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Abstract

Using information embedded in option prices, we uncover the existence of a non-trivial
term-structure of betas for individual stocks and portfolios. The slope of this term-
structure is a priced factor in the cross-section of returns and spikes following relevant
macroeconomic and firm-specific events. The slope of the term-structure of systematic
risk is mainly driven by the slope of the term-structure of variance swaps. An investment
model with uncertainty shocks in the spirit of Bloom (2009) can quantitatively explain

the relation between the time-series and cross-sectional dynamics of the term-structure.



1 Introduction

Betas are a central concept in finance. Academics and practitioners tend to think of risk-return
tradeoff in terms of beta - stocks with higher exposure to a common risk factor (systematic
risk) should earn higher average returns. The majority of the risk-return tradeoff literature
has focused on the cross-sectional properties of betas. However, in addition to studying the
cross-section of systematic risk, exploring fluctuations of, and the information contained in, the
term-structure of systematic risk can provide many insights into the riskiness of a particular
stock or portfolio and shape the way we think about traditional macro-finance models.

While there are many studies in the literature focusing on the term structures of nominal
and real interest rates and, more recently, the term-structure of equity, there has been almost
no research regarding the term-structure of systematic risk, despite the evidence that betas are
not equal across different horizons.! In this paper, we make use of options data to estimate
forward looking capital asset pricing model (CAPM) betas for several portfolios across different
time horizons and jointly study the cross-section and the term-structure of systematic risk. The
betas we estimate are “spot” betas, meaning that for any security at any given point in time
we have forward looking estimates of systematic risk with different maturities.

The question of whether systematic risk has a term-structure only makes sense at the
portfolio or individual stock level. By definition the term-structure of the market is flat - the
market beta is always one regardless of the horizon - and therefore it is fairly uninteresting.
We uncover the existence of a time-varying, non-flat term-structure of systematic risk for both
individual stocks and portfolios. We find that what really matters for pricing the cross-section
of returns is the slope of the term-structure, i.e., the difference between the long-term beta
and the short-term beta. After controlling for the level of the term-structure (either the short-
term or the long-term beta), portfolios with a negative slope earn higher excess returns than
portfolios with a positive slope. These portfolio returns cannot be explained by the standard
Fama and French (1993) three factor model. This implies that investors should care about how
systematic risk evolves over time and therefore becomes relevant to economically document the
properties of this term-structure.

First, the slope of the term-structure is a priced factor in the cross-section, significantly
improving the fit of the Fama and French (1993) model when pricing the standard 25 book-

to-market and size sorted portfolios. Economically, this pricing power can be understood by

!Ferson and Harvey (1991) provided some evidence on betas not being constant across different horizons.
van Binsbergen, Hueskes, Koijen, and Vrugt (2013), Van Binsbergen, Brandt, and Koijen (2012) study the

term-structure of equity.



studying the time-series properties of the slope of the term-structure. It spikes on relevant
macroeconomic and firm-specific events. For example, during bad times such as the Great
Recession, the slope of the term-structure of systematic risk of value (growth) portfolios spikes
down (up). This means that the short-term beta for value stocks spikes up vis-a-vis its long-
term beta. Value firms have many assets in place; thus, in recessions, they are much riskier than
growth firms. Market participants price this riskiness: the portfolio’s term-structure becomes
very negatively sloped as investors recognize the higher risk of these stocks in the short-term
but expect it to diminish as the economy recovers.

Second, we decompose the slope of the term-structure of betas into its main components.
Most of the variation in the term-structure comes from the short-end of the curve - the short-
term beta. This effect can be decomposed further into a variance swap and a correlation effect.
Most of the heterogeneity in the term-structure across portfolios comes from the variance swap.
This finding has important theoretical implications. The literatures on the cross-section of re-
turns and on the term-structure of variance have evolved somewhat separately. Important
references in the literature on the cross-section of returns (e.g., Zhang (2005), Gomes, Ko-
gan, and Zhang (2003), Kiku (2006), Lettau and Wachter (2007), among others), do address
the term-structure of variance and, analogously, literature on the term-structure of variance
swaps (e.g., Dew-Becker, Giglio, Le, and Rodriguez (2015), Ait-Sahalia, Karaman, and Mancini
(2014), Egloff, Leippold, and Wu (2010)) is silent regarding the cross-section of returns. Our
paper makes a contribution to these two strands of the literature by jointly modelling the
term-structure of variance swaps and the cross-section of returns.

We build a investment model similar to that of Lin and Zhang (2013) but augment it with a
time varying second moment in the spirit of Bloom (2009). Our model has heterogeneous firms
and time-varying uncertainty which allows us to link the cross-section of returns with the term-
structure of systematic risk. Firms face both economy-wide and individual specific shocks and
decide whether to invest or to distribute dividends. The model allows us to quantitatively match
the observed empirical dynamics: the superiority of the option implied CAPM and the dynamics
of the term-structure of systematic risk. When volatility spikes are accompanied by productivity
decreases, value stocks are burdened with more unproductive capital. Firms want to cut down
capital, and the presence of capital adjustment costs makes them riskier. Therefore, value stocks
have on average a higher variance swap than growth stocks and consequently a higher option
implied beta. The option implied beta therefore lines up extremely well with book-to-market
sorted portfolios. Furthermore, at the inception of a volatility shock, the implied variance of
value stocks spikes more than the implied variance of growth stocks and this heterogeneous

effect accounts for the dynamics of the term-structure of option implied betas. This paper is



the first to estimate and analyze the behavior of the term-structure of systematic risk both
in the cross-section and the time-series. Our results have several important implications for
empirical and theoretical asset pricing.

The remainder of the paper is organized as follows. Section 2 describes the data and
methodology. Section 3 documents the main empirical results of the paper - uncovering the
existence of a term-structure of systematic risk and studying its economic content. In section 4,
we build an investment model provides an economic explanation for the results in the empirical

section. Section 5 concludes.

2 Data and Methodology

2.1 Data

Our study is based on data on the S&P 500 Index and its constituents between January 4,
1996 and August 29, 2014, or a total of 3,978 trading days. We obtain daily price data from
the Center for Research in Security Prices (CRSP) and option data from OptionMetrics. To
obtain the S&P 500 constituents on any given day, we use the CRSP S&P 500 constituents file.
This file has information on the addition and deletion date of each stock by PERMNO. Our
CRSP sample includes 976 unique stocks which we match to the OptionMetrics SECIDs. We
are able to match a total of 891 stocks which form our base sample.

The data on equity and index options are taken from the IvyDB OptionMetrics Surface
file. It provides a smoothed volatility surface for a range of maturities and strikes. The use of
the surface file has been a standard in this literature (e.g. Buss and Vilkov (2012), An, Ang,
Bali, and Cakici (2014), among others) and it has the advantage of making this study more
easily replicable by other researchers. For each security and at each point in time the volatility
surface file stores implied volatilities and strike prices of calls and puts for several maturities
(30, 60, 91, 122, 152, 182, 273, 365, 547 and 730 days). We only keep out-of-the money calls
and puts since these are more liquid instruments, and option dates that match the underlying
CRSP trading days.

2.2 Historical Betas, Option Implied Betas and Realized Betas

To estimate option-implied betas, we follow closely to the methodology proposed by Buss and
Vilkov (2012). Their proposed forward-looking beta follows the standard definition of beta, i.e.
it is the ratio of stock-to-market covariances to the market variance, but replacing the historical

moments with their risk-neutral counterparts. Thus, at time ¢ the option implied market beta



of stock i is given by:
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denotes the volatility of stock or portfolio 7 at time ¢ under the risk-neutral measure

(1)

where 0%

itT
Q, pin’t denotes the pairwise stock correlations, and w; are the weights of security j on the
market portfolio. Similarly, 0]?47” denotes the volatility of the overall market under the same
() measure. Note that the we add an extra subscript 7 to our betas to denote the maturity of
the options with which the beta was estimated.

Before outlining the means of obtaining the elements of equation (1), two precautionary
notes are, however, appropriate. First, the risk-neutral betas are estimated using risk-neutral
variances and correlations and these measures are usually different from their objective coun-
terparts due to the existence of a variance and correlation risk premium. This has been thor-
oughly documented by Carr and Wu (2009), Han and Zhou (2012) and Driessen, Maenhout,
and Vilkov (2009). Second, there are no traded options on a basket on any combination of two
stocks; therefore, one needs to make an appropriate parametric choice for modelling option im-
plied correlations. This means that 53\4’t might be a biased estimator of 55\“. Buss and Vilkov
(2012) extensively discussed these issues and specified a simple parametric form for implied
correlations that is consistent with several empirical facts despite the caveats outlined above.?
We make use of the same parametric form, which we describe below.

To study whether option implied betas across several maturities successfully capture the
risk-return relationship and to assess their realized beta predictive power vis-a-vis historical
betas, we compute: (i) historical betas in the standard way by regressing the asset (excess)
return on the market (excess) return and (ii) realized betas using the same methodology as
Andersen, Bollerslev, Diebold, and Wu (2006), i.e., we use daily log-returns to estimate the

realized beta between t* and T™:
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where 7; ;« and 7574+ are the log excess returns of stock ¢ and the market at time t*, respectively

and 7™ is the number of days on the period under analysis.

