regret bounds will depend on k rather than k′.

Developing methods for policy learning that can adapt to the complexity of the optimal
treatment allocation rule π∗ would be of considerable interest. As one step in this direction,
Mbakop and Tabord-Meehan (2016) extend the analysis of Kitagawa and Tetenov (2015)
to the setting where an analyst wants to learn a policy π belonging to a sequence of nested
policy classes Π` for ` = 1, 2, ..., and consider the resulting problem of model selection
(i.e., choosing the optimal index ` to use for empirical welfare maximization). Because our
regret bounds hold uniformly over policy classes of different sizes satisfying our Assumption
2, we can pair our results about efficient policy learning with the model selection method
of Mbakop and Tabord-Meehan (2016) to obtain improved regret bounds in their setting.
Further work on adaptive policy learning would complement a long existing literature on
adaptive minimax estimation and inference (e.g., Armstrong and Kolesár, 2016; Birgé and
Massart, 2001; Cai and Low, 2005; Donoho and Johnstone, 1994; Efron, 1983; Lepskii, 1991).

Second, this paper has focused on policy learning in observational designs where the un-
confoundedness assumption (2) holds. Although this setting is commonly studied, it is not
the only possible setting where optimal policies may be estimated using observational data.

19

For example, in survival analysis, we may want to learn a treatment policy that maximizes
expected quality-adjusted life years; and in order to do so, have access to an unconfounded
treatment assignment mechanism but with incomplete outcomes due to administrative cen-
soring (i.e., some subjects are lost to follow-up before death). Another example that arises
frequently in econometrics is working with treatment effects that can only be identified via
instruments.20

Because our analysis is framed in terms of uniform bounds for efficient policy evaluation,
our results allow for fairly straight-forward extensions to more general settings. Given any
problem where we know the efficient score for policy evaluation, we could learn π̂ via a variant
of (9) with weights Γ̂i obtained via an appropriate Neyman-orthogonal double-machine-
learning construction as discussed by Chernozhukov et al. (2016). Our concentration bounds
for the oracle policy learner (Theorems 3 and 6) would then hold verbatim, and we would
only need to extend the argument from Lemma 4 that controls the uniform convergence of
double machine learning.

Finally, our experience shows that results on semiparametrically efficient estimation are
not just useful for statistical inference, but are also directly relevant to applied decision
making problems. It will be interesting to see whether related insights will prove to be
more broadly helpful for, e.g., sequential problems with contextual bandits, or non-discrete
decision making problems involving, say, price setting or capacity allocation.

6 Proofs

6.1 Proof of Lemma 2

Our proof of this result follows the outline of Dudley’s chaining argument, whereby we
construct a sequence of approximating sets of increasing precision for Q̃n(π) with π ∈ Πn,
and then use finite concentration inequalities to establish the behavior of Q̃n(π) over this
approximation set. The improvements in our results relative to existing bounds described
in the body of the text come from a careful construction of approximating sets targeted to
the problem efficient policy evaluation—for example, our use of chaining with respect to the
random distance measure defined in (39)—and the use of sharp concentration inequalities.

Given these preliminaries, we start by defining the conditional 2-norm distance between
two policies π1, π2 as (throughout this proof, we suppress the dependence of Γ

(n)
i on n)

D2
n (π1, π2) =

1

4

n∑
i=1

Γ2
i (π1(Xi)− π2(Xi))

2 / n∑
i=1

Γ2
i , (39)

and let NDn(ε, Πn, {Xi, Γi}) be the ε-covering number in this distance. To bound NDn ,
imagine creating another sample

{
X ′j
}m
j=1

, with X ′j contained in the support of {Xi}ni=1,
such that ∣∣∣∣∣∣∣{j ∈ 1, ..., m : X ′j = Xi

}∣∣−mΓ2
i /

n∑
i=1

Γ2
i

∣∣∣∣∣ ≤ 1.

20In order to learn optimal policies with treatment effect estimates specified via instruments, it would be
helpful to make assumptions that let us identify the average welfare improvement of any policy over random
assignment, rather than just a local average welfare improvement (Imbens and Angrist, 1994). For exam-
ple, we could assume that treatment effects are conditionally uncorrelated with compliance, such that the
conditional average treatment effect is identified as τ(x) = Cov

[
Yi, Zi

∣∣Xi = x
]
/ Cov

[
Wi, Zi

∣∣Xi = x
]
,

where Zi is an instrument. If we cannot identify average welfare gains from policies, further conceptual
developments may be necessary.

20

We immediately see that, for any two policies π1 and π2,

1

m

m∑
j=1

1
({
π1(X ′j) 6= π2(X ′j)

})
= D2

n (π1, π2) +O
(

1

m

)
.

Now, recall that NH as used in our entropy integral (22) does not depend on sample size,
so we can without reservations make m arbitrarily large, and conclude that

NDn (ε, Πn, {Xi, Γi}) ≤ NH
(
ε2, Πn

)
. (40)

In other words, we have found that we can bound the Dn-entropy of Πn with respect to its
distribution-independent Hamming entropy.

Now, for every element π ∈ Πn, define a set of approximations Aj(π) : X → {±1}
for j = 1, 2, ... with the property that Dn(Aj(π), Aj+1(π)) ≤ 2−j , and that the set Πj

n :=
{Aj(π) : π ∈ Πn} of j-th order approximating policies has cardinality at mostNDn(2−j , Πn, {Xi, Γi}).
Moreover, without loss of generality, we can construct these approximations such that there
is no branching in the approximating sequences, i.e., Aj(π) = Aj (Aj+1(π)) for all j and π.
Finally, we use the notation A0(π)(x) = 0. Then, for any index J , we clearly have

π(x) = (π(x)−AJ(π)(x)) +

J∑
j=1

(Aj(π)(x)−Aj−1(π)(x)) , (41)

and also note that, for any π and j,

1

n
Var

[
n∑
i=1

ΓiZi (Aj(π)(Xi)−Aj+1(π)(Xi))
∣∣ {Xi, Γi}ni=1

]
= 4V̂ D2

n (Aj(π)(Xi), Aj+1(π)(Xi)) ≤ 22−2j V̂ ,

(42)

where V̂ =
∑n
i=1 Γ2

i /n.
Our goal is to use the series-based representation in (41) to obtain concentration bounds

for our empirical process. To do so, it is helpful to consider terms on 3 different scales, set
apart by

