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Abstract

The part of credit spread that is not explained by corporate credit risk forecasts future

economic activity. I show that the link with aggregate business risk and bond liquidity

risk explains this finding. Once I project spreads on these two risk factors, which are

readily measurable with the daily frequency, in addition to corporate credit risk, the

forecasting power of the residual spread reduces substantially for some macro variables

and disappears entirely for the others. Such residual, however, turns out to be an out-

of-sample forecast of corporate bond market returns. An investment strategy based

on such forecasts delivers risk-adjusted returns 50% higher than the corporate bond

market.
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1. Introduction

Credit spreads forecast economic activity. Gilchrist and Zakraǰsek (2012) elaborated on

this statement; there is a particular portion of credit spreads that is of most importance for

activity forecasts. It is a part of the spread that is not explained by corporate credit risk,

called the credit risk premium or the excess bond premium (EBP). The first part of this

paper shows what stands behind the forecasting power of the EBP.

I argue that the forecasting power of the EBP hinges on the information about aggregate

business risk and bond liquidity risk contained in credit spreads and show how to extract this

information using daily frequency. I construct a large bond-day panel of credit spreads from

transactions recorded in TRACE and measure corporate credit risk, bond-specific liquidity

risk, and aggregate business risk at the daily frequency. When I project spreads on corporate

credit risk only (as in Gilchrist and Zakraǰsek, 2012), I confirm that the residual forecasts

future economic activity. However, when I further project spreads on aggregate business

risk as measured by the Aruoba-Diebold-Scotti daily business conditions index (ADS index)

and bond liquidity risk, as measured by the Amihud measure, the forecasting power of the

residual portion of spreads for macroeconomic variables largely goes away.1

Following finance literature, I interpret the residual portion of credit spread unexplained

by corporate credit risk, bond liquidity risk, and aggregate business risk as the credit risk

premium. The second part of this paper demonstrates that my measure of the credit risk

premium is a forecast of corporate bond market returns. The forecasting power is absent

when one considers instead the residuals from the projection of spreads on corporate credit

risk only. This result is robust to different estimation windows and different bond market

portfolios. Moreover, the risk premium forecasts returns even when it is estimated in real

time with the information available only on the estimation date.

I remain agnostic about what this return-forecasting component of credit spreads is.

1The ADS index does not contain any bond or stock market indicators as inputs.
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Yet, I demonstrate what it is surely not. The paper shows that neither bond pricing factors

of Bai, Bali, and Wen (2016), including contemporaneous bond market returns per se, nor

stock market factors can explain the time series variation of my credit risk premium measure.

The models with my credit risk premium on the right-hand side, in addition to other bond

pricing factors, however, forecast returns on diverse size, maturity, and industry corporate

bond portfolios better than the models without it. This result is robust to exclusion of the

subprime crisis episode from the sample.

I exploit the forecasting power of the risk premium to construct a corporate bond market-

timing strategy that delivers risk-return characteristics superior to the buy-and-hold market

strategy. My strategy assumes weekly portfolio rebalancing and uses only one risky in-

strument, an investable aggregate corporate bond market index, which is bought and sold

depending on predicted corporate bond market excess returns. On a testing sample, my pre-

dictive model successfully forecasts market returns out-of-sample, and the strategy delivers

total return and a Sharpe ratio 1.5 times higher than the corporate bond market index.

The first part of this paper on macro forecasting properties of the EBP feeds into several

discussions in the literature. From the perspective of EBP estimation and predictive power,

this paper is related to the work by Gilchrist and Zakraǰsek (2012), De Santis (2017), and

Nozawa (2017). In particular, De Santis (2017) constructed a monthly credit risk premium

free from aggregate business risk on European multi-country data but reached a different

conclusion regarding its forecasting properties. From the perspective of empirical credit

spread modeling, this paper contributes to the ‘credit spread puzzle’ literature stemming

from Collin-Dufresne, Goldstein, and Martin (2001). I demonstrate that aggregate business

risk, as measured by the daily business cycle index, is able to explain a significant portion

of common variation in credit spreads at the daily frequency. In this respect, this paper is

related to the results by d’Avernas (2017), who estimates a joint structural model of credit

spreads and equity volatility to argue that firms time-varying aggregate asset volatility helps

to explain both the dynamics of credit spreads and their forecasting power for economic
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activity. There are no direct references for the second part of this paper that investigates

asset pricing properties of the EBP. To the best of my knowledge, this is the first study to

establish the forecasting power of EBP for corporate bond market returns.

The paper is organized as follows. Section 2 discusses the data sample. Section 3 esti-

mates the credit risk premium by fitting alternative models to the bond-day panel of credit

spreads. Forecasting power of the risk premium for macroeconomic activity is discussed in

Section 4. Section 5 shows that the EBP forecasts excess bond market returns, does multiple

robustness tests, and presents an investment strategy to benefit from the forecasting power

of the risk premium. Section 6 concludes the work.

2. Sample Characteristics

I merge daily bond trades from TRACE with bond characteristics from Mergent Fixed

Income Securities Database (FISD) and issuing firm characteristics from Compustat and

CRSP for senior unsecured corporate bonds with fixed coupon schedules. My data construc-

tion approach is presented in detail in Appendix B. The constructed sample is an unbalanced

bond-day panel with around 2 million bond-day observations that span a period from Oct

2004 to Dec 2014. The number of bonds sampled per day is, on average, 823 with a standard

deviation of 111. Summary statistics for the panel are presented in Table 1.

[Insert Table 1 near here]

An average bond in the sample has been issued approximately six years ago and has

about nine years to maturity. It has an outstanding amount of about 600 million USD and

pays a coupon of 6%. It is an investment-grade security rated between BBB+ and BBB and

is traded six times per day. Its yield to maturity is about 5%, approximately 2.4% above its

risk-free counterpart. The latter number is the credit spread measure constructed following

Gilchrist and Zakraǰsek (2012). I call it either the GZ spread or simply the spread.

3



To control for illiquidity, I use a daily Amihud measure AMHt computed for each bond

for each day t when the bond was traded:

AMHt =
1

Nt

Nt∑
j=1

|rt,j|
Qt,j

,

where rt,j is the price return of trade j of this bond on day t, Qt,j is the volume of a

corresponding transaction, and Nt is a total number of trades of this bond per day.2 This

definition of the Amihud measure follows the approach of Dick-Nielsen, Feldhütter, and

Lando (2012) with one modification. Their approach requires at least two trades per day

to compute the Amihud measure; I compute it even for days with a single trade. In this

case, the price return is relative to a previous trade whenever it occurred.3 Table 1b presents

median values of the Amihud measure in the sample by credit rating. Bonds of lower credit

quality tend to be less liquid in the sample.

As Table 1b shows, A- and BBB-rated callable bonds are predominant in the sample.

The spread measure is not option-adjusted by construction; as in Gilchrist and Zakraǰsek

(2012), I will control for that in the EBP calculations. The median GZ spread and distance-

to-default are aligned with credit ratings in an intuitive way. The higher the rating, the

‘farther’ the default is and the lower the spread. Ratings are also aligned (except AAA-rated

and almost defaulted bonds) with median coupons, durations, and total daily returns.

[Insert Figure 1 near here]

My aggregate spread measure constructed on the daily data is in line with the monthly

measure of Gilchrist and Zakraǰsek (2012), as Figure 1 demonstrates. The left panel is my

daily time series. For each day, the aggregate spread is a simple cross-sectional average of

GZ spreads across all bonds of all firms sampled on that day. The aggregate spread is non-

2To see how the Amihud measure behaves on daily frequency on TRACE data relative to other illiquidity
measures see Schestag, Schuster, and Uhrig-Homburg (2016).

3I experimented with these two definitions and found that for bond-days with at least two trades per day two
definitions give very close numerical measures.
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stationary in levels. The right panel of Figure 1 compares the monthly mean and last values

of my daily measure with the original monthly spread from Gilchrist and Zakraǰsek (2012).

The three series differ a bit only during the 2008-2009 crisis; otherwise, the fit is tight. Thus,

at this stage, I have obtained a larger sample with the daily data and constructed the daily

GZ-spread measure, which is very close to the monthly one presented in the literature.

3. Measuring Excess Bond Premium

Excess bond premium (EBP) is the portion of credit spread not explained by credit risk

factors. Given a panel of bonds k issued by firms i and observed at times t, and given their

GZ spreads SGZi,t [k], bond-level EBPi,t[k] is computed as follows:

log
(
SGZi,t [k]

)
= Factors of credit spreads + εi,t[k],

ŜGZi,t [k] = exp

(
Part due to estimated factors +

σ̂2
εi,t[k]

2

)
,

EBPi,t[k] = SGZi,t [k]− ŜGZi,t [k],

where σ̂2
εi,t[k]

is the variance of residuals of the log-spread-fitting regression above. In this

paper, I am interested in the properties of the aggregate excess bond premium EBPt defined

for each day t as a simple cross-sectional average of EBPi,t[k] across all bonds of all firms.

I estimate the EBP on the daily data, unlike Gilchrist and Zakraǰsek (2012) and De Santis

(2017), who worked with bond–month panels. My major motivation is pronounced business

cycle forecasting properties of monthly EBP established in the literature. Is it possible to

extract the information about the future state of the economy beyond what we know from

daily real activity measurements from credit spreads on a daily basis? Does this approach

bring new information that is valuable for forecasting not only macroeconomic activity but

also bond returns?

To answer these questions, I want to capture the portion of bond spreads beyond firm-
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specific credit risk, bond-specific liquidity risk, and economy-wide business risk. I directly

control for bond-specific illiquidity with the daily Amihud measure and for aggregate business

risk with a high-frequency real activity proxy. This is the daily ADS index computed and

published in real time by the Philadelphia Fed.4 The ADS index based on Aruoba, Diebold,

and Scotti (2009) is a smoothed business cycle state derived from a mixed-frequency state-

space linear model for six real-valued variables: initial jobless claims, payroll employment,

industrial production, personal income less transfer payments, manufacturing and trade

sales, and gross domestic product. The ADS index contains neither bond nor stock market

data as inputs.

I benchmark my EBP measure on Gilchrist and Zakraǰsek (2012). Their EBP is correlated

with economy-wide business risk, and bond-specific illiquidity is controlled only with monthly

bond characteristics. De Santis (2017) controlled for aggregate business risk when measuring

EBP, but he estimated it on monthly European multi-country data. This summarizes the

differences in my preferred spread-fitting model relative to the Gilchrist and Zakraǰsek (2012)

model:

Original GZ models:

log
(
SGZit [k]

)
= β ·DDit + (Proxies for recovery rate and liquidity) + (Call adjustment) +

+ (Industry and rating FE) + εit[k].

My preferred models:

log
(
SGZit [k]

)
= β ·DDit + (Proxies for recovery rate and liquidity) + (Call adjustment) +

+ γ · ADSt + η · AMHit[k]︸ ︷︷ ︸
Daily business cycle and liquidity

+ (Industry and rating FE) + εit[k],

where DDit is the distance-to-default of firm i at time t (proxy for idiosyncratic credit risk),

4For details on the ADS index see Appendix C and https://goo.gl/mZJ5Sj. Many alternative daily aggre-
gate business risk proxies exist, for instance, the Economic Policy Uncertainty index of Baker, Bloom, and
Davis (2016). I opted for the ADS mainly because of a long history of ADS vintages readily available at
the Philadelphia Fed web page. These historical vintages allow me to perform out-of-sample analysis in Sec-
tions 5.2 and 5.4.
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ADSt is the aggregate business activity index at day t, and AMHit[k] is the Amihud measure.

In the following sections, I apply both approaches on the bond-day panel and investigate the

differences in the resulting EBPs.

[Insert Table 2 near here]

Table 2 presents the estimated models over the entire sample. Model 1 is the basic model

with corporate credit risk factors on the right-hand side. In Models 2 and 3, I consecutively

add aggregate business activity and liquidity factors. Models 1 to 3 have the simplest possible

call option adjustment: a constant that is identical for all bonds at all times. Models 4 to

6 introduce interactions of call dummy with yield curve factors and bond characteristics

to possibly better capture the time variation in the issuers desire to call an issue before

maturity. Model 4 is the benchmark Gilchrist and Zakraǰsek (2012) model. I see Model 6,

which extends Model 4 with daily aggregate business activity and liquidity factors, as the

alternative model.