2.3 Option Implied Moments

In order to approximate model-free implied volatility we closely follow the methodology of
Demeterfi, Derman, Kamal, and Zou (1999) and Bakshi, Kapadia, and Madan (2003), who

2We refer the reader to their paper regarding the details on the assumed parametric form.
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showed that if one owns a portfolio of options across all strikes inversely weighted by the
squared strike, then one obtains a variance exposure that does not depend on the price. The
moment free implied variance from period t to period 7 (or the variance swap rate) can be

approximated by:
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where Pi(t, 7, K) and C;(t, 7, K) are the prices of out-of-the-money puts and calls options with
maturity 7 and strike K, respectively. In practice, a continuum of option strikes does not exist,
so that one has to interpolate and extrapolate strikes and implied volatilities for the remaining
moneyness levels. We define a moneyness grid between 1/3 and 3 with 1,001 points. We then
find the maximum and minimum points of the moneyness grid for which implied volatility is
available. We interpolate implied volatility inside this interval by fitting smooth cubic splines.
For moneyness levels above (below) the highest (lowest) available strike we use the implied
volatility of the highest (lowest) strike.

The last element from equation (1) that we need to estimate is the risk-neutral correlation
Q

between each pair of stocks: (p5

(2012) to estimate this risk-neutral correlation by letting:

). The presence of the correlation premia led Buss and Vilkov

Pg,t = ﬂf},t — (1= pzj‘;,t) (4)

Combining equation (4) with the identifying restriction that equates the observed implied

variance of the market index (01?4,15,7)2 with the calculated implied variance of a portfolio of all

market index constituents ¢ = 1, ..., IV:
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one can solve for & and consequently estimate p?jt.

3 The term-structure of systematic risk

In this section, we document the key empirical facts on the term-structure of betas of individual
stocks and portfolios. We start with a motivating example. Figure 1 plots the term-structure

of betas for Apple Corporation at two different points in time.

[Figure 1 here]



It is worth mentioning that the term-structure is not stable - sometimes it slopes upward
and occasionally, it slopes downward and even its level varies widely over time. For example,
in September 1999, Apple had an upward sloping term-structure of systematic risk, implying
that agents on the market were expecting the systematic risk of Apple to increase over time.
The opposite pattern occurred in June of 2003, at which time Apple had a downward sloping
term-structure of systematic risk.

This figure allow us to illustrate several important points about the term-structure of sys-
tematic risk. First, this figure illustrates that, due to the nature of the options data, we cannot
estimate betas longer than a two-year horizon. Although we cannot take a stance on very long-
term betas (such as a 10-year beta), empirically, the term-structure of systematic risk seems to
flatten out after one year. In this paper, we will be focusing on the slope of the term-structure
of betas, i.e., the difference between the long-term and the short-term beta, and the results
are virtually unchanged if we use the 2-year or the 1-year option implied beta as the long-term
beta.

Second, practitioners often shrink their long-term beta estimates. For example, Bloomberg
has argued that beta estimates have a tendency to revert towards one, so to better forecast
future betas, many analysts use: § = %B + %, where B is usually the CAPM beta, estimated
using a standard Ordinary Least Squares (OLS) regression on historical data. Below we will
show that option implied betas are better than the standard OLS estimates of beta in terms
of explaining the cross-section of returns and predicting realized beta. What is, however, more
striking is that these shrinkage methods might even worsen the estimation error, as they always
imply a downward (upward) sloped term-structure of systematic risk if the beta is higher (lower)
than one. By taking another look at the left-hand panel of Figure 1, it becomes clear that there
is no way a shrinkage method would capture an upward sloped term-structure of systematic
risk, for a company with a beta above one, as it is the case for Apple in September 1999.

Finally, recall that, mechanically, the slope of term-structure of systematic risk of the market
is zero. Therefore, if, at any given point in time, a term-structure of a stock slopes upward,
another term-structure must slope downward.

In the next two subsections, we study the cross-sectional and time-series properties of the
term-structure of systematic risk. Before doing so, it is important to establish whether these
option implied betas have good properties - if we have any hope of extracting any economic
content from the term-structure of betas, it must be the case that our option implied betas
correctly capture the risk-return tradeoff and have a good predictive power in respect to realized
betas. Buss and Vilkov (2012) and Hollstein and Prokopczuk (2014) have shown that 1-year
option implied betas line up with expected returns better than the standard CAPM betas.



We extend their analysis for option implied betas with different maturities. We examine the
relationship between stock historical or option implied market betas and expected returns, as
well as the ability of historical betas and implied betas to predict the realized beta.

To establish the risk-return relationship, we follow the standard procedure in the literature.
At the end of each month ¢, we sort stocks into five portfolios according to their estimated
historical and option implied beta and compute the value-weighted return of each portfolio
over the next 7 months, where 7 is the option maturity underlying the estimation.®> We then
calculate a time-series average of the portfolios’ betas and value-weighted returns to infer the
beta-return relationship. We do this exercise for both historical betas and for option-implied

betas across several maturities. Table 1 provides the results.

[Table 1 here]

Regardless of the maturity, the option implied betas provide a better spread across average
realized returns in comparison with the historical betas. In fact, portfolios sorted on historical
betas yield a risk-return relationship which is not linear and a spread in average realized returns
of 2.77%. Conversely, portfolios sorted on option betas yield a relation which is more linear
and a wider spread on realized returns (3.45% to 5.75%). This is in line with our conjecture
that option implied betas successfully capture the risk-return relation.

Estimated betas should also have good predictive power in respect to realized betas. At the
end of each month we compute historical betas and option implied betas for all maturities. We
then sort all S&P 500 stocks into five portfolios and compute their value-weighted historical
and option implied expected beta and compare them to the realized beta over the subsequent
periods. Figure 2 plots the estimated beta against the realized beta for each of the five portfolios
at each point in time.* At the top of each panel in figure 2 we also report the out-of-sample

estimation accuracy of the beta estimates using the root mean squared error (RMSE) criterion.?

[Figure 2 here]

If the model fits well, we expect the points on the scatter plot to cluster around the 45-degree

line as well as a low RMSE. It is clear that our option implied methodology outperforms the

3For historical betas, we compute value-weighted returns over the next month.
4We report the results for realized betas over the next 6 and 12 months, but the results hold for other

maturities as well. The results are available from the author.
5The RMSE criterion is defined as the sum of the squared difference between the predicted beta and the

realized beta for every portfolio, at any given month: RMSE = \/ = Zthl(Bf‘T — )2 where ﬂfT is the realized

beta between period ¢ and T and 3 is the ex-ante beta estimate (either historical or option implied).




historical beta methodology given that, for option implied betas, the points do indeed cluster
around the diagonal of the plot, implying a good fit. Also, the RMSE is around 0.16, which
is half the RMSE of the historical betas. From figure 2 becomes clear that the superiority of
l-year maturity option implied betas denoted by Buss and Vilkov (2012) also generalizes to
other beta maturities.®

Having established the economic superiority of option implied betas in explaining the cross-
section of returns, we now study its term-structure. To analyze the shapes of the term-structures
of implied betas, we adopt a concept similar to the one used within the interest rate term-
structure literature. Several authors have shown that the shape of the term-structure of interest
rates can be captured via three simple factors: level, slope and curvature. For example, Diebold
and Li (2006) fit, period-by-period, a Nelson-Siegel (NS) exponential components model to the
entire term-structure of interest rates and show that the three parameters are enough to describe
the term-structure of interest rates. In Appendix A we conduct a similar analysis and show
that the term-structure of betas can also be successfully captured by those three factors.

Empirically, we define the level factor, vy, as the long-term beta (63\4,15,15 +12m); the slope,
~1, as the difference between the twelve-month implied beta and the one-month implied beta
(51'612\4,t,t t1om = 5?M¢,t +1m); and the curvature, 7;, as the difference between twice the three-month
implied beta and the sum of the one-month implied beta with the twelve-month implied beta
(2 x ﬁiﬁ%t +3m (53\4’@16 sim T ﬁffw,t,t +12m))- These definitions of level, slope and curvature are
standard in the term-structure literature (Diebold and Li (2006)).

Given the Apple example above, it is interesting to ask whether betas on average have a flat
term-structure. To look into this question, we compute period-by-period the term-structure
of betas for all stocks in our sample and classify a term-structure to be upward (downward)
sloping if 73 > 0.1 (73 < 0.1) and classify it as positively (negatively) humped if the curvature
factor 74 is above (below) 0.05 (-0.05). All shapes in between are classified as having no slope,

no hump or both. The distribution of shapes of the term-structure is reported in Table 2.7

[Table 2 here]

SFigure 2 only shows the pattern for 6-month and 1-year option implied betas, but the result holds true for

all other maturities. Results are available from the author.
"The cutoffs chosen are somewhat arbitrary. Different cutoffs would obviously imply a different distribution

of shapes. For our purpose, it is sufficient to note that, on average there is a non-flat term structure. Given the
large cross-section and time-series of our data, it is difficult to summarize the shapes of the term-structure in a
single number as there is considerable heterogeneity in the data. Take, as an example, Panel B from figure 11
in Appendix A. There significant variation in the slope (curvature) of the term-structure of Apple Inc., which
ranges from -0.5 to 0.5 (-0.75 to 0.6).



During approximately half of our panel sample term-structures are sloped (top and bottom
rows from table 2). This means that on a relevant proportion of periods, average betas for
short and long time-horizons are different. This difference may be very significant for capital
budgeting and investment decisions. If systematic risk is different at different horizons, then a

firm’s cost of capital and expected return are different for different holding periods.®

3.1 Cross-section

In this subsection, we begin to address the question of whether there is any economic content
in the slope of the term-structure. We begin by carefully exploring whether the slope of the
term-structure matters for the cross-section of returns. We take the canonical asset-pricing
approach of double-sorting portfolios on the slope and level of the term-structure of betas. We
find that stocks with a negative term-structure slope outperform stocks with a positive slope
and that the slope of the term-structure is a priced factor in the cross-section of returns, even
after controlling for level of the term-structure and for the Fama and French (1993) three-factor
model.