J(n) :=
⌊
log2(n) (1− β − ω)

/
2
⌋
, J+(n) := blog2(n) (1− β − ω)c . (43)

Given these thresholds, we can immediately use Jensen’s inequality to check that

1

n

n∑
i=1

ΓiZi
(
π(Xi)−AJ+(n)(π)(Xi)

)
≤

√√√√ 1

n

n∑
i=1

Γ2
i

(
π(Xi)−AJ+(n)(π)(Xi)

)2
= 2Dn

(
π(Xi), AJ+(n)(π)(Xi)

)√
V̂ ≤ 24−J+(n)

√
V̂ ,

and so, given that lim inf J+(n)/ log2(n) > 1/2 (because β + ω < 1/2),

lim
n→∞

√
nE

[
1

n

n∑
i=1

ΓiZi
(
π(Xi)−AJ+(n)(π)(Xi)

)]
= 0,

meaning that we can safely ignore all terms Aj(π)(Xi)−Aj+1(π)(Xi) with j ≥ J+(n). The
rest of the proof will show that the terms with J(n) ≤ j < J+(n) are also asymptotically

21

negligible, while the low-order terms with 1 ≤ j < J(n) determine the first-order behavior
of Rn(Πn).

Our arguments build on Bernstein’s inequality, which guarantees that for any indepen-
dent, mean-zero variables Si with |Si| ≤M , and any constant t > 0

P

[
1√
n

∣∣∣∣∣
n∑
i=1

Si

∣∣∣∣∣ ≥ t
]
≤ 2 exp

[
−t2

2

/ (
1

n

n∑
i=1

E
[
S2
i

]
+

Mt

3
√
n

)]
. (44)

In our problem, Bernstein’s inequality means that conditionally on {Xi, Γi} and writing
Mn = 2 sup {|Γi| : 1 ≤ i ≤ n}, we have, for any choice of t > 0, π ∈ Πn and j = 1, 2, ...,

P

[∣∣∣∣∣ 1√
n

n∑
i=1

ΓiZi (Aj(π)(Xi)−Aj+1(π)(Xi))

∣∣∣∣∣ ≥ t 22−j
√
V̂

]
(45)

≤ 2 exp

[
−t242−j V̂

2

/ (
4

n

n∑
i=1

Γ2
i 1 ({Aj(π)(Xi) 6= Aj+1(π)(Xi)}) +

Mnt 22−j
√
V̂

3
√
n

)]

= 2 exp

[
−t242−j V̂

2

/ (
16D2

n (Aj(π), Aj+1(π)) V̂ +
Mnt 22−j

√
V̂

3
√
n

)]

≤ 2 exp

−t2
2

(
1 +

1

12

Mnt 2j√
nV̂

)−1
 ,

where on the last line we used the fact that D2
n (Aj(π), Aj+1(π)) ≤ 4−j . Moreover, by the

same argument

P

[∣∣∣∣∣ 1√
n

n∑
i=1

ΓiZi (Aj(π)(Xi)− π(Xi))

∣∣∣∣∣ ≥ t 23−j
√
V̂

]

≤ 2 exp

−t2
2

(
1 +

1

24

Mnt 2j√
nV̂

)−1
 , (46)

because D2
n (Aj(π), π) ≤ 41−j for any policy π via the geometric series formula.

Given these preliminaries, we are now ready to verify that terms Aj(π)(Xi)−Aj+1(π)(Xi)
in (41) with J(n) ≤ j < J+(n) are in fact negligible. To do so, we collapse all approximating
policies with J(n) ≤ j < J+(n), and directly compare AJ(n)(π) to AJ+(n)(π). Because of
our “no branching” construction, we know that AJ(n)(π) = AJ(n)(AJ+(n)(π)) for all policies
π ∈ Πn, and so

P

[
sup

{∣∣∣∣∣ 1√
n

n∑
i=1

ΓiZi
(
AJ(n)(π)(Xi)−AJ+(n)(Xi)

)∣∣∣∣∣ : π ∈ Πn

}
≥ t 23−J(n)

√
V̂

]

= P

[
sup

{∣∣∣∣∣ 1√
n

n∑
i=1

ΓiZi
(
AJ(n)(π)(Xi)− π(Xi)

)∣∣∣∣∣ : π ∈ ΠJ+(n)
n

}
≥ t 23−J(n)

√
V̂

]

≤ 2
∣∣∣ΠJ+(n)

n

∣∣∣ exp

−t2
2

(
1 +

1

24

Mnt 2J(n)√
nV̂

)−1
 ,

22

where the last inequality is simply a union bound over (46). By Assumption, 2, we know
that

log
∣∣∣ΠJ+(n)

n

∣∣∣ ≤ logNDn

(
2−J+(n), Πn, {Xi, Γi}

)
≤ logNH

(
4−J+(n), Πn

)
≤ Cnβ4ωJ+(n).

Moreover, given our choice of J+(n) from (43), we get

nβ4ωJ+(n) ≤ nβ+2ω(1−β−ω) = n
1
2 +

(1−2β−2ω)(2ω−1)
2 ,

and note that (1− 2β − 2ω) (2ω − 1) < 0 because ω, β + ω < 1/2 by Assumption 2. Thus,
plugging t2 = 4J(n)/(V̂ log(n)) into the above bound we see that, for large values of n

P

[
sup

{∣∣∣∣∣ 1√
n

n∑
i=1

ΓiZi
(
AJ(n)(π)(Xi)−AJ+(n)(Xi)

)∣∣∣∣∣ : π ∈ Πn

}
≥ 8/

√
log(n)

]

≤ 2
∣∣∣ΠJ+(n)

n

∣∣∣ exp

[
−6t

√
nV̂

2J(n)Mn

]

≤ 2 exp

[
√
n

(
Cn

(1−2β−2ω)(2ω−1)
2 − 6

Mn

√
log(n)

)]
.