All models in Table 2 have high explanatory power for log spreads. Even the simplest

model, Model 1, explains around 72% of the log spreads variation in the data. More elaborate

call option adjustment (Model 4) increases this share by 2.5 percentage points. Aggregate

business activity and liquidity factors (Model 6) add another 4.5 percentage points to the

share of explained log spreads variation, which reaches 79%.

As Table 2 shows, aggregate business risk and bond illiquidity are significant predictors

of credit spreads. Coefficients on the ADS business cycle index and the Amihud measure are

statistically significant across all specifications. They do not vary much from one model to

another and have reasonable signs. Business cycle upturns are associated with lower credit

spreads, and more illiquid bonds have higher spreads.

Most interaction variables of the call dummy with yield curve factors and bond charac-

teristics introduced in Models 4–6 for the purpose of call option adjustment are statistically

significant, as Table 2 shows. Observe for Models 5 and 6 that when the yield curve moves
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up and becomes steeper, the spreads tend to become lower. This finding can be explained as

follows: the probability of an early call decreases when rates become higher (fewer incentives

for an issuer to refinance at higher rates); hence, an early call premium drops and callable

bonds tend to become more expensive. The importance and significance of call option ad-

justment make Gilchrist and Zakraǰsek (2012) argue that Model 4 is superior to Model 1 on

their data, I get the same result on my data. My primary interest, however, is in comparison

of Models 4 and 6, which I turn to now.

[Insert Figure 2 near here]

Figure 2a compares the goodness of fit of Models 4 (benchmark Gilchrist and Zakraǰsek,

2012) and 6 (my preferred model) to actual aggregate spreads. Model 6 captures time series

variation in daily spreads much better than Model 4, especially in years 2008 and 2009, and

this is due to only two additional factors: the state of the business cycle and bond liquidity.

The left panel of Figure 2b presents the same result in terms of the EBP. An unexplained

increase in credit spread during the subprime crisis is significantly smaller and shorter in

time according to my preferred model; hence, the state of the business cycle is a factor of

aggregate credit spread even on a daily frequency. The right panel of Figure 2b compares

monthly EBP values of my preferred daily EBP (Model 6) with the original monthly EBP

series from Gilchrist and Zakraǰsek (2012) and confirms this finding.

[Insert Table 3 near here]

The significance of business cycle and liquidity as factors of credit spreads survives the

truncation of the data sample. Table 3 compares performance of Models 4 and 6 in sub-

samples of either investment-grade or high-yield bonds. The models explain spreads of

investment-grade bonds much better than high-yield ones. Spreads of the riskiest bonds are

probably non-linear in the distance-to-default: coefficients on the DD variable in columns

3 and 4 (high-yield bonds) of Table 3 are roughly twice the corresponding coefficients in

columns 1 and 2 (investment-grade bonds). Yet, business cycle and liquidity factors are still
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significant for both types of bonds, and coefficients on these variables are not much different

from the full-sample specifications. More importantly, business cycle and liquidity factors

survive complete deletion of observations between Jan 2008 and Dec 2008 (inclusive) from

the sample. Columns 5 and 6 of Table 3 present these estimations. Both coefficients do

not change much relative to full-sample specifications and improve the explanatory power of

Model 6 as measured by the R2 compared to Model 4.

An alternative way to establish the link between aggregate business risk and the portion

of spreads beyond corporate bond credit risk is presented in Appendix D. There I first

introduce, following d’Avernas (2017), time fixed effect in log spread fitting models (and

remove the ADS). Then I project this estimated time fixed effect on the ADS in a univariate

time-series regression to demonstrate that the latter explains significantly around 63% of the

variation of the former on the daily frequency.

In this section, I have demonstrated that aggregate business risk and bond liquidity risk

are significant factors of credit spreads in addition to corporate credit risk. Does the residual

spread that is free from all these sources of risk (EBP of Model 6) still forecast macro as the

benchmark EBP measure (Model 4)? Section 4 answers this question.

4. Forecasting the Business Cycle

I explore the forecasting properties of the EBP with respect to business activity by

running predictive models for monthly industrial production, payroll employment, and the

unemployment rate similar to the ones in Gilchrist and Zakraǰsek (2012). Here, I use month-

end values of my daily EBP measures obtained in Section 3. The regressions are:

∇hYt+h = α +

p∑
i=1

βi∇Yt−i + γ1RFFt + γ2TSt︸ ︷︷ ︸
Real Fed funds rate and term spread

+ γ3S
GZ
t︸ ︷︷ ︸

True GZ spread

+ εt+h,

and:

∇hYt+h = α +

p∑
i=1

βi∇Yt−i + γ1RFFt + γ2TSt + γ3Ŝ
GZ
t + γ4EBPt︸ ︷︷ ︸

Fitted GZ spread and EBP

+ εt+h,
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where ∇hYt+h is either log Yt+h − log Yt−1 the growth rate of industrial production/payroll

employment or Yt+h− Yt−1 the change in unemployment rate. The right-hand side variables

(apart from a constant and the dependent variable lags) capture different components of the

real cost of borrowing through the corporate bond market for an average U.S. bond-issuing

firm.5

The literature has established long ago that, in such models, credit spreads are significant

predictors for different left-hand side indicators and forecasting horizons. Gilchrist and

Zakraǰsek (2012) demonstrated that the predictive power of spreads is rather due to the

residual spread than the fitted spread component. I revisit this result with my preferred

measure of the EBP.

[Insert Table 4 near here]

Table 4 demonstrates that high spreads today are indeed associated with lower future

industrial production and higher future unemployment in my sample.6 The columns titled

‘–’ estimate models with GZ spread as an explanatory variable without splitting it into

explained and unexplained parts. For the industrial production, the unemployment rate and

the payroll employment on all horizons (except for one-year ahead industrial production),

the spread is indeed a strong predictor of future macroeconomic activity with reasonable

signs.7

As ‘M4’ columns of Table 4 show, the EBP computed as in Gilchrist and Zakraǰsek (2012)

is indeed a stronger predictor of future macro activity than the explained portion of spread

(‘fitted spread’). For the industrial production, the EBP of Model 4 is a significant predictor,

and the fitted spread is not. Speaking about economic significance, the absolute value of

5For details on the right-hand side variables see Appendix C.

6This table echoes Table 6 of Gilchrist and Zakraǰsek (2012).

7I use Newey and West (1987) heteroskedasticity and autocorrelation consistent standard errors in forecasting
regressions with overlapping observations in Sections 4 and 5 of the paper. I also ran all the estimations with
Hodrick (1992) standard errors instead and found that in my sample Newey-West standard errors are bigger
than Hodrick’s ones in vast majority of cases. Hence I reject the ‘no predictability’ null less frequently using
the Newey-West errors.
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the coefficients on EBP is 4-7 times higher depending on the forecasting horizon. For the

employment-related variables, both the EBP and the fitted spread are statistically significant

predictors, but the economic significance of changes in EBP for future employment trends is,

again, substantially higher than of changes in fitted spreads, especially on longer horizons.

The predictive power of the EBP becomes considerably lower once I switch to residual

spreads free from corporate default risk, aggregate business risk, and bond liquidity risk.

This result is the most pronounced for the industrial production. Observe in the column

titled ‘M6’ of Table 4a that for three-month ahead growth of the industrial production,

the fitted spread is now a significant predictor, and the EBP is not. Compared to ‘M4’

column, not only the significance but also the magnitude of coefficients on the fitted spread

and the EBP has changed considerably. The same result applies to the 6-month ahead

industrial production, Table 4b shows. At the 12-month horizon, Table 4c, neither of the

two components of the spread is a significant predictor of industrial production. Table 4

also presents similar results for the unemployment rate and the payroll employment. Here,

in ‘M6’ columns, both components of the spread are still statistically significant predictors

of employment trends, but the economic significance of the fitted spread is now much higher

than of the EBP (especially on the 3-month horizon, where coefficients on the fitted spread

are roughly twice higher in absolute value than the coefficients on the EBP). Hence, switching

from Model 4 to Model 6 increases both statistical and economic significance of the fitted

spread and shrinks the significance of the EBP in forecasting economic activity.8

The results discussed in this section so far go through if one compares instead predictive

models with the fitted spread and the EBP of Models 1 and 3 of Table 2 (not reported).

This case refers to the EBP estimations when call option adjustment is just the loading on

the call dummy, same for all callable bond at all times. Hence, the reduction in predictive

power of the EBP for future macroeconomic activity is not due to the chosen method of

8This result is reinforced by the lower variability of the EBP estimated by Model 6 compared to Model 4:
large deviations of the EBP of Model 6 from its mean are less probable per se.
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embedded call option adjustment.

I interpret the findings of this section as follows: the daily EBP measure contains infor-

mation that is relevant for predicting the future state of the economy, but this information

can be also derived from a readily available daily business activity measure, such as the ADS

index. The forecasting power of the residual spread that is free from the corporate default

risk only (EBP of Model 4 or Model 1) is mostly due to the persistence of the business cycle

itself.9 Once one further projects spreads on the aggregate activity and illiquidity measures,

the forecasting power of the residual component (EBP of Model 6 or Model 3) goes away

completely for some macro indicators and falls considerably for the others.10

[Insert Figure 3 near here]

Bi-variate monthly vector autoregression (VAR) models on the EBP and the ADS activity

index provide supporting evidence for such an interpretation.11 I estimate these VARs to

capture possible time series interdependence of activity and the EBP. Figure 3 presents

orthogonalized impulse response functions from the estimated models, with the EBPs of

Models 1, 3, 4, and 6 on Figures 3a, 3b, 3c, and 3d correspondingly. The response of activity

on the EBP shock on the left panel of Figure 3a (the EBP of Model 1) shows that unexpected

jumps in the EBP today imply significantly lower business activity up to nine months ahead,

and vice versa. The EBP-to-activity pass-through remains the same when I consider the EBP

from Model 4 instead, Figure 3c shows, hence this finding is not due to the chosen method

9For estimations of the U.S. business cycle persistence at monthly frequency see Mariano and Murasawa
(2003).

10Gilchrist and Zakraǰsek (2012) also considered structural shocks to their EBP measure in a quarterly eight-
variable macro SVAR model and interpreted the shocks as ‘EBP shocks orthogonal to the business cycle’.
However, this interpretation hinges on the identification of the SVAR model by exclusion restrictions. Their
identification yields significant effects of ‘EBP shocks orthogonal to the business cycle’ on activity. I believe
that it is better to directly control for the state of the business cycle at the stage of the EBP estimation.
This approach leads to a different conclusion regarding the forecasting power of the EBP relative to the
fitted spread.

11On monthly frequency, both the ADS and the EBP are stationary time series over the years 2004–2014.
I obtain monthly values of these series by taking the latest daily observation per month. Taking monthly
means instead doesn’t change the results.
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of call option adjustment. However, once I consider the EBP free from liquidity risk and

aggregate business risk (Models 3 and 6), the link between the EBP and activity breaks

up. Figures 3b and 3d show that now shocks to the EBP do not affect activity significantly

over horizons longer than several months (and over these shorter horizons the effect has a

counter-intuitive sign). There is no significant effect in the opposite direction either. These

results corroborate the findings of this chapter: the portion of credit spreads explained by

firm-specific credit risk, economy-wide business risk and bond-specific liquidity risk does a

good job in forecasting the future macroeconomic state, and the residual portion of spreads

is less important for macro forecasting.