Suppose there is an investor with a one-year investment horizon whose main concern is
his/her exposure to systematic risk.” This investor would choose stocks or portfolios based on
their one-year option implied beta. However, given that the term-structure of systematic risk is
usually not flat, this investor might also be concerned with how the systematic risk will evolve
throughout the one-year holding period. In particular, if this investor rebalances his portfolio
monthly, then investing in two stocks with the same one-year beta but with different short-term
betas should yield different systematic risk exposures throughout the holding period.

Our hypothesis is that, despite the differences in short-term beta, these portfolios should
yield the same expected return over the one-year holding period. We find that they do not.*°
To address this hypothesis, we build double sorted portfolios based on the level and slope of
their term-structure. At the end of each month, we rank stocks according to their one-year

option implied beta and the slope of their term-structure (the difference between the 1-year

8In terms of humps, the distribution is slightly more even. A third of the sample shows no hump and the
remaining two-thirds show either a positive hump or a negative hump (with a 50% chance conditional on having
hump). In this paper, we will focus on the economics of the slope of the term-structure and leave a more careful

analysis of the complete shape of the term-structure as a suggestion for future research.
9This simple setup could be motivated through a static model wherein agents have mean-variance preferences

and the same beliefs about the underlying return distribution, but different levels of risk-aversion. All agents
would pick portfolios on the security market line, but more risk-loving agents would choose portfolios with

higher beta.
10This is akin to the failure of the expectations hypothesis of interest rates.



beta and the 1-month beta). We follow a procedure similar to the one developed by Jegadeesh
and Titman (1993), and hold the portfolios for one year. Basically, we select a portfolio based
on its end-of-month 1-year beta and slope and hold it for 12 months. Therefore, each month,
we close the position initiated 12 months prior and open a new position, implying that on any
given month we revise the weights on 1/12 of the securities in the entire portfolio. Table 3

reports the excess returns of this strategy.

[Table 3 here]

Table 3 shows that portfolios with higher beta earn higher expected returns (as the CAPM
would imply), and stocks with negative slope, i.e., for which the short-term beta is higher than
the long-term beta, also earn higher expected returns after controlling for the level of beta.!!

This implies that an investor with a fixed-horizon should not only be concerned about the
expected level of systematic risk over his investment horizon but also about how systematic risk
is expected to change. Suppose our investor has a high degree of risk aversion and therefore
picks stocks with low-beta and holds the stocks from the first row of Table 3. He would earn
higher expected returns on the portfolios in which systematic risk is expected to decrease. This
is a very robust result. Below, as we look at portfolios sorted on characteristics (industry,
size and book-to-market) and we will see the same result. As an example, value stocks term-
structure is very negatively sloped during recessions, when marginal utility is high, which is
exactly the time at which this portfolio has very high expected returns going forward.

The second panel of Table 3 reports the time-series o’s of these portfolios in relation to the
Fama and French (1993) three-factor model. The vast majority are positive and economically
significant. At the bottom of the table we report the Gibbons, Ross, and Shanken (1989) F'-
statistic (GRS) for the joint significance of the a’s being different from zero and its p-value.
This statistic has the simple economic interpretation - a large GRS F-statistic implies that
the distance between the sample Sharpe ratio of the factor portfolio and the maximal sample
Sharpe ratio attainable, using all the test assets, is “too big”. This indicates that the factor
portfolio is “too far” from being mean-variance efficient. Given the large F-statistics, we reject
the hypothesis that the returns on our portfolios are explained by the Fama-French 3-factor
model.

To establish whether the slope of the term-structure is a priced factor in the cross-section of

returns, we augment the Fama-French 3-factor model to include a slope factor. We test whether

" The only exception to the monotonic positive relation between term-structure slope and average returns is
among the highest beta portfolios, although the difference between the smallest and largest quintiles is still a

healthy four percentage points per year.
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the slope of the term-structure of betas is a priced factor in the cross-section by running standard
Fama-Macbeth regressions that include the slope factor in the first-stage regression. That is,

for each portfolio i, we estimate the following time-series regression:

e
i1 = Boi + Brmilmi1 + BamriRuvri1 + BsmpiRsyp vt + BsiopeiSloper1i + €1 (6)

Panel A from Table 4 reports the Fama-Macbeth prices of risk of each factor.

[Table 4 here]

The prices of risk for all the Fama-French factors (Market, Size, and Book-to-Market) are
insignificant. All explanatory power seems to come from the slope factor (with a t-stat of 2.3.).
As a robustness check, we also test the performance of the slope factor using the Fama-French
25 double sorted portfolios on size and book-to-market. It is important to show that the slope
factor is also priced beyond the 25 portfolios built based on the level and slope of the term-
structure. This addresses some of the criticisms of traditional asset pricing tests raised by
Lewellen, Nagel, and Shanken (2010).

Panel B of Table 4 reports the results of Fama-Macbeth regressions on the 25 size and
book-to-market portfolios including the slope as a factor. In this specification, as expected,
the high-minus-low factor is significant and substantially explains the cross-sectional variation.
However, once we augment the model to include the slope as a factor, the cross-sectional R?
of the model doubles (from 0.21 to 0.41). The slope of the term-structure of betas seems to
have pricing power for the cross-section of returns. We also run the same tests but include
the level of the term-structure as a control. We find that after controlling for the slope of the
term-structure, its level has no explanatory power (second row of Panel B of Table 4). Thus,
it is indeed the difference between the long-term beta and the short term-beta that improves
the performance of the model. These results are robust to the exclusion of the financial crisis
period.!?

Economically, the reason why the slope of the term-structure is priced in the cross-section is
its strong relation with the risk of the underlying portfolios. The relative magnitudes between
the short-term beta and the long-term beta successfully capture the risk-return tradeoff. This
will become more evident once we study the time-series properties of the slope of the term-

structure of betas.

12Gee appendix B
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3.2 Time-series

In the previous section, we conjectured that an upward sloping term-structure of option esti-
mated market betas implies that investors expect an increase in risk in the underlying portfolio
and therefore should earn higher returns on that portfolio. By sorting stocks on the ex-ante
slope of their term-structure we established that portfolios with a negative (positive) slope earn
higher (lower) expected returns, even after controlling for the level of the term-structure. We
went a step further and found that the slope of the term-structure has pricing power for the 25
portfolios sorted on size and book-to-market.

We now examine the time-series dynamics of the slope. We start by plotting its time-series
for the 25 size and book to market portfolios and then analyze what drives its dynamics.'

Panel A of figure 3 plots the slope of the term-structure for value and growth stocks.

[Figure 3 here]

During unsettled periods such as the 2007-2009 financial crisis, value stocks have a negative
term-structure slope, implying that market participants view these stocks as having a high
systematic risk at the moment, but they expect it to decrease. This is in accordance with
Lettau and Wachter (2007) argument: value firms with a low duration of cash-flows are deemed
to be riskier during a recession in relation to growth stocks that have a higher duration of cash-
flows. Therefore, value stocks during the crisis had a high short-term implied market beta and
negatively sloped term-structure.

The difference between several maturities betas might shed some light on how long investors
expect the recession to last. The reason that the slope of the term-structure is a priced factor
in the cross-section is precisely this: when a particular stock becomes riskier, its short-term
beta spikes vis-a-vis its long-term beta. The great benefit of estimating forward-looking CAPM
betas is exactly the fact that they are akin to conditional CAPM betas. They take into account
the current state of the nature and move around daily, capturing underlying unobserved factors.

In appendix D, we plot the dynamics of the slope of the term-structure for a portfolio of
technology stocks and a portfolio of financial stocks. In line with the previous argument, during
the turn of the millennium tech-bubble, technology stocks had a high systematic risk and thus
a negatively sloped term-structure. The same pattern was evident for financial stocks during
the recent financial crisis. This reinforces the fact that these conditional forward-looking betas
are very powerful at capturing adverse states of nature that matter for the underlying stock or

portfolio.

13In appendix C, we look into other interesting implications of the slope of the term-structure: how it behaves

in aggregate and for individual stocks.
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The important question now is what drives the slope of the term-structure of these portfolios.
Changes in the slope of the term-structure can come from several sources. To start with, the
slope can move around due to movements in the short-term beta 63\4’&% or movements in the
long-term beta 53\“ n'M

Q N Q Q
Oitr Zj:l Wji0 54 rPijt,r
Q 2 (7)
(UM,t,T)

Second, conditional on the change in the slope being driven by either the long-end or the

Q —
/BiM,t,T -

short-end, that change might be due to either the first term on the numerator of equation (7)
(the variance swap rate) or the second term (the correlation effect). In summary, the slope of

the term-structure can change due to:

1. A short-end or long-end effect (or both):

_ Q@ Q
Viti = Bz‘M,t;rl - /BiM,t,Ts

2. A variance swap effect:
Q

Q
Uvalue,t,T >0

growth,t,T

3. A correlation effect (in the spirit of Driessen, Maenhout, and Vilkov (2009)):

N N
§ ’ Q@ Q Q  Q
wJUj,t,Tpvalue,j,t,T > wj Uj,t,Tpgrowth,j,t,T

Jj=1 J=1

Figure 4 shows the decomposition of the slope of the term-structure into its three compo-
nents. It is clear that most of the effect comes from the short-end of the curve (Panel A of figure
4). This occurs because term-structures slope either upward or downward is mainly due to a
change at the short-end of the curve.!® In addition, most of the effect seems to be driven by
the variance swap rate and not by correlation. In fact, throughout our sample, the correlation
effect is essentially the same for both value and growth portfolios (Panel B of figure 4). It is
important to emphasize that although most of the variation in the slope of the term-structure
comes from the short-end of the curve, it is still the relation between the short-term and the

long-term that matters for cross-sectional asset pricing.

