
The Information Content of Short-Term Options

September 7, 2017

Abstract

Motivated by the growing trading activity in short-term (weekly)

options, we propose the HAR�IV model that jointly uses the daily,

weekly and monthly implied variance to predict realized variance. The

HAR�IV model outperforms the HAR�RV model both in- and out-

of-sample. An investor would pay up to 3.887% per year to switch

from the timing strategy based on the HAR�RV model to the strategy

based on the HAR�IV model. Our results are robust to heteroscedastic

measurement errors and several additional checks.
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1 Introduction

In a recent study, Andersen et al. (2017) draw attention to an important development

in the S&P 500 index option market. The authors show that weekly option contracts,

which are short-term options, account for nearly 50% of the total trading volume in the

S&P 500 index options in 2015. This �nding raises several questions about the informa-

tion content of short-term options: Are short-term implied variance series informative

about next-month's realized variance? If so, is this information content incremental to

that of the monthly implied variance? What are the implications for forecasting models

of realized variance? What is the economic value of this predictability? This study aims

to answer these questions.

We make three contributions to the literature. First, we evaluate the information

content of short-term implied variance for the monthly realized variance computed using

5-minute S&P 500 data. In a regression of monthly realized variance on a constant and

the lagged daily implied variance, we obtain a statistically signi�cant slope estimate and

a high predictive power (Adj R2 = 0.743). We thus conclude that the daily implied

variance is informative about the future realized variance. In order to understand the

channel through which this predictability arises, we decompose the realized variance into

its continuous and jump components. We �nd that both channels are at work. The

daily implied variance strongly predicts the continuous (Adj R2 = 0.718) and jump

(Adj R2 = 0.742) variation. The results for the weekly implied variance series are similar

to those of the daily implied variance series.

Second, we examine the extent to which the information content of the daily and

weekly series is subsumed by the monthly implied variance. To this end, we propose

the HAR�IV model that includes all three maturities, i.e. daily, weekly and monthly, to
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predict realized variance. The regression results suggest that the information content of

the short-term implied variance series is not subsumed by the monthly implied variance

series. The predictive power of the HAR�IV model (Adj R2 = 0.859) is substantially

higher than that a�orded by the model based only on the monthly implied variance

(Adj R2 = 0.635).

Third, we compare the HAR�IV to the HAR�RV model of Corsi (2009). This analysis

is interesting because, conceptually, the two models are similar in that they use informa-

tion from the term-structure of variance to predict realized variance. To be more precise,

the HAR�IV model uses the daily, weekly and monthly components of the term-structure

of implied variance whereas the HAR�RV model uses the daily, weekly and monthly ma-

turities of the term-structure of historical variance. We �nd that the in-sample predictive

power of the HAR�IV is superior to that of the HAR�RV (Adj R2 = 0.775). Similar

conclusions emerge from the out-of-sample analysis. For instance, the mean squared per-

centage error (MSPE) of the HAR�IV model is 74% lower than that of the HAR�RV

model. The improvement in forecast accuracy is not only statistically signi�cant but also

economically meaningful. An agent with a risk aversion parameter equal to 3 would pay

up to 3.887% per year to switch from the timing strategy based on the HAR�RV model

to the strategy based on the HAR�IV model.

One may be concerned about measurement errors. After all, weekly options are

relatively new contracts and time-variations in their trading activity could introduce

heteroscedastic measurement errors in the short-term implied variance series. To shed

light on this, we propose a model with a time-varying slope parameter in the spirit of

Bollerslev et al. (2016). In particular, we model the relationship between the realized

variance and the lagged daily implied variance as a function of the illiquidity of the
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options that underpin the implied variance series. Empirically, we �nd that accounting for

heteroscedastic measurement errors does not change our main conclusions. Our results are

robust to several additional tests. We obtain similar �ndings using a sampling frequency

of 1-minute to compute the realized (and historical) variance. Additionally, we show that

our results are robust to concerns related to the asynchronous closing times between the

spot and derivatives markets. We also consider alternative proxies for the illiquidity of

derivative securities and reach similar conclusions. Finally, we consider a richer model

that accounts for heteroscedastic measurement errors in all components of the HAR�IV

model and reach the same �ndings.

Our research relates to the growing literature on short-term options. Bollerslev and

Todorov (2011) and Andersen et al. (2015), among others, use options with maturity of

less than 5 business days to learn about jumps. Andersen et al. (2017) are the �rst to

provide an overview of weekly options. The authors exploit this new dataset to learn

about the spot volatility and jump risk. Implicit in these studies is the assumption that

short-term options are informative about the state of the underlying asset return process

rather than the expected future variations in the volatility and jump intensity. We directly

test this assumption by analyzing the predictability of next month's realized variance.

We show that the implied variance of daily horizon is a strong predictor of the monthly

realized variance.

Our study also adds to the broader literature on realized variance forecasting. Corsi

(2009) proposes the HAR�RV model and documents its superior performance relative

to the simple random walk model. Andersen et al. (2007) decompose the components

of the HAR�RV into continuous and jump components. Patton and Sheppard (2015)

propose an extension that separately uses positive and negative semi-variances. More
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recently, Bollerslev et al. (2016) extend the HAR�RV model to account for heteroscedastic

measurement errors. We contribute to this strand of the literature by proposing the

HAR�IV, which is the option-based analog of the HAR�RV. Empirically, we show that

the HAR�IV model is superior to the HAR�RV model. We also propose a simple approach

to extend the HAR�IV model to account for heteroscedastic measurement errors.

The remainder of this paper proceeds as follows. Section 2 introduces the methodol-

ogy and the dataset. Section 3 discusses the performance of the HAR�IV model. Section

4 compares the HAR�IV and HAR�RV models. Section 5 discusses the e�ect of het-

eroscedastic measurement errors. Section 6 presents various robustness checks. Finally,

Section 7 concludes.

2 Data and Methodology

This section introduces the methodology used to construct the main variables. It then

presents the dataset.

2.1 Methodology

Realized Variance Our paper focuses on the predictability of realized variance. It is

useful to start with the de�nition of the intraday return:

rj,k = log

(
Sj,k
Sj,k−1

)
(1)

where rj,k denotes the intraday return at the end of the kth intraday interval of day j.

Sj,k and Sj,k−1 are the asset prices at the end of the kth and (k− 1)th intraday interval of

the trading day j, respectively.
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We compute the (annualized) monthly realized variance as follows:

RV M
t+1 = 12×

N−1∑
j=0

m∑
k=1

r2
t+1− j

N
,k

(2)

where RV M
t+1 is the (annualized) monthly realized variance for the calendar month starting

at time t and ending at time t + 1. The number 12 indicates that the realized variance

estimate is annualized. There are m intraday returns each trading day. N is the number

of trading days in the month starting at time t and ending at t+ 1.1

Implied Variance We use the Bakshi et al. (2003) formula to compute the implied

variance:2

IV t =
12

τ

(
erft

τ
12QUADt − µ2

t

)
(3)

where

QUADt =

∫ St

0

2
(
1 + ln

[
St
K

])
K2

Pt(τ,K)dK +

∫ +∞

St

2
(
1− ln

[
K
St

])
K2

Ct(τ,K)dK (4)

µt = erft
τ
12 − 1− erft

τ
12

2
QUADt (5)

where IV t is the (annualized) implied variance of time-to-maturity τ (expressed in months)

observed at time t. rft is the τ -month (annualized) discount rate on day t. St is the un-

derlying price at time t. Pt(τ,K) and Ct(τ,K) denote the price at time t of the European

put and call options of time-to-maturity τ and strike price K, respectively. Note that the

formula in Equation (4) involves only out-of-the-money (OTM) options.

1Obviously, the number of trading days could vary from one month to the next. For ease of notation,
we simply suppress the time subscript on the variable N .

2Our interest in the Bakshi et al. (2003) implied variance rather than the Britten-Jones and Neuberger
(2000) variance is motivated by the research of Du and Kapadia (2013), who show that the former is
more robust to jumps. As a robustness check, we also consider the Britten-Jones and Neuberger (2000)
variance. Our untabulated results point to qualitatively similar conclusions.
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For ease of exposition, suppose we want to compute the implied variance of daily,

weekly and monthly maturities on a given trading day. For each option maturity available

on that day, we compute the Black and Scholes (1973) implied volatility of all OTM

options. We then average the OTM implied volatility estimates of the same maturity.