Finally, noting that

Mn = OP
(√

log (n)
)

(47)

because Γi is sub-Gaussian and Var [Γi] is bounded from below (recall that Mn is the
supremum of |Γi|), we conclude that n(1−2β−2ω)(2ω−1)/2 � 6 /Mn

√
log(n) for large values

of n, and so the right-hand side probability bound converges to 0. In other words, we have
shown that

sup

{∣∣∣∣∣ 1√
n

n∑
i=1

ΓiZi
(
AJ(n)(π)(Xi)−AJ+(n)(Xi)

)∣∣∣∣∣ : π ∈ Πn

}
≤ 8√

log(n)

with probability tending to 1 at a rate of e−Ω(
√
n/ log(n)). Noting the speed of the conver-

gence, it is also straight-forward to check that the expectation of the supremum is bounded
at the same scale, and so term with J(n) ≤ j < J+(n) in fact do not contribute to the
Rademacher complexity, as claimed.

We are now finally ready to study the terms of (41) that matter, i.e., those with j < J(n).
To get started, for every n, j ≥ 1 and a sequence δn > 0, define the event

Ej, n :=

{
sup
π∈Πn

∣∣∣∣∣ 1√
n

n∑
i=1

ΓiZi (Aj(π)(Xi)−Aj+1(π)(Xi))

∣∣∣∣∣ ≥ 22−jtj,n

√
V̂

}

tj,n := 2

√
log
(
NH

(
4−(j+1), Πn

))
+ log

(
2j2

δn

)
.

(48)

By (45), we immediately see that

P [Ej, n] ≤ 2
∣∣Πj+1

n

∣∣ exp

−t2j,n
2

(
1 +

1

12

Mntj,n 2j√
nV̂

)−1
 .

23

Moreover, using similar arguments to those made above (and in particular, leveraging As-
sumption 2) we see that, for all j ≤ J(n)− 1,√

log
(
NH

(
4−(j+1), Πn

))
2j

√
n

≤

√
log
(
NH

(
4−J(n), Πn

))
2J(n)

√
n

≤
(
Cnβ/22ωJ(n)

)
2J(n)

√
n

≤ n
β+(1+ω)(1−β−ω)−1

2 = n
−ω(β+ω)

2 .

Recalling (47) and assuming that δ−1
n grows at most polynomially in n, this implies that

there is an index N such that for all n ≥ N and all j < J(n),

P [Ej, n] ≤ 2
∣∣Πj+1

n

∣∣ exp

[
−t2j,n

4

]
=
δn
j2

∣∣Πj+1
n

∣∣ /NH (4−(j+1), Πn

)
≤ δn
j2
.

Thus, we find that, for large enough n, Ej, n does not happen for any 1 ≤ j < J(n) with
probability at least 1− δn

∑∞
j=1 j

−2.
Moreover, on the event than none of these Ej, n happen,

√
n sup
π∈Πn

∣∣∣∣∣∣ 1n
n∑
i=1

ΓiZi

J(n)∑
j=1

(Aj(π)−Aj−1(π)) (Xi)

∣∣∣∣∣∣ (49)

≤
√
V̂

J(n)∑
j=1

23−j
√

log (NH (4−j , Πn)) + log(j2/δn)

≤ 8
√
V̂

∫ 1

0

√
log (NH (ε2, Πn)) + 2 log (1 + log2 (ε−1)) + log(δ−1

n) dε

≤ 8
√
V̂

(
κ (Πn) +

∫ 1

0

√
2 log (1 + log2 (ε−1)) dε+

√
log(δ−1

n)

)
.

Applying this bound separately for the sequences δn = max
{

2−k, 1/n
}

for k = 1, 2, ..., we
can turn the above into a bound on the expectation:

√
nE

 sup
π∈Πn

∣∣∣∣∣∣ 1n
n∑
i=1

ΓiZi

J(n)∑
j=1

(Aj(π)−Aj−1(π)) (Xi)

∣∣∣∣∣∣


≤ 8E
[√

V̂
](

κ (Πn) +

∫ 1

0

√
2 log (1 + log2 (ε−1)) dε+

∞∑
k=1

√
k log(2)

2k

)
+O

(√
log(n)

n

)
,

where the last term is a crude bound (obtained via (47)) on the expectation of our statistic
of interest on the event that all Bernstein bounds fail, occurring with probability at most
1/n. Finally, recalling our earlier conclusion that higher order terms in the expansion (41)
do not asymptotically affect the Rademacher complexity, we conclude that

Rn(Πn) ≤ 8

√
E [Γ2]

n

(
κ (Πn) +

∫ 1

0

√
2 log (1 + log2 (ε−1)) dε+

∞∑
k=1

√
k log(2)

2k

)
+O

(√
log(n)

n

)
,

noting that E[
√
V̂] ≤

√
E [Γ2] by concavity of the square-root function.

24

6.2 Proof of Theorem 3

First, as argued by, e.g., Bartlett and Mendelson (2002) in the proof of their Theorem 8,

E
[

sup
π∈Π

∣∣∣Q̃n (π)−Qn (π)
∣∣∣] ≤ 2E [Rn (Πn)] . (50)

Thus, to make use of Lemma 2, it suffices to bound supπ∈Πn

∣∣∣Q̃n (π)−Qn (π)
∣∣∣ in terms of

its expectation. Now, recall that Q̃n(π) = n−1
∑

Γ
(n)
i π(Xi), and that the Γ

(n)
i are uniformly

sub-Gaussian. Now, because the Γ
(n)
i are not bounded, it is convenient to define truncated

statistics

Q̃(−)
n (π) =

1

n

n∑
i=1

Γ
(n−)
i π(Xi), Γ

(n−)
i = Γ

(n)
i 1

({∣∣∣Γ(n)
i

∣∣∣ ≤ log(n)
})

.