14 As we will see below, most of the effect is on the short-end of the curve.
15 Actually, changes in both ends of the curve are strongly positively correlated, i.e. an increase in the short-

term beta is likely to be associated with an increase in the long-run beta, but the effect is more pronounced on

the short-term beta.
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[Figure 4 here]

This new empirical evidence has strong implications for asset pricing models. On one hand
standard asset pricing models such as the Consumption CAPM of Lucas (1976), the habit model
of Campbell and Cochrane (1999), the long-run risk model of Bansal and Yaron (2004) or the
duration model of Lettau and Wachter (2007) imply a negligible term-structure of variance.
Furthermore, these models do not focus on the cross-section of firms. On the other hand,
most studies that have investigated the term-structure of variance relied on no-arbitrage affine
term-structure models (e.g. Ait-Sahalia, Karaman, and Mancini (2014), Egloff, Leippold, and
Wu (2010) among others). Most structural models do not address on the term-structure of
variance and the few that do fail to take into account the cross-section of stocks (e.g. Dew-
Becker, Giglio, Le, and Rodriguez (2015)). In the next section, we therefore take a step further
into the theoretical asset pricing literature and build a model that concurrently examines the

cross-section of returns and the term-structure of variance swaps.

4 An investment model with uncertainty shocks

In this section we build a dynamic investment-based model, with heterogeneous firms and time-
varying uncertainty, to link the cross-section of returns and the slope of the term-structure of
systematic risk. We model time-varying uncertainty in the same way as Bloom (2009), by
assuming that volatility follows a two-state markov chain. Uncertainty shocks drive both the
value-premium and the term-structure of variance swaps. During normal times, the variance
swap term-structure is almost flat (see panel D of figure 4). This is standard: during normal
times, short-term expected variance is low and as uncertainty shocks are unlikely, long-term
expected variance is also low. On the other hand, at the inception of a uncertainty shock, short-
term variance spikes inducing a negatively sloped term-structure of variance. The persistence
of the uncertainty shock keeps the term-structure of variance negatively sloped for a long-time.
These uncertainty shocks have a heterogeneous effect on the cross-section of stocks, depending
on firms’ holdings of growth options. Growth firms have low assets in place so that, when
uncertainty increases, they perform better than value stocks and thus have lower expected
variance. Given that growth stocks variance spikes less than value stocks, this accounts for the
heterogeneous slope of the option implied beta term-structure observed in the data.

Our choice for the volatility process relies on the empirical observation made by Bloom
(2009) that uncertainty appears to dramatically increase after major economic and political

shocks. In figure 5 we replicate figures 1 and 2 from Bloom (2009). In the left panel of figure
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5 we plot the VIX index.!® It is clear that market volatility - a common proxy for uncertainty
- displays large spikes after major shocks. At the same time, these second-moment shocks
generate large falls, of around 1% on impact, in output (right panel of figure 5). These two

empirical observations will be important for our modelling choices.!”

[Figure 5 here]

4.1 The economic environment

The economy is populated by N firms, indexed by j, that use physical capital (X;) to produce

a homogeneous good (Y;,). Firms have a standard neoclassical production function given by:

}/j,t - Xthﬂngojt (8)

where X; is the aggregate productivity and Z;, is firm-specific productivity, and 0 < o < 1 is
the curvature parameter. The production technology exhibits decreasing-returns-to-scale.
Let x; and z;; denote the log of X; and Z;; respectively. Both follow a first order auto-

regressive process:

T = TJ(1 = pa) + pawe + 0f €4 (9)

I VA A
Zji+1 = PrZit + 0 €51 (10)

in which €f,, and €;,,, are independent and identically distributed (i.i.d.) uncorrelated normal
shocks, 7 is the long-term mean of aggregate productivity; p, and p, are the persistence of
aggregate and firm-level productivity, respectively; of and o7 are the conditional volatility of
innovations to aggregate and firm-specific productivity, respectively. J; is a very small produc-
tivity jump. We will thoroughly discuss how we calibrate the jump and why it is important in
our setup in the next sections.

Firms can either pay dividends or invest in capital. Physical capital accumulation is given

by:

Kj’tJrl — (1 - (S)Kj,t + Ij,t (11)

16We only have VIX data starting from mid-80s, so we plot actual realized volatility before that.
"Tn appendix E we discuss how the average level of uncertainty in the market (VIX) relates with the average

absolute slope of the term-structure of betas.
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where 0 is the depreciation rate and [}, is investment at time ¢. Firms incur convex asymmetric
adjustment costs of investment (G;;) as in Zhang (2005), Lin and Zhang (2013) and Bloom
(2009):

c it )2

(I+Kj7t + %(II(JJ}) Kj’t, for ]jﬂf >0

G, Kj) =10 for I;, =0 (12)
G_Kjﬂg + %(%)QKJ',“ for Ij,t <0

where a= > at > 0, and ¢~ > ¢* > 0 capture nonconvex adjustment costs.

4.2 Time-varying uncertainty

Bloom (2009) documents that uncertainty appears to dramatically increase following major
economic and political shocks (just like the slope of the term-structure of systematic risk).
We follow Bloom (2009) and extend the standard Lin and Zhang (2013) model with a time
varying second moment and use the model to simulate the impact of a large temporary uncer-
tainty shock. The stochastic volatility process for both aggregate (of) and firm-specific (o7)

productivity is assumed to follow a two-point Markov Chain, i.e.:

oy = {o}of}, where Pr(o} , = aﬂaf =of) = 71‘;:;,With ke {x, z} (13)

Time-varying uncertainty generates periods of low and high volatility both for the aggregate
productivity process and for the firm specific productivity process. We will assume these two to
be perfectly correlated, meaning that periods with high aggregate uncertainty also correspond
to periods with hight firm-specific uncertainty. In this model, due to the presence of non-
convex adjustment costs, when uncertainty spikes, firms delay investment decisions as the real
option value of waiting increases. As we will see below, growth stocks have low assets in place
and therefore higher growth options, which provide a hedge against uncertainty shocks. The

opposite is true for value stocks, making them riskier.

4.3 Stochastic Discount factor

Following Zhang (2005) we directly parameterize the stochastic discount factor which is a

function of the mean reverting state variable x; as follows:

log(myy1) = log(n) + ezt — T441) (14)
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The risk aversion parameter v; is given by:

Ve =Y + (2 — ) (15)

with 79 > 1 and 7; < 0. This allows the model to generate time-varying risk aversion and a

counter-cyclical price of risk a la Campbell and Cochrane (1999).

4.4 Equity value, returns, and variance swap rates

The profit function for an individual firm j, with capital stock K, idiosyncratic productivity

Z;+ and an aggregate state of X, is given by:

7Tj,t = XthytK](?jt — f (16)

where f denotes fixed costs of production. Firm’s maximize the present value of profits less
adjustment costs. Denote Vj; the cum-div the market value of firm j. The Bellman equation

of the optimization is given by:

‘/j»t = V<Kj7t7Xt7 Zj7t70-tx70-tz) =
= max(m;; — iy — Gy, Kjp) + By (M1 V(K 1, Xegr, Zjesn, 0000, 054))]] (A7)

subject to equation (11). Notice that the cum-dividend value of equity of each firm, depends
on the five state variables: K, (the current level of capital stock of each firm), Z;, (the current
productivity level specific to each firm), X, (the aggregate level of technology), of and o7 (the
level of aggregate and firm-specific uncertainty).

The above setup implies that at the optimum, V;; = D;; + E;[M;11V;441] with D;, =
e — L — G(Ly, K;t). It follows that the stock return of firm j is simply given by: 7441 =
Viis1/ (V41 — Dj,) and that the ex-div stock price S at time ¢ is given by: S;;, =V, — Dj,.

Given a risk-neutral (pricing) measure @, the price of an 7-month variance swap at the end

of month ¢ for stock j, (thﬁ) is given by:
0%hr = BC[ D RVurl] (18)
=1

where EtQ denotes the mathematical expectation under the risk-neutral measure conditional on
the state of the world at time ¢ and RV}, is the realized variance of stock j during month ¢.
To keep as close as possible to the empirics in the paper, we backout variance swap rates for

each single stock using again the methodology of Demeterfi, Derman, Kamal, and Zou (1999)
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and Bakshi, Kapadia, and Madan (2003).!® In order to do so, we need to value call and put
options within our model. Given that the stochastic discount factor is known the value of a

call option C'; on stock 7, at time ¢ with maturity 7 and strike K is given by:

Cy(t, 7, K) = E[My, max{Sj,(.) — K,0}] (19)

where we suppress the state variables of the policy function S(Kj¢ir, Xiyr, Zjt4r, 0Firs 07 r)
for convenience. To evaluate the expectation above we employ numerical methods and make
extensive use of Gauss-Hermite Quadrature techniques and splines for points that do not lie
on the grid for the state variables. It is straightforward to backout call option values for
any individual stock j. However, given the large number of state variables, it is impossible
to integrate equation (19) for the overall market portfolio. In order to do so we rely on an
aggregation technique similar to the one proposed by Krusell and Smith (1998) and Den Haan
et al. (1997) and approximate the equity market-value by means of a regression.'® Therefore
we conjecture that any given point in time ¢ the aggregate market value of equity, Sy, is a

function of the aggregate state variables and the lagged market value of equity:

SM,t = F(Xt, Uf, SM,t—l) (20)

We assume that the market value of equity is log-linear in the state space. The above
specification yields an R? of 90% if one does not include the lagged market value of equity on
the specification and an R? of 98% once we include it. So it is an overall good approximation,
and allows us to reduce the dimensionality of the problem and compute the option implied
variance of the market.

The model is solved using value function iteration on a discrete state space. Tauchen-
Hermite quadrature methods and numerical interpolation are extensively used to compute

expectations.

4.5 Quantitative results

In subsection 4.5.1 we calibrate the model, then subsection 4.5.2 presents the main quan-
titative results and subsection 4.5.3 investigates the model key mechanism to generate the

term-structure of variance and systematic risk.