Equipped with this average implied volatility, denoted σ, we de�ne the variables Kt,L and

Kt,U as follows:

Kt,L = Ste
−8σt (6)

Kt,U = Ste
8σt (7)

where σt is the average implied volatility at time t of all OTM options of the same

maturity.

Similar to Carr and Wu (2009), we linearly interpolate the implied volatilities for 2,000

equally spaced strike prices between Kt,L and Kt,U de�ned in Equations (6) and (7). In

practice, the strike prices available in the market do not completely span the interval

starting at Kt,L and ending at Kt,U , raising the question of extrapolation. We follow

Jiang and Tian (2005) and Carr and Wu (2009), among others, and perform the nearest

neighbourhood extrapolation. To be precise, for strike prices greater (lower) than Kt,L

(Kt,U) but lower (higher) than the lowest (highest) strike available in the market, we use

the implied volatility associated with the lowest (highest) strike available in the market.

Next, we map the grid of 2,000 implied volatilities into Black and Scholes (1973) OTM

option prices. We then use the trapezoidal rule to numerically evaluate the integrals in
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Equation (4). Finally, we compute the implied variance as in Equation (3).3

We repeat the steps above for all maturities observed on that day, thus yielding the

term-structure of implied variance. From this term-structure, we linearly interpolate

the implied variance of daily (IV D), weekly (IV W ) and monthly (IV M) horizons. It

is important to emphasize that we only interpolate between maturities. To be clear,

we do not implement any extrapolation since this could introduce spurious spikes in the

constant maturity implied variance series. For instance, if the shortest maturity of options

available on that day is equal to 6 trading days, we compute the weekly and monthly

implied variance but not the daily implied variance.

2.2 Data

We obtain high-frequency data on the S&P 500 index from Thomson Reuters Tick

History (TRTH) to build the monthly realized variance series. Our interest in high-

frequency data, as opposed to daily data, is motivated by the studies of Andersen and

Bollerslev (1998), Barndor�-Nielsen and Shephard (2002) and Andersen et al. (2003),

who recommend the use of intraday data to accurately measure realized variance. The

dataset spans the period extending from January 1996 to August 2015. It contains bid

and ask quotes pertaining to regular business hours, i.e. from 08:30 AM to 3:00 PM

(Chicago Time). Similar to Bollerslev et al. (2009) and Bollerslev and Todorov (2011),

we use a 5-minute sampling frequency.4 At the end of each 5-minute interval, we use the

most recent mid-quote to proxy for the closing price of that interval.

3Note that by using options with strike prices ranging from Kt,L to Kt,U , we essentially truncate
the integrals in Equation (4). This is standard in the literature. Our choice of 8 standard deviations is
consistent with earlier work, e.g. Carr and Wu (2009). Jiang and Tian (2005) show that the truncation
error in the Britten-Jones and Neuberger (2000) implied variance is negligible if the truncation points
are more than two standard deviations from the current underlying price. See also Prokopczuk and
Wese Simen (2015).

4As a robustness check, we consider a higher sampling frequency of 1-minute and obtain qualitatively
similar �ndings. We do not tabulate these results for brevity.
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We also obtain end-of-day S&P 500 index options data for the period starting in

January 1996 and ending in August 2015 from IvyDB OptionMetrics. For each trading

day and option contract, the database contains information about the bid and ask prices,

the open interest, the strike price and the expiration date.

The dataset includes weekly and standard option contracts, among others. These

options are of the European type. Generally, weekly options expire on the Friday of each

week, except the third Friday of each month when the standard options expire.5,6 The

�rst weekly option on the S&P 500 index appears in October 2005. The data available

from the Chicago Board of Option Exchange (CBOE) indicate a rapid growth in the

trading volume of the weekly contracts from less than 5% of the total S&P 500 index

option volume during the �rst few years to 50% towards the end of our sample (Andersen

et al., 2017).7

Given the maturity structure of S&P 500 index options, it is possible to use weekly

options of di�erent expiration dates to construct the daily, weekly and monthly implied

variance each month. We analyze the sample period when the weekly option contracts

are available for trading. Accordingly, we restrict our attention to the period extending

from January 2006 to the end of August 2015. We start the sample in January 2006,

rather than October 2005 when the �rst weekly option contract starts trading, to allow

5At the time of writing, the term-structure of weekly options can include up to 12 maturities. For
further information about weekly options, we refer the interested reader to the following webpage: http :
//www.cboe.com/micro/weeklys/introduction.aspx.

6For an up-to-date list of weekly option contracts on o�er, please see the following link: http :
//www.cboe.com/micro/weeklys/availableweeklys.aspx.

7The reader may ask: why do market participants trade short-term options? As pointed out by
Andersen et al. (2017), answering this question is complicated by the lack of o�cial data on the iden-
tity/pro�le of market participants who take positions in these contracts. However, the authors show
that there is no signi�cant change in the trading activity of these contracts around important scheduled
macroeconomic announcements such as those of the monetary policy rate and the monthly employment
report. Thus, they conclude that the increased trading activity in these contracts is primarily driven by
a desire to improve short-term risk management. As more o�cial data on short-term options emerge,
it would be interesting to analyze the pro�le of key players in this market segment. Doing so would
help shed more light on the economic mechanism behind our results. As our main focus is on modeling
realized variance, we leave this avenue of research for future work.

8



for trading interest in the weekly options to improve. Note, however, that starting the

sample in October 2005 does not materially a�ect our �ndings.

We process the option data as follows. We discard observations with missing or zero

prices. We implement this �lter separately using bid and ask prices. In doing so, we aim

to tackle the concern that our dataset includes contracts that are not actively quoted. As

is standard in the literature (Carr and Wu, 2009), we compute the mid-quote price of the

option, which we refer to as the option price. Next, we remove all option observations that

are in-the-money. We take this step because the computation of the implied variance only

involves OTM option prices (see Equation (4)). Furthermore, we download the discount

rates from OptionMetrics. These discount rates are based upon the London Interbank

O�ered Rates (LIBOR) and the Eurodollar futures. For each trading day and option

contract, we linearly interpolate the discount rate of the same time-to-maturity as the

option contract. We then match the discount rates with the panel of options data. We

also match the time-series of the S&P 500 index and that of the dividend yield, both

obtained from OptionMetrics, with the panel of options data.

Our analysis involves monthly observations of all key variables. We retain the last day

of each month when we jointly observe the daily, weekly and monthly implied variance.

Typically, this observation day is the last Thursday of each month. An upshot of this

is that the daily implied variance depends mainly on the weekly options that expire the

following trading day. The weekly implied variance relates to the weekly options expiring

at the end of the following week. The monthly implied variance depends on the weekly

options expiring at the end of the next month. This argument also implies that the

interpolation across maturities has a minimal e�ect on our results since we are as close
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as possible to the targeted maturities.8

By using a monthly observation frequency, we aim to avoid concerns related to over-

lapping observation biases discussed in Christensen and Prabhala (1998). Panel A of

Table 1 presents the summary statistics on the term-structure of implied variance. The

term-structure displays a hockey-stick pattern. The daily, weekly and monthly implied

variance have average (annualized) values of 0.059, 0.050 and 0.053, respectively. The

short-end of the term-structure is more volatile than the long-end. The skewness and

kurtosis coe�cients indicate that the distribution of the daily implied variance is distinct

from that of the other maturities.

Figure 1 plots the time-series of daily, weekly and monthly (annualized) implied

volatilities. Several patterns are worth highlighting. First, the series rise and fall to-

gether, indicating that they are positively correlated. Second, they rise during bad eco-

nomic times, such as the 2008 global recession. Third, the short-term series is higher

than that of monthly horizon during periods of economic downturn. This observation

suggests that short-term implied variance may contain information that is di�erent from

that of the monthly implied variance, which has received a lot of attention from extant

studies (Jiang and Tian, 2005; Bekaert and Hoerova, 2014). Panel B of Table 1 presents

some supportive evidence in this regard. It shows that the correlation between the daily

and monthly implied variance series is positive yet modest (0.64).