Here, we of course have that |Γ(n−)
i | ≤ log(n), and so we can apply Talagrand’s inequality

as described in Bousquet (2002) to these truncated statistics. We see that, for any δ > 0,
with probability at least 1− δ,

sup
π∈Πn

∣∣∣Q̃(−)
n (π)−Q(−)

n (π)
∣∣∣ ≤ E

[
sup
π∈Πn

∣∣∣Q̃(−)
n (π)−Q(−)

n (π)
∣∣∣]

+

√
2

log (δ)

n

(
E
[(

Γ
(n)
i

)2
]

+ 2 log(n)E
[

sup
π∈Πn

∣∣∣Q̃(−)
n (π)−Q(−)

n (π)
∣∣∣])+

log(n) log(δ)

3n
,

where we used the short-hand Q
(−)
n (π) = E[Q̃

(−)
n (π)]. Moreover, because the Γ

(n)
i are uni-

formly sub-Gaussian, we can immediately verify that

E
[∣∣∣∣ sup
π∈Πn

∣∣∣Q̃(−)
n (π)−Q(−)

n (π)
∣∣∣− sup

π∈Πn

∣∣∣Q̃n (π)−Qn (π)
∣∣∣∣∣∣∣]

decays exponentially fast in n. Using (50) and noting that, by Lemma 2, E [Rn (Πn)] decays
as O (1/

√
n), we conclude that with probability at least 1− δ,

sup
π∈Πn

∣∣∣Q̃n (π)−Qn (π)
∣∣∣ ≤ 2E [Rn (Πn)]

+

√
2E
[(

Γ
(n)
i

)2
]

log (δ)
/
n+O

(
log(n)Rn (Πn)√

n

)
,

(51)

thus establishing the first part of the theorem statement. Meanwhile, to prove the second
part, we simply note that Q̃n(π̃n) ≥ Q̃n(π∗n) by construction, and then apply (51) at both π̃n
and π∗n (where π∗n denotes the regret-minimizing policy in the n-th problem of our sequence).

6.3 Proof of Lemma 4

To streamline notation, we omit (n)-superscripts on µ̂(·), ê(·), Q̂, etc., throughout this proof.
For any fixed policy π, we begin by expanding out the difference of interest. Write

Q̂+1(π) =
1

n

n∑
i=1

π(Xi)

(
µ̂

(−k(i))
+1 (Xi) + 1 ({Wi = 1})

Yi − µ̂(−k(i))
+1 (Xi)

ê
(−k(i))
+1 (Xi)

)
,

25

and define Q̂−1(π) and Q̃±1(π) analogously, such that Q̂(π) = Q̂+1(π)− Q̂−1(π), etc. Then,

Q̂+1(π)− Q̃+1(π) =
1

n

n∑
i=1

π(Xi)

(
µ̂

(−k(i))
+1 (Xi)− µ+1(Xi)

+ 1 ({Wi = +1})

(
Yi − µ̂(−k(i))

+1 (Xi)

ê
(−k(i))
+1 (Xi)

− Yi − µ+1(Xi)

e+1(Xi)

))

=
1

n

n∑
i=1

π(Xi)
(
µ̂

(−k(i))
+1 (Xi)− µ+1(Xi)

)(
1− 1 ({Wi = 1})

e+1(Xi)

)

+
1

n

∑
{i:Wi=1}

π(Xi) (Yi − µ+1(Xi))

(
1

ê
(−k(i))
+1 (Xi)

− 1

e+1(Xi)

)

+
1

n

∑
{i:Wi=1}

π(Xi)
(
µ+1(Xi)− µ̂(−k(i))

+1 (Xi)
)(1

ê
(−k(i))
+1 (Xi)

− 1

e+1(Xi)

)
.

Denote these three summands by A+1(π), B+1(π), C+1(π). We will be to bound all 3
summands separately.

To bound the first term, it is helpful separate out the contributions of the K different
folds:

A
(k)
+1(π) =

1

n

∑
{i:k(i)=k}

π(Xi)
(
µ̂

(−k)
+1 (Xi)− µ+1(Xi)

)(
1− 1 ({Wi = 1})

e+1(Xi)

)
. (52)

Now, because µ̂
(−k)
+1 (·) was only computed using data from the K−1 folds, we can condition

on the value of this function estimate to make the individual terms in the above sum
independent. By Assumption 1, we know that

sup
x∈X

∣∣∣(µ̂(−k)
+1 (x)− µ+1(x)

)∣∣∣ ≤ η
with probability tending to 1, and so, by overlap, the individual summands in (52) are
bounded by 1 (and thus uniformly sub-Gaussian) with probability tending to 1. Then,
writing

Vn(k) = E

[(
µ̂

(−k)
+1 (X)− µ+1(X)

)2
(

1− 1 ({Wi = 1})
e+1(Xi)

)2 ∣∣ µ̂(−k)
+1 (·)

]
for the variance of A

(k)
+1(π) conditionally on the regression model µ̂

(−k)
+1 (·) fit on the other

K − 1 folds, we can apply Theorem 3 to establish that

n

nk
sup
π∈Π

∣∣∣A(k)
+1(π)

∣∣∣ ∣∣∣∣∣ µ̂(−k)
+1 (·) = OP

κ (Πn)

√
Vn(k)

nk

+O
(

log (nk)

nk

)
, (53)

where nk = |{i : k(i) = k}| denotes the number of observations in the k-th fold.
Next, recalling that constructed our double machine learning estimator using a finite

number of evenly-sized folds, nk/n → 1/K, we can use overlap (for the first inequality
below) and our risk bounds in Assumption 1 (for the second inequality) to check that

Vn(k) ≤ 1

η2
E
[(
µ̂

(−k)
+1 (X)− µ+1(X)

)2 ∣∣ µ̂(−k)
+1 (·)

]
= OP

(
a

(
K − 1

K
n

)
n−ζµ

)
. (54)

26

Then, applying (53) separately to all K folds and using Markov’s inequality, we find that

A+1(π) = OP

(
κ (Πn)