5. Forecasting Corporate Bond Returns

In this section, I investigate two questions: whether the EBP contains any information

relevant for forecasting bond returns or not, and how the EBP relates to other known bond

pricing factors. The motivation for this part comes from the decomposition of credit spreads

by Nozawa (2017). This paper shows that the Campbell-Shiller decomposition applied to

corporate bond spreads (under mild assumptions about losses in default) yields:

St = Et

[
∞∑
i=1

ρi−1ret+i

]
︸ ︷︷ ︸

Risk premium

+Et

[
∞∑
i=1

ρi−1lt+i

]
︸ ︷︷ ︸
Expected credit loss

+ Const,

where ρ is the steady-state price-coupon ratio, re is excess bond return and l is credit

loss. I want to think of the empirical decomposition of GZ spreads into an explained part

and the EBP as one particular model-based method to reinterpret the Campbell-Shiller

decomposition above. The EBP is interpreted in this case as the credit risk premium (i.e.,

conditional expectation of future excess corporate bond returns). Then, it is natural to ask

whether the EBP forecasts actual future returns.
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5.1. EBP and Excess Corporate Bond Market Returns

Building on regression models of Section 4, I estimate the following forecasting models

on the daily data:

Rt:t+h = α + βRt−h:t + γ1LV Lt + γ2SLPt + γ3CRVt︸ ︷︷ ︸
level, slope and curvature factors

+ γ4S
GZ
t︸ ︷︷ ︸

true GZ spread

+ εt+h,

and:

Rt:t+h = α + βRt−h:t + γ1LV Lt + γ2SLPt + γ3CRVt + γ4Ŝ
GZ
t + γ5EBPt︸ ︷︷ ︸

Fitted GZ and EBP

+ εt+h,

where Rt:t+h =
∑h

i=1Rt+i are cumulative excess log returns on a diversified bond portfolio h

days ahead.12 I consider the range of horizons from 1 day to 90 days to ensure the stationarity

of the returns series on the left-hand side.13 The left-hand side returns are for one of the

two alternative bond market portfolios: the value-weighted portfolio of in-sample TRACE

bonds and the portfolio of investment-grade bonds in the Barclays Aggregate U.S. corporate

bond index.14

[Insert Figure 4 near here]

My findings are as follows: the actual GZ spread is not a significant predictor of bond

market returns. Figure 4a presents the estimates of the various parameters in the model

with actual GZ spread on the right and their significance over different horizons. None of

the factors significantly predicts cumulative returns in such a model on horizons up to 90

days.

12Returns are total returns here, they account for both price changes and accrued interest.

13Cumulative returns are non-stationary on horizons beyond roughly 90 days. Hence one needs to test for
cointegration between returns and potential predictors on these longer horizons instead. I did that, and the
tests didn’t reject the null (no cointegration, i.e. no predictability for returns coming from the fitted spread,
the EBP, or the yield curve factors).

14All subsequent results were also obtained fot the equally-weighted portfolio of TRACE bonds (not presented
here).
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The residual spread free from corporate default risk only (EBP of Model 4) is not a

predictor of bond market returns either. Figure 4b presents these estimations, and here,

again, none of the factors is significant at horizons below 70 business days. For 70–90 days

ahead the fitted spread is a significant in-sample predictor of cumulative returns, but, as I

show later, this result is not robust to alternative specifications of market returns and the

EBP. The bottom line of the estimations presented in Figure 4 is as follows: if there is any

information in aggregate spreads relevant for forecasting future excess bond market returns

at all, it can hardly be extracted using the EBP correlated with the state of the business

cycle.

[Insert Figure 5 near here]

In contrast, once one switches to the residual spread free from aggregate business risk and

bond liquidity risk (EBP of Model 6), such bond premiums, unlike the EBP of Gilchrist and

Zakraǰsek (2012), turn out to be a significant predictor of bond market returns. Figure 5a

presents the results of such forecasting models. For all horizons between 40 and 60 days

ahead, the EBP and only the EBP is a significant predictor of excess bond market returns.

Economic significance of the EBP for future returns is high as well. A 10 basis points (b.p.)

rise in the EBP today implies almost 40 b.p. of excess bond market return over the next

two-three month. To give a sense of scale, the average absolute daily change in the EBP in

my sample is 4 b.p. with a standard deviation of 5 b.p. The adjusted R2 of return forecasting

regression at the 50-day horizon is 0.52.

My preferred measure of the EBP remains a significant predictor of bond market returns

when the market is the Barclays Aggregate U.S. corporate bond index.15 On Figure 5b, I

present these estimated forecasting regressions. Both statistical and economic significance

of the EBP still holds, moreover, here the EBP is a significant predictor on all horizons from

several weeks to several months ahead. In contrast, the fitted spread is nowhere significant.

15The correlation of excess returns on Barclays index with excess returns on our TRACE portfolio is 0.79.
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The adjusted R2 of return-forecasting regression at the 20-day horizon is 0.33. Appendix E

demonstrates that the predictive power of the EBP for market returns remains if I control

for the VIX levels in returns-forecasting regressions. To sum up, out of all considered factors

the EBP free from aggregate business risk and bond liquidity risk is the only significant

in-sample predictor of cumulative corporate bond market returns 1–3 months ahead.

5.2. ‘Real-time’ EBP as a Predictor of Market Returns

The EBP constructed and discussed in Sections 3 and 4 is the in-sample measure based

on the entire dataset as of the end of 2016. A ‘real-time’ EBP might, in principle, be

different from my full-sample measure because the whole historical path of the ADS index

is re-estimated as new macroeconomic data become available (see Appendix C for details).

In this section, I estimate a ‘real-time’ EBP, show that it is not much different from the

full-sample measure, and demonstrate that the two have similar predictive power for bond

market returns.

Computation of a ‘real-time’ EBP is possible for all dates starting from the end of 2008;

this is when the historical vintages of the ADS become available.16 For every single day t in

the sample, I cut my bond-day data at day t, take the ADS vintage as of t, and re-run Model

6 of Table 2 on this dataset to obtain the real-time measure of EBP denoted EBPRT (t).17

I will denote observations in this time series EBPRT
τ (t), where τ ≤ t.

[Insert Figure 6 near here]

Real-time EBPs turn out to be not much different from the full-sample EBP starting

from the year 2010, as charts on Figure 6 demonstrate. These charts present a collection of

16See the Philadelphia Fed web-page: https://goo.gl/mZJ5Sj.

17There is still one piece of information I use that could have not been available at day t, namely, accounting
books used to compute the distance-to-default. I do not expect, however, real-time accounting books to
diminish the explanatory power of the ADS index for credit spreads. Late dissemination of information about
idiosyncratic credit risk would probably increase the loading on timely systematic business risk measure in
explanatory regressions for credit spreads.
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the last points of real-time EBPs:
{
EBPRT

τ=t(t)
}

. Here, I estimate EBPRT (t) with samples

always starting on Oct 4, 2004, and ending on the estimation day t. There are periods of

time in 2009 when real-time EBPs differ considerably from the full-sample EBPt estimate;

otherwise, the real-time and the full-sample measures are close. Hence, we may expect that

whatever valuable information EBPt contains, we can extract it in real time, unless we are

in some very volatile period as 2009 was.

[Insert Figure 7 near here]

It’s important to check, however, whether the predictive power of the EBP for corporate

bond market returns holds when the full-sample estimate is replaced in forecasting regressions

with real-time estimates. I demonstrate in Figure 7 that, ever since 2010, real-time EBP has

mostly been a significant predictor for excess bond market returns. Here, I re-estimate for

each day t two forecasting models for 50-days ahead excess cumulative bond market returns

with the real-time EBP on the right:

Rτ :τ+50 = α + γEBPRT
τ (t) + ετ+50,

and:

Rτ :τ+50 = α + βRτ−50:τ + γ1LV Lτ + γ2SLPτ + γ3CRVτ + γ4EBP
RT
τ (t) + ετ+50.

Figure 7 depicts estimated coefficients γ̂ and γ̂4 and their confidence bounds for each esti-

mation day t (on the horizontal axis). The left chart demonstrates that real-time EBP has

significantly predicted excess bond market returns in-sample since 2010 in the univariate

regression model. The right chart of Figure 7 indicates that this predictive power is not

affected by the inclusion of additional yield curve factors in the model. Here, for almost all

estimation days in 2010–2014, EBP is still a significant predictor of excess corporate bond

returns 50 days ahead. A 10 b.p. rise in EBPRT
τ=t(t) implies 25 to 40 b.p. extra excess

cumulative bond market returns over t : t+ 50 when t is in 2010–2014.
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[Insert Figure 8 near here]

The analysis so far focused on in-sample predictability. Now I use the two models of

this paragraph to investigate out-of-sample predictability of corporate bond market returns

with the real-time EBP estimates. Figure 8 presents out-of-sample predictive accuracy tests

of Diebold and Mariano (1995) in which my models are tested against the no-predictability

benchmark (zero expected excess corporate bond market returns) on forecasting horizons

from 1 to 90 days ahead. The forecasts are constructed for all trading days in 2010–2014.

The null states that candidate models are as accurate as zero excess return forecasts in this

period. As Figure 8 shows, the null is rejected in favour of out-of-sample return predictability

on horizons shorter than 10 days and longer than 45 days ahead when the EBP is the only

predictor in the model.

These real-time estimations confirm that the EBP contains useful information for fore-

casting excess corporate bond market returns. The cheaper corporate bonds are relative to

risk-free counterparts today (controlling for firm-specific credit risk, bond-specific liquidity

risk, and aggregate business risk), the more they deliver on average over the next several

months.

5.3. EBP and Other Corporate Bond Risk Factors

In this section, I demonstrate that the EBP is not explained by other corporate bond

pricing factors, yet it improves their forecasting power with respect to diverse test portfolio

returns. In particular, I compare the EBP to bond pricing factors derived by Bai et al.

(2016) (referred to as ‘BBW factors’ herein). These factors are the ‘market’ factor, default

risk factor (DRF), credit risk factor (CRF), and liquidity risk factor (LRF). These empirical

factors are returns on factor-mimicking portfolios (see Appendix C for details about the

construction of the factors). Bai et al. (2016) demonstrated that their four factors explain

the major portion of variation of bond returns for size and maturity decile portfolios.

I do not have access to the original time series of the BBW factors, so I re-estimate them
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on my sample using the methodology by Bai et al. (2016). They compute the factors on the

sample of TRACE bonds over a comparable time frame (Jul 2002 – Dec 2014) at a monthly

frequency with monthly portfolio rebalancing. I compute the BBW factors either as in the

original work with monthly portfolio rebalancing (‘monthly factors’) or, as a robustness

check, with daily rebalancing (‘daily factors’).

[Insert Table 5 near here]

As Table 5 shows, the EBP is not strongly correlated with the bond risk factors, neither

at the monthly nor the daily frequency. Likewise, the EBP is not linearly related to any

stock market factor. The factors that are mildly correlated with the EBP on the monthly

frequency are limited to bond credit risk and stock momentum factors. In the regression

of daily EBP on BBW factors and a constant (not reported), none of the regressors has a

significant coefficient, and the overall explanatory power of such a regression is low (adjusted

R2 is below 0.1). From this, I conclude that major empirical bond and stock pricing factors

do not explain the time series variation of the EBP.

As Table 6 shows, the EBP does not add much to the BBW factors in explaining returns

on Bai et al. (2016) test bond portfolios. Here, I consider monthly returns of size and maturity

decile portfolios which I try to explain using candidate risk factors.18 I also add industry

portfolios to the analysis.19 The ‘Explanatory model’ parts of Table 6 present R2 from

regressions of test portfolio returns on candidate risk factors. The columns titled BM and

4F refer to regressions with only the market factor and all the BBW factors correspondingly.

The columns titled BM+ and 4F+ add the EBP as an explanatory variable to these baseline

models. The market factor alone explains, on average, about 60-65% of variation of test

portfolio returns. Three additional risk factors, DRF, CRF, and LRF, add 12–15% to the

18As in Section 6 of the work by Bai et al. (2016) I also tested 25 maturity-size quintile portfolios, but all the
subsequent results are qualitatively similar for them, so they are not reported. For the same reason I am
not reporting results obtained on the daily frequency.

19Eleven industry portfolios based on two-digit NAICS codes of the issuing firms.
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R2 of explanatory models on average. The EBP adds to that average virtually nothing.