8As a robustness check, we do not interpolate the constant maturity contracts but instead simply
use the option contracts with maturity closest to the target maturity. On average, the �real� maturity
of the options are 1, 6 and 27 calendar days for the daily, weekly and monthly horizons, respectively.
Furthermore, our main conclusions are unchanged. Thus, we conclude that the method of interpolation
plays a minimal role in our results. These results are available upon request.
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3 HAR�IV

This section starts by establishing the predictive power of the short-term implied

variance for next month's realized variance. This motivates the development of the HAR�

IV model. We then explore the channels through which the predictability result arises.

3.1 Is Short-Term Implied Variance Informative About Realized

Variance?

Univariate Evidence We begin by evaluating the information content of implied vari-

ance of di�erent maturities for the monthly realized variance. To this end, we estimate

the following Mincer and Zarnowitz (1969) regression:

RV M
t+1 = α + βIV X

t + εt+1 (8)

where α is the intercept. β denotes the slope parameter. IV X
t is the implied variance of

time-to-maturity X, where X can be the daily (D), weekly (W) or monthly (M) maturity.

εt+1 is the residual of the regression at t+ 1.

If implied variance is informative about future realized variance, we expect the slope

parameter to be signi�cantly di�erent from zero. Panel A of Table 2 reports positive

Newey and West (1987) corrected t-statistics (with 3 lags) of 11.551, 5.061 and 5.899 for

the slope parameters in univariate regressions involving the daily, weekly and monthly im-

plied variance, respectively. These �ndings establish that implied variance of daily, weekly

and monthly horizons individually predict realized variance. The positive t-statistics are

consistent with the notion that implied variance predicts realized variance with a positive

sign. Thus, our results con�rm and extend the �ndings of earlier studies that focus only
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on the monthly implied variance (Jiang and Tian, 2005; Busch et al., 2011) to the implied

variance of shorter maturities.9

Note that, of all three maturities, the highest t-statistic relates to the daily implied

variance. This suggests that the shortest maturity is a highly signi�cant predictor of

realized variance, a conclusion borne out by its predictive power as well (Adj R2 = 0.743).

In contrast, the monthly implied variance which has been extensively studied in the

literature displays a lower predictive power (Adj R2 = 0.635).

This set of �ndings is important because empirical studies routinely discard short-

term options data on the grounds that they are noisy and thus uninformative. Our results

caution against such an approach. The �ndings are also di�cult to reconcile with the

expectations hypothesis. This theory posits that, of all maturities, the monthly implied

variance is the best predictor of monthly realized variance. Clearly, the �nding that

the daily implied variance achieves a higher predictive power than the monthly implied

variance challenges this idea.

Multivariate Evidence We now analyze the incremental information content of the

daily implied variance relative to the monthly implied variance. To shed light on this

question, we include all three maturities in an encompassing model, which we refer to as

the HAR�IV model:

RV M
t+1 = α + βIV D

t + γIV W
t + φIV M

t + εt+1 (9)

9The earlier literature surveyed in Poon and Granger (2003) tests the unbiasedness hypothesis on
the monthly implied variance. As discussed in Chernov (2007), Prokopczuk and Wese Simen (2014) and
Kourtis et al. (2016), the unbiasedness hypothesis hinges on the counterfactual assumption of a constant
variance risk premium. In light of these studies, we do not test this hypothesis.
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where α is the intercept. β, γ and φ are the slope parameters. All other variables are as

previously de�ned.

The penultimate row of Panel A of Table 2 reports that the slope estimate associated

with the daily implied variance (0.416) is similar in magnitude to that obtained in the

univariate regression model (0.389). Moreover, the parameter estimate remains signi�cant

(t − stat = 4.361). Taken as a whole, the results indicate that the short-term implied

variance contains information that is di�erent from that of the monthly implied variance.

The predictive power of the HAR�IV model (Adj R2 = 0.859) is 35% higher than

that a�orded by the monthly implied variance alone. Since the monthly implied variance

includes the daily implied variance, the reader may �nd this result surprising. In order

to understand how the HAR�IV can markedly improve on the predictive power of the

monthly implied variance, it is useful to recall that a univariate regression of the monthly

realized variance on a constant and the lagged monthly implied variance implicitly im-

poses the restriction that all the components of the monthly implied variance, including

the daily implied variance, predict realized variance with the same coe�cient. Thus, the

markedly superior performance of the HAR�IV suggests that this restriction is strongly

rejected by the data.

3.2 Dissecting the Predictability

Having established the information content of the short-term implied variance series

for realized variance, we now seek to understand the channel through which this pre-

dictability arises.
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3.2.a Framework

Our starting point is the theory of quadratic variation (Barndor�-Nielsen and Shep-

hard, 2002), which posits that the realized variance of an asset return can be decomposed

into components linked to the (i) continuous variation and the (ii) jump variation of the

asset return. More formally, we have:

RV M
t+1 = CV M

t+1 + JV M
t+1 (10)

where RV M
t+1 is the (annualized) monthly realized variance for the calendar month starting

at time t and ending at time t + 1. CV M
t+1 and JV M

t+1 are the monthly continuous and

jump variations of the asset returns computed over the month ending at t+1, respectively.

This insight suggests that there are two channels through which short-term implied

variance may be informative about next month's realized variance. The �rst possibility

is that the short-term implied variance series contain information about the continuous

variation of returns. The second possibility is that short-term implied variance series are

informative about the jump variation.

Barndor�-Nielsen and Shephard (2002) propose the bipower variation as an estimator

of the continuous variation of asset returns. Andersen et al. (2012) subsequently establish

that theMedRV estimator has better �nite sample properties than the bipower variation.

Thus, we use the MedRV estimator of the continuous variation of returns:

CV M
t+1 =

12mπ

(6− 4
√
3 + π)(m− 2)

N−1∑
j=0

m∑
k=3

median(|rt+1− j
N
,k|, |rt+1− j

N
,k−1|, |rt+1− j

N
,k−2|)

2

(11)

where median(·) is the median operator. All other variables are as previously de�ned.
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Using Equations (10) and (11), it is straightforward to extract the jump variation

component:10

JV M
t+1 = RV M

t+1 − CV M
t+1 (12)

3.2.b Continuous Variation

We regress the time-series of the continuous variation on a constant and the lagged

implied variance series:

CV M
t+1 = α + βIV X

t + εt+1 (13)

where all variables are as previously de�ned.

Panel A of Table 3 shows that each of the three maturities of implied variance predicts

the continuous component of the realized variance. This conclusion is borne out by the

signi�cant slope estimates in univariate regressions. Similar to our analysis of the realized

variance, we note that the daily implied variance boasts the highest Newey and West

(1987) corrected t-statistic. Relatedly, its predictive power (Adj R2 = 0.718) is larger

than that of the monthly implied variance (Adj R2 = 0.651), con�rming our benchmark

results. Combining all maturities in the encompassing model yields an Adj R2 of 0.850.

Moreover, the daily implied variance remains highly signi�cant. This result echoes our

earlier conclusion that the information embedded in the short-term implied variance series

10As an additional check, we implement the jump tests used in Andersen et al. (2007) to identify
signi�cant jumps. If there are no signi�cant jumps on a given day, then the continuous variation is equal
to the realized variance and the jump variation takes the value 0. Otherwise, the continuous variation
corresponds to the estimate given by the MedRV estimator and the jump variation is the di�erence
between the realized and continuous variation. The decomposition results are qualitatively similar to
those of our benchmark approach. As a result, we do not tabulate these �ndings. Furthermore, the
conclusion is similar, irrespective of whether we use the bipower variation or MedRV .
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is di�erent from that of the monthly implied variance.

3.2.c Jump Variation

We now estimate the following forecasting regression:

JV M
t+1 = α + βIV X

t + εt+1 (14)

where all variables are as previously de�ned.

Panel B of Table 3 summarizes the empirical evidence. The results of univariate re-

gressions indicate that each of the three maturities predicts the monthly jump variation.

Thus, we are able to extend the work of Busch et al. (2011), who document that the

monthly implied variance predicts the jump variation of S&P 500 returns, to shorter

maturities of implied variance. The table also reveals that the daily implied variance

outperforms the monthly implied variance in terms of predictive ability. Its Newey and

West (1987) t-statistic is higher than that of the monthly implied variance. Relatedly, its

predictive power (Adj R2 = 0.742) is larger than that of the monthly implied variance

(Adj R2 = 0.250). Including all three maturities in the same regression, we can see that

the daily implied variance is the most signi�cant predictor of the jump variation. Further-

more, the predictive power of the encompassing model (Adj R2 = 0.766) is very similar

to that of the regression that only includes the daily implied variance as a predictor. In

light of this, we conclude that short-term options contain valuable information about the

future monthly jump variation.