√
a((1−K−1)n)

n1+ζµ

)
,

B+1(π) = OP

(
κ (Πn)

√
a((1−K−1)n)

n1+ζe

)
,

(55)

noting that the argument used to bound B+1(π) is analogous to the one used for A+1(π).
It now remains to bound the final term, C+1(π). Here, we can use the Cauchy-Schwarz

inequality to verify that

C+1(π) =
1

n

∑
{i:Wi=1}

π(Xi)
(
µ+1(Xi)− µ̂−k(i)

+1 (Xi)
)(1

ê
−k(i)
+1 (Xi)

− 1

e+1(Xi)

)

≤

√√√√ 1

n

∑
{i:Wi=1}

(
µ+1(Xi)− µ̂−k(i)

+1 (Xi)
)2
√√√√ 1

n

∑
{i:Wi=1}

(
1
/
ê
−k(i)
+1 (Xi)− 1

/
e+1(Xi)

)2

.

Then, applying Cauchy-Schwarz again to the above product, we see that

E
[

nC+1(π)

|{i : Wi = 1}|

]
≤

√
E
[(
µ̂
−k(i)
+1 (X)− µ+1(X)

)2
]
E
[(

1/ê
−k(i)
+1 (X)− 1/e+1(X)

)2
]

≤ a
(⌊

K − 1

K
n

⌋)/√⌊K − 1

K
n

⌋
,

The desired conclusion now follows from Markov’s inequality, along with an application of
the same argument to Q̂−1(π).

6.4 Proof of Theorem 6

Throughout this proof, we suppress sub- and superscripts indexing dependence on n. To
establish this result, we follow the strategy in the proof of Theorem 3. We apply Talagrand’s
inequality to get the following analogue to (51),

sup
{∣∣∣Q̃ (π)−Q (π)

∣∣∣ : π ∈ Πλ

}
≤ 2E [R (Πλ)] +

√
2Vλ log (δ)

n
+O

(
log(n)

n

)
, (56)

and so our task again reduces to bounding the Rademacher complexity E [R (Πλ)]. At this
point, however, it is convenient to slightly alter our definition of Rademacher complexity,
and set

R (Πλ) := sup

{
1

n

n∑
i=1

Zi (Γiπ(Xi)−Q (π∗))

}
, (57)

where the Zi are independent Rademacher variables and the Γi are defined as before. Here,
the addition of a constant offset by no means alters the argument behind (56); formally, we
would get to this notion of Rademacher complexity by trying to establish concentration of
|Q̃ (π)−Q(π∗)− (Q (π)−Q(π∗))|. However, this offset term will let us leverage the fact
that π ∈ Πλ to get better bounds.

27

Now, we start following the proof of Lemma 2 exactly up to (49), implying that

R (Πλ) = (1 + oP (1))E

[
sup
π∈Πλ

∣∣∣∣∣ 1n
n∑
i=1

Zi
(
ΓiAJ(n)(π)−Q (π∗)

)∣∣∣∣∣
]
, (58)

with J(n) = blog2(n)(3/2− β)/4c (this follows from (43) by setting ω = (1/2−β)/2, which
satisfies Assumption 2 whenever Π is a VC-class and β < 1/2). Now, in the previous proof,
we continued by writing the right-hand side of (58) as a chained sum in (49); here, in
contrast, we need to use a more careful partial chaining argument instead.

As a preliminary step to doing so, define

J0 := max {1, blog4(Vmax/Vλ)c} ,

and note that we can define a new approximating function AλJ0(·) with the following prop-
erties:

D
(
AλJ0 (π) , AJ0+1 (π)

)
≤ 2−J0 for all π ∈ Πλ, AλJ0 (π) ∈ Πλ for all π ∈ Πλ, and∣∣{AλJ0 (π) : π ∈ Πλ

}∣∣ ≤ |{AJ0+1 (π) : π ∈ Πλ}| ≤ NH
(
4−J0+1, Π

)
.

In order to build such an approximation, we can check that D(π, AJ0+1 (π)) ≤ 2−J0 for all
π ∈ Π by construction. Thus, for every element π′ ∈ {AJ0+1 (π) : π ∈ Πλ} we know that
there must exist and element π ∈ Πλ for which D(π, π′) ≤ 2−J0 . We can then define the
approximating function AλJ0(·) by mapping each unique element of {AJ0+1 (π) : π ∈ Πλ} to a
policy in Πλ using this relationship. We are now ready to proceed with our partial chaining
argument, and write

sup
π∈Πλ

∣∣∣∣∣ 1n
n∑
i=1

Zi
(
ΓiAJ(n)(π)−Q (π∗)

)∣∣∣∣∣ ≤ sup
π∈Πλ

∣∣∣∣∣ 1n
n∑
i=1

Zi
(
ΓiA

λ
J0(π)−Q (π∗)

)∣∣∣∣∣
+ sup
π∈Πλ

∣∣∣∣∣∣ 1n
J(n)∑

j=J0+1

n∑
i=1

ZiΓi
(
Aλj (π)−Aλj−1(π)

)∣∣∣∣∣∣ ,
(59)

where we used the notational shorthandAλJ0(π) := AλJ0(π) andAλj (π) := Aj(π) for j ≥ J0+1.
Below, we bound both terms in (59) separately.

We start with the first term, and note that for any policy π ∈ Πλ

Var
[
Zi (Γiπ(Xi)−Q (π∗))

∣∣ {Xi, Γi}
]

=
1

n

n∑
i=1

(Γiπ(Xi)−Q (π∗))
2
.

Moreover, we can check that

E
[
(Γiπ(Xi)−Q (π∗))

2
]

= Var [Γiπ(Xi)] + (E [Γiπ(Xi)]−Q (π∗))
2

= V (π) +R (π)
2

= V∗ + 2Q (π∗)R (π) ≤ Vλ,

where all above above algebraic manipulations follow immediately from the definitions of
the involved quantities (e.g., recall that Q̃(π) =

∑
i π(Xi)Γi/n). Given these preliminaries,

28

a straight-forward application of Bernstein’s inequality (44) tells us that, for any δ > 0,

lim sup
n→∞

P

[
1√
nVλ

sup
{π∈Πλ}

{∣∣∣∣∣
n∑
i=1

Zi
(
ΓiA

λ
J0(π)(Xi)−Q (π∗)

)∣∣∣∣∣
}

≥ 2

√
log
(
NH

(
4−(J0+1), Π

))
+ log

(
δ

2

)]
≤ δ.