Based on these findings, I conclude that the EBP does not explain residual bond returns

that are not explained by the BBW factors.

[Insert Table 6 near here]

However, when I run forecasting regressions for one-month ahead test portfolio returns,

the EBP does much better than the BBW factors. Note first in the ‘Forecasting model’

parts of Table 6 that the market factor alone forecasts returns almost as good as the full

Bai et al. (2016) four-factor model. This result holds for all industry portfolios and most

size and maturity portfolios. That is why I use the ‘BM’ columns as benchmarks for return-

forecasting regressions with the EBP added. The EBP improves the forecasting power of

return-forecasting regressions across the board. Returns on all size, maturity, and industry

portfolios are better forecasted once the EBP is included in the forecasting regressions. In

addition, the increase in R2 between BM and BM+ columns is pretty uniform across test

portfolios. Hence, the strong forecasting power of the EBP is hardly due to any specific size,

maturity, or industry group of bonds.

[Insert Table 7 near here]

Next, I check that the forecasting power of the EBP does not hinge on extreme return

observations of the end of 2008. In Table 7, I compare for how many test portfolios of each

type the coefficient on the EBP is significant in return forecasting-regressions both for the

entire sample and for the sample with observations from Sep 2008 to Dec 2008 removed.20

Table 7 demonstrates that the EBP remains a significant predictor of test portfolio returns

at the 95% level, even with four extreme monthly observations removed. Removing years

2008 and 2009 completely makes this monthly time series very short, but even in this case

(not reported), the EBP remains a significant predictor of returns at a 90% confidence level

for most portfolios and for more portfolios than the market factor.

20These are the months with very low market returns and very high EBPs.
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The logic behind the results of this section follows. Given the predictive power of the

EBP for bond market returns discussed in Section 5, one should expect the EBP to forecast

also whatever is strongly correlated with the market. As Table 6 shows, the market factor

explains the major portion of variation of a broad range of test portfolio returns. Hence,

one should expect the forecasting regressions in Table 7 to perform well, as they indeed do.

It is important, though, that this result is not attainable with other bond pricing factors.

The EBP outperforms DRF, LRF, and CRF factors in forecasting bond returns. In the next

paragraph, I demonstrate how the predictive power of the EBP can be used to construct an

investment strategy that outperforms the corporate bond market.

5.4. Corporate Bond Market-timing Strategy

I use the predictive power of the EBP for corporate bond market returns to design a

market-timing strategy that delivers risk-return characteristics superior to the buy-and-hold

the market strategy. My strategy uses only one risky instrument: the Barclays Aggregate

U.S. corporate bond market index (investable; several replicating ETFs are available). The

strategy consists of making one-week ahead forecasts of corporate bond market excess returns

using recent observations of the EBP, fitted GZ spread, yield curve factors, and market

returns. Based on these forecasts, an investor who has an amount of money W under

management at the end of week t can take one of the following three positions for the week

t+ 1:

– stay away from the corporate bond market and invest W in risk-free securities only

(when low returns are forecasted);

– follow the market and invest W in the index ETF (when the model provides no clear

signal about future returns);

– borrow a certain fraction α of W at the risk-free rate, and invest (1+α)W in the index

ETF (when high positive returns are forecasted).

The forecasting model builds upon the results of Sections 5.1–5.3. The left-hand side
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variable is the weekly corporate bond market excess returns. The right-hand side variables

are the five latest daily observations of the EBP, fitted GZ spread, three yield curve factors,

and daily corporate bond market returns one week prior to return observations. Hence,

there are 30 explanatory variables in total; selection among them is done by running LASSO

estimations. The model is re-estimated every week w (using ‘real-time’ estimates of the

EBP and fitted GZ spread of Section 5.2), and the LASSO penalty parameter λ is selected

to minimize the root mean squared error (RMSE) of the out-of-sample forecasts with the

‘leave-one-out’ cross validation. Once the model is estimated, the forecast for the next week

w + 1 is made using daily observations of predictors on week w.

[Insert Figure 9 near here]

The boundaries of the ‘inaction region’ in terms of predicted returns (when the investor

simply holds W in the corporate bond market ETF) and the leverage ratio α are selected over

the training sample, which is years 2009–2011. The selection problem is solved by maximizing

the Sharpe ratio of the market-timing strategy on the training sample. The optimization

is constrained, the lower bound of the inaction region is required to be negative, the upper

bound positive, and 0 6 α 6 0.5. The left chart of Figure 9a presents the out-of-sample

one-week ahead forecasts of market excess returns vis-a-vis actual excess returns. The two

are significantly correlated: the correlation coefficient is 0.26, the regression coefficient is

0.96 (in the regression of actual returns on predicted ones), and both are significant at the

1%-level. Maximizing the Sharpe ratio yields α = 0.5, the lower bound of the inaction

region of -0.12%, and the upper bound of 0.06% (of predicted weekly market excess return).

Table 8 and the right chart of Figure 9a show how the market-timing strategy performs on

the training sample. It delivers 50% cumulative return over the three years (1.5 times more

than the market) with a weekly Sharpe ratio of 0.37 (1.3 times higher than the market).

[Insert Table 8 near here]

As Figure 9b and Table 8 demonstrate, the strategy performs equally well on the testing
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sample, which is years 2012–2014 (with α = 0.5 and inaction region bounds fixed at the

values found on the training sample). Out-of-sample forecasts of market excess returns are

again strongly correlated with actual returns; the correlation coefficient is 0.22, and the

regression coefficient is 0.94, while both are significant at the 1%-level. Out of 155 weeks in

the testing sample, an investor follows the market for 49 weeks, levers up for 93 weeks, and

stays away from the market for 13 weeks. The strategy increases both mean weekly returns

and the Sharpe ratio by roughly one-half relative to the buy-and-hold market strategy.21

Cumulative returns of the strategy over the three testing years is 28% compared to 16% of

the corporate bond market index.

6. Conclusion

In this paper, I explore the forecasting power of the aggregate corporate bond risk pre-

mium (EBP) with respect to the business cycle and corporate bond market returns. Un-

like the closest study Gilchrist and Zakraǰsek (2012), that defines the EBP as the portion

of credit spread not explained by firm-specific credit risk, I additionally project spreads

on bond-specific liquidity risk and economy-wide business risk. I do so using daily data

constructed from tick-by-tick high-frequency data, while the literature works so far with

historical monthly data.

The paper demonstrates that the forecasting power of the EBP for future economic

activity depends on whether the EBP contains information about contemporaneous liquidity

and aggregate business risks. The residual spread that is free from only corporate credit risk

indeed forecasts activity, but this forecasting power mostly hinges on bond liquidity and

aggregate business cycle states. The latter two are readily measurable with daily frequency.

Once this information is taken away from credit spreads, both the statistical and the economic

significance of the residual for the forecasts of macroeconomic activity reduces a lot.

21Transaction costs are not accounted for, but given that the strategy uses only one instrument, which is
traded on the market, they will not considerably affect the results.
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This residual spread, however, forecasts corporate bond market returns, unlike the EBP

correlated with bond liquidity and aggregate business risks. The forecasting power is robust

to different definitions of the bond market portfolio and to different estimation windows. I

demonstrate that major stock and bond risk factors, including contemporaneous bond mar-

ket returns per se, do not explain the time series variation of my risk premium measure.

Moreover, its forecasting power is not concentrated in any particular size, maturity, or in-

dustry portfolio; the risk premium improves forecasts of corporate bond portfolios across the

board.

One can profit from the forecasting power of the residual spread by investing according

to the strategy designed to time the corporate bond market. The paper constructs the

forecasting model for the corporate bond market excess returns that successfully forecasts

returns out-of-sample. The strategy consists of staying away from the market when low

negative returns are forecasted and levering up when high positive returns are forecasted;

otherwise, an investor just follows the market. The strategy is implemented with only

one risky instrument, an aggregate corporate bond market ETF, and delivers risk-adjusted

returns 50% higher than the buy-and-hold market strategy.
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Appendix A. Tables and Charts

Statistic Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Size, mln USD 594.71 549.50 1 282 500 750 15,000
Time to maturity, years 8.80 7.81 1.00 3.28 5.90 10.06 30.43
Age, years 5.72 4.95 0.00 2.05 4.22 7.84 49.66
Duration, years 6.19 4.10 0.94 3.02 5.03 8.00 19.64
Coupon rate, pct. 6.06 1.74 0.45 5.10 6.15 7.20 15.00
Credit rating 8.49 3.28 1 6 8 10 22
Trades per bond per day 6.18 12.33 1 2 3 6 1,861
Yield to maturity, pct. 5.07 2.82 0.19 3.22 5.09 6.27 39.42
Spread, pct. 2.38 2.41 0.05 1.04 1.68 2.86 35.00
Return, pct. per day 0.02 1.61 −11.77 −0.55 0.01 0.59 11.23
Distance-to-default (DD) 0.67 0.34 0.01 0.40 0.63 0.89 5.03
Amihud measure 0.60 1.06 0.00 0.03 0.21 0.68 8.87

(a) Full-sample descriptive statistics. The age variable represents time elapsed from issuance.
Duration is the Macaulay duration. Ratings are in conventional numerical score; ‘AAA’ cor-
responds to 1, ‘D’ corresponds to 22. For spread 5 b.p. and 35% are truncation points. The

Amihud price impact measure is computed as 1
Nt

∑Nt

j=1
|rt,j |
Qt,j

, where rt,j is the price return of

trade j of this bond on day t, Qt,j is the volume of a corresponding transaction, and Nt is a total
number of trades of this bond per day. The computation of the distance-to-default variable is
detailed in Appendix B.2.

AAA AA A BBB BB B CCC CC C D
Size, mln USD 500.00 750.00 500.00 450.00 380.00 360.62 325.00 250.00 175.00 210.00
Time to maturity, years 6.01 4.56 5.68 6.16 6.16 5.98 5.63 5.36 6.08 18.91
Age, years 5.74 3.34 4.00 4.16 4.78 4.67 5.47 11.13 13.46 11.06
Duration, years 5.27 4.16 4.94 5.23 5.15 4.93 4.67 4.45 5.02 11.56
Coupon rate, pct. 5.15 4.88 5.60 6.20 7.12 7.75 7.86 7.70 9.00 7.12
Trades per bond per day 3.00 4.00 3.00 3.00 3.00 3.00 5.00 6.00 4.00 5.00
Yield to maturity, pct. 4.16 4.24 4.36 5.04 6.60 7.92 9.94 13.65 14.46 14.23
Spread, pct. 0.66 0.78 1.13 1.85 3.58 4.67 6.70 10.84 12.18 10.03
Return, pct. per annum 2.59 1.85 2.32 3.35 2.98 3.13 4.17 6.83 8.89 103.30
Distance-to-default (DD) 1.18 0.99 0.77 0.59 0.45 0.40 0.26 0.18 0.20 0.08
Amihud measure 0.29 0.17 0.19 0.21 0.23 0.24 0.42 0.74 0.69 1.08
% of total 0.56 5.91 34.98 39.10 11.30 5.46 2.21 0.26 0.19 0.03
% callable 24.62 67.17 83.02 86.49 81.42 78.52 66.73 39.72 37.60 28.64

(b) Median values by credit rating except for ‘% of total’ and ‘% callable’. Here, numerical
ratings of Table 1a are aggregated to 10 letter-coded bins. Median returns here are total
returns expressed in % per annum.