Summarizing, the predictive power of the daily implied variance series is consistent

with both the continuous and jump channels. This contrasts with the monthly implied

variance, which is mainly informative about the continuous variation of index returns.
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4 HAR�IV vs. HAR�RV

The previous section shows that the HAR�IV model, which uses information from

the term-structure of implied variance yields a higher predictive power than a model

that only includes the monthly implied variance. It is worth noting that the HAR�IV

model uses information from the term-structure of implied variance in a manner that is

reminiscent of the HAR�RV model of Corsi (2009). The reader may thus wonder: how

does the HAR�IV model compare to the HAR�RV model?

Answering this question is important because a large literature surveyed by Poon

and Granger (2003) seeks to ascertain whether options data contain superior information

compared to historical data. When presented with the results of these studies, it is

tempting to compare the sophisticated HAR�RVmodel to a simple model that relies solely

on the monthly implied variance to predict realized variance. Such evidence is relatively

di�cult to interpret. The HAR�RV model uses information from three maturities of the

term-structure of historical variance whereas the alternative model uses only one maturity

of the term-structure of implied variance. The di�erence in the forecasting performance

of these two models could therefore be due to (i) di�erences in the speci�cation of the

models and/or (ii) di�erences in the quality of historical and options data.

4.1 In-Sample Evidence

Following Corsi (2009), we de�ne the HAR�RV model as follows:

RV M
t+1 = α + βRV D

t + γRV W
t + φRV M

t + εt+1 (15)
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where α is the intercept. β, γ and φ are the slope parameters. RV D
t and RV W

t are the

(annualized) daily and weekly realized variance at time t, respectively. These series are

de�ned as follows:

RV D
t = 252×

m∑
k=1

r2t,k (16)

RV W
t = 52×

4∑
j=0

m∑
k=1

r2
t− j

N
,k

(17)

where N is the number of trading days in the month that starts at t − 1 and ends at t.

All other variables are as previously de�ned.

Figure 2 shows the dynamics of the term-structure of historical volatility. The patterns

are broadly similar to those of the implied volatility series (see Figure 1), suggesting that

the components of the HAR�RV model may be very similar to those of the HAR�IV

model. Panel B of Table 1 con�rms this intuition. The correlation between the historical

variance and the implied variance of the same maturity is generally higher than 0.71. In

light of these �ndings, it is interesting to formally compare the forecasting performance

of the HAR�IV and HAR�RV models.

The results of univariate regressions in Panel B of Table 2 show that each of the three

maturities of historical variance is a signi�cant predictor of the monthly realized variance.

The lagged monthly realized variance displays the highest t-statistic (t− stat = 11.940)

and an Adj R2 = 0.538. It is interesting to note that the predictive power of the lagged

monthly realized variance is lower than that of the lagged monthly implied variance

(Adj R2 = 0.635) presented in Panel A of the same table. This result is consistent with

the �nding of Jiang and Tian (2005).

Table 2 shows that the HAR�IV model boasts a stronger predictive ability (Adj R2 =
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0.859) than the HAR�RV model (Adj R2 = 0.775). Thus, we conclude that option data

do help to achieve superior variance forecasting performance.

Pursuing our analysis, we estimate the nesting model below:

RV M
t+1 = α + βIV D

t + γIV W
t + φIV M

t + ψRV D
t + ωRV W

t + ηRV M
t + εt+1 (18)

where all variables are as previously de�ned.

The last row of Panel A of Table 2 shows that all parameters associated with the term-

structure of implied variance are statistically signi�cant. Of all maturities of the historical

variance, only the loading on the daily component remains statistically signi�cant. The

Adj R2 of the nesting model is, in relative terms, 20% higher than that of the HAR�RV

model. Using the Adj R2 presented in the last rows of Panels A and B of Table 2, we can

conduct an F -test to test the null hypothesis that β, γ and φ in Equation (18) are jointly

equal to zero. Straightforward calculations show that the F −stat = 70.775. Clearly, this

is above the relevant critical value, indicating that the term-structure of implied variance

contains information that is in addition to that of the term-structure of the historical

variance.

4.2 Out-of-Sample Evidence

The preceding analysis shows that the HAR�IV model yields more accurate vari-

ance forecasts than the HAR�RV model in-sample. We next investigate whether the

predictability results extend out-of-sample.

We use a rolling window containing 6 years of data to estimate the forecasting models
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in Equations (9) and (15).11 Equipped with the parameter estimates and the latest

observations of the forecasting variables, we then generate a forecast for next month's

realized variance. If the forecast is higher (lower) than the highest (lowest) monthly

realized variance observed in the rolling estimation window, we set the forecast to the

highest (lowest) in-sample observation of the monthly realized variance. By imposing this

�lter, we are able to avoid the situation where the forecast of variance could be negative

(Patton and Sheppard, 2015).12

Repeating the steps above for each rolling window, we obtain the time-series of the

out-of-sample variance forecasts which we then compare to the realized variance. To do

so, we compute the following four loss functions: mean squared percentage error (MSPE),

mean absolute percentage error (MAPE), mean squared error (MSE) and mean absolute

error (MAE). These loss functions are de�ned below:

MSPE =
1

T

T∑
t=1

(
RV M

t − Et−1(RV M
t )

RV M
t

)2

(19)

MAPE =
1

T

T∑
t=1

∣∣∣∣RV M
t − Et−1(RV M

t )

RV M
t

∣∣∣∣ (20)

MSE =
1

T

T∑
t=1

(
RV M

t − Et−1(RV M
t )
)2

(21)

MAE =
1

T

T∑
t=1

∣∣RV M
t − Et−1(RV M

t )
∣∣ (22)

where T is the total number of out-of-sample forecasts. Et−1(RV
M
t ) is the expectation

at time t− 1 of the variance to be realized at the end of month t. All other variables are

as previously de�ned.

11The rolling window estimation follows Bollerslev et al. (2016), among others. As a robustness check,
we consider a recursive window. Our untabulated results lead to very similar conclusions. Given the
similarity of the results based on the rolling and recursive schemes, we only focus on the rolling window
framework.

12As a robustness check, we remove the �lter and obtain similar results. These �ndings are available
upon request.
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Table 4 reports the ratio of the loss function [name in row] associated with the model

[name in column] over that of the benchmark HAR�RV model. Therefore, an entry equal

to 1 indicates that the model [name in column] does as well as the benchmark HAR�RV

model. Entries lower than 1 suggest that the model [name in column] achieves lower

average forecasting error than the HAR�RV model. Conversely, entries that are greater

than 1 indicate that the forecast errors of the model [name in column] are higher than

those of the HAR�RV model.

Focusing on the entries reported under the header �HAR�IV�, we can see that the

�gures vary between 0.260 and 0.545. This set of numbers reveals that the HAR�IV model

can reduce the forecasting errors of the benchmark HAR�RV by up to 74%. We formally

test the null hypothesis that the di�erence in average forecast errors is equal to zero. To

this end, we implement the Giacomini and White (2006) test and report the corresponding

test statistic in Table 5. The test statistic follows a Chi-squared distribution. The entries

at the intersection of the row labelled �HAR�IV� and the column headed �HAR�RV�

show the chi-squared test statistic of the null hypothesis that the di�erence between the

average forecast errors of the HAR�RV model and that of the HAR�IV model is equal

to zero. These �gures are statistically signi�cant for nearly all loss functions which is

consistent with the evidence of Table 4. We thus conclude that the HAR�IV model

achieves signi�cantly smaller forecasting errors than the HAR�RV model.

4.3 Economic Value

Next, we shed light on the economic value of the documented superior predictability.