8 Remember that we estimate variance swap rates using the following approximation: (ontT)2 =

2(1—10g[%(t)]> S, (t) 2(1—10g[%]>
fgj(t) —————2Cy(t, 7, K)dK + fo NS Pi(t, 7, K)dK
9The main difference between our setup and theirs is that the equity market value is not a state variable in

the problem, so we do not need to iterate for a fixed point.
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4.5.1 Calibration

We calibrate all model parameters at monthly frequency to be consistent with the empirical
section of this paper. Table 5 reports the parameters values used to solve and simulate the
model. Most parameters are taken from the literature - namely from Lin and Zhang (2013)

and Bloom (2009) - and allow us to match selected moments in the data.

[Table 5 here]

The parameters § = 0.99, 79 = 6 and v = —1000 are set to match the average real
interest rate (1.80%), its volatility (3.00%) and the average market Sharpe Ratio (0.32). The
curvature of the production function, «, is set to be 0.7 as in Hennessy and Whited (2007).
The monthly rate of depreciation, 4, is set to be 0.01, which implies an annual rate of 12%. The
persistence of aggregate productivity p, is set to be 0.953 consistent with Cooley and Prescott
(1995). The persistence p, of firm-specific productivity, is set to 0.96. The uncertainty process
parameters are calibrated using Bloom (2009), i.e. an uncertainty shock is expected every 3
years and have a 2-month half-life. Uncertainty shocks double the baseline uncertainty. We set
aggregate unconditional volatility and firm-specific volatility to the same value as in Lin and
Zhang (2013). We calibrate the jump, J;, to 1.003 which allows us to match the 1% drop in
output at the inception of a volatility shock (as documented by Bloom (2009)). Finally, the
parameter ¥ is a scaling variable and has no implication on the target moments. We set it to
—3.65 which implies a steady state value of capital equal to one.

In total 2,500 samples of artificial data are simulated at monthly frequency, with 15 years
and 1,500 firms each, with all values averaged across these samples. Similar to Bloom (2009)
in each simulation we hit the economy with an uncertainty shock in the first month of the
eleventh year, defined as 0, = oy. In any given sample, some economies will already be in
the high uncertainty state whereas others will forcefully move to that state. This allows us to
understand the impact of an uncertainty shock in returns, the term-structure of variance and
the term-structure of betas. All other shocks are randomly drawn.

The comparison between target moments from data and those from model simulations is
given in table 6. Table 6 shows that the model does a reasonable job of matching the key return

and quantity moments.?

20The average market return, volatility of market return and Sharpe ratio in the data are taken from Goyal
and Welch (2008). The data moments of the real interest rate are from Campbell, Lo, MacKinlay, et al. (1997).
The average output fall conditional on a volatility shock is from Bloom (2009). The remainder of moments are
from Pontiff and Schall (1998).
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[Table 6 here]

Importantly, the fit seems reasonable not only for the moments that serve as immediate
targets of calibration, but also for other moments. The mean and volatility of the market
return are comparable to those computed using the data from Goyal and Welch (2008). The
median of aggregate book-to-market ratio is 1.49, close to that of 1.53 reported by Pontiff and
Schall (1998). The average rate of investment is 0.135 in the model, close to 0.15 in the data
reported by Abel and Eberly (2001).

4.5.2 Stock returns, the term-structure of variance and the term-structure of

systematic risk

In this section we investigate the empirical predictions of the model for the cross-section of
returns, the term-structure of variance and systematic risk.

We start by studying the performance of the option implied CAPM, within the model,
in pricing the ten book-to-market decile portfolios. For each of the 2,500 artificial simulated
samples we use the exact timing of Fama and French (1993) to sort stocks into deciles based
on their book-to-market. We then run the standard CAPM regressions to estimate betas and
use the same methodology from our empirical section to estimate option implied betas. Table
7 reports the results. The first thing to note is that the model generates a value premium of
around 5% per annum which is close to the spread in the data of 4.88% as reported by Lettau
and Wachter (2007). Second, in the model, standard CAPM betas (fourth row of table 7) do
not line up that well with expected returns. The spread in betas between the top and the
bottom market-to-book decile is a dismal 0.2. On the contrary, betas from the option implied
CAPM (fifth row of table 7) line up extremely well with expected returns and have a spread
of 1.5 between the bottom and top market-to-book decile. This is similar to the pattern we
uncovered in our empirical section where the option implied CAPM betas line up better with
expected returns than the standard CAPM. The next subsection will look thoroughly as to why

this is the case.

[Table 7 here]

Before dwelling into the term-structure of variance and betas, it is useful to show the
precise impulse that will drive the term-structure results. Figure 7 plots the average value of
o¥ normalized to unity before the shock (the results are virtually unchanged for the firm-specific

volatility 7). It is clear that the uncertainty shock generates a spike in volatility, and that the
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shock dies out fairly quickly; within two months the volatility is already half-way through its
long-term value (remember that we calibrated the shock to be consistent with the estimates by
Bloom (2009)). The shock almost doubles the average of. The rise is less than 100% since at
the inception of the shock some of our 2,500 economies are already in state of the nature with

high volatility.

[Figure 7 here]

These volatility shocks have a heterogenous impact on the term-structure of variance of
individual securities. Figure 8 plots the average slope of the term-structure of variance for
value and growth stocks. During normal times, i.e. during the twelve months that precede the
volatility shock the term-structure of variance is nearly flat, with value stocks having a slightly
higher slope than growth stocks. The difference is due to value stocks being riskier than growth
stocks as a result of the convex adjustment costs, which make assets in place very risky when
aggregate productivity decreases. Further, at the inception of an uncertainty shock the term-
structure of variance of value stocks spikes much more than the one of growth stocks. This
is in accordance with the empirical evidence outlined in Panel D of figure 4, which plots the
slope of the term-structure of variance swap rates for value and growth stocks. As uncertainty
increases, growth stocks are effectively hedged against this shock as the increased uncertainty
expands the upside of future outcomes. Growth stocks have more growth opportunities than
value stocks, and therefore perform better. To the best of my knowledge this is the first paper
to look into the term-structure of individual stocks variance swap rates within a structural
model. Most models focus only on the aggregate market implied variance (see for example
Dew-Becker, Giglio, Le, and Rodriguez (2015) and Bollerslev, Tauchen, and Zhou (2009)).

[Figure 8 here]

This heterogeneity in the dynamics of the slope of the term-structure of variance swaps is
the key driver of the term-structure of systematic risk in the model. Figure 9 plots the slope

of the term-structure of betas in a twenty-four month window around a volatility shock.

[Figure 9 here]

There are several interesting things to note. First, value stocks have on average a negative
slope of their term-structure of betas (i.e., the short-term beta is higher than their long-term
beta). Value stocks suffer much more from a given volatility shock. Therefore, ex-ante, they

have a higher short-term beta. At the inception of a volatility shock the systematic risk of
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these stocks soar, their option implied beta spikes, and the persistence of the volatility shock
makes their short-term beta slowly decay to its long-run mean.

Second, just as in the data, the absolute change in the slope of the term-structure of value
stocks betas is slightly higher than the one for growth stocks.

Third, it is worth mentioning that although the changes in the slope of the term-structure of
variance swaps are somewhat in line with the data (see the shaded are in panel D from figure 4),
the slopes of the term-structure of betas seem to high. In the model we estimate the long-term
market implied variance using an approximate aggregation; this approximate aggregation only
depends on aggregate state variables, thus leaving out the firm-specific components; although
on the aggregate these elements might not matter to describe the expected path of S; yrarket
they are likely to matter for the value of the call option. Not including them is likely to
decrease its time-value leading to an underestimation of the true long-term variance swap rate,
and increasing the estimates of the slope. Despite this issue, the bottom line of this paper still
goes through: systematic risk does have a term-structure which is driven by the combination
of volatility shocks and heterogeneous firm-specific growth opportunities. In the next section,

we take a closer look at the mechanism that drives this result.

4.5.3 Inspecting the mechanism

In this section we take a closer look at the mechanism that underlies the relative success of the
option implied CAPM vis-a-vis the standard CAPM. We do so by using the investment model
we outlined above. There are two things that account for the relative success of the option
implied CAPM. First, unlike the standard CAPM that relies on regressions on historical data,
which implicitly assume that the past is sufficiently close to the future, the option implied betas
take into account the current state of the nature and agents’ expectations regarding the future.
This is also true in the model.

Second, the presence of volatility shocks and small productivity jumps, as empirically shown
by Bloom (2009), change the relative risk of different portfolios according to their growth options
and this again is well captured, in the model, by our option implied betas. Figure 10 breaks
down the mechanism that generates the heterogeneity of the term-structure of variance swaps
(and consequently of the term-structure of betas). Panel A of figure 10 plots the same figure
we have seen before: the term-structure of variance swaps spikes following a volatility shock,
with a higher impact on firms that have a higher share of assets in place. This higher impact
on value firms is mainly driven by the presence of the small productivity jump (Panel B of
figure 10). If there was no productivity jump, the impact would be very similar among value

and growth stocks.
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It is this empirical correlation between volatility and productivity that drives the hetero-
geneity. Finally, in Panel C from figure 4.5.3 we shut down both the volatility shocks and the
productivity jumps. This is exactly the model of Zhang (2005) and Lin and Zhang (2013). This
model implies a flat term-structure of variance swaps for portfolios and the market. This is at
odds with the empirical evidence that there a term-structure of variance swaps for the market
(see, for example, Dew-Becker, Giglio, Le, and Rodriguez (2015)). Therefore, it seems impor-
tant for asset pricing models to take into account volatility jumps and their correlation with
productivity. Taking into account these features might also help to explain the term-structure

of equity (see Van Binsbergen and Koijen (2015)).