Table 1: Summary statistics. The full sample is 2,032,455 bond-day observations that
span a period from Oct 4, 2004 to Dec 23, 2014. The sample includes only senior unsecured
non-convertible fixed coupon corporate bond issues with less than 30 years to maturity. The
number of unique bonds/firms in sample is 4640/775. Appendix B.1 details the steps of
data construction. The spread in both tables is the GZ spread from Gilchrist and Zakraǰsek
(2012): a difference in yields to maturity between a risky bond and an imaginary risk-free
bond with the exact same cash flows.
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Fig. 1. Daily and monthly measures of the aggregate GZ spread (simple cross-
sectional average of the GZ spread across all bonds for each time observation). The left
chart shows daily GZ spread obtained on the daily TRACE-based sample. The right chart
compares it with the original monthly GZ spread from Gilchrist and Zakraǰsek (2012).
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Dependent variable: log(Spreadit[k])

(1) (2) (3) (4) (5) (6)

−DDit 0.765∗∗∗ 0.543∗∗∗ 0.537∗∗∗ 0.633∗∗∗ 0.443∗∗∗ 0.434∗∗∗

(0.034) (0.030) (0.030) (0.054) (0.050) (0.049)
log(DURit[k]) 0.097∗∗∗ 0.109∗∗∗ 0.099∗∗∗ 0.061∗∗∗ 0.068∗∗∗ 0.055∗∗∗

(0.010) (0.009) (0.009) (0.021) (0.020) (0.019)
log(PARit[k]) −0.073∗∗∗ −0.073∗∗∗ −0.068∗∗∗ −0.038∗∗ −0.043∗∗∗ −0.038∗∗

(0.012) (0.011) (0.011) (0.016) (0.016) (0.016)
log(CPNi[k]) 0.631∗∗∗ 0.554∗∗∗ 0.554∗∗∗ 0.626∗∗∗ 0.563∗∗∗ 0.560∗∗∗

(0.020) (0.019) (0.018) (0.068) (0.063) (0.062)
log(AGEit[k]) 0.005 0.021∗∗∗ 0.016∗∗∗ 0.042 0.064∗∗∗ 0.061∗∗

(0.006) (0.005) (0.005) (0.027) (0.024) (0.024)
CALLi[k] 0.034∗ 0.038∗∗ 0.041∗∗ 0.406∗ 0.564∗∗ 0.584∗∗

(0.020) (0.018) (0.018) (0.233) (0.234) (0.231)
ADSt −0.247∗∗∗ −0.243∗∗∗ −0.235∗∗∗ −0.231∗∗∗

(0.007) (0.007) (0.006) (0.006)
AMHit[k] 0.037∗∗∗ 0.039∗∗∗

(0.002) (0.002)
−DDit · CALLi[k] 0.022 0.017 0.021

(0.057) (0.053) (0.053)
log(DURit[k]) · CALLi[k] 0.054∗∗∗ 0.048∗∗∗ 0.052∗∗∗

(0.020) (0.019) (0.018)
log(PARit[k]) · CALLi[k] −0.046∗∗∗ −0.045∗∗∗ −0.046∗∗∗

(0.017) (0.017) (0.017)
log(CPNi[k]) · CALLi[k] −0.028 0.022 0.026

(0.070) (0.065) (0.064)
log(AGEit[k]) · CALLi[k] −0.032 −0.052∗∗ −0.055∗∗

(0.027) (0.023) (0.023)
LEVt · CALLi[k] 0.006 −0.021∗∗∗ −0.023∗∗∗

(0.008) (0.008) (0.008)
SLPt · CALLi[k] −0.045∗∗∗ −0.047∗∗∗ −0.048∗∗∗

(0.010) (0.008) (0.008)
CRVt · CALLi[k] −0.068∗∗∗ −0.100∗∗∗ −0.100∗∗∗

(0.014) (0.011) (0.011)
V OLt · CALLi[k] 2.142∗∗∗ 0.743∗∗∗ 0.727∗∗∗

(0.097) (0.055) (0.055)

Industry FE YES YES YES YES YES YES
Credit rating FE YES YES YES YES YES YES
Observations 2,032,455 2,032,455 2,032,455 2,032,455 2,032,455 2,032,455
Adjusted R2 0.719 0.780 0.783 0.745 0.788 0.791

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Candidate explanatory models for the bond k of firm i – day t panel of
credit spreads for the entire sample (Oct 4, 2004 – Dec 23, 2014). The dependent variable
is the log of GZ spread. DD is the distance-to-default, DUR is duration, PAR is amount
outstanding, CPN is the coupon rate, AGE is time elapsed from issuance, and CALL is
a callable bond dummy. ADS is the Aruoba-Diebold and Scotti aggregate activity index,
AMH is the Amihud liquidity measure. LEV , SLP , and CRV are correspondingly level,
slope, and curvature yield curve factors, and V OL is the realized volatility of the 10-year
rate (30-day moving average). See Appendix C for the details on explanatory variables.
All models include industry (the first two digits of the NAICS code) and credit rating (22-
grade numeric scale) fixed effects. Standard errors are clustered in both firm i and time t
dimensions. Model (4) is a benchmark model (Gilchrist and Zakraǰsek, 2012), Model (6) is
used as an alternative model throughout the rest of the paper.
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(a) Daily time series of true and fitted GZ spread from by Model 4 on the left (Gilchrist and Zakraǰsek,
2012) and Model 6 on the right (my preferred model).
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Fig. 2. Fitted spread and EBP (the residual portion of spread) that are computed with
different models of Table 2 in comparison with the original Gilchrist and Zakraǰsek (2012)
EBP measure.

28



Dependent variable: log
(
SGZ
it [k]

)
M4 M6 M4 M6 M4 M6
IG bonds: all years HY bonds: all years All bonds, ex. year 2008

−DDit 0.617∗∗∗ 0.403∗∗∗ 1.141∗∗∗ 0.987∗∗∗ 0.551∗∗∗ 0.422∗∗∗

(0.053) (0.045) (0.156) (0.145) (0.055) (0.050)
log(DURit[k]) 0.053∗∗ 0.050∗∗ 0.077∗∗∗ 0.068∗∗∗ 0.078∗∗∗ 0.070∗∗∗

(0.024) (0.021) (0.025) (0.025) (0.022) (0.021)
log(PARit[k]) −0.067∗∗∗ −0.066∗∗∗ 0.017 0.019 −0.043∗∗∗ −0.039∗∗

(0.017) (0.017) (0.021) (0.021) (0.016) (0.016)
log(CPNi[k]) 0.632∗∗∗ 0.561∗∗∗ 0.563∗∗∗ 0.509∗∗∗ 0.569∗∗∗ 0.535∗∗∗

(0.064) (0.059) (0.130) (0.124) (0.066) (0.063)
log(AGEit[k]) 0.048∗ 0.068∗∗∗ −0.050 −0.027 0.064∗∗ 0.072∗∗∗

(0.029) (0.025) (0.032) (0.026) (0.027) (0.025)
CALLi[k] 0.171 0.361 0.215 0.438 0.555∗∗ 0.669∗∗∗

(0.246) (0.243) (0.409) (0.404) (0.239) (0.236)
ADSt −0.236∗∗∗ −0.191∗∗∗ −0.198∗∗∗

(0.007) (0.011) (0.008)
AMHit[k] 0.036∗∗∗ 0.036∗∗∗ 0.040∗∗∗

(0.002) (0.004) (0.002)
−DDit · CALLi[k] 0.052 0.049 −0.356∗∗∗ −0.318∗∗ 0.039 0.030

(0.060) (0.054) (0.137) (0.130) (0.057) (0.054)
log(DURit[k]) · CALLi[k] 0.070∗∗∗ 0.065∗∗∗ −0.003 0.006 0.049∗∗ 0.050∗∗∗

(0.022) (0.019) (0.025) (0.025) (0.020) (0.019)
log(PARit[k]) · CALLi[k] −0.024 −0.025 −0.045∗ −0.051∗∗ −0.049∗∗∗ −0.049∗∗∗

(0.018) (0.019) (0.025) (0.025) (0.017) (0.018)
log(CPNi[k]) · CALLi[k] −0.055 0.006 −0.042 0.015 0.023 0.050

(0.065) (0.061) (0.131) (0.125) (0.068) (0.065)
log(AGEit[k]) · CALLi[k] −0.038 −0.060∗∗ 0.052 0.020 −0.055∗∗ −0.068∗∗∗

(0.029) (0.025) (0.033) (0.027) (0.026) (0.024)
LEVt · CALLi[k] 0.020∗∗ −0.011 −0.031∗∗ −0.052∗∗∗ −0.023∗∗∗ −0.036∗∗∗

(0.009) (0.008) (0.016) (0.015) (0.008) (0.007)
SLPt · CALLi[k] −0.059∗∗∗ −0.063∗∗∗ −0.005 −0.007 −0.075∗∗∗ −0.059∗∗∗

(0.011) (0.009) (0.016) (0.014) (0.010) (0.009)
CRVt · CALLi[k] −0.060∗∗∗ −0.101∗∗∗ −0.079∗∗∗ −0.085∗∗∗ −0.103∗∗∗ −0.106∗∗∗

(0.015) (0.011) (0.024) (0.022) (0.013) (0.012)
V OLt · CALLi[k] 2.124∗∗∗ 0.685∗∗∗ 2.210∗∗∗ 1.052∗∗∗ 1.989∗∗∗ 0.807∗∗∗

(0.101) (0.054) (0.114) (0.099) (0.094) (0.053)

Industry FE YES YES YES YES YES YES
Credit rating FE YES YES YES YES YES YES
Observations 1,637,136 1,637,136 395,319 395,319 1,887,091 1,887,091
Adjusted R2 0.646 0.716 0.580 0.632 0.762 0.789

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Model 4 (M4 columns) and Model 6 (M6 columns) from Table 2 recomputed over
different sub-samples of the entire sample. The first two columns are only investment-
grade bonds over the entire sample, the second two columns are high-yield bonds over the
entire sample, and the last two columns are all bonds but excluding all days in year 2008.
Dependent variable is the log of GZ spread. Explanatory variables are as in Table 2. Standard
errors are clustered in both firm i and time t dimensions.
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Industrial production Unemployment rate Payroll employment

– M4 M6 – M4 M6 – M4 M6

Real Fed funds rate 0.51 0.23 0.56 0.06 0.07∗ 0.05 −0.09∗ −0.09∗∗ −0.09∗
(0.36) (0.21) (0.42) (0.05) (0.04) (0.04) (0.05) (0.04) (0.05)

Term spread −0.90∗ −0.39 −0.94∗ 0.04 0.02 0.04 0.06 0.07 0.06
(0.47) (0.33) (0.50) (0.06) (0.04) (0.05) (0.06) (0.04) (0.06)

GZ spread −1.84∗∗∗ 0.54∗∗∗ −0.66∗∗∗
(0.40) (0.05) (0.05)

Fitted GZ −0.70 −2.18∗∗∗ 0.46∗∗∗ 0.60∗∗∗ −0.59∗∗∗ −0.74∗∗∗
(0.54) (0.35) (0.08) (0.04) (0.11) (0.06)

EBP −2.85∗∗∗ −0.82 0.59∗∗∗ 0.33∗∗∗ −0.70∗∗∗ −0.46∗∗∗
(0.60) (0.66) (0.07) (0.10) (0.07) (0.08)

Adjusted R2 0.61 0.68 0.64 0.76 0.76 0.79 0.89 0.89 0.91

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(a) 3 months ahead

Industrial production Unemployment rate Payroll employment

– M4 M6 – M4 M6 – M4 M6

Real Fed funds rate 1.02 0.48 1.08 0.04 0.06 0.03 −0.07 −0.09 −0.07
(0.71) (0.43) (0.70) (0.11) (0.07) (0.12) (0.15) (0.11) (0.15)

Term spread −1.65∗∗ −0.71 −1.69∗∗ 0.17 0.12∗ 0.17 −0.04 0.02 −0.03
(0.76) (0.61) (0.71) (0.11) (0.07) (0.12) (0.17) (0.11) (0.17)

GZ spread −2.58∗∗∗ 0.83∗∗∗ −1.09∗∗∗
(0.91) (0.10) (0.06)

Fitted GZ −0.78 −2.92∗∗∗ 0.57∗∗∗ 0.88∗∗∗ −0.80∗∗∗ −1.17∗∗∗
(0.81) (1.09) (0.16) (0.14) (0.27) (0.14)

EBP −4.77∗∗∗ −1.55 0.99∗∗∗ 0.65∗∗∗ −1.27∗∗∗ −0.89∗∗∗
(1.24) (1.29) (0.20) (0.15) (0.17) (0.15)