To this end, we evaluate the portfolio choice of an investor with quadratic utility function

who invests a fraction of her wealth ωt in the risky stock market and the rest (1 − ωt)
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in the risk-free asset. To �x the notation, Et(r
M
t+1) denotes the expectation at time t of

the future monthly return on the risky stock. The riskless asset yields a return rf t. The

risk aversion parameter is γ. Et(RV
M
t+1) is the expectation at time t of the variance for

the month ending at t+1. The optimization problem of the investor can be expressed as

follows:13

max
ωt

ωtEt(r
M
t+1) + (1− ωt)rf t −

γ

2
ω2
tEt(RV

M
t+1) (23)

It is straightforward to show that:

ωt =
Et(r

M
t+1)− rf t

γEt(RV
M
t+1)

(24)

Equation (24) establishes that the optimal share of wealth invested in the risky asset

depends on the expected market excess return as well as the expectation of future vari-

ance. Since our paper studies the predictability of realized variance, rather than that of

excess returns, we follow Bollerslev et al. (2017) and frame the problem in terms of risk

modelling. Heeding on their approach, we assume the agent targets a constant ratio of

the expected monthly market excess return over the square root of the expected monthly

realized variance. With a slight abuse of terminology, we term this ratio SR:14

SR =
Et(r

M
t+1)− rf t√
Et(RV

M
t+1)

(25)

13The optimization problem of an investor with quadratic utility is equivalent to maximizing a linear
combination of mean and variance. This is true irrespective of the distribution of asset returns. We refer
the interested reader to Campbell and Viceira (2002) for an excellent treatment of this topic.

14It is important to emphasize that, strictly speaking, this ratio is not the conditional expectation of
the future Sharpe ratio. See also Bollerslev et al. (2017).

22



Combining Equations (24) and (25), we can see that:

ωt =
SR

γ
√
Et(RV

M
t+1)

(26)

We then analyze the certainty equivalent rate of return (CE), which is the risk-free rate

of return that the investor is willing to accept instead of following the proposed timing

strategy:

CE =
1

T

T∑
t=1

SR2

γ
×

√
RV M

t√
Et−1(RV

M
t )

+ rf t −
SR2

2γ
× RV M

t

Et−1(RV
M
t )

 (27)

Similar to the analysis in Section 4.2 , we use a rolling window containing the past 6

years of monthly observations to estimate the variance forecasting models in Equations

(9) and (15). We use the parameter estimates together with the latest observations of the

forecasting variables to forecast next month's realized variance. Furthermore, we assume

a constant SR = 0.3 as in Bollerslev et al. (2017).15 Finally, we consider di�erent values

of the risk aversion parameter, namely 3, 4 and 5.

Table 6 reports the di�erence between the certainty equivalent associated with model

[name in column] and that of the HAR�RV model. If the model [name in column]

provides more economic value than the HAR�RV model, then its certainty equivalent

will be greater than that of the benchmark HAR�RV model. As a result, the entries in

the corresponding column should be positive.

The �rst column indicates whether we allow for leverage in the spirit of Campbell and

Thompson (2008). If leverage is restricted, we cap the share of wealth invested in the

15We also consider alternative values, i.e. SR = 0.2 and SR = 0.4, and obtain very similar conclusions.
For example, assuming SR = 0.4, an investor with a risk aversion parameter equal to 3 is willing to pay
4.399% per year to switch from a strategy that is based on the HAR�RV model to a strategy based on
the HAR�IV model.
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risky stock at 1.5 (see Equation (26)). This restriction could matter when comparing the

information content of historical data relative to options data. Because option markets

are forward-looking, implied variance tends to rise as the economy is about to move from

a period of expansion to a period of recession. As a result, the timing strategy will invest

less in the stock market ahead of recessions. In contrast, because the historical variance

is backward looking, the variance forecast emanating from the HAR�RV is likely to be

low, since the historical variance estimates are low before recessions, resulting in a larger

allocation to the risky stock. Imposing the leverage restriction enables us to ascertain

the extent to which the results may be driven by the aforementioned e�ect.

The entries in Table 6 show that the HAR�IV model improves on the utility achieved

by the timing strategy based on the HAR�RV model. For example, an agent with risk

aversion parameter of 3 would pay up to 3.887% per year to switch from a timing strategy

based on the HAR�RV model to a strategy based on the HAR�IV model. This improve-

ment speaks directly to the economic value of using information from the term-structure

of implied variance as opposed to the term-structure of historical variance. Qualitatively

similar results emerge for other values of the risk aversion parameter. Finally, the leverage

restriction has very little e�ect on the results.

5 What About Measurement Errors?

The summary statistics in Table 1 show that the daily implied variance is more volatile

than its monthly counterpart. Furthermore, it is also moderately correlated with the

monthly implied variance. One may attribute this set of results to measurement errors

in the daily implied variance. If short-term options attract little trading interest, the

corresponding option implied variance will be measured with errors. To the extent that
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the measurement errors are heteroscedastic, they may materially a�ect the strength of the

relationship between the implied variance and the future realized variance. This section

analyzes the potential impact of measurement errors on our variance forecasts.

5.1 Framework

Historical Variance The problem of measurement errors in the realized variance series

is reminiscent of the error-in-variables problem addressed in a recent study by Bollerslev

et al. (2016). The authors study the impact of heteroscedastic measurement errors in the

inputs of the HAR�RV model on the model's forecasting performance. They introduce a

model that allows for a time-varying sensitivity to the lagged daily realized variance. In

our setup, we de�ne the HAR-RQ-D model as:

RV M
t+1 = α + (β + ψMED

t )RV
D
t + γRV W

t + φRV M
t + εt+1 (28)

where α is the intercept. β, ψ, γ and φ are slope parameters. MED
t is the conditional

variance of the measurement error at time t associated with the lagged daily variance.

All other variables are as previously de�ned.

They also propose a more �exible model, which we term HAR�RQ�F, that captures

the heteroscedasticity of the measurement errors associated with each of the three matu-

rities:

RV M
t+1 = α + (β + ψMED

t )RV
D
t + (γ + ωMEW

t )RV W
t + (φ+ ηMEM

t )RV M
t + εt+1 (29)

where α is the intercept. β, ψ, γ, ω, φ and η are slope parameters. MEW
t and MEM

t

denote the conditional variance at time t of the measurement error associated with the
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weekly and monthly horizons, respectively. All other variables are as previously de�ned.

We follow Bollerslev et al. (2016) and express the conditional variance of measurement

errors as the square root of the realized quarticity of corresponding maturity (Barndor�-

Nielsen, 2002).16 Despite its simple intuition and theoretical grounding, this modelling

approach does not directly apply to the HAR�IV model because there is no analog of the

realized quarticity for implied variance. We are thus forced to specify a model for the

conditional variance of measurement errors in the implied variance series.

Implied Variance We assume that the conditional variance of the measurement error

in the implied variance depends on the illiquidity of the options that underpin its calcu-

lations.17 That is, when the option contracts attract little trading interest, we expect the

associated implied variance to be noisy.

We use the inverse of the open interest to proxy for the illiquidity of the option

contracts.18 For each trading day and option maturity, we record the open interest of

each OTM option contract that passes the �lters discussed in Section 2.2 . Next, we

average the open interest �gures across all these options, thus obtaining an estimate

of the open interest of that speci�c maturity. We do this for all maturities of the same

trading day. We then linearly interpolate the open interest across maturities to obtain the

16To investigate whether the results are robust to the functional form speci�cation, we consider the
logarithmic (instead of the square root) function in Section 6.2 and reach very similar conclusions.

17Our approach is related to the work of Aït-Sahalia and Yu (2009) who links the statistical measure-
ment of microstructure noise in the underlying price to �nancial measures of stock illiquidity.

18We use the inverse of open interest to facilitate the interpretation of the variable as a proxy for
illiquidity. When open interest is equal to zero, we assume that the illiquidity is equal to 0. As a
robustness check, we discard observations associated with an open interest equal to 0 and obtain similar
results. Furthermore, we consider other proxies of illiquidity, i.e. the dollar bid�ask spread and the
proportional bid�ask spread, that do not su�er from this issue. Section 6.3 presents qualitatively similar
results.
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open interest of daily, weekly and monthly horizons.19 On average, the daily, weekly and

monthly open interest amount to 125,522, 504,240 and 1,192,033 contracts, respectively.

The standard deviation of the open interest positions is similar to the average level.

We then estimate the HAR�IVME�D model:

RV M
t+1 = α + (β + ψMED

t )IV
D
t + γIV W

t + φIV M
t + εt+1 (30)

where α is the intercept. β, ψ, γ and φ are the slope parameters. MED
t is the conditional

variance at time t of the measurement error, that we proxy with the square root of the

inverse of the daily open interest. All other variables are as previously de�ned.