5 Conclusion

In this paper we have uncovered the existence of a term-structure of systematic risk. The
slope of the term-structure is priced in the cross-section of returns. In the time-series it spikes
following relevant macroeconomic and firm-specific events. We also took a step into the asset
pricing theory literature by showing that volatility jumps are very important to match the
underlying cross-section and time-series dynamics of the term-structure of systematic risk. We
conclude this paper by briefly discussing two potential avenues for future research in this area.
It would be interesting to extend the large literature on real and nominal term structure models
to match the term-structure of systematic risk. We have given a first step in this direction,
but further work is needed. Also the term-structure literature on equity should evolve hand-
in-hand with the literature on the term-structure of systematic risk, as these two things should

be inherently connected.
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Option Implied Beta

Figure 1: Term-structure of betas for Apple Corporation

The blue points on this figure are the option implied betas for Apple Corporation for the 10
maturities under analysis (1, 2, 3, 4, 5, 6, 9, 12, 18, 24 months) on two different dates. The
red line is the Nelson-Siegel model fit (equation 21). We fix theta to maximize the loading of
the medium-term factor at six months which is usually where the hump occurs and estimate

the remaining parameters by Ordinary Least Squares.
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Figure 2: Portfolio Beta Predictions

The figure shows the scatter plots of expected and realized quintile portfolio betas over the

sample period from January 1996 to August 2014. At the end of each month we sort stocks in

five portfolios based on their implied or historical beta. The first portfolio thereby contains the

stocks with the lowest expected market betas, and the last portfolio contains the stocks with the

highest expected market betas. For each portfolio, month and methodology we then compute

the value-weighted realized beta over the next six months (Panel A and B) and the next

twelve months (Panel C and D).The figure plots the realized quintile portfolio betas against

the expected quintile portfolio betas for all five quintiles, separately for each methodology.
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Figure 3: Beta term-structure slope

This figure plots a monthly time-series of the slope of the term-structure between January
1996 to August 2014. Panel A reports the slope for value (high book-to-market) and growth
(low book-to-market) stocks and Panel B reports the slope for small and large firms in terms
of market capitalization. Following the same methodology of Fama and French (1993) we sort

stocks on five portfolios based on size and book-to-market.
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Figure 4: Decomposition of the slope of value and growth stocks into its three components

This figure decomposes the slope of the term-structure of betas of value and growth portfolios
into its three components: (i) short-term vs long-term effect (Panel A), (ii) correlation effect

(Panel B) and (iii) variance swap effect (Panel C).

Panel A: Short-term betas of Value and Growth portfolios
I I I I I I I I I I T T T T I
16— — Value Portfolio Short-Term Beta |
Growth Portfolio Short-Term Beta

14 PN
12+ o (\/"‘h—’k H‘f\-/“ \_/ \/L,

T TN S y, A ST APSVEN J‘/ J\’\‘f\’&w
\/\/w\,/\f -w\."\f\w /\/__\/J T A ‘,‘M_ //_V = —
0.8 - —
J
0.6 L | | | |V | | | | | | | | | | | | | | |

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2000 2010 2011 2012 2013 2014 2015

Panel B: Short-term beta decomposition - correlation effect
0.6

I I I I I I I I I I T I T T T T I
Walue Portfolio Correlation Effect
Growth Portfolio Correlation Effect |_|

0.4 I||||

| | | |
0
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2113 2014 2015

Panel C: Short-term beta decomposition - variance swap rate effect
o I I I I I I I I I I T T T T I
Value Portfolio Swap Rate Effect

Growth Portfolio Swap Rate Effect

05—

| | e -—Cl'w::*.
0

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

g

Panel D: Slope of variance swap rate term-structure

06 | | | | | | | | | | | | |
Value Portfolio Slope Swap Rate TS
0.4 — Growth Portfolio Slope Swap Rate TS |
02— —
o f———— Foe s 7<7c "V\f \'\sj\—'\,/ Moo ALY A /[»\L ]
R kT T

| | | | | | | | | | | | | | | | | | | |
0.2
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 @ 2007 2008 2009 2010 2011 2012 2013 2014 2015

27



50 —

a5

40 —

_-

30+~

25—

2

Missile Cisis

Figure 5: Monthly U.S. stock market volatility and the impact of a volatility shock on

production

This figure replicates figures 1 and 2 from Bloom (2009). Panel A plots the VIX index between
1986 onwards. Pre-1986 the VIX index is unavailable, so actual monthly returns volatilities
are calculated as the monthly standard deviation of the daily S&P500 index normalized to
the same mean and variance as the VIX index when they overlap from 1986 onward. Panel B
plots a VAR estimation of the impact of a volatility shock on industrial production. Dashed
lines are 1 standard-error bands around the response to a volatility shock. A more detailed

description on the data and methodology underlying this figure can be found in Bloom (2009).
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Average Term-Structure Slope

Figure 6: Average beta term-structure

This figure plots the VIX index and the value-weighted average beta term-structure slope
(equation 9) between January-1996 and August-2014.
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Figure 7: The simulation has a large second-moment shock

We simulate 2,500 artificial data samples at monthly frequency, with 15 years each In each
simulation we hit the economy with an uncertainty shock in the first month of the eleventh
year, defined as of = o/!. This figure plots the average value of o7 around a 24-month window
of the shock. The shock is normalized to unity before the shock date. It is plotted on a monthly

basis, with the month normalized to zero on the date of the shock.

{normalized to I on pre-shock date)
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Figure 8: Slope of term-structure of option implied volatility for value and growth stocks

This figure plots o9 @

om0t for value and growth stocks on a window of 12 months before and

after the uncertainty shock. We simulate 2,500 artificial data samples at monthly frequency,
with 15 years each In each simulation we hit the economy with an uncertainty shock in the
first month of the eleventh year, defined as of = off. We then average across all simulations

to understand the impact of a volatility shock on the term-structure of variance swaps.
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Figure 9: Slope of the term-structure of betas for value and growth stocks

This figure plots the slope of the term-structure of betas (53\4,15,71 — ﬂg\“m) for value and
growth stocks, on a window of 12 months before and after the uncertainty shock. We simulate
2,500 artificial data samples at monthly frequency, with 15 years each In each simulation we
hit the economy with an uncertainty shock in the first month of the eleventh year, defined
as of = ofl. We then average across all simulations to understand the impact of a volatility

shock on the term-structure of betas.
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Average slope of the term-structure of variance

Figure 10: Term-structure of variance swaps - mechanism breakdown

In this figure we breakdown the model mechanism to generate a term-structure of variance

swaps. Panel A plots the term-structure of variance swaps before and after a volatility shock

for the benchmark model. In Panel B we plot the same thing but shutting down the small

productivity jump. Finally, Panel C plots the standard term-structure of variance swaps for the

standard Lin and Zhang (2013) model, i.e., a model with no volatility shocks nor productivity

jumps.
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Table 1: Risk-Return Option Implied Betas and Historical Betas

This table reports mean expected beta and mean realized return for five portfolios sorted on
ex-ante beta. At the end of each month for we sort portfolios in accordance to their historical
or option implied beta. Then we compute the value-weighted monthly return of the portfolio
over the next 7-months where 7 is the maturity of the options underlying the estimation. For
historical betas, the returns are over the following month. The numbers in the table are the
time-series means of these values. The first (last) portfolio contains stocks with lowest (highest)

expected beta.

Historical
Expected Beta 0.39 069 095 125 1.85 -
Realized Return 814 997 919 11.89 1091 2.77

60 day options
Expected Beta 0.65 088 1.06 1.27 1.68 -
Realized Return 813 10.83 10.91 11.14 11.58 3.45

91 day options
Expected Beta 0.66 088 1.05 1.26 1.66 -
Realized Return 7.73 10.06 11.04 11.16 12.08 4.36

122 day options
Expected Beta 0.67 089 1.05 125 1.65 -
Realized Return 772 9.70 10.75 11.12 13.13 541

152 day options
Expected Beta 0.67 089 1.05 1.25 1.63 -
Realized Return 7.80 9.87 1046 10.99 13.55 5.75

182 day options
Expected Beta 0.68 089 1.05 124 1.63 -
Realized Return 7.84 10.43 11.19 11.43 13.09 5.24

365 day options
Expected Beta 0.70 090 1.05 1.23 1.58 -
Realized Return 7.60 998 11.09 10.37 1240 4.80
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Table 2: Shapes of term-structure of betas: distribution

This table reports the distribution of shapes of term-structure of betas. For every day in
our sample and every stock on the S&P 500 we compute a term-structure of betas using the
methodology described in section 2. We classify a term-structure to be upward (downward)
sloping if v3 > 0.1 ( gamma; < 0.1) and classify it as positively (negatively) humped if the
curvature factor -y, is above (below) 0.05 (-0.05).

Positive Hump No Hump Negative Hump Total

Upward Sloping 5.83% 7.97% 10.73% 24.54%
No Slope 14.05% 21.70% 14.68% 50.44%
Downward Sloping 10.66% 6.09% 8.28% 25.03%
Total 30.54% 35.76% 33.70% 100.00%
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Table 3: Expected Returns on double sorted portfolios on beta and slope of term-structure

This table reports the expected returns on double sorted portfolios on the one-year option
implied beta and the slope of the term-structure of beta. At the end of each month, stocks are
ranked according to their one-year option implied beta and the slope of their term-structure
and assigned to a portfolio. The portfolios are held for one year, such that each month, the
weights are revised on 1/12 of the securities in the portfolio as in Jegadeesh and Titman (1993).
Excess returns are reported in annual terms. The sample period ranges from January-1996 to

August-2014.