Furthermore, continuing the same reasoning as before, we see that

lim sup
n→∞

1√
nVλ

E

[
sup
{π∈Πλ}

{∣∣∣∣∣
n∑
i=1

Zi
(
ΓiA

λ
J0(π)(Xi)−Q (π∗)

)∣∣∣∣∣
}]

≤ 2
√

log
(
NH

(
4−(J0+1), Π

))
+ C,

≤ 2
√
α(J0 + 1) log(4) + C,

(60)

for some universal constant C, where on the last line we used our assumption (34).
Meanwhile, as to the second term, we can exactly follow the argument in Lemma 2 to

verify that, for large enough n,

E

 sup
π∈Πλ

∣∣∣∣∣∣ 1n
J(n)∑

j=J0+1

n∑
i=1

ZiΓi
(
Aλj (π)−Aλj−1(π)

)∣∣∣∣∣∣


≤ 8
√
Vmax

∫ 21−J0

0

(√
log (NH (4ε2, Π)) +

√
2 log (1 + log2 (ε−1)) + C

)
dε

≤ 8
√
Vmax

(∫ 21−J0

0

√
2α log (ε−1) +

√
2 log (1 + log2 (ε−1)) dε+ 21−J0C

)
,

for some constant C; to establish the above inequality, we also used (34). We can then verify
by calculus that the above expression can be bounded by

C
√

max {α, 1}Vmax41−J0 log (21−J0)

for some (new) constant C. To show this, it is helpful to note that∫ t

0

√
log(1/ε) dε ≤ 2t

√
log (1/t) for any 0 < t < 1/2.

Pulling everything together, we have found that

√
nE

[
sup
π∈Πλ

∣∣∣∣∣ 1n
n∑
i=1

Zi (Γiπ(Xi)−Q (π∗))

∣∣∣∣∣
]
≤ C

√
max {α, 1} (Vλ J0 + Vmax J0 4−J0)

≤ C
√

5 max {α, 1}Vλ max {1, log4(Vmax/Vλ)},

thus establishing the desired result.

29

6.5 Proof of Theorem 7

We start by defining a specific choice of Π for which this bound holds. Let 0 = a0 < a1 <
. . . < ad = 1 and write Aj = {x : aj−1 < x1 < aj}, j = 1, ..., d for the induced partition of
Xs along the first feature (we also assign points with x1 = 0 to A1), such that

E
[
1 ({X ∈ Aj})

σ2(X)

e(X)(1− e(X))

]
=
V∗
d

for j = 1, ..., d. (61)

Given this setup, we consider the policy class Π defined as the set of all 2d policies that are
piecewise constant over the sets Aj (i.e., each policy π ∈ Π maps sets Aj entirely to either
−1 or +1). Note that the VC-dimension of this class is trivially VC(Π) = d, because an
arbitrary function class over a support of size d can shatter exactly d distinct points.

Now, to lower-bound the minimax risk for policy learning over all bounded treatment
effect functions τ(·), it is sufficient to bound minimax risk over a smaller class of policies T ,
as minimax risk increases with the complexity of the class T . Noting this fact, we restrict
our analysis to treatment functions T such that

τ(x) =
σ2(x) cj

e(x)(1− e(x))

/
E
[
σ2(x) 1 ({X ∈ Aj})
e(X)(1− e(X))

]
for all x ∈ Aj , where cj ∈ R is an unknown coefficient for each j = 1, ..., d. If we knew the
values of cj for j = 1, 2, ..., d, the optimal policy π∗ ∈ Π would be treat only those j-groups
with a positive cj , i.e., π∗(x) = sign(cj) for all x ∈ Aj .

Now, following the argument of Hirano and Porter (2009) (we omit details for brevity),
the minimax policy learner is of the form π̂∗(x) = sign(ĉ∗j) for all x ∈ Aj , where ĉ∗j is an
efficient estimator for cj . Moreover, in this example, we can use (61) to readily verify that
the semiparametric efficient variance for estimating cj is V∗/d. Thus, the efficient estimator
ĉ∗j will incorrectly estimate the sign of cj with probability tending to Φ(−cj

√
d/V∗), where

Φ(·) denotes the standard Gaussian cumulative distribution function. (Recall that, in our
sampling model (36), the signal also decays as 1/

√
n.)

By construction, we suffer an expected utility loss of 2 |cj | from failing to accurately
estimate the sign of cj . Thus, by the above argument, given fixed values of cj , the efficient
policy learner will suffer an asymptotic regret

lim
n→∞

√
nE [Rn] =

d∑
j=1

2 |cj |Φ
(
− |cj |

√
d/V∗

)
,

assuming that an efficient estimator ĉ∗j in fact exists (and we know that one does, following
the discussion in Section 4). Setting |cj | = 0.75

√
V∗/d, this limit becomes

lim
n→∞

√
nE [Rn] = 1.5Φ(−0.75)

√
d V∗,

which, noting that 1.5Φ(−0.75) ≥ 0.33, concludes the proof.

References

A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. Schapire. Taming the monster: A
fast and simple algorithm for contextual bandits. In Proceedings of The 31st International
Conference on Machine Learning, pages 1638–1646, 2014.