Adjusted R2 0.50 0.57 0.51 0.75 0.77 0.75 0.83 0.84 0.84

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(b) 6 months ahead

Industrial production Unemployment rate Payroll employment

– M4 M6 – M4 M6 – M4 M6

Real Fed funds rate 1.47 0.36 1.45∗ 0.02 0.05 0.02 −0.05 −0.09 −0.05
(0.94) (0.45) (0.87) (0.21) (0.15) (0.19) (0.30) (0.21) (0.29)

Term spread −2.99∗∗ −1.21 −2.97∗∗ 0.47∗∗ 0.39∗∗ 0.47∗∗ −0.35 −0.24 −0.35
(1.37) (0.87) (1.28) (0.23) (0.16) (0.21) (0.38) (0.24) (0.37)

GZ spread −3.16 1.24∗∗∗ −1.84∗∗∗
(2.44) (0.34) (0.30)

Fitted GZ −1.00 −3.02 0.78∗∗∗ 1.25∗∗∗ −1.25∗∗ −1.88∗∗∗
(1.79) (2.09) (0.26) (0.37) (0.52) (0.38)

EBP −8.08∗∗ −3.57 1.51∗∗∗ 1.18∗∗∗ −2.20∗∗∗ −1.74∗∗∗
(3.45) (3.58) (0.49) (0.40) (0.53) (0.41)

Adjusted R2 0.29 0.40 0.28 0.58 0.60 0.58 0.67 0.68 0.67

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(c) 12 months ahead

Table 4: Forecasting regressions for the log growth rate of industrial production,
change in the unemployment rate, and the log growth rate of payroll employment on
different horizons (not annualized) with either true spread or fitted spread and the EBP
(excess bond premium) as explanatory variables. The EBP is from two alternative models
of Table 2: Models 4 and 6 (columns ‘M4’ and ‘M6’ correspondingly). Real Federal funds
rate is the difference between nominal rate and realized 12-month inflation (one month prior
to a rate observation), Term spread is the difference between 3-month and 10-year Treasury
zero coupon rates. See Appendix C for the details on explanatory variables. Each regression
also has a constant and an automatically selected number of lags (based on the AIC) of the
dependent variable (also not reported). Sample period is monthly from Oct 2004 to Dec
2014. Standard errors are Newey and West (1987) HAC estimates.
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(a) Here EBP is computed with Model 1 of Table 2.
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(b) Here EBP is computed with Model 3 of Table 2.
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(c) Here EBP is computed with Model 4 of Table 2.
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(d) Here EBP is computed with Model 6 of Table 2.

Fig. 3. Orthogonalized impulse-response functions (IRFs) to one standard deviation shocks
from bi-variate monthly VAR models of business activity (the ADS index) and the
EBP. Monthly ADS and EBP are the latest daily observations per month. The models
include a number of lags selected by AIC (required to be less or equal to 12) and a constant.
The EBP is based on Models 1, 3, 4, and 6 of Table 2. Shaded areas are 95% bootstrapped
confidence bands (10’000 runs). Sample period is from Oct 2004 to Dec 2014.
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Parameter estimates for cumulative returns on different horizons
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(a) Dependent variable: returns on TRACE portfolio of bonds; actual GZ spread as
one of explanatory variables.
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(b) Dependent variable: returns on TRACE portfolio of bonds; fitted GZ spread and
EBP of Model 4 as explanatory variables.

Fig. 4. Estimated forecasting regressions for cumulative bond market excess re-
turns. Forecasting horizons are on horizontal axes. Market returns are log returns (not
annualized) on the value-weighted portfolio of TRACE bonds. Explanatory variables are on
vertical axes. See Appendix C for the details on explanatory variables. Each point on a
solid line on each chart is the OLS-estimate from a corresponding regression. Shaded areas
around are two standard errors of the estimates. The standard errors are heteroskedastic-
ity and autocorrelation consistent estimates of Newey and West (1987). Each model also
includes a constant (not reported). The sample is daily from Oct 4, 2004 to Dec 23, 2014.
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Parameter estimates for cumulative returns on different horizons
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(a) Dependent variable: returns on TRACE portfolio of bonds; fitted GZ spread and
EBP of Model 6 as explanatory variables.
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(b) Dependent variable: returns on Barclays Aggregate U.S. corporate bond in-
dex; fitted GZ spread and EBP of Model 6 as explanatory variables.

Fig. 5. Estimated forecasting regressions for cumulative bond market excess re-
turns. Forecasting horizons are on horizontal axes. Market returns are log returns (not
annualized) on the value-weighted portfolio of TRACE bonds (upper panel) or the Barclays
Aggregate corporate bond market index (lower panel). Explanatory variables are on vertical
axes. See Appendix C for the details on explanatory variables. Each point on a solid line on
each chart is the OLS-estimate from a corresponding regression. Shaded areas around are
two standard errors of estimates. The standard errors are heteroskedasticity and autocorre-
lation consistent estimates of Newey and West (1987). Each model also includes a constant
(not reported). The sample is daily from Oct 4, 2004 to Dec 23, 2014.
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Fig. 6. Real-time daily EBP measures computed with only aggregate activity data
available on each estimation day, in comparison with full-sample EBP estimates (same as
‘Model 6’ on the bottom-left panel of Figure 2); time-series on the left and scatter plot on
the right. Each daily observation of the real-time EBP is computed by re-estimating Model
6 of Table 2 for log spreads with a historical ADS vintage available on that particular day,
and taking the latest EBP observation. Re-estimations are performed on expanding samples;
each spans a period from Oct 4, 2004 to the estimation day.
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Fig. 7. Coefficients on real-time EBP in cumulative excess corporate bond market
return forecasting regressions. The dependent variable is the cumulative 50-day ahead
log return on the value-weighted portfolio of TRACE bonds, not annualized. The left chart
presents the estimates from the model with real-time EBP as the only predictor. The right
chart presents the estimates from the model that also includes yield curve factors (level,
slope, and curvature) and one lagged cumulative bond market return as predictors. The
underlying samples expand from Oct 4, 2004 to estimation dates, which are on the horizontal
axes of the charts. Lines are OLS-estimates of the coefficients on EBP from corresponding
regressions. Shaded areas are two standard errors of estimates. The standard errors are
heteroskedasticity and autocorrelation consistent estimates of Newey and West (1987).
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Fig. 8. Diebold-Mariano (DM) out-of-sample predictive accuracy test of return-
forecasting models relative to no-predictability (zero expected excess return) benchmark
on different forecasting horizons. Candidate predictive models for cumulative corporate bond
market all have the real-time EBP as the only predictor. The forecasting horizon is on the
horizontal axis. The null is equal predictive accuracy with zero excess-return benchmark.
The alternative hypothesis is greater out-of-sample predictive accuracy of a considered return
forecasting model. P -values of the DM test are on the vertical axis. Values below 0.1 indicate
rejection of the null at the 90% confidence level. The bond market is the Barclays IG portfolio
of bonds. DM test statistics are computed using forecast errors for all trading days between
Jan 4, 2010 and Dec 23, 2014.
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EBP BM DRF CRF LRF SM SMB HML
EBP
BM 0.02
DRF -0.06** 0.28***
CRF -0.08** -0.36*** 0.08**
LRF 0.05* 0.20*** 0.47*** -0.06*
SM -0.01 -0.28*** 0.03 0.41*** -0.02
SMB 0.00 -0.08*** 0.00 0.14*** -0.02 0.33***
HML 0.01 -0.14*** 0.00 0.18*** -0.02 0.44*** 0.09***
UMD -0.03 0.09*** -0.04 -0.17*** -0.01 -0.38*** -0.05* -0.59***

(a) Correlation matrix of risk factors on the daily frequency. Underlying
portfolio rebalancing in construction of the corporate bond risk factors is also daily.
The sample starts on Mar 10, 2005, because first 100 days are needed to compute
the first observation of the DRF factor.

EBP BM DRF CRF LRF SM SMB HML
EBP
BM 0.18
DRF -0.14 0.47***
CRF -0.22* -0.04 -0.15
LRF 0.03 0.04 0.37*** -0.07
SM -0.01 -0.14 0.03 -0.13 0.11
SMB 0.13 0.02 -0.13 -0.09 0.19* 0.08
HML 0.15 -0.17 -0.16 -0.20* 0.11 0.56*** -0.05
UMD -0.27** -0.05 0.03 0.03 -0.01 -0.41*** 0.10 -0.50***

(b) Correlation matrix of risk factors on the monthly frequency. Port-
folio rebalancing frequency in construction of risk factors is monthly. EBP is
monthly means of the daily series. The sample starts on Oct 2007, because
first three years are needed to compute the first observation of the DRF factor.

Table 5: Correlations of the EBP with corporate bond risk factors from Bai et al.
(2016), and stock market risk factors. The EBP is a full sample estimate from Model 6
of Table 2. The upper panel uses daily time series of the EBP; lower panel uses monthly
averages of the EBP. BM stands for excess returns on the aggregate bond market index
(Barclays IG), DRF for the default risk factor, CRF for the credit risk factor, and LRF for
the liquidity risk factor. Construction methodology for the risk factors is similar to Bai et al.
(2016), the details are provided in Appendix C. The difference between the upper and the
lower panels is a frequency of portfolio rebalancing for the construction of bond risk factors.
The last four rows of correlation matrices refer to the Fama-French stock market risk factors:
SM is excess market return, SMB is the small-minus-big factor, HML is the high-minus-low
factor, and UMD is the momentum factor. Significance code: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Explanatory model Forecasting model
BM 4F BM+ 4F+ BM 4F BM+ 4F+

D1 0.28 0.59 0.29 0.59 0.36 0.33 0.41 0.38
D2 0.51 0.73 0.51 0.74 0.31 0.30 0.43 0.44
D3 0.54 0.72 0.53 0.71 0.21 0.18 0.30 0.27
D4 0.65 0.80 0.65 0.80 0.18 0.22 0.30 0.32
D5 0.61 0.70 0.61 0.70 0.14 0.11 0.23 0.18
D6 0.69 0.81 0.69 0.81 0.14 0.14 0.24 0.24
D7 0.74 0.84 0.74 0.84 0.07 0.13 0.20 0.22
D8 0.76 0.87 0.76 0.87 0.06 0.10 0.19 0.18
D9 0.79 0.89 0.79 0.89 0.04 0.09 0.16 0.15
D10 0.71 0.87 0.71 0.87 0.00 0.03 0.09 0.07
Average 0.63 0.78 0.63 0.78 0.15 0.16 0.26 0.25

(a) Maturity decile portfolios (D1 – shortest, D10 – longest).

Explanatory model Forecasting model
BM 4F BM+ 4F+ BM 4F BM+ 4F+

D1 0.37 0.71 0.36 0.71 0.24 0.17 0.26 0.19
D2 0.48 0.78 0.48 0.78 0.20 0.17 0.24 0.19
D3 0.61 0.82 0.61 0.81 0.20 0.21 0.28 0.26
D4 0.50 0.57 0.52 0.59 0.10 0.10 0.17 0.12
D5 0.66 0.81 0.66 0.80 0.11 0.11 0.19 0.16
D6 0.74 0.84 0.73 0.84 0.10 0.12 0.22 0.20
D7 0.78 0.86 0.78 0.87 0.07 0.08 0.19 0.17
D8 0.75 0.85 0.75 0.86 0.04 0.04 0.12 0.11
D9 0.82 0.88 0.82 0.87 0.03 0.09 0.19 0.20
D10 0.84 0.89 0.84 0.90 0.02 0.09 0.15 0.17
Average 0.65 0.80 0.65 0.80 0.11 0.12 0.20 0.18

(b) Size decile portfolios (D1 – smallest, D10 – largest).