The model in Equation (30) only captures the impact of heteroscedastic measurement

errors a�ecting the daily implied variance. However, one could also account for the

heteroscedastic measurement errors linked to the weekly and monthly implied variance.

This leads to the HAR�IVME�F model:

RV M
t+1 = α + (β + ψMED

t )IV
D
t + (γ + ωMEW

t )IV W
t + (φ+ ηMEM

t )IV M
t + εt+1 (31)

where MEW
t and MEM

t denote the conditional variance at time t of the measurement

errors associated with the weekly and monthly implied variance, respectively. We proxy

the conditional variance of measurement errors with the square root of the inverse of the

corresponding maturity open interest. All other variables are as previously described.

19We interpolate across maturities to be consistent with the construction of the constant maturity
implied variance series de�ned in Section 2.1 . As a robustness check, we do not linearly interpolate
across maturities and simply select the open interest of the options with maturities that are closest to
the daily, weekly and monthly horizons. We obtain very similar results, suggesting that our �ndings are
not driven by the interpolation across maturities. This result is to be expected. As we explain in Section
2.2 , our empirical design suggests a very small role for the interpolation method in our results.
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5.2 Results

In-Sample Results The model in Equation (30) enables us to formally evaluate the

impact of measurement errors in the daily implied variance on the predictability of realized

variance. The second row of Panel A of Table 7 reports a statistically signi�cant loading

associated with the interacted daily variance of measurement errors (t − stat = 9.000).

Thus, we conclude that the relationship between next month's realized variance and the

lagged daily implied variance is time-varying. Analyzing the predictive power of the

HAR�IVME�D model (Adj R2 = 0.920), we observe an improvement relative to the

HAR�IV model (Adj R2 = 0.859).

The last row of Panel A of Table 7 shows that the slope parameters linked to the

weekly and monthly measurement errors are not statistically signi�cant. We conclude

that there is little gain to be achieved by accounting for the heteroscedastic measurement

errors linked with the weekly and monthly implied variance series.

Out-of-Sample Results Consistent with the evidence of Bollerslev et al. (2016), Table

4 shows that the HAR�RQ�F improves on the performance of the benchmark HAR�RV

model.20 We can also see that the HAR�IVME�D model slightly improves on the out-of-

sample performance of the HAR�IV. However, Table 5 reveals that these improvements

are not statistically signi�cant. Comparing the HAR�IVME�D and the HAR�RQ�D

models, we �nd that the option-based model leads to signi�cantly more accurate forecasts.

Viewed as a whole, the results suggest that accounting for heteroscedastic measurement

errors does not materially a�ect our conclusions on the usefulness of options data.

20Note that the HAR�RQ�D model underperforms the HAR�RQ�F model. This result is not sur-
prising given earlier studies. Bollerslev et al. (2016) recommend correcting the historical variance of
maturity corresponding to the forecasting horizon. Hence, in our framework, we should account for the
heteroscedastic measurement error in the lagged monthly realized variance. This insight helps understand
why the HAR�RQ�D model performs so di�erently relative to the HAR�RQ�F.
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Economic Value Table 6 shows the results of the economic value exercise. It reports

several noteworthy �ndings. First, the strategies based on the extensions of the HAR�RV

model do not improve utility when compared to the strategy based on the HAR�RV. This

result holds for all values of the risk aversion parameter. Second, the HAR�IVME�D and

the HAR�IVME�F models lead to higher certainty equivalent rate of returns than the

HAR�IV model.

Taken as a whole, the results indicate that the forecasting model based on options

data delivers more economic value than the model that uses historical data. This is true,

for all values of the risk aversion parameter.

6 Robustness Checks

This section presents several robustness checks. First, we check whether our results

are due to the wildcard option feature. Second, we use a logarithmic rather than a square

root functional form for the measurement error correction. Third, we consider alternative

proxies for the illiquidity of options.

6.1 Wildcard Option Feature

One may worry about the wildcard option feature induced by the asynchronous closing

times of the spot and derivatives markets (Harvey and Whaley, 1992). Brie�y, the S&P

500 option market closes at 3:15 PM while the spot index market is last updated 15-

minute earlier. This asynchronicity between the closing times could a�ect our results.

Since the 5th of March 2008, OptionMetrics reports the last option quote at 3:00

PM rather than 3:15 PM. We repeat our main analyses using the period from the 5th of

March 2008 to the end of August 2015 and obtain very similar results. Table 8 presents
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the results of the related out-of-sample analysis. They are similar to our benchmark

�ndings. The HAR�IV model achieves lower forecasting errors than the HAR�RV model

and its extensions. We thus conclude that the wildcard option feature does not materially

a�ect our conclusions.

6.2 Functional Form

As previously discussed, the square root speci�cation is motivated by the work of

Bollerslev et al. (2016) who point out that this functional form is imbued with a certain

robustness. Nonetheless, one may wonder about the sensitivity of our main results to the

functional form.

To shed light on this, we assume that the conditional variance of the measurement

error is simply proxied by the logarithm (rather than square root) of the realized quarticity

and the logarithm of the inverse of the open interest. Table 9 presents these results.

We can see that the HAR�IV model and its extensions that account for heteroscedastic

measurement errors outperform the HAR�RQ�D and the HAR�RQ�F models. This result

reinforces our initial �nding that options data are more informative about future realized

variance than historical data.

6.3 Illiquidity Proxy

The preceding analysis relies on (the inverse of) open interest as a proxy for the

illiquidity of option contracts. We now consider alternative proxies based on the dollar

and proportional bid�ask spreads. The dollar bid�ask spread is simply the di�erence

between the ask and the bid prices. The proportional bid�ask spread is the dollar bid�

ask spread divided by the average of the ask and bid prices.
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Our approach in this regard is similar to that described in Section 5.1 . Brie�y,

we compute these proxies for each option contract that underpins the implied variance

calculation. We then average across all these options (of the same maturity), obtaining

an illiquidity proxy for each maturity. Finally, we interpolate across maturities to obtain

the illiquidity proxies of daily, weekly and monthly horizons.

Panels A and B of Table 10 present results that are qualitatively similar to those of

Table 4. The similarity of the results suggests that the exact illiquidity proxy has very

little bearing on our main �ndings.

7 Conclusion

We exploit the recent introduction of weekly options on the S&P 500 index to analyze

the information content of short-term options for realized variance. Our results reveal

that short-term implied variance predicts next month's realized variance. This result

arises because short-term implied variance strongly predicts both the continuous and

jump variations of S&P 500 returns. The information content of the short-term implied

variance is not subsumed by the monthly implied variance, suggesting that the di�erent

maturities do not contain the same information.

We combine the daily, weekly and monthly implied variance to create the HAR�

IV model. Empirically, the HAR�IV model outperforms the HAR�RV model and its

extensions. This is true both in- and out-of-sample. The superior predictive ability of

the HAR�IV model is economically meaningful, as evidenced by utility gains of up to

3.887% per year relative to the HAR�RV. Our evidence is robust to concerns related to

measurement errors.
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Table 1: Descriptive Statistics

Panel A presents key summary statistics. IV D, IVW and IVM denote the (annualized) implied vari-

ance of daily, weekly and monthly horizons, respectively. Similarly, RV D, RVW and RVM denote the

(annualized) realized variance of daily, weekly and monthly horizons, respectively. Mean is the average

value of the variable [name in row]. Std, Skew and Kurt denote the standard deviation, skewness and

kurtosis of the variable [name in row], respectively. Panel B reports the sample correlation between

the time-series of the variables [name in row] and [name in column]. The analysis is based on monthly

observations. The sample period is from January 2006 to August 2015.

Panel A: Summary Statistics

Mean Std Skew Kurt

IV D 0.059 0.136 7.488 67.738

IVW 0.050 0.071 3.693 17.583

IVM 0.053 0.067 3.671 18.982

RV D 0.032 0.078 5.817 39.772

RVW 0.027 0.059 6.018 45.862

RVM 0.029 0.061 5.784 40.936

Panel B: Correlation Matrix

RV D RVW RVM IV D IVW

RVW 0.78

RVM 0.80 0.96

IV D 0.71 0.52 0.49

IVW 0.86 0.83 0.83 0.84

IVM 0.83 0.91 0.93 0.64 0.94
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Table 2: Variance Predictability: In-Sample Evidence

This table summarizes the results of regressions of monthly realized variance on a constant and the lagged

forecasting variable(s) [name in column]. Panel A mainly focuses on the information content of the term-

structure of implied variance. Panel B explores the information content of the term-structure of historical

variance. α denotes the intercept parameter. IV D, IVW and IVM denote the (annualized) implied

variance series of daily, weekly and monthly horizons, respectively. Similarly, RV D, RVW and RVM

denote the (annualized) historical variance series of daily, weekly and monthly horizons, respectively.