30

T. B. Armstrong and M. Kolesár. Optimal inference in a class of regression models. 2016.
S. Athey and G. Imbens. Recursive partitioning for heterogeneous causal effects. Proceedings

of the National Academy of Sciences, 113(27):7353–7360, 2016.
S. Athey, G. W. Imbens, and S. Wager. Approximate residual balancing: De-biased inference

of average treatment effects in high dimensions. arXiv preprint arXiv:1604.07125, 2016a.
S. Athey, J. Tibshirani, and S. Wager. Generalized random forests. arXiv preprint

arXiv:1610.01271, 2016b.
P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed

bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.
P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and

structural results. Journal of Machine Learning Research, 3:463–482, 2002.
P. L. Bartlett and S. Mendelson. Empirical minimization. Probability Theory and Related

Fields, 135(3):311–334, 2006.
P. L. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher complexities. Annals of

Statistics, pages 1497–1537, 2005.
H. Bastani and M. Bayati. Online decision-making with high-dimensional covariates. 2015.
A. Belloni, V. Chernozhukov, I. Fernández-Val, and C. Hansen. Program evaluation with

high-dimensional data. Econometrica, 85(1):233–298, 2017.
A. Beygelzimer and J. Langford. The offset tree for learning with partial labels. In Pro-

ceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 129–138. ACM, 2009.

D. Bhattacharya and P. Dupas. Inferring welfare maximizing treatment assignment under
budget constraints. Journal of Econometrics, 167(1):168–196, 2012.

P. Bickel, C. Klaassen, Y. Ritov, and J. Wellner. Efficient and Adaptive Estimation for
Semiparametric Models. Springer-Verlag, 1998.

L. Birgé and P. Massart. Gaussian model selection. Journal of the European Mathematical
Society, 3(3):203–268, 2001.

L. Bottou, J. Peters, J. Q. Candela, D. X. Charles, M. Chickering, E. Portugaly, D. Ray, P. Y.
Simard, and E. Snelson. Counterfactual reasoning and learning systems: The example
of computational advertising. Journal of Machine Learning Research, 14(1):3207–3260,
2013.

S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities: A nonasymptotic
theory of independence. Oxford university press, 2013.

O. Bousquet. A Bennett concentration inequality and its application to suprema of empirical
processes. Comptes Rendus Mathematique, 334(6):495–500, 2002.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression
Trees. CRC press, 1984.

T. T. Cai and M. G. Low. On adaptive estimation of linear functionals. The Annals of
Statistics, 33(5):2311–2343, 2005.

G. Chamberlain. Bayesian aspects of treatment choice. In The Oxford Handbook of Bayesian
Econometrics. 2011.

G. Chen, D. Zeng, and M. R. Kosorok. Personalized dose finding using outcome weighted
learning. Journal of the American Statistical Association, (just-accepted), 2016.

L.-Y. Chen and S. Lee. Best subset binary prediction. arXiv preprint arXiv:1610.02738,
2016.

31

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and W. Newey. Double
machine learning for treatment and causal parameters. arXiv preprint arXiv:1608.00060,
2016.

C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.
C. Cortes, Y. Mansour, and M. Mohri. Learning bounds for importance weighting. In

Advances in Neural Information Processing Systems, pages 442–450, 2010.
R. H. Dehejia. Program evaluation as a decision problem. Journal of Econometrics, 125(1):

141–173, 2005.
D. L. Donoho and J. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage.

Biometrika, 81(3):425–455, 1994.
M. Dud́ık, J. Langford, and L. Li. Doubly robust policy evaluation and learning. In Pro-

ceedings of the 28th International Conference on Machine Learning, pages 1097–1104,
2011.

R. M. Dudley. The sizes of compact subsets of Hilbert space and continuity of Gaussian
processes. Journal of Functional Analysis, 1(3):290–330, 1967.

B. Efron. Estimating the error rate of a prediction rule: Improvement on cross-validation.
Journal of the American statistical association, 78(382):316–331, 1983.

M. H. Farrell. Robust inference on average treatment effects with possibly more covariates
than observations. Journal of Econometrics, 189(1):1–23, 2015.

E. Giné and V. Koltchinskii. Concentration inequalities and asymptotic results for ratio
type empirical processes. The Annals of Probability, 34(3):1143–1216, 2006.

E. Greenshtein et al. Best subset selection, persistence in high-dimensional statistical learn-
ing and optimization under l1 constraint. The Annals of Statistics, 34(5):2367–2386,
2006.

T. Grubinger, A. Zeileis, and K.-P. Pfeiffer. evtree: Evolutionary learning of globally optimal
classification and regression trees in r. 61(1), 2014.

J. Hahn. On the role of the propensity score in efficient semiparametric estimation of average
treatment effects. Econometrica, pages 315–331, 1998.

D. Haussler. Sphere packing numbers for subsets of the Boolean n-cube with bounded
Vapnik-Chervonenkis dimension. Journal of Combinatorial Theory, Series A, 69(2):217–
232, 1995.

K. Hirano and J. R. Porter. Asymptotics for statistical treatment rules. Econometrica, 77
(5):1683–1701, 2009.

K. Hirano and J. R. Porter. Panel asymptotics and statistical decision theory. The Japanese
Economic Review, 67(1):33–49, 2016.

K. Hirano, G. W. Imbens, and G. Ridder. Efficient estimation of average treatment effects
using the estimated propensity score. Econometrica, 71(4):1161–1189, 2003.

K. Imai and M. Ratkovic. Estimating treatment effect heterogeneity in randomized program
evaluation. The Annals of Applied Statistics, 7(1):443–470, 2013.

G. W. Imbens and J. D. Angrist. Identification and estimation of local average treatment
effects. Econometrica, 62(2):467–475, 1994.

G. W. Imbens and D. B. Rubin. Causal Inference in Statistics, Social, and Biomedical
Sciences. Cambridge University Press, 2015.

N. Kallus. Recursive partitioning for personalization using observational data. pages 1789–
1798, 2017.

M. Kasy. Partial identification, distributional preferences, and the welfare ranking of policies.
Review of Economics and Statistics, 98(1):111–131, 2016.

32

T. Kitagawa and A. Tetenov. Who should be treated? Empirical welfare maximization
methods for treatment choice. Technical report, Centre for Microdata Methods and Prac-
tice, Institute for Fiscal Studies, 2015.

T. Kitagawa, A. Tetenov, et al. Equality-minded treatment choice. Technical report, Centre
for Microdata Methods and Practice, Institute for Fiscal Studies, 2017.