Explanatory model Forecasting model
BM 4F BM+ 4F+ BM 4F BM+ 4F+

Mining, Quarrying, and Oil and Gas Extraction 0.72 0.82 0.72 0.82 0.09 0.06 0.18 0.12
Utilities 0.68 0.81 0.69 0.81 0.17 0.16 0.26 0.23
Construction 0.34 0.44 0.34 0.45 0.06 0.11 0.12 0.11
Manufacturing 0.73 0.87 0.73 0.87 0.08 0.10 0.20 0.18
Wholesale Trade 0.73 0.82 0.73 0.84 0.12 0.12 0.20 0.16
Retail Trade 0.70 0.80 0.70 0.79 0.07 0.09 0.18 0.15
Transportation and Warehousing 0.62 0.82 0.62 0.82 0.13 0.09 0.20 0.14
Information 0.76 0.86 0.76 0.86 0.09 0.07 0.17 0.13
Professional, Scientific, and Technical Services 0.20 0.28 0.20 0.28 0.02 0.04 0.03 0.03
Administrative and Support etc. Services 0.42 0.59 0.43 0.59 0.02 0.12 0.24 0.26
Accommodation and Food Services 0.57 0.65 0.57 0.65 0.10 0.10 0.18 0.16
Average 0.59 0.71 0.59 0.71 0.09 0.10 0.18 0.15

(c) Industry portfolios (2-digit NAICS codes).

Table 6: Adjusted R2 of explanatory and forecasting regressions for monthly returns
on size decile, maturity decile, and industry portfolios. In explanatory models returns and
risk factors are contemporaneous, in forecasting models returns are one month ahead. The
sample is monthly from Oct 2007 to Dec 2014. Four alternative models are considered:
BM has the bond market risk factor as the only explanatory variable, 4F has DRF, CRF,
and LRF factors in addition, BM+ has the market factor and the EBP, and 4F+ has four
aformentioned factors and the EBP.
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Full sample Excl. Sep-Dec’08
Maturity Size Industry Maturity Size Industry

BMarket 8 7 9 6 6 6
EBP 10 10 10 10 9 11
Memo: # of portf. 10 10 11 10 10 11

Table 7: Significance of explanatory variables in BM+ return-forecasting models from
Table 6 at the 95%-level . A number in row i of column j shows for how many portfolios
of type j factor i is a significant one-month ahead predictor of returns. Total number of
portfolios of type j is given in the last line of the table. The left three columns build
forecasting models over the full sample (Oct 2007 – Dec 2014), while the right three columns
drop the period from Sep 2008 to Dec 2008 inclusive.

Train (2009–2011) Test (2012–2014)
Market Strategy Market Strategy

Mean excess return 0.21 0.33 0.10 0.18
Standard devaition 0.75 0.88 0.59 0.72
Sharpe ratio 0.28 0.37 0.17 0.25
Information ratio 0.25 0.24
Max. excess return 2.46 2.80 1.32 1.85
Min. excess return -1.66 -2.48 -2.59 -2.39

Table 8: Comparative performance of the corporate bond market (Barclays Aggre-
gate U.S. corporate bond index, investable) and a proposed market timing strategy.
Returns and standard deviations are in % per week, not annualized. The strategy consists
in making 1-week ahead forecasts of market excess returns and taking positions in a market
ETF based on these forecasts. Three options are available: invest all in risk-free bonds (low
expected excess returns), follow the market (mediocre expected returns), lever up and invest
more in the market (high expected returns). Separation bounds in terms of expected returns
are determined by maximizing the strategy Sharpe ratio of the strategy over the training
sample (see Figure 9 also). The leverage ratio is 0.5, meaning that 50% of the accumulated
asset value is borrowed for one week and invested in the market whenever the strategy pre-
scribes to lever up. The return-forecasting model is a ‘leave-one-out’ cross-validated LASSO
regression with the penalty parameter selected to minimize the out-of-sample RMSE at each
re-estimation date, which is weekly. The dependent variable is weekly excess corporate bond
market returns. The regressors are 5 latest daily observations of excess returns, yield curve
factors (level, slope, and curvature), fitted GZ spreads, the EBP, and a month dummy all
one week prior to return observations. The EBP and the GZ spread are real time expand-
ing sample estimates of Section 5.2. The information ratio in the table is relative to the
corporate bond market returns. Transaction costs are not accounted for.
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(a) Training sample: 2009 – 2011. Expected return bounds (vertical dashed lines) that
determine investments for a week ahead (actions that are taken are given at the top of the
left chart) are selected to maximize the Sharpe ratio of the strategy. The leverage ratio is 0.5.
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(b) Testing sample: 2012 – 2014. Expected return bounds (vertical dashed lines) and 0.5
leverage ratio are as determined on the training sample.

Fig. 9. Out-of-sample forecasts of corporate bond market excess returns vis-a-vis actual
returns, and comparative performance of the market timing strategy based on
these forecasts. The return forecasting model is a ‘leave-one-out’ cross-validated LASSO
regression with the penalty parameter selected to minimize the out-of-sample RMSE at each
re-estimation date, which is weekly. The dependent variable is weekly excess corporate bond
market returns. The regressors are 5 latest daily observations of excess returns, yield curve
factors (level, slope, and curvature), fitted GZ spreads, and the EBP, all one week prior to
returns observations. The EBP and the GZ spread are real-time expanding sample estimates
of Section 5.2. Transaction costs are not accounted for.
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Appendix B. Constructing the Dataset

B.1. Data Sources

This appendix describes step by step how the sample is constructed. Since I work in this

paper on the daily frequency, sample construction methodology differs in certain aspects

from that for the monthly frequency.

Step 1. I start with the Enhanced TRACE intra-day bond market transactional data.

The main difference of the Enhanced TRACE from regular TRACE is no cap on the reported

transaction volume. This comes at a cost of a reporting lag. As of spring 2017 the Enhanced

TRACE data are available through the WRDS only till the end of 2014, while plain TRACE

data are available till the end of 2016. For the purpose of this study, it is not critical,

though, to work with the most recent data; to have data on the exact transaction volume is

more important. Full transaction volume allows me to compute bond liquidity measures. To

ensure representativeness of the data I look at the so-called ‘Phase 3’ of the TRACE only

(from October 2004 onwards). For detailed quantitative comparison of different phases of

the TRACE see Asquith, Covert, and Pathak (2013).

The Enhanced TRACE data needs to be cleaned of trade cancellations, reversals, correc-

tions and agency transactions. The cleaning procedure I follow is described in Dick-Nielsen

(2014). I also apply price filters to the data. All transactions with reported bond prices

below 1 or above 500, as well as transactions with absolute returns above 20% (to a previous

trade) are removed. Then I compute a daily average volume-weighted bond price and daily

liquidity measures for each bond.22 From this point onwards I work with the daily data.

Step 2. To obtain characteristics of the bonds I match securities from TRACE with

Mergent FISD by CUSIP numbers. Once this is done, I reduce the sample to only non-

convertible senior unsecured corporate bonds with less than 30 years to maturity.

Callable bonds are not removed from the sample, but remaining outstanding amounts are

22I re-did the study for simple daily average prices and daily last prices; it doesn’t affect the results.
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tracked thanks to the file with historical outstanding amounts that is available in Mergent

FISD.

Next, I determine for each bond for each day the exact remaining coupon payment/principal

repayment schedule. This allows to compute daily prices of risk-free counterparts of the

bonds by discounting remaining cash flows with Treasury zero-coupon rates for each par-

ticular day.23 Then, observed bond prices and the prices of their risk-free counterparts are

converted into yields to maturity. The difference in yields to maturity is the GZ spread (after

Gilchrist and Zakraǰsek, 2012).

I also obtain the history of credit rating revisions from Mergent FISD and add credit

ratings to the sample. Throughout the paper I use a numerical rating scale: 1 corresponds

to ‘AAA’, 2 corresponds to ‘AAA-’, and so on, up to 22 that corresponds to ‘D’.

Step 3. In this step, I add issuing firms’ characteristics to the data. For this purpose, I

match the issuers with the firms in CRSP and Compustat. By matching on either tickers,

or trade symbols, or 6-digit CUSIP numbers I am able to get the characteristics of issuing

firms for more than 95% of the bonds (the rest are removed from the sample).

The ultimate goal of this step is to compute the Merton (1974) distance-to-default vari-

able for each issuing firm for each day. For that I need firm equity value, volatility, and

indebtedness for each day (see computational details in Appendix B.2). I obtain equity

characteristics on the daily frequency from CRSP. Equity volatility is computed as the stan-

dard deviation of daily returns in the one-year rolling window. Firm indebtedness for each

day is the latest available quarterly observation from Compustat carried forward. The de-

fault threshold needed to compute the distance-to-default is defined as all short-term debt

and half of the long-term debt. Since the distance-to-default is a numerical solution to a

system of equations, I remove bond(firm)-day observations for which this system doesn’t

23These historical yield curves constructed as in Gürkaynak, Sack, and Wright (2007) are readily available via
Quandl, https://www.quandl.com/. Here, the yield curve construction method is a modified Nelson-Siegel
approach with additional parameters included to better fit the long end of the curve – the so-called ‘Nelson-
Siegel-Svensson’ method.
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have a solution with reasonable starting values.

Step 4. This is the step when I apply a number of final filters to the bond-day data.

Below is the list of criteria according to which I remove observations from the sample. I

remove:

– issuing firms from the financial and the real estate industry;

– bonds with less than one year to maturity;

– days with abnormally few trades;24

– observations in the 1st and the 99th percentiles of daily total returns;

– observations with the GZ spread below 5 b.p. or above 35%;25

– observations in the 99th percentile according to the Amihud illiquidity measure.

B.2. Daily Measure of Merton’s Distance-to-default

In the Merton (1974) model firm’s default probability at time t is determined by:

P [VA ≤ D] = Φ (−DD) = Φ (d1) = Φ

− log
(
VA
D

)
+
(
r − σ2

A

2

)
(T − t)

σA
√
T − t

 ,

where VA is the value of firm’s assets, D is the default threshold, σA is the volatility of VA,

T − t is the time to maturity, r is the discount rate, and Φ(·) is the standard normal c.d.f.

To compute the DD variable one needs to know VA and σA that are unobserved (unlike

other parameters). There exist multiple methods to estimate these parameters, see Duan

and Wang (2012) for a detailed overview. In this paper, I use the ‘volatility restriction’

method that consists in solving for VA and σA the following system of equations:

0 = VAΦ(d1)− exp {−r(T − t)}DΦ(d2)− VE,

24These are the days with total number of trades per day at least 20% lower than the average daily number
of trades over a 30-day rolling window. This criteria is reverse engineered – it allows to remove pre-holiday
trading days. Cross-sectional distributions of bond prices and spreads on these days were found to be very
different from the ones on regular days.

25Same filter as in Gilchrist and Zakraǰsek (2012).

43



0 =
VA
VE

Φ(d1)σA − σE,

where d2 = d1−σA
√
T − t, and VE and σE are correspondingly the value of the firm’s equity

and its volatility (these parameters are observed). I didn’t use the transformed-data MLE

approach to estimate the distance-to-default and opted for the volatility restriction method

instead in order to speed up the computations. Solving numerically the system of equations

above is orders of magnitude faster than running MLE estimations for each firm for each

day. Experiments on a small sub-sample of the data didn’t give considerably different results

for the two methods.

In Section 2, I solve for VA and σA for each firm for each day. VE is the value of firm’s

equity from CRSP. σE is the standard deviation of daily equity returns from CRSP estimated

over a backward-looking one-year long window. D is all short-term debt (less than one year

to maturity) plus half of the long-term debt. Starting values for the solution algorithm are

always VA[0] = VE and σA[0] = σE. I disregard all firm-days when this approach doesn’t

lead to a reasonable solution.
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Appendix C. Explanatory Variables

Here is the list of explanatory variables used in Sections 3–5.

– DD, the distance-to-default computed as presented in Appendix B.2. The values

presented in Table 1 and further used in the analysis are scaled by 1000.

– DUR, the Macaulay duration.

– PAR, outstanding amount of a bond issue in mln USD. This variable contains the

history of changes in the outstanding amount for each bond; a corresponding historical

file is included in Mergent FISD (available through the WRDS server).

– CPN , a coupon rate of a bond, in % per annum.

– AGE, time elapsed since a bond was issued, in years.

– CALL, a call option dummy; equals to 1 if the bond issue is redeemable and to 0

otherwise.