We present in parentheses the Newey�West corrected t-statistics with 3 lags. Adj R2 is the adjusted

R-squared of the regression model. The analysis is based on monthly observations. The sample period

is from January 2006 to August 2015.

Panel A: Implied Variance

α IV D IVW IVM RV D RVW RVM Adj R2

0.006 0.389 0.743
(2.288) (11.551)
-0.009 0.753 0.756
(-1.662) (5.061)
-0.010 0.732 0.635
(-2.595) (5.899)
-0.008 0.416 -0.713 0.899 0.859
(-2.053) (4.361) (-1.730) (4.090)
0.003 0.415 -0.890 0.529 0.322 0.154 0.131 0.923
(1.494) (12.213) (-4.769) (3.213) (14.374) (1.493) (1.013)

Panel B: Historical Variance

α RV D RVW RVM Adj R2

0.007 0.689 0.764
(1.940) (5.790)
0.008 0.772 0.555
(2.631) (9.135)
0.008 0.741 0.538
(2.643) (11.940)
0.006 0.615 0.369 -0.234 0.775
(2.456) (2.879) (1.151) (-0.560)
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Table 3: Continuous vs. Jump Variation

This table dissects the source of the predictability of the monthly realized variance. Panel A presents

the results of regressions of the monthly continuous variation, estimated using the MedRV estimator of

Andersen et al. (2012), on a constant and the lagged variable(s) [name in column]. Panel B summarizes

the results of the regression of the monthly jump variation on a constant and the forecasting variable(s)

[name in column]. α denotes the intercept parameter. IV D, IVW and IVM denote the (annualized)

implied variance of daily, weekly and monthly horizons, respectively. We present in parentheses the

Newey�West corrected t-statistics with 3 lags. Adj R2 is the adjusted R-squared of the regression model.

The analysis is based on monthly observations. The sample period is from January 2006 to August 2015.

Panel A: Continuous Variation

α IV D IVW IVM Adj R2

0.005 0.360 0.718
(1.955) (10.532)
-0.009 0.709 0.759
(-1.861) (4.928)
-0.011 0.697 0.651
(-2.820) (5.689)
-0.009 0.372 -0.647 0.857 0.850
(-2.284) (3.954) (-1.603) (4.029)

Panel B: Jump Variation

α IV D IVW IVM Adj R2

0.001 0.029 0.742
(4.221) (18.002)
0.001 0.043 0.438
(1.317) (3.708)
0.001 0.035 0.250
(1.989) (3.185)
0.001 0.045 -0.066 0.042 0.766
(3.452) (11.947) (-2.893) (1.817)
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Table 4: Out-of-Sample Results

This table presents the ratio of the loss function [name in row] of the model [name in column] over

that of the HAR�RV model. We use a rolling window of 6 years to estimate the parameters of the

forecasting models. HAR�RV is the forecasting model that uses the daily, weekly and monthly lagged

realized variance series to predict the monthly realized variance. HAR�RQ�D takes into account the

heteroscedasticity of the measurement errors in the lagged daily realized variance. HAR�RQ�F aims to

capture the heteroscedasticity of the measurement errors in all three maturities of lagged realized vari-

ance. HAR�IV is the forecasting model that simultaneously uses the daily, weekly and monthly implied

variance to predict realized variance. HAR�IVME�D accounts for the heteroscedasticity of measurement

errors in the daily implied variance. HAR�IVME�F accounts for the heteroscedasticity of measurement

errors in all three implied variance components. We proxy the heteroscedasticity of the measurement

errors in the realized variance with the square root of the realized quarticity of corresponding maturity.

In order to proxy the heteroscedasticity of measurement errors in the implied variance series, we use

the square root of the inverse of the open interest of corresponding maturity. The analysis is based on

monthly observations.

HAR�RQ�D HAR�RQ�F HAR�IV HAR�IVME�D HAR�IVME�F

MSPE 2.779 0.902 0.260 0.262 0.315
MAPE 1.819 0.920 0.480 0.468 0.504
MSE 1.553 0.377 0.270 0.236 0.235
MAE 1.632 0.809 0.545 0.507 0.522
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Table 5: Out-of-Sample Tests

This table presents the Giacomini and White (2006) test statistic related to the null hypothesis that the

di�erence in the loss function [name in Panel's title] achieved by the model [name in column] and that of

the model [name in row] is equal to zero. The test statistic follows a Chi-squared distribution. We use a

rolling window of 6 years to estimate the parameters of the forecasting models. HAR�RQ�D takes into

account the heteroscedasticity of the measurement errors in the lagged daily realized variance. HAR�

RQ�F aims to capture the heteroscedasticity of the measurement errors in all three maturities of lagged

realized variance. The HAR�IV simultaneously uses the daily, weekly and monthly implied variance to

predict realized variance. HAR�IVME�D accounts for the heteroscedasticity of measurement errors in

the daily implied variance. HAR�IVME�F accounts for the heteroscedasticity of measurement errors in

all three implied variance components. In order to proxy the heteroscedasticity of measurement errors

in the implied variance series, we use the square root of the inverse of the open interest of corresponding

maturity. The analysis is based on monthly observations.

Panel A: MSPE

HAR�RV HAR�RQ�D HAR�RQ�F HAR�IV HAR�IVME�D

HAR�RQ�D 11.811
HAR�RQ�F 0.118 16.088
HAR-IV 6.320 15.491 4.250
HAR�IVME�D 6.442 15.933 4.511 0.005
HAR�IVME�F 4.962 14.845 3.405 0.748 1.048

Panel B: MAPE

HAR�RV HAR�RQ�D HAR�RQ�F HAR�IV HAR�IVME�D

HAR�RQ�D 18.244
HAR�RQ�F 0.392 24.154
HAR-IV 9.310 21.035 7.444
HAR�IVME�D 10.230 22.503 9.026 0.143
HAR�IVME�F 8.473 21.112 7.211 0.280 1.522

Panel C: MSE

HAR�RV HAR�RQ�D HAR�RQ�F HAR�IV HAR�IVME�D

HAR�RQ�D 16.257
HAR�RQ�F 1.096 3.826
HAR-IV 1.325 3.912 1.030
HAR�IVME�D 1.461 4.154 2.461 0.805
HAR�IVME�F 1.457 4.134 2.051 0.363 0.003

Panel D: MAE

HAR�RV HAR�RQ�D HAR�RQ�F HAR�IV HAR�IVME�D

HAR�RQ�D 20.193
HAR�RQ�F 1.223 17.250
HAR-IV 4.128 15.496 4.169
HAR�IVME�D 5.019 16.991 6.747 1.061
HAR�IVME�F 4.550 16.358 5.872 0.162 0.171
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Table 6: The Economic Value of Variance Predictability

The table reports the di�erence between the certainty equivalent of the timing strategy based on the

model [name in column] and that of the strategy based on the HAR�RV model. The �rst column (�Lev�)

indicates whether we allow for leverage or not. If we do not allow for leverage (Lev=No), then the share

of wealth in the risky asset is capped at 1.5. We consider di�erent values for the risk aversion parameter

(γ). We use a rolling window of 6 years to estimate the parameters of the forecasting models. HAR�RV

is the forecasting model that uses the daily, weekly and monthly lagged realized variance series to predict

the monthly realized variance. HAR�RQ�D takes into account the heteroscedasticity of the measurement

errors in the lagged daily realized variance. HAR�RQ�F aims to capture the heteroscedasticity of the

measurement errors in all three maturities of lagged realized variance. HAR�IV is the forecasting model

that simultaneously uses the daily, weekly and monthly implied variance to predict realized variance.

HAR�IVME�D accounts for the heteroscedasticity of measurement errors in the daily implied variance.