Panel A: Average Excess returns

Neg. Slope 2 3 4 Pos. Slope
Low Beta 2.10% 1.64% 0.67% -0.33% -0.66%
2 4.83% 3.19% 2.11%  1.39% 1.96%
3 7.42% 4.35% 4.45%  4.03% 3.37%
4 6.24% 4.60% 4.17%  4.85% 4.35%
High Beta 8.57% 5.24% 6.03%  7.16% 12.36%

Panel B: t-statistics

Neg. Slope 2 3 4 Pos. Slope
Low Beta 1.38 0.78 0.24 1.71 0.66
2 1.58 1.84 1.91 2.38 1.58
3 2.00 2.29 1.68 247 1.42
4 2.21 2.49 1.96 1.94 1.18
High Beta 2.25 2.16 1.99 1.59 -0.49
GRS F-Test 1.58 P-Value 0.03
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Table 4: Fama-MacBeth cross-sectional test

This table summarizes Fama-MacBeth cross-sectional regressions (average slopes, R?s) when
monthly returns are regressed on the Fama and French (1993) 3-factor model and the slope of
the term-structure of the portfolio. T-statistics for the slopes are Newey-West corrected. Panel
A reports the results of cross-sectional pricing of the double sorted portfolios on option-implied
beta the slope of the term-structure (see table 3 for details). Panel B reports the same results

for the 25 Fama-French size and book-to-market double sorted portfolios.

Panel A: Fama-MacBeth regressions using 25 portfolios sorted
on Option implied beta and term-structure slope

FF-Factors
Constant Market HML SMB Slope R2
coef -0.005 0.007  0.003 0.002 0.043 0.660
t-stat  -1.371 1.609  0.445 0.536 2.393

Panel B: Fama-MacBeth regressions using 25 portfolios sorted
size and book-to market

FF-Factors

Constant Market HML SMB Slope Level R2
coef 0.010 -0.004  0.022 -0.002 0.033 0.41
t-stat 1.211 -0.441 4.406 -0.585 2.175
coef 0.010 -0.003  0.022 -0.002 0.030 -0.039 0.42
t-stat 1.157 -0.390 4.034 -0.705 2.046 -1.284
coef 0.016 -0.010  0.025 -0.001 0.22
t-stat 1.309 -1.324  5.179 -0.200
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Table 5: Calibration

This table lists the benchmark parameter values used to solve and simulate our model

Parameter

Value

Stochastic Discount Factor
Subjective discount rate

Aggregate price of risk

Technology

Depreciation Rate

Curvature of production function
Fixed costs of production

Productivity

Average aggregate productivity
Persistence of aggregate productivity
Persistence of idiosyncratic productivity
Productivity Jump

Adjustment costs

Linear adjustment costs

Convex Adjustment Costs

Uncertainty Process

Low volatility of aggregate productivity
High volatility of aggregate productivity
Low volatility of idiosyncratic productivity
High volatility of idiosyncratic productivity
Probability of low vol state given low vol
Probability of low high state given high vol

Yo
94!

~ Q

0.99

-1000

0.01
0.7
0.0032

-3.55
0.953
0.97

1.003

0.01
0.03
20
200

0.003
0.006
0.108
0.217
0.97
0.71
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Table 6: Target Moments

This table reports unconditional moments from the simulated data and the real data. We
simulate 2,500 artificial economics, each with 1.500 firms and 150 months. The average market
return, volatility of market return and Sharpe ratio in the data are taken from Goyal and
Welch (2008). The data moments of the real interest rate are from Campbell, Lo, MacKinlay,
et al. (1997). The average output fall conditional on a volatility shock is from Bloom (2009).

The remainder of moments are from Pontiff and Schall (1998).

Data Model
Average risk-free rate (%) 1.80  2.68
Volatility of risk-free rate (%) 3.00 2.01
Average market return (%) 6.33  6.49
Volatility of market return (%) 19.41 16.80
Sharpe Ratio 0.33  0.39
Annual average rate of investment 0.15 0.13
Volatility of firm-level investment rate (%) 22.30 12.01
Median market-to-book ratio 1.49 1.53
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Table 7: Properties of market-to-book deciles in the Model

In total 2,500 artificial panels are simulated from the model in Section 4. Each panel contains
1,500 firms and 150 months. The Ten book-to-market deciles are constructed on each of the
artificial panels, the CAPM regressions are performed (third row from the table), and the
cross-sample averaged results are reported. We also investigate the properties of the option
implied CAPM (fourth row). We compute option implied betas using the same methodology

from the empirical section and then report cross-sectional averages.

Growth 2 3 4 5 6 7 8 9 Value
E[R — R7] 0.048 0.05 0.053 0.057 0.064 0.072 0.079 0.087 0.091 0.096
O'[Rj — Rf] 0.18 0.19 0.21 022 023 024 024 025 025 0.26
Sharpe Ratio 0.32 0.34 037 041 044 047 049 0.5 0.52 0.54
Standard CAPM Beta 0.88 0.95 1.02 0.98 1.02 0.99 1.01 1.02 1.03 1.08
Option Implied Beta 0.24 0.60 0.77 0.91 1.02 1.13 1.24 1.36 1.50 1.75
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Appendix A Term-structure of betas: level, slope and

curvature

On this appendix we show that three factors are enough to capture the shapes of the term-
structure of betas. For every stock in our sample we model its option implied beta term-
structure using Nelson-Siegel exponential components model which imposes a structure on
factor loadings thus reducing the estimation error. At the end of each month ¢ we fit the

following curve to the estimated option implied betas:

T

@Q]\/[ﬂ:ﬁ = Y, + ’Yl,te_T/e + 72,t§€_T/9 (21)

We conjecture that in line with Diebold and Li (2006) we may interpret the ~y coefficients as
three latent dynamic factors and interpret them as the level, slope and curvature of the term
structure.

For long-term maturities the beta estimates approach asymptotically 7y; then v; represents
the deviation from the asymptote; and 9 determines the hump that happens at time 7. The
parameter 6 governs the decay, so a high (low) value of # allows for a better fit for short (long)
maturities. Following Diebold and Li (2006) we fix 6 to maximize the loading of the medium-
term factor at six months which is when the hump occurs on average. This allows to compute
the values of v using ordinary least squares (OLS). The results are robust to the value of
chosen as long as it lies in a reasonable range (i.e. allowing for the hump to occur at around 6
months).

The Nelson-Siegel model is flexible enough to capture different shapes of the term-structure
(upward sloping, downward sloping and hump-shaped). Figure 7?7, on the main text illustrates
this by plotting the model fit at two different points in time. For all stocks in our sample the
model works fairly well. In table 8 we report the residual statistics from the in-sample estimation
of equation 21 for all the stocks. We compute each statistic for each stock and then average
them across stocks. The average error is fairly low ranging from -0.004 to 0.003, implying
than on average the Nelson-Siegel model is properly capturing the shape of the term-structure.
Further, the one-month auto-correlation of the errors increase with maturity meaning that if
we misprice the long-term beta on one period we are likely to misprice it on the next period.
This error persistence on the highest maturities might be due to the lack of liquidity of the
long-term options. More interestingly, the maximum and minimum pricing errors (third and
fourth column of table 8) are very low - given that we estimate a term-structure for each point
in time for all S&P 500 stocks one would expect higher maximum (minimum) pricing errors.

Furthermore, RMSE are low and do not have a pattern across maturities implying that the
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moment when the hump on the term-structure occurs might change but the model, on average,
is able to accurately capture.

The three estimated ~ can be interpreted in terms of level, slope and curvature of the
betas term-structure. Define the the level factor, 7y, as the long-term beta (6&7t7t +12m); the
slope, 71, as the difference between the twelve-month implied beta and the one-month implied
beta (ﬁiQMM 1om — ﬁg\“,t +1m); and the curvature, 7, as the difference between twice the three-
month implied beta and the sum of the one-month implied beta with the twelve-month implied
beta (2 x 53\47t7t+3m — (ﬁiQJ\/Mth + 53\/17t7t+12m)). Figure 11 plots the estimated level, slope and
curvature of the Apple Corporation stock across time against its empirical counterpart. The
figure confirms our conjecture that the three factors in our model can indeed be interpreted
as the slope, level and curvature of the curve. This result is robust for all other stocks in our

sample.
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Figure 11: Level, Slope and Curvature of Term-Structure

This figure plots the model based level, slope and curvature (79, 71 and 72) against their
empirical counterparts for the Apple Corporation. We define the empirical level as the long-
term beta ( BiQM’m 42 1m); the slope, 71, as the difference between the twenty-four-month implied
beta and the one-month implied beta (/BS\J,t,t+24m — B&7t’t+1m); and the curvature, 9, as the
difference between twice the three-month implied beta and the sum of the one-month implied

beta with the twenty-four-month implied beta (2 x Bg\/[tt+3m - (,Bmttﬂm + Bg\/ltt+24m))‘
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Table 8: Nelson-Siegel In-Sample Performance

This table presents the in-sample performance of the Nelson-Siegel model in fitting the option
implied betas term-structure. At the end of each month we fit equation 21 to the estimated
option implied betas. The table reports the residual statistics for all the S&P 500 stocks as an
average across stocks. The residual at time ¢ for the estimated beta with maturity 7 is defined
as: € = Bz‘Q]V[,t, I BZ-QA/[,LT, where BS\“ . is the Nelson-Siegel fit. The first two columns present
the average residuals for each maturity and their standard deviation. The third and fourth
columns present the maximum and minimum pricing errors. The RMSE is a performance
measure defined as: RMSE = \/% Z?:l(ﬁiQ]\“’T — ngyw)?. p1 and pio are the order one and

twelve auto-correlation coefficients respectively.