J. Kleinberg, H. Lakkaraju, J. Leskovec, J. Ludwig, and S. Mullainathan. Human decisions
and machine predictions. Technical report, National Bureau of Economic Research, 2017.

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in
Applied Mathematics, 6(1):4–22, 1985.

L. M. Le Cam. Asymptotic Methods in Statistical Theory. Springer-Verlag New York, Inc.,
1986.

O. Lepskii. On a problem of adaptive estimation in Gaussian white noise. Theory of
Probability & Its Applications, 35(3):454–466, 1991.

A. Luedtke and A. Chambaz. Faster rates for policy learning. arXiv preprint
arXiv:1704.06431, 2017.

C. F. Manski. Statistical treatment rules for heterogeneous populations. Econometrica, 72
(4):1221–1246, 2004.

C. F. Manski. Identification for Prediction and Decision. Harvard University Press, 2009.
A. Maurer and M. Pontil. Empirical Bernstein bounds and sample variance penalization.

In Conference on Learning Theory, 2009.
E. Mbakop and M. Tabord-Meehan. Model selection for treatment choice: Penalized welfare

maximization. arXiv preprint arXiv:1609.03167, 2016.
W. K. Newey. The asymptotic variance of semiparametric estimators. Econometrica: Jour-

nal of the Econometric Society, 62(6):1349–1382, 1994.
J. Neyman. Sur les applications de la théorie des probabilités aux experiences agricoles:

Essai des principes. Roczniki Nauk Rolniczych, 10:1–51, 1923.
V. Perchet and P. Rigollet. The multi-armed bandit problem with covariates. 41(2):693–721,

2013.
M. Qian and S. A. Murphy. Performance guarantees for individualized treatment rules.

Annals of Statistics, 39(2):1180, 2011.
A. Rakhlin and K. Sridharan. Bistro: An efficient relaxation-based method for contextual

bandits. 2016.
J. Robins, L. Li, R. Mukherjee, E. Tchetgen, and A. van der Vaart. Minimax estimation of

a functional on a structured high dimensional model. Annals of Statistics, forthcoming,
2017.

J. Robins and A. Rotnitzky. Semiparametric efficiency in multivariate regression models
with missing data. Journal of the American Statistical Association, 90(1):122–129, 1995.

J. Robins, A. Rotnitzky, and L. Zhao. Analysis of semiparametric regression models for
repeated outcomes in the presence of missing data. Journal of the American Statistical
Association, 90(1):106–121, 1995.

J. Robins, L. Li, E. Tchetgen, and A. van der Vaart. Higher order influence functions and
minimax estimation of nonlinear functionals. In Probability and Statistics: Essays in
Honor of David A. Freedman, pages 335–421. Institute of Mathematical Statistics, 2008.

P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational
studies for causal effects. Biometrika, 70(1):41–55, 1983.

D. B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized
studies. Journal of Educational Psychology, 66(5):688, 1974.

33

L. J. Savage. The theory of statistical decision. Journal of the American Statistical Associ-
ation, 46(253):55–67, 1951.

A. Schick. On asymptotically efficient estimation in semiparametric models. The Annals of
Statistics, pages 1139–1151, 1986.

J. Stoye. Minimax regret treatment choice with finite samples. Journal of Econometrics,
151(1):70–81, 2009.

J. Stoye. Minimax regret treatment choice with covariates or with limited validity of exper-
iments. Journal of Econometrics, 166(1):138–156, 2012.

X. Su, C.-L. Tsai, H. Wang, D. M. Nickerson, and B. Li. Subgroup analysis via recursive
partitioning. The Journal of Machine Learning Research, 10:141–158, 2009.

A. Swaminathan and T. Joachims. Batch learning from logged bandit feedback through
counterfactual risk minimization. Journal of Machine Learning Research, 16:1731–1755,
2015.

A. Tetenov. Statistical treatment choice based on asymmetric minimax regret criteria.
Journal of Econometrics, 166(1):157–165, 2012.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology), pages 267–288, 1996.

M. J. van der Laan and S. Rose. Targeted Learning: Causal Inference for Observational and
Experimental Data. Springer Science & Business Media, 2011.

V. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability and its Applications, 16(2):264, 1971.

S. Wager, W. Du, J. Taylor, and R. J. Tibshirani. High-dimensional regression adjustments
in randomized experiments. Proceedings of the National Academy of Sciences, 113(45):
12673–12678, 2016.

A. Wald. Statistical Decision Functions. Wiley, 1950.
B. Zhang, A. A. Tsiatis, M. Davidian, M. Zhang, and E. Laber. Estimating optimal treat-

ment regimes from a classification perspective. Stat, 1(1):103–114, 2012.
Y. Zhao, D. Zeng, A. J. Rush, and M. R. Kosorok. Estimating individualized treatment

rules using outcome weighted learning. Journal of the American Statistical Association,
107(499):1106–1118, 2012.

X. Zhou, N. Mayer-Hamblett, U. Khan, and M. R. Kosorok. Residual weighted learning for
estimating individualized treatment rules. Journal of the American Statistical Association,
112(517):169–187, 2017.

34

	1 Introduction
	1.1 Interlude: Learning Simple Policies under Nonparametric Confounding

	2 From Efficient Policy Evaluation to Learning
	2.1 Double Machine Learning for Policy Evaluation
	2.2 A Motivating Result
	2.3 Implementation via Weighted Classification
	2.4 A Simple Illustration

	3 Theoretical Development
	3.1 Assumptions about the Policy Class
	3.2 Rademacher Complexities and Oracle Regret Bounds
	3.3 Uniform Coupling with the Efficient Score
	3.4 Improved Bounds via Slicing

	4 A Lower Bound for Minimax Policy Regret
	5 Discussion
	6 Proofs
	6.1 Proof of Lemma 2
	6.2 Proof of Theorem 3
	6.3 Proof of Lemma 4
	6.4 Proof of Theorem 6
	6.5 Proof of Theorem 7