– ADS, Aruoba et al. (2009) daily aggregate activity index for the US computed by the

Philadelphia Fed and available (with historical vintages) at https://goo.gl/mZJ5Sj.

This is a smoothed business cycle signal derived from 6 real activity series of differ-

ent reporting frequency: weekly initial jobless claims, monthly payroll employment,

industrial production, personal income less transfer payments, and manufacturing and

trade sales, and quarterly real GDP. Since the index is obtained by running the Kalman

smoother, its historical paths change a little bit as the new data become available.

– AMH, the Amihud liquidity measure, computed as presented in Section 2.

– LEV , an empirical proxy for the ‘level’ of the yield curve: 10-year zero-coupon rate

y10Y .

– SLP , an empirical proxy for the ‘slope’ of the yield curve: the difference between

10-year and 3-month zero-coupon rates y10Y − y3M .

– CRV , an empirical proxy for the ‘curvature’ of the yield curve: 2y2Y − y10Y − y3M .

– V OL, volatility of the long-rate: the standard deviation of the 10-year zero coupon
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rate computed over the 30-day rolling window.

– RFF , Real Federal funds rate, the difference between nominal effective Federal funds

rate and realized (one month prior to a rate observation) 12-month CPI growth rate.

– TS, Term spread, same as the yield curve slope SLP .

– GZ spread, the corporate bond spread computed as in Gilchrist and Zakraǰsek (2012).

– Fitted GZ spread, the portion of GZ spread explained by one the models of Table 2.

– EBP , excess bond premium, the difference between GZ spread and Fitted GZ spread.

– DRF , the default risk factor of Bai et al. (2016). This is the value-weighted aver-

age return difference between the highest-VaR quintile portfolio and the lowest-VaR

quintile portfolio within each rating quintile portfolio. VaR is computed at the 5%

level. For daily-rebalanced portfolios VaR is computed over the latest 100 days, for

monthly-rebalanced portfolios over the latest 36 months.

– CRF , the credit risk factor of Bai et al. (2016). This is the value-weighted average

return difference between the lowest-rating quintile portfolio and the highest-rating

quinitle portfolio within each illiquidity quintile portfolio. Illiquidity portfolios are

formed using the Amihud measure, unlike Bai et al. (2016), who use negative covariance

between daily price changes as a low-frequency illiquidity proxy.

– LRF , the liquidity risk bond pricing factors of Bai et al. (2016). This is the value-

weighted average return difference between the highest-illiquidity quintile portfolio and

the lowest-illiquidity quintile portfolio within each rating quintile portfolio.

– SMB, HML, and UMD, are, correspondingly, small-minus-big, high-minus-low, and

momentum stock pricing factors. Available from the Ken French’s database via Quandl

at: https://www.quandl.com/data/KFRENCH-Ken-French.
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Appendix D. Time fixed effects in regressions for spreads

Here I consider alternative specifications for log spread fitting models with the time fixed

effect TFEt included:

log
(
SGZit [k]

)
= β ·DDit + (Proxies for recovery rate and liquidity) + (Call adjustment) +

+ η · AMHit[k] + (Industry and rating FE) + TFEt + εit[k].

Compared to specifications in Section 3, this specification replaces ADSt with TFEt. Oth-

erwise, the models are identical. As d’Avernas (2017) discusses in his Appendix E, such

specification provides unbiased parameter estimates, unlike the benchmark Gilchrist and

Zakraǰsek (2012) model. My goal here is to extract the time fixed effect and investigate to

what extent it is explained by aggregate business activity as measured by the ADS index.

Table 9 presents the estimated models with time fixed effects. The first two columns

correspond to a simple option adjustment with the same call dummy for all callable bonds

(as Models 1–3 in Table 2), the last two columns also control for the interactions of a

call dummy with the yield curve and bond-specific factors (correspond to Models 4–6 in

Table 2). Note that the time fixed effect improves the overall fit of the models (compared to

the specifications with the ADS index in Table 2). The models in Table 9 capture more than

80% of the variation of log spreads. The coefficients on the Amihud measure in Tables 2 and

9 are very close. However, the coefficients on the distance-to-default are considerably lower

when the time fixed effect is included, in line with d’Avernas (2017) arguments.

Estimated TFEs from four alternative models are almost identical, the left chart on

Figure 10 shows. I will work with the TFE from Model 4 of Table 9 since this model is

the closest analogue of my preferred Model 6 of Table 2. To investigate the relationship

between the TFE and the ADS I first run a standard OLS of the TFE on the ADS and a

constant on the daily sample from Oct 2004 to Dec 2014. Such model has an R2 of 0.63.

The explained portion of the TFE is presented on the right chart of Figure 10. To be sure
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Dependent variable: log(Spreadit[k])

(1) (2) (3) (4)

−DDit 0.234∗∗∗ 0.234∗∗∗ 0.120∗∗ 0.119∗∗

(0.045) (0.045) (0.060) (0.060)
log(DURit[k]) 0.106∗∗∗ 0.098∗∗∗ 0.057∗∗∗ 0.046∗∗

(0.009) (0.008) (0.019) (0.018)
log(PARit[k]) −0.085∗∗∗ −0.081∗∗∗ −0.062∗∗∗ −0.057∗∗∗

(0.011) (0.011) (0.017) (0.017)
log(CPNi[k]) 0.581∗∗∗ 0.582∗∗∗ 0.685∗∗∗ 0.683∗∗∗

(0.019) (0.019) (0.056) (0.055)
log(AGEit[k]) 0.011∗∗ 0.007 0.005 0.002

(0.005) (0.005) (0.021) (0.021)
CALLi[k] 0.012 0.014 0.541∗∗ 0.550∗∗

(0.017) (0.016) (0.246) (0.243)
AMHit[k] 0.030∗∗∗ 0.031∗∗∗

(0.002) (0.002)
−DDit · CALLi[k] 0.145∗∗∗ 0.147∗∗∗

(0.056) (0.055)
log(DURit[k]) · CALLi[k] 0.065∗∗∗ 0.069∗∗∗

(0.017) (0.017)
log(PARit[k]) · CALLi[k] −0.029 −0.030∗

(0.018) (0.018)
log(CPNi[k]) · CALLi[k] −0.126∗∗ −0.123∗∗

(0.057) (0.056)
log(AGEit[k]) · CALLi[k] 0.010 0.009

(0.021) (0.021)
LEVt · CALLi[k] 0.018 0.018

(0.012) (0.012)
SLPt · CALLi[k] −0.022∗∗ −0.022∗∗

(0.011) (0.011)
CRVt · CALLi[k] −0.016 −0.017

(0.019) (0.019)
V OLt · CALLi[k] 0.102 0.104

(0.082) (0.081)

Time FE YES YES YES YES
Industry FE YES YES YES YES
Credit rating FE YES YES YES YES
Observations 2,032,455 2,032,455 2,032,455 2,032,455
Adjusted R2 0.822 0.824 0.823 0.825

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 9: Explanatory models for the bond k of firm i – day t panel of credit spreads for
the entire sample (Oct 4, 2004 – Dec 23, 2014) with the time fixed effect included. The
dependent variable is the log of GZ spread. DD is the distance-to-default, DUR is duration,
PAR is amount outstanding, CPN is the coupon rate, AGE is time elapsed from issuance,
and CALL is a callable bond dummy. AMH is the Amihud liquidity measure. LEV , SLP ,
and CRV are correspondingly level, slope, and curvature yield curve factors, and V OL is
the realized volatility of the 10-year rate (30-day moving average). See Appendix C for the
details on explanatory variables. All models include also industry (the first two digits of the
NAICS code) and credit rating (22-grade numeric scale) fixed effects. Standard errors are
clustered in both firm i and time t dimensions.

that the result is not spurious I also do the Johansen cointegration test for the TFE and the

ADS and estimate a corresponding error-correction model.26

Table 10 demonstrates that the strong link between the TFE and the ADS is not spurious.

26Both the TFE and the ADS are I(1) over 2004–2014 period.
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Fig. 10. Time fixed effect (TFE) extracted from the models of Table 9. The left chart
presents four alternative daily time-series of the TFE. The right chart plots the TFE from
Model 4 vis-a-vis its fitted counterpart from the regression of the TFE on a constant and
the ADS index. The sample is daily from Oct 4, 2003 to Dec 23, 2014.

The Johansen test (Table 10a) rejects no-cointegration null at the 95% confidence level when

more than two lags are included (the optimal number of lags is 15 according to the AIC).

The estimated cointegration vector (Table 10b) is statistically significant and economically

reasonable. When the ADS drops from zero (‘normal’ times) to negative values (low activity

states), the TFE jumps above its mean of 34 b.p.

In economic terms, the TFE absorbs time-varying portions of the remuneration for credit

risk and of the credit risk premium. In this appendix, I demonstrated that this time-varying

object is explained to a large extent by the aggregate business risk fluctuations as measured

by the ADS index. This finding is in line with the results of Section 3 of the main text that

emphasises aggregate business risk as the factor of credit spreads.
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Lag length Critical values
H0 2 3 15 90% 95% 99%
r = 1 1.96 2.35 3.53 7.52 9.24 12.97
r = 0 13.78 22.11 27.68 17.85 19.96 24.60

(a) Johansen cointegration test with trace-type test
statistics. Lag length of 15 is optimal according to
AIC. The null is in the leftmost column (r is the num-
ber of cointegration vectors). The null is rejected when
the test statistics exceeds the critical value (the right-
most part of the table).

TFE ADS Const

β̂T 1 0.38 -0.34
– (8.49) (-8.3)

α̂T -0.01 -0.01 –
(-2.7) (-4.2) –

(b) Cointegration vectors β̂
and coefficients on the error-
correction terms α̂ in the
VECM with 15 lags. t-stats
are in parenthesis.

Table 10: Cointegration tests and vectors for the vector error-correction model (VECM) of
daily TFE (Model 4 of Table 9) and the ADS index. The sample is daily from Oct 4, 2003
to Dec 23, 2014.
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Appendix E. EBP and VIX as predictors of returns

Here I show that the predictive power of EBP for corporate bond market returns is

immune to the inclusion of the VIX index in return forecasting regressions of Section 5.1.

Estimation results are presented in Figure 11. It is analogous to Figure 5, and the only

difference is the VIX added to the right-hand side of forecasting models. On the top panel,

Figure 11a, the bond market is the TRACE portfolio of bonds, while on the bottom panel,

Figure 11b, the market is the Barclays Aggregate index.

As Figure 11 demonstrates, the VIX itself predicts market returns significantly only on

horizons more than 50 days and only when the market is the TRACE portfolio. When the

market is restricted to investment-grade bonds of the Barclays index only, the VIX is not

significant on any horizon.

The coefficients on EBP remain significant for a wide range of forecasting horizons in

the models with the VIX index added. When the market is the investment-grade index

(Figure 11b), EBP significantly predicts excess market returns on horizons up to several

months, and the economic significance is only marginally lower than in regressions without

VIX in Figure 5. This result applies to the TRACE portfolio as well, but here the addition

of VIX compromises statistical significance on shorter horizons.

Daily VIX is a difference-stationary variable over the years 2004–2014, while the EBP is

a level-stationary series. Replacing the levels of VIX in return-forecasting models by its first

differences doesn’t undermine the predictive power of EBP for market returns (not reported).

Same applies to regressions with only the EBP and the VIX or its first differences on the

right-hand side (also not reported). To sum up, even though the VIX might be a predictor

of corporate bond market returns on some horizons, it doesn’t stand behind the forecasting

power of EBP for market returns.
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Parameter estimates for cumulative returns on different horizons
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(a) Dependent variable: returns on TRACE portfolio of bonds; fitted GZ spread and
EBP of Model 6 as explanatory variables.
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(b) Dependent variable: returns on Barclays Aggregate U.S. corporate bond in-
dex; fitted GZ spread and EBP of Model 6 as explanatory variables.

Fig. 11. Estimated forecasting regressions for cumulative bond market excess returns.
Same explanatory variables as in Figure 5, plus the VIX index.
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