Average St. Dev  Max Min RMSE p1 P12

1M -0.002 0.018 0.052 -0.068  0.017 0.105 0.157
2M 0.002 0.037 0.127 -0.124  0.034 -0.038 0.196
3M 0.003 0.028 0.101 -0.078  0.026 0.015 0.239
4M 0.001 0.016 0.059 -0.052  0.015 -0.044 0.221
5M -0.002 0.017 0.053 -0.061  0.015 0.040 0.180
6M -0.003 0.021 0.056 -0.080  0.020 0.278 0.130
oM -0.004 0.025 0.060 -0.101  0.027 0.529 0.142
12M 0.000 0.018 0.050 -0.070  0.019 0.531 0.207
18M 0.003 0.015 0.064 -0.040 0.016 0.437 0.146
24M 0.002 0.025 0.096 -0.062  0.028 0.567 0.142
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Appendix B

Table 9: Fama-MacBeth cross-sectional test - excluding financial crisis period

This table summarizes Fama-MacBeth cross-sectional regressions (average slopes, R%s) when
monthly returns are regressed on the Fama and French (1993) 3-factor model and the slope of
the term-structure of the portfolio. T-statistics for the slopes are Newey-West corrected. Panel
A reports the results of cross-sectional pricing of the double sorted portfolios on option-implied
beta the slope of the term-structure (see table 3 for details). Panel B reports the same results

for the 25 Fama-French size and book-to-market double sorted portfolios. We cut the sample

in January 2007 to exclude the financial crisis period.

Panel A: Fama-MacBeth regressions using 25 portfolios sorted
on Option implied beta and term-structure slope

Constant
coef -0.008
t-stat -1.403

FF-Factors
Market HML SMB Slope R2
0.007  0.008 0.004 0.023 0.680

1.224  0.794 0.750 1.790

Panel B: Fama-MacBeth regressions using 25 portfolios sorted

size and book-to market

Counstant
coef 0.007
t-stat 1.196
coef 0.002
t-stat 0.278
coef 0.001
t-stat 0.127

FF-Factors

Market HML SMB Slope Level R2

-0.003  0.023 -0.002 0.23
-0.343  3.811 -0.563

0.002 0.019 -0.003 0.036 0.38
0.307  3.033 -0.721 2.404

-0.003  0.016 -0.003 0.047 -0.040 0.38
0.427 2433 -0.721 2,944 -1.452
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Appendix C Other time-series facts regarding the term-

structure of betas

In this appendix we show some other empirical facts regarding the term-structure of betas,
namely we document the behavior of the slope of the term-structure at the aggregate level and
at the individual firm-level. If the slope of the term-structure indeed captures changes in the
underlying risk of stocks and portfolios, we should expect higher changes around crisis periods,
major economic events, and expect these changes to provide information about which sectors of
the economy are more risky at a given point in time. For individual stocks changes in the slope
of the term-structure should also spike following corporate relevant events. In this appendix
we show that the change in the slope of the term-structure is rather informative about the
riskiness of the underlying stock/portfolio. For the aggregate market, absolute value-weighted
changes of the slope of the term-structure are higher during systemic events such as FOMC
meetings, the Lehman Brothers bankruptcy, the Asian mini-crash, DJIA biggest one-day crash,
the Boston marathon disaster, among others. For individual stocks, the changes in slope are
more significant in company specific relevant events such as mergers and acquisitions, ratings
cut, bankruptcy announcements, company bailouts, major market disruptions, etc.

To assess whether the how the slope of the term-structure behaves at the aggregate level

we define a market risk measure (RM;) as:

RM,; = Zwimw,tﬂ,i’ (22)
i=1

where A~y ;11 is the change in slope of the term-structure of stock 7 between date ¢ and 41 and
w; is the market weight of stock 7.2' Given that the value-weighted changes on the slope of all
the market constituents must add up to zero, the absolute value in equation 22, ensures that we
can capture the points in time where slope changes are higher. The slope of the term-structure
can change either due to: (i) changes in the short-term beta, (ii) changes in long-term beta, (iii)
changes in both. Usually, the changes in short-term beta are more pronounced and account for
most of the changes in the slope. However, the changes in long-term beta act frequently as a
shrinking parameter. An increase in both short and long-term beta means that the underlying
portfolio significantly increased its expected risk whereas an increase in short-term together
with a decrease in long-term beta implies that the underlying increased its short-term expected

risk but decreased its long-term expected risk.

210n this section we use the empirical slope instead of the Nelson-Siegel estimated slope on our computations.

The results are not sensitive to the use of one or the other.
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Figure 12 plots the daily time-series of equation 22 between 1996-2014. During normal days,
the risk reallocation measure fluctuates around its time-series average of 0.032. However, on
days with relevant events - either macroeconomic shocks or stock market crashes - it spikes
implying a high degree of risk-reallocation. It is clear that RM; was clearly above its time
series average during turbulent periods such as the technology bubble or the financial crisis
and there are clear spikes on the asian crash in 1997, the dot-com bubble in 2000, the Lehman
bankruptcy in 2008 and two large DJIA (Dow Jones Industrial Average) crashes. Also RM,
clearly spikes on important macroeconomic events such as FOMC meetings, the congress debt
ceiling debate and the Greek crisis. At the individual stock level, the measure spikes, as well,
on relevant firm specific events. Table 10 reports the 20 largest changes in the term-structure
slope of all S&P 500 stocks on a given month (we average the daily absolute changes on the
slope of individual stocks to get a monthly figure and check which individual stock had the
highest average change on the slope). Two patterns emerge (i) the slope of the term-structure
significantly changes following a merger, acquisition or spin-off and (ii) economic and financial

distress or major market disruptions also lead to significant changes in the slope.
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Figure 12: Risk-reallocation: Value-weighted absolute changes in beta term-structure

This figure plots the daily time-series of equation RM; = Y " | w;|Ayi 441, where Ay 1
is the change in slope of the term-structure of stock i between date ¢ and ¢t + 1 and w; is the

market weight of stock ¢. The sample ranges from January-1996 until August-2014.
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Table 10: Individual stocks risk-reallocation

This table reports 20 of the largest absolute changes in the term-structure slope of individual

S&P 500 stocks on a given month. Each month we average the daily absolute changes in the

term-structure slope of each S&P 500 stock and check which stock had the largest change. The

first column reports the month under analysis, the second column reports the company with

the largest absolute change in slope on that month, and the last column reports key events

related with the company on that month.

Date Company Event
Jul-1997  General Instrument Spin off of two major divisions
Aug-1997 Txu Gas Co Merger with ENSERCH Corp
Sep-1997  Sunamerica Inc DisFloses inter.ltion to acquire a
major competitor
Aug-2001  Quaker Oats Co Acquired by Pepsi Co
C Admits it has used improper accounting
Jul-2002 - Qwest Communication Intl methods (26% of market value wiped off)
. Almost bankrupt. Accepts an
Sep-2002 - William Cos emergency high interest loan from Warren Buffet
Jan-2006  Mercyry Interactive Fell to the Pink Sheets
Nov-2006 Amsouth Bancorporation Acquired by Regions Financial Corporation
Dec-2006  Freescale Semiconductor Inc Largest buyout of a technology firm
Feb-2007 Integrys Energy Group Inc Moody downgrades its rating
. Federal Reserve Bank of New York agreed to
Mar-2008 Bear Stearns Companies Inc provide a $25 billion liquidity loan
Jun-2008 Mbia Inc Several lawsuits were filed against MBIA Inc
Government attempted to ease market fears by
Jul-2008  Federal Home Loan Mortg corp reiterating their view that company plays a
central role in the US housing finance system
Sep-2008  Lehman Brothers holdings inc ~ Filled for Bankruptcy
Apr-2009 Rohm and Haas Acquired by The Dow Chemical Company
) Halted panel deliveries to the
Aug-2012 - First Solar worlds largest photovoltaic power plant
Oct-2013  Dell inc Privatization deal completed
Apr-2014  Cliffs Natural Resources inc Proxy fight
Jun-2014  Vertex Pharmaceuticals inc FDA drug approval stock jumps 40%
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Appendix D Term-structure slope of Value/Growth port-

folios and Financial /Technology stocks

Figure 13: Beta term-structure slope

This figure plots a monthly time-series of the slope of the term-structure between January
1996 to August 2014. Panel A reports the results for value (high book-to-market) and growth
(low book-to-market) stocks. We sort stocks on five portfolios based on their book-to-market
following the same methodology of Fama and French (1993). Panel B reports the results for
financial firms and technology stocks. As industry definition we use the 12 industry portfolios

available at Kenneth French’s website.
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Appendix E VIX and term-structure of betas

In this appendix we discuss how does the average cross-sectional slope of these term-
structures relate with the market level of uncertainty or VIX. This is an important question
but with no straightforward answer. To begin with, the market slope of systematic risk is a
flat line, whereas the VIX fluctuates over time. Bearing this in mind, we define the following

measure to capture the average slope of the term-structure:

AverageSlope; = Z Wi |Y1,041,4] (23)
i=1

The modulus in equation (23) ensures that we can capture how much on average do term-
structures slope. Figure 6 plots the VIX index against the time-series of equation (23). From

the figure it is clear that the levels of the VIX and average term-structure slope are not related.

[Figure 6 here]

However, changes in VIX and changes in the average slope have a daily correlation of -0.48
(with a t-stat of -38.0) which implies that on average when uncertainty rises term-structures
slope increases, whereas when uncertainty decreases the term-structures get less sloped. This
correlation is almost mechanical as the VIX index shows up on the denominator of the short-
term option implied beta. Also, VIX is an aggregate measure of uncertainty or risk-aversion of
the market. The advantage of looking at the slope of term-structures is that we can do it for any
individual security at any given point in time. So despite the fact overall market uncertainty

plays and important role in the term-structure of systematic risk, it proxies a different thing.
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