HAR�IVME�F accounts for the heteroscedasticity of measurement errors in all three implied variance

components. We proxy the heteroscedasticity of the measurement errors in the realized variance with the

square root of the realized quarticity of corresponding maturity. In order to proxy the heteroscedasticity

of measurement errors in the implied variance series, we use the square root of the inverse of the open

interest of corresponding maturity. The analysis is based on monthly observations. All values are

annualized and expressed in percentage points.

Lev γ HAR�RQ�D HAR�RQ�F HAR�IV HAR�IVME�D HAR�IVME�F

Yes
γ = 3 -1.210 -0.362 3.887 4.860 5.078
γ = 4 -0.908 -0.272 2.915 3.645 3.808
γ = 5 -0.726 -0.217 2.332 2.916 3.047

No
γ = 3 -1.210 -0.062 4.205 4.834 5.080
γ = 4 -0.908 -0.272 2.915 3.645 3.808
γ = 5 -0.726 -0.217 2.332 2.916 3.047
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Table 7: Variance Predictability: In-Sample Evidence (Measurement Errors)

This table summarizes the results of regressions of monthly realized variance on a constant and the lagged

variable(s) [name in column]. Panel A explores the information content of the term-structure of implied

variance. Panel B analyzes the information content of the term-structure of historical variance. α denotes

the intercept. IV D, IVW and IVM denote the (annualized) implied variance series of daily, weekly and

monthly horizons, respectively. RV D, RVW and RVM denote the (annualized) historical variance series

of daily, weekly and monthly horizons, respectively. MED, MEW and MEM are the measurement

errors associated with the daily, weekly and monthly components. We proxy the heteroscedasticity

of the measurement errors in the realized variance with the square root of the realized quarticity of

corresponding maturity. We use the square root of the inverse of the open interest to capture the

conditional variance of the measurement errors in implied variance. We present in parentheses the

Newey�West corrected t-statistics with 3 lags. Adj R2 is the adjusted R-squared of the regression model.

The analysis is based on monthly observations. The sample period is from January 2006 to August 2015.

Panel A: Implied Variance

α IV D IVW IVM MED × IV D MEW × IVW MEM × IVM Adj R2

-0.008 0.416 -0.713 0.899 0.859
(-2.053) (4.361) (-1.730) (4.090)
0.002 0.410 -0.829 0.568 0.032 0.920
(0.810) (10.624) (-4.307) (4.189) (9.000)
0.003 0.407 -0.807 0.569 0.032 -0.002 -0.019 0.919
(1.135) (10.432) (-4.093) (4.242) (8.243) (-0.591) (-1.601)

Panel B: Historical Variance

α RV D RVW RVM MED ×RV D MEW ×RVW MEM ×RVM Adj R2

0.006 0.615 0.369 -0.234 0.775
(2.456) (2.879) (1.151) (-0.560)
0.017 -0.512 0.567 0.043 0.357 0.862
(3.352) (-1.606) (2.675) (0.195) (3.439)
0.007 -0.490 0.104 1.026 0.344 0.439 -0.548 0.922
(2.863) (-2.223) (0.285) (4.618) (6.677) (3.221) (-4.898)
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Table 8: Out-of-Sample Results: Wildcard Option Feature

This table sheds light on the impact of the wildcard option. The focus is on the sample period starting

from March 05, 2008. The table presents the ratio of the loss function [name in row] achieved by the

model [name in column] over that of the HAR�RV model. We use a rolling window of 6 years to estimate

the parameters of the forecasting models. HAR�RV is the forecasting model that uses the daily, weekly

and monthly lagged realized variance series to predict the monthly realized variance. HAR�RQ�D takes

into account the heteroscedasticity of the measurement errors in the lagged daily realized variance.

HAR�RQ�F aims to capture the heteroscedasticity of the measurement errors in all three maturities of

lagged realized variance. HAR�IV is the forecasting model that simultaneously uses the daily, weekly and

monthly implied variance to predict realized variance. HAR�IVME�D accounts for the heteroscedasticity

of measurement errors in the daily implied variance. HAR�IVME�F accounts for the heteroscedasticity

of measurement errors in all three implied variance components. We proxy the heteroscedasticity of

the measurement errors in the realized variance with the square root of the realized quarticity of the

corresponding maturity. In order to proxy the heteroscedasticity of measurement errors in the implied

variance series, we use the square root of the inverse of the open interest of the corresponding maturity.

The analysis is based on monthly observations.

HAR�RQ�D HAR�RQ�F HAR�IV HAR�IVME�D HAR�IVME�F

MSPE 2.125 0.812 0.298 0.315 0.466
MAPE 1.456 0.818 0.527 0.518 0.617
MSE 1.106 0.256 0.204 0.216 0.237
MAE 1.216 0.682 0.524 0.526 0.571

44



Table 9: Out-of-Sample Results: Alternative Functional Form

The table presents the ratio of the loss function [name in row] achieved by the model [name in column]

over that of the HAR�RV model. We use a rolling window of 6 years to estimate the parameters of the

forecasting models. HAR�RV is the forecasting model that uses the daily, weekly and monthly lagged

realized variance series to predict the monthly realized variance. HAR�RQ�D takes into account the

heteroscedasticity of the measurement errors in the lagged daily realized variance. HAR�RQ�F aims

to capture the heteroscedasticity of the measurement errors in all three maturities of lagged realized

variance. HAR�IV is the forecasting model that simultaneously uses the daily, weekly and monthly

implied variance to predict realized variance. HAR�IVME�D accounts for the heteroscedasticity of

measurement errors in the daily implied variance. HAR�IVME�F accounts for the heteroscedasticity

of measurement errors in all three implied variance components. We proxy the heteroscedasticity of

the measurement errors in the realized variance with the logarithm of the realized quarticity of the

corresponding maturity. In order to proxy the heteroscedasticity of measurement errors in the implied

variance series, we use the logarithm of the inverse of the open interest of the corresponding maturity.

The analysis is based on monthly observations.

HAR�RQ�D HAR�RQ�F HAR�IV HAR�IVME�D HAR�IVME�F

MSPE 2.757 1.487 0.260 0.177 0.153
MAPE 1.813 1.107 0.480 0.391 0.374
MSE 1.566 0.558 0.270 0.198 0.189
MAE 1.630 0.957 0.545 0.446 0.455
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Table 10: Out-of-Sample Results: Alternative Illiquidity Proxies

The table presents the ratio of the loss function [name in row] achieved by the model [name in column]

over that of the HAR�RV model. We use a rolling window of 6 years to estimate the parameters of the

forecasting models. HAR�RV is the forecasting model that uses the daily, weekly and monthly lagged

realized variance series to predict the monthly realized variance. HAR�RQ�D takes into account the

heteroscedasticity of the measurement errors in the lagged daily realized variance. HAR�RQ�F aims

to capture the heteroscedasticity of the measurement errors in all three maturities of lagged realized

variance. HAR�IV is the forecasting model that simultaneously uses the daily, weekly and monthly

implied variance to predict realized variance. HAR�IVME�D accounts for the heteroscedasticity of

measurement errors in the daily implied variance. HAR�IVME�F accounts for the heteroscedasticity

of measurement errors in all three implied variance components. We proxy the heteroscedasticity of

the measurement errors in the realized variance with the square root of the realized quarticity of the

corresponding maturity. In order to proxy the heteroscedasticity of measurement errors in the implied

variance series, we use the square root of the inverse of the dollar bid�ask spread (Panel A) and the

proportional bid�ask spread (Panel B) of the corresponding maturity. The analysis is based on monthly

observations.

Panel A: Dollar Bid�Ask Spread

HAR�RQ�D HAR�RQ�F HAR�IV HAR�IVME�D HAR�IVME�F

MSPE 2.779 0.902 0.260 0.234 0.298
MAPE 1.819 0.920 0.480 0.400 0.491
MSE 1.553 0.377 0.270 0.210 0.213
MAE 1.632 0.809 0.545 0.438 0.488

Panel B: Proportional Bid�Ask Spread

HAR�RQ�D HAR�RQ�F HAR�IV HAR�IVME�D HAR�IVME�F

MSPE 2.779 0.902 0.260 0.240 0.273
MAPE 1.819 0.920 0.480 0.465 0.479
MSE 1.553 0.377 0.270 0.207 0.213
MAE 1.632 0.809 0.545 0.492 0.498